WO2012056668A1 - Reverse osmosis membrane structure for water treatment and reverse osmosis membrane module - Google Patents

Reverse osmosis membrane structure for water treatment and reverse osmosis membrane module Download PDF

Info

Publication number
WO2012056668A1
WO2012056668A1 PCT/JP2011/005919 JP2011005919W WO2012056668A1 WO 2012056668 A1 WO2012056668 A1 WO 2012056668A1 JP 2011005919 W JP2011005919 W JP 2011005919W WO 2012056668 A1 WO2012056668 A1 WO 2012056668A1
Authority
WO
WIPO (PCT)
Prior art keywords
reverse osmosis
osmosis membrane
flow path
water
membrane structure
Prior art date
Application number
PCT/JP2011/005919
Other languages
French (fr)
Japanese (ja)
Inventor
泰子 山田
牛房 信之
敬子 中野
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2012056668A1 publication Critical patent/WO2012056668A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/08Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/025Reverse osmosis; Hyperfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/06Tubular membrane modules
    • B01D63/066Tubular membrane modules with a porous block having membrane coated passages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/08Prevention of membrane fouling or of concentration polarisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/14Dynamic membranes
    • B01D69/141Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes
    • B01D69/145Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes containing embedded catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/024Oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/56Polyamides, e.g. polyester-amides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/20By influencing the flow
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Definitions

  • the present invention relates to a reverse osmosis membrane technology used for wastewater regeneration treatment and seawater desalination treatment.
  • Water recycling refers to removing unnecessary materials from domestic wastewater (sewage) and industrial wastewater, and purifying water according to the intended use, such as domestic water, industrial water, and agricultural water.
  • a water recycling facility there is a method combining a membrane separation activated sludge facility (MBR, Membrane Bio-Reactor) and a reverse osmosis membrane. Since organic substances and salts that cannot be decomposed by organisms are dissolved in water treated with MBR, a reverse osmosis membrane is used for the purpose of removing them. Reverse osmosis membranes are also used for desalination of seawater, production of pure water for the production of precision electronic equipment such as semiconductors, and advanced treatment of clean water.
  • MBR membrane separation activated sludge facility
  • Reverse osmosis membranes are also used for desalination of seawater, production of pure water for the production of precision electronic equipment such as semiconductors, and advanced treatment of clean water.
  • the general structure of a reverse osmosis membrane is that a semipermeable membrane such as an aromatic polyamide membrane or cellulose acetate is superimposed on a microporous porous support, and the thickness of the semipermeable membrane is 200 to 300 nm.
  • a reverse osmosis membrane whose semipermeable membrane is an aromatic polyamide is widely used for industrial use because of its excellent water permeability and electrolyte removal performance.
  • the reverse osmosis membrane module uses a spacer and a reverse osmosis membrane bonded together, and the distance between the spacer and the reverse osmosis membrane is narrow.
  • Patent Document 4 discloses a method of using an adsorbent to remove organic substances dissolved in water when water treatment is performed using a reverse osmosis membrane.
  • the adsorbent has a problem that a large amount of adsorbent is required because the surface area is insufficient.
  • Patent Document 3 a contrivance is made to widen the spacer interval, but it is still about 400 nanometers and there is almost no effect of suppressing clogging.
  • Patent Document 1 discloses a method using an adsorbent made of the same material as the reverse osmosis membrane. Moreover, in order to enlarge the contact area of a treated water and a reverse osmosis membrane, the patent document 2 using a fibrous polymer and a ceramic porous body is disclosed.
  • a reverse osmosis membrane structure that performs reverse osmosis membrane treatment on water to be treated
  • a first surface into which the water to be treated flows and a first surface from which the water to be treated flows out Two surfaces, a plurality of first flow paths formed side by side in a direction intersecting the longitudinal direction thereof, and a plurality of first flow paths formed side by side in the first flow path and not communicating with the first surface
  • a reverse osmosis membrane structure comprising a reverse osmosis membrane in a partition wall between a path and the second flow path is provided.
  • organic substances in the water to be treated can be efficiently removed, clogging is less likely to occur, the frequency of cleaning and replacement of the reverse osmosis membrane is reduced, the running cost is reduced, and water can be stably supplied.
  • FIG. 1 is a schematic view of a water treatment facility according to an embodiment of the present invention.
  • the water treatment facility separates water tank 2 for temporarily storing sewage primary treated water (treated water), pump 3 for pressurizing treated water, and purified water and sewage into pressurized treated water. And a reverse osmosis membrane module.
  • Temporary sewage treatment water is a series of treatments that removes dust, etc. through a screen, adds fine flocculant such as sand, settles and removes it, and decomposes organic matter using microorganisms. Water.
  • dissolved substances such as salts and dissolved organic substances are contained, and the reverse osmosis membrane module separates into purified water with a small amount of dissolved substances and sewage with concentrated dissolved substances.
  • sewage regeneration treatment is taken as an example, but the reverse osmosis membrane module 1 is also used for seawater desalination, pure water production used for the production of precision electronic equipment such as semiconductors, and advanced water treatment. Can do.
  • FIG. 2 is a side view of an example of the reverse osmosis membrane module 1 used in the sewage treatment apparatus.
  • the reverse osmosis membrane module 1 was a structure having a porous ceramic honeycomb structure 6 having a ceramic honeycomb structure.
  • a ceramic honeycomb structure 6 is accommodated by a filter support 4 in a housing 5 (acrylic storage container) via a gripping member.
  • the support 4 allows water to pass through without resistance, and when water is permeated at 0.1 MPa, the change in position at the center of the long axis is within 5% of the length of the fixed end in the long axis direction. It is only necessary to use a material having a strength, thickness, and holding method, and a material that does not have an eluate to water.
  • mesh spacers such as polyethylene, polypropylene, polyethylene terephthalate, polystyrene, etc.
  • a mesh such as stainless steel or titanium, a punching metal, or the like can be used.
  • a punching metal having a thickness of 1 mm was used as the support 4.
  • the upstream side of the ceramic honeycomb structure 6 has an inflow port through which treated water flows, and the downstream side of the treated water is divided into purified water and sewage. There are two waterways called outlets from which water flows out.
  • FIG. 3 is a top view of the ceramic honeycomb structure 6, FIG. 4 is a perspective view thereof, and FIG. 5 is a cross-sectional view thereof.
  • the ceramic honeycomb structure 6 is formed with a large number of flow paths 9 partitioned by porous partition walls. As shown in the figure, the sealing portions 12 are alternately formed on the end face of the flow path 9 on the side where the treated water flows, so that the water can permeate through the partition walls 7.
  • the flow path in which the sealing part 12 is not formed is referred to as a first flow path 9a, and the flow path in which the sealing part 12 is formed is referred to as a second flow path 21b.
  • the partition wall 7 has a large number of communication holes communicating with the flow paths 9 by holes due to the porosity.
  • the same material as the ceramic honeycomb filter 6, an organic material, an inorganic material, or the like that does not dissolve in water can be used.
  • water paths formed of tubes or the like are connected to the respective flow paths 9. Purified water flows through the water channel connected to the first flow path 9a, and dirty water flows through the water channel connected to the second flow path 9b.
  • the water channels connected to the first flow channel 9a merge, and the water channels connected to the second flow channel 9b merge to flow out of the reverse osmosis membrane module 1.
  • the partition wall 7 is coated with a polymer material 11.
  • the portion where the polymer material 11 is applied is the entire surface of the partition wall 7 and may be on the first flow path 9a side or the second flow path 9b side.
  • the surface of the partition wall 7 is covered with a semipermeable membrane of the polymer material 11 and used as a reverse osmosis membrane.
  • the function of the ceramic honeycomb structure 6 of this example will be described with reference to FIG.
  • the treated water pressurized by the pump 3 reaches the reverse osmosis membrane module 1.
  • the water to be treated that has reached the left side of the drawing proceeds into the ceramic honeycomb structure 6 from the inlet of the first flow path 9a where the sealing portion 12 is not formed.
  • a part of the water to be treated passes through the partition wall 7 to which the polymer material 11 is applied and functions as a reverse osmosis membrane, and flows into the second flow path 9b.
  • the water to be treated that has passed through the reverse osmosis membrane becomes purified water having a reduced dissolved substance concentration, and flows out from the outlet (right side of the drawing) of the second channel.
  • the water to be treated that has not permeated through the partition walls 7 has a high dissolved substance concentration and flows out from the outlet of the first flow path 9a as dirty water.
  • the main body of the partition wall 7 is made of ceramics, has a role as an adsorbent using the physical adsorption phenomenon of ceramics, and adsorbs the dissolved matter contained in the water to be treated that passes therethrough.
  • the polymer material 11 is provided on the second channel 9b side of the partition wall 7, the water to be treated passes through the ceramic partition wall 7 before passing through the polymer material 11 as a reverse osmosis membrane.
  • the ceramic adsorbs the dissolved matter in the water to be treated, clogging of the reverse osmosis membrane can be suppressed and the replacement frequency can be reduced.
  • the partition wall 7 has a coarser mesh and is more durable against clogging. In such a structure, the adsorbent and the reverse osmosis membrane used to prevent clogging of the reverse osmosis membrane are performed in one structure.
  • a method for manufacturing the ceramic honeycomb structure 6 will be described.
  • an ultrafine needle having a micrometer order needle tip used for medical use or the like is used for application of the polymer material 11.
  • a porous film that is denser than the pores on the inner wall of the ceramic filter is formed as necessary.
  • a composite film structure in which a desired polymer film is formed after the formation may be used.
  • This polymer membrane 11 functions as a semipermeable membrane and has a role of a reverse osmosis membrane.
  • a polymer containing a —NH— bond having a high affinity for a carbonyl group, a carboxyl group, or an aromatic ring is preferably used as the reverse osmosis membrane material.
  • the polymer containing a —NH— bond in the repeating unit include polyamide, polyimide, polyurethane, urea resin, polypeptide (protein), polyethyleneimine, polybenzimidazole, and polybenzoxazole.
  • materials containing —NH— bonds in the side chain or main chain can also be used.
  • FIG. 6 shows the chemical structure of the polymer.
  • Examples include polyallylamine and polyvinylamine.
  • those having a carbonyl group or a siloxane structure in the main chain or side chain may be used because of the affinity for —NH— bond and siloxanes.
  • the structure contained in the main chain and the side chain is not limited to one type, and by including a plurality of structures, a wide variety of mixtures contained in water can be adsorbed and the adsorption efficiency can be improved. .
  • polyamide and cellulose acetate can be used, but are not limited thereto.
  • a photocatalyst may be supported on the porous filter or the polymer material in order to decompose the organic matter.
  • a photocatalyst titanium oxide, strontium titanate, zinc oxide, iron oxide, tungsten oxide and the like can be used, but are not limited thereto.
  • the honeycomb structure 6 on which the adsorbent is supported is manufactured as follows. Prepare powders of kaolin, talc, silica, alumina, etc. and make cordierite so that the mass ratio is SiO 2 : 48-52%, Al 2 O 3 : 33-37%, MgO: 12-15% Prepare a raw material powder, add a binder such as methylcellulose, hydroxypropylmethylcellulose, and a lubricant to this powder, mix thoroughly in a dry process, add a specified amount of water, and perform sufficient kneading to plasticize the ceramic clay. Create Next, the clay is extruded using an extrusion mold, cut, and dried to obtain a dried body having a honeycomb structure.
  • a binder such as methylcellulose, hydroxypropylmethylcellulose, and a lubricant
  • the outer peripheral portion of the dried body is removed by processing, and the flow path located on the outer periphery does not have a partition wall with the outside, thereby forming a honeycomb structure having a concave groove that opens to the outside and extends in the axial direction.
  • a dried body having a honeycomb structure was obtained.
  • a coating agent containing cordierite particles and colloidal silica is applied to the flow path that opens to the outside and is fired.
  • the cordierite-type ceramic honeycomb structure 6 is formed with a large number of flow paths.
  • the outer diameter (diameter) is 5.66 inches
  • the total length is 6 inches
  • the partition wall thickness is 0.32 mm
  • the partition wall pitch is 1.57 mm
  • the initial pressure loss is 0.85 mmAq (at 7). 0.5 Nm 3 / min).
  • patent document 5 as an example of the manufacturing method of a ceramic honeycomb filter.
  • polyamide was dissolved in N-methylpyrrolidone to prepare a 0.5% polyamide NMP solution.
  • Polyamide is obtained by polymerizing 4,4'-oxydianiline and isophthaloyl dichloride as monomers.
  • this polymer solution 14 was put in a beaker 13, impregnated with a ceramic filter, and polyamide was absorbed into the ceramic filter and applied.
  • the ceramic filter was pulled up.
  • the polymer material was applied to the inside of the flow path with the needle described above. Thereafter, it was dried in an oven at 130 ° C. for 24 hours.
  • Example 2 will be described with reference to FIG.
  • the difference between the present embodiment and the first embodiment is that the intermediate sealing portion 10 is provided and that the polymer material 11 is formed only on the partition wall 7 on the downstream side of the intermediate sealing portion 10. is there.
  • a sealing portion 12 is provided at the upstream end of the first flow path 9a.
  • the intermediate sealing part 10 exists in the upstream of the 2nd flow path 9b, and the 3rd flow path 9c is the upstream of the same hole.
  • the function of the ceramic structure 6 of the present embodiment will be described with reference to FIG.
  • the treated water pressurized by the pump 3 reaches the reverse osmosis membrane module 1.
  • the water to be treated that has reached the left side of the drawing proceeds into the ceramic structure 6 from the inlet of the third flow path 9 c where the sealing portion 12 is not formed. Since the third flow path 9c is blocked by the intermediate sealing portion 10, almost all of the inflowed water to be treated permeates through the partition wall 7 where no polymer material is formed, and the first flow It flows into the path 9a. At this time, organic substances that cause clogging as a reverse osmosis membrane are adsorbed by the ceramics constituting the partition wall 7. Moreover, since the pores of the ceramic forming the partition are larger than the pores of the reverse osmosis membrane, the water to be treated can pass through the partition with a relatively small resistance.
  • the treated water that has flowed into the first flow path follows the same path as in the first embodiment. Specifically, a part of the water to be treated passes through the partition wall 7 to which the polymer material 11 is applied and functions as a reverse osmosis membrane, and flows into the second flow path 9b. The water to be treated that has passed through the reverse osmosis membrane becomes purified water having a reduced dissolved substance concentration, and flows out from the second flow path 9b. On the other hand, the water to be treated that has not permeated through the partition walls 7 has a high dissolved substance concentration and flows out through the first flow path 9a as sewage.
  • the dissolved water is adsorbed in the partition wall 7 that passes when the water to be treated that has flowed into the reverse osmosis membrane module moves from the third flow path 9c to the first flow path 9a. Adhesion of the dissolved matter on the reverse osmosis membrane surface is reduced, an increase in water resistance of the reverse osmosis membrane can be suppressed, and the frequency of replacement of the reverse osmosis membrane structure can be reduced.
  • Example 3 will be described with reference to FIG.
  • the difference between the present embodiment and the second embodiment is that the polymer material 11 is also formed on the partition wall 7 upstream of the intermediate sealing portion 10 in the present embodiment.
  • the thickness of the polymer material 11 is different. That is, a polymer film having two roles is provided depending on the method of applying a polymer material to the ceramic filter.
  • a polymer material that adsorbs and removes organic matter is removed from the surface of the partition wall and the surface of the pores of 5 to 50 ⁇ m inside.
  • the entire surface or a part of the film is applied with a thickness that does not fill the pores inside the partition walls, preferably 100 nm or less.
  • the polymer film 11 since the polymer film 11 is thin, it becomes a rough film due to the influence of the pores of the ceramic partition walls 7.
  • dissolved substances such as organic substances permeate through the pores of the polymer material 11 and do not function as a reverse osmosis film, but function as an adsorbing substance that adsorbs the dissolved substance.
  • the film thickness along the channel 9 is formed on the surface of the partition wall 7 as in the first and second embodiments. Is applied to form a polymer film having a thickness of 100 to 300 nm. In this case, when the polymer material 11 is thick, the influence of the pores of the ceramic is reduced, and a dense film can be obtained. If necessary, a composite film structure in which a desired polymer film is formed after forming a porous film denser than the pores on the inner wall of the ceramic filter 6 may be used. This polymer membrane functions as a semipermeable membrane and has a role of a reverse osmosis membrane.
  • the ceramic partition wall 7 also adsorbs the lysate upstream of the reverse osmosis membrane and suppresses clogging of the reverse osmosis membrane, thereby extending the life.
  • the reverse osmosis membrane and the material are Since they are the same or similar, it is easy to adsorb dissolved substances that cause clogging of the reverse osmosis membrane, and the effect of reducing the frequency of replacement of the reverse osmosis membrane is increased.
  • the upstream polymer film 11 and the downstream polymer film may be the same material or different materials. The same material is convenient for manufacturing.
  • the upstream polymer film is more water-repellent and the downstream polymer film 11 is more hydrophilic, the adsorbing power of organic substances on the upstream polymer film 11 acting as an adsorbing material. And the organic matter is less likely to adhere to the polymer membrane 11 on the downstream side that functions as a reverse osmosis membrane.
  • the water to be treated that has flowed into the reverse osmosis membrane module is dissolved in the partition wall 7 that passes when moving from the third flow path 9c to the first flow path 9a. Since the substance is adsorbed, the adhesion of the dissolved substance to the reverse osmosis membrane surface is reduced.
  • the polymer material 11 on the ceramic of the partition wall 7 the adsorbing power of the dissolved material is increased, and an increase in water flow resistance of the reverse osmosis membrane can be suppressed. Can be reduced.
  • Example 2 both the ceramic structure according to Example 2 and the ceramic honeycomb structure according to Example 3 had less dissolved organic matter after filtration than before filtration. Moreover, compared with Example 2 with no polyamide modification, Example 3 with polyamide modification was able to remove organic substances in the low molecular region.
  • any ceramic honeycomb structure has a TOC concentration ⁇ 236 mg / L after filtration as compared to before filtration, and the adsorbent has an organic substance removing effect.
  • SYMBOLS 1 Reverse osmosis membrane module, 2 ... Water storage tank, 3 ... Pump, 4 ... Filter support body, 5 ... Filter holding container (filter), 6 ... Ceramic structure ( Ceramic filter), 7 ... partition wall, 8 ... channel sealing part, 9 ... channel, 10 ... intermediate sealing part, 11 ... polymer, 13 ... beaker, 14 ..Polymer solution.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Materials Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Physical Water Treatments (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

In reverse osmosis membranes used for advanced treatment in waste water recycling, seawater desalination, etc., the adsorption of organic substances dissolved in the water to the surface of the reverse osmosis membrane and causing clogging, reducing the volume of permeating water, and increasing the frequency of reverse osmosis membrane module exchange, is a problem. To remove dissolved organic substances efficiently and solve said problem: a ceramic filter with a honeycomb structure having a large adsorption surface area is used; the communicating pores of the ceramic filter are used as flow channels; and some of the flow channels are plugged, and the water to be treated is made to pass through partition walls and is treated by the partition wall with a reverse osmosis membrane, which has an amide group-containing high molecular weight polymer. Because the water to be treated is filtered when it passes through the partition walls of the flow channels, it becomes cleaner and adhesion of organic substances to the reverse osmosis membranes can be reduced. Moreover, since the flow channels are wide, on the order of micrometers, clogging does not occur easily.

Description

水処理用逆浸透膜構造体及び逆浸透膜モジュールReverse osmosis membrane structure for water treatment and reverse osmosis membrane module
 本発明は、排水再生処理や海水淡水化処理に用いる逆浸透膜の技術に関する。 The present invention relates to a reverse osmosis membrane technology used for wastewater regeneration treatment and seawater desalination treatment.
 近年、特に経済成長が続く中国やインド、水資源の乏しい中東などで積極的な水事業への投資が行われている。それらの地域では水の供給能力が不足し、水再生処理技術が求められている。 In recent years, there have been active investments in water businesses, particularly in China and India, where economic growth continues, and in the Middle East where water resources are scarce. In these areas, water supply capacity is insufficient, and water regeneration treatment technology is required.
 水再生処理とは、生活排水(下水)や工業廃水から不要物を取り除いて、生活用水、工業用水、農業用水など、用途に合わせて水を浄化することである。 Water recycling refers to removing unnecessary materials from domestic wastewater (sewage) and industrial wastewater, and purifying water according to the intended use, such as domestic water, industrial water, and agricultural water.
 水再生設備として、膜分離活性汚泥設備(MBR、Membrane Bio-Reactor)と逆浸透膜を組み合わせた方法がある。MBRで処理した水には生物が分解できなかった有機物や塩類が溶存しているため、それらの除去を目的として逆浸透膜が用いられる。逆浸透膜は他に、海水淡水化や半導体等の精密電子機器製造用の純水製造、上水の高度処理の用途に使われる。逆浸透膜の一般的な構造は、微孔多孔質支持体上に芳香族ポリアミド膜や酢酸セルロースなどの半透膜を重ねあわせており、半透膜の膜厚は200~300nmである。半透膜が芳香族ポリアミド系の逆浸透膜は、水透過性や電解質除去性能が優れるため、工業用に広く用いられている。逆浸透膜モジュールはスペーサと逆浸透膜を貼り合わせて使用し、スペーサと逆浸透膜の間隔が狭い。 As a water recycling facility, there is a method combining a membrane separation activated sludge facility (MBR, Membrane Bio-Reactor) and a reverse osmosis membrane. Since organic substances and salts that cannot be decomposed by organisms are dissolved in water treated with MBR, a reverse osmosis membrane is used for the purpose of removing them. Reverse osmosis membranes are also used for desalination of seawater, production of pure water for the production of precision electronic equipment such as semiconductors, and advanced treatment of clean water. The general structure of a reverse osmosis membrane is that a semipermeable membrane such as an aromatic polyamide membrane or cellulose acetate is superimposed on a microporous porous support, and the thickness of the semipermeable membrane is 200 to 300 nm. A reverse osmosis membrane whose semipermeable membrane is an aromatic polyamide is widely used for industrial use because of its excellent water permeability and electrolyte removal performance. The reverse osmosis membrane module uses a spacer and a reverse osmosis membrane bonded together, and the distance between the spacer and the reverse osmosis membrane is narrow.
特許第3864817号公報Japanese Patent No. 3864817 特表2005-518272号公報JP 2005-518272 A 特開平9-29252号公報JP-A-9-29252 特開2005-111407号公報JP 2005-111407 A 特開2006-233935号公報JP 2006-233935 A
 しかしながら特許文献1、特許文献2の場合、流路が約200ナノメートルしかないため、目詰まりが生じやすく、水の透過量が低下しやすい課題がある。 However, in the case of Patent Document 1 and Patent Document 2, since the flow path has only about 200 nanometers, there is a problem that clogging is likely to occur and the amount of water permeation is likely to decrease.
 逆浸透膜を用いて水処理する場合に、水中に溶存した有機物を除去するために吸着剤を用いる方法が特許文献4に開示されている。吸着剤では表面積が不足するため大量の吸着剤が必要となる問題があった。 Patent Document 4 discloses a method of using an adsorbent to remove organic substances dissolved in water when water treatment is performed using a reverse osmosis membrane. The adsorbent has a problem that a large amount of adsorbent is required because the surface area is insufficient.
 また、特許文献3ではスペーサの間隔を広くする工夫がなされているがそれでも400ナノメートル程であり目詰まり抑制の効果はほとんどない。 Further, in Patent Document 3, a contrivance is made to widen the spacer interval, but it is still about 400 nanometers and there is almost no effect of suppressing clogging.
 逆浸透膜が汚染して目詰まりをおこした場合、一定の透過量を得るために圧力(動力)を増加させるため、ポンプの電力費増加につながる。また、汚染を除去するため逆浸透膜を洗浄するが、薬液により逆浸透膜が徐々に劣化し、イオンの阻止率が低下する。これらが進むと逆浸透膜交換が必要となる。逆浸透膜の交換時は運転を長時間止める必要があり、再生水の安定供給が困難となる。特に、下水再生処理では、逆浸透膜への供給水中に有機物を多く含むため、溶存有機物による目詰まりが大きな課題である。 When the reverse osmosis membrane is contaminated and clogged, the pressure (power) is increased to obtain a certain amount of permeation, leading to an increase in the power cost of the pump. Moreover, although a reverse osmosis membrane is wash | cleaned in order to remove contamination, a reverse osmosis membrane deteriorates gradually with a chemical | medical solution, and the ion rejection rate falls. As these progress, reverse osmosis membrane exchange is required. When replacing the reverse osmosis membrane, it is necessary to stop the operation for a long time, which makes it difficult to stably supply reclaimed water. In particular, in sewage regeneration treatment, clogging with dissolved organic matter is a major issue because the water supplied to the reverse osmosis membrane contains a large amount of organic matter.
 溶存有機物が原因の逆浸透膜の目詰まりのメカニズムは大きく2つのものがある。1つ目は、有機物が逆浸透膜表面に吸着し、膜の表面状態や分子レベルの孔を塞いで膜性能を劣化させる。2つ目は、逆浸透膜モジュールに大きく関係し、溶存していた有機物が膜表面や膜とスペーサの間で不溶化して堆積し、流路を閉塞させるために起きる。特に2つめのモジュール構造起因の場合は、モジュールの入口側で発生し、モジュールの奥では膜の劣化が起きていないにもかかわらず、透過水量が減少してしまう。従来の溶存有機物除去方法として、逆浸透膜と同じ材料からなる吸着剤を用いる方法が特許文献1に開示されている。また、処理水と逆浸透膜の接触面積を大きくするために、繊維状高分子とセラミック多孔体を用いる特許文献2が開示されている。 There are two main mechanisms of reverse osmosis clogging caused by dissolved organic matter. First, organic substances are adsorbed on the surface of the reverse osmosis membrane, blocking the surface state of the membrane and pores at the molecular level, thereby deteriorating membrane performance. The second is largely related to the reverse osmosis membrane module, and occurs because dissolved organic substances are insolubilized and deposited between the membrane surface and between the membrane and the spacer, and block the flow path. In particular, in the case of the second module structure, it occurs on the inlet side of the module, and the permeated water amount is reduced in spite of the absence of membrane deterioration at the back of the module. As a conventional method for removing dissolved organic matter, Patent Document 1 discloses a method using an adsorbent made of the same material as the reverse osmosis membrane. Moreover, in order to enlarge the contact area of a treated water and a reverse osmosis membrane, the patent document 2 using a fibrous polymer and a ceramic porous body is disclosed.
 上記課題を解決するために、本発明は、例えば、被処理水に逆浸透膜処理を行う逆浸透膜構造体において、被処理水が流入する第1の面と、被処理水が流出する第2の面と、その長手方向に交差する方向に互いに並んで形成された複数の第1の流路と、前記第1の流路に並んで形成され、前記第1の面には連通しない複数の第2の流路と、前記第1の流路と前記第2の流路との間に形成され、前記被処理水が透過可能な多孔質な隔壁と、を備え、前記第1の流路と前記第2の流路との間の隔壁に逆浸透膜を有することを特徴とする逆浸透膜構造体を提供する。 In order to solve the above problems, for example, in a reverse osmosis membrane structure that performs reverse osmosis membrane treatment on water to be treated, a first surface into which the water to be treated flows and a first surface from which the water to be treated flows out Two surfaces, a plurality of first flow paths formed side by side in a direction intersecting the longitudinal direction thereof, and a plurality of first flow paths formed side by side in the first flow path and not communicating with the first surface The first flow path, and a porous partition wall formed between the first flow path and the second flow path and permeable to the water to be treated. A reverse osmosis membrane structure comprising a reverse osmosis membrane in a partition wall between a path and the second flow path is provided.
 本発明では、効率よく被処理水中の有機物を除去可能で、また、目詰まりを起こしにくくなり、逆浸透膜の洗浄頻度や交換頻度を下げ、ランニングコストを低減し、水を安定供給できる。 In the present invention, organic substances in the water to be treated can be efficiently removed, clogging is less likely to occur, the frequency of cleaning and replacement of the reverse osmosis membrane is reduced, the running cost is reduced, and water can be stably supplied.
本発明の実施例にかかる逆浸透膜モジュールを用いた水処理フロー図である。It is a water treatment flowchart using the reverse osmosis membrane module concerning the Example of this invention. 本発明の実施例にかかる逆浸透膜モジュールの構造の模式図である。It is a schematic diagram of the structure of the reverse osmosis membrane module concerning the Example of this invention. 本発明の実施例にかかる逆浸透膜構造体を上面からみた模式図である。It is the schematic diagram which looked at the reverse osmosis membrane structure concerning the Example of this invention from the upper surface. 本発明の実施例にかかる逆浸透膜構造体を側面からみた模式図である。It is the schematic diagram which looked at the reverse osmosis membrane structure concerning the Example of this invention from the side. 本発明の実施例1にかかる逆浸透膜構造体の断面図である。It is sectional drawing of the reverse osmosis membrane structure concerning Example 1 of this invention. 本発明の実施例にかかる高分子材料の分子構造である。It is the molecular structure of the polymeric material concerning the Example of this invention. 本発明の実施例2にかかる逆浸透膜構造体の断面図である。It is sectional drawing of the reverse osmosis membrane structure concerning Example 2 of this invention. 本発明の実施例3にかかる逆浸透膜構造体の断面図である。It is sectional drawing of the reverse osmosis membrane structure concerning Example 3 of this invention. セラミックフィルタへの高分子修飾の概要である。It is an outline of polymer modification to a ceramic filter. 本発明の実施例にかかるGPC測定結果である。It is a GPC measurement result concerning the Example of this invention. 本発明の実施例にかかるTOC測定結果である。It is a TOC measurement result concerning the Example of this invention.
 以下、図面を用いて本発明の実施例を用いて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 図1は、本発明の実施例にかかる水処理設備の概略図である。水処理設備は、下水一次処理水(被処理水)を一時的に貯める貯水タンク2と、被処理水を加圧するポンプ3と、加圧された被処理水を浄化水と汚水とに分離する逆浸透膜モジュールとを備えている。下水一時処理水とは、ごみ等をスクリーンにかけて取り除く処理、さらに砂などの細かい懸濁物を凝集剤添加して沈降除去する処理、微生物を用いて有機物を分解する処理の一連の処理が施された水である。下水一次処理水中には塩類や溶解有機物などの溶解物が含まれており、逆浸透膜モジュールでは、溶解物の溶解量が少ない浄化水と、溶解物が濃縮された汚水とに分離する。 FIG. 1 is a schematic view of a water treatment facility according to an embodiment of the present invention. The water treatment facility separates water tank 2 for temporarily storing sewage primary treated water (treated water), pump 3 for pressurizing treated water, and purified water and sewage into pressurized treated water. And a reverse osmosis membrane module. Temporary sewage treatment water is a series of treatments that removes dust, etc. through a screen, adds fine flocculant such as sand, settles and removes it, and decomposes organic matter using microorganisms. Water. In the sewage primary treated water, dissolved substances such as salts and dissolved organic substances are contained, and the reverse osmosis membrane module separates into purified water with a small amount of dissolved substances and sewage with concentrated dissolved substances.
 本実施例では、下水再生処理を例にするが、逆浸透膜モジュール1は、海水淡水化、半導体等の精密電子機器製造に用いる純水製造、上水の高度処理などのためにも用いることができる。 In this embodiment, sewage regeneration treatment is taken as an example, but the reverse osmosis membrane module 1 is also used for seawater desalination, pure water production used for the production of precision electronic equipment such as semiconductors, and advanced water treatment. Can do.
 図2は、下水処理装置に用いる逆浸透膜モジュール1の一例の側面図である。逆浸透膜モジュール1は、セラミック製のハニカム構造を有する多孔質のセラミックハニカム構造体6を有する構造物とした。セラミックハニカム構造体6が把持部材を介してハウジング5(アクリル製収納容器)内のフィルタ支持体4により収納されている。支持体4は水が抵抗なく通過可能で、水を0.1MPaで透過させたときに、固定端の長軸方向の長さに対して、長軸の中央部での位置変化が5%以内となる強度を持つような素材、厚さ、保持方法で、水への溶出物がない材質であれば良く、例えば、樹脂系ではポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリスチレン等のメッシュスペーサ、金属系ではステンレス、チタンなどのメッシュ、パンチングメタル等を用いることができる。本実施例では、支持体4として厚さ1mmのパンチングメタルを使用した。また、被処理水は、必ずセラミックスハニカム構造体6を通るように、セラミックハニカム構造体6とハウジング5の間は密閉されている。セラミックハニカム構造体6の上流側では、被処理水が流入する流入口を有し、下流側では、被処理水が浄化水と汚水の二つに分かれるため、浄化水が流出する流出口と汚水が流出する流出口という二つの水路となっている。 FIG. 2 is a side view of an example of the reverse osmosis membrane module 1 used in the sewage treatment apparatus. The reverse osmosis membrane module 1 was a structure having a porous ceramic honeycomb structure 6 having a ceramic honeycomb structure. A ceramic honeycomb structure 6 is accommodated by a filter support 4 in a housing 5 (acrylic storage container) via a gripping member. The support 4 allows water to pass through without resistance, and when water is permeated at 0.1 MPa, the change in position at the center of the long axis is within 5% of the length of the fixed end in the long axis direction. It is only necessary to use a material having a strength, thickness, and holding method, and a material that does not have an eluate to water. For example, in the case of resin, mesh spacers such as polyethylene, polypropylene, polyethylene terephthalate, polystyrene, etc. A mesh such as stainless steel or titanium, a punching metal, or the like can be used. In this example, a punching metal having a thickness of 1 mm was used as the support 4. In addition, the water to be treated is sealed between the ceramic honeycomb structure 6 and the housing 5 so that the treated water always passes through the ceramic honeycomb structure 6. The upstream side of the ceramic honeycomb structure 6 has an inflow port through which treated water flows, and the downstream side of the treated water is divided into purified water and sewage. There are two waterways called outlets from which water flows out.
 図3はセラミックハニカム構造体6の上面図であり、図4はその斜視図であり、図5はその断面図である。セラミックハニカム構造体6は、多孔質の隔壁で仕切られた多数の流路9が並んで形成されている。図に示すように封止部12を流路9の処理水が流入する側の端面に交互に形成し、隔壁7内を水が透過する構造となっている。封止部12が形成されていない流路を第1の流路9a、封止部12が形成された流路を第2の流路21bとする。隔壁7内は、多孔質に起因する孔により、流路9間を連通する連通孔を多数有している。封止部12には、セラミックハニカムフィルタ6と同一の材料、有機材料、無機材料など水に溶解しない材料を使用できる。流路9の下流側(図面右側)では、各々の流路9にチューブなどにより形成された水路が接続されている。第1の流路9aに接続された水路には浄化水が流れ、第2の流路9bに接続された水路には、汚水が流れる。第1の流路9aに接続された水路同士が合流し、また第2の流路9bに接続された水路同士が合流し、逆浸透膜モジュール1を流れ出る。 3 is a top view of the ceramic honeycomb structure 6, FIG. 4 is a perspective view thereof, and FIG. 5 is a cross-sectional view thereof. The ceramic honeycomb structure 6 is formed with a large number of flow paths 9 partitioned by porous partition walls. As shown in the figure, the sealing portions 12 are alternately formed on the end face of the flow path 9 on the side where the treated water flows, so that the water can permeate through the partition walls 7. The flow path in which the sealing part 12 is not formed is referred to as a first flow path 9a, and the flow path in which the sealing part 12 is formed is referred to as a second flow path 21b. The partition wall 7 has a large number of communication holes communicating with the flow paths 9 by holes due to the porosity. For the sealing portion 12, the same material as the ceramic honeycomb filter 6, an organic material, an inorganic material, or the like that does not dissolve in water can be used. On the downstream side (right side of the drawing) of the flow paths 9, water paths formed of tubes or the like are connected to the respective flow paths 9. Purified water flows through the water channel connected to the first flow path 9a, and dirty water flows through the water channel connected to the second flow path 9b. The water channels connected to the first flow channel 9a merge, and the water channels connected to the second flow channel 9b merge to flow out of the reverse osmosis membrane module 1.
 さらに、隔壁7には高分子材料11が塗布されている。高分子材料11を塗布する箇所は、隔壁7の全面であり、第1の流路9a側でも第2の流路9b側でもよい。隔壁7表面を高分子材料11の半透膜で覆い、逆浸透膜として使用する。 Furthermore, the partition wall 7 is coated with a polymer material 11. The portion where the polymer material 11 is applied is the entire surface of the partition wall 7 and may be on the first flow path 9a side or the second flow path 9b side. The surface of the partition wall 7 is covered with a semipermeable membrane of the polymer material 11 and used as a reverse osmosis membrane.
 本実施例のセラミックハニカム構造体6の働きを、図5を用いて説明する。ポンプ3によって加圧された被処理水は、逆浸透膜モジュール1に至る。図5において、図面左側にいたった被処理水は、封止部12が形成されていない第1の流路9aの流入口からセラミックハニカム構造体6内に進む。ここで、被処理水のうちの一部は、高分子材料11が塗布され逆浸透膜として働く隔壁7を透過して、第2の流路9bに流入する。逆浸透膜を通った被処理水は、溶解物濃度が小さくなった浄化水となり、第2の流路の流出口(図面右側)から流出する。一方で、隔壁7を透過しなかった被処理水は、溶解物濃度が高くなり、汚水として第1の流路9aの流出口から流出する。 The function of the ceramic honeycomb structure 6 of this example will be described with reference to FIG. The treated water pressurized by the pump 3 reaches the reverse osmosis membrane module 1. In FIG. 5, the water to be treated that has reached the left side of the drawing proceeds into the ceramic honeycomb structure 6 from the inlet of the first flow path 9a where the sealing portion 12 is not formed. Here, a part of the water to be treated passes through the partition wall 7 to which the polymer material 11 is applied and functions as a reverse osmosis membrane, and flows into the second flow path 9b. The water to be treated that has passed through the reverse osmosis membrane becomes purified water having a reduced dissolved substance concentration, and flows out from the outlet (right side of the drawing) of the second channel. On the other hand, the water to be treated that has not permeated through the partition walls 7 has a high dissolved substance concentration and flows out from the outlet of the first flow path 9a as dirty water.
 隔壁7の本体は、セラミックスにより構成されており、セラミックスの物理吸着現象を用いた吸着体としての役割を持ち、これを通過する被処理水に含まれる溶解物を吸着する。高分子材料11を隔壁7の第2の流路9b側に設けた場合には、被処理水は逆浸透膜としての高分子材料11を透過する前に、セラミックスの隔壁7を透過する。このとき、セラミックスが被処理水中の溶解物を吸着するため、逆浸透膜の目詰まりを抑制して交換頻度を少なくすることができる。高分子膜11に比べて隔壁7の方が目が粗いため、目詰まりに対して耐久性がある。このような構造では、逆浸透膜の目詰まりを防止するために用いる吸着体と逆浸透膜とを、一つの構造体内で行うことになる。 The main body of the partition wall 7 is made of ceramics, has a role as an adsorbent using the physical adsorption phenomenon of ceramics, and adsorbs the dissolved matter contained in the water to be treated that passes therethrough. When the polymer material 11 is provided on the second channel 9b side of the partition wall 7, the water to be treated passes through the ceramic partition wall 7 before passing through the polymer material 11 as a reverse osmosis membrane. At this time, since the ceramic adsorbs the dissolved matter in the water to be treated, clogging of the reverse osmosis membrane can be suppressed and the replacement frequency can be reduced. Compared to the polymer film 11, the partition wall 7 has a coarser mesh and is more durable against clogging. In such a structure, the adsorbent and the reverse osmosis membrane used to prevent clogging of the reverse osmosis membrane are performed in one structure.
 セラミックハニカム構造体6の製造方法について説明する。高分子材料11の塗布には、医療用等に用いられる針先がマイクロメートルオーダーの超微細ニードルを使用する。まず、流路9の奥側まで該ニードルを差し込み、スプレーしながらニードルを引き抜く方法をとることができる。隔壁7の表面に流路9に沿って膜厚が100~300nmの高分子膜を形成するように塗布する方法では、必要に応じてセラミックスフィルタの内壁の細孔よりも緻密な多孔質膜を形成したのちに所望の高分子膜を形成する複合膜構造でも良い。この高分子膜11は半透膜として働き、逆浸透膜の役割を持つ。 A method for manufacturing the ceramic honeycomb structure 6 will be described. For application of the polymer material 11, an ultrafine needle having a micrometer order needle tip used for medical use or the like is used. First, it is possible to adopt a method of inserting the needle to the back side of the flow path 9 and pulling out the needle while spraying. In the method of coating so as to form a polymer film having a film thickness of 100 to 300 nm along the flow path 9 on the surface of the partition wall 7, a porous film that is denser than the pores on the inner wall of the ceramic filter is formed as necessary. A composite film structure in which a desired polymer film is formed after the formation may be used. This polymer membrane 11 functions as a semipermeable membrane and has a role of a reverse osmosis membrane.
 逆浸透膜が有機物を吸着するメカニズムには、分子間相互作用が影響する。吸着した有機物分析から、カルボニル基、カルボキシル基、芳香環と親和性の高い-NH-結合を含むポリマーを逆浸透膜材料とすることが良い。ポリマーの繰返し単位に-NH-結合を含む例として、ポリアミド、ポリイミド、ポリウレタン、尿素樹脂、ポリペプチド(タンパク質)、ポリエチレンイミン、ポリベンゾイミダゾール、ポリベンゾオキサゾールなどがある。他の材料として、側鎖や主鎖に-NH-結合を含むものを用いることもできる。図6に高分子の化学構造を示す。例えば、ポリアリルアミン、ポリビニルアミンなどがある。また、-NH-結合やシロキサン類との親和力のため、主鎖または側鎖にカルボニル基、シロキサン構造を含むものも良い。さらに、主鎖や側鎖に含まれる構造は1種類に限らず、複数の構造を含むことによって、水中に含まれる混合物の広範囲の種類を吸着することができ、吸着効率を向上することができる。 Intermolecular interactions affect the mechanism by which reverse osmosis membranes adsorb organic matter. From the analysis of the adsorbed organic matter, a polymer containing a —NH— bond having a high affinity for a carbonyl group, a carboxyl group, or an aromatic ring is preferably used as the reverse osmosis membrane material. Examples of the polymer containing a —NH— bond in the repeating unit include polyamide, polyimide, polyurethane, urea resin, polypeptide (protein), polyethyleneimine, polybenzimidazole, and polybenzoxazole. As other materials, materials containing —NH— bonds in the side chain or main chain can also be used. FIG. 6 shows the chemical structure of the polymer. Examples include polyallylamine and polyvinylamine. In addition, those having a carbonyl group or a siloxane structure in the main chain or side chain may be used because of the affinity for —NH— bond and siloxanes. Furthermore, the structure contained in the main chain and the side chain is not limited to one type, and by including a plurality of structures, a wide variety of mixtures contained in water can be adsorbed and the adsorption efficiency can be improved. .
 逆浸透膜の材料は一般的に用いられているポリアミド、酢酸セルロースが使用できるが、これらに限定するものではない。 As the material of the reverse osmosis membrane, commonly used polyamide and cellulose acetate can be used, but are not limited thereto.
 また、多孔質フィルタまたは、高分子材料に、有機物を分解するために光触媒が担持されていてもよい。光触媒としては、酸化チタン、チタン酸ストロンチウム、酸化亜鉛、酸化鉄、酸化タングステン等を使用できるが、これらに限定するものではない。 Further, a photocatalyst may be supported on the porous filter or the polymer material in order to decompose the organic matter. As the photocatalyst, titanium oxide, strontium titanate, zinc oxide, iron oxide, tungsten oxide and the like can be used, but are not limited thereto.
 このような逆浸透膜を用いて被処理水の浄化処理を行うことで、ポリマーが塗布されていない箇所では、大きな表面積で効率よく有機物を除去可能で、また、逆浸透膜の流路が広いために目詰まりを起こしにくくなり、逆浸透膜の洗浄頻度や交換頻度を下げ、ランニングコストを低減することができる。 By purifying the water to be treated using such a reverse osmosis membrane, it is possible to efficiently remove organic substances with a large surface area in a place where the polymer is not applied, and the flow path of the reverse osmosis membrane is wide. Therefore, clogging is less likely to occur, the frequency of cleaning and replacement of the reverse osmosis membrane can be reduced, and the running cost can be reduced.
 上記吸着剤が担持されたハニカム構造体6は、以下のようにして製造する。カオリン、タルク、シリカ、アルミナなどの粉末を調製して、質量比でSiO:48-52%、Al:33~37%、MgO:12~15%となるようにコーディエライト化原料粉末を準備し、これにメチルセルロース、ヒドロキシプロピルメチルセルロース等のバインダ、潤滑剤を添加し、乾式で充分混合した後、規定量の水を添加、充分な混錬を行って可塑化したセラミック杯土を作成する。次に、押し出し成形用金型を用いて杯土を押し出し成形し、切断して、乾燥して、ハニカム構造を有する乾燥体とする。次に、この乾燥体の外周部を加工により除去し、再外周に位置する流路が外部との隔壁を有しないことによって、外部に開口して軸方向に延びる凹溝を有するハニカムの構造を有するハニカムの構造の乾燥体とした。さらに、1400℃で焼成したのち、外部に開口して延びる流路にコーディエライト粒子とコロイダルシリカを含有するコーティング剤を塗布、焼成して、外周壁の内側に隔壁で仕切られた断面が四角形状の多数の流路が形成されたコーディエライト質セラミックハニカム構造体6とする。なお、ハニカム構造体6の構造の一例として、外径(直径)5.66インチ、全長は6インチで、隔壁厚さ0.32mm、隔壁ピッチ1.57mm、初期圧力損失0.85mmAq(at 7.5Nm/min)である。セラミックハニカムフィルタの製造方法の一例として、特許文献5がある。 The honeycomb structure 6 on which the adsorbent is supported is manufactured as follows. Prepare powders of kaolin, talc, silica, alumina, etc. and make cordierite so that the mass ratio is SiO 2 : 48-52%, Al 2 O 3 : 33-37%, MgO: 12-15% Prepare a raw material powder, add a binder such as methylcellulose, hydroxypropylmethylcellulose, and a lubricant to this powder, mix thoroughly in a dry process, add a specified amount of water, and perform sufficient kneading to plasticize the ceramic clay. Create Next, the clay is extruded using an extrusion mold, cut, and dried to obtain a dried body having a honeycomb structure. Next, the outer peripheral portion of the dried body is removed by processing, and the flow path located on the outer periphery does not have a partition wall with the outside, thereby forming a honeycomb structure having a concave groove that opens to the outside and extends in the axial direction. A dried body having a honeycomb structure was obtained. Furthermore, after firing at 1400 ° C., a coating agent containing cordierite particles and colloidal silica is applied to the flow path that opens to the outside and is fired. The cordierite-type ceramic honeycomb structure 6 is formed with a large number of flow paths. As an example of the structure of the honeycomb structure 6, the outer diameter (diameter) is 5.66 inches, the total length is 6 inches, the partition wall thickness is 0.32 mm, the partition wall pitch is 1.57 mm, and the initial pressure loss is 0.85 mmAq (at 7). 0.5 Nm 3 / min). There exists patent document 5 as an example of the manufacturing method of a ceramic honeycomb filter.
 このセラミックハニカムフィルタに、ポリアミドをN-メチルピロリドンに溶解して0.5%ポリアミドNMP溶液を調整した。ポリアミドは、モノマーとして、4、4’-オキシジアニリンとイソフタロイルジクロライドを重合したものである。図9に示すように、このポリマー溶液14をビーカ13に入れ、セラミックフィルタを含浸して、セラミックフィルタにポリアミドを吸収させて塗布した。ポリマー溶液がセラミックフィルタ上面まで行き渡ったところで、セラミックフィルタを引き上げた。流路内部には、上述したニードルで高分子材料を塗布した。その後、130℃、24時間オーブンで乾燥した。 In this ceramic honeycomb filter, polyamide was dissolved in N-methylpyrrolidone to prepare a 0.5% polyamide NMP solution. Polyamide is obtained by polymerizing 4,4'-oxydianiline and isophthaloyl dichloride as monomers. As shown in FIG. 9, this polymer solution 14 was put in a beaker 13, impregnated with a ceramic filter, and polyamide was absorbed into the ceramic filter and applied. When the polymer solution reached the upper surface of the ceramic filter, the ceramic filter was pulled up. The polymer material was applied to the inside of the flow path with the needle described above. Thereafter, it was dried in an oven at 130 ° C. for 24 hours.
 図7を用いて、実施例2を説明する。本実施例と実施例1との相違点は、中間封止部10を有すること、及び、高分子材料11を、中間封止部10より下流側の隔壁7上のみに形成していることである。本実施例においては、第1の流路9aの上流側の端部に封止部12を有している。また、第2の流路9bの上流側は中間封止部10が存在し、同じ孔のその上流側は、第3の流路9cとなっている。 Example 2 will be described with reference to FIG. The difference between the present embodiment and the first embodiment is that the intermediate sealing portion 10 is provided and that the polymer material 11 is formed only on the partition wall 7 on the downstream side of the intermediate sealing portion 10. is there. In the present embodiment, a sealing portion 12 is provided at the upstream end of the first flow path 9a. Moreover, the intermediate sealing part 10 exists in the upstream of the 2nd flow path 9b, and the 3rd flow path 9c is the upstream of the same hole.
 本実施例のセラミックス構造体6の働きを、図7を用いて説明する。ポンプ3によって加圧された被処理水は、逆浸透膜モジュール1に至る。図5において、図面左側にいたった被処理水は、封止部12が形成されていない第3の流路9cの流入口からセラミックス構造体6内に進む。第3の流路9cは、中間封止部10によって堰き止められているので、流入した被処理水のほぼ全量が、高分子材料を形成していない隔壁7を透過して、第1の流路9a内に流れ込む。このときに、逆浸透膜としての目詰まりの原因となる有機物が、隔壁7を構成するセラミックスによって吸着される。また、隔壁を形成するセラミックスの細孔は、逆浸透膜の孔に比べて大きいので、比較的小さい抵抗で隔壁を被処理水が通り抜けることができる。 The function of the ceramic structure 6 of the present embodiment will be described with reference to FIG. The treated water pressurized by the pump 3 reaches the reverse osmosis membrane module 1. In FIG. 5, the water to be treated that has reached the left side of the drawing proceeds into the ceramic structure 6 from the inlet of the third flow path 9 c where the sealing portion 12 is not formed. Since the third flow path 9c is blocked by the intermediate sealing portion 10, almost all of the inflowed water to be treated permeates through the partition wall 7 where no polymer material is formed, and the first flow It flows into the path 9a. At this time, organic substances that cause clogging as a reverse osmosis membrane are adsorbed by the ceramics constituting the partition wall 7. Moreover, since the pores of the ceramic forming the partition are larger than the pores of the reverse osmosis membrane, the water to be treated can pass through the partition with a relatively small resistance.
 第1の流路に流れ込んだ被処理水は、実施例1と同様の経路を辿る。具体的には、被処理水のうちの一部は、高分子材料11が塗布され逆浸透膜として働く隔壁7を透過して、第2の流路9bに流入する。逆浸透膜を通った被処理水は、溶解物濃度が小さくなった浄化水となり、第2の流路9bから流出する。一方で、隔壁7を透過しなかった被処理水は、溶解物濃度が高くなり、汚水として第1の流路9aを流出する。 The treated water that has flowed into the first flow path follows the same path as in the first embodiment. Specifically, a part of the water to be treated passes through the partition wall 7 to which the polymer material 11 is applied and functions as a reverse osmosis membrane, and flows into the second flow path 9b. The water to be treated that has passed through the reverse osmosis membrane becomes purified water having a reduced dissolved substance concentration, and flows out from the second flow path 9b. On the other hand, the water to be treated that has not permeated through the partition walls 7 has a high dissolved substance concentration and flows out through the first flow path 9a as sewage.
 本実施例によれば、逆浸透膜モジュールに流入した被処理水を、第3の流路9cから第1の流路9aに移動するときに通る隔壁7において、溶解物を吸着されるので、逆浸透膜表面への溶解物の付着が少なくなり、逆浸透膜の通水抵抗の上昇を抑えることができ、逆浸透膜構造体の交換頻度を少なくすることができる。 According to the present embodiment, the dissolved water is adsorbed in the partition wall 7 that passes when the water to be treated that has flowed into the reverse osmosis membrane module moves from the third flow path 9c to the first flow path 9a. Adhesion of the dissolved matter on the reverse osmosis membrane surface is reduced, an increase in water resistance of the reverse osmosis membrane can be suppressed, and the frequency of replacement of the reverse osmosis membrane structure can be reduced.
 図8を用いて、実施例3を説明する。本実施例と実施例2との相違点は、本実施例では中間封止部10より上流側の隔壁7上にも高分子材料11が形成されていることである。但し、高分子材料11の厚さが異なる。すなわち、セラミックフィルタへの高分子材料の塗布の方法の違いにより2つの役割を持つ高分子膜を提供する。 Example 3 will be described with reference to FIG. The difference between the present embodiment and the second embodiment is that the polymer material 11 is also formed on the partition wall 7 upstream of the intermediate sealing portion 10 in the present embodiment. However, the thickness of the polymer material 11 is different. That is, a polymer film having two roles is provided depending on the method of applying a polymer material to the ceramic filter.
 上流側の隔壁7(第3の流路9cと第1の流路9aの間の隔壁7)へは、有機物を吸着除去する高分子材料を隔壁の表面および内部の5~50μmの孔の表面の全面もしくは一部に、隔壁内部の細孔を埋めない程度の厚さ、好ましくは100nm以下で、塗布する。この場合は、高分子膜11は薄いので、セラミックス製の隔壁7の孔の影響により、粗い膜となる。そして、隔壁7内部を被処理水が小さな抵抗で透過し、塗布した高分子材料11aが水中溶存有機物を吸着して除去する。この高分子膜11では、高分子材料11の膜の孔から有機物等の溶解物が透過してしまい、逆浸透膜としては働かないが、溶解物を吸着する吸着物質として働く。 To the upstream partition wall 7 (the partition wall 7 between the third flow path 9c and the first flow path 9a), a polymer material that adsorbs and removes organic matter is removed from the surface of the partition wall and the surface of the pores of 5 to 50 μm inside. The entire surface or a part of the film is applied with a thickness that does not fill the pores inside the partition walls, preferably 100 nm or less. In this case, since the polymer film 11 is thin, it becomes a rough film due to the influence of the pores of the ceramic partition walls 7. And the to-be-processed water permeate | transmits the inside of the partition 7 with a small resistance, and the apply | coated polymer material 11a adsorbs and removes an organic substance dissolved in water. In the polymer film 11, dissolved substances such as organic substances permeate through the pores of the polymer material 11 and do not function as a reverse osmosis film, but function as an adsorbing substance that adsorbs the dissolved substance.
 下流側の隔壁7(第1の流路9aと第2の流路9bの間の隔壁7)へは、実施例1及び2と同様に、隔壁7の表面に流路9に沿って膜厚が100~300nmの高分子膜を形成するように塗布する。この場合、高分子材料11の厚さが厚いことにより、セラミックスの細孔の影響が小さくなり、緻密な膜とすることができる。必要に応じて、セラミックスフィルタ6の内壁の細孔よりも緻密な多孔質膜を形成したのちに所望の高分子膜を形成する複合膜構造でも良い。この高分子膜は半透膜として働き、逆浸透膜の役割を持つ。 To the downstream partition wall 7 (the partition wall 7 between the first channel 9a and the second channel 9b), the film thickness along the channel 9 is formed on the surface of the partition wall 7 as in the first and second embodiments. Is applied to form a polymer film having a thickness of 100 to 300 nm. In this case, when the polymer material 11 is thick, the influence of the pores of the ceramic is reduced, and a dense film can be obtained. If necessary, a composite film structure in which a desired polymer film is formed after forming a porous film denser than the pores on the inner wall of the ceramic filter 6 may be used. This polymer membrane functions as a semipermeable membrane and has a role of a reverse osmosis membrane.
 セラミックス製の隔壁7も、逆浸透膜の上流側で溶解物を吸着し、逆浸透膜の目詰まりを抑制して寿命を延ばすが、高分子材料11の場合には、逆浸透膜と材料が同一または類似であるため、逆浸透膜の目詰まりの原因となる溶解物を吸着しやすく、逆浸透膜の交換頻度低減の効果が大きくなる。ここで、上流側の高分子膜11と下流側の高分子膜とは、同一の材料でもよいし異なる材料でもよい。同一の材料では、製造上都合がよい。上流側の高分子膜がより撥水性で、下流側の高分子膜11がより親水性になるように、異なる材料を用いれば、吸着材料として働く上流側の高分子膜11の有機物の吸着力が強くなり、逆浸透膜として働く下流側の高分子膜11に有機物が付着しにくくなる。 The ceramic partition wall 7 also adsorbs the lysate upstream of the reverse osmosis membrane and suppresses clogging of the reverse osmosis membrane, thereby extending the life. In the case of the polymer material 11, the reverse osmosis membrane and the material are Since they are the same or similar, it is easy to adsorb dissolved substances that cause clogging of the reverse osmosis membrane, and the effect of reducing the frequency of replacement of the reverse osmosis membrane is increased. Here, the upstream polymer film 11 and the downstream polymer film may be the same material or different materials. The same material is convenient for manufacturing. If different materials are used so that the upstream polymer film is more water-repellent and the downstream polymer film 11 is more hydrophilic, the adsorbing power of organic substances on the upstream polymer film 11 acting as an adsorbing material. And the organic matter is less likely to adhere to the polymer membrane 11 on the downstream side that functions as a reverse osmosis membrane.
 本実施例によれば、実施例2と同様に、逆浸透膜モジュールに流入した被処理水を、第3の流路9cから第1の流路9aに移動するときに通る隔壁7において、溶解物を吸着されるので、逆浸透膜表面への溶解物の付着が少なくなる。ここで、隔壁7のセラミックス上に高分子材料11を有することで、溶解物の吸着力が大きくなり、逆浸透膜の通水抵抗の上昇を抑えることができ、逆浸透膜構造体の交換頻度を少なくすることができる。 According to the present embodiment, as in the second embodiment, the water to be treated that has flowed into the reverse osmosis membrane module is dissolved in the partition wall 7 that passes when moving from the third flow path 9c to the first flow path 9a. Since the substance is adsorbed, the adhesion of the dissolved substance to the reverse osmosis membrane surface is reduced. Here, by having the polymer material 11 on the ceramic of the partition wall 7, the adsorbing power of the dissolved material is increased, and an increase in water flow resistance of the reverse osmosis membrane can be suppressed. Can be reduced.
 本発明にかかるセラミックス構造体6の実証実験のために、1Lの下水一次処理水を逆浸透膜でろ過し、処理後の汚水に含まれる溶存有機物を、サイズ排除クロマトグラフィー(GPC)を用いて比較検討した。GPC条件は、以下のとおりである。カラムは、日立化成工業(株)製、型番:GL-W550、カラム温度:41℃、サンプル容量20μL、溶離液:純水、流速:1.0mL/min、検出器(検出波長):UV(220nm)とした。その結果、図10に示すように、実施例2にかかかるセラミックス構造体も実施例3にかかるセラミックハニカム構造体も、ろ過前よりもろ過後において溶存有機物は少なくなった。また、ポリアミド未修飾の実施例2と比較して、ポリアミド修飾の実施例3は低分子領域の有機物を除去できた。 For the demonstration experiment of the ceramic structure 6 according to the present invention, 1 L of sewage primary treated water is filtered through a reverse osmosis membrane, and dissolved organic substances contained in the treated sewage are analyzed using size exclusion chromatography (GPC). A comparative study was conducted. The GPC conditions are as follows. The column is manufactured by Hitachi Chemical Co., Ltd., model number: GL-W550, column temperature: 41 ° C., sample volume: 20 μL, eluent: pure water, flow rate: 1.0 mL / min, detector (detection wavelength): UV ( 220 nm). As a result, as shown in FIG. 10, both the ceramic structure according to Example 2 and the ceramic honeycomb structure according to Example 3 had less dissolved organic matter after filtration than before filtration. Moreover, compared with Example 2 with no polyamide modification, Example 3 with polyamide modification was able to remove organic substances in the low molecular region.
 また、処理後の汚水の総炭素濃度(Total Organic Carbon、TOC)を測定し、炭素量から溶存有機物量の変化を評価した。図11に示すように、いずれのセラミックハニカム構造体も、ろ過前と比較して、ろ過後ではTOC濃度<236mg/Lとなり、吸着体には有機物除去効果がある。 In addition, the total carbon concentration (Total 汚 Organic Carbon, TOC) of the treated sewage was measured, and the change in the amount of dissolved organic matter was evaluated from the carbon amount. As shown in FIG. 11, any ceramic honeycomb structure has a TOC concentration <236 mg / L after filtration as compared to before filtration, and the adsorbent has an organic substance removing effect.
 また、実施例3で作製した図8に示す逆浸透膜にTOC濃度8mg/Lの下水処理水を2MPaの加圧力で処理したところ、得られた浄化水のTOCは1mg/Lであり、逆浸透膜として有効であることを確認した。 Moreover, when the reverse osmosis membrane shown in FIG. 8 produced in Example 3 was treated with sewage-treated water having a TOC concentration of 8 mg / L at a pressure of 2 MPa, the TOC of the purified water obtained was 1 mg / L. It was confirmed to be effective as an osmotic membrane.
1・・・ 逆浸透膜モジュール、2・・・貯水タンク、3・・・ポンプ、4・・・フィルタ支持体、5・・・フィルタ保持容器(ろ過器)、6・・・セラミックス構造体(セラミックスフィルタ)、7・・・隔壁、8・・・流路封止部、9・・・流路、10・・・中間封止部、11・・・ポリマー、13・・・ビーカ、14・・・ポリマー溶液。 DESCRIPTION OF SYMBOLS 1 ... Reverse osmosis membrane module, 2 ... Water storage tank, 3 ... Pump, 4 ... Filter support body, 5 ... Filter holding container (filter), 6 ... Ceramic structure ( Ceramic filter), 7 ... partition wall, 8 ... channel sealing part, 9 ... channel, 10 ... intermediate sealing part, 11 ... polymer, 13 ... beaker, 14 ..Polymer solution.

Claims (13)

  1.  被処理水に逆浸透膜処理を行う逆浸透膜構造体において、
     被処理水が流入する第1の面と、
     被処理水が流出する第2の面と、
     その長手方向に交差する方向に互いに並んで形成された複数の第1の流路と、
     前記第1の流路に並んで形成され、前記第1の面には連通しない複数の第2の流路と、
     前記第1の流路と前記第2の流路との間に形成され、前記被処理水が透過可能な多孔質な隔壁と、を備え、
     前記第1の流路と前記第2の流路との間の隔壁に逆浸透膜を有することを特徴とする逆浸透膜構造体。
    In the reverse osmosis membrane structure that performs reverse osmosis membrane treatment on the water to be treated,
    A first surface into which treated water flows,
    A second surface from which the treated water flows out;
    A plurality of first flow paths formed side by side in a direction intersecting the longitudinal direction;
    A plurality of second flow paths that are formed side by side with the first flow path and do not communicate with the first surface;
    A porous partition wall formed between the first flow path and the second flow path and permeable to the water to be treated.
    A reverse osmosis membrane structure comprising a reverse osmosis membrane in a partition wall between the first flow channel and the second flow channel.
  2.  請求項1において、
     前記隔壁は、セラミックスにより形成されていることを特徴とする逆浸透膜構造体。
    In claim 1,
    A reverse osmosis membrane structure, wherein the partition wall is made of ceramics.
  3.  請求項1または請求項2において、
     前記第1の流路は、前記第1の面及び前記第2の面に連通し、
     前記第2の流路は、前記第2の面に連通していることを特徴とする逆浸透膜構造体。
    In claim 1 or claim 2,
    The first flow path communicates with the first surface and the second surface,
    The reverse osmosis membrane structure, wherein the second flow path communicates with the second surface.
  4.  請求項1乃至3のいずれかにおいて、
     前記逆浸透膜は、前記隔壁の前記第2の流路側に形成されていることを特徴とする逆浸透膜構造体。
    In any one of Claims 1 thru | or 3,
    The reverse osmosis membrane structure is characterized in that the reverse osmosis membrane is formed on the second channel side of the partition wall.
  5.  請求項1または請求項2において、
     前記隔壁を隔てて前記第1の流路に並んで形成され、前記第2の側には連通しない複数の第3の流路を備えたことを特徴とする逆浸透膜構造体。
    In claim 1 or claim 2,
    A reverse osmosis membrane structure comprising a plurality of third flow paths that are formed side by side with the first flow path across the partition wall and do not communicate with the second side.
  6.  請求項5において、
     流路の中間に封止部を形成し、その前記第1の面側を前記第3の流路とし、その前記第2の面側を第2の流路としたことを特徴とする逆浸透膜構造体。
    In claim 5,
    A reverse osmosis is characterized in that a sealing portion is formed in the middle of the flow path, the first surface side is the third flow path, and the second surface side is the second flow path. Membrane structure.
  7.  請求項5または請求項6において、
     前記第1の流路は、前記第2の面に連通し、
     前記第2の流路は、前記第2の面に連通し、
     前記第3の流路は、前記第1の面に連通することを特徴とする逆浸透膜構造体。
    In claim 5 or claim 6,
    The first flow path communicates with the second surface,
    The second flow path communicates with the second surface,
    The reverse osmosis membrane structure, wherein the third flow path communicates with the first surface.
  8.  請求項5乃至7のいずれかにおいて、
     前記第1の流路と前記第2の流路との間の隔壁に、高分子材料による吸着材料を有していることを特徴とする逆浸透膜構造体。
    In any of claims 5 to 7,
    A reverse osmosis membrane structure comprising an adsorption material made of a polymer material in a partition wall between the first channel and the second channel.
  9.  請求項8において、
     前記逆浸透膜は、高分子材料により形成されており、
     前記逆浸透膜の厚さは、前記吸着材料の厚さよりも厚いことを特徴とする逆浸透膜構造体。
    In claim 8,
    The reverse osmosis membrane is formed of a polymer material,
    The reverse osmosis membrane structure is characterized in that the thickness of the reverse osmosis membrane is larger than the thickness of the adsorbing material.
  10.  請求項9において、
     前記逆浸透膜を形成する高分子材料と、前記吸着材料を形成する高分子材料とは、同一の材料であることを特徴とする逆浸透膜構造体。
    In claim 9,
    The reverse osmosis membrane structure, wherein the polymer material forming the reverse osmosis membrane and the polymer material forming the adsorbing material are the same material.
  11.  請求項1乃至10のいずれかにおいて、
     前記第1の面、第2の面及び前記隔壁は、ハニカム構造のセラミックハニカムにより形成され、
     前記第1乃至3の流路のいずれかは、前記第1の面と前記第2の面とを連通する前記セラミックハニカムの連通孔を、封止体により封止することにより形成されていることを特徴とする逆浸透膜構造体。
    In any one of Claims 1 thru | or 10.
    The first surface, the second surface and the partition walls are formed of a ceramic honeycomb having a honeycomb structure,
    Any one of the first to third flow paths is formed by sealing a communication hole of the ceramic honeycomb that connects the first surface and the second surface with a sealing body. A reverse osmosis membrane structure.
  12.  請求項1乃至11のいずれかにおいて、
     前記隔壁は、光触媒を有していることを特徴とする逆浸透膜構造体。
    In any one of Claims 1 thru | or 11,
    The reverse osmosis membrane structure, wherein the partition wall includes a photocatalyst.
  13.  請求項1乃至12のいずれかに記載の逆浸透膜構造体と、
     前記逆浸透膜構造体を覆うハウジングと、
     前記第1の流路または前記第3の流路に連通し、前記被処理水が流入する被処理水流入口と、
     前記第1の流路に連通し、前記被処理水が流出する第1の被処理水流出口と、
     前記第2の流路に連通し、前記逆浸透膜を透過した前記被処理水が流出する第2の被処理水流出口と、
     を備えたことを特徴とする逆浸透膜モジュール。
    The reverse osmosis membrane structure according to any one of claims 1 to 12,
    A housing covering the reverse osmosis membrane structure;
    A to-be-treated water inlet port that communicates with the first channel or the third channel and into which the to-be-treated water flows;
    A first treated water outlet through which the treated water flows out and communicates with the first flow path;
    A second treated water outlet that communicates with the second flow path and through which the treated water that has passed through the reverse osmosis membrane flows out;
    A reverse osmosis membrane module comprising:
PCT/JP2011/005919 2010-10-29 2011-10-24 Reverse osmosis membrane structure for water treatment and reverse osmosis membrane module WO2012056668A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-242965 2010-10-29
JP2010242965A JP2012091150A (en) 2010-10-29 2010-10-29 Reverse osmosis membrane structure for water treatment and reverse osmosis membrane module

Publications (1)

Publication Number Publication Date
WO2012056668A1 true WO2012056668A1 (en) 2012-05-03

Family

ID=45993416

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/005919 WO2012056668A1 (en) 2010-10-29 2011-10-24 Reverse osmosis membrane structure for water treatment and reverse osmosis membrane module

Country Status (2)

Country Link
JP (1) JP2012091150A (en)
WO (1) WO2012056668A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015000801A1 (en) * 2013-07-04 2015-01-08 Basf Se Multiple channel membranes
WO2016112122A1 (en) * 2015-01-06 2016-07-14 Nanostone Water Inc. Membrane assembly with end cap device and related methods
KR101691612B1 (en) * 2016-07-25 2017-01-02 (주) 시온텍 Apparatus for Generating Alkaline Hydrogen Water

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104209021A (en) * 2014-09-03 2014-12-17 北京林业大学 Preparation method of aromatic polyamide film modified by ZIF-8 type metal-organic framework material
WO2016159531A1 (en) * 2015-04-01 2016-10-06 한국에너지기술연구원 Lattice type osmosis device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6351922A (en) * 1986-08-22 1988-03-05 Ngk Insulators Ltd Ceramic membrane structure and its manufacture
JP2004290838A (en) * 2003-03-27 2004-10-21 Kyocera Corp Fluid separation filter and fluid separation module
JP2005511282A (en) * 2001-12-12 2005-04-28 ポール・コーポレーション Filter element and filter device for crossflow filtration
JP2007289926A (en) * 2006-03-31 2007-11-08 Ngk Insulators Ltd Honeycomb structure and honeycomb catalytic body

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6351922A (en) * 1986-08-22 1988-03-05 Ngk Insulators Ltd Ceramic membrane structure and its manufacture
JP2005511282A (en) * 2001-12-12 2005-04-28 ポール・コーポレーション Filter element and filter device for crossflow filtration
JP2004290838A (en) * 2003-03-27 2004-10-21 Kyocera Corp Fluid separation filter and fluid separation module
JP2007289926A (en) * 2006-03-31 2007-11-08 Ngk Insulators Ltd Honeycomb structure and honeycomb catalytic body

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015000801A1 (en) * 2013-07-04 2015-01-08 Basf Se Multiple channel membranes
WO2016112122A1 (en) * 2015-01-06 2016-07-14 Nanostone Water Inc. Membrane assembly with end cap device and related methods
KR101691612B1 (en) * 2016-07-25 2017-01-02 (주) 시온텍 Apparatus for Generating Alkaline Hydrogen Water

Also Published As

Publication number Publication date
JP2012091150A (en) 2012-05-17

Similar Documents

Publication Publication Date Title
WO2012056666A1 (en) Adsorption structure, adsorption module, and method for producing same
JP5474197B2 (en) Frame for supporting the filter membrane
US11697097B2 (en) Apparatus, systems, and methods for purifying a fluid with a silicon carbide membrane
US20120118824A1 (en) Water treatment apparatus and water treatment method
WO2012026373A1 (en) Hollow fiber type reverse osmosis membrane and process for production thereof
WO2012147534A1 (en) Method for washing ceramic filter
WO2012056668A1 (en) Reverse osmosis membrane structure for water treatment and reverse osmosis membrane module
WO2008053826A1 (en) Method of increasing purity of ultrapure water and apparatus therefor
CN207913535U (en) Hollow fiber ceramic membrane and its application apparatus
JP7310810B2 (en) Ceramic filter unit for water treatment
JP6579281B2 (en) Adsorbing member and manufacturing method thereof
JP7259768B2 (en) Ceramic filter module for water treatment
WO2015199017A1 (en) Adsorption member
WO2012035692A1 (en) Water separation membrane module
WO2018198915A1 (en) Adsorption structure, adsorption structure unit, and method for manufacturing same
JP2016087508A (en) Filtration filter and water purifier
JP2005329334A (en) Water treatment method and water treatment apparatus
JP4547932B2 (en) Polyion complex membrane and water treatment device
CN203916271U (en) A kind of cleaning waste water ceramic membrane filter purifier
JP2008207077A (en) Method for treating ink-containing waste water
JPH04277020A (en) Microporous membrane and filter material using the same
JPH0386217A (en) Water purifier
JPH0615268A (en) Water purifier
Schimke et al. Multifunctional Poly (Ionic Liquid)/Graphitic Carbon Nitride Membranes: Visible Light-Driven Photodegradation Coupled with Antifouling Properties
JP2001321644A (en) Filter membrane element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11835815

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11835815

Country of ref document: EP

Kind code of ref document: A1