WO2012056666A1 - Adsorption structure, adsorption module, and method for producing same - Google Patents

Adsorption structure, adsorption module, and method for producing same Download PDF

Info

Publication number
WO2012056666A1
WO2012056666A1 PCT/JP2011/005916 JP2011005916W WO2012056666A1 WO 2012056666 A1 WO2012056666 A1 WO 2012056666A1 JP 2011005916 W JP2011005916 W JP 2011005916W WO 2012056666 A1 WO2012056666 A1 WO 2012056666A1
Authority
WO
WIPO (PCT)
Prior art keywords
adsorption structure
partition wall
flow path
water
plugging
Prior art date
Application number
PCT/JP2011/005916
Other languages
French (fr)
Japanese (ja)
Inventor
牛房 信之
敬子 中野
泰子 山田
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2012056666A1 publication Critical patent/WO2012056666A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/288Treatment of water, waste water, or sewage by sorption using composite sorbents, e.g. coated, impregnated, multi-layered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/025Reverse osmosis; Hyperfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/04Feed pretreatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/04Specific process operations in the feed stream; Feed pretreatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/26Further operations combined with membrane separation processes
    • B01D2311/2626Absorption or adsorption
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/285Treatment of water, waste water, or sewage by sorption using synthetic organic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/20Prevention of biofouling

Definitions

  • the present invention relates to a reverse osmosis membrane pretreatment technique for separating and removing dissolved organic substances and electrolytes used in advanced treatment in water treatment processes such as wastewater regeneration treatment and seawater desalination.
  • a reverse osmosis membrane is used in advanced treatment of water purification.
  • a semi-permeable membrane is used on the surface of the reverse osmosis membrane, and the material of the semi-permeable membrane is roughly classified into cellulose acetate type and aromatic polyamide type.
  • aromatic polyamide-based reverse osmosis membranes are widely used for industrial use because of their high water permeability and electrolyte removal performance.
  • As the structure a structure of a composite semipermeable membrane in which an aromatic polyamide membrane is formed on a microporous support is often used, and the thickness of the aromatic polyamide portion is 1 ⁇ m or less.
  • Reverse osmosis membranes are used to remove organic substances and electrolytes that are dissolved in water during seawater desalination, pure water production used in the manufacture of precision electronics such as semiconductors, advanced water treatment, and final treatment of sewage and wastewater.
  • water is generally supplied to the reverse osmosis membrane through the following treatment process.
  • coarse impurities, waste, etc. contained in sewage are removed through a sieve called a screen.
  • a fine suspension such as sand is added to the flocculant if necessary, and then submerged in a sedimentation basin for separation.
  • the supernatant water still contains suspended solids, dissolved organic matter, etc., and is decomposed using microorganisms.
  • Microbial metabolites are generated as sludge, and sludge and water are separated by settling in a sedimentation basin or passing through a microfiltration membrane.
  • the sewage primary treated water treated in this way contains almost no suspended solids.
  • the quality of water can be disinfected and released into rivers, or reused depending on the application, such as greening spray water. It has been purified. In Japan, at this stage, it is discharged into rivers and water is recycled using natural purification. However, because there are not enough rivers and lakes necessary for natural purification in the Middle East, inland areas, islands without rivers, etc., there is an increasing demand for further purification of sewage primary treated water and reuse it as drinking water or industrial water. Yes.
  • the reverse osmosis membrane is used to remove dissolved organic substances and electrolytes in the sewage primary treated water in this final treatment.
  • the sewage primary treated water varies depending on the treatment up to the previous stage, but the electrolyte is 1% or less and the dissolved organic matter is contained in 3-20 mg / L in terms of TOC (total organic carbon content).
  • TOC total organic carbon content
  • a bag-like reverse osmosis membrane is fixed to the center core, and it is rolled up like an umbrella and stored in a cylinder.
  • the main module is a cylindrical shape with a diameter of 4 inches, 8 inches, etc. and a length of 1 m.
  • Reverse osmosis membranes are a type of separation membrane, but there are two methods for water filtration using separation membranes.
  • One is a total filtration system, in which all the supplied water is passed through the membrane, and components that cannot pass through the membrane are deposited on the membrane surface.
  • the other is a cross-flow filtration method, in which water flows parallel to the membrane surface, part of it permeates through the membrane to permeate, and the rest is taken out from the module as concentrated water with the concentration of dissolved matter increased. .
  • the latter cross-flow filtration method is used for filtration through reverse osmosis membranes. This method reduces the increase in operating load due to the deposition of dissolved material on the membrane surface and the increase in concentration.
  • Even with the cross-flow filtration method there is a problem that the dissolved matter is adsorbed on the membrane surface and the amount of permeated water deteriorates with time.
  • the adsorbed material on the membrane surface includes organic fouling that adsorbs organic matter in addition to the scale in which the electrolyte is deposited at a high concentration near the membrane surface, biofouling in which microorganisms in the water grow on the membrane surface. Clean water is periodically flowed over the membrane surface, and the adsorbate is removed by shearing force. However, when organic matter is adsorbed, it cannot be completely removed by shearing force, and gradually accumulates and the amount of water permeated. Decreases. The power (pressure) is increased to obtain a constant permeation amount, but this leads to an increase in the power cost of the pump.
  • Activated carbon is widely used as an organic material adsorption material.
  • most of the organic matter contained in the sewage primary treated water is adsorbed, so the activated carbon quickly reaches adsorption saturation, the frequency of replacement of the activated carbon increases, and the frequency of replacement of the reverse osmosis membrane is reduced. No cost merit is obtained even if it is reduced.
  • the structure of the adsorbing material is required to obtain a sufficient amount of permeated water when sewage primary treated water is permeated.
  • it is necessary to increase the surface area in contact with water in order to perform adsorption efficiently.
  • activated carbon is in the form of powder, crushed pieces, and granular materials.
  • the flow path of water becomes narrow, and it is difficult to obtain a sufficient flow rate.
  • the adsorbing material other than activated carbon is granular, the same problem occurs.
  • activated carbon has pores to increase the surface area, but the substance trapped in the pores is difficult to desorb and it is practically impossible to recover the adsorption capacity by washing.
  • Patent Document 2 discloses a method of using an adsorbent material to remove organic substances dissolved in water when water treatment is performed using a reverse osmosis membrane.
  • the adsorbing material has a problem that a large amount of adsorbing material is required because the surface area is insufficient.
  • Patent Document 1 discloses a method using an adsorbent material made of the same material as a reverse osmosis membrane. Moreover, in order to enlarge the contact area of a treated water and a reverse osmosis membrane, the patent document 2 using a fibrous polymer and a ceramic porous body is disclosed.
  • the object of the present invention is to solve the above-mentioned problems, add a low-cost pretreatment process to extend the life of the reverse osmosis membrane, and reduce the running cost for the regeneration treatment of sewage.
  • the present invention provides, for example, an adsorption structure that adsorbs organic matter in water to be treated, an outer wall, a plurality of channels provided inside the outer wall, and a plurality of channels.
  • a partition wall that separates each of the partition walls, the partition wall having a communication hole that is smaller than the diameter of the channel and that communicates the channel with another channel, and an adsorbent that adsorbs the organic matter.
  • FIG. 1 shows a water treatment facility according to an embodiment of the present invention.
  • the water treatment facility includes an adsorption module 1, a water storage tank 5, a water supply pump 6, and a reverse osmosis membrane module 4.
  • the sewage temporarily treated water supplied to the adsorption module 1 is a process for removing dust and the like through a screen, a process for adding fine flocculant such as sand to settle and removing it, a microorganism It is water that has been subjected to a series of treatments for decomposing organic matter using.
  • the sewage primary treated water contains salts and dissolved organic matter.
  • the sewage primary treated water thus treated contained 248 mg / L of dissolved organic matter in terms of TOC (total organic carbon content).
  • this sewage primary treated water is passed through the adsorption module 1 and passed through the reverse osmosis membrane 3 while being pressurized by the water absorption pump 6, thereby removing organic substances and salts in the treated water and completing the water regeneration.
  • the sewage primary treated water is treated by passing through the ceramic honeycomb structure 2 in which the polymer material is modified by the adsorption module 1 and stored in the water storage tank 5.
  • Water is supplied to the reverse osmosis membrane 3 from a water storage tank 5 by a water supply pump 6.
  • the primary treated sewage water supplied to the reverse osmosis membrane is water after organic matter decomposition treatment by microorganisms, and contains 3-20 mg / L of refractory organic matter in terms of TOC (total organic carbon content). It is.
  • the kind of persistent organic substance cannot be specified as one.
  • the components separated by the reverse osmosis membrane are discharged together with the concentrated water, so that the organic matter that can be discharged is not a cause of deterioration of the reverse osmosis membrane and does not need to be positively removed.
  • the amount of adsorption of the hardly decomposable organic substance to the reverse osmosis membrane was investigated, among the hardly decomposable organic substances dissolved in water, the amount adsorbed to the reverse osmosis membrane was about 5% in terms of TOC. It was found that the organic matter in the water does not adsorb on the reverse osmosis membrane even if it exists in the water and does not cause deterioration of the water permeability.
  • the main chain or the side chain contains a hydrocarbon having 4 or more carbon atoms or an aromatic ring.
  • the thing containing a siloxane structure in a principal chain or a side chain is good for affinity with siloxanes.
  • the structure contained in the main chain and the side chain is not limited to one type, and the adsorption efficiency can be improved by including a plurality of structures.
  • the pretreatment process adsorbent When there is a pretreatment process adsorbent with an adsorption surface equivalent to the reverse osmosis membrane surface, contact the pretreatment process adsorbent with the same surface area or more as the reverse osmosis membrane before putting it into the reverse osmosis membrane It is possible to double the life of the reverse osmosis membrane by removing the organic substances that cause deterioration.
  • the shape of the adsorbing material may be particles, meshes, fibers, filters, etc., but is not limited thereto.
  • the surface area becomes large in the case of a porous body such as a filter. If the surface area of the adsorbing material is increased, the volume of equipment added to the pretreatment process can be reduced, or the adsorbing material can be installed in the tank of the existing equipment.
  • the treated water containing organic matter dissolved in water can be adsorbed through a ceramic honeycomb structure having a number of flow paths partitioned by partition walls.
  • FIG. 2 is a side view of an example of the adsorption module 1 used in the sewage treatment apparatus.
  • the adsorption module 1 is a structure having a filter (porous ceramic honeycomb structure 2) having a ceramic honeycomb structure.
  • a ceramic honeycomb structure 2 on which an adsorbing material 13 such as polyamide is supported is accommodated by a filter support 8 in a housing 7 (acrylic container) via a gripping member.
  • the support 8 allows water to pass without resistance, and when water is permeated at 0.1 MPa, the position change at the center of the major axis is within 5% of the length of the major axis in the fixed end.
  • resin-based mesh spacers such as polyethylene, polypropylene, polyethylene terephthalate, and polystyrene, and metal-based materials.
  • Stainless steel, titanium mesh or punching metal can be used. In this example, a punching metal having a thickness of 1 mm was used as the support 8.
  • the ceramic honeycomb structure 2 of the present example includes an outer peripheral wall 9, a plurality of flow paths 12 provided inside the outer peripheral wall 9, and a partition wall 10 that separates the flow paths 12. And a polymer material 13 provided on the partition wall 10.
  • the flow paths 12 are arranged side by side in a direction intersecting the longitudinal direction, and are formed by plugging through holes penetrating from the inflow side surface to the outflow side surface. Specifically, the inflow side surface of the treated water is opened, the first outflow side is plugged by the plugging portion 11 on the opposite outflow side, and the outflow side of the treated water is opened, The opposite inflow side has a second flow path 12 b plugged by the plugging portion 11.
  • first flow path 12a and the second flow path 12b are alternately arranged both vertically and horizontally.
  • to-be-processed water flows in into the 1st flow path 12a opened to the inflow side in the ceramic structure 2 in the adsorption
  • the treated water that has flowed in flows through the fine communication hole in the partition wall 10 into the second flow path 12b.
  • a polymer material 13 as an organic material adsorbing material is provided on the surface of the partition wall 10 or on the uppermost layer of the fine communication hole surface in the partition wall 10. The material 13 adsorbs and removes organic substances in the water to be treated.
  • the water to be treated that has flowed into the second flow path 12b flows out from the outflow side of the ceramic structure 2 in which the flow path 12b is opened.
  • the partition 10 has a lattice shape having a thickness of 0.1 mm to 1 mm.
  • the partition wall 10 is thicker than 0.1 mm, it is easy to ensure the strength of the partition wall 10 and maintain the shape.
  • the thickness of the partition wall 10 is less than 1 mm, the pressure necessary to permeate the treated water does not become excessive, which is practical.
  • the partition wall 10 is characterized by having fine communication holes with an average diameter of 0.005 mm to 0.05 mm. With fine communication holes having an average diameter of 0.005 mm or more, resistance during water permeation is not increased and the amount of treated water is easily obtained, and clogging due to components other than adsorbed components is difficult to occur.
  • the average pore diameter is less than 0.050 mm, the effect of expanding the surface area due to the porous ceramic honeycomb structure 2 is great, and the contribution to the volume control of the pretreatment process equipment is great.
  • the flow path 12 has a square shape with one side of 0.5 mm to 8 mm.
  • the treated water having organic matter dissolved in water adsorbs the organic matter near the entrance of the ceramic honeycomb structure 2 and blocks the flow path 12 near the entrance. Therefore, the ceramic honeycomb structure 2 can be effectively used up to the end on the back side.
  • one side of the flow path 12 is smaller than 8 mm, the partition wall 10 of the ceramic honeycomb structure 2 can be thickened, and sufficient mechanical strength can be secured, and there is a possibility of breakage when pressure is applied to the treated water. Since it can be made low, it is preferable.
  • the shape of the flow path 12 is not limited to the square shape.
  • the end of the ceramic honeycomb structure 2 is plugged with an end of a desired flow path 12, and the flow path 12 has a shape with a plugged portion 11 at either end.
  • the water to be treated was dissolved in the treated water by the partition wall 10 by being inserted from the first channel 12a without the plugging portion 11 on the inflow side in the channel 12 and passing through the fine communication holes of the partition wall 10.
  • the organic matter is reliably adsorbed.
  • the water to be treated that has passed through the partition wall 10 flows out of the ceramic structure 2 through the second flow path 12b without the plugging portion 11 on the outflow side.
  • plugged portions 11 are formed at positions away from the end faces of a number of flow paths 12 partitioned by a porous partition wall 10 formed in a honeycomb shape.
  • the plugging portion 11 in the ceramic honeycomb structure 2 can be made of the same material as the porous ceramic honeycomb structure 2 or a material that does not dissolve in the treated water, such as an organic material or an inorganic material.
  • the plugging portion 11 as a stopper is pushed and fixed with a stick or syringe. Further, as shown in FIGS. 3 to 5, if the plugging portions 11 are alternately introduced into the end face of the flow path 12, they are in contact with both the first flow path 12a and the second flow path 12b and inside thereof.
  • the partition wall 10 through which the water to be treated permeates increases and the efficiency is improved.
  • the porosity of the material used for the partition wall 10 is preferably 45% to 70%.
  • the porosity of the material used for the partition wall 10 is larger than 45%, the fine holes formed in the partition wall 10 are less likely to be blocked and become communication holes, and the amount of communication holes can be sufficiently secured.
  • the porosity of the material used for the partition wall 10 is less than 70% because the mechanical strength of the partition wall 10 is ensured and the possibility of breakage is reduced when pressure is applied to the treated water.
  • the porosity of the material used for the plugging portion 11 is smaller than the porosity of the material used for the partition wall 10 and is 0% to 40%, and the plugging portion 11 is larger than the thickness of the partition wall 10. It is desirable that the thickness of the When the porosity of the material used for the plugged portion 11 is less than 40%, it is preferable because the possibility that the treated water that permeates the partition wall 10 will permeate the plugged portion 11 is reduced. By making the porosity of the material used for the plugging portion 11 smaller than the porosity of the material used for the partition wall 10, the treated water can surely pass through the partition wall 10.
  • the material constituting the partition wall 10 contains alumina or a composite oxide containing alumina. It was confirmed by experiments that the alumina group is exposed on the surface, so that a part of the dissolved organic matter in the treated water can be adsorbed, and the high-degradability dissolved organic matter in the polymer can be decomposed to reduce the molecular weight. .
  • at least one of aluminosilicate, silimanite, mullite, spinel, cordierite, aluminum titanate, and lithium aluminum silicate is used as the alumina or composite oxide containing alumina contained in the material constituting the partition wall 10. It is preferable that there is.
  • the same effect can be obtained by forming a film containing alumina on the surface of the partition wall 10 or on at least a part or the entire surface of the fine communication hole in the partition wall 10.
  • the material constituting the partition wall 10 and the material constituting the plugging portion 11 may be different. Since heat resistance is not required because it is used for water treatment, at least one of glass, polyimide, polyamide, polyimide amide, polyurethane, acrylic, epoxy, polypropylene, and Teflon (registered trademark) is used as the material constituting the plugging portion 11. It may contain one or more materials. Therefore, the temperature at which the plugging portion 11 is formed may be lower than the temperature at which the partition wall 10 is formed.
  • the material constituting the plugging portion 11 may be a composite material made of ceramic particles and an organic polymer material.
  • the ceramic particles used for the material constituting the plugging portion 11 at least one of alumina, silica, magnesia, titania, zirconia, zircon, cordierite, spinel, aluminum titanate, and lithium aluminum silicate is preferable.
  • the plugging portion 11 As a method for forming the plugging portion 11, a printing mask having an opening at a position corresponding to the flow path 12 of the ceramic structure 2 is used, and the paste used for the plugging portion 11 is formed by the partition wall 10 by a screen printing method.
  • the plugging portion 11 can be formed at a desired position of the flow path 12.
  • a dispenser having a plurality of nozzles arranged at positions corresponding to the flow paths 12 of the ceramic structure 2 is used, and paste used for the plugging portion 11 is ejected from the paste.
  • the plugging portion 11 can be formed at a predetermined position in the flow path 12 formed by the partition wall 10 by the method.
  • an ultrafine needle having a needle tip of micrometer order used for medical use or the like is used.
  • the surface of the partition wall 10 of the porous ceramic honeycomb structure 2 used in the adsorption module 1 or fine communication holes in the partition wall 10 A polymer material 13 is modified on the uppermost layer of the surface.
  • the polymer material 13 is applied to all or a part of the partition walls 10 of the porous ceramic honeycomb structure 2, only the inner wall of the partition wall 10 in the first half and the latter part, only the inner wall of the partition wall 10 in the second half part. , Any combination can be taken. It is effective that the polymer material 13 is modified with a material containing at least one polymer containing 2 equivalents or more of amino groups relative to the repeating unit. It has been confirmed by experiments that these polymer materials 13 have a characteristic of adsorbing organic substances that contaminate the reverse osmosis membrane 3 used in the subsequent process of the adsorption module 1.
  • the method of applying the polymer material 13 to the porous ceramic honeycomb structure 2 is the same as a part of the method used when forming the plugged portions 11, and a plurality of nozzles arranged at desired positions.
  • the polymer material 13 used as the adsorbing material 13 is formed by applying the polymer material 13 as the adsorbing material to a predetermined position in the flow path 12 formed by the partition wall 10 by a discharge method. It can. For example, in polymer coating, an ultrafine needle having a needle tip of micrometer order used for medical use or the like is used. First, it is possible to adopt a method in which the needle is inserted near the end of the plugging portion 11 and the needle is pulled out while spraying.
  • the polymer material 13 that adsorbs and removes the organic matter is thick enough not to fill the pores in the partition wall 10 over the entire surface or part of the surface of the partition wall 10 and the inside of the 0.005-0.050 mm hole. In this case, water penetrates the partition wall 10 with almost no resistance, and the applied polymer material 13 adsorbs and removes organic substances dissolved in water.
  • a polymer containing a —NH— bond having a high affinity with a carbonyl group, a carboxyl group, or an aromatic ring is preferably used as the adsorbing polymer material 13.
  • the polymer repeating unit containing —NH— bond include polyamide, polyimide, polyurethane, urea resin, polypeptide (protein), polyethyleneimine, polybenzimidazole, polybenzoxazole and the like.
  • polyamide, polyimide, polyurethane, urea resin, polypeptide (protein), polyethyleneimine, polybenzimidazole, polybenzoxazole and the like are examples of the polymer repeating unit containing —NH— bond.
  • polyallylamine and polyvinylamine there are polyallylamine and polyvinylamine.
  • those having a carbonyl group or a siloxane structure in the main chain or side chain may be used because of the affinity for —NH— bonds and siloxanes.
  • the structure contained in the main chain and the side chain is not limited to one type, and by including a plurality of structures, a wide variety of mixtures contained in water can be adsorbed and the adsorption efficiency can be improved. .
  • adsorbing polymer material 13 commonly used polyamide and cellulose acetate can be used, but are not limited thereto.
  • a photocatalyst may be supported on the porous ceramic honeycomb structure 2 or the polymer material 13 in order to decompose organic substances.
  • a photocatalyst titanium oxide, strontium titanate, zinc oxide, iron oxide, tungsten oxide and the like can be used, but are not limited thereto.
  • the reverse osmosis membrane 3 pretreatment step By performing the reverse osmosis membrane 3 pretreatment step with such an adsorbent material 13, it is possible to selectively adsorb only the organic matter causing the performance deterioration of the reverse osmosis membrane 3 in advance and remove it from the water. Since the amount of organic matter accumulated in the material 13 is small, the replacement frequency of the adsorbing material 13 is low, and a low-cost pretreatment method can be obtained by limiting the adsorbing function only to the outermost surface.
  • the ceramic honeycomb structure 2 on which the adsorbing material 13 is supported is manufactured as follows. Kaolin, talc, silica, were prepared powders such as alumina, SiO 2 in a weight ratio: 48 ⁇ 52%, Al 2 O 3: 33 ⁇ 37%, MgO: 12 ⁇ 15% become so cordierite Prepare a raw material powder, add a binder such as methylcellulose and hydroxypropylmethylcellulose, and a lubricant to this powder, mix thoroughly by dry process, add a specified amount of water, and thoroughly knead and plasticize ceramic clay. Create Next, the clay is extruded using an extrusion mold, cut, and dried to obtain a dried body having a honeycomb structure.
  • Kaolin, talc, silica were prepared powders such as alumina, SiO 2 in a weight ratio: 48 ⁇ 52%, Al 2 O 3: 33 ⁇ 37%, MgO: 12 ⁇ 15% become so cordierite
  • a raw material powder add a bin
  • the outer peripheral portion of the dried body is removed by processing, and the flow path 12 located on the outermost periphery does not have the partition wall 10 with the outside, so that a honeycomb structure having a groove that opens to the outside and extends in the axial direction. It was set as the dry body which has. Further, as a typical example, after firing at 1400 ° C., a coating agent containing cordierite particles and colloidal silica is applied to the flow path 12 which opens to the outside and is fired.
  • the cordierite-type ceramic honeycomb structure 2 is formed with a large number of flow paths 12 having a rectangular section.
  • the thickness of the partition wall 10 was 0.1 mm to 1.0 mm.
  • a ceramic honeycomb structure 2 having fine communication holes with an average diameter of 0.003 mm to 0.1 mm was manufactured in the partition wall 10.
  • the communication holes having an average diameter of 0.005 mm or more the resistance during water permeation was small and a sufficient amount of treated water was obtained.
  • clogging due to components other than adsorbed components does not occur.
  • the average pore diameter is less than 0.050 mm, the effect of increasing the surface area due to the porous ceramic honeycomb structure 2 is great, which contributes to the volume control of the pretreatment process equipment.
  • the channel 12 was made to have a quadrangular shape with sides of 0.3 mm to 10 mm.
  • the treated water having organic matter dissolved in water adsorbs the organic matter near the entrance of the ceramic honeycomb structure 2 and blocks the flow path 12 near the entrance. Therefore, the ceramic honeycomb structure 2 can be effectively used up to the end on the back side.
  • the partition wall 10 of the ceramic honeycomb structure 2 can be thickened, the mechanical strength is sufficient, and it is difficult to break when pressure is applied to the treated water by the pump 6. .
  • the composition of the ceramic honeycomb structure 2 and the firing temperature were changed so that the porosity of the material used for the partition wall 10 was 30% to 85%.
  • the porosity of the material used for the partition wall 10 is greater than 45%, the fine holes formed in the partition wall 10 can easily become communication holes, and the holes can be used effectively. In addition, a sufficient amount of communication holes can be secured, and no excessive pressure is required to permeate the treated water.
  • the porosity of the material used for the partition wall 10 is less than 70%, it is considered that the mechanical strength of the partition wall 10 can be sufficiently secured and is not easily damaged when pressure is applied to the treated water by the pump 6.
  • the porosity of the material used for the plugging portion 11 was also produced by changing its composition and firing temperature. In the case where the porosity of the material used for the plugging portion 11 exceeds 40%, some of the treated water that permeates the partition wall 10 permeates the plugging portion 11. Therefore, the porosity of the material used for the plugging portion 11 is preferably smaller than the porosity of the material used for the partition wall 10 and is preferably 0% to 40%, and the plugging portion 11 is thicker than the thickness of the partition wall 10. By increasing the thickness of the stopper 11 in the longitudinal direction of the flow path, the treated water can surely pass through the partition wall 10. Thus, by making the porosity of the material used for the plugging portion 11 smaller than the porosity of the material used for the partition wall 10, the treated water can surely pass through the partition wall 10. .
  • the outer diameter (diameter) is 5.66 inches
  • the total length is 6 inches
  • the partition wall thickness is 0.32 mm
  • the partition wall pitch is 1.57 mm
  • the adsorption module 1 was produced using a pressure loss of 0.85 mmAq (at 7.5 Nm 3 / min).
  • Patent Document 3 As an example of a method for manufacturing such a ceramic honeycomb structure 2, there is Patent Document 3. This patent document relates to a method for manufacturing a ceramic honeycomb structure 2 for purifying particulate matter contained in exhaust gas of a diesel engine.
  • the manufacturing method of the ceramic honeycomb is the same as that of Embodiment 2, but the manufacturing method of the plugging portion 11 is different.
  • the material used for the plugging portion 11 is a ceramic honeycomb structure having a composition containing the ceramic honeycomb structure 2 containing a solvent and a dispenser having a plurality of nozzles arranged at desired positions. An amount effective for plugging was discharged to predetermined predetermined positions on the inlet side and outlet side of the second channel 12. Thereafter, the plugged portion 11 was produced by drying and firing.
  • a screen printing method can be used to form the plugging portion 11.
  • a printing mask having an opening at a predetermined position was aligned with a predetermined position of the ceramic honeycomb structure 2, and a high-viscosity slurry was discharged through the opening of the printing mask. Thereafter, the plugged portion 11 was produced by drying and firing. As in the case of using a dispenser, a good plugged portion 11 could be created.
  • the porosity of the material used for the plugging portion 11 was also produced by changing its composition and firing temperature. In the case where the porosity of the material used for the plugging portion 11 exceeds 40%, some of the treated water that permeates the partition wall 10 permeates the plugging portion 11. For this reason, the porosity of the material used for the plugging portion 11 needs to be smaller than the porosity of the material used for the partition wall 10 and should be 0% to 40%, and the plugging portion 11 is thicker than the thickness of the partition wall 10. By increasing the thickness of the stopper 11, the treated water can surely pass through the partition wall 10. Thus, by making the porosity of the material used for the plugging portion 11 smaller than the porosity of the material used for the partition wall 10, the treated water can surely pass through the partition wall 10. .
  • the ceramic honeycomb structure 2 can be made of the same material, organic material, inorganic material, and the like as the porous ceramic honeycomb structure 2 in the partially plugged portion 11, and the stopper can be a stick or syringe. And fixed by pushing. Further, as shown in FIGS. 3 to 5, the sealing material was alternately introduced into the end face of the flow path 12 so that water could permeate through the partition wall 10.
  • the outer diameter (diameter) is 5.66 inches
  • the total length is 6 inches
  • the partition wall thickness is 0.32 mm
  • the partition wall pitch is 1.
  • a 57 mm initial pressure loss of 0.85 mmAq (at 7.5 Nm 3 / min) could be produced.
  • a ceramic honeycomb structure 2 was produced in the same manner as in Example 2 except that the following contents were applied.
  • alumina or a material containing a composite oxide containing alumina was used as the material constituting the partition walls 10. It was confirmed by experiments that the alumina group is exposed on the surface, so that a part of the dissolved organic matter in the treated water can be adsorbed, and the low-molecular-weight dissolved organic matter can be decomposed to reduce the molecular weight.
  • alumina or a composite oxide containing alumina contained in the material constituting the partition wall 10 is made of at least one material selected from aluminosilicate, silimanite, mullite, spinel, cordierite, aluminum titanate, and lithium aluminum silicate. If it was, good results were obtained.
  • a material in which the material constituting the partition wall 10 and the material constituting the plugging portion 11 are different was applied. However, it is insoluble in treated water. Since heat resistance is not required because it is used for water treatment, at least one of glass, polyimide, polyamide, polyimide amide, polyurethane, acrylic, epoxy, polypropylene, and Teflon is used as the material constituting the plugging portion 11. The one containing the material was used.
  • a composite material composed of ceramic particles and an organic polymer material was used as the material constituting the plugging portion 11.
  • the ceramic particles used for the material constituting the plugging portion 11 at least one of alumina, silica, magnesia, titania, zirconia, zircon, cordierite, spinel, aluminum titanate, and lithium aluminum silicate was used. .
  • organic polymer material used for the material constituting the plugged portion 11 at least one of polyimide, polyamide, polyimide amide, polyurethane, acrylic, epoxy, polypropylene, and Teflon was used.
  • the temperature for forming the plugging portion 11 was made lower than the temperature for forming the partition wall 10.
  • a printing mask having an opening at a desired position is used, and a paste used for the plugging portion 11 is placed at a desired position of the flow path 12 formed by the partition wall 10 by a screen printing method.
  • the sealing part 11 was formed.
  • the plugging portion 11 could be formed at a predetermined position in 12.
  • an ultra fine needle having a micrometer order is used for medical purposes. First, the needle was inserted to the vicinity of the sealing portion, and the needle was pulled out while spraying.
  • the outer diameter (diameter) is 5.66 inches
  • the total length is 6 inches
  • the partition wall thickness is 0.32 mm
  • the partition wall pitch is 1.57 mm
  • the initial pressure loss is 0.
  • a structure of the ceramic honeycomb structure 2 of 85 mmAq (at 7.5 Nm 3 / min) could be produced.
  • An adsorbent was produced by the following method on the ceramic honeycomb structure 2 produced in Example 2 or the like.
  • polymer material 13 used for the adsorbing material a material containing at least one polymer containing 2 equivalents or more of amino groups with respect to the repeating unit was modified. It has been experimentally confirmed that these polymer materials 13 have a feature of adsorbing organic substances that contaminate the reverse osmosis membrane 3 used in the subsequent process of the adsorption module 1.
  • polyamide was dissolved in N-methylpyrrolidone (NMP) to prepare a 0.5% polyamide NMP solution.
  • NMP N-methylpyrrolidone
  • the polyamide used was a polymerized 4,4'-oxydianiline and isophthaloyl dichloride as monomers.
  • the surface of the partition wall 10 of the porous ceramic honeycomb structure 2 used in the adsorption module 1 or fine communication holes in the partition wall 10 A polymer material 13 was modified on the uppermost layer of the surface.
  • the polymer material 13 is applied to all or a part of the partition walls 10 of the porous ceramic honeycomb structure 2, only the inner wall of the partition wall 10 in the first half and the latter part, only the inner wall of the partition wall 10 in the second half part. Any combination was produced.
  • the method of applying the polymer material 13 to the porous ceramic honeycomb structure 2 is the same as a part of the method used when forming the plugged portions 11, and a plurality of nozzles arranged at desired positions.
  • the polymer material 13 used as the adsorbing material is sprayed and applied to a predetermined position in the flow path 12 formed by the partition walls 10 of the ceramic honeycomb structure 2 by a discharge method using a dispenser having did.
  • an ultrafine needle having a micrometer order needle tip used for medical use or the like was used for the application of the polymer material.
  • the polymer material 13 that adsorbs and removes the organic matter is thick enough not to fill the pores in the partition wall 10 over the entire surface or part of the surface of the partition wall 10 and the inside of the 0.005-0.050 mm hole.
  • the polymer material 13 (polyamide) used as the adsorbing material was applied in the desired flow path 12 of the ceramic honeycomb structure 2, the ceramic honeycomb structure 2 was dried in an oven at 130 ° C. for 24 hours.
  • a polymer containing a —NH— bond having a high affinity with a carbonyl group, a carboxyl group, or an aromatic ring is preferably used as the adsorbing polymer material 13.
  • the polymer repeating unit containing —NH— bond include polyamide, polyimide, polyurethane, urea resin, polypeptide (protein), polyethyleneimine, polybenzimidazole, polybenzoxazole and the like.
  • polyamide, polyimide, polyurethane, urea resin, polypeptide (protein), polyethyleneimine, polybenzimidazole, polybenzoxazole and the like are examples of the polymer repeating unit containing —NH— bond.
  • polyallylamine and polyvinylamine there are polyallylamine and polyvinylamine.
  • those having a carbonyl group or a siloxane structure in the main chain or side chain may be used because of the affinity for —NH— bonds and siloxanes.
  • the structure contained in the main chain and the side chain is not limited to one type, and by including a plurality of structures, a wide variety of mixtures contained in water can be adsorbed, and the adsorption efficiency can be improved. It was.
  • adsorbing polymer material 13 commonly used polyamide and cellulose acetate can be used, but are not limited thereto.
  • a photocatalyst may be supported on the porous ceramic honeycomb structure 2 or the polymer material 13 in order to decompose organic substances.
  • a photocatalyst titanium oxide, strontium titanate, zinc oxide, iron oxide, tungsten oxide and the like can be used, but are not limited thereto.
  • the reverse osmosis membrane 3 pretreatment step By performing the reverse osmosis membrane 3 pretreatment step with such an adsorbent material 13, it is possible to selectively adsorb only the organic matter causing the performance deterioration of the reverse osmosis membrane 3 in advance and remove it from the water. Since the amount of organic matter accumulated in the material 13 is small, the replacement frequency of the adsorbing material 13 is low, and a low-cost pretreatment method is obtained by limiting the adsorbing function only to the outermost surface.
  • Temporary treated sewage water supplied to the adsorption module 1 is a process of removing dust etc. through a screen, a process of removing fine suspension such as sand by adding a flocculant, and a process of decomposing organic matter using microorganisms. A series of processes are applied.
  • the sewage primary treated water contains salts and dissolved organic matter.
  • the sewage primary treated water thus treated contained 248 mg / L of dissolved organic matter in terms of TOC (total organic carbon content).
  • the demonstration experiment was performed as follows, and the water to be treated was treated by using an experimental device simulating the water treatment device of FIG. 1 and applying a polyamide as the polymer material 13 to the surface of the ceramic honeycomb as the adsorption module. And it processed with the reverse osmosis membrane module, and the organic substance adsorption amount to the reverse osmosis membrane 3 was measured using size exclusion chromatography (GPC). For comparison, an adsorption module 1 not coated with the polymer material 13 was prepared and subjected to the same treatment, and the amount of organic matter adsorbed on the reverse osmosis membrane 3 was compared using GPC.
  • the GPC conditions are as follows.
  • the column is manufactured by Hitachi Chemical Co., Ltd., model number: GL-W550, column temperature: 41 ° C., sample volume: 20 ⁇ L, eluent: pure water, flow rate: 1.0 mL / min, detector (detection wavelength): UV ( 220 nm).
  • TOC total organic carbon content
  • the polyamide modification can remove organic substances in the low-molecular region compared with the polyamide unmodified. That is, it is considered that different types of dissolved organic substances are adsorbed between the polyamide-modified and the polyamide-unmodified.
  • the dissolved organic matter is 226 mg / L in terms of TOC (total organic carbon content), and the ceramic honeycomb structure 2
  • the alumina group in the constituent material formed on the surface of the partition wall 10 can adsorb dissolved organic matter in the sewage primary treated water, and was confirmed to be effective as an adsorption module.
  • the partition wall 10 of the ceramic honeycomb structure 2 used in the adsorption module 1 does not need to modify the adsorption material 13 on the entire surface of the partition wall 10 and the inner surface of the fine through hole, and is partially unmodified. It was found that the dissolved organic matter having a wide range of molecular weight can be adsorbed by the presence of the part.
  • SYMBOLS 1 Adsorption module, 2 ... Ceramic honeycomb structure, 3 ... Reverse osmosis membrane, 4 ... Module, 5 ... Water storage tank, 6 ... Pump, 7 ... Housing, 8 ... support, 9 ... outer peripheral wall, 10 ... partition wall, 11 ... plugging portion, 12 ... flow path, 13 ... polymer material (adsorption material).

Abstract

In water treatment plants there is a problem where organic matter dissolved in water adsorbs onto the surface of a reverse osmosis membrane used in high-performance treatment, thus causing membrane performance to deteriorate and necessitating frequent replacement of the reverse osmosis membrane module. In order to solve this problem, an adsorption structure is provided that adsorbs organic matter in treated water, wherein the adsorption structure comprises an outer wall, a plurality of flow paths provided on the inner side of the outer wall, and partition walls for partitioning the plurality of flow paths. The adsorption structure is characterized in that the partition walls are smaller than the diameter of the flow path and have communication holes through which the flow path and other flow paths communicate, and an adsorptive material to which the organic matter adsorbs. As a result, the organic matter in water to be treated can be selectively removed and the replacement frequency of a reverse osmosis membrane can be reduced.

Description

吸着構造体,吸着モジュールおよびその製造方法Adsorption structure, adsorption module and manufacturing method thereof
 本発明は,排水再生処理や海水淡水化等の水処理工程において,高度処理に用いる水中溶解有機物および電解質を分離除去する逆浸透膜の前処理技術に関する。 The present invention relates to a reverse osmosis membrane pretreatment technique for separating and removing dissolved organic substances and electrolytes used in advanced treatment in water treatment processes such as wastewater regeneration treatment and seawater desalination.
 水の浄化の高度処理において逆浸透膜が用いられている。逆浸透膜表面には半透膜が用いられるが,半透膜の材質は大きく分けて,酢酸セルロース系と芳香族ポリアミド系がある。このうち,芳香族ポリアミド系の逆浸透膜は水透過性や電解質除去性能が高いため,工業用に広く用いられている。その構造は,微孔多孔質支持体上に芳香族ポリアミド膜を形成した複合半透膜の構造が多く用いられ,芳香族ポリアミド部分の膜厚は1μm以下である。 A reverse osmosis membrane is used in advanced treatment of water purification. A semi-permeable membrane is used on the surface of the reverse osmosis membrane, and the material of the semi-permeable membrane is roughly classified into cellulose acetate type and aromatic polyamide type. Among these, aromatic polyamide-based reverse osmosis membranes are widely used for industrial use because of their high water permeability and electrolyte removal performance. As the structure, a structure of a composite semipermeable membrane in which an aromatic polyamide membrane is formed on a microporous support is often used, and the thickness of the aromatic polyamide portion is 1 μm or less.
 逆浸透膜は海水淡水化,半導体等の精密電子機器製造に用いる純水製造,上水の高度処理,下水・排水の最終処理などに水中溶解する有機物,電解質の除去に用いられる。 Reverse osmosis membranes are used to remove organic substances and electrolytes that are dissolved in water during seawater desalination, pure water production used in the manufacture of precision electronics such as semiconductors, advanced water treatment, and final treatment of sewage and wastewater.
 これらの用途のうち,下水の最終処理に用いる場合は,一般的に以下のような処理プロセスを経て水が逆浸透膜に供給される。まず,下水に含まれる粗大な夾雑物,ごみ等はスクリーンと呼ばれるふるいを通して除かれる。次に,砂などの細かい懸濁物を必要に応じて凝集剤等を添加し沈殿池で沈下させ分離する。上澄みの水にはまだ浮遊物や溶解有機物等が含まれており,微生物を用いて分解する。微生物の代謝物が汚泥として発生し,汚泥と水は沈殿池での沈降または精密ろ過膜を通すことで分離される。このようにして処理された下水一次処理水には浮遊物はほとんど含まれず,この段階で消毒等を行って,河川に放流したり,緑化散布水などの用途によっては再利用したりできる水質まで浄化されている。日本国内では,この段階で河川に放流し自然浄化を活かして,水循環を行っている。しかしながら,中東,大陸内陸部,河川のない島等では自然浄化に必要十分な河川や湖沼がないために,下水一次処理水をさらに浄化して飲料水や工業用水として再利用する要望が高まっている。逆浸透膜はこの最終処理において下水一次処理水中の溶解有機物や電解質を除去するのに用いられる。 Of these uses, when used for the final treatment of sewage, water is generally supplied to the reverse osmosis membrane through the following treatment process. First, coarse impurities, waste, etc. contained in sewage are removed through a sieve called a screen. Next, a fine suspension such as sand is added to the flocculant if necessary, and then submerged in a sedimentation basin for separation. The supernatant water still contains suspended solids, dissolved organic matter, etc., and is decomposed using microorganisms. Microbial metabolites are generated as sludge, and sludge and water are separated by settling in a sedimentation basin or passing through a microfiltration membrane. The sewage primary treated water treated in this way contains almost no suspended solids. At this stage, the quality of water can be disinfected and released into rivers, or reused depending on the application, such as greening spray water. It has been purified. In Japan, at this stage, it is discharged into rivers and water is recycled using natural purification. However, because there are not enough rivers and lakes necessary for natural purification in the Middle East, inland areas, islands without rivers, etc., there is an increasing demand for further purification of sewage primary treated water and reuse it as drinking water or industrial water. Yes. The reverse osmosis membrane is used to remove dissolved organic substances and electrolytes in the sewage primary treated water in this final treatment.
 下水一次処理水には,前段階までの処理などによって変化するが,電解質が1%以下,溶解有機物がTOC(全有機炭素量)に換算して3~20mg/L含まれる。これらを逆浸透膜で分離すると電解質を1ppm以下,溶解有機物を1mg/L以下まで低下させることが可能である。 The sewage primary treated water varies depending on the treatment up to the previous stage, but the electrolyte is 1% or less and the dissolved organic matter is contained in 3-20 mg / L in terms of TOC (total organic carbon content). When these are separated by a reverse osmosis membrane, it is possible to reduce the electrolyte to 1 ppm or less and the dissolved organic matter to 1 mg / L or less.
 下水最終処理に用いられる逆浸透膜は,モジュール内の膜表面積を増加させるため,スパイラルと呼ばれる形状に折りたたまれているものが多い。中央の芯の部分に袋状の逆浸透膜を固定し,傘のように巻き上げて円筒に納めた形をしている。モジュールは4インチ,8インチなどの直径で長さが1mの円筒形が主流である。 Many reverse osmosis membranes used for final sewage treatment are folded into a shape called a spiral in order to increase the membrane surface area in the module. A bag-like reverse osmosis membrane is fixed to the center core, and it is rolled up like an umbrella and stored in a cylinder. The main module is a cylindrical shape with a diameter of 4 inches, 8 inches, etc. and a length of 1 m.
 逆浸透膜は,分離膜の一種であるが,分離膜を用いた水のろ過方式には2方式ある。一つは,全量ろ過方式で,これは供給した水の全量を膜に通過させる方式で,膜を通過できない成分は膜表面に堆積する。もう一つはクロスフローろ過方式であり,膜表面に平行に水が流れ,一部が膜を透過して透過水に,残りは溶解物濃度が高くなった状態で濃縮水としてモジュールから取り出される。逆浸透膜でのろ過には,後者のクロスフローろ過方式を用いている。この方式では,膜表面への溶解物の析出や濃度上昇による運転負荷上昇を低減する。しかし,クロスフローろ過方式でも溶解物が膜表面に吸着し,透過水量が経時的に劣化する問題がある。 Reverse osmosis membranes are a type of separation membrane, but there are two methods for water filtration using separation membranes. One is a total filtration system, in which all the supplied water is passed through the membrane, and components that cannot pass through the membrane are deposited on the membrane surface. The other is a cross-flow filtration method, in which water flows parallel to the membrane surface, part of it permeates through the membrane to permeate, and the rest is taken out from the module as concentrated water with the concentration of dissolved matter increased. . The latter cross-flow filtration method is used for filtration through reverse osmosis membranes. This method reduces the increase in operating load due to the deposition of dissolved material on the membrane surface and the increase in concentration. However, even with the cross-flow filtration method, there is a problem that the dissolved matter is adsorbed on the membrane surface and the amount of permeated water deteriorates with time.
 膜表面への吸着物には,電解質が膜表面付近で濃度が高くなって析出するスケール,水中の微生物が膜表面で増殖するバイオファウリングなどのほか,有機物が吸着する有機物ファウリングがある。定期的に膜表面に清浄水を流し,せん断力によって吸着物を除去しているが,有機物が吸着した場合,せん断力では完全に除去することができず,徐々に蓄積して水の透過量が低下する。一定した透過量を得るために動力(圧力)を増加させるが,ポンプの電力費増加につながる。また,洗浄液により逆浸透膜が徐々に劣化するため,イオンの阻止率が低下する。これらが進むと逆浸透膜モジュールを交換する必要が生じる。逆浸透膜モジュールの交換時は運転を長時間止める必要があり,また逆浸透膜モジュールは再生利用ができないため,新しい逆浸透膜モジュールに交換する必要があり,稼働率低下,逆浸透膜の消耗品代,廃棄物処理費など単位水量当たりのランニングコストをあげる原因となっている。 The adsorbed material on the membrane surface includes organic fouling that adsorbs organic matter in addition to the scale in which the electrolyte is deposited at a high concentration near the membrane surface, biofouling in which microorganisms in the water grow on the membrane surface. Clean water is periodically flowed over the membrane surface, and the adsorbate is removed by shearing force. However, when organic matter is adsorbed, it cannot be completely removed by shearing force, and gradually accumulates and the amount of water permeated. Decreases. The power (pressure) is increased to obtain a constant permeation amount, but this leads to an increase in the power cost of the pump. In addition, since the reverse osmosis membrane gradually deteriorates due to the cleaning liquid, the ion rejection rate decreases. As these progress, it is necessary to replace the reverse osmosis membrane module. When replacing the reverse osmosis membrane module, it is necessary to stop the operation for a long time, and since the reverse osmosis membrane module cannot be recycled, it is necessary to replace it with a new reverse osmosis membrane module. This increases the running cost per unit of water, such as product costs and waste disposal costs.
特許第3864817号公報Japanese Patent No. 3864817 特開2005-111407号公報JP 2005-111407 A 特開2008-136919号公報JP 2008-136919 A
 このため,有機物を逆浸透膜前であらかじめ除去する前処理工程を追加して逆浸透膜の交換までの寿命を延ばす方法がある。前処理方法としては,有機物を分解する方法,有機物を吸着や凝集により,除去する方法などがあるが,後者の有機物を吸着する方法としては,特許文献1には,逆浸透膜と同じ材料からなる吸着材料を用いる方法が開示されている。 For this reason, there is a method of extending the life until the replacement of the reverse osmosis membrane by adding a pretreatment step for removing organic substances in advance before the reverse osmosis membrane. As a pretreatment method, there are a method of decomposing an organic substance, a method of removing an organic substance by adsorption or aggregation, and the method of adsorbing the latter organic substance is disclosed in Patent Document 1 from the same material as a reverse osmosis membrane. A method using an adsorbing material is disclosed.
 有機物の吸着材料としては活性炭が汎用的に用いられる。しかしながら,活性炭を用いる方法では,下水一次処理水に含まれる有機物のほとんどを吸着するために,活性炭がすぐに吸着飽和に達してしまい,活性炭の交換頻度が高くなり,逆浸透膜の交換頻度を低減してもコストメリットが得られない。 活性炭 Activated carbon is widely used as an organic material adsorption material. However, in the method using activated carbon, most of the organic matter contained in the sewage primary treated water is adsorbed, so the activated carbon quickly reaches adsorption saturation, the frequency of replacement of the activated carbon increases, and the frequency of replacement of the reverse osmosis membrane is reduced. No cost merit is obtained even if it is reduced.
 吸着材料の構造は,下水一次処理水を透過させたときに,十分な透過水量が得られることが求められる。一方で,水と接触する表面積を大きく取ることが吸着を効率よく行うために必要である。表面積を拡大する方法として,活性炭は粉状,破砕片,粒状のものなどがあるが,水中で用いる場合,水の流路が狭くなるため,十分な流速が得られにくい。活性炭以外の吸着材料も,粒状の場合はいずれも同様の問題が生じる。さらに,活性炭は表面積拡大のために細孔を持つが,細孔内で捕捉した物質は脱離が困難で,洗浄での吸着能回復が実用上不可能である。 The structure of the adsorbing material is required to obtain a sufficient amount of permeated water when sewage primary treated water is permeated. On the other hand, it is necessary to increase the surface area in contact with water in order to perform adsorption efficiently. As a method for expanding the surface area, activated carbon is in the form of powder, crushed pieces, and granular materials. However, when used in water, the flow path of water becomes narrow, and it is difficult to obtain a sufficient flow rate. If the adsorbing material other than activated carbon is granular, the same problem occurs. Furthermore, activated carbon has pores to increase the surface area, but the substance trapped in the pores is difficult to desorb and it is practically impossible to recover the adsorption capacity by washing.
 逆浸透膜を用いて水処理する場合に,水中に溶存した有機物を除去するために吸着材料を用いる方法が特許文献2に開示されている。吸着材料では表面積が不足するため大量の吸着材料が必要となる問題があった。 Patent Document 2 discloses a method of using an adsorbent material to remove organic substances dissolved in water when water treatment is performed using a reverse osmosis membrane. The adsorbing material has a problem that a large amount of adsorbing material is required because the surface area is insufficient.
 逆浸透膜が汚染して目詰まりをおこした場合,一定の透過量を得るために圧力(動力)を増加させるため,ポンプの電力費増加につながる。また,汚染を除去するため逆浸透膜を洗浄するが,薬液により逆浸透膜が徐々に劣化し,イオンの阻止率が低下する。これらが進むと逆浸透膜交換が必要となる。逆浸透膜の交換時は運転を長時間止める必要があり,再生水の安定供給が困難となる。特に,下水再生処理では,逆浸透膜への供給水中に有機物を多く含むため,溶存有機物による目詰まりが大きな課題である。 When the reverse osmosis membrane is contaminated and clogged, the pressure (power) is increased to obtain a certain amount of permeation, leading to an increase in the power cost of the pump. In addition, the reverse osmosis membrane is washed to remove contamination, but the reverse osmosis membrane gradually deteriorates due to the chemical solution, and the ion rejection rate decreases. As these progress, reverse osmosis membrane exchange is required. When replacing the reverse osmosis membrane, it is necessary to stop the operation for a long time, making it difficult to stably supply reclaimed water. In particular, in sewage regeneration treatment, clogging with dissolved organic matter is a major issue because the water supplied to the reverse osmosis membrane contains a large amount of organic matter.
 溶存有機物が原因の逆浸透膜の目詰まりのメカニズムは大きく2つのものがある。1つ目は,有機物が逆浸透膜表面に吸着し,膜の表面状態や分子レベルの孔を塞いで膜性能を劣化させる。2つ目は,逆浸透膜モジュールに大きく関係し,溶存していた有機物が膜表面や膜とスペーサの間で不溶化して堆積し,流路を閉塞させるために起きる。特に2つめのモジュール構造起因の場合は,モジュールの入口側で発生し,モジュールの奥では膜の劣化が起きていないにもかかわらず,透過水量が減少してしまう。従来の溶存有機物除去方法として,逆浸透膜と同じ材料からなる吸着材料を用いる方法が特許文献1に開示されている。また,処理水と逆浸透膜の接触面積を大きくするために,繊維状高分子とセラミック多孔体を用いる特許文献2が開示されている。 There are two main mechanisms of reverse osmosis clogging caused by dissolved organic matter. First, organic substances are adsorbed on the reverse osmosis membrane surface, blocking the surface state of the membrane and pores at the molecular level, thereby degrading the membrane performance. The second is largely related to the reverse osmosis membrane module and occurs because dissolved organic substances are insolubilized and deposited between the membrane surface and between the membrane and the spacer, and block the flow path. In particular, in the case of the second module structure, it occurs on the inlet side of the module, and the permeated water amount is reduced in spite of the absence of membrane deterioration at the back of the module. As a conventional method for removing dissolved organic matter, Patent Document 1 discloses a method using an adsorbent material made of the same material as a reverse osmosis membrane. Moreover, in order to enlarge the contact area of a treated water and a reverse osmosis membrane, the patent document 2 using a fibrous polymer and a ceramic porous body is disclosed.
 下水の再生処理プロセスにおいて生物活性汚泥処理後に逆浸透膜を用いて処理する場合に,逆浸透膜表面に水中に溶解した難分解性有機物が吸着して通水率が経時劣化し,安定した透過水供給に問題が生じる。劣化した逆浸透膜の表面を清浄な水で洗浄して性能を回復するが,完全な機能回復は難しく,また,洗浄液により膜が劣化して透過水の水質が低下する。このため,ある程度劣化した場合は逆浸透膜を交換する必要がある。逆浸透膜の寿命が短いと水処理のランニングコストが高くなる。とくに,下水再生処理においては,逆浸透膜に供給される水に含まれる有機物量が多いため,大きい課題である。 When treating with a reverse osmosis membrane after bioactive sludge treatment in the sewage reclamation process, persistent water-degraded organic substances adsorbed on the reverse osmosis membrane surface and the water permeability deteriorates over time, resulting in stable permeation. Problems arise in the water supply. Although the performance of the reverse osmosis membrane is restored by cleaning it with clean water, it is difficult to fully recover the function, and the quality of the permeated water deteriorates due to the membrane being deteriorated by the cleaning solution. For this reason, it is necessary to replace the reverse osmosis membrane when it deteriorates to some extent. If the lifetime of the reverse osmosis membrane is short, the running cost of water treatment increases. In particular, sewage reclamation is a major issue because the amount of organic matter contained in the water supplied to the reverse osmosis membrane is large.
 前処理工程で有機物を除去する方法があるが,低コストで効果を得ることが難しい。これは,吸着材料が大量に必要であることや吸着材料の再生利用が困難なことが原因である。 There is a method of removing organic substances in the pretreatment process, but it is difficult to obtain an effect at low cost. This is because a large amount of adsorbent material is necessary and it is difficult to recycle the adsorbent material.
 本発明の目的は,上記課題を解決し,低コストの前処理工程を追加して逆浸透膜の寿命を延ばし,下排水の再生処理にかかるランニングコストを低減することである。 The object of the present invention is to solve the above-mentioned problems, add a low-cost pretreatment process to extend the life of the reverse osmosis membrane, and reduce the running cost for the regeneration treatment of sewage.
 本発明は,上記課題を解決するために,例えば,被処理水中の有機物を吸着する吸着構造体において,外壁と,前記外壁の内側に設けられた複数の流路と,前記複数の流路のそれぞれを隔てる隔壁とを備え,前記隔壁は,前記流路の径よりも小さく,前記流路と他の流路とを連通させる連通孔と,前記有機物を吸着する吸着物質とを有することを特徴とする吸着構造体を提供する。 In order to solve the above-described problems, the present invention provides, for example, an adsorption structure that adsorbs organic matter in water to be treated, an outer wall, a plurality of channels provided inside the outer wall, and a plurality of channels. A partition wall that separates each of the partition walls, the partition wall having a communication hole that is smaller than the diameter of the channel and that communicates the channel with another channel, and an adsorbent that adsorbs the organic matter. An adsorption structure is provided.
 本発明によれば,低コストの前処理工程を追加して逆浸透膜の寿命を延ばすことにより,下水の再生処理にかかるランニングコストを低減することが可能である。 According to the present invention, it is possible to reduce the running cost of the sewage regeneration process by adding a low-cost pretreatment process to extend the life of the reverse osmosis membrane.
吸着モジュールを用いた水処理フロー図である。It is a water treatment flowchart using an adsorption module. 吸着モジュールを組み立てたときの構造の模式図である。It is a schematic diagram of a structure when an adsorption module is assembled. セラミックハニカム構造体を処理水供給方向からみた模式図である。It is the schematic diagram which looked at the ceramic honeycomb structure from the treated water supply direction. セラミックハニカム構造体を側面からみた模式図である。It is the schematic diagram which looked at the ceramic honeycomb structure from the side. セラミックハニカム構造体の断面図の一例である。It is an example of sectional drawing of a ceramic honeycomb structure. 本発明の一実施例にかかる吸着材料の分子構造である。It is the molecular structure of the adsorption material concerning one Example of this invention.
 以下,本願発明の実施例を,図面を用いて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 図1に本発明の一実施例にかかる水処理設備を示す。水処理設備は,吸着モジュール1と,貯水タンク5と,給水ポンプ6と,逆浸透膜モジュール4とを備えている。 FIG. 1 shows a water treatment facility according to an embodiment of the present invention. The water treatment facility includes an adsorption module 1, a water storage tank 5, a water supply pump 6, and a reverse osmosis membrane module 4.
 本発明にかかる実施例において,吸着モジュール1に供給される下水一時処理水とは,ごみ等をスクリーンにかけて取り除く処理,さらに砂などの細かい懸濁物を凝集剤添加して沈降除去する処理,微生物を用いて有機物を分解する処理の一連の処理が施された水である。下水一次処理水中には塩類や溶解有機物が含まれている。このように処理された下水一次処理水は,溶存有機物をTOC(全有機炭素量)に換算して248mg/L含んでいた。 In the embodiment according to the present invention, the sewage temporarily treated water supplied to the adsorption module 1 is a process for removing dust and the like through a screen, a process for adding fine flocculant such as sand to settle and removing it, a microorganism It is water that has been subjected to a series of treatments for decomposing organic matter using. The sewage primary treated water contains salts and dissolved organic matter. The sewage primary treated water thus treated contained 248 mg / L of dissolved organic matter in terms of TOC (total organic carbon content).
 本発明では,この下水一次処理水を吸着モジュール1に通し,吸水ポンプ6で加圧しながら逆浸透膜3に通すことで,処理水中の有機物や塩類が除去され,水再生が完了する。下水一次処理水は,吸着モジュール1にて高分子材料が修飾されているセラミックハニカム構造体2を透過して処理され,貯水タンク5に貯水される。逆浸透膜3へは,貯水タンク5から給水ポンプ6により水を供給する。 In the present invention, this sewage primary treated water is passed through the adsorption module 1 and passed through the reverse osmosis membrane 3 while being pressurized by the water absorption pump 6, thereby removing organic substances and salts in the treated water and completing the water regeneration. The sewage primary treated water is treated by passing through the ceramic honeycomb structure 2 in which the polymer material is modified by the adsorption module 1 and stored in the water storage tank 5. Water is supplied to the reverse osmosis membrane 3 from a water storage tank 5 by a water supply pump 6.
 まず,下水再生処理において微生物処理を行った後に逆浸透膜モジュール4で処理する場合について,課題とその解決手段を述べるが,逆浸透膜のその他の用途,つまり海水淡水化,半導体等の精密電子機器製造に用いる純水製造,上水の高度処理,下水・排水の再生処理(微生物処理を併用しないものなどを含む)においても水中溶解有機物の除去に有効である。 First, the problem and its solution will be described for the case of treating with the reverse osmosis membrane module 4 after microbial treatment in sewage regeneration treatment, but other uses of the reverse osmosis membrane, that is, precision electronic such as seawater desalination, semiconductors, etc. It is also effective in removing dissolved organic substances in water in the production of pure water used in equipment manufacturing, advanced treatment of clean water, and regeneration treatment of sewage and wastewater (including those that do not involve microbial treatment).
 下水再生処理において,逆浸透膜に供給される下水一次処理水は微生物による有機物分解処理後の水であり,難分解性有機物がTOC(全有機炭素量)に換算して3~20mg/L含まれる。難分解性有機物の種類は1つに特定できるものではない。クロスフローろ過方式においては,逆浸透膜で分離された成分は濃縮水とともに排出されるので,排出可能な有機物は逆浸透膜の劣化原因ではなく,積極的に除去する必要はない。本発明では,図1に示す水処理フローにより,逆浸透膜表面に吸着する有機物のみを選択的に効率よく吸着除去する前処理工程の吸着材料により,課題を解決する。このような吸着材料とすることで,吸着材料の量を減らすことができ,低コストの前処理が実現できる。 In the sewage regeneration treatment, the primary treated sewage water supplied to the reverse osmosis membrane is water after organic matter decomposition treatment by microorganisms, and contains 3-20 mg / L of refractory organic matter in terms of TOC (total organic carbon content). It is. The kind of persistent organic substance cannot be specified as one. In the cross-flow filtration method, the components separated by the reverse osmosis membrane are discharged together with the concentrated water, so that the organic matter that can be discharged is not a cause of deterioration of the reverse osmosis membrane and does not need to be positively removed. In the present invention, the water treatment flow shown in FIG. 1 solves the problem by using an adsorbent material in a pretreatment process that selectively and efficiently removes only organic substances adsorbed on the reverse osmosis membrane surface. By using such an adsorbing material, the amount of adsorbing material can be reduced, and low-cost pretreatment can be realized.
 まず,逆浸透膜の表面への吸着有機物を分析した。多成分が含まれるので,成分を特定できるものではないが,カルボニル基やカルボキシル基を含む有機物が吸着しやすいことが分かった。他に,アミノ基,Siを含むシロキサン類を含む成分なども吸着する成分に含まれる。 First, organic substances adsorbed on the surface of the reverse osmosis membrane were analyzed. Since multiple components are included, the components cannot be specified, but it was found that organic substances containing carbonyl groups and carboxyl groups are likely to be adsorbed. In addition, components including siloxanes containing amino groups and Si are also included in the adsorbing components.
 また,逆浸透膜への難分解性有機物の吸着量を調べたところ,水中に溶解している難分解性有機物のうち,逆浸透膜に吸着するのはTOC換算して5%程度でそれ以外の有機物は水中に存在しても逆浸透膜に吸着せず,通水率劣化原因とはならないことを突き止めた。 In addition, when the amount of adsorption of the hardly decomposable organic substance to the reverse osmosis membrane was investigated, among the hardly decomposable organic substances dissolved in water, the amount adsorbed to the reverse osmosis membrane was about 5% in terms of TOC. It was found that the organic matter in the water does not adsorb on the reverse osmosis membrane even if it exists in the water and does not cause deterioration of the water permeability.
 逆浸透膜が有機物を吸着するメカニズムには大きく2つがあると言われている。1つは分子間相互作用で,分子構造の似た材料どうしに親和力が働く。吸着物の分析から,カルボニル基,アミノ基等を含む材質が,逆浸透膜劣化原因物質との親和力が高くなると考えられるので,カルボニル基やアミノ基を繰り返し単位に含む高分子が良い。一例として,ポリアミド,ポリイミド,ポリエステル,ポリカーボネート,ポリウレタン,アクリル樹脂,尿素樹脂,ポリエチレンテレフタレート,などがある。接触角を40度以上にするためには,主鎖や側鎖に炭素数4以上の炭化水素や芳香環を含むものが良い。また,シロキサン類との親和力のため,主鎖または側鎖にシロキサン構造を含むものも良い。さらに,主鎖や側鎖に含まれる構造は1種類に限らず,複数の構造を含むことによって,吸着効率を向上することができる。 It is said that there are two major mechanisms by which reverse osmosis membranes adsorb organic substances. One is intermolecular interaction, and affinity works between materials with similar molecular structures. From the analysis of the adsorbed material, it is considered that a material containing a carbonyl group, an amino group, etc. has a higher affinity with a reverse osmosis membrane-causing substance, and therefore a polymer containing a carbonyl group or an amino group as a repeating unit is preferable. Examples include polyamide, polyimide, polyester, polycarbonate, polyurethane, acrylic resin, urea resin, polyethylene terephthalate, and the like. In order to increase the contact angle to 40 ° or more, it is preferable that the main chain or the side chain contains a hydrocarbon having 4 or more carbon atoms or an aromatic ring. Moreover, the thing containing a siloxane structure in a principal chain or a side chain is good for affinity with siloxanes. Furthermore, the structure contained in the main chain and the side chain is not limited to one type, and the adsorption efficiency can be improved by including a plurality of structures.
 逆浸透膜表面と同等の吸着能力がある吸着表面を持つ前処理工程の吸着材料があるとき,逆浸透膜に投入する前に逆浸透膜と同じ表面積以上の前処理工程の吸着材料に接触させると劣化原因となる有機物を除去して,逆浸透膜の寿命を2倍化することが可能である。
吸着材料の表面積を大きくするため,吸着材料の形状としては,粒子,メッシュ,繊維,フィルタなどが考えられるが,限定されるものではない。
When there is a pretreatment process adsorbent with an adsorption surface equivalent to the reverse osmosis membrane surface, contact the pretreatment process adsorbent with the same surface area or more as the reverse osmosis membrane before putting it into the reverse osmosis membrane It is possible to double the life of the reverse osmosis membrane by removing the organic substances that cause deterioration.
In order to increase the surface area of the adsorbing material, the shape of the adsorbing material may be particles, meshes, fibers, filters, etc., but is not limited thereto.
 特に,フィルタなどの多孔質体の場合に表面積が大きくなる。吸着材料の表面積が大きくなると,前処理工程に追加する設備の体積が抑えられたり,または既存設備のタンク内に吸着材料を設置したりが可能となる。 Especially, the surface area becomes large in the case of a porous body such as a filter. If the surface area of the adsorbing material is increased, the volume of equipment added to the pretreatment process can be reduced, or the adsorbing material can be installed in the tank of the existing equipment.
 下水再生処理や海水淡水化,半導体等の精密電子機器製造に用いる純水製造,上水の高度処理などのための,水中溶存有機物を吸着除去する工程に使用する。 Used for the process of adsorbing and removing dissolved organic substances in water for sewage reclamation, seawater desalination, pure water production used in the production of precision electronics such as semiconductors, and advanced water treatment.
 このような水処理工程において,水中に溶解した有機物を有する処理水を隔壁で仕切られた多数の流路を有するセラミックハニカム構造体に通して吸着処理することができる。 In such a water treatment step, the treated water containing organic matter dissolved in water can be adsorbed through a ceramic honeycomb structure having a number of flow paths partitioned by partition walls.
 本実施例の吸着モジュールについて図を用いて説明する。図2は,下水処理装置に用いる吸着モジュール1の一例の側面図である。吸着モジュール1は,セラミック製のハニカム構造を有するフィルタ(多孔質のセラミックハニカム構造体2)を有する構造物とした。ポリアミドなど吸着材料13が担持されたセラミックハニカム構造体2が把持部材を介してハウジング7(アクリル製収納容器)内のフィルタ支持体8により収納されている。支持体8は水が抵抗なく通過可能で,水を0.1MPaで透過させたときに,固定端の長軸方向の長さに対して,長軸の中央部での位置変化が5%以内となる強度を持つような素材,厚さ,保持方法で,水への溶出物がない材質であれば良く,例えば,樹脂系ではポリエチレン,ポリプロピレン,ポリエチレンテレフタレート,ポリスチレン等のメッシュスペーサ,金属系ではステンレス,チタンなどのメッシュ,パンチングメタル等を用いることが出来る。本実施例では,支持体8として厚さ1mmのパンチングメタルを使用した。 The adsorption module of this example will be described with reference to the drawings. FIG. 2 is a side view of an example of the adsorption module 1 used in the sewage treatment apparatus. The adsorption module 1 is a structure having a filter (porous ceramic honeycomb structure 2) having a ceramic honeycomb structure. A ceramic honeycomb structure 2 on which an adsorbing material 13 such as polyamide is supported is accommodated by a filter support 8 in a housing 7 (acrylic container) via a gripping member. The support 8 allows water to pass without resistance, and when water is permeated at 0.1 MPa, the position change at the center of the major axis is within 5% of the length of the major axis in the fixed end. It is only necessary to use a material that has sufficient strength, thickness, and retention method and that does not have elution into water. For example, resin-based mesh spacers such as polyethylene, polypropylene, polyethylene terephthalate, and polystyrene, and metal-based materials. Stainless steel, titanium mesh or punching metal can be used. In this example, a punching metal having a thickness of 1 mm was used as the support 8.
 本実施例のセラミックハニカム構造体2は,図3~5に示すように,外周壁9と,外周壁9の内側に設けられた複数の流路12と,流路12の間を隔てる隔壁10と,隔壁10に設けられた高分子材料13とを有している。流路12は,その長手方向に交差する方向に並んで配置されており,流入側の面から流出側の面まで貫通している貫通孔を,目封止することにより形成されている。具体的には,被処理水の流入側の面が開口し,反対側の流出側が目封止部11によって目封止された第1の流路12aと,被処理水の流出側が開口し,反対側の流入側が目封止部11によって目封止された第2の流路12bとを有する。長手方向に交差する面において,第1の流路12aと第2の流路12bは,縦横ともに交互に配置されている。また,セラミックスハニカムにより形成された外周壁9と隔壁10には,流路の径よりも細い連通孔(図示せず)が無数に空いている。 As shown in FIGS. 3 to 5, the ceramic honeycomb structure 2 of the present example includes an outer peripheral wall 9, a plurality of flow paths 12 provided inside the outer peripheral wall 9, and a partition wall 10 that separates the flow paths 12. And a polymer material 13 provided on the partition wall 10. The flow paths 12 are arranged side by side in a direction intersecting the longitudinal direction, and are formed by plugging through holes penetrating from the inflow side surface to the outflow side surface. Specifically, the inflow side surface of the treated water is opened, the first outflow side is plugged by the plugging portion 11 on the opposite outflow side, and the outflow side of the treated water is opened, The opposite inflow side has a second flow path 12 b plugged by the plugging portion 11. On the plane intersecting the longitudinal direction, the first flow path 12a and the second flow path 12b are alternately arranged both vertically and horizontally. In addition, in the outer peripheral wall 9 and the partition wall 10 formed of the ceramic honeycomb, there are innumerable communication holes (not shown) thinner than the diameter of the flow path.
 図5に示すように,吸着モジュール4内のセラミックス構造体2には,流入側に開口した第1の流路12aに被処理水が流入する。流入した被処理水は,隔壁10中の微細な連通孔を通じて,第2の流路12bに流れる。隔壁10の表面或いは隔壁10の内の微細な連通孔面の最上層には,有機物の吸着材料としての高分子材料13が設けられており,被処理水が隔壁を通過するときに,高分子材料13が被処理水中の有機物を吸着除去する。
第2の流路12bに流れ込んだ被処理水は,流路12bが開口したセラミックス構造体2の流出側から流出する。
As shown in FIG. 5, to-be-processed water flows in into the 1st flow path 12a opened to the inflow side in the ceramic structure 2 in the adsorption | suction module 4. As shown in FIG. The treated water that has flowed in flows through the fine communication hole in the partition wall 10 into the second flow path 12b. A polymer material 13 as an organic material adsorbing material is provided on the surface of the partition wall 10 or on the uppermost layer of the fine communication hole surface in the partition wall 10. The material 13 adsorbs and removes organic substances in the water to be treated.
The water to be treated that has flowed into the second flow path 12b flows out from the outflow side of the ceramic structure 2 in which the flow path 12b is opened.
 図3~5に示すように,隔壁10は0.1mm~1mmの厚さからなる格子状の形状を有している。隔壁10の厚さが0.1mmより厚い場合には,隔壁10の強度を確保し形状を保持することが容易であった。また,隔壁10の厚さが1mmより薄い場合には,処理水を透過するのに必要な圧力が過剰にならず,実用的であった。また,隔壁10には平均径が0.005mm~0.05mmの微細な連通孔を有しているのが特徴である。平均径が0.005mm以上の微細な連通孔では水の透過時の抵抗が大きくならず処理水量が得やすく,吸着成分以外の成分による目詰まり発生が起きにくかったりする。また,平均孔径0.050mm未満では,多孔質のセラミックハニカム構造体2にしたことによる表面積拡大の効果が大きく,前処理工程設備の体積抑制への寄与が大きい。 As shown in FIGS. 3 to 5, the partition 10 has a lattice shape having a thickness of 0.1 mm to 1 mm. When the partition wall 10 is thicker than 0.1 mm, it is easy to ensure the strength of the partition wall 10 and maintain the shape. Moreover, when the thickness of the partition wall 10 is less than 1 mm, the pressure necessary to permeate the treated water does not become excessive, which is practical. Further, the partition wall 10 is characterized by having fine communication holes with an average diameter of 0.005 mm to 0.05 mm. With fine communication holes having an average diameter of 0.005 mm or more, resistance during water permeation is not increased and the amount of treated water is easily obtained, and clogging due to components other than adsorbed components is difficult to occur. In addition, when the average pore diameter is less than 0.050 mm, the effect of expanding the surface area due to the porous ceramic honeycomb structure 2 is great, and the contribution to the volume control of the pretreatment process equipment is great.
 さらに,流路12は一辺が0.5mm~8mmの四角形の形状を有している。流路12は一辺が0.5mm以上の場合には,水中に溶解した有機物を有する処理水がセラミックハニカム構造体2の入り口付近で有機物を吸着し,入り口付近の流路12を塞いでしまうことが起こりにくく,セラミックハニカム構造体2奥側の端部まで有効に利用することが出来る。一方,流路12は一辺が8mmより小さい場合には,セラミックハニカム構造体2の隔壁10が厚くでき,機械的強度を十分に確保し,処理水に圧力を加えた際に破損する可能性を低くすることができるので好ましい。また,流路12の形状は,四角型に限られるものではない。 Furthermore, the flow path 12 has a square shape with one side of 0.5 mm to 8 mm. When the flow path 12 has a side of 0.5 mm or more, the treated water having organic matter dissolved in water adsorbs the organic matter near the entrance of the ceramic honeycomb structure 2 and blocks the flow path 12 near the entrance. Therefore, the ceramic honeycomb structure 2 can be effectively used up to the end on the back side. On the other hand, if one side of the flow path 12 is smaller than 8 mm, the partition wall 10 of the ceramic honeycomb structure 2 can be thickened, and sufficient mechanical strength can be secured, and there is a possibility of breakage when pressure is applied to the treated water. Since it can be made low, it is preferable. Further, the shape of the flow path 12 is not limited to the square shape.
 セラミックハニカム構造体2の端部には所望の流路12端部が目封止されており,流路12には端部どちらかに目封止部11がある形状を有している。被処理水は流路12の内で流入側に目封止部11の無い第1の流路12aより挿入し隔壁10の微細な連通孔を通過することにより,隔壁10により処理水中に溶解した有機物を確実に吸着処理される。隔壁10を通過した被処理水は,流出側に目封止部11の無い第2の流路12bを通ってセラミックス構造体2の外側に流れ出る。多孔質のセラミックハニカム構造体2は,ハニカム状に生成した多孔質隔壁10で仕切られた多数の流路12の端面から離れた位置に目封止部11を形成する。セラミックハニカム構造体2内の目封止部11には,多孔質のセラミックハニカム構造体2と同一の材料や,有機材料,無機材料など処理水に溶解しない材料を使用できる。栓としての目封止部11を棒やシリンジで押し込み固定する。また,図3~5に示すように,目封止部11を流路12の端面に交互に導入すれば,第1の流路12aと第2の流路12bとの両方に接し,その内側を被処理水が透過する隔壁10が多くなり,効率がよくなる。 The end of the ceramic honeycomb structure 2 is plugged with an end of a desired flow path 12, and the flow path 12 has a shape with a plugged portion 11 at either end. The water to be treated was dissolved in the treated water by the partition wall 10 by being inserted from the first channel 12a without the plugging portion 11 on the inflow side in the channel 12 and passing through the fine communication holes of the partition wall 10. The organic matter is reliably adsorbed. The water to be treated that has passed through the partition wall 10 flows out of the ceramic structure 2 through the second flow path 12b without the plugging portion 11 on the outflow side. In the porous ceramic honeycomb structure 2, plugged portions 11 are formed at positions away from the end faces of a number of flow paths 12 partitioned by a porous partition wall 10 formed in a honeycomb shape. The plugging portion 11 in the ceramic honeycomb structure 2 can be made of the same material as the porous ceramic honeycomb structure 2 or a material that does not dissolve in the treated water, such as an organic material or an inorganic material. The plugging portion 11 as a stopper is pushed and fixed with a stick or syringe. Further, as shown in FIGS. 3 to 5, if the plugging portions 11 are alternately introduced into the end face of the flow path 12, they are in contact with both the first flow path 12a and the second flow path 12b and inside thereof. The partition wall 10 through which the water to be treated permeates increases and the efficiency is improved.
 隔壁10に使用する材料の気孔率が45%~70%が望ましい。隔壁10に使用する材料の気孔率が45%より大きい場合には,隔壁10に形成した微細な孔が塞がり連通孔にならないことが少なくなり,連通孔の量が十分確保できる。また,隔壁10に使用する材料の気孔率が70%未満では,隔壁10の機械的強度を確保し,処理水に圧力を加えた際,破損する可能性を低くすることができるため,好ましい。 The porosity of the material used for the partition wall 10 is preferably 45% to 70%. When the porosity of the material used for the partition wall 10 is larger than 45%, the fine holes formed in the partition wall 10 are less likely to be blocked and become communication holes, and the amount of communication holes can be sufficiently secured. Moreover, it is preferable that the porosity of the material used for the partition wall 10 is less than 70% because the mechanical strength of the partition wall 10 is ensured and the possibility of breakage is reduced when pressure is applied to the treated water.
 さらに,目封止部11に使用する材料の気孔率が隔壁10に使用している材料の気孔率より小さく,0%~40%であり,なお且つ,隔壁10の厚さより目封止部11の厚さが厚いことが望ましい。目封止部11に使用する材料の気孔率が40%未満の場合には,隔壁10を透過させる処理水が目封止部11内を透過する可能性が低くなるため,好ましい。目封止部11に使用する材料の気孔率が隔壁10に使用している材料の気孔率より小さくすることにより,確実に処理水が隔壁10内を通過することが出来る。 Further, the porosity of the material used for the plugging portion 11 is smaller than the porosity of the material used for the partition wall 10 and is 0% to 40%, and the plugging portion 11 is larger than the thickness of the partition wall 10. It is desirable that the thickness of the When the porosity of the material used for the plugged portion 11 is less than 40%, it is preferable because the possibility that the treated water that permeates the partition wall 10 will permeate the plugged portion 11 is reduced. By making the porosity of the material used for the plugging portion 11 smaller than the porosity of the material used for the partition wall 10, the treated water can surely pass through the partition wall 10.
 隔壁10を構成する材料が,アルミナ或いはアルミナを含む複合酸化物を含有することが望ましい。アルミナ基が表面に露出していることにより,処理水中の一部の溶存有機物を吸着し,また,高分子の難分解性の溶存有機物を分解して低分子化出来ることを,実験により確認した。特に,隔壁10を構成する材料に含有するアルミナ或いはアルミナを含む複合酸化物として,アルミノシリケート,シリマナイト,ムライト,スピネル,コージェライト,チタン酸アルミニウム,リチウムアルミニウムシリケートの内,少なくとも1種以上の材料であること好ましい。 It is desirable that the material constituting the partition wall 10 contains alumina or a composite oxide containing alumina. It was confirmed by experiments that the alumina group is exposed on the surface, so that a part of the dissolved organic matter in the treated water can be adsorbed, and the high-degradability dissolved organic matter in the polymer can be decomposed to reduce the molecular weight. . In particular, at least one of aluminosilicate, silimanite, mullite, spinel, cordierite, aluminum titanate, and lithium aluminum silicate is used as the alumina or composite oxide containing alumina contained in the material constituting the partition wall 10. It is preferable that there is.
 また,隔壁10の表面或いは隔壁10内の微細な連通孔面の少なくとも一部或いは全面にアルミナを含有する被膜を形成しても同様の効果が得られる。 Further, the same effect can be obtained by forming a film containing alumina on the surface of the partition wall 10 or on at least a part or the entire surface of the fine communication hole in the partition wall 10.
 さらに,処理水に不溶のものであれば,隔壁10を構成する材料と目封止部11を構成する材料とが異なっても構わない。水処理に使用するため,耐熱性は要求されないため,目封止部11を構成する材料として,ガラス,ポリイミド,ポリアミド,ポリイミドアミド,ポリウレタン,アクリル,エポキシ,ポリプロピレン,テフロン(登録商標)の内少なくとも1種以上の材料を含有するもので良い。そのため,隔壁10を形成する温度より目封止部11を形成する温度が低くても構わない。 Furthermore, as long as it is insoluble in the treated water, the material constituting the partition wall 10 and the material constituting the plugging portion 11 may be different. Since heat resistance is not required because it is used for water treatment, at least one of glass, polyimide, polyamide, polyimide amide, polyurethane, acrylic, epoxy, polypropylene, and Teflon (registered trademark) is used as the material constituting the plugging portion 11. It may contain one or more materials. Therefore, the temperature at which the plugging portion 11 is formed may be lower than the temperature at which the partition wall 10 is formed.
 また,目封止部11を構成する材料として,セラミックス粒子と有機高分子材料からなる複合材料であっても構わない。目封止部11を構成する材料に用いるセラミックス粒子として,アルミナ,シリカ,マグネシア,チタニア,ジルコニア,ジルコン,コージェライト,スピネル,チタン酸アルミニウム,リチウムアルミニウムシリケートの内少なくとも1種以上の材料が好ましい。 Further, the material constituting the plugging portion 11 may be a composite material made of ceramic particles and an organic polymer material. As the ceramic particles used for the material constituting the plugging portion 11, at least one of alumina, silica, magnesia, titania, zirconia, zircon, cordierite, spinel, aluminum titanate, and lithium aluminum silicate is preferable.
 目封止部11を形成する方法として,セラミックス構造体2の流路12に対応する位置に開口を有する印刷マスクを用い,目封止部11に用いるペーストをスクリーン印刷法により隔壁10により形成された流路12の所望の位置に目封止部11を形成することができる。 As a method for forming the plugging portion 11, a printing mask having an opening at a position corresponding to the flow path 12 of the ceramic structure 2 is used, and the paste used for the plugging portion 11 is formed by the partition wall 10 by a screen printing method. The plugging portion 11 can be formed at a desired position of the flow path 12.
 また,目封止部11を形成する方法として,セラミックス構造体2の流路12に対応する位置に配設された複数のノズルを有するディスペンサを用い,目封止部11に用いるペーストをペースト吐出法により隔壁10により形成された流路12内の所定の位置に目封止部11を形成することができる。例えば,高分子塗布は,医療用等に用いられる針先がマイクロメートルオーダーの超微細ニードルを使用する。まず,封止部近くまで該ニードルを差し込み,スプレーしながらニードルを引き抜く方法をとることができる。 Further, as a method of forming the plugging portion 11, a dispenser having a plurality of nozzles arranged at positions corresponding to the flow paths 12 of the ceramic structure 2 is used, and paste used for the plugging portion 11 is ejected from the paste. The plugging portion 11 can be formed at a predetermined position in the flow path 12 formed by the partition wall 10 by the method. For example, in polymer coating, an ultrafine needle having a needle tip of micrometer order used for medical use or the like is used. First, it is possible to adopt a method in which the needle is inserted to the vicinity of the sealing portion, and the needle is pulled out while spraying.
 吸着モジュール1の後工程に使用する逆浸透膜3への汚染を防止するため,吸着モジュール1に使用する多孔質のセラミックハニカム構造体2の隔壁10の表面或いは隔壁10の内の微細な連通孔面の最上層には,高分子材料13が修飾されている。高分子材料13を塗布する箇所は,多孔質のセラミックハニカム構造体2の隔壁10の全部或いは一部,前半部と後半部,前半部の隔壁10の内壁のみ,後半部の隔壁10の内壁のみ,何れかの組み合わせを取ることができる。高分子材料13として,アミノ基が繰り返し単位に対して2当量以上含まれる高分子を少なくとも1種以上含んだ材料を修飾していることが有効である。これらの高分子材料13は,吸着モジュール1の後工程に使用する逆浸透膜3を汚染する有機物を吸着する特徴を持つことが実験により確認されている。 In order to prevent contamination of the reverse osmosis membrane 3 used in the post-process of the adsorption module 1, the surface of the partition wall 10 of the porous ceramic honeycomb structure 2 used in the adsorption module 1 or fine communication holes in the partition wall 10 A polymer material 13 is modified on the uppermost layer of the surface. The polymer material 13 is applied to all or a part of the partition walls 10 of the porous ceramic honeycomb structure 2, only the inner wall of the partition wall 10 in the first half and the latter part, only the inner wall of the partition wall 10 in the second half part. , Any combination can be taken. It is effective that the polymer material 13 is modified with a material containing at least one polymer containing 2 equivalents or more of amino groups relative to the repeating unit. It has been confirmed by experiments that these polymer materials 13 have a characteristic of adsorbing organic substances that contaminate the reverse osmosis membrane 3 used in the subsequent process of the adsorption module 1.
 多孔質のセラミックハニカム構造体2への高分子材料13の塗布の方法は,目封止部11を形成する際に使用した一部の方法と同様で,所望位置に配設された複数のノズルを有するディスペンサを用い,吸着材料13に用いる高分子材料13を吐出法により隔壁10により形成された流路12内の所定の位置に吸着材料である高分子材料13を塗布して形成することができる。例えば,高分子塗布は,医療用等に用いられる針先がマイクロメートルオーダーの超微細ニードルを使用する。まず,目封止部11末端部近くまで該ニードルを差し込み,スプレーしながらニードルを引き抜く方法をとることができる。有機物を吸着除去する高分子材料13を隔壁10の表面および内部の0.005~0.050mmの孔の表面の全面もしくは一部に,隔壁10内部の細孔を埋めない程度の厚さ,好ましくは100nm以下塗布する方法で,この場合は,隔壁10内部を水がほとんど抵抗なく透過し,塗布した高分子材料13が水中溶存有機物を吸着して除去する。 The method of applying the polymer material 13 to the porous ceramic honeycomb structure 2 is the same as a part of the method used when forming the plugged portions 11, and a plurality of nozzles arranged at desired positions. The polymer material 13 used as the adsorbing material 13 is formed by applying the polymer material 13 as the adsorbing material to a predetermined position in the flow path 12 formed by the partition wall 10 by a discharge method. it can. For example, in polymer coating, an ultrafine needle having a needle tip of micrometer order used for medical use or the like is used. First, it is possible to adopt a method in which the needle is inserted near the end of the plugging portion 11 and the needle is pulled out while spraying. The polymer material 13 that adsorbs and removes the organic matter is thick enough not to fill the pores in the partition wall 10 over the entire surface or part of the surface of the partition wall 10 and the inside of the 0.005-0.050 mm hole. In this case, water penetrates the partition wall 10 with almost no resistance, and the applied polymer material 13 adsorbs and removes organic substances dissolved in water.
 高分子材料13が水中溶存有機物を吸着するメカニズムは,分子間相互作用が影響する。吸着した有機物分析から,カルボニル基,カルボキシル基,芳香環と親和性の高い-NH-結合を含むポリマーを吸着用高分子材料13とすることが良い。ポリマーの繰返し単位に-NH-結合を含む例として,ポリアミド,ポリイミド,ポリウレタン,尿素樹脂,ポリペプチド(タンパク質),ポリエチレンイミン,ポリベンゾイミダゾール,ポリベンゾオキサゾールなどがある。他の材料として,側鎖や主鎖に-NH-結合を含むものを用いることもできる。図6に高分子の化学構造を示す。例えば,ポリアリルアミン,ポリビニルアミンなどがある。また,-NH-結合やシロキサン類との親和力のため,主鎖または側鎖にカルボニル基,シロキサン構造を含むものも良い。さらに,主鎖や側鎖に含まれる構造は1種類に限らず,複数の構造を含むことによって,水中に含まれる混合物の広範囲の種類を吸着することができ,吸着効率を向上することができる。 Intermolecular interaction affects the mechanism by which the polymer material 13 adsorbs dissolved organic matter in water. From the analysis of the adsorbed organic matter, a polymer containing a —NH— bond having a high affinity with a carbonyl group, a carboxyl group, or an aromatic ring is preferably used as the adsorbing polymer material 13. Examples of the polymer repeating unit containing —NH— bond include polyamide, polyimide, polyurethane, urea resin, polypeptide (protein), polyethyleneimine, polybenzimidazole, polybenzoxazole and the like. As other materials, those containing —NH— bonds in the side chain or main chain can also be used. FIG. 6 shows the chemical structure of the polymer. For example, there are polyallylamine and polyvinylamine. In addition, those having a carbonyl group or a siloxane structure in the main chain or side chain may be used because of the affinity for —NH— bonds and siloxanes. Furthermore, the structure contained in the main chain and the side chain is not limited to one type, and by including a plurality of structures, a wide variety of mixtures contained in water can be adsorbed and the adsorption efficiency can be improved. .
 吸着用高分子材料13は一般的に用いられているポリアミド,酢酸セルロースが使用できるが,これらに限定するものではない。 As the adsorbing polymer material 13, commonly used polyamide and cellulose acetate can be used, but are not limited thereto.
 また,多孔質のセラミックハニカム構造体2または,高分子材料13に,有機物を分解するために光触媒が担持されていてもよい。光触媒としては,酸化チタン,チタン酸ストロンチウム,酸化亜鉛,酸化鉄,酸化タングステン等を使用できるが,これらに限定するものではない。 Further, a photocatalyst may be supported on the porous ceramic honeycomb structure 2 or the polymer material 13 in order to decompose organic substances. As the photocatalyst, titanium oxide, strontium titanate, zinc oxide, iron oxide, tungsten oxide and the like can be used, but are not limited thereto.
 このような吸着用高分子材料13を修飾した多孔質のセラミックハニカム構造体2を用いて被処理水の浄化処理を行うことで,大きな表面積で効率よく有機物を除去可能で,また,吸着モジュール1の流路12が広いために目詰まりを起こしにくくなり,吸着モジュール1や後工程の逆浸透膜3の洗浄頻度や交換頻度を下げ,ランニングコストを低減することができる。 By purifying the water to be treated using the porous ceramic honeycomb structure 2 modified with such an adsorbing polymer material 13, organic substances can be efficiently removed with a large surface area, and the adsorption module 1 Since the flow path 12 is wide, clogging is less likely to occur, and the frequency of cleaning and replacement of the adsorption module 1 and the reverse osmosis membrane 3 in the subsequent process can be reduced, and the running cost can be reduced.
 このような吸着材料13により,逆浸透膜3前処理工程を行うことで,あらかじめ逆浸透膜3の性能劣化原因の有機物のみを選択的に吸着して水中から除去することができ,また,吸着材料13への有機物蓄積量が少ないため,吸着材料13の交換頻度が低く,吸着機能を最表面だけに限定することで低コストの前処理方法が得られる。 By performing the reverse osmosis membrane 3 pretreatment step with such an adsorbent material 13, it is possible to selectively adsorb only the organic matter causing the performance deterioration of the reverse osmosis membrane 3 in advance and remove it from the water. Since the amount of organic matter accumulated in the material 13 is small, the replacement frequency of the adsorbing material 13 is low, and a low-cost pretreatment method can be obtained by limiting the adsorbing function only to the outermost surface.
 以下,セラミックス構造体2の製造方法を説明する。 Hereinafter, a method for manufacturing the ceramic structure 2 will be described.
 吸着材料13が担持されたセラミックハニカム構造体2は,以下のようにして製造する。カオリン,タルク,シリカ,アルミナなどの粉末を調製して,質量比でSiO:48~52%,Al:33~37%,MgO:12~15%となるようにコーディエライト化原料粉末を準備し,これにメチルセルロース,ヒドロキシプロピルメチルセルロース等のバインダ,潤滑剤を添加し,乾式で充分混合した後,規定量の水を添加,充分な混錬を行って可塑化したセラミック杯土を作成する。次に,押し出し成形用金型を用いて杯土を押し出し成形し,切断して,乾燥して,ハニカム構造を有する乾燥体とする。次に,この乾燥体の外周部を加工により除去し,最外周に位置する流路12が外部との隔壁10を有しないことによって,外部に開口して軸方向に延びる凹溝を有するハニカム構造を有する乾燥体とした。さらに,代表例として1400℃で焼成したのち,外部に開口して延びる流路12にコーディエライト粒子とコロイダルシリカを含有するコーティング剤を塗布,焼成して,外周壁9の内側に隔壁10で仕切られた断面が四角形状の多数の流路12が形成されたコーディエライト質セラミックハニカム構造体2とする。 The ceramic honeycomb structure 2 on which the adsorbing material 13 is supported is manufactured as follows. Kaolin, talc, silica, were prepared powders such as alumina, SiO 2 in a weight ratio: 48 ~ 52%, Al 2 O 3: 33 ~ 37%, MgO: 12 ~ 15% become so cordierite Prepare a raw material powder, add a binder such as methylcellulose and hydroxypropylmethylcellulose, and a lubricant to this powder, mix thoroughly by dry process, add a specified amount of water, and thoroughly knead and plasticize ceramic clay. Create Next, the clay is extruded using an extrusion mold, cut, and dried to obtain a dried body having a honeycomb structure. Next, the outer peripheral portion of the dried body is removed by processing, and the flow path 12 located on the outermost periphery does not have the partition wall 10 with the outside, so that a honeycomb structure having a groove that opens to the outside and extends in the axial direction. It was set as the dry body which has. Further, as a typical example, after firing at 1400 ° C., a coating agent containing cordierite particles and colloidal silica is applied to the flow path 12 which opens to the outside and is fired. The cordierite-type ceramic honeycomb structure 2 is formed with a large number of flow paths 12 having a rectangular section.
 セラミックハニカム構造体2としては,隔壁10の厚さを0.05mm~2.0mmに変えて作製するため,押し出し成形用金型を各種準備し試作した。隔壁10の厚さが0.1mmより厚い場合には,隔壁10の強度が十分であり形状を保持することが容易であった。一方,隔壁10の厚さが1.0mmより薄い場合には,処理水を透過するのに過剰な圧力をかける必要が無く,実用的であった。そのため,隔壁10の厚さとしては,0.1mm~1.0mmが良好であることが分かった。 In order to manufacture the ceramic honeycomb structure 2 by changing the thickness of the partition wall 10 to 0.05 mm to 2.0 mm, various extrusion molds were prepared and prototyped. When the thickness of the partition wall 10 was greater than 0.1 mm, the strength of the partition wall 10 was sufficient and it was easy to maintain the shape. On the other hand, when the thickness of the partition wall 10 is smaller than 1.0 mm, it is not necessary to apply excessive pressure to permeate the treated water, which is practical. Therefore, it was found that the thickness of the partition wall 10 was 0.1 mm to 1.0 mm.
 また,隔壁10には平均径が0.003mm~0.1mmの微細な連通孔を有するセラミックハニカム構造体2を作製した。平均径が0.005mm以上の連通孔では水の透過時の抵抗が小さく十分な処理水量が得られた。また,吸着成分以外の成分による目詰まりが発生しない。一方,平均孔径0.050mm未満では,多孔質のセラミックハニカム構造体2にしたことによる表面積拡大の効果が大きく,前処理工程設備の体積抑制に寄与する。 Further, a ceramic honeycomb structure 2 having fine communication holes with an average diameter of 0.003 mm to 0.1 mm was manufactured in the partition wall 10. In the communication holes having an average diameter of 0.005 mm or more, the resistance during water permeation was small and a sufficient amount of treated water was obtained. In addition, clogging due to components other than adsorbed components does not occur. On the other hand, when the average pore diameter is less than 0.050 mm, the effect of increasing the surface area due to the porous ceramic honeycomb structure 2 is great, which contributes to the volume control of the pretreatment process equipment.
 さらに,流路12は一辺が0.3mm~10mmの4角形の形状のものを作成した。流路12は一辺が0.5mm以上の場合には,水中に溶解した有機物を有する処理水がセラミックハニカム構造体2の入り口付近で有機物を吸着し,入り口付近の流路12を塞いでしまうことが起きにくく,セラミックハニカム構造体2奥側の端部まで有効に利用することが出来る。一方,流路12は一辺が8mmより小さい場合には,セラミックハニカム構造体2の隔壁10が厚くでき,機械的強度が十分であり,処理水にポンプ6により圧力を加えた際,破損しにくい。 Furthermore, the channel 12 was made to have a quadrangular shape with sides of 0.3 mm to 10 mm. When the flow path 12 has a side of 0.5 mm or more, the treated water having organic matter dissolved in water adsorbs the organic matter near the entrance of the ceramic honeycomb structure 2 and blocks the flow path 12 near the entrance. Therefore, the ceramic honeycomb structure 2 can be effectively used up to the end on the back side. On the other hand, when one side of the flow path 12 is smaller than 8 mm, the partition wall 10 of the ceramic honeycomb structure 2 can be thickened, the mechanical strength is sufficient, and it is difficult to break when pressure is applied to the treated water by the pump 6. .
 セラミックハニカム構造体2の組成および焼成温度を変えて,隔壁10に使用する材料の気孔率を30%~85%になるように作製した。隔壁10に使用する材料の気孔率が45%より大きい場合には,隔壁10に形成した微細な孔が連通孔になりやすく,孔を有効に利用できる。また,連通孔の量が十分確保でき,処理水を透過するのに過剰な圧力を必要としない。一方,隔壁10に使用する材料の気孔率が70%未満では,隔壁10の機械的強度を十分に確保でき,処理水にポンプ6により圧力を加えた際,破損しにくいと考えられる。 The composition of the ceramic honeycomb structure 2 and the firing temperature were changed so that the porosity of the material used for the partition wall 10 was 30% to 85%. When the porosity of the material used for the partition wall 10 is greater than 45%, the fine holes formed in the partition wall 10 can easily become communication holes, and the holes can be used effectively. In addition, a sufficient amount of communication holes can be secured, and no excessive pressure is required to permeate the treated water. On the other hand, if the porosity of the material used for the partition wall 10 is less than 70%, it is considered that the mechanical strength of the partition wall 10 can be sufficiently secured and is not easily damaged when pressure is applied to the treated water by the pump 6.
 また,目封止部11に使用する材料の気孔率についても,その組成および焼成温度を変えて作製した。目封止部11に使用する材料の気孔率が40%を超える場合には,隔壁10を透過させる処理水が目封止部11内を透過するものがあった。そのため,目封止部11に使用する材料の気孔率が隔壁10に使用している材料の気孔率より小さく,0%~40%であることが好ましく,なお且つ,隔壁10の厚さより目封止部11の流路長手方向の厚さを厚くすることにより,確実に処理水が隔壁10の内を通過することが出来た。このように,目封止部11に使用する材料の気孔率が隔壁10に使用している材料の気孔率より小さくすることにより,確実に処理水が隔壁10の内を通過することが出来た。 Further, the porosity of the material used for the plugging portion 11 was also produced by changing its composition and firing temperature. In the case where the porosity of the material used for the plugging portion 11 exceeds 40%, some of the treated water that permeates the partition wall 10 permeates the plugging portion 11. Therefore, the porosity of the material used for the plugging portion 11 is preferably smaller than the porosity of the material used for the partition wall 10 and is preferably 0% to 40%, and the plugging portion 11 is thicker than the thickness of the partition wall 10. By increasing the thickness of the stopper 11 in the longitudinal direction of the flow path, the treated water can surely pass through the partition wall 10. Thus, by making the porosity of the material used for the plugging portion 11 smaller than the porosity of the material used for the partition wall 10, the treated water can surely pass through the partition wall 10. .
 そこで, 本発明ではセラミックハニカム構造体2の構造の一例として,外径(直径)5.66インチ,全長は6インチで,隔壁10の厚さ0.32mm,隔壁10のピッチ1.57mm,初期圧力損失0.85mmAq(at 7.5Nm/min)のものを用いて,吸着モジュール1を作製した。 Therefore, in the present invention, as an example of the structure of the ceramic honeycomb structure 2, the outer diameter (diameter) is 5.66 inches, the total length is 6 inches, the partition wall thickness is 0.32 mm, the partition wall pitch is 1.57 mm, The adsorption module 1 was produced using a pressure loss of 0.85 mmAq (at 7.5 Nm 3 / min).
 このようなセラミックハニカム構造体2の製造方法の一例として,特許文献3がある。
この特許文献は,ディーゼルエンジンの排気ガス中に含まれる粒子状物質を浄化するためのセラミックハニカム構造体2の製造方法に関するものである。
As an example of a method for manufacturing such a ceramic honeycomb structure 2, there is Patent Document 3.
This patent document relates to a method for manufacturing a ceramic honeycomb structure 2 for purifying particulate matter contained in exhaust gas of a diesel engine.
 セラミックハニカム構造体2の製造方法について,他の一例を説明する。この実施例では,セラミックハニカムの製造方法は,実施例2と同様であるが,目封止部11の製造方法が異なる。 Another example of the method for manufacturing the ceramic honeycomb structure 2 will be described. In this embodiment, the manufacturing method of the ceramic honeycomb is the same as that of Embodiment 2, but the manufacturing method of the plugging portion 11 is different.
 目封止部11に使用する材料は,セラミックハニカム構造体2の組成物に溶剤を含有してスラリを作製し,所望位置に配設された複数のノズルを有するディスペンサを用い,セラミックハニカム構造体2の流路12の入口側と出口側の互い違いの所定の位置に目封止に有効な量を吐出した。その後,乾燥,焼成して目封止部11を作製した。 The material used for the plugging portion 11 is a ceramic honeycomb structure having a composition containing the ceramic honeycomb structure 2 containing a solvent and a dispenser having a plurality of nozzles arranged at desired positions. An amount effective for plugging was discharged to predetermined predetermined positions on the inlet side and outlet side of the second channel 12. Thereafter, the plugged portion 11 was produced by drying and firing.
 また,目封止部11の形成には,ディスペンサ以外に,スクリーン印刷法を用いることが出来る。スクリーン印刷法を用いる場合には,所定の位置が開口した印刷マスクをセラミックハニカム構造体2の所定の位置に位置合わせし,高粘度のスラリを印刷マスクの開口部を介して吐出した。その後,乾燥,焼成して目封止部11を作製した。ディスペンサを用いた場合と同様に,良好な目封止部11を作成することができた。 In addition to the dispenser, a screen printing method can be used to form the plugging portion 11. In the case of using the screen printing method, a printing mask having an opening at a predetermined position was aligned with a predetermined position of the ceramic honeycomb structure 2, and a high-viscosity slurry was discharged through the opening of the printing mask. Thereafter, the plugged portion 11 was produced by drying and firing. As in the case of using a dispenser, a good plugged portion 11 could be created.
 また,目封止部11に使用する材料の気孔率についても,その組成および焼成温度を変えて作製した。目封止部11に使用する材料の気孔率が40%を超える場合には,隔壁10を透過させる処理水が目封止部11内を透過するものがあった。そのため,目封止部11に使用する材料の気孔率が隔壁10に使用している材料の気孔率より小さく,0%~40%である必要があり,なお且つ,隔壁10の厚さより目封止部11の厚さを厚くすることにより,確実に処理水が隔壁10の内を通過することが出来た。このように,目封止部11に使用する材料の気孔率が隔壁10に使用している材料の気孔率より小さくすることにより,確実に処理水が隔壁10の内を通過することが出来た。 Further, the porosity of the material used for the plugging portion 11 was also produced by changing its composition and firing temperature. In the case where the porosity of the material used for the plugging portion 11 exceeds 40%, some of the treated water that permeates the partition wall 10 permeates the plugging portion 11. For this reason, the porosity of the material used for the plugging portion 11 needs to be smaller than the porosity of the material used for the partition wall 10 and should be 0% to 40%, and the plugging portion 11 is thicker than the thickness of the partition wall 10. By increasing the thickness of the stopper 11, the treated water can surely pass through the partition wall 10. Thus, by making the porosity of the material used for the plugging portion 11 smaller than the porosity of the material used for the partition wall 10, the treated water can surely pass through the partition wall 10. .
 前記セラミックハニカム構造体2に,一部目封止部11には多孔質のセラミックハニカム構造体2と同一材料,有機材料,無機材料など処理水に溶解しない材料を使用でき,栓を棒やシリンジで押し込み固定した。また,図3~5に示すように封止材を前記流路12の端面に交互に導入し,隔壁10の内を水が透過する構造とすることが出来た。 The ceramic honeycomb structure 2 can be made of the same material, organic material, inorganic material, and the like as the porous ceramic honeycomb structure 2 in the partially plugged portion 11, and the stopper can be a stick or syringe. And fixed by pushing. Further, as shown in FIGS. 3 to 5, the sealing material was alternately introduced into the end face of the flow path 12 so that water could permeate through the partition wall 10.
 このようにして, 本発明のセラミックハニカム構造体2の構造の一例として,外径(直径)5.66インチ,全長は6インチで,隔壁10の厚さ0.32mm,隔壁10のピッチ1.57mm,初期圧力損失0.85mmAq(at 7.5Nm/min)のものを作製することが出来た。 Thus, as an example of the structure of the ceramic honeycomb structure 2 of the present invention, the outer diameter (diameter) is 5.66 inches, the total length is 6 inches, the partition wall thickness is 0.32 mm, the partition wall pitch is 1. A 57 mm initial pressure loss of 0.85 mmAq (at 7.5 Nm 3 / min) could be produced.
 下記に示す内容を適用した以外は実施例2などと同様の方法でセラミックハニカ構造体2を作製した。 A ceramic honeycomb structure 2 was produced in the same manner as in Example 2 except that the following contents were applied.
 隔壁10を構成する材料として,アルミナ或いはアルミナを含む複合酸化物を含有するものを用いた。アルミナ基が表面に露出していることにより,処理水中の一部の溶存有機物を吸着し,また,高分子の難分解性の溶存有機物を分解して低分子化出来ることを実験により確認した。特に,隔壁10を構成する材料に含有するアルミナ或いはアルミナを含む複合酸化物として,アルミノシリケート,シリマナイト,ムライト,スピネル,コージェライト,チタン酸アルミニウム,リチウムアルミニウムシリケートの内少なくとも1種以上の材料を用いた場合は良好な結果が得られた。 As the material constituting the partition walls 10, alumina or a material containing a composite oxide containing alumina was used. It was confirmed by experiments that the alumina group is exposed on the surface, so that a part of the dissolved organic matter in the treated water can be adsorbed, and the low-molecular-weight dissolved organic matter can be decomposed to reduce the molecular weight. In particular, alumina or a composite oxide containing alumina contained in the material constituting the partition wall 10 is made of at least one material selected from aluminosilicate, silimanite, mullite, spinel, cordierite, aluminum titanate, and lithium aluminum silicate. If it was, good results were obtained.
 また,隔壁10の表面或いは隔壁10内の微細な連通孔面の少なくとも一部或いは全面にアルミナを含有する被膜を形成しても同様の効果が得られた。 Further, the same effect was obtained even when a film containing alumina was formed on the surface of the partition wall 10 or on at least a part or the entire surface of the fine communication hole in the partition wall 10.
 さらに,隔壁10を構成する材料と目封止部11を構成する材料とが異なったものを適用した。但し,処理水に不溶のものである。水処理に使用するため,耐熱性は要求されないため,目封止部11を構成する材料として,ガラス,ポリイミド,ポリアミド,ポリイミドアミド,ポリウレタン,アクリル,エポキシ,ポリプロピレン,テフロンの内少なくとも1種以上の材料を含有するものを用いた。 Furthermore, a material in which the material constituting the partition wall 10 and the material constituting the plugging portion 11 are different was applied. However, it is insoluble in treated water. Since heat resistance is not required because it is used for water treatment, at least one of glass, polyimide, polyamide, polyimide amide, polyurethane, acrylic, epoxy, polypropylene, and Teflon is used as the material constituting the plugging portion 11. The one containing the material was used.
 また,目封止部11を構成する材料として,セラミックス粒子と有機高分子材料からなる複合材料も使用した。目封止部11を構成する材料に用いるセラミックス粒子として,アルミナ,シリカ,マグネシア,チタニア,ジルコニア,ジルコン,コージェライト,スピネル,チタン酸アルミニウム,リチウムアルミニウムシリケートの内少なくとも1種以上の材料を用いた。 Also, a composite material composed of ceramic particles and an organic polymer material was used as the material constituting the plugging portion 11. As the ceramic particles used for the material constituting the plugging portion 11, at least one of alumina, silica, magnesia, titania, zirconia, zircon, cordierite, spinel, aluminum titanate, and lithium aluminum silicate was used. .
 目封止部11を構成する材料に用いる有機高分子材料して,ポリイミド,ポリアミド,ポリイミドアミド,ポリウレタン,アクリル,エポキシ,ポリプロピレン,テフロンの内少なくとも1種以上の材料を用いた。 As the organic polymer material used for the material constituting the plugged portion 11, at least one of polyimide, polyamide, polyimide amide, polyurethane, acrylic, epoxy, polypropylene, and Teflon was used.
 有機高分子材料を用いる場合には,隔壁10を形成する温度より目封止部11を形成する温度を低くした。 In the case of using an organic polymer material, the temperature for forming the plugging portion 11 was made lower than the temperature for forming the partition wall 10.
 目封止部11を形成する方法として,所望位置に開口を有する印刷マスクを用い,目封止部11に用いるペーストをスクリーン印刷法により隔壁10により形成された流路12の所望の位置に目封止部11を形成した。 As a method of forming the plugging portion 11, a printing mask having an opening at a desired position is used, and a paste used for the plugging portion 11 is placed at a desired position of the flow path 12 formed by the partition wall 10 by a screen printing method. The sealing part 11 was formed.
 また,目封止部11を形成する方法として,所望位置に配設された複数のノズルを有するディスペンサを用い,目封止部11に用いるペーストをペースト吐出法により隔壁10により形成された流路12内の所定の位置に目封止部11を形成することができた。例えば,高分子塗布は,医療用等に用いられる針先がマイクロメートルオーダーの超微細ニードルを使用した。まず,封止部近くまで該ニードルを差し込み,スプレーしながらニードルを引き抜く方法とした。 Further, as a method of forming the plugging portion 11, a flow path formed by the partition wall 10 by using a dispenser having a plurality of nozzles arranged at desired positions and using paste for the plugging portion 11 by a paste discharge method. The plugging portion 11 could be formed at a predetermined position in 12. For example, for polymer coating, an ultra fine needle having a micrometer order is used for medical purposes. First, the needle was inserted to the vicinity of the sealing portion, and the needle was pulled out while spraying.
 このようにして, 実施例1と同様に,外径(直径)5.66インチ,全長は6インチで,隔壁10の厚さ0.32mm,隔壁10のピッチ1.57mm,初期圧力損失0.85mmAq(at 7.5Nm/min)のセラミックハニカム構造体2の構造を作製することが出来た。 Thus, as in Example 1, the outer diameter (diameter) is 5.66 inches, the total length is 6 inches, the partition wall thickness is 0.32 mm, the partition wall pitch is 1.57 mm, and the initial pressure loss is 0. A structure of the ceramic honeycomb structure 2 of 85 mmAq (at 7.5 Nm 3 / min) could be produced.
 実施例2などで作製したセラミックハニカム構造体2に下記の方法で吸着剤を作製した。 An adsorbent was produced by the following method on the ceramic honeycomb structure 2 produced in Example 2 or the like.
 吸着材料に用いる高分子材料13として,アミノ基が繰り返し単位に対して2当量以上含まれる高分子を少なくとも1種以上含んだ材料を修飾した。これらの高分子材料13は,吸着モジュール1の後工程に使用する逆浸透膜3を汚染する有機物を吸着する特徴を持つことが実験により確認された。 As the polymer material 13 used for the adsorbing material, a material containing at least one polymer containing 2 equivalents or more of amino groups with respect to the repeating unit was modified. It has been experimentally confirmed that these polymer materials 13 have a feature of adsorbing organic substances that contaminate the reverse osmosis membrane 3 used in the subsequent process of the adsorption module 1.
 吸着材料13の一例として,ポリアミドをN-メチルピロリドン(NMP)に溶解して0.5%ポリアミドNMP溶液を調整した。ポリアミドは,モノマーとして,4,4’-オキシジアニリンとイソフタロイルジクロライドを重合したものを用いた。 As an example of the adsorbing material 13, polyamide was dissolved in N-methylpyrrolidone (NMP) to prepare a 0.5% polyamide NMP solution. The polyamide used was a polymerized 4,4'-oxydianiline and isophthaloyl dichloride as monomers.
 吸着モジュール1の後工程に使用する逆浸透膜3への汚染を防止するため,吸着モジュール1に使用する多孔質のセラミックハニカム構造体2の隔壁10の表面或いは隔壁10の内の微細な連通孔面の最上層には,高分子材料13を修飾した。高分子材料13を塗布する箇所は,多孔質のセラミックハニカム構造体2の隔壁10の全部或いは一部,前半部と後半部,前半部の隔壁10の内壁のみ,後半部の隔壁10の内壁のみ,何れかの組み合わせのものを作製した。 In order to prevent contamination of the reverse osmosis membrane 3 used in the post-process of the adsorption module 1, the surface of the partition wall 10 of the porous ceramic honeycomb structure 2 used in the adsorption module 1 or fine communication holes in the partition wall 10 A polymer material 13 was modified on the uppermost layer of the surface. The polymer material 13 is applied to all or a part of the partition walls 10 of the porous ceramic honeycomb structure 2, only the inner wall of the partition wall 10 in the first half and the latter part, only the inner wall of the partition wall 10 in the second half part. Any combination was produced.
 多孔質のセラミックハニカム構造体2への高分子材料13の塗布の方法は,目封止部11を形成する際に使用した一部の方法と同様で,所望位置に配設された複数のノズルを有するディスペンサを用い,吸着材料に用いる高分子材料13を吐出法によりセラミックハニカム構造体2の隔壁10により形成された流路12内の所定の位置に高分子材料13を噴霧・塗布して形成した。 The method of applying the polymer material 13 to the porous ceramic honeycomb structure 2 is the same as a part of the method used when forming the plugged portions 11, and a plurality of nozzles arranged at desired positions. The polymer material 13 used as the adsorbing material is sprayed and applied to a predetermined position in the flow path 12 formed by the partition walls 10 of the ceramic honeycomb structure 2 by a discharge method using a dispenser having did.
 例えば,高分子材料の塗布には,医療用等に用いられる針先がマイクロメートルオーダーの超微細ニードルを使用した。まず,目封止部11末端部近くまで該ニードルを差し込み,スプレーしながらニードルを引き抜く方法をとることができる。有機物を吸着除去する高分子材料13を隔壁10の表面および内部の0.005~0.050mmの孔の表面の全面もしくは一部に,隔壁10内部の細孔を埋めない程度の厚さ,好ましくは100nm以下塗布した。吸着材料に用いる高分子材料13(ポリアミド)がセラミックハニカム構造体2の所望の流路12内に塗布した後,セラミックハニカム構造体2を130℃,24時間オーブンで乾燥した。 For example, for the application of the polymer material, an ultrafine needle having a micrometer order needle tip used for medical use or the like was used. First, it is possible to adopt a method in which the needle is inserted near the end of the plugging portion 11 and the needle is pulled out while spraying. The polymer material 13 that adsorbs and removes the organic matter is thick enough not to fill the pores in the partition wall 10 over the entire surface or part of the surface of the partition wall 10 and the inside of the 0.005-0.050 mm hole. Was applied to 100 nm or less. After the polymer material 13 (polyamide) used as the adsorbing material was applied in the desired flow path 12 of the ceramic honeycomb structure 2, the ceramic honeycomb structure 2 was dried in an oven at 130 ° C. for 24 hours.
 この場合は,隔壁10内部を水がほとんど抵抗なく透過し,塗布した高分子材料13が水中溶存有機物を吸着して除去することが出来た。 In this case, water permeated through the partition wall 10 almost without resistance, and the applied polymer material 13 was able to adsorb and remove organic substances dissolved in water.
 高分子材料13が水中溶存有機物を吸着するメカニズムは,分子間相互作用が影響する。吸着した有機物分析から,カルボニル基,カルボキシル基,芳香環と親和性の高い-NH-結合を含むポリマーを吸着用高分子材料13とすることが良い。ポリマーの繰返し単位に-NH-結合を含む例として,ポリアミド,ポリイミド,ポリウレタン,尿素樹脂,ポリペプチド(タンパク質),ポリエチレンイミン,ポリベンゾイミダゾール,ポリベンゾオキサゾールなどがある。他の材料として,側鎖や主鎖に-NH-結合を含むものを用いることもできる。図6に高分子の化学構造を示す。例えば,ポリアリルアミン,ポリビニルアミンなどがある。また,-NH-結合やシロキサン類との親和力のため,主鎖または側鎖にカルボニル基,シロキサン構造を含むものも良い。さらに,主鎖や側鎖に含まれる構造は1種類に限らず,複数の構造を含むことによって,水中に含まれる混合物の広範囲の種類を吸着することができ,吸着効率を向上することができた。 Intermolecular interaction affects the mechanism by which the polymer material 13 adsorbs dissolved organic matter in water. From the analysis of the adsorbed organic matter, a polymer containing a —NH— bond having a high affinity with a carbonyl group, a carboxyl group, or an aromatic ring is preferably used as the adsorbing polymer material 13. Examples of the polymer repeating unit containing —NH— bond include polyamide, polyimide, polyurethane, urea resin, polypeptide (protein), polyethyleneimine, polybenzimidazole, polybenzoxazole and the like. As other materials, those containing —NH— bonds in the side chain or main chain can also be used. FIG. 6 shows the chemical structure of the polymer. For example, there are polyallylamine and polyvinylamine. In addition, those having a carbonyl group or a siloxane structure in the main chain or side chain may be used because of the affinity for —NH— bonds and siloxanes. Furthermore, the structure contained in the main chain and the side chain is not limited to one type, and by including a plurality of structures, a wide variety of mixtures contained in water can be adsorbed, and the adsorption efficiency can be improved. It was.
 吸着用高分子材料13は一般的に用いられているポリアミド,酢酸セルロースが使用できるが,これらに限定するものではない。 As the adsorbing polymer material 13, commonly used polyamide and cellulose acetate can be used, but are not limited thereto.
 また,多孔質のセラミックハニカム構造体2または,高分子材料13に,有機物を分解するために光触媒が担持されていてもよい。光触媒としては,酸化チタン,チタン酸ストロンチウム,酸化亜鉛,酸化鉄,酸化タングステン等を使用できるが,これらに限定するものではない。 Further, a photocatalyst may be supported on the porous ceramic honeycomb structure 2 or the polymer material 13 in order to decompose organic substances. As the photocatalyst, titanium oxide, strontium titanate, zinc oxide, iron oxide, tungsten oxide and the like can be used, but are not limited thereto.
 このような吸着用高分子材料13を修飾した多孔質のセラミックハニカム構造体2を用いて被処理水の浄化処理を行うことで,大きな表面積で効率よく有機物を除去可能で,また,吸着モジュール1の流路12が広いために目詰まりを起こしにくくなり,吸着モジュール1や後工程の逆浸透膜3の洗浄頻度や交換頻度を下げ,ランニングコストを低減することができる。 By purifying the water to be treated using the porous ceramic honeycomb structure 2 modified with such an adsorbing polymer material 13, organic substances can be efficiently removed with a large surface area, and the adsorption module 1 Since the flow path 12 is wide, clogging is less likely to occur, and the running frequency can be reduced by reducing the frequency of cleaning and replacement of the adsorption module 1 and the reverse osmosis membrane 3 in the subsequent process.
 このような吸着材料13により,逆浸透膜3前処理工程を行うことで,あらかじめ逆浸透膜3の性能劣化原因の有機物のみを選択的に吸着して水中から除去することができ,また,吸着材料13への有機物蓄積量が少ないため,吸着材料13の交換頻度が低く,吸着機能を最表面だけに限定することで低コストの前処理方法が得られた。 By performing the reverse osmosis membrane 3 pretreatment step with such an adsorbent material 13, it is possible to selectively adsorb only the organic matter causing the performance deterioration of the reverse osmosis membrane 3 in advance and remove it from the water. Since the amount of organic matter accumulated in the material 13 is small, the replacement frequency of the adsorbing material 13 is low, and a low-cost pretreatment method is obtained by limiting the adsorbing function only to the outermost surface.
 本実施例においては,吸着構造体の能力の実証実験を行った。吸着モジュール1に供給される下水一時処理水とは,ごみ等をスクリーンにかけて取り除く処理,さらに砂などの細かい懸濁物を凝集剤添加して沈降除去する処理,微生物を用いて有機物を分解する処理の一連の処理が施されている。下水一次処理水中には塩類や溶解有機物が含まれている。このように処理された下水一次処理水は,溶存有機物をTOC(全有機炭素量)に換算して248mg/L含んでいた。 In this example, a demonstration experiment of the capacity of the adsorption structure was performed. Temporary treated sewage water supplied to the adsorption module 1 is a process of removing dust etc. through a screen, a process of removing fine suspension such as sand by adding a flocculant, and a process of decomposing organic matter using microorganisms. A series of processes are applied. The sewage primary treated water contains salts and dissolved organic matter. The sewage primary treated water thus treated contained 248 mg / L of dissolved organic matter in terms of TOC (total organic carbon content).
 実証実験は,以下の通り行った,図1の水処理装置を模した実験装置にて,吸着モジュールとしてセラミックスハニカムの表面に高分子材料13としてポリアミドを塗布したものを用いて被処理水を処理し,それを逆浸透膜モジュールで処理し,逆浸透膜3への有機物吸着量を,サイズ排除クロマトグラフィー(GPC)を用いて測定した。また,比較として,吸着モジュール1として高分子材料13を塗布していないものを準備して同じ処理を行い,逆浸透膜3への有機物吸着量を,GPCを用いて比較検討した。GPC条件は,以下のとおりである。カラムは,日立化成工業(株)製,型番:GL-W550,カラム温度:41℃,サンプル容量20μL,溶離液:純水,流速:1.0mL/min,検出器(検出波長):UV(220nm)とした。その結果,吸着モジュール1による処理前より吸着モジュール1による処理後において溶存有機物はTOC(全有機炭素量)に換算して12mg/L少なくなった。 The demonstration experiment was performed as follows, and the water to be treated was treated by using an experimental device simulating the water treatment device of FIG. 1 and applying a polyamide as the polymer material 13 to the surface of the ceramic honeycomb as the adsorption module. And it processed with the reverse osmosis membrane module, and the organic substance adsorption amount to the reverse osmosis membrane 3 was measured using size exclusion chromatography (GPC). For comparison, an adsorption module 1 not coated with the polymer material 13 was prepared and subjected to the same treatment, and the amount of organic matter adsorbed on the reverse osmosis membrane 3 was compared using GPC. The GPC conditions are as follows. The column is manufactured by Hitachi Chemical Co., Ltd., model number: GL-W550, column temperature: 41 ° C., sample volume: 20 μL, eluent: pure water, flow rate: 1.0 mL / min, detector (detection wavelength): UV ( 220 nm). As a result, the dissolved organic matter was reduced to 12 mg / L in terms of TOC (total organic carbon content) after the treatment with the adsorption module 1 than before the treatment with the adsorption module 1.
 また,ポリアミド未修飾と比較して,ポリアミド修飾は低分子領域の有機物を除去できることも確認した。すなわち,ポリアミド修飾とポリアミド未修飾では,異なる種類の溶存有機物を吸着しているものと考えられる。 In addition, it was also confirmed that the polyamide modification can remove organic substances in the low-molecular region compared with the polyamide unmodified. That is, it is considered that different types of dissolved organic substances are adsorbed between the polyamide-modified and the polyamide-unmodified.
 また,ポリアミド未修飾の吸着モジュール1(セラミックハニカム構造体2への吸着材料13を未修飾)では,溶存有機物はTOC(全有機炭素量)に換算して226mg/Lとなり,セラミックハニカム構造体2の隔壁10の表面に形成された構成材料中のアルミナ基により,下水一次処理水中の溶存有機物を吸着することが出来,吸着モジュールとして有効であることが確認できた。 In addition, in the polyamide unmodified adsorption module 1 (the adsorbent material 13 on the ceramic honeycomb structure 2 is not modified), the dissolved organic matter is 226 mg / L in terms of TOC (total organic carbon content), and the ceramic honeycomb structure 2 The alumina group in the constituent material formed on the surface of the partition wall 10 can adsorb dissolved organic matter in the sewage primary treated water, and was confirmed to be effective as an adsorption module.
 このことから,吸着モジュール1に使用するセラミックハニカム構造体2の隔壁10には,隔壁10の表面および内部の微細な貫通孔表面の全てに吸着材料13を修飾する必要がなく,一部未修飾の部分があることにより,広範囲の分子量を有する溶存有機物を吸着可能であることが分かった。 Therefore, the partition wall 10 of the ceramic honeycomb structure 2 used in the adsorption module 1 does not need to modify the adsorption material 13 on the entire surface of the partition wall 10 and the inner surface of the fine through hole, and is partially unmodified. It was found that the dissolved organic matter having a wide range of molecular weight can be adsorbed by the presence of the part.
 1・・・吸着モジュール,2・・・セラミックハニカム構造体,3・・・逆浸透膜,4・・・モジュール,5・・・貯水タンク,6・・・ポンプ,7・・・ハウジング,8・・・支持体,9・・・外周壁,10・・・隔壁,11・・・目封止部,12・・・流路,13・・・高分子材料(吸着材料)。 DESCRIPTION OF SYMBOLS 1 ... Adsorption module, 2 ... Ceramic honeycomb structure, 3 ... Reverse osmosis membrane, 4 ... Module, 5 ... Water storage tank, 6 ... Pump, 7 ... Housing, 8 ... support, 9 ... outer peripheral wall, 10 ... partition wall, 11 ... plugging portion, 12 ... flow path, 13 ... polymer material (adsorption material).

Claims (25)

  1.  被処理水中の有機物を吸着する吸着構造体において,
     外壁と,
     前記外壁の内側に設けられた複数の流路と,
     前記複数の流路のそれぞれを隔てる隔壁とを備え,
     前記隔壁は,前記流路の径よりも小さく,前記流路と他の流路とを連通させる連通孔を有して前記有機物を吸着することを特徴とする吸着構造体。
    In the adsorption structure that adsorbs organic matter in the treated water,
    The outer wall,
    A plurality of flow paths provided inside the outer wall;
    A partition that separates each of the plurality of flow paths,
    The said partition is smaller than the diameter of the said flow path, has a communicating hole which connects the said flow path and another flow path, and adsorb | sucks the said organic substance, The adsorption structure characterized by the above-mentioned.
  2.  請求項1において,
     前記吸着構造体は,対向する第1の面と第2の面とを有し,
     前記複数の流路は,その長手方向に交差する方向に並べて設けられており,前記第1の面に開口する第1の流路と,前記第2の面に開口する第2の流路とを有することを特徴とする吸着構造体。
    In claim 1,
    The adsorption structure has a first surface and a second surface facing each other,
    The plurality of flow paths are provided side by side in a direction intersecting the longitudinal direction, and a first flow path that opens to the first surface, and a second flow path that opens to the second surface, An adsorbing structure characterized by comprising:
  3.  請求項2において,
     前記第1の流路は前記第2の面に開口せず,前記第2の流路は前記第一の面に開口しないことを特徴とする吸着構造体。
    In claim 2,
    The adsorption structure according to claim 1, wherein the first channel does not open to the second surface, and the second channel does not open to the first surface.
  4.  請求項2または請求項3において,
     前記第1の流路と前記第2の流路とは,前記長手方向に交差する方向にて,交互に設けられていることを特徴とする吸着構造体。
    In claim 2 or claim 3,
    The adsorption structure, wherein the first flow path and the second flow path are alternately provided in a direction crossing the longitudinal direction.
  5.  請求項1乃至4のいずれかにおいて,
     前記隔壁は,セラミックスにより形成されいることを特徴とする吸着構造体。
    In any one of Claims 1 thru | or 4,
    The said partition is formed with ceramics, The adsorption structure characterized by the above-mentioned.
  6.  請求項5において,
     前記外壁及び前記隔壁は,セラミックスハニカムによって形成されていることを特徴とする吸着構造体。
    In claim 5,
    The adsorption structure according to claim 1, wherein the outer wall and the partition wall are formed of a ceramic honeycomb.
  7.  請求項5または請求項6において,
     前記セラミックス上に,前記有機物を吸着する高分子材料が形成されていることを特徴とする吸着構造体。
    In claim 5 or claim 6,
    An adsorption structure, wherein a polymer material that adsorbs the organic substance is formed on the ceramic.
  8.  請求項2乃至7のいずれかにおいて,
     前記第1の流路は,前記第1の面と前記第2の面とを連通する孔を前記第2の面側で目封止部により封止することにより形成され,
     前記第2の流路は,前記第1の面と前記第2の面とを連通する孔を前記第1の面側で目封止部により封止することにより形成されたものであることを特徴とする吸着構造体。
    In any one of Claims 2 thru | or 7,
    The first flow path is formed by sealing a hole communicating the first surface and the second surface with a plugging portion on the second surface side,
    The second flow path is formed by sealing a hole connecting the first surface and the second surface with a plugging portion on the first surface side. Characteristic adsorption structure.
  9.  請求項8において,
     前記隔壁の連通孔は,前記目封止部の孔よりも空孔率が大きいことを特徴とする吸着構造体。
    In claim 8,
    The adsorption structure according to claim 1, wherein the communication hole of the partition wall has a larger porosity than the hole of the plugging portion.
  10.  請求項5において,
     前記隔壁を構成する材料が,アルミナ或いはアルミナを含む複合酸化物を含有することを特徴とする吸着構造体。
    In claim 5,
    An adsorption structure, wherein the material constituting the partition wall contains alumina or a composite oxide containing alumina.
  11.  請求項10において,
     前記隔壁を構成する材料に含有するアルミナ或いはアルミナを含む複合酸化物として,アルミノシリケート,シリマナイト,ムライト,スピネル,コージェライト,チタン酸アルミニウム,リチウムアルミニウムシリケートの内少なくとも1種以上の材料であることを特徴とする吸着構造体。
    In claim 10,
    Alumina contained in the material constituting the partition or a composite oxide containing alumina is at least one of aluminosilicate, silimanite, mullite, spinel, cordierite, aluminum titanate, and lithium aluminum silicate. Characteristic adsorption structure.
  12.  請求項10において,
     前記隔壁の表面或いは隔壁内の前記連通孔面の少なくとも一部或いは全面にアルミナを含有する被膜を形成してなることを特徴とする吸着構造体。
    In claim 10,
    An adsorption structure comprising an alumina-containing coating formed on at least a part or the entire surface of the partition wall or the communication hole surface in the partition wall.
  13.  請求項7において,
     前記隔壁の表面或いは隔壁内の上記連通孔面の最上層には,少なくとも一部或いは全面に前記高分子材料としてのアミノ基が繰り返し単位に対して2当量以上含まれる高分子を少なくとも1種以上含んだ材料を修飾していることを特徴とする吸着構造体。
    In claim 7,
    The uppermost layer of the surface of the partition wall or the surface of the communication hole in the partition wall includes at least one or more kinds of polymers containing at least a part or the entire surface of the polymer material containing 2 equivalents or more of amino groups as the polymer material. An adsorption structure characterized by modifying a contained material.
  14.  請求項8において,
     前記隔壁を構成する材料と前記目封止部を構成する材料とが異なることを特徴とする吸着構造体。
    In claim 8,
    An adsorption structure, wherein a material constituting the partition is different from a material constituting the plugging portion.
  15.  請求項14において,
     前記目封止部を構成する材料として,ガラス,ポリイミド,ポリアミド,ポリイミドアミド,ポリウレタン,アクリル,エポキシ,ポリプロピレン,テフロンの内少なくとも1種以上の材料を含有することを特徴とする吸着構造体。
    In claim 14,
    An adsorbing structure comprising at least one material selected from the group consisting of glass, polyimide, polyamide, polyimide amide, polyurethane, acrylic, epoxy, polypropylene, and Teflon as a material constituting the plugged portion.
  16.  請求項に14おいて,
    前記目封止部を構成する材料として,セラミックス粒子と有機高分子材料からなる複合材料であることを特徴とする吸着構造体。
    In claim 14,
    An adsorption structure characterized in that the material constituting the plugged portion is a composite material made of ceramic particles and an organic polymer material.
  17.  請求項16において,
     上記目封止部を構成する材料に用いる前記セラミックス粒子として,アルミナ,シリカ,マグネシア,チタニア,ジルコニア,ジルコン,コージェライト,スピネル,チタン酸アルミニウム,リチウムアルミニウムシリケートの内少なくとも1種以上の材料であることを特徴とする吸着構造体。
    In claim 16,
    The ceramic particles used for the material constituting the plugged portion are at least one of alumina, silica, magnesia, titania, zirconia, zircon, cordierite, spinel, aluminum titanate, and lithium aluminum silicate. An adsorption structure characterized by that.
  18.  請求項16において,
     前記目封止部を構成する材料に用いる前記有機高分子材料して,ポリイミド,ポリアミド,ポリイミドアミド,ポリウレタン,アクリル,エポキシ,ポリプロピレン,テフロンの内少なくとも1種以上の材料であることを特徴とする吸着構造体。
    In claim 16,
    The organic polymer material used for the material constituting the plugged portion is at least one of polyimide, polyamide, polyimide amide, polyurethane, acrylic, epoxy, polypropylene, and Teflon. Adsorption structure.
  19.  請求項7において,
     上記隔壁に使用する材料の気孔率が45%~70%であり,上記目封止に使用する材料の気孔率が上記隔壁に使用している材料の気孔率より小さく,0%~40%であり,なお且つ,上記隔壁の厚さより上記目封止の厚さが厚いことを特徴とする吸着構造体。
    In claim 7,
    The porosity of the material used for the partition wall is 45% to 70%, and the porosity of the material used for the plugging is smaller than the porosity of the material used for the partition wall, 0% to 40%. Further, the adsorption structure is characterized in that the thickness of the plugging is larger than the thickness of the partition wall.
  20.  請求項1乃至19のいずれかに記載の吸着構造体と,
     ハウジングと,
     前記ハウジング内で前記吸着構造体を支持する支持部材と,
     被処理水を取込む取込口と,
     被処理水を排出する排出口とを有し,
     前記取込口は,前記第1の流路に接続されており,
     前記排出口は,前記第2の流路に接続されていることを特徴とする吸着モジュール。
    An adsorption structure according to any one of claims 1 to 19,
    A housing,
    A support member for supporting the adsorption structure within the housing;
    An inlet for taking up the water to be treated;
    A discharge port for discharging the treated water,
    The intake port is connected to the first flow path;
    The suction module, wherein the discharge port is connected to the second flow path.
  21.  被処理水中の有機物を吸着する吸着構造体の製造方法において,
     対向する第1の面から第2の面とを連通し,互いに隔壁によって隔てられる複数の貫通孔を有し,前記隔壁は,前記貫通孔同士を連通する連通孔と,有機物を吸着する吸着材料とを有する吸着構造体本体を形成する工程と,
     前記貫通孔を,第1の面側で目封止部により目封止し,前記第2の面側に開口した第2の流路を形成する工程と,
     前記第1の面側で目封止しない貫通孔を,第2の面側で目封止部により目封止し,第1の面側に開口した第1の流路を形成する工程と,
     を含むことを特徴とする吸着構造体の製造方法
    In the manufacturing method of the adsorption structure that adsorbs organic matter in the water to be treated,
    The first surface facing the second surface communicates with the second surface and has a plurality of through holes separated from each other by the partition walls, the partition walls communicating with the through holes, and an adsorbing material that adsorbs organic matter Forming an adsorbent structure body having:
    Plugging the through hole with a plugging portion on the first surface side to form a second flow path opened on the second surface side; and
    Plugging the through-holes not plugged on the first surface side with a plugging portion on the second surface side to form a first flow path opened on the first surface side;
    A method for producing an adsorption structure comprising
  22.  請求項21において,
     前記隔壁を形成する温度より前記目封止部を形成する温度が低いことを特徴とする吸着構造体の製造方法。
    In claim 21,
    A method for manufacturing an adsorption structure, wherein a temperature for forming the plugged portion is lower than a temperature for forming the partition wall.
  23.  請求項21において,
     前記目封止部を形成する方法として,所望位置に開口を有する印刷マスクを用い,上記目封止に用いるペーストをスクリーン印刷法により上記隔壁により形成された上記流路の所望の位置に上記目封止を形成することを特徴とする吸着構造体の製造方法。
    In claim 21,
    As a method of forming the plugging portion, a printing mask having an opening at a desired position is used, and the paste used for the plugging is placed at a desired position in the flow path formed by the partition by the screen printing method. A method for producing an adsorption structure, comprising forming a seal.
  24.  請求項21において,
     前記目封止部を形成する方法として,所望位置に配設された複数のノズルを有するディスペンサを用い,上記目封止に用いるペーストをペースト吐出法により上記隔壁により形成された上記流路内の所定の位置に上記目封止を形成することを特徴とする吸着構造体の製造方法。
    In claim 21,
    As a method for forming the plugged portion, a dispenser having a plurality of nozzles arranged at desired positions is used, and a paste used for the plugging is formed in the flow path formed by the partition by a paste discharge method. A method for manufacturing an adsorption structure, wherein the plugging is formed at a predetermined position.
  25.  請求項21において,
     前記隔壁上に,有機分子を吸着する高分子材料を形成する工程を含むことを特徴とする吸着構造体の製造方法。
    In claim 21,
    A method for producing an adsorption structure, comprising: forming a polymer material that adsorbs organic molecules on the partition wall.
PCT/JP2011/005916 2010-10-29 2011-10-24 Adsorption structure, adsorption module, and method for producing same WO2012056666A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-242967 2010-10-29
JP2010242967A JP2012091151A (en) 2010-10-29 2010-10-29 Adsorption structure, adsorption module, and method for producing the same

Publications (1)

Publication Number Publication Date
WO2012056666A1 true WO2012056666A1 (en) 2012-05-03

Family

ID=45993414

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/005916 WO2012056666A1 (en) 2010-10-29 2011-10-24 Adsorption structure, adsorption module, and method for producing same

Country Status (2)

Country Link
JP (1) JP2012091151A (en)
WO (1) WO2012056666A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013137486A3 (en) * 2012-03-14 2014-02-27 Ngk Insulators, Ltd. Pretreatment device for membrane separation, membrane separating system and membrane separating method
CN103880201A (en) * 2014-04-02 2014-06-25 威洁(石狮)中水回用技术有限公司 Seawater desalination system and desalination method thereof
CN104925908A (en) * 2015-06-17 2015-09-23 杭州杰膜环境科技有限公司 Firm and durable membrane-filtering faucet with long-term sterilizing effect

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015199017A1 (en) * 2014-06-27 2015-12-30 日立金属株式会社 Adsorption member
JP2016198742A (en) * 2015-04-13 2016-12-01 日立金属株式会社 Liquid treatment system, solution processing device and solution treatment method
CN106925135A (en) * 2017-02-24 2017-07-07 华南理工大学 A kind of composite ceramics grid film and preparation method thereof
JP6880989B2 (en) 2017-04-26 2021-06-02 日立金属株式会社 Adsorption structure unit and their manufacturing method
JP6579281B2 (en) * 2017-08-04 2019-09-25 日立金属株式会社 Adsorbing member and manufacturing method thereof
JP7011462B2 (en) * 2017-12-26 2022-02-10 クラレノリタケデンタル株式会社 Dental material manufacturing method and dental material processing machine
JP7259768B2 (en) 2018-02-02 2023-04-18 株式会社プロテリアル Ceramic filter module for water treatment
US11819787B2 (en) 2018-06-12 2023-11-21 Proterial, Ltd. Water-treating ceramic filter unit

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55114324A (en) * 1979-02-27 1980-09-03 Noritake Co Ltd Filter unit
JPH11277051A (en) * 1998-03-30 1999-10-12 Ngk Insulators Ltd Water purifier
JP2000140634A (en) * 1998-11-10 2000-05-23 Ishihara Techno Kk Removing method of harmful substance in liquid
JP2003275760A (en) * 2002-03-19 2003-09-30 Kurita Water Ind Ltd Method and apparatus for treating water and method for analyzing contaminant of reverse osmosis membrane
JP2008030469A (en) * 2006-07-04 2008-02-14 Ngk Insulators Ltd Manufacturing method of grain encapsulation honeycomb structure
JP2010221153A (en) * 2009-03-24 2010-10-07 Ngk Insulators Ltd Honeycomb structure

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5219551B2 (en) * 1972-08-29 1977-05-28

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55114324A (en) * 1979-02-27 1980-09-03 Noritake Co Ltd Filter unit
JPH11277051A (en) * 1998-03-30 1999-10-12 Ngk Insulators Ltd Water purifier
JP2000140634A (en) * 1998-11-10 2000-05-23 Ishihara Techno Kk Removing method of harmful substance in liquid
JP2003275760A (en) * 2002-03-19 2003-09-30 Kurita Water Ind Ltd Method and apparatus for treating water and method for analyzing contaminant of reverse osmosis membrane
JP2008030469A (en) * 2006-07-04 2008-02-14 Ngk Insulators Ltd Manufacturing method of grain encapsulation honeycomb structure
JP2010221153A (en) * 2009-03-24 2010-10-07 Ngk Insulators Ltd Honeycomb structure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013137486A3 (en) * 2012-03-14 2014-02-27 Ngk Insulators, Ltd. Pretreatment device for membrane separation, membrane separating system and membrane separating method
CN103880201A (en) * 2014-04-02 2014-06-25 威洁(石狮)中水回用技术有限公司 Seawater desalination system and desalination method thereof
CN104925908A (en) * 2015-06-17 2015-09-23 杭州杰膜环境科技有限公司 Firm and durable membrane-filtering faucet with long-term sterilizing effect

Also Published As

Publication number Publication date
JP2012091151A (en) 2012-05-17

Similar Documents

Publication Publication Date Title
WO2012056666A1 (en) Adsorption structure, adsorption module, and method for producing same
CA2642327C (en) Filtration appliance for sewage treatment using ceramic-based membrane
US20120118824A1 (en) Water treatment apparatus and water treatment method
Adam et al. Feasibility study of the hybrid adsorptive hollow fibre ceramic membrane (HFCM) derived from natural zeolite for the removal of ammonia in wastewater
KR102628229B1 (en) Apparatus, system and method for purifying fluids with silicon carbide membranes
JP2005524521A (en) Mixed polymer filter media for treating aqueous fluids
JP2010227757A (en) Composite separation membrane
WO2012056668A1 (en) Reverse osmosis membrane structure for water treatment and reverse osmosis membrane module
KR101836073B1 (en) Apparatus for purifying water using flat tubular ceramic filter
JP6579281B2 (en) Adsorbing member and manufacturing method thereof
JP5581669B2 (en) Water treatment method, water treatment member and water treatment facility
WO2012035692A1 (en) Water separation membrane module
JPH03196891A (en) Water purifier
JP7259768B2 (en) Ceramic filter module for water treatment
JPS63273093A (en) Condensate purifier
Gullinkala et al. Membranes for water treatment applications–an overview
JP7310810B2 (en) Ceramic filter unit for water treatment
Rashad et al. A systematic literature review of ceramic membranes applications in water treatment
US20070210017A1 (en) Filter system for filtering water or wastewater and a method of operating the filter system
KR20030021022A (en) A sewage water treatment system and method, using activated carbon fiber
US10919781B1 (en) Coated porous substrates for fracking water treatment
Duan et al. Comparing filtration performances of precoated and uncoated ceramic membranes used in photocatalytic process for humic acid removal
JP4678757B2 (en) Water treatment apparatus and operation method thereof
KR20230082698A (en) Hollow ceramic fiber membrane for water treatment, water treatment module, methood of hollow ceramic fiber membrane for water treatment
CN203916271U (en) A kind of cleaning waste water ceramic membrane filter purifier

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11835813

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11835813

Country of ref document: EP

Kind code of ref document: A1