US20080080434A1 - Method and apparatus of system scheduler - Google Patents

Method and apparatus of system scheduler Download PDF

Info

Publication number
US20080080434A1
US20080080434A1 US11/529,726 US52972606A US2008080434A1 US 20080080434 A1 US20080080434 A1 US 20080080434A1 US 52972606 A US52972606 A US 52972606A US 2008080434 A1 US2008080434 A1 US 2008080434A1
Authority
US
United States
Prior art keywords
frequency
antenna
space time
codes
transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/529,726
Other languages
English (en)
Inventor
Guy Wolf
Daniel Yellin
Ilan Sutskover
Yona Perets
Nadav Shulman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Intel Corp
Original Assignee
Intel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=39230528&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20080080434(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority to US11/529,726 priority Critical patent/US20080080434A1/en
Application filed by Intel Corp filed Critical Intel Corp
Priority to BRPI0717567-1 priority patent/BRPI0717567B1/pt
Priority to KR1020097006161A priority patent/KR101052368B1/ko
Priority to PCT/US2007/079465 priority patent/WO2008039805A1/en
Priority to RU2009110752/09A priority patent/RU2428793C2/ru
Priority to JP2009530563A priority patent/JP5301445B2/ja
Priority to EP07843180.6A priority patent/EP2067277B1/en
Priority to CN2007800317895A priority patent/CN101507138B/zh
Publication of US20080080434A1 publication Critical patent/US20080080434A1/en
Assigned to INTEL CORPORATION reassignment INTEL CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SHULMAN, NADAV, WOLF, GUY, PERETS, YONA, YELLIN, DANIEL, SUTSKOVER, ILAN
Priority to US12/613,122 priority patent/US8072941B2/en
Priority to US12/612,875 priority patent/US20100061348A1/en
Priority to US13/163,711 priority patent/US8532065B2/en
Priority to JP2012050130A priority patent/JP2012142981A/ja
Priority to US13/488,499 priority patent/US8379602B2/en
Priority to US13/492,877 priority patent/US8379604B2/en
Priority to US13/492,872 priority patent/US8379603B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0452Multi-user MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0667Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of delayed versions of same signal
    • H04B7/0669Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of delayed versions of same signal using different channel coding between antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/068Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission using space frequency diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/12Frequency diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • H04L1/0618Space-time coding
    • H04L1/0637Properties of the code
    • H04L1/0668Orthogonal systems, e.g. using Alamouti codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • H04L5/0046Determination of how many bits are transmitted on different sub-channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0697Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using spatial multiplexing

Definitions

  • Next generation cellular networks may provide higher data rate compared to current and prior wireless technologies.
  • LTE Long Term Evolution
  • MIMO multiple input multiple output
  • MIMO schemes may be characterized by different features For example, MIMO using diversity schemes (e.g. Alamouti space time block codes, space time trellis ⁇ Turbo codes, and etc.) and MIMO using multiplexing schemes.
  • Diversity schemes limit the over all channel variations in compare to single input single output (SISO) channel and effect the signal to noise (SNR) per link, thus improves the quality of service (QoS) of individual links.
  • SISO single input single output
  • SNR signal to noise
  • the network scheduler assigns users to share substantially the same Time ⁇ Frequency (T ⁇ F) resources and interference is eliminated by receiver and/or transmitter (Rx ⁇ Tx) beam-forming techniques or by interference cancellation ⁇ suppression at the receiver.
  • Rx ⁇ Tx receiver and/or transmitter
  • interference cancellation ⁇ suppression at the receiver In wireless systems which may operating according to these diversity schemes, a user link may suffer larger variations in signal to noise ratio (SNR) due to rapid variation of an interference. Thus, the QoS per link may be degraded.
  • FIG. 1 is a schematic illustration of a wireless communication system according to exemplary embodiments of the present invention
  • FIG. 2 is a schematic time symbol/frequency slots diagram of a multiplexing scheme in OFDM according to an exemplary embodiment of the invention
  • FIG. 3 is a schematic time symbol/frequency slots diagram of a multiplexing scheme in SC-FDMA according to another exemplary embodiment of the invention.
  • FIGS. 4 and 5 are diagrams helpful to demonstrate a wireless communication system performance according to embodiments of the present invention.
  • the present invention may be used in a variety of applications. Although the present invention is not limited in this respect, the circuits and techniques disclosed herein may be used in many apparatuses such as transmitters and/or receivers of a radio system. Transmitters and/or receivers intended to be included within the scope of the present invention may be included, by way of example only, within a wireless local area network (WLAN), two-way radio communication system, digital communication system, analog communication system transmitters, cellular radiotelephone communication system, LTE cellular communication systems, metropolitan wireless local area communication systems (MWLAN) and the like.
  • WLAN wireless local area network
  • Types of cellular radiotelephone communication system intended to be within the scope of the present invention include, although are not limited to, Wideband Code Division Multiple Access (WCDMA), Global System for Mobile communication (GSM), General Packet Radio Service (GPRS), extended GPRS extended data rate for global evolution (EDGE), and the like.
  • WCDMA Wideband Code Division Multiple Access
  • GSM Global System for Mobile communication
  • GPRS General Packet Radio Service
  • EDGE extended GPRS extended data rate for global evolution
  • wireless communication system 100 in accordance with an exemplary embodiment of the invention is shown.
  • wireless communication system may include at least one base station (BS) 110 and mobile stations 120 and 140 , if desired.
  • BS base station
  • MS 120 and MS 140 may have a similar structure. Thus, only the structure and operation of one MS (e.g., MS 120 ) will be described in detail.
  • transmitter 130 may include an information (INFO) source 132 , a modulator (MOD) 134 , an encoder 136 and antennas 137 and 139 .
  • MS 140 may include a transmitter 141 and antennas 148 and 149 .
  • Transmitter 141 may include an information (INFO) source 142 , a modulator (MOD) 144 and an encoder 146 .
  • Base Station 110 may include a scheduler 112 and antennas 115 and 117 .
  • antennas 115 , 117 , 137 , 139 , 148 and 149 may include an internal antenna, a dipole antenna, an omni-directional antenna, a monopole antenna, an end fed antenna, a circularly polarized antenna, a micro-strip antenna, a diversity antenna and the like.
  • SDMA Space Division Multiple Access
  • scheduler 112 of BS 110 is able to select at least one of the users (e.g., MS 120 ) suitable for multiplexing. Furthermore, scheduler 112 may assign Time-Frequency resources and power control for the one or more selected user.
  • mobile stations 120 and 140 may transmit space time block codes for example, Alamouti space time block codes, according to a predetermined diversity scheme on substantially the same Time-Frequency resources and scheduler 112 may schedule the transmission of substantially the same Time-Frequency resources by both MS 120 and 140 , if desired.
  • space time block codes for example, Alamouti space time block codes
  • the transmitter is able to transmit at least two chains of data symbols to provide transmit diversity.
  • the data of the selected user may be encoded by Alamouti space time block code, if desired.
  • the Alamouti space time block code may be preformed over at least two transmit antennas of the at least one selected user (e.g., a mobile station).
  • the at least two Alamouti space time block code instances may be preformed in coupled data symbols in time and/or sub-carriers in frequency
  • the transmission of the Alamouti space time codes by antennas 137 and 139 of MS 120 may be done at approximately the same time.
  • Antenna 137 may transmit the Alamouti space time codes at a first frequency and antenna 139 may transmit the Alamouti space time codes at a second frequency.
  • the wireless communication system of claim 1 wherein at least one of the first and second mobile stations includes an antenna and the transmission of the space time codes is done using the antenna.
  • information source may include an application operated by a processor, if desired.
  • the application my generate data bits for transmission.
  • Modulator 134 may modulate the data bits, for example, according to Orthogonal Frequency Division Multiplexing (OFDM) scheme and/or according to a Single Carrier—Frequency Division Multiple Access (SC-FDMA) scheme or the like.
  • Encoder 136 may encode modulated symbols, for example Z 1 and Z 2 which may be two symbols that designated for Alamoti encoding by space time encoding scheme and/or by space frequency encoding scheme, if desired.
  • Encoder 146 of MS 140 may encode X 1 and X 2 which may be two symbols that designated for Alamoti encoding, if desired.
  • Antenna 137 may transmit via a channel 160 , which may be denoted as g 1.1, to antenna 115 of base station 110 and via channel 162 , which may be denoted as g 2.1, to antenna 117 of base station 110 .
  • Antenna 148 may transmit modulated symbols via a channel 168 , which may be denoted as h 1.1.
  • Antenna 149 may transmit modulated symbols via a channel 172 , which may be denoted as h 1.2 , to antenna 115 of base station 110 via channel 174 , which may be denoted as h 2.2, to antenna 117 of base station 110 .
  • BS 110 may receive a summation of the multiplexed MS 120 and MS 130 signals (passed through the channel media) as depicted in Equation 1.
  • BS 110 may perform Maximal Ratio Combining over the signals received by antennas 115 and 117 , followed by ‘Alamouti’ decoding scheme for the 2 multiplexed users (e.g., MS 120 , 140 ), as shown in Equation 2.
  • X 1 , X 2 may be the 2 symbols of User 1 (e.g., MS 120 ) designated for Alamouti encoding;
  • Z 1 , Z 2 may be the 2 symbols of User 2 (e.g., MS 140 ) designated for Alamouti encoding; and
  • r 1 j , r 2 j are the received signals at the j th antenna at the base, at the 1 st and 2 nd instances of the Alamouti encoding.
  • BS 110 decode the received signals according to Equation 3 which depicts the BS 110 receiver metric for decoding a subset of 2 symbols of 2 multiplexed users (e.g., MS 120 and MS 140 ) at each Alamouti block code interval.
  • Equation 4 depicts a representation of vectors of Equation 3.
  • Equation 5 depicts the metric of equation 3, as a linear system, for which a solution could be obtained in various known in the art ways.
  • LMMSE linear Minimum Mean Squared Error
  • Other embodiments of the invention may involve successive interference cancellation techniques or Zero-Forcing criteria, if desired.
  • R nn [ h 1 , 1 ′ h 2 , 1 ′ h 1 , 2 h 2 , 2 h 1 , 2 ′ h 2 , 2 ′ - h 1 , 1 ′ - h 2 , 1 ′ g 1 , 1 ′ g 2 , 1 ′ g 1 , 2 g 2 , 2 g 1 , 2 ′ g 2 , 2 ′ - g 1 , 1 ′ g 2 , 1 ′ ] * [ h 1 , 1 ′ h 2 , 1 ′ h 1 , 2 h 2 , 2 h 1 , 2 ′ h 2 , 2 ′ - h 1 , 1 ′ - h 2 , 1 ′ g 1 , 1 ′ g 2 , 1 ′ g 2 , 1 ′ g 2 , 1 ′ ] * [ h 1 , 1 ′ h 2 , 1 ′ h 1
  • a base station e.g., BS 110
  • the mobile station may transmit the first symbol at frequency 210 and the second symbol at frequency 220 .
  • frequencies 210 and 220 may be orthogonal frequencies and the mobile station may transmit the Alamouti time space code by using an orthogonal frequency-division multiplexing transmission scheme, if desired.
  • FIG. 3 a schematic time symbol/frequency slots diagram 300 of a multiplexing scheme in a Single Carrier—Frequency Division Multiple Access (SC-FDMA) according to an exemplary embodiment of the invention is shown.
  • a base station e g, BS 110
  • the transmission of the Alamouti space time codes using the antenna is done by transmitting a first symbol on sub-carrier frequency 310 and a second symbol at sub-carrier frequency 320 .
  • FIGS. 4 and 5 schematic diagrams of performance of the wireless communication system according to some exemplary embodiments of the invention is shown. Although the scope of the present invention is not limited in this respect, FIGS. 4 and 5 illustrate the potential simulated gains of the multiplexing scheme according to some embodiments of the invention, over diversity scheme and SDMA scheme, in both MMSE solution and Successive Interference Cancellation (SIC) technologies.
  • SIC Successive Interference Cancellation
  • FIG. 4 shows two rates of two multiplex user in MMSE and SIC and FIG. 5 shows the overall system rates as the sum of the rates of the two multiplexed users.
  • FIGS. 4 and 5 show that the present invention may obtain the diversity gains for individual links and may benefit the large system capacity due to the user multiplexing.
  • the results shown in FIGS. 4 and 5 are for uncorrelated single path channels.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)
US11/529,726 2006-09-28 2006-09-28 Method and apparatus of system scheduler Abandoned US20080080434A1 (en)

Priority Applications (15)

Application Number Priority Date Filing Date Title
US11/529,726 US20080080434A1 (en) 2006-09-28 2006-09-28 Method and apparatus of system scheduler
BRPI0717567-1 BRPI0717567B1 (pt) 2006-09-28 2007-09-25 estação móvel configurado para operar em um sistema celular de evolução em longo prazo
KR1020097006161A KR101052368B1 (ko) 2006-09-28 2007-09-25 무선 통신 시스템에서의 통신 방법, 이동국 및 기지국
PCT/US2007/079465 WO2008039805A1 (en) 2006-09-28 2007-09-25 Method and apparatus of system scheduler
RU2009110752/09A RU2428793C2 (ru) 2006-09-28 2007-09-25 Система беспроводной связи, способ планирования ее ресурсов и подвижная станция
JP2009530563A JP5301445B2 (ja) 2006-09-28 2007-09-25 システムスケジューラの方法及び装置
EP07843180.6A EP2067277B1 (en) 2006-09-28 2007-09-25 Method and apparatus of system scheduler
CN2007800317895A CN101507138B (zh) 2006-09-28 2007-09-25 具有系统调度器的方法和装置
US12/612,875 US20100061348A1 (en) 2006-09-28 2009-11-05 Method and apparatus of system scheduler
US12/613,122 US8072941B2 (en) 2006-09-28 2009-11-05 Method and apparatus of system scheduler
US13/163,711 US8532065B2 (en) 2006-09-28 2011-06-19 Device, system and method of wireless communication utilizing OFDM, SC-FDMA and sub-carrier frequencies
JP2012050130A JP2012142981A (ja) 2006-09-28 2012-03-07 システムスケジューラの方法及び装置
US13/488,499 US8379602B2 (en) 2006-09-28 2012-06-05 Device, system and method of wireless communication
US13/492,877 US8379604B2 (en) 2006-09-28 2012-06-10 Device, system and method of wireless communication
US13/492,872 US8379603B2 (en) 2006-09-28 2012-06-10 Device, system and method of wireless communication

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/529,726 US20080080434A1 (en) 2006-09-28 2006-09-28 Method and apparatus of system scheduler

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12/613,122 Continuation US8072941B2 (en) 2006-09-28 2009-11-05 Method and apparatus of system scheduler
US12/612,875 Continuation US20100061348A1 (en) 2006-09-28 2009-11-05 Method and apparatus of system scheduler

Publications (1)

Publication Number Publication Date
US20080080434A1 true US20080080434A1 (en) 2008-04-03

Family

ID=39230528

Family Applications (7)

Application Number Title Priority Date Filing Date
US11/529,726 Abandoned US20080080434A1 (en) 2006-09-28 2006-09-28 Method and apparatus of system scheduler
US12/613,122 Active US8072941B2 (en) 2006-09-28 2009-11-05 Method and apparatus of system scheduler
US12/612,875 Abandoned US20100061348A1 (en) 2006-09-28 2009-11-05 Method and apparatus of system scheduler
US13/163,711 Active US8532065B2 (en) 2006-09-28 2011-06-19 Device, system and method of wireless communication utilizing OFDM, SC-FDMA and sub-carrier frequencies
US13/488,499 Active US8379602B2 (en) 2006-09-28 2012-06-05 Device, system and method of wireless communication
US13/492,877 Active US8379604B2 (en) 2006-09-28 2012-06-10 Device, system and method of wireless communication
US13/492,872 Active US8379603B2 (en) 2006-09-28 2012-06-10 Device, system and method of wireless communication

Family Applications After (6)

Application Number Title Priority Date Filing Date
US12/613,122 Active US8072941B2 (en) 2006-09-28 2009-11-05 Method and apparatus of system scheduler
US12/612,875 Abandoned US20100061348A1 (en) 2006-09-28 2009-11-05 Method and apparatus of system scheduler
US13/163,711 Active US8532065B2 (en) 2006-09-28 2011-06-19 Device, system and method of wireless communication utilizing OFDM, SC-FDMA and sub-carrier frequencies
US13/488,499 Active US8379602B2 (en) 2006-09-28 2012-06-05 Device, system and method of wireless communication
US13/492,877 Active US8379604B2 (en) 2006-09-28 2012-06-10 Device, system and method of wireless communication
US13/492,872 Active US8379603B2 (en) 2006-09-28 2012-06-10 Device, system and method of wireless communication

Country Status (8)

Country Link
US (7) US20080080434A1 (ja)
EP (1) EP2067277B1 (ja)
JP (2) JP5301445B2 (ja)
KR (1) KR101052368B1 (ja)
CN (1) CN101507138B (ja)
BR (1) BRPI0717567B1 (ja)
RU (1) RU2428793C2 (ja)
WO (1) WO2008039805A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100182975A1 (en) * 2006-10-04 2010-07-22 Qualcomm Incorporated Uplink ack transmission for sdma in a wireless communication system
US20130084867A1 (en) * 2011-09-30 2013-04-04 Alexander Sirotkin Method, apparatus and system of membership verification
US20170288926A1 (en) * 2014-12-19 2017-10-05 Huawei Technologies Duesseldorf Gmbh Alamouti mapping for use in real field orthogonal fbmc modulation systems

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9172455B2 (en) * 2009-02-13 2015-10-27 Qualcomm Incorporated Start frame for distributed MIMO
US8948154B2 (en) * 2010-02-10 2015-02-03 Qualcomm Incorporated Method and apparatus for sending and receiving a low-complexity transmission in a wireless communication system
US10009824B2 (en) 2010-09-01 2018-06-26 Empire Technology Development Llc Precoding data based on forwarded channel condition information
MX338058B (es) * 2011-10-03 2016-04-01 Ericsson Telefon Ab L M Control de multiplexion y datos en un bloqueo de recursos.
US9614606B2 (en) * 2011-12-28 2017-04-04 Qualcomm Incorporated Method and apparatus for power aware receive diversity control
US9054858B2 (en) * 2012-05-18 2015-06-09 Intel Mobile Communications GmbH Transmission and detection in multiple-antenna transmission systems
BR112017006554B1 (pt) * 2014-11-15 2023-02-23 Panasonic Intellectual Property Corporation Of America Aparelho de comunicação, método de comunicação e circuito integrado
JP6939796B2 (ja) * 2016-01-11 2021-09-22 ソニーグループ株式会社 狭帯域IoT通信システムにおけるサブキャリア間隔のシグナリング
EP3457648A4 (en) * 2016-09-28 2019-07-24 Guangdong OPPO Mobile Telecommunications Corp., Ltd. DATA TRANSMISSION PROCEDURE, RECEIVER DEVICE AND TRANSMISSION DEVICE

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6424679B1 (en) * 1998-10-07 2002-07-23 Texas Instruments Incorporated Space time block coded transmit antenna diversity for WCDMA
US6801788B1 (en) * 1997-09-09 2004-10-05 Samsung Electronics Co., Ltd. Distributed architecture for a base station transceiver subsystem having a radio unit that is remotely programmable
US20040203419A1 (en) * 2002-04-08 2004-10-14 Crocker Ronald T. System and method for predictive transmit power control for mobile stations in a multiple access wireless communication system
US20050002325A1 (en) * 2003-04-21 2005-01-06 Giannakis Georgios B. Space-time-frequency coded OFDM communications over frequency-selective fading channels
US20050043031A1 (en) * 2003-08-18 2005-02-24 Samsung Electronics Co., Ltd. Apparatus and method for scheduling resource in a multiuser MIMO radio communication system

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6750216B2 (en) * 1996-03-08 2004-06-15 Adolor Corporation Kappa agonist compounds and pharmaceutical formulations thereof
JP2002344415A (ja) * 2001-05-14 2002-11-29 Matsushita Electric Ind Co Ltd マルチキャリア通信方法及びマルチキャリア通信装置
US6662024B2 (en) * 2001-05-16 2003-12-09 Qualcomm Incorporated Method and apparatus for allocating downlink resources in a multiple-input multiple-output (MIMO) communication system
US7103325B1 (en) * 2002-04-05 2006-09-05 Nortel Networks Limited Adaptive modulation and coding
JP4125913B2 (ja) * 2002-05-24 2008-07-30 松下電器産業株式会社 無線送信装置、無線受信装置および無線通信システム
US7095709B2 (en) * 2002-06-24 2006-08-22 Qualcomm, Incorporated Diversity transmission modes for MIMO OFDM communication systems
JP2005012531A (ja) 2003-06-19 2005-01-13 Intelligent Cosmos Research Institute 送信装置および通信システム
KR20050075477A (ko) * 2004-01-15 2005-07-21 삼성전자주식회사 Mimo 스테이션 간에 통신하는 방법
KR101053610B1 (ko) 2004-06-25 2011-08-03 엘지전자 주식회사 Ofdm/ofdma 시스템의 무선자원 할당 방법
JP2006054676A (ja) 2004-08-11 2006-02-23 Matsushita Electric Ind Co Ltd 無線通信システム
WO2006019253A1 (en) 2004-08-17 2006-02-23 Samsung Electronics Co., Ltd Apparatus and method for space-time-frequency block coding for increasing performance
US7894548B2 (en) 2004-09-03 2011-02-22 Qualcomm Incorporated Spatial spreading with space-time and space-frequency transmit diversity schemes for a wireless communication system
US8130855B2 (en) 2004-11-12 2012-03-06 Interdigital Technology Corporation Method and apparatus for combining space-frequency block coding, spatial multiplexing and beamforming in a MIMO-OFDM system
KR101080392B1 (ko) * 2004-12-31 2011-11-04 재단법인서울대학교산학협력재단 다중 송수신 안테나 시스템에서의 스케줄링 방법
JP4832087B2 (ja) 2005-01-26 2011-12-07 パナソニック株式会社 無線基地局装置及び端末装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6801788B1 (en) * 1997-09-09 2004-10-05 Samsung Electronics Co., Ltd. Distributed architecture for a base station transceiver subsystem having a radio unit that is remotely programmable
US6424679B1 (en) * 1998-10-07 2002-07-23 Texas Instruments Incorporated Space time block coded transmit antenna diversity for WCDMA
US20040203419A1 (en) * 2002-04-08 2004-10-14 Crocker Ronald T. System and method for predictive transmit power control for mobile stations in a multiple access wireless communication system
US20050002325A1 (en) * 2003-04-21 2005-01-06 Giannakis Georgios B. Space-time-frequency coded OFDM communications over frequency-selective fading channels
US20050043031A1 (en) * 2003-08-18 2005-02-24 Samsung Electronics Co., Ltd. Apparatus and method for scheduling resource in a multiuser MIMO radio communication system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100182975A1 (en) * 2006-10-04 2010-07-22 Qualcomm Incorporated Uplink ack transmission for sdma in a wireless communication system
US8300582B2 (en) * 2006-10-04 2012-10-30 Qualcomm Incorporated Uplink ACK transmission for SDMA in a wireless communication system
US20130084867A1 (en) * 2011-09-30 2013-04-04 Alexander Sirotkin Method, apparatus and system of membership verification
US20170288926A1 (en) * 2014-12-19 2017-10-05 Huawei Technologies Duesseldorf Gmbh Alamouti mapping for use in real field orthogonal fbmc modulation systems
US10044544B2 (en) * 2014-12-19 2018-08-07 Huawei Technologies Duesseldorf Gmbh Alamouti mapping for use in real field orthogonal FBMC modulation systems

Also Published As

Publication number Publication date
US8379602B2 (en) 2013-02-19
US20120250645A1 (en) 2012-10-04
US8072941B2 (en) 2011-12-06
CN101507138A (zh) 2009-08-12
EP2067277B1 (en) 2019-05-15
CN101507138B (zh) 2013-07-17
WO2008039805A1 (en) 2008-04-03
US20110249663A1 (en) 2011-10-13
JP2012142981A (ja) 2012-07-26
US8532065B2 (en) 2013-09-10
US20100046495A1 (en) 2010-02-25
US20120250654A1 (en) 2012-10-04
US20120257596A1 (en) 2012-10-11
KR101052368B1 (ko) 2011-07-28
JP2010505368A (ja) 2010-02-18
US20100061348A1 (en) 2010-03-11
US8379604B2 (en) 2013-02-19
EP2067277A4 (en) 2014-12-31
RU2009110752A (ru) 2010-11-10
KR20090048642A (ko) 2009-05-14
JP5301445B2 (ja) 2013-09-25
RU2428793C2 (ru) 2011-09-10
BRPI0717567B1 (pt) 2019-12-10
EP2067277A1 (en) 2009-06-10
BRPI0717567A2 (pt) 2013-10-22
US8379603B2 (en) 2013-02-19

Similar Documents

Publication Publication Date Title
US8379603B2 (en) Device, system and method of wireless communication
US7929634B2 (en) Method and apparatus to select coding mode
US9992792B2 (en) Methods and systems for scheduling a virtual MIMO communication environment
EP3573250B1 (en) Transmission and reception method and apparatus
US8243693B2 (en) Apparatus and method for broadcast pilot transmission in a wireless communication network
US20110158337A1 (en) Ofdm transmitter and methods for reducing the effects of severe interference with symbol loading
US20120063530A1 (en) Communication device
US11581995B2 (en) Transmitting method, receiving method, transmitting apparatus, and receiving apparatus
US20150341090A1 (en) Apparatus and method for processing transmission/reception signals for interference alignment in mu-mimo interfering broadcast channel
US9769005B2 (en) Method and device for transmitting and receiving signal on basis of multiple antennas
US20110182187A1 (en) Wireless communication system and method for performing cooperative diversity using cyclic delay
US10623050B2 (en) Method and apparatus for transmitting and receiving signals using open-loop multi-input/output technology
Sezginer et al. Full frequency reuse in OFDMA-based wireless networks with sectored cells
Prasad et al. Multiple Antenna Technology

Legal Events

Date Code Title Description
AS Assignment

Owner name: INTEL CORPORATION, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:WOLF, GUY;YELLIN, DANIEL;SUTSKOVER, ILAN;AND OTHERS;REEL/FRAME:020861/0943;SIGNING DATES FROM 20060917 TO 20061005

STCB Information on status: application discontinuation

Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION