US20080009531A1 - 5-Anilino-4-Heteroarylpyrazole Derivatives Useful for the Treatment of Diabetes - Google Patents

5-Anilino-4-Heteroarylpyrazole Derivatives Useful for the Treatment of Diabetes Download PDF

Info

Publication number
US20080009531A1
US20080009531A1 US11/596,959 US59695905A US2008009531A1 US 20080009531 A1 US20080009531 A1 US 20080009531A1 US 59695905 A US59695905 A US 59695905A US 2008009531 A1 US2008009531 A1 US 2008009531A1
Authority
US
United States
Prior art keywords
optionally substituted
alkoxy
methoxy
group
alkyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/596,959
Other languages
English (en)
Inventor
Louis Cantin
Xin Ma
Christiana Akuche
Sidney Liang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer Healthcare LLC
Original Assignee
Bayer Pharmaceuticals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer Pharmaceuticals Corp filed Critical Bayer Pharmaceuticals Corp
Priority to US11/596,959 priority Critical patent/US20080009531A1/en
Assigned to BAYER PHARMACEUTICALS CORPORATION reassignment BAYER PHARMACEUTICALS CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: AKUCHE, CHRISTIANA, CANTIN, LOUIS-DAVID, LIANG, SIDNEY X., MA, XIN
Publication of US20080009531A1 publication Critical patent/US20080009531A1/en
Assigned to BAYER HEALTHCARE LLC reassignment BAYER HEALTHCARE LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BAYER PHARMACEUTICALS CORPORATION
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings
    • C07D417/04Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/4151,2-Diazoles
    • A61K31/4161,2-Diazoles condensed with carbocyclic ring systems, e.g. indazole
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/04Anorexiants; Antiobesity agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/06Antihyperlipidemics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/12Antihypertensives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/04Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D409/04Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
    • C07D413/04Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D513/00Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for in groups C07D463/00, C07D477/00 or C07D499/00 - C07D507/00
    • C07D513/02Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for in groups C07D463/00, C07D477/00 or C07D499/00 - C07D507/00 in which the condensed system contains two hetero rings
    • C07D513/04Ortho-condensed systems

Definitions

  • the present invention relates to 5-anilino-4-heteroarylpyrazole compounds, pharmaceutical compositions, and methods for treating diabetes and related disorders.
  • Type 1 diabetes or insulin dependent diabetes mellitus (IDDM) arises when patients lack insulin-producing beta-cells in their pancreatic glands.
  • IDDM insulin dependent diabetes mellitus
  • Type 2 diabetes or non-insulin dependent diabetes mellitus (NIDDM)
  • IIDDM insulin dependent diabetes mellitus
  • the current treatment for type 1 diabetic patients is injection of insulin, while the majority of type 2 diabetic patients are treated with agents that stimulate beta-cell function or with agents that enhance the tissue sensitivity of the patients towards insulin.
  • the drugs presently used to treat type 2 diabetes include alpha-glucosidase inhibitors, insulin sensitizers, insulin secretagogues, and metformin.
  • Insulin treatment is instituted after diet, exercise, and oral medications have failed to adequately control blood glucose.
  • the drawbacks of insulin treatment are the need for drug injection, the potential for hypoglycemia, and weight gain.
  • new therapies to treat type 2 diabetes are needed.
  • new treatments to retain normal (glucose-dependent) insulin secretion are needed.
  • Such new drugs should have the following characteristics: dependency on glucose for promoting insulin secretion (i.e., compounds that stimulate insulin secretion only in the presence of elevated blood glucose); low primary and secondary failure rates; and preservation of islet cell function.
  • the invention provides anilinopyrazole derivatives of Formula (I) wherein R 1 is H,
  • halo means F, Br, Cl, and I.
  • (C 1 -C 3 )alkyl and “(C 1 -C 6 )alkyl” mean a linear or branched saturated hydrocarbon radical having from about 1 to about 3 C atoms or about 1 to about 6 C atoms, respectively.
  • Such groups include, but are not limited to, methyl, ethyl, n-propyl, isopropyl, butyl, isobutyl, pentyl, hexyl, and the like.
  • (C 3 -C 6 )alkenyl means a linear or branched unsaturated hydrocarbon radical containing a double bond and from about 3 to about 6 carbon atoms.
  • the double bond may be between any two available carbon atoms in the chain.
  • groups include, but are not limited to, allyl, isopropenyl, 2-butenyl, 2-ethyl-2-butenyl, 1-hexenyl, and the like.
  • (C 3 -C 6 )alkynyl means a linear or branched unsaturated hydrocarbon radical containing a triple bond and from about 3 to about 6 carbon atoms.
  • the triple bond may be between any two available carbon atoms in the chain.
  • groups include, but are not limited to, propargyl, 2-butynyl, 1-methyl-2-butynyl, 3-hexynyl, and the like.
  • (C 3 -C 6 )cycloalkyl includes, but are not limited to, cyclopropyl, cyclobutyl, cyclopentyl, and cyclohexyl.
  • (C 1 -C 3 )alkoxy means a linear or branched saturated hydrocarbon radical having from about 1 to about 3 C atoms, about 1 to about 4 C atoms, or about 1 to about 6 C atoms, respectively, said radical being attached to an O atom.
  • the O atom is the atom through which the alkoxy substituent is attached to the rest of the molecule.
  • groups include, but are not limited to, methoxy, ethoxy, n-propoxy, isopropoxy, butoxy, pentyloxy, hexyloxy, and the like.
  • (C 1 -C 3 )haloalkoxy means a (C 1 -C 3 )alkoxy group, substituted on C with a halogen atom.
  • groups include, but are not limited to, trifluoromethoxy, difluoromethoxy, 2,2-difluoroethoxy, 2,2,2-trifluoroethoxy, 2-chloroethoxy, 3-chloropropoxy, 1-fluoro-2,2,-dichloroethoxy, and the like.
  • (C 1 -C 3 )haloalkyl mean a (C 1 -C 3 )alkyl group, (C 2 -C 3 )alkyl group, or (C 1 -C 6 )alkyl group substituted on C with a halogen atom.
  • Such groups include, but are not limited to, trifluoromethyl, difluoroethyl, 1-fluoro-2,2-dichloroethyl, 3-chloropropyl, 4-bromohexyl, and the like.
  • tri(C 1 -C 4 )alkylsilyl means a Si radical bearing three (C 1 -C 4 )alkyl substituents, each substituent being independently selected.
  • the Si atom is the atom through which the radical is attached to the rest of the molecule.
  • Such groups include, but are not limited to, trimethylsilyl, tert-butyl-dimethylsilyl, and the like.
  • NR 4 R 4 means that each of the two possible R 4 groups attached to the N atom are selected independently from the other so that they may be the same or they may be different.
  • (C 1 -C 6 )alkylthio means a linear or branched saturated hydrocarbon radical having from about 1 to about 6 C atoms, respectively, said radical being attached to an S atom.
  • the S atom is the atom through which the alkylthio substituent is attached to the rest of the molecule.
  • Such groups include, but are not limited to, methylthio, ethylthio, n-propylthio, isopropylthio, and the like.
  • SO 2 (C 1 -C 3 )alkyl means a linear or branched saturated hydrocarbon radical having from about 1 to about 3 C atoms, said radical being attached to the S atom of the SO 2 group.
  • the S atom of the SO 2 group is the atom through which the SO 2 (C 1 -C 3 )alkyl substituent is attached to the rest of the molecule.
  • Such groups include, but are not limited to, methylsulfonyl, ethylsulfonyl, n-propylsulfonyl and isopropylsulfonyl, and the like.
  • mono or bicyclic heteroaromatic ring radical means a 5-membered monocyclic heteroaromatic ring, or a bicyclic ring in which a 5-membered heteroaromatic ring is fused to a 6-membered heteroaromatic or phenyl ring.
  • the connecting bond from the ring is attached to any available position of the 5-membered heteroaromatic ring.
  • each substituent may replace any H atom on the moiety so modified as long as the replacement is chemically possible and chemically stable.
  • each substituent is chosen independently of any other substituent and can, accordingly, be the same or different.
  • Also included in the compounds of the present invention are (a) the stereoisomers thereof, (b) the pharmaceutically-acceptable salts thereof, (c) the tautomers thereof, (d) the protected acids and the conjugate acids thereof, and (e) the prodrugs thereof.
  • stereoisomers of these compounds may include, but are not limited to, enantiomers, diastereomers, racemic mixtures, and combinations thereof. Such stereoisomers may be prepared and separated using conventional techniques, either by reacting enantiomeric starting materials, or by separating isomers of compounds of the present invention. Isomers may include geometric isomers. Examples of geometric isomers include, but are not limited to, cis isomers or trans isomers across a double bond. Other isomers are contemplated among the compounds of the present invention. The isomers may be used either in pure form or in admixture with other isomers of the inhibitors described above.
  • Pharmaceutically-acceptable salts of the compounds of the present invention include salts commonly used to form alkali metal salts or form addition salts of free acids or free bases.
  • the nature of the salt is not critical, provided that it is pharmaceutically-acceptable.
  • Suitable pharmaceutically-acceptable acid addition salts may be prepared from an inorganic acid or from an organic acid. Examples of such inorganic acids are hydrochloric, hydrobromic, hydroiodic, nitric, carbonic, sulfuric and phosphoric acid.
  • Appropriate organic acids may be selected from aliphatic, cycloaliphatic, aromatic, heterocyclic, carboxylic, and sulfonic classes of organic acids.
  • organic and sulfonic classes of organic acids includes, but are not limited to, formic, acetic, propionic, succinic, glycolic, gluconic, lactic, malic, tartaric, citric, ascorbic, glucuronic, maleic, fumaric, pyruvic, aspartic, glutamic, benzoic, anthranilic, mesylic, salicylic, 4-hydroxybenzoic, phenylacetic, mandelic, embonic (pamoic), methanesulfonic, ethanesulfonic, benzenesulfonic, pantothenic, 2-hydroxyethanesulfonic, toluenesulfonic, sulfanilic, cyclohexylaminosulfonic, stearic, algenic, N-hydroxybutyric, salicylic, galactaric, and galacturonic acid, and combinations thereof.
  • Tautomers of the compounds of the invention are encompassed by the present invention.
  • a carbonyl includes its hydroxy tautomer.
  • the protected acids include, but are not limited to, esters, hydroxyamino derivatives, amides and sulfonamides.
  • the present invention includes the prodrugs and salts of the prodrugs.
  • Formation of prodrugs is well known in the art in order to enhance the properties of the parent compound; such properties include solubility, absorption, biostability, and release time (see, e.g., “ Pharmaceutical Dosage Form and Drug Delivery Systems ” (Sixth Edition), edited by Ansel et al., publ. by Williams & Wilkins, pgs. 27-29, (1995), which is hereby incorporated by reference).
  • Commonly used prodrugs are designed to take advantage of the major drug biotransformation reactions, and are also to be considered within the scope of the invention.
  • Major drug biotransformation reactions include N-dealkylation, O-dealkylation, aliphatic hydroxylation, aromatic hydroxylation, N-oxidation, S-oxidation, deamination, hydrolysis reactions, glucuronidation, sulfation, and acetylation (see, e.g., Goodman and Gilman's The Pharmacological Basis of Therapeutics (Ninth Edition), editor Molinoff et al., publ. by McGraw-Hill, pages 11-13, (1996), which is hereby incorporated by reference).
  • the compounds used in this invention may be prepared by standard techniques known in the art, by known processes analogous thereto, and/or by the processes described herein, using starting materials which are either commercially available or producible according to routine, conventional chemical methods.
  • preparative methods described in U.S. patent application Ser. No. 10/719,485; filed Nov. 21, 2003 are incorporated herein by reference. The following preparative methods are presented to aid the reader in the synthesis of the compounds of the present invention.
  • an aminopyrazole of Formula (II) is coupled to a substituted aniline of Formula (III) under Ullman or Buchwald conditions as described in U.S. patent application Ser. No. 10/719,485, to provide the anilinopyrazole of Formula (IV).
  • This compound is halogenated (e.g., with bromine) in acetic acid or NBS in an inert solvent to give the bromopyrazole intermediate of Formula (V).
  • a palladium catalyzed coupling reaction of (V) with a heteroarylboronic acid derivative of Formula (VI) provides the compounds of the invention of Formula (Ia) where X is other than CO 2 H.
  • a hydrolysis step of (Ia) provides the remaining compounds of the invention of Formula (Ib) where X is CO 2 H.
  • Compounds of the invention where Het is an oxazolyl radical, Formula (Ig, Ih), may be prepared from compounds of Formula (VIl). Conversion of the C-4 nitrile using hydrolytic condition provides to the corresponding amide Formula (VIl). Subsequent condensation with an appropriate electrophile (e.g., Formula (IX) and (X)), provides compounds of Formula (Ig) where X is other than CO 2 H. A hydrolysis step of (Ig) provides the remaining compounds of the invention of Formula (Ih) where X is CO 2 H.
  • an appropriate electrophile e.g., Formula (IX) and (X)
  • the present invention includes the prodrugs and salts of the prodrugs.
  • Formation of prodrugs is well known in the art in order to enhance the properties of the parent compound; such properties include solubility, absorption, biostability, and release time (see, e.g., “ Pharmaceutical Dosage Form and Drug Delivery Systems ” (Sixth Edition), edited by Ansel et al., publ. by Williams & Wilkins, pgs. 27-29, (1995), which is hereby incorporated by reference).
  • Commonly used prodrugs are designed to take advantage of the major drug biotransformation reactions, and are also to be considered within the scope of the invention.
  • Major drug biotransformation reactions include N-dealkylation, O-dealkylation, aliphatic hydroxylation, aromatic hydroxylation, N-oxidation, S-oxidation, deamination, hydrolysis reactions, glucuronidation, sulfation, and acetylation (see, e.g., Goodman and Gilman's The Pharmacological Basis of Therapeutics (Ninth Edition), editor Molinoff et al., publ. by McGraw-Hill, pages 11-13, (1996), which is hereby incorporated by reference).
  • Salts of the compounds identified herein can be obtained by isolating the compounds as hydrochloride salts, prepared by treatment of the free base with anhydrous HCl in a suitable solvent such as THF.
  • a desired salt of a compound of this invention can be prepared in situ during the final isolation and purification of a compound by means well known in the art; or a desired salt can be prepared by separately reacting the purified compound in its free base form with a suitable organic or inorganic acid and isolating the salt thus formed.
  • protective groups on the compound of this invention may need to be protected and deprotected during any of the above methods.
  • Protecting groups in general may be added and removed by conventional methods well known in the art (see, for example, T. W. Greene and P. G. M. Wuts, Protective Groups in Organic Synthesis; Wiley: New York, (1999).
  • Air and moisture sensitive liquids and solutions were transferred via syringe or cannula, and introduced into reaction vessels through rubber septa. Commercial grade reagents and solvents were used without further purification.
  • concentration under reduced pressure refers to use of a Buchi rotary evaporator at approximately 15 mm of Hg. All temperatures are reported uncorrected in degrees Celsius (° C.).
  • Thin layer chromatography TLC was performed on EM Science pre-coated glass-backed silica gel 60 A F-254 250 ⁇ m plates. Column chromatography (flash chromatography) was performed on a Biotage system using 32-63 micron, 60 A, silica gel pre-packed cartridges.
  • Electron impact mass spectra were obtained with a Hewlett Packard 5989A mass spectrometer equipped with a Hewlett Packard 5890 Gas Chromatograph with a J & W DB-5 column (0.25 ⁇ M coating; 30 m ⁇ 0.25 mm). The ion source was maintained at 250° C. and spectra were scanned from 50-800 amu at 2 sec per scan.
  • Routine one-dimensional NMR spectroscopy was performed on 300/400 MHz Varian Mercury-plus spectrometers. The samples were dissolved in deuterated solvents obtained from Cambridge Isotope Labs, and transferred to 5 mm ID Wilmad NMR tubes. The spectra were acquired at 293 K.
  • the reaction mixture was cooled to rt and filtered. The filtrate was concentrated, and the residue dissolved in a mixture of THF (2 mL), MeOH (1 mL) and water (2 mL). LiOH (55 mg) was added, and the mixture was stirred at 50° C. for 2 h and then at rt for 16 h.
  • the reaction mixture was concentrated under reduced pressure and the residue purified by preparative HPLC. The desired fractions were concentrated under reduced pressure, and the residue was treated with NH 4 Cl (saturated solution in water) and extracted with CH 2 Cl 2 . The combined organic layers were dried (Na 2 SO 4 ), filtered, and concentrated under reduced pressure.
  • the reaction mixture was cooled to rt and filtered. The filtrate was concentrated, and the residue dissolved in a mixture of THF (2 mL), MeOH (1 mL) and water (2 mL). LiOH (55 mg) was added, and the mixture was stirred at 50° C. for 2 h and then at rt for 16 h. The reaction mixture was then concentrated under reduced pressure, and the residue purified by preparative HPLC. The desired fractions were concentrated under reduced pressure, and the residue was treated with NH 4 Cl (saturated solution in water) and extracted with CH 2 Cl 2 . The combined organic layers were dried (Na 2 SO 4 ), filtered, and concentrated under reduced pressure.
  • the resulting suspension was degassed using a flow of nitrogen gas for 15 min, and then PdCl 2 (dppf) 2 (0.09 g, 0.11 mmol) was added and the mixture was heated at 80° C. for 6 h.
  • the reaction mixture was diluted with ethyl acetate and filtered through Celite® and concentrated.
  • the residue was purified by silica gel column chromatography eluting with hexane/EtOAc 10%-20% gradient.
  • the resulting solid was dissolved in MeOH (6 mL) and 1N NaOH was added. The mixture was heated at 55° C. overnight, cooled to rt, and concentrated under reduced pressure. The residue was taken up in water and acidified, the precipitate was filtered and washed with water.
  • Reaction Scheme 8 summarizes the experimentals described in Examples 89-93.
  • reaction mixture was diluted with ethyl acetate and filtered through Celite® and concentrated.
  • the residue purified by silica gel column chromatography (25% ethyl acetate-hexanes) to give a pale yellow foamy solid (1.22 g, 91%).
  • ES-MS m/z 391.1 (MH + ); HPLC RT (min) 3.73.
  • Reaction Scheme 9 summarizes the experimentals of Examples 98-103.
  • Reaction Scheme 10 summarizes the experimentals of Examples 104 and 105.
  • Reaction Scheme 11 summarizes the experimentals in Examples 106-108.
  • subject includes mammals (e.g., humans and animals).
  • treatment includes any process, action, application, therapy, or the like, wherein a subject, including a human being, is provided medical aid with the object of improving the subject's condition, directly or indirectly, or slowing the progression of a condition or disorder in the subject.
  • combination therapy means the administration of two or more therapeutic agents to treat a diabetic condition and/or disorder.
  • administration encompasses co-administration of two or more therapeutic agents in a substantially simultaneous manner, such as in a single capsule having a fixed ratio of active ingredients or in multiple, separate capsules for each inhibitor agent.
  • administration encompasses use of each type of therapeutic agent in a sequential manner.
  • terapéuticaally effective means the amount of each agent administered that will achieve the goal of improvement in a diabetic condition or disorder severity, while avoiding or minimizing adverse side effects associated with the given therapeutic treatment.
  • pharmaceutically acceptable means that the subject item is appropriate for use in a pharmaceutical product.
  • the compounds of the present invention may be employed in the treatment of diabetes, including both type 1 and type 2 diabetes (non-insulin dependent diabetes mellitus). Such treatment may also delay the onset of diabetes and diabetic complications.
  • the compounds may be used to prevent subjects with impaired glucose tolerance from proceeding to develop type 2 diabetes.
  • Other diseases and conditions that may be treated or prevented using compounds of the invention in methods of the invention include: Maturity-Onset Diabetes of the Young (MODY) (Herman, et al., Diabetes 43:40, 1994); Latent Autoimmune Diabetes Adult (LADA) (Zimmet, et al., Diabetes Med. 11:299, 1994); impaired glucose tolerance (IGT) (Expert Committee on Classification of Diabetes Mellitus, Diabetes Care 22 (Supp. 1):S5, 1999); impaired fasting glucose (IFG) (Charles, et al., Diabetes 40:796, 1991); gestational diabetes (Metzger, Diabetes, 40:197, 1991); and metabolic syndrome X.
  • MODY Maturity-Onset Diabetes of
  • the compounds of the present invention may also be effective in such disorders as obesity, and in the treatment of atherosclerotic disease, hyperlipidemia, hypercholesteremia, low HDL levels, hypertension, cardiovascular disease (including atherosclerosis, coronary heart disease, coronary artery disease, and hypertension), cerebrovascular disease and peripheral vessel disease.
  • the compounds of the present invention may also be useful for treating physiological disorders related to, for example, cell differentiation to produce lipid accumulating cells, regulation of insulin sensitivity and blood glucose levels, which are involved in, for example, abnormal pancreatic beta-cell function, insulin secreting tumors and/or autoimmune hypoglycemia due to autoantibodies to insulin, autoantibodies to the insulin receptor, or autoantibodies that are stimulatory to pancreatic beta-cells, macrophage differentiation which leads to the formation of atherosclerotic plaques, inflammatory response, carcinogenesis, hyperplasia, adipocyte gene expression, adipocyte differentiation, reduction in the pancreatic beta-cell mass, insulin secretion, tissue sensitivity to insulin, liposarcoma cell growth, polycystic ovarian disease, chronic anovulation, hyperandrogenism, progesterone production, steroidogenesis, redox potential and oxidative stress in cells, nitric oxide synthase (NOS) production, increased gamma glutamy
  • Compounds of the invention may also be used in methods of the invention to treat secondary causes of diabetes (Expert Committee on Classification of Diabetes Mellitus, Diabetes Care 22 (Supp. 1 ):S5, 1999).
  • Such secondary causes include glucocorticoid excess, growth hormone excess, pheochromocytoma, and drug-induced diabetes.
  • Drugs that may induce diabetes include, but are not limited to, pyriminil, nicotinic acid, glucocorticoids, phenytoin, thyroid hormone, ⁇ -adrenergic agents, ⁇ -interferon and drugs used to treat HIV infection.
  • the compounds of the present invention may be used alone or in combination with additional therapies and/or compounds known to those skilled in the art in the treatment of diabetes and related disorders. Alternatively, the methods and compounds described herein may be used, partially or completely, in combination therapy.
  • the compounds of the invention may also be administered in combination with other known therapies for the treatment of diabetes, including PPAR agonists, sulfonylurea drugs, non-sulfonylurea secretagogues, ⁇ -glucosidase inhibitors, insulin sensitizers, insulin secretagogues, hepatic glucose output lowering compounds, insulin and anti-obesity drugs.
  • Such therapies may be administered prior to, concurrently with or following administration of the compounds of the invention.
  • Insulin includes both long and short acting forms and formulations of insulin.
  • PPAR agonist may include agonists of any of the PPAR subunits or combinations thereof.
  • PPAR agonist may include agonists of PPAR- ⁇ , PPAR- ⁇ , PPAR- ⁇ or any combination of two or three of the subunits of PPAR.
  • PPAR agonists include, for example, rosiglitazone, troglitazone, and pioglitazone.
  • Sulfonylurea drugs include, for example, glyburide, glimepiride, chlorpropamide, tolbutamide, and glipizide.
  • ( ⁇ -glucosidase inhibitors that may be useful in treating diabetes when administered with a compound of the invention include acarbose, miglitol, and voglibose.
  • PPAR- ⁇ agonists such as the glitazones (e.g., troglitazone, pioglitazone, englitazone, MCC-555, rosiglitazone, and the like); biguanides such as metformin and phenformin; protein tyrosine phosphatase-1B (PTP-1B) inhibitors; dipeptidyl
  • Hepatic glucose output lowering compounds that may be useful in treating diabetes when administered with a compound of the invention include metformin, such as Glucophage and Glucophage XR.
  • Insulin secretagogues that may be useful in treating diabetes when administered with a compound of the invention include sulfonylurea and non-sulfonylurea drugs: GLP-1, GIP, secretin, nateglinide, meglitinide, repaglinide, glibenclamide, glimepiride, chlorpropamide, glipizide.
  • GLP-1 includes derivatives of GLP-1 with longer half-lives than native GLP-1, such as, for example, fatty-acid derivatized GLP-1 and exendin.
  • compounds of the invention are used in combination with insulin secretagogues to increase the sensitivity of pancreatic ⁇ -cells to the insulin secretagogue.
  • Anti-obesity drugs include ⁇ -3 adrenergic receptor agonists; CB-1 (cannabinoid) receptor antagonists; neuropeptide Y antagonists; appetite suppressants, such as, for example, sibutramine (Meridia); and lipase inhibitors, such as, for example, orlistat (Xenical).
  • Compounds of the present invention may be administered in combination with other pharmaceutical agents, such as apo-B/MTP inhibitors, MCR-4 agonists, CCK-A agonists, monoamine reuptake inhibitors, sympathomimetic agents, dopamine agonists, melanocyte-stimulating hormone receptor analogs, melanin concentrating hormone antagonists, leptins, leptin analogs, leptin receptor agonists, galanin antagonists, lipase inhibitors, bombesin agonists, thyromimetic agents, dehydroepiandrosterone or analogs thereof, glucocorticoid receptor agonists or antagonists, orexin receptor antagonists, urocortin binding protein antagonists, ciliary neurotrophic factors, AGRPs (human agouti-related proteins), ghrelin receptor antagonists, histamine 3 receptor antagonists or reverse agonists, neuromedin U receptor agonists, and the like.
  • other pharmaceutical agents such as apo-B
  • Compounds of the invention may also be used in methods of the invention in combination with drugs commonly used to treat lipid disorders in diabetic patients.
  • drugs include, but are not limited to, HMG-CoA reductase inhibitors, nicotinic acid, lipid lowering drugs (e.g., stanol esters, sterol glycosides such as tiqueside, and azetidinones such as ezetimibe), ACAT inhibitors (such as avasimibe), bile acid sequestrants, bile acid reuptake inhibitors, microsomal triglyceride transport inhibitors, and fibric acid derivatives.
  • HMG-CoA reductase inhibitors e.g., stanol esters, sterol glycosides such as tiqueside, and azetidinones such as ezetimibe
  • ACAT inhibitors such as avasimibe
  • bile acid sequestrants such as avasimibe
  • HMG-CoA reductase inhibitors include, for example, lovastatin, simvastatin, pravastatin, fluvastatin, atorvastatin, rivastatin, itavastatin, cerivastatin, and ZD-4522.
  • Fibric acid derivatives include, for example, clofibrate, fenofibrate, bezafibrate, ciprofibrate, beclofibrate, etofibrate, and gemfibrozil.
  • Sequestrants include, for example, cholestyramine, colestipol, and dialkylaminoalkyl derivatives of a cross-linked dextran.
  • Compounds of the invention may also be used in combination with anti-hypertensive drugs, such as, for example, ⁇ -blockers and ACE inhibitors.
  • additional anti-hypertensive agents for use in combination with the compounds of the present invention include calcium channel blockers (L-type and T-type; e.g., diltiazem, verapamil, nifedipine, amlodipine and mybefradil), diuretics (e.g., chlorothiazide, hydrochlorothiazide, flumethiazide, hydroflumethiazide, bendroflumethiazide, methylchlorothiazide, trichloromethiazide, polythiazide, benzthiazide, ethacrynic acid tricrynafen, chlorthalidone, furosemide, musolimine, bumetanide, triamtrenene, amiloride, spironolactone), ren
  • ET receptor antagonists e.g., sitaxsentan, atrsentan, neutral endopeptidase (NEP) inhibitors, vasopepsidase inhibitors (dual NEP-ACE inhibitors) (e.g., omapatrilat and gemopatrilat), and nitrates.
  • Such co-therapies may be administered in any combination of two or more drugs (e.g., a compound of the invention in combination with an insulin sensitizer and an anti-obesity drug).
  • Such co-therapies may be administered in the form of pharmaceutical compositions, as described above.
  • the effective dosage of the compounds of this invention can readily be determined for treatment of each desired indication.
  • the amount of the active ingredient (e.g., compounds) to be administered in the treatment of one of these conditions can vary widely according to such considerations as the particular compound and dosage unit employed, the mode of administration, the period of treatment, the age and sex of the patient treated, and the nature and extent of the condition treated,
  • the total amount of the active ingredient to be administered may generally range from about 0.0001 mg/kg to about 200 mg/kg, and preferably from about 0.01 mg/kg to about 200 mg/kg body weight per day.
  • a unit dosage may contain from about 0.05 mg to about 1500 mg of active ingredient, and may be administered one or more times per day.
  • the daily dosage for administration by injection, including intravenous, intramuscular, subcutaneous, and parenteral injections, and use of infusion techniques may be from about 0.01 to about 200 mg/kg.
  • the daily rectal dosage regimen may be from 0.01 to 200 mg/kg of total body weight.
  • the transdermal concentration may be that required to maintain a daily dose of from 0.01 to 200 mg/kg.
  • the specific initial and continuing dosage regimen for each patient will vary according to the nature and severity of the condition as determined by the attending diagnostician, the activity of the specific compound employed, the age of the patient, the diet of the patient, time of administration, route of administration, rate of excretion of the drug, drug combinations, and the like.
  • the desired mode of treatment and number of doses of a compound of the present invention may be ascertained by those skilled in the art using conventional treatment tests.
  • the compounds of this invention may be utilized to achieve the desired pharmacological effect by administration to a patient in need thereof in an appropriately formulated pharmaceutical composition.
  • a patient for the purpose of this invention, is a mammal, including a human, in need of treatment for a particular condition or disease. Therefore, the present invention includes pharmaceutical compositions which are comprised of a pharmaceutically acceptable carrier and a therapeutically effective amount of a compound.
  • a pharmaceutically acceptable carrier is any carrier which is relatively non-toxic and innocuous to a patient at concentrations consistent with effective activity of the active ingredient so that any side effects ascribable to the carrier do not vitiate the beneficial effects of the active ingredient.
  • a therapeutically effective amount of a compound is that amount which produces a result or exerts an influence on the particular condition being treated.
  • the compounds described herein may be administered with a pharmaceutically-acceptable carrier using any effective conventional dosage unit forms, including, for example, immediate and timed release preparations, orally, parenterally, topically, or the like.
  • the compounds may be formulated into solid or liquid preparations such as, for example, capsules, pills, tablets, troches, lozenges, melts, powders, solutions, suspensions, or emulsions, and may be prepared according to methods known to the art for the manufacture of pharmaceutical compositions.
  • the solid unit dosage forms may be a capsule which can be of the ordinary hard- or soft-shelled gelatin type containing, for example, surfactants, lubricants, and inert fillers such as lactose, sucrose, calcium phosphate, and corn starch.
  • the compounds of this invention may be tableted with conventional tablet bases such as lactose, sucrose, and cornstarch in combination with binders such as acacia, cornstarch, or gelatin; disintegrating agents intended to assist the break-up and dissolution of the tablet following administration such as potato starch, alginic acid, corn starch, and guar gum; lubricants intended to improve the flow of tablet granulation and to prevent the adhesion of tablet material to the surfaces of the tablet dies and punches, for example, talc, stearic acid, or magnesium, calcium or zinc stearate; dyes; coloring agents; and flavoring agents intended to enhance the aesthetic qualities of the tablets and make them more acceptable to the patient.
  • conventional tablet bases such as lactose, sucrose, and cornstarch in combination with binders such as acacia, cornstarch, or gelatin
  • disintegrating agents intended to assist the break-up and dissolution of the tablet following administration such as potato starch, alginic acid, corn starch, and
  • Suitable excipients for use in oral liquid dosage forms include diluents such as water and alcohols, for example, ethanol, benzyl alcohol, and polyethylene alcohols, either with or without the addition of a pharmaceutically acceptable surfactant, suspending agent, or emulsifying agent.
  • diluents such as water and alcohols, for example, ethanol, benzyl alcohol, and polyethylene alcohols, either with or without the addition of a pharmaceutically acceptable surfactant, suspending agent, or emulsifying agent.
  • Various other materials may be present as coatings or to otherwise modify the physical form of the dosage unit. For instance tablets, pills or capsules may be coated with shellac, sugar or both.
  • Dispersible powders and granules are suitable for the preparation of an aqueous suspension. They provide the active ingredient in admixture with a dispersing or wetting agent, a suspending agent, and one or more preservatives. Suitable dispersing or wetting agents and suspending agents are exemplified by those already mentioned above. Additional excipients, for example, those sweetening, flavoring and coloring agents described above, may also be present.
  • the pharmaceutical compositions of this invention may also be in the form of oil-in-water emulsions.
  • the oily phase may be a vegetable oil such as liquid paraffin or a mixture of vegetable oils.
  • Suitable emulsifying agents may be (1) naturally occurring gums such as gum acacia and gum tragacanth, (2) naturally occurring phosphatides such as soy bean and lecithin, (3) esters or partial esters derived from fatty acids and hexitol anhydrides, for example, sorbitan monooleate, and (4) condensation products of said partial esters with ethylene oxide, for example, polyoxyethylene sorbitan monooleate.
  • the emulsions may also contain sweetening and flavoring agents.
  • Oily suspensions may be formulated by suspending the active ingredient in a vegetable oil such as, for example, arachis oil, olive oil, sesame oil, or coconut oil; or in a mineral oil such as liquid paraffin.
  • the oily suspensions may contain a thickening agent such as, for example, beeswax, hard paraffin, or cetyl alcohol.
  • the suspensions may also contain one or more preservatives, for example, ethyl or n-propyl p-hydroxybenzoate; one or more coloring agents; one or more flavoring agents; and one or more sweetening agents such as sucrose or saccharin.
  • Syrups and elixirs may be formulated with sweetening agents such as, for example, glycerol, propylene glycol, sorbitol, or sucrose. Such formulations may also contain a demulcent, and preservative, flavoring and coloring agents.
  • sweetening agents such as, for example, glycerol, propylene glycol, sorbitol, or sucrose.
  • Such formulations may also contain a demulcent, and preservative, flavoring and coloring agents.
  • the compounds of this invention may also be administered parenterally, that is, subcutaneously, intravenously, intramuscularly, or interperitoneally, as injectable dosages of the compound in a physiologically acceptable diluent with a pharmaceutical carrier which may be a sterile liquid or mixture of liquids such as water, saline, aqueous dextrose and related sugar solutions; an alcohol such as ethanol, isopropanol, or hexadecyl alcohol; glycols such as propylene glycol or polyethylene glycol; glycerol ketals such as 2,2-dimethyl-1,1-dioxolane-4-methanol, ethers such as poly(ethyleneglycol) 400; an oil; a fatty acid; a fatty acid ester or glyceride; or an acetylated fatty acid glyceride with or without the addition of a pharmaceutically acceptable surfactant such as a soap or a detergent, suspending agent such as pectin, carb
  • Suitable fatty acids include oleic acid, stearic acid, and isostearic acid.
  • Suitable fatty acid esters are, for example, ethyl oleate and isopropyl myristate.
  • Suitable soaps include fatty alkali metal, ammonium, and triethanolamine salts and suitable detergents include cationic detergents, for example, dimethyl dialkyl ammonium halides, alkyl pyridinium halides, and alkylamine acetates; anionic detergents, for example, alkyl, aryl, and olefin sulfonates, alkyl, olefin, ether, and monoglyceride sulfates, and sulfosuccinates; nonionic detergents, for example, fatty amine oxides, fatty acid alkanolamides, and polyoxyethylenepolypropylene copolymers; and amphoteric detergents, for example, alkyl-beta-aminopropionates, and 2-alkylimidazoline quarternary ammonium salts, as well as mixtures.
  • suitable detergents include cationic detergents, for example, dimethyl dialkyl ammonium halides, al
  • compositions of this invention may typically contain from about 0.5% to about 25% by weight of the active ingredient in solution. Preservatives and buffers may also be used advantageously. In order to minimize or eliminate irritation at the site of injection, such compositions may contain a non-ionic surfactant having a hydrophile-lipophile balance (HLB) of from about 12 to about 17. The quantity of surfactant in such formulation ranges from about 5% to about 15% by weight.
  • the surfactant can be a single component having the above HLB or can be a mixture of two or more components having the desired HLB.
  • surfactants used in parenteral formulations are the class of polyethylene sorbitan fatty acid esters, for example, sorbitan monooleate and the high molecular weight adducts of ethylene oxide with a hydrophobic base, formed by the condensation of propylene oxide with propylene glycol.
  • compositions may be in the form of sterile injectable aqueous suspensions.
  • suspensions may be formulated according to known methods using suitable dispersing or wetting agents and suspending agents such as, for example, sodium carboxymethylcellulose, methylcellulose, hydroxypropylmethyl-cellulose, sodium alginate, polyvinylpyrrolidone, gum tragacanth and gum acacia; dispersing or wetting agents which may be a naturally occurring phosphatide such as lecithin, a condensation product of an alkylene oxide with a fatty acid, for example, polyoxyethylene stearate, a condensation product of ethylene oxide with a long chain aliphatic alcohol, for example, heptadecaethyleneoxycetanol, a condensation product of ethylene oxide with a partial ester derived form a fatty acid and a hexitol such as polyoxyethylene sorbitol monooleate, or a condensation product of an ethylene oxide with a partial ester derived from a fatty
  • the sterile injectable preparation may also be a sterile injectable solution or suspension in a non-toxic parenterally acceptable diluent or solvent.
  • Diluents and solvents that may be employed are, for example, water, Ringer's solution, and isotonic sodium chloride solution.
  • sterile fixed oils are conventionally employed as solvents or suspending media.
  • any bland, fixed oil may be employed including synthetic mono or diglycerides.
  • fatty acids such as oleic acid may be used in the preparation of injectables.
  • composition of the invention may also be administered in the form of suppositories for rectal administration of the drug.
  • These compositions may be prepared by mixing the drug (e.g., compound) with a suitable non-irritation excipient which is solid at ordinary temperatures but liquid at the rectal temperature and will therefore melt in the rectum to release the drug.
  • a suitable non-irritation excipient which is solid at ordinary temperatures but liquid at the rectal temperature and will therefore melt in the rectum to release the drug.
  • suitable non-irritation excipient which is solid at ordinary temperatures but liquid at the rectal temperature and will therefore melt in the rectum to release the drug.
  • Such material are, for example, cocoa butter and polyethylene glycol.
  • transdermal delivery devices Such transdermal patches may be used to provide continuous or discontinuous infusion of the compounds of the present invention in controlled amounts.
  • the construction and use of transdermal patches for the delivery of pharmaceutical agents is well known in the art (see, e.g., U.S. Pat. No. 5,023,252, incorporated herein by reference).
  • patches may be constructed for continuous, pulsatile, or on demand delivery of pharmaceutical agents.
  • Another formulation employs the use of biodegradable microspheres that allow controlled, sustained release of pharmaceutical agents.
  • Such formulations can be comprised of synthetic polymers or copolymers. Such formulations allow for injection, inhalation, nasal, or oral administration.
  • the construction and use of biodegradable microspheres for the delivery of pharmaceutical agents is well known in the art (e.g., U.S. Pat. No. 6,706,289, incorporated herein by reference).
  • a mechanical delivery device for the delivery of pharmaceutical agents is well known in the art.
  • direct techniques for administering a drug directly to the brain usually involve placement of a drug delivery catheter into the patient's ventricular system to bypass the blood-brain barrier.
  • One such implantable delivery system, used for the transport of agents to specific anatomical regions of the body is described in U.S. Pat. No. 5,011,472, incorporated herein by reference.
  • compositions of the invention may also contain other conventional pharmaceutically acceptable compounding ingredients, generally referred to as carriers or diluents, as necessary or desired. Any of the compositions of this invention may be preserved by the addition of an antioxidant such as ascorbic acid or by other suitable preservatives. Conventional procedures for preparing such compositions in appropriate dosage forms can be utilized.
  • compositions for its intended route of administration include: acidifying agents, for example, but are not limited to, acetic acid, citric acid, fumaric acid, hydrochloric acid, nitric acid; and alkalinizing agents such as, but are not limited to, ammonia solution, ammonium carbonate, diethanolamine, monoethanolamine, potassium hydroxide, sodium borate, sodium carbonate, sodium hydroxide, triethanolamine, trolamine.
  • acidifying agents for example, but are not limited to, acetic acid, citric acid, fumaric acid, hydrochloric acid, nitric acid
  • alkalinizing agents such as, but are not limited to, ammonia solution, ammonium carbonate, diethanolamine, monoethanolamine, potassium hydroxide, sodium borate, sodium carbonate, sodium hydroxide, triethanolamine, trolamine.
  • adsorbents e.g., powdered cellulose and activated charcoal
  • aerosol propellants e.g., carbon dioxide, CCl 2 F 2 , F 2 ClC—CClF 2 and CClF 3
  • air displacement agents e.g., nitrogen and argon
  • antifungal preservatives e.g., benzoic acid, butylparaben, ethylparaben, methylparaben, propylparaben, sodium benzoate
  • antimicrobial preservatives e.g., benzalkonium chloride, benzethonium chloride, benzyl alcohol, cetylpyridinium chloride, chlorobutanol, phenol, phenylethyl alcohol, phenylmercuric nitrate and thimerosal
  • antioxidants e.g., ascorbic acid, ascorbyl palmitate, butylated hydroxyanisole, but
  • clarifying agents e.g., bentonite
  • emulsifying agents but are not limited to, acacia, cetomacrogol, cetyl alcohol, glyceryl monostearate, lecithin, sorbitan monooleate, polyethylene 50 stearate
  • encapsulating agents e.g., gelatin and cellulose acetate phthalate
  • flavorants e.g., anise oil, cinnamon oil, cocoa, menthol, orange oil, peppermint oil and vanillin
  • humectants e.g., glycerin, propylene glycol and sorbitol
  • levigating agents e.g., mineral oil and glycerin
  • oils e.g., arachis oil, mineral oil, olive oil, peanut
  • the compounds described herein may be administered as the sole pharmaceutical agent or in combination with one or more other pharmaceutical agents where the combination causes no unacceptable adverse effects.
  • the compounds of this invention can be combined with known anti-obesity, or with known antidiabetic or other indication agents, and the like, as well as with admixtures and combinations thereof.
  • compositions which are comprised of an inert carrier and an effective amount of a compound identified by the methods described herein, or a salt or ester thereof.
  • An inert carrier is any material which does not interact with the compound to be carried and which lends support, means of conveyance, bulk, traceable material, and the like to the compound to be carried.
  • An effective amount of compound is that amount which produces a result or exerts an influence on the particular procedure being performed.
  • Formulations suitable for subcutaneous, intravenous, intramuscular, and the like; suitable pharmaceutical carriers; and techniques for formulation and administration may be prepared by any of the methods well known in the art (see, e.g., Remington's Pharmaceutical Sciences, Mack Publishing Co., Easton, Pa., 20 th edition, 2000).
  • Demonstration of the activity of the compounds of the present invention may be accomplished through in vitro, ex vivo, and in vivo assays that are well known in the art.
  • in vitro, ex vivo, and in vivo assays that are well known in the art.
  • the following assays may be used.
  • INS-1 cells were isolated from X-ray induced rat insulinoma (Asfari, et al., Endocrinology 130:167, 1992). INS-1 cells were seeded at 30,000 cells per well in Biocoat Collagen1 Cellware 96-well plates and incubated for 4-5 days. The cells were then treated for 2 days with complete media (RPMI 1640, 10% Fetal Bovine Serum, 100 ⁇ g/mL Penicillin/Streptomycin, 0.5 mM sodium pyruvate, 10 mM HEPES, and 50 ⁇ M beta-mercaptoethanol) adjusted to 3 mM glucose.
  • complete media RPMI 1640, 10% Fetal Bovine Serum, 100 ⁇ g/mL Penicillin/Streptomycin, 0.5 mM sodium pyruvate, 10 mM HEPES, and 50 ⁇ M beta-mercaptoethanol
  • the cells were washed with Krebs-Ringer-Bicarbonate-HEPES (KRBH) containing 3 mM glucose. The cells were then incubated for 30 min in the same buffer. The cells were incubated for an additional 2 h in the presence of the desired concentration of glucose and compounds. The supernatants were harvested.
  • KRBH Krebs-Ringer-Bicarbonate-HEPES
  • the supernatants were mixed with anti-insulin antibody and a tracer amount of 125 I-insulin in phosphate buffered saline containing 0.5% bovine serum albumin.
  • Protein A coated SPA scintillation proximity assay
  • Insulin secretion of dispersed rat islets mediated by a number of compounds of the present invention was measured as follows. Islets of Langerhans, isolated from male Sprague-Dawley rats (200-250 g), were digested using collagenase. The dispersed islet cells were treated with trypsin, seeded into 96 V-bottom plates, and pelleted. The cells were then cultured overnight in media with or without compounds of this invention. The media was aspirated, and the cells were pre-incubated with Krebs-Ringer-HEPES buffer containing 3 mM glucose for 30 minutes at 37° C. The pre-incubation buffer was removed, and the cells were incubated at 37° C.
  • the in vivo activities of the compounds of this invention when administered via oral gavage were examined in rats. Rats fasted overnight were given an oral dose of vehicle control or compound. Three hours later, basal blood glucose was measured, and the rats were given 2 g/kg of glucose intraperitoneally. Blood glucose was measured again after 15, 30, and 60 min.
  • the representative compounds of this invention significantly reduced blood glucose levels relative to the vehicle following the IPGTT (Intraperitoneal Glucose Tolerance Test).
  • Cardiovascular parameters e.g., heart rate and blood pressure
  • SHR rats are orally dosed once daily with vehicle or test compound for 2 weeks.
  • Blood pressure and heart rate are determined using a tail-cuff method as described by Grinsell, et al., (Am. J. Hypertens. 13:370-375, 2000).
  • blood pressure and heart rate are monitored as described by Shen, et al., (J. Pharmacol. Exp. Therap. 278:1435-1443, 1996).
  • hApoA1 mice obtained from Jackson Laboratories, Bar Harbor, Me. are bled (by either eye or tail vein) and grouped according to equivalent mean serum triglyceride levels. They are dosed orally (by gavage in a pharmaceutically acceptable vehicle) with the test compound once daily for 8 days. The animals are then bled again by eye or tail vein, and serum triglyceride levels are determined. In each case, triglyceride levels are measured using a Technicon Axon Autoanalyzer (Bayer Corporation, Tarrytown, N.Y.).
  • hApoA1 mice are bled and grouped with equivalent mean plasma HDL-cholesterol levels. The mice are orally dosed once daily with vehicle or test compound for 7 days, and then bled again on day 8. Plasma is analyzed for HDL-cholesterol using the Synchron Clinical System (CX4) (Beckman Coulter, Fullerton, Calif.).
  • CX4 Synchron Clinical System
  • obese monkeys are bled, then orally dosed once daily with vehicle or test compound for 4 weeks, and then bled again. Serum is analyzed for total cholesterol, HDL-cholesterol, triglycerides, and glucose using the Synchron Clinical System (CX4) (Beckman Coulter, Fullerton, Calif.). Lipoprotein subclass analysis is performed by NMR spectroscopy as described by Oliver, et al., (Proc. Natl. Acad. Sci. USA 98:5306-5311, 2001).
  • CX4 Synchron Clinical System

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Diabetes (AREA)
  • Hematology (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Obesity (AREA)
  • Epidemiology (AREA)
  • Endocrinology (AREA)
  • Urology & Nephrology (AREA)
  • Vascular Medicine (AREA)
  • Emergency Medicine (AREA)
  • Child & Adolescent Psychology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
US11/596,959 2004-05-20 2005-05-20 5-Anilino-4-Heteroarylpyrazole Derivatives Useful for the Treatment of Diabetes Abandoned US20080009531A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/596,959 US20080009531A1 (en) 2004-05-20 2005-05-20 5-Anilino-4-Heteroarylpyrazole Derivatives Useful for the Treatment of Diabetes

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US57306604P 2004-05-20 2004-05-20
US11/596,959 US20080009531A1 (en) 2004-05-20 2005-05-20 5-Anilino-4-Heteroarylpyrazole Derivatives Useful for the Treatment of Diabetes
PCT/US2005/017889 WO2005112923A2 (en) 2004-05-20 2005-05-20 5-anilino-4-heteroarylpyrazole derivatives useful for the treatment of diabetes

Publications (1)

Publication Number Publication Date
US20080009531A1 true US20080009531A1 (en) 2008-01-10

Family

ID=35428833

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/596,959 Abandoned US20080009531A1 (en) 2004-05-20 2005-05-20 5-Anilino-4-Heteroarylpyrazole Derivatives Useful for the Treatment of Diabetes

Country Status (5)

Country Link
US (1) US20080009531A1 (enExample)
EP (1) EP1750698A4 (enExample)
JP (1) JP2007538102A (enExample)
CA (1) CA2567352A1 (enExample)
WO (1) WO2005112923A2 (enExample)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020227368A1 (en) * 2019-05-08 2020-11-12 Trustees Of Boston University Hsp90 inhibitors and uses thereof

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2007004733A1 (ja) * 2005-07-06 2009-01-29 日本ケミファ株式会社 ペルオキシソーム増殖剤活性化受容体δの活性化剤
BRPI0618885A8 (pt) 2005-11-21 2018-06-26 Shionogi & Co compostos heterocíclicos tendo atividade inibitória de 11beta-hidroxiesteroide deidrogenase tipo i
DE102007003036A1 (de) 2006-12-20 2008-06-26 Bayer Cropscience Ag Pyrimidinylpyrazole
BRPI0811191A2 (pt) 2007-05-18 2014-10-29 Shionogi & Co Derivado heterocíclico contendo nitrogênio tendo atividade inibitória para 11beta-hidroxiesteroide deidrogenase tipo 1
DE102008039082A1 (de) 2008-08-21 2010-02-25 Bayer Schering Pharma Aktiengesellschaft Azabicyclisch-substituierte 5-Aminopyrazole und ihre Verwendung
DE102008039083A1 (de) 2008-08-21 2010-02-25 Bayer Schering Pharma Aktiengesellschaft Substituierte 5-Aminopyrazole und ihre Verwendung
WO2016092559A1 (en) * 2014-12-12 2016-06-16 Oat & Iil India Laboratories Private Limited Substituted pyrazole derivatives having activity as fungicides

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7265144B2 (en) * 2002-11-27 2007-09-04 Bayer Pharmaceuticals Corporation Anilinopyrazole derivatives useful for the treatment of diabetes

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000212141A (ja) * 1999-01-13 2000-08-02 Warner Lambert Co ジアリ―ルアミン
AP2003002825A0 (en) * 2000-12-21 2003-09-30 Vertex Pharma Pyrazole compounds useful as protein kinase inhibitors
MXPA03009847A (es) * 2001-04-27 2004-02-12 Vertex Pharma Inhibidores de cinasa derivados de pirazol.
US6989451B2 (en) * 2002-06-04 2006-01-24 Valeant Research & Development Heterocyclic compounds and uses thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7265144B2 (en) * 2002-11-27 2007-09-04 Bayer Pharmaceuticals Corporation Anilinopyrazole derivatives useful for the treatment of diabetes

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020227368A1 (en) * 2019-05-08 2020-11-12 Trustees Of Boston University Hsp90 inhibitors and uses thereof

Also Published As

Publication number Publication date
JP2007538102A (ja) 2007-12-27
CA2567352A1 (en) 2005-12-01
EP1750698A2 (en) 2007-02-14
WO2005112923A2 (en) 2005-12-01
EP1750698A4 (en) 2010-06-02
WO2005112923A3 (en) 2006-09-14

Similar Documents

Publication Publication Date Title
US20090209451A1 (en) Heteroarylaminopyrazole derivatives useful for the treatment of diabetes
US20080064734A1 (en) Anilinopyrazole derivatives useful for the treatment of diabetes
US20180338980A1 (en) Aromatic sulfonamide derivatives
EA030085B1 (ru) 2-АМИНО-6-МЕТИЛ-4,4a,5,6-ТЕТРАГИДРОПИРАНО[3,4-d][1,3]ТИАЗИН-8a(8H)-ИЛ-1,3-ТИАЗОЛ-4-ИЛ АМИДЫ
CA3047002A1 (en) Compounds useful as inhibitors of indoleamine 2,3-dioxygenase and/or tryptophan dioxygenase
US8759539B2 (en) Substituted bicyclic amines for the treatment of diabetes
WO2007027842A1 (en) Anilinopyrazole derivatives useful for the treatment of diabetes
US20080009531A1 (en) 5-Anilino-4-Heteroarylpyrazole Derivatives Useful for the Treatment of Diabetes
JP2024514597A (ja) トリアゾロン、テトラゾロン、及びイミダゾロン、又はその塩、並びにそれを含む医薬組成物
WO2012076966A1 (en) Substituted thieno [3,4-b] pyrazine compounds
US20060094714A1 (en) Compounds and their use to treat diabetes and related disorders
RU2360910C2 (ru) Производные триазола как ингибиторы 11-бета-гидроксистероиддегидрогеназы-1
US20220162201A1 (en) Substituted bicyclic compounds as farnesoid x receptor modulators
HK40058417A (en) Triazolopyridin-3-ones or their salts and pharmaceutical compositions comprising the same
MXPA06008833A (en) Heteroarylaminopyrazole derivatives useful for the treatment of diabetes
WO2005018567A2 (en) Compounds and compositions for the treatment of diabetes and diabetes-related disorders
HK40034427A (en) Novel triazolone derivatives or salts thereof and pharmaceutical compositions comprising the same
HK1087103B (en) Anilinopyrazole derivatives useful for the treatment of diabetes

Legal Events

Date Code Title Description
AS Assignment

Owner name: BAYER PHARMACEUTICALS CORPORATION, CONNECTICUT

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CANTIN, LOUIS-DAVID;MA, XIN;AKUCHE, CHRISTIANA;AND OTHERS;REEL/FRAME:018423/0795

Effective date: 20050518

AS Assignment

Owner name: BAYER HEALTHCARE LLC, NEW YORK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BAYER PHARMACEUTICALS CORPORATION;REEL/FRAME:023027/0804

Effective date: 20071219

Owner name: BAYER HEALTHCARE LLC,NEW YORK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BAYER PHARMACEUTICALS CORPORATION;REEL/FRAME:023027/0804

Effective date: 20071219

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO PAY ISSUE FEE