US20070243097A1 - Process for Fabrication of Products Made of an Aluminium Alloy With High Toughness and High Fatigue Resistance - Google Patents
Process for Fabrication of Products Made of an Aluminium Alloy With High Toughness and High Fatigue Resistance Download PDFInfo
- Publication number
- US20070243097A1 US20070243097A1 US11/571,189 US57118905A US2007243097A1 US 20070243097 A1 US20070243097 A1 US 20070243097A1 US 57118905 A US57118905 A US 57118905A US 2007243097 A1 US2007243097 A1 US 2007243097A1
- Authority
- US
- United States
- Prior art keywords
- aluminium
- alloy
- barium
- process according
- product
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 89
- 239000000956 alloy Substances 0.000 claims abstract description 89
- 229910052788 barium Inorganic materials 0.000 claims abstract description 58
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 claims abstract description 53
- 238000000034 method Methods 0.000 claims abstract description 33
- 230000008569 process Effects 0.000 claims abstract description 30
- 229910017818 Cu—Mg Inorganic materials 0.000 claims abstract description 18
- 229910000838 Al alloy Inorganic materials 0.000 claims abstract description 16
- 238000004519 manufacturing process Methods 0.000 claims abstract description 11
- 229910018182 Al—Cu Inorganic materials 0.000 claims abstract description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 45
- 229910052782 aluminium Inorganic materials 0.000 claims description 31
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 31
- 239000004411 aluminium Substances 0.000 claims description 29
- 229910052710 silicon Inorganic materials 0.000 claims description 28
- 239000010703 silicon Substances 0.000 claims description 24
- 229910052742 iron Inorganic materials 0.000 claims description 22
- 239000011701 zinc Substances 0.000 claims description 18
- 239000010949 copper Substances 0.000 claims description 17
- 239000011777 magnesium Substances 0.000 claims description 15
- 239000007788 liquid Substances 0.000 claims description 13
- 238000005266 casting Methods 0.000 claims description 12
- 238000010276 construction Methods 0.000 claims description 12
- 238000012360 testing method Methods 0.000 claims description 12
- 229910052749 magnesium Inorganic materials 0.000 claims description 11
- 229910052725 zinc Inorganic materials 0.000 claims description 11
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 10
- 229910000765 intermetallic Inorganic materials 0.000 claims description 9
- 238000005096 rolling process Methods 0.000 claims description 8
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 6
- 238000001125 extrusion Methods 0.000 claims description 6
- 238000005242 forging Methods 0.000 claims description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 5
- 229910052802 copper Inorganic materials 0.000 claims description 5
- 239000003351 stiffener Substances 0.000 claims description 5
- 239000010455 vermiculite Substances 0.000 claims description 3
- 239000000470 constituent Substances 0.000 claims description 2
- 239000000047 product Substances 0.000 description 33
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 23
- 239000000203 mixture Substances 0.000 description 13
- 238000007792 addition Methods 0.000 description 12
- 230000007797 corrosion Effects 0.000 description 9
- 238000005260 corrosion Methods 0.000 description 9
- 230000035882 stress Effects 0.000 description 8
- 239000000126 substance Substances 0.000 description 8
- 239000011575 calcium Substances 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- 230000005496 eutectics Effects 0.000 description 7
- 229910002549 Fe–Cu Inorganic materials 0.000 description 6
- 229910052791 calcium Inorganic materials 0.000 description 6
- 229910001338 liquidmetal Inorganic materials 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 239000012535 impurity Substances 0.000 description 5
- 229910052719 titanium Inorganic materials 0.000 description 5
- 239000010936 titanium Substances 0.000 description 5
- 229910052726 zirconium Inorganic materials 0.000 description 5
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 4
- 229910052787 antimony Inorganic materials 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 238000004299 exfoliation Methods 0.000 description 4
- 229910052738 indium Inorganic materials 0.000 description 4
- 239000011572 manganese Substances 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- 238000007711 solidification Methods 0.000 description 4
- 230000008023 solidification Effects 0.000 description 4
- 238000005482 strain hardening Methods 0.000 description 4
- 229910052712 strontium Inorganic materials 0.000 description 4
- 229910000600 Ba alloy Inorganic materials 0.000 description 3
- 235000011299 Brassica oleracea var botrytis Nutrition 0.000 description 3
- 235000017647 Brassica oleracea var italica Nutrition 0.000 description 3
- 240000003259 Brassica oleracea var. botrytis Species 0.000 description 3
- 241000257465 Echinoidea Species 0.000 description 3
- QVQLCTNNEUAWMS-UHFFFAOYSA-N barium oxide Chemical compound [Ba]=O QVQLCTNNEUAWMS-UHFFFAOYSA-N 0.000 description 3
- 229910052804 chromium Inorganic materials 0.000 description 3
- 239000011651 chromium Substances 0.000 description 3
- 230000009931 harmful effect Effects 0.000 description 3
- 229910052744 lithium Inorganic materials 0.000 description 3
- 238000003754 machining Methods 0.000 description 3
- 229910052748 manganese Inorganic materials 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 230000003068 static effect Effects 0.000 description 3
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 3
- 229910018125 Al-Si Inorganic materials 0.000 description 2
- 229910018520 Al—Si Inorganic materials 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 2
- 229910019752 Mg2Si Inorganic materials 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 2
- 238000005275 alloying Methods 0.000 description 2
- 229910052793 cadmium Inorganic materials 0.000 description 2
- 229910052729 chemical element Inorganic materials 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- 238000011282 treatment Methods 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- -1 Al7Cu2Fe Chemical compound 0.000 description 1
- 229910018569 Al—Zn—Mg—Cu Inorganic materials 0.000 description 1
- 229910015249 Ba—Si Inorganic materials 0.000 description 1
- 240000007124 Brassica oleracea Species 0.000 description 1
- 235000003899 Brassica oleracea var acephala Nutrition 0.000 description 1
- 235000011301 Brassica oleracea var capitata Nutrition 0.000 description 1
- 235000001169 Brassica oleracea var oleracea Nutrition 0.000 description 1
- 229910017827 Cu—Fe Inorganic materials 0.000 description 1
- 229910017384 Fe3Si Inorganic materials 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical group Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 229910019086 Mg-Cu Inorganic materials 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 229910000676 Si alloy Inorganic materials 0.000 description 1
- 229910018594 Si-Cu Inorganic materials 0.000 description 1
- 229910008465 Si—Cu Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 229910000611 Zinc aluminium Inorganic materials 0.000 description 1
- ZGLFRTJDWWKIAK-UHFFFAOYSA-M [2-[(2-methylpropan-2-yl)oxy]-2-oxoethyl]-triphenylphosphanium;bromide Chemical compound [Br-].C=1C=CC=CC=1[P+](C=1C=CC=CC=1)(CC(=O)OC(C)(C)C)C1=CC=CC=C1 ZGLFRTJDWWKIAK-UHFFFAOYSA-M 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- HXFVOUUOTHJFPX-UHFFFAOYSA-N alumane;zinc Chemical compound [AlH3].[Zn] HXFVOUUOTHJFPX-UHFFFAOYSA-N 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 150000001552 barium Chemical class 0.000 description 1
- 229910052790 beryllium Inorganic materials 0.000 description 1
- ATBAMAFKBVZNFJ-UHFFFAOYSA-N beryllium atom Chemical compound [Be] ATBAMAFKBVZNFJ-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 235000012438 extruded product Nutrition 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 150000004678 hydrides Chemical class 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 230000000877 morphologic effect Effects 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229910052706 scandium Inorganic materials 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 230000009974 thixotropic effect Effects 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
- 230000003245 working effect Effects 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/10—Alloys based on aluminium with zinc as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/12—Alloys based on aluminium with copper as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/12—Alloys based on aluminium with copper as the next major constituent
- C22C21/14—Alloys based on aluminium with copper as the next major constituent with silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/12—Alloys based on aluminium with copper as the next major constituent
- C22C21/16—Alloys based on aluminium with copper as the next major constituent with magnesium
Definitions
- the invention relates to a new fabrication process for rolled, extruded, or forged products made of an aluminium alloy with high toughness and high fatigue resistance, particularly an Al—Zn—Cu—Mg type alloy, and products obtained using this process, and particularly structural elements made from such products intended for aircraft construction. It is based on the introduction of barium into an aluminium based liquid alloy.
- type 7xxx alloys are typically used for wing structural elements for high capacity civil aircraft. These elements must have high mechanical strength, good toughness and good resistance to fatigue. Any new means of improving one of these groups of properties without degrading the others would be very useful.
- Iron and silicon impurities also have a negative effect on the resistance to fatigue.
- a drop in the residual content of iron and silicon will normally cause an increase in the resistance to fatigue, provided that normal precautions are taken during production of the liquid metal and during casting to avoid the formation of inclusions and the incorporation of hydrogen into the metal.
- iron and silicon elements form practically insoluble inter-metallic phases with aluminium, such as Al 7 Cu 2 Fe, Al 6 (Fe x Mn 1-x ) (where 0 ⁇ x ⁇ 1), Al 12 Fe 3 Si, Al 9 Fe 2 Si 2 and Mg 2 Si. These phases are more harmful when they are large than when they are small. Unfortunately, there are few means of acting upon their size by varying physical parameters during casting (particularly the solidification rate).
- Patent FR 1 507 664 (Metallgesellschaft Aktiengesellschaft) states that the addition of 0.001 to 2% of strontium and/or barium (Ba) into Al—Si type casting alloys with an Si content of between 5 and 14% leads to a fine eutectic structure; this effect is reinforced by the simultaneous addition of beryllium (Be).
- Patent EP 1 230 409 B1 (RUAG Components) discloses that the addition of barium (between 0.1 and 0.8%) to aluminium alloys with a silicon content of at least 5% improves their thixotropic formability. For work hardening alloys with structural hardening, patent U.S. Pat. No.
- patent GB 505 728 (L'Eléctrique) describes an aluminium based alloy intended for the manufacture of drawn wire and containing Zn 5-6.5%, Mg 2-3.5%, Si 0.15-0.5%, Mn 0.25-1%, Mo 0.20-0.60%, Co 0.20-0.60%, K 0-0.12%, Ba 0-0.25%, Sb 0-0.1%, W 0-0.50%, Ni 0-1%, Ti 0-0.40%, in which barium is added in chloride form so as to make the flux and dross more fluid; this barium content in the metallic product would also have a hardening effect.
- Patent GB 596,178 (Tennyson Fraser Bradbury) describes the addition of the Na, K, Ba and/or P elements with a maximum total content of 0.15% to an aluminium based alloy containing Cu 5.00-9.50%, Zr, Ni, Ce 0.05-1.00 total, Si 0.02-0.40%, Fe 0.02-0.50%, Zn 0.00-0.25%. It is a casting alloy for pistons. Neither the function nor the method of adding barium are mentioned.
- U.S. Pat. No. 4,631,172 (Nadagawa Corrosion Protection Co.) describes an aluminium based alloy used as a sacrificial anode containing 3.2% of Zn, 1.5% of magnesium, 0.02% of indium, 0.01% of tin and/or calcium and barium, the barium content varying between 0.002% and 1.0%.
- Another composition contains Zn 2.5%, Mg 2.5%, In 0.02%, Ca and/or Ba 0.005-1.0%, Si 0.004-1.0%.
- the addition of calcium and/or barium increases the current density and assures uniform wear of the sacrificial anode.
- Patent application JP 61 096052 A describes an aluminium-based alloy sacrificial anode with composition Zn 1-10%, Mg 0.1-6%, In 0.01-0.04%, Sn 0.005-0.15%, Si 0.09-1%, Ca and/or Ba 0.005-0.45%.
- Patent CH 328 148 (Wilhelm Neu) describes the introduction of a barium hydride into a zinc-aluminium type alloy containing not less than 40% of zinc.
- U.S. Pat. No. 3,310,389 (High Duty Alloys Ltd) mentions the presence of barium, calcium and/or strontium with a total content of up to 0.2% in an aluminium-based alloy containing Cu 2.2-2.7%, Mg 1.3-1.7%, Si 0.12-0.25%, Fe 0.9-1.2%, Ni 0.9-1.4%, Ti 0.02-0.15%.
- Patent RU 2 184 167 (inventor I. N. Fridljander et al) describes an aluminium-based alloy for structural applications in aeronautical construction with composition Cu 3.0-3.8%, Li 1.4-1.7%, Zr 0.0001-0.04%, Sc 0.16-0.35%, Fe 0.01-0.5%, Mg 0.01-0.7, Mn 0.05-0.5%, Ba 0.001-0.2%, Ga 0.001-0.08%, Sb 0.00001-0.001%.
- Patent RU 1 678 080 (Institut khimii im. V. I. Nikitina) describes an aluminium-based alloy with composition Cu 5.0-5.5%, Cr 0.1-0.4%, Mn 0.2-0.6%, Zr 0.1-0.4%, Ti 0.1-0.4%, Cd 0.05-0.25%, Sr or Ba 0.01-0.1%.
- the purpose of this invention is to propose a new process to modify the morphology of insoluble iron and silicon phases in work hardening alloys with structural hardening of the Al—Cu—Mg or Al—Zn—Cu—Mg type, and thus obtaining new products with a high mechanical strength that also have excellent toughness and resistance to fatigue.
- the purpose of the invention is a process for fabrication of worked products made of an aluminium alloy of the Al—Cu, Al—Cu—Mg or Al—Zn—Cu—Mg type with high toughness and resistance to fatigue, including casting of a unwrought product (such as a extrusion billet, a forging billet or a rolling slab) and hot deformation of said unwrought product, said process being characterised in that between 0.005 and 0.1% of barium is added into said alloy.
- a unwrought product such as a extrusion billet, a forging billet or a rolling slab
- Another purpose of the invention is a structural element for aeronautical construction, made from a rolled, extruded or forged product made of an Al—Cu, Al—Cu—Mg or Al—Zn—Cu—Mg type alloy that contains between 0.005 and 0.1% of barium.
- a product or structural element obtainable by the process according to this invention can advantageously be used in applications that require high toughness and/or resistance to fatigue, for example such as wing upper or lower surface elements (wing skin), stiffeners, stringers or ribs, or elements for sealed partitions (bulkheads).
- FIG. 1 shows the morphology of Al—Fe—Cu type phases in the rough as-cast state after selective dissolution of the matrix in a 7449 alloy (micrographs obtained by a field effect gun scanning electron microscope (FEG-SEM):
- FIG. 2 shows the morphology of Al—Fe—Cu type phases:
- FIG. 3 shows the morphology of Al—Fe—Cu type phases in a sample that has both morphologies at the same time:
- FIGS. 4 and 5 show the morphology of Al—Fe—Cu type phases in a 7449 type alloy with added barium. Note the “sea urchin shaped” morphology ( FIG. 4 ) and “broccoli shaped” morphology ( FIG. 5 ) of the eutectic compounds.
- Alloy 7449 (with added barium) according to the invention magnification: see the bar at the bottom left of FIG. 4 that represents 1 ⁇ m).
- FIG. 6 shows the morphology of Al—Fe—Cu type phases in the form of platelets in a 7449 alloy according to the state of the art.
- FIG. 7 gives a comparison of the toughness Kapp measured on a 406 mm wide and 6.35 mm thick CCT type test piece (taken at one quarter of the thickness) as a function of R p0.2(L) 7449 alloy. Note that the products according to the invention (“Ba”) have better toughness than the products according to the state of the art (“ref”).
- the static mechanical characteristics in other words, the ultimate tensile strength R m , the tensile yield stress R p0.2 , and the elongation at failure A, are determined using a tensile test according to standard EN 10002-1, the location and direction from which test pieces are taken being defined in standard EN 485-1.
- the resistance to fatigue is determined by a test according to ASTM E 466, the fatigue crack propagation speed (so-called da/dn test) according to ASTM E 647, and the critical stress intensity factor K C , K CO or K app according to ASTM E 561.
- the term “extruded product” comprises so-called “drawn” products, in other words products fabricated by extrusion followed by drawing.
- a “worked product” means a product on which a deformation operation has been carried out after its solidification, this deformation operation possibly being rolling, forging, extruding, drawing or stamping, although this list is not limitative.
- a “structure element” or “structural element” of a mechanical construction means a mechanical part that, if it fails, would endanger said construction, its users, passengers or others.
- these structural elements include particularly elements making up the fuselage (such as the fuselage skin), stringers, bulkheads, circumferential frames, wings (such as wing skin), stringers or stiffeners, ribs and spars and the tail fin composed particularly of horizontal and vertical stabilisers, and floor beams, seat tracks and doors.
- integral structure means the structure of a part of an aircraft that was designed to maximise continuity of the material over the largest possible dimension so as to minimise mechanical assembly points.
- An integral structure can be fabricated either by in-body machining or by the use of shaped parts obtained for example by extrusion, forging or casting, or by welding of structural elements made from weldable alloys.
- larger elements made of a single part can be obtained without assembly or with a smaller number of assembly points than for a structure in which thin or thick plates (depending on the destination of the structural element, for example fuselage element or wing element) are fixed to stiffeners and/or frames (that may be fabricated by machining from extruded or rolled products), usually by riveting.
- This invention can be applied to all alloys based on structurally hardened work hardening aluminium of the Al—Cu, Al—Cu—Mg or Al—Zn—Cu—Mg type. More particularly, Al—Cu type alloys to which this invention could be applied are alloys containing between 1 and 7% of Cu, and more particularly between 3 and 5.5% of Cu.
- the invention can be applied to Al—Cu—Mg type alloys containing between 1 and 7% of Cu and between 0.2 and 2% of Mg, and more particularly between 3.5 and 5.5% of Cu and between 1 and 2% of Mg, it being understood that the content of iron and silicon must not exceed 0.30% each.
- These alloys may contain other alloying elements and impurities up to about 3% in total.
- the alloy may also contain normal additions of zirconium, titanium or chromium.
- the process according to the invention can advantageously be applied to Al—Mg—Cu type alloys or to alloys in the 2xxx series, particularly alloys conventionally used in aeronautical construction, namely 2024, 2024A, 2056, 2022, 2023, 2139, 2124, 2224, 2324, 2424, 2524 and their variants.
- this invention excludes so-called free-machining alloys such as 2004, 2005 and 2030 that include additions of Pb, Bi or Sb, so as to obtain discontinuous chips.
- Alloys of the Al—Zn—Cu—Mg type to which this invention can be applied are alloys containing between 4 and 14% of zinc, and more particularly between 7 and 10.5% of zinc, between 1 and 3% of Cu and more particularly between 1.4 and 2.5% of Cu, and between 1 and 3% of Mg, and more particularly between 1.7 and 2.8% of Mg, it being understood that the iron and silicon contents shall not exceed 0.30% each.
- These alloys may contain other alloying elements and impurities, up to 2% in total. These elements include manganese.
- the alloy may also contain normal additions of zirconium, titanium and chromium.
- the process according to the invention can advantageously be applied to alloys in the 7xxx series, and particularly to alloys conventionally used in aeronautical construction, namely 7010, 7050, 7055, 7056, 7150, 7040, 7075, 7175, 7475, 7049, 7149, 7249, 7349 and 7449, and their variants.
- the process according to the invention comprises casting of an unwrought product such as a rolling slab, an extrusion billet or a forging billet using any known process. This unwrought product is then hot worked, for example by rolling, extrusion or forging.
- the invention is not applicable to products produced by fast solidification, i.e. with a solidification rate typically greater than 600° C./min that result in a significantly different microstructure.
- the process may also include other heat treatment or mechanical treatment steps, usually homogenisation, cold working, dissolution, artificial or natural ageing, intermediate or final annealing.
- These eutectic phases may be of the Al—Fe—Cu type (in alloys with added barium) or the Al—Fe—Si—Cu type (in alloys without added barium). It can be seen that silicon apparently disappears from precipitates in the presence of barium.
- the principal properties of the product that are improved by the process according to the invention are particularly the toughness, resistance to fatigue, and resistance to crack propagation da/dn with a high stress intensity factor ⁇ K. This effect is particularly marked in an unrecristallised structure.
- a barium and silicon alloy is added.
- An Si (70%)-Ba (30%) type alloy is suitable; this product is available on the market.
- the silicon content of the alloy may vary between 50% and 90%.
- Other alloys of the same type also containing up to 20% of iron can also be used within the invention, the silicon content of the alloy then possibly varying between 30% and 90% and the barium content then varying between 10 and 40%.
- barium is added in metallic form, preferably in the form of an inter-metallic compound or an alloy with one or several constituents of the target aluminium alloy.
- an Al—Ba or Zn—Ba type alloy is suitable.
- These inter-metallic compounds or alloys can be obtained directly by reduction of barium oxide BaO with aluminium or zinc using known processes.
- the barium quantities used are very low, preferably less than 0.1% and even more preferably less than 0.05%. A value between 0.005% and 0.03% might be suitable.
- the relatively low solubility of this alloy in liquid aluminium has to be allowed for.
- the second embodiment is particularly interesting when it is applied to an aluminium alloy that has a fairly high silicon content, for example of the order of 0.10%.
- metallic barium is expensive.
- the first embodiment uses a less expensive barium alloy but increases the silicon content and possibly the iron content in the aluminium alloy. However, it is surprising to realise that this increase in the content of silicon and possibly of iron does not deteriorate the toughness or the resistance to fatigue. This is related to the fact that silicon and possibly iron are not incorporated in the same way; the phase morphology is significantly modified.
- the yield stress R p0.2(L) of such a partly finished product or structural element is greater than 600 MPa.
- the product according to the invention has better resistance to exfoliation corrosion (EXCO test), determined on test pieces taken from the mid-thickness, than a corresponding product without barium.
- EXCO test exfoliation corrosion
- the product according to the invention Due to its remarkable mechanical properties, there can be many possible applications for the product according to the invention, and it is particularly advantageous to use said product as a structural element in aeronautical construction, and particularly as an upper wing element or a lower wing element, such as a wing skin element, stiffener, stringer, rib or a bulkhead element.
- the process according to the invention has several advantages.
- the method of adding barium according to the invention prevents the use of hydrides that would increase the residual hydrogen content that could cause pores in the solidified metal.
- Barium neutralises the harmful effect of residual silicon in aluminium-based alloys with structural hardening, which results in better toughness, particularly K IC and K app .
- Barium also improves the resistance to corrosion and particularly the resistance to exfoliation corrosion.
- a type 7449 aluminium alloy was produced with an added alloy containing about 52% of silicon and 30% of barium and 18% of iron (reference P4078-1#37).
- Table 2 shows its chemical composition determined on a solid slug obtained from liquid metal taken from the runner.
- the alloy was refined with 0.8 kg/t of AT5B and cast into rolling slabs at 685° C. at a rate of 65 mm/min. After cooling and scalping, the slabs were homogenized at 463° C. and hot rolled at a temperature of between 420 and 410° C. The plates obtained were put into solution for 6 hours at 120° C. and then for 17 hours at 150° C. Consequently, the final product was in the T351 metallurgical temper.
- the silicon content of the type 7449 type aluminium alloy increases from 0.04% to 0.09% and the content of Fe increases from 0.03% to 0.06%
- the microstructure of the sample with added barium shows “sea urchin shaped” eutectic compounds ( FIG. 4 ) or “broccoli shaped” eutectic compounds (see FIG. 5 ).
- the microstructure of the sample without any added barium comprises eutectic compounds in the form of platelets ( FIG. 6 ).
- EXCO resistance to exfoliation corrosion results
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Forging (AREA)
- Powder Metallurgy (AREA)
- Preventing Corrosion Or Incrustation Of Metals (AREA)
- Continuous Casting (AREA)
- Manufacture Of Alloys Or Alloy Compounds (AREA)
- Prevention Of Electric Corrosion (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
The invention relates to a process for fabrication of worked products made of an aluminium alloy of the Al—Cu, Al—Cu—Mg or Al—Zn—Cu—Mg type with high toughness and resistance to fatigue, which comprises between 0.005 and 0.1% of barium. Such an alloy has better toughness than a similar product without barium.
Description
- This application is a 35 U.S.C. §371 National Stage Application of International Application No. PCT/FR05/001572 filed Jun. 22, 2005, which claims priority to French Application No. 0406957 filed Jun. 25, 2004.
- 1. Field of the Invention
- The invention relates to a new fabrication process for rolled, extruded, or forged products made of an aluminium alloy with high toughness and high fatigue resistance, particularly an Al—Zn—Cu—Mg type alloy, and products obtained using this process, and particularly structural elements made from such products intended for aircraft construction. It is based on the introduction of barium into an aluminium based liquid alloy.
- 2. Description of Related Art
- It is known that the various required properties cannot all be optimised at the same time and independently of each other during the fabrication of partly finished products and structural elements for aeronautical construction. When the chemical composition of the alloy or the parameters of product manufacturing processes are modified, several critical properties may tend to change in opposing directions. This is sometimes the case firstly for properties referred to collectively as “static mechanical strength” (particularly the ultimate tensile stress Rm and the tensile yield stress Rp0.2), and secondly for properties referred to collectively as “damage tolerance” (particularly the toughness and the resistance to crack propagation. Moreover, some working properties such as resistance to fatigue, resistance to corrosion, formability and elongation at failure are related to the mechanical properties (or “characteristics”) in a complex and often unpredictable manner. Therefore, optimisation of all properties of a material for mechanical construction, for example in the aeronautical sector, often requires a compromise between several key parameters.
- For example, type 7xxx alloys are typically used for wing structural elements for high capacity civil aircraft. These elements must have high mechanical strength, good toughness and good resistance to fatigue. Any new means of improving one of these groups of properties without degrading the others would be very useful.
- Concerning the toughness, it is well known that to increase the toughness of structurally hardened aluminium alloys, the residual content of iron and silicon have to be reduced; this is called “Staley's seventh golden rule” in the business (J. T. Staley, “Microstructure and Toughness of High-Strength Aluminum Alloys” Properties Related to Fracture Toughness, ASTM STP 605, American Society for Testing and Materials, 1976, p. 71-103). In practice, this effect is observed in almost all structurally hardened aluminium alloys, regardless of their degree of toughness. Iron and silicon are natural impurities of aluminium. Apart from specific purification processes used for the production of high purity aluminium (for example the segregation process), there is no standard industrial process for reducing the iron and silicon content in a bath of liquid aluminium. Furthermore, these elements tend to accumulate when aluminium and these alloys are recycled. All that can be done to reduce the content of these impurities is to dilute them with purer metal, either using electrolysis metal (called “primary aluminium”), for which the iron+silicon content is typically about 0.2 to 0.3%, or using refined metal. The operation significantly increases the cost in both cases, and particularly in the second case.
- Iron and silicon impurities also have a negative effect on the resistance to fatigue. A drop in the residual content of iron and silicon will normally cause an increase in the resistance to fatigue, provided that normal precautions are taken during production of the liquid metal and during casting to avoid the formation of inclusions and the incorporation of hydrogen into the metal.
- It is well known that the iron and silicon elements form practically insoluble inter-metallic phases with aluminium, such as Al7Cu2Fe, Al6(FexMn1-x) (where 0<x<1), Al12Fe3Si, Al9Fe2Si2 and Mg2Si. These phases are more harmful when they are large than when they are small. Unfortunately, there are few means of acting upon their size by varying physical parameters during casting (particularly the solidification rate).
- Faced with the difficulty of reducing inter-metallic phases with iron and silicon and modifying their size and morphology by means of physical treatments, it was thought that it might be possible to modify their size and morphology by adding specific chemical elements. If such an effect is observed, it will only be useable industrially if it does not have any negative effects on other properties of the finished product. Thus, Na and/or Sr are added to some Al—Si type casting alloys to obtain finely formed fibrous Si phases instead of coarsely formed prismatic phases. Patent FR 1 507 664 (Metallgesellschaft Aktiengesellschaft) states that the addition of 0.001 to 2% of strontium and/or barium (Ba) into Al—Si type casting alloys with an Si content of between 5 and 14% leads to a fine eutectic structure; this effect is reinforced by the simultaneous addition of beryllium (Be). Patent EP 1 230 409 B1 (RUAG Components) discloses that the addition of barium (between 0.1 and 0.8%) to aluminium alloys with a silicon content of at least 5% improves their thixotropic formability. For work hardening alloys with structural hardening, patent U.S. Pat. No. 4,711,762 (Aluminum Company of America) proposes the addition of strontium (Sr), antimony (Sb) and/or calcium (Ca) to an Al—Zn—Cu—Mg type alloy to reduce the size of the Al7Cu2Fe, Al2CuMg and Mg2Si phases.
- Aluminium based alloys containing barium have been described in other state of the art documents. In most cases, its function is to make the flux and dross more fluid; on the other hand, its influence on the properties of the product is not described. Thus, patent GB 505 728 (L'Eléctrique) describes an aluminium based alloy intended for the manufacture of drawn wire and containing Zn 5-6.5%, Mg 2-3.5%, Si 0.15-0.5%, Mn 0.25-1%, Mo 0.20-0.60%, Co 0.20-0.60%, K 0-0.12%, Ba 0-0.25%, Sb 0-0.1%, W 0-0.50%, Ni 0-1%, Ti 0-0.40%, in which barium is added in chloride form so as to make the flux and dross more fluid; this barium content in the metallic product would also have a hardening effect.
- Patent GB 596,178 (Tennyson Fraser Bradbury) describes the addition of the Na, K, Ba and/or P elements with a maximum total content of 0.15% to an aluminium based alloy containing Cu 5.00-9.50%, Zr, Ni, Ce 0.05-1.00 total, Si 0.02-0.40%, Fe 0.02-0.50%, Zn 0.00-0.25%. It is a casting alloy for pistons. Neither the function nor the method of adding barium are mentioned.
- U.S. Pat. No. 4,631,172 (Nadagawa Corrosion Protection Co.) describes an aluminium based alloy used as a sacrificial anode containing 3.2% of Zn, 1.5% of magnesium, 0.02% of indium, 0.01% of tin and/or calcium and barium, the barium content varying between 0.002% and 1.0%. Another composition contains Zn 2.5%, Mg 2.5%, In 0.02%, Ca and/or Ba 0.005-1.0%, Si 0.004-1.0%. The addition of calcium and/or barium increases the current density and assures uniform wear of the sacrificial anode. Patent application JP 61 096052 A describes an aluminium-based alloy sacrificial anode with composition Zn 1-10%, Mg 0.1-6%, In 0.01-0.04%, Sn 0.005-0.15%, Si 0.09-1%, Ca and/or Ba 0.005-0.45%.
- Patent CH 328 148 (Wilhelm Neu) describes the introduction of a barium hydride into a zinc-aluminium type alloy containing not less than 40% of zinc.
- U.S. Pat. No. 3,310,389 (High Duty Alloys Ltd) mentions the presence of barium, calcium and/or strontium with a total content of up to 0.2% in an aluminium-based alloy containing Cu 2.2-2.7%, Mg 1.3-1.7%, Si 0.12-0.25%, Fe 0.9-1.2%, Ni 0.9-1.4%, Ti 0.02-0.15%.
-
Patent RU 2 184 167 (inventor I. N. Fridljander et al) describes an aluminium-based alloy for structural applications in aeronautical construction with composition Cu 3.0-3.8%, Li 1.4-1.7%, Zr 0.0001-0.04%, Sc 0.16-0.35%, Fe 0.01-0.5%, Mg 0.01-0.7, Mn 0.05-0.5%, Ba 0.001-0.2%, Ga 0.001-0.08%, Sb 0.00001-0.001%. - Patent RU 1 678 080 (Institut khimii im. V. I. Nikitina) describes an aluminium-based alloy with composition Cu 5.0-5.5%, Cr 0.1-0.4%, Mn 0.2-0.6%, Zr 0.1-0.4%, Ti 0.1-0.4%, Cd 0.05-0.25%, Sr or Ba 0.01-0.1%.
- It is found that most of these alloys contain unusual elements such as indium, nickel, lithium, cadmium, molybdenum or tungsten, and therefore that they are exotic alloys compared with alloys usually used in aeronautical construction, without taking account of the possible addition of barium.
- The purpose of this invention is to propose a new process to modify the morphology of insoluble iron and silicon phases in work hardening alloys with structural hardening of the Al—Cu—Mg or Al—Zn—Cu—Mg type, and thus obtaining new products with a high mechanical strength that also have excellent toughness and resistance to fatigue.
- The purpose of the invention is a process for fabrication of worked products made of an aluminium alloy of the Al—Cu, Al—Cu—Mg or Al—Zn—Cu—Mg type with high toughness and resistance to fatigue, including casting of a unwrought product (such as a extrusion billet, a forging billet or a rolling slab) and hot deformation of said unwrought product, said process being characterised in that between 0.005 and 0.1% of barium is added into said alloy.
- Another purpose of the invention is a structural element for aeronautical construction, made from a rolled, extruded or forged product made of an Al—Cu, Al—Cu—Mg or Al—Zn—Cu—Mg type alloy that contains between 0.005 and 0.1% of barium. Such a product or structural element obtainable by the process according to this invention, can advantageously be used in applications that require high toughness and/or resistance to fatigue, for example such as wing upper or lower surface elements (wing skin), stiffeners, stringers or ribs, or elements for sealed partitions (bulkheads).
-
FIG. 1 shows the morphology of Al—Fe—Cu type phases in the rough as-cast state after selective dissolution of the matrix in a 7449 alloy (micrographs obtained by a field effect gun scanning electron microscope (FEG-SEM): -
-
Alloy 7449 according to the state of the art (magnification: see the 3 μm bar at the bottom left of the legend). Sample P4068#66.
-
-
FIG. 2 shows the morphology of Al—Fe—Cu type phases: -
-
Alloy 7449 with added barium according to the invention (magnification: see the 10 μm bar at the bottom left of the legend). Sample P4078-1#37.
-
-
FIG. 3 shows the morphology of Al—Fe—Cu type phases in a sample that has both morphologies at the same time: -
- Alloy 7449 (with added barium) with the coexistence of an unmodified form (“without Ba”, at the left) and a modified form (“with Ba”, at the right) of the AlFeCu phase (Si) in the same structure (magnification: see the 10 μm bar at the bottom left of the legend).
-
FIGS. 4 and 5 show the morphology of Al—Fe—Cu type phases in a 7449 type alloy with added barium. Note the “sea urchin shaped” morphology (FIG. 4 ) and “broccoli shaped” morphology (FIG. 5 ) of the eutectic compounds. - Alloy 7449 (with added barium) according to the invention (magnification: see the bar at the bottom left of
FIG. 4 that represents 1 μm). Sample P4078-1#37. -
FIG. 6 shows the morphology of Al—Fe—Cu type phases in the form of platelets in a 7449 alloy according to the state of the art. Sample P4013-1-#66. -
FIG. 7 gives a comparison of the toughness Kapp measured on a 406 mm wide and 6.35 mm thick CCT type test piece (taken at one quarter of the thickness) as a function ofR p0.2(L) 7449 alloy. Note that the products according to the invention (“Ba”) have better toughness than the products according to the state of the art (“ref”). - a) Definitions
- Unless mentioned otherwise, all information about the chemical composition of alloys is expressed as a percent by mass. Consequently, the mathematical expression “0.4 Zn” means 0.4 times the zinc content, expressed as a percent by mass; the same is true mutatis mutandis for other chemical elements. The designation of alloys follows the rules of The Aluminum Association and is known to a person skilled in the art. Metallurgical states are defined in European standard EN 515. For example, the chemical composition of normalised aluminium alloys is defined in standard EN 573-3. Unless mentioned otherwise, the static mechanical characteristics, in other words, the ultimate tensile strength Rm, the tensile yield stress Rp0.2, and the elongation at failure A, are determined using a tensile test according to standard EN 10002-1, the location and direction from which test pieces are taken being defined in standard EN 485-1. The resistance to fatigue is determined by a test according to ASTM E 466, the fatigue crack propagation speed (so-called da/dn test) according to ASTM E 647, and the critical stress intensity factor KC, KCO or Kapp according to ASTM E 561. The term “extruded product” comprises so-called “drawn” products, in other words products fabricated by extrusion followed by drawing.
- Unless mentioned otherwise, the definitions in European standard EN 12258-1 are applicable.
- In this description, a “worked product” means a product on which a deformation operation has been carried out after its solidification, this deformation operation possibly being rolling, forging, extruding, drawing or stamping, although this list is not limitative.
- In this description, a “structure element” or “structural element” of a mechanical construction means a mechanical part that, if it fails, would endanger said construction, its users, passengers or others. For an aircraft, these structural elements include particularly elements making up the fuselage (such as the fuselage skin), stringers, bulkheads, circumferential frames, wings (such as wing skin), stringers or stiffeners, ribs and spars and the tail fin composed particularly of horizontal and vertical stabilisers, and floor beams, seat tracks and doors.
- In this description “integral structure” means the structure of a part of an aircraft that was designed to maximise continuity of the material over the largest possible dimension so as to minimise mechanical assembly points. An integral structure can be fabricated either by in-body machining or by the use of shaped parts obtained for example by extrusion, forging or casting, or by welding of structural elements made from weldable alloys. Thus, larger elements made of a single part can be obtained without assembly or with a smaller number of assembly points than for a structure in which thin or thick plates (depending on the destination of the structural element, for example fuselage element or wing element) are fixed to stiffeners and/or frames (that may be fabricated by machining from extruded or rolled products), usually by riveting.
- b) Description of the Invention
- This invention can be applied to all alloys based on structurally hardened work hardening aluminium of the Al—Cu, Al—Cu—Mg or Al—Zn—Cu—Mg type. More particularly, Al—Cu type alloys to which this invention could be applied are alloys containing between 1 and 7% of Cu, and more particularly between 3 and 5.5% of Cu. The invention can be applied to Al—Cu—Mg type alloys containing between 1 and 7% of Cu and between 0.2 and 2% of Mg, and more particularly between 3.5 and 5.5% of Cu and between 1 and 2% of Mg, it being understood that the content of iron and silicon must not exceed 0.30% each. These alloys may contain other alloying elements and impurities up to about 3% in total. These elements include manganese, lithium, and zinc. Furthermore, and still as an example, the alloy may also contain normal additions of zirconium, titanium or chromium. The process according to the invention can advantageously be applied to Al—Mg—Cu type alloys or to alloys in the 2xxx series, particularly alloys conventionally used in aeronautical construction, namely 2024, 2024A, 2056, 2022, 2023, 2139, 2124, 2224, 2324, 2424, 2524 and their variants. On the other hand, this invention excludes so-called free-machining alloys such as 2004, 2005 and 2030 that include additions of Pb, Bi or Sb, so as to obtain discontinuous chips.
- Alloys of the Al—Zn—Cu—Mg type to which this invention can be applied are alloys containing between 4 and 14% of zinc, and more particularly between 7 and 10.5% of zinc, between 1 and 3% of Cu and more particularly between 1.4 and 2.5% of Cu, and between 1 and 3% of Mg, and more particularly between 1.7 and 2.8% of Mg, it being understood that the iron and silicon contents shall not exceed 0.30% each. These alloys may contain other alloying elements and impurities, up to 2% in total. These elements include manganese. Furthermore, and still as an example, the alloy may also contain normal additions of zirconium, titanium and chromium. The process according to the invention can advantageously be applied to alloys in the 7xxx series, and particularly to alloys conventionally used in aeronautical construction, namely 7010, 7050, 7055, 7056, 7150, 7040, 7075, 7175, 7475, 7049, 7149, 7249, 7349 and 7449, and their variants.
- The process according to the invention comprises casting of an unwrought product such as a rolling slab, an extrusion billet or a forging billet using any known process. This unwrought product is then hot worked, for example by rolling, extrusion or forging. The invention is not applicable to products produced by fast solidification, i.e. with a solidification rate typically greater than 600° C./min that result in a significantly different microstructure. The process may also include other heat treatment or mechanical treatment steps, usually homogenisation, cold working, dissolution, artificial or natural ageing, intermediate or final annealing.
- The applicant surprisingly found that the presence of a very small quantity of barium partially neutralises the harmful effect of iron and silicon for some properties, as will be explained below. This causes a morphological modification to inter-metallic phases, and particularly to iron inter-metallic phases (of the Al—Cu—Fe type). Eutectic inter-metallic phases are fragmented (“sea urchin” or “broccoli”, morphology, see
FIG. 2 ), whereas their shapes without barium would be more extensive (“petal”, “platelet” or “cabbage leaf” morphologies, seeFIG. 1 ). These eutectic phases may be of the Al—Fe—Cu type (in alloys with added barium) or the Al—Fe—Si—Cu type (in alloys without added barium). It can be seen that silicon apparently disappears from precipitates in the presence of barium. - The principal properties of the product that are improved by the process according to the invention are particularly the toughness, resistance to fatigue, and resistance to crack propagation da/dn with a high stress intensity factor ΔK. This effect is particularly marked in an unrecristallised structure.
- In a first embodiment, a barium and silicon alloy is added. An Si (70%)-Ba (30%) type alloy is suitable; this product is available on the market. The silicon content of the alloy may vary between 50% and 90%. Other alloys of the same type also containing up to 20% of iron can also be used within the invention, the silicon content of the alloy then possibly varying between 30% and 90% and the barium content then varying between 10 and 40%.
- In a second embodiment, barium is added in metallic form, preferably in the form of an inter-metallic compound or an alloy with one or several constituents of the target aluminium alloy. For example, an Al—Ba or Zn—Ba type alloy is suitable. These inter-metallic compounds or alloys can be obtained directly by reduction of barium oxide BaO with aluminium or zinc using known processes.
- In both embodiments, the barium quantities used are very low, preferably less than 0.1% and even more preferably less than 0.05%. A value between 0.005% and 0.03% might be suitable. When a Ba—Si alloy is added, the relatively low solubility of this alloy in liquid aluminium has to be allowed for. The second embodiment is particularly interesting when it is applied to an aluminium alloy that has a fairly high silicon content, for example of the order of 0.10%. On the other hand, metallic barium is expensive. The first embodiment uses a less expensive barium alloy but increases the silicon content and possibly the iron content in the aluminium alloy. However, it is surprising to realise that this increase in the content of silicon and possibly of iron does not deteriorate the toughness or the resistance to fatigue. This is related to the fact that silicon and possibly iron are not incorporated in the same way; the phase morphology is significantly modified.
- The process according to the invention can be used to make a partly finished product or a structural element made of an Al—Zn—Mg—Cu type alloy that comprises between 7 and 10.5% of zinc, between 1.4 and 2.5% of copper and between 1.7 and 2.8% of magnesium, such as a 7049, 7149, 7249, 7349 or 7449 alloy with toughness Kapp(L-T), as measured according to standard ASTM E 561 on a CCT type test piece taken from mid-thickness and with W=406 mm and B=6.35 mm, greater than 86 MPa√m. The yield stress Rp0.2(L) of such a partly finished product or structural element is greater than 600 MPa.
- The applicant also observed that the product according to the invention has better resistance to exfoliation corrosion (EXCO test), determined on test pieces taken from the mid-thickness, than a corresponding product without barium. The resistance to stress corrosion is also slightly improved.
- Due to its remarkable mechanical properties, there can be many possible applications for the product according to the invention, and it is particularly advantageous to use said product as a structural element in aeronautical construction, and particularly as an upper wing element or a lower wing element, such as a wing skin element, stiffener, stringer, rib or a bulkhead element.
- The process according to the invention has several advantages. The method of adding barium according to the invention prevents the use of hydrides that would increase the residual hydrogen content that could cause pores in the solidified metal. Barium neutralises the harmful effect of residual silicon in aluminium-based alloys with structural hardening, which results in better toughness, particularly KIC and Kapp. Barium also improves the resistance to corrosion and particularly the resistance to exfoliation corrosion.
- The following examples describe advantageous embodiments of the invention, for illustrative and non-limitative purposes.
- This test explored the possibility of introducing barium into a liquid aluminium based alloy by the addition of an Si—Ba type alloy, and casting an Al—Zn—Cu—Mg type alloy containing barium in the form of industrially sized rolling slabs. Two rolling slabs made of Al—Zn—Cu—Mg type aluminium were cast under similar conditions, one with barium added in the form of a mother alloy containing about 28% of Ba and 72% of Si (added at a liquid metal temperature of about 750° C.), and one without any added barium. The liquid metal was treated with an Ar+Cl2 mix. The casting
TABLE 1 Chemical composition Sample Fe Si Cu Mg Zn Zr Ti Ba P4068#66 0.03 0.05 1.76 1.90 7.48 0.11 0.0230 — P40692#66 0.11 0.12 1.86 2.03 8.40 0.10 0.0200 0.0100
temperature was 665° C., and the casting rate was about 65 mm/min. The metal was refined with 0.8 kg of AT5B. The cross-section of the slabs was of the order of 2150×450 mm. The chemical composition, determined on a solid slug obtained from liquid metal taken from the runner, is given in table 1. - Part of the barium added (a few tens of percent of the quantity used) was found in the dross.
- A
type 7449 aluminium alloy was produced with an added alloy containing about 52% of silicon and 30% of barium and 18% of iron (reference P4078-1#37). Table 2 shows its chemical composition determined on a solid slug obtained from liquid metal taken from the runner. - The alloy was refined with 0.8 kg/t of AT5B and cast into rolling slabs at 685° C. at a rate of 65 mm/min. After cooling and scalping, the slabs were homogenized at 463° C. and hot rolled at a temperature of between 420 and 410° C. The plates obtained were put into solution for 6 hours at 120° C. and then for 17 hours at 150° C. Consequently, the final product was in the T351 metallurgical temper.
- Due to the addition of the Si—Ba alloy, the silicon content of the
type 7449 type aluminium alloy increases from 0.04% to 0.09% and the content of Fe increases from 0.03% to 0.06% - Similarly, a standard 7449 alloy without any barium (P4013-1-#66) was also produced. Its chemical composition, determined on a solid slug obtained from liquid metal taken from the runner, is shown in table 2.
TABLEAU 2Chemical composition Sample Fe Si Cu Mg Zn Zr Ti Ba P4078-1#37 0.06 0.09 1.84 1.94 8.72 0.12 0.019 0.023 (FE02-029 (888887)) P4013-1-#66 0.03 0.04 1.83 2.20 8.29 0.12 — — (FE02-028 (888885)) - The microstructure of the sample with added barium shows “sea urchin shaped” eutectic compounds (
FIG. 4 ) or “broccoli shaped” eutectic compounds (seeFIG. 5 ). The microstructure of the sample without any added barium comprises eutectic compounds in the form of platelets (FIG. 6 ). - The static mechanical characteristics were measured in the T79 temper on a 40 mm thick plate. The toughness Kapp(L-T) was measured on a CCT type test piece with W 406 and B=6.35 mm
TABLE 3 Mechanical characteristics P4013-1-#66 P4078-1#37 (with barium) (w/o barium) ¼ t ½ t ¼ t ½ t t Unit Rp0.2 (L) 595 622 609 622 MPa R p0.2 (LT) 590 601 611 608 MPa R m(L) 610 643 628 647 MPa Rm(LT) 609 617 636 631 MPa Rp0.2 (ST) 573 575 MPa Rm (ST) 622 626 MPa A % (L) 11.6 10.4 10.3 9.7 % A % (LT) 10.7 9.9 8.7 8.6 % A % (ST) 4.4 5.7 % K1C (T-L) 22.3 20.9 MPa√m K1C (L-T) 23.3 23 MPa√m Kapp (L-T) 69.3 91.6 54.3 83.9 MPa√m Keff (L-T) 73.6 98.8 58.6 90.3 MPa√m - The resistance to exfoliation corrosion results (EXCO) determined on test pieces taken at mid-thickness show that the 7449 alloy with barium (EXCO performance: EA) has better resistance to exfoliation corrosion than the reference product without barium (EXCO performance: EB). The resistance to stress corrosion is also slightly improved.
Claims (20)
1. Process for fabrication of worked products made of an aluminium alloy of the Al—Cu, Al—Cu—Mg or Al—Zn—Cu—Mg type with high toughness and resistance to fatigue, comprising:
(a) production of a liquid aluminium alloy comprising between 0.005 and 0.1% of barium, said barium being added (aa) in metallic form, or (ab) in the form of an intermetallic compound or of an alloy with one or several constituents of the targeted aluminium alloy or with silicon and/or iron;
(b) casting of said liquid alloy in the form of an unwrought product (such as an extrusion billet, a forging billet or a rolling slab),
(c) hot working of said unwrought product.
2. Process according to claim 1 , wherein the barium content of said worked product is between 0.005 and 0.03%.
3. Process according to claim 1 , wherein barium is added in the form of an intermetallic compound or of an alloy with aluminium or zinc.
4. Process according to claim 1 , wherein the barium is added in the form of an Si (70%)-Ba (30%) type alloy.
5. Process according to claim 1 , wherein said aluminium-based liquid alloy comprises between 4 and 14% of zinc, between 1 and 3% of copper and between 1 and 3% of magnesium.
6. Process according to claim 5 , wherein said aluminium-based liquid alloy comprises between 7 and 10.5% of zinc, between 1.4 and 2.5% of copper, and between 1.7 and 2.8% of magnesium.
7. Process according to claim 5 , wherein the aluminium-based liquid alloy to which barium is added is selected from the group consisting of 7010, 7050, 7055, 7056, 7150, 7040, 7075, 7175, 7475, 7049, 7149, 7249, 7349 and 7449 alloys.
8. Process according to claim 1 , wherein said aluminium-based liquid alloy comprises between 1 and 7% of copper.
9. Process according to claim 8 , wherein said aluminium-based liquid alloy also comprises additionally between 0.2 and 2% of magnesium.
10. Process according to claim 8 , wherein said aluminium-based liquid alloy comprises between 3.5 and 5.5% of copper and between 1 and 2% of magnesium.
11. Process according to claim 8 , wherein said aluminium-based liquid alloy to which barium is added is selected from the group consisting of 2024, 2024A, 2056, 2022, 2023, 2139, 2124, 2224, 2324, 2424, and 2524 alloys.
12. Worked product obtainable with the process according to claim 11 .
13. Worked product obtainable with the process according to claim 5 , wherein the toughness Kapp(L-T) measured according to standard ASTM E 561 on a CCT type test piece taken from mid-thickness and with W=406 mm and B=6.35 mm, is greater than 86 MPa√on.
14. Worked product obtainable with the process according to claim 6 , wherein the tensile yield stress Rp0.2 (L) is greater than 600 MPa.
15. A method for making a structural element in an aeronautical construction comprising employing a worked product according to claim 12 .
16. A wing skin element comprising a worked product of claim 12 .
17. A stiffener comprising a worked product of claim 12 .
18. A stringer comprising a worked product of claim 12 .
19. A rib comprising a worked product of claim 12 .
20. An element for bulkheads comprising a worked product of claim 12.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0406957A FR2872172B1 (en) | 2004-06-25 | 2004-06-25 | ALUMINUM ALLOY PRODUCTS WITH HIGH TENACITY AND HIGH FATIGUE RESISTANCE |
FR0406957 | 2004-06-25 | ||
PCT/FR2005/001572 WO2006010817A1 (en) | 2004-06-25 | 2005-06-22 | Method for making high-tenacity and high-fatigue strength aluminium alloy products |
Publications (1)
Publication Number | Publication Date |
---|---|
US20070243097A1 true US20070243097A1 (en) | 2007-10-18 |
Family
ID=34946688
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/571,189 Abandoned US20070243097A1 (en) | 2004-06-25 | 2005-06-22 | Process for Fabrication of Products Made of an Aluminium Alloy With High Toughness and High Fatigue Resistance |
Country Status (9)
Country | Link |
---|---|
US (1) | US20070243097A1 (en) |
EP (1) | EP1766102B1 (en) |
CN (1) | CN100564571C (en) |
AT (1) | ATE417136T1 (en) |
BR (1) | BRPI0512590A (en) |
CA (1) | CA2570618A1 (en) |
DE (1) | DE602005011619D1 (en) |
FR (1) | FR2872172B1 (en) |
WO (1) | WO2006010817A1 (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110008202A1 (en) * | 2005-01-19 | 2011-01-13 | Otto Fuchs Kg | Alluminum alloy that is not sensitive to quenching, as well as method for the production of a semi-finished product |
RU2473709C1 (en) * | 2011-10-28 | 2013-01-27 | Закрытое акционерное общество "Военно-промышленная инвестиционная группа "ВИЛС" | High-strength heat-treatable aluminium alloy and article made thereof |
AU2008267121B2 (en) * | 2007-05-14 | 2013-11-14 | Arconic Technologies Llc | Aluminium alloy products having improved property combinations and method for their production |
RU2503734C1 (en) * | 2012-10-09 | 2014-01-10 | Закрытое акционерное общество "Военно-промышленная инвестиционная группа "ВИЛС" | High-strength heat-treatable aluminium alloy and article made thereof |
RU2514748C1 (en) * | 2013-03-29 | 2014-05-10 | Открытое акционерное общество "Всероссийский институт легких сплавов" (ОАО "ВИЛС") | HIGH-STRENGTH Al-Zn-Mg-Cu-SYSTEM ALUMINIUM-BASED WROUGHT ALLOY OF DECREASED DENSITY AND ARTICLE MADE THEREOF |
CN105441838A (en) * | 2015-11-24 | 2016-03-30 | 苏州有色金属研究院有限公司 | Heat treatment method for improving fatigue crack growth rate of 2xxx-T3 plate |
US10661338B2 (en) | 2010-04-26 | 2020-05-26 | Hydro Extruded Solutions Ab | Damage tolerant aluminium material having a layered microstructure |
US20200235247A1 (en) * | 2017-08-01 | 2020-07-23 | Idemitsu Kosan Co.,Ltd. | Sputtering target, oxide semiconductor thin film, thin film transistor, and electronic device |
US20210017630A1 (en) * | 2019-07-19 | 2021-01-21 | University Of Florida Research Foundation, Inc. | High temperature lightweight al-fe-si based alloys |
CN113039300A (en) * | 2018-11-16 | 2021-06-25 | 奥科宁克技术有限责任公司 | 2XXX aluminium alloy |
US11898232B2 (en) * | 2015-09-29 | 2024-02-13 | United Company RUSAL Engineering and Technology Centre LLC | High-strength alloy based on aluminium and method for producing articles therefrom |
CN117987694A (en) * | 2024-04-03 | 2024-05-07 | 有研工程技术研究院有限公司 | High-conductivity and high-corrosion-resistance aluminum monofilament and production process and application thereof |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8083871B2 (en) | 2005-10-28 | 2011-12-27 | Automotive Casting Technology, Inc. | High crashworthiness Al-Si-Mg alloy and methods for producing automotive casting |
US8840737B2 (en) | 2007-05-14 | 2014-09-23 | Alcoa Inc. | Aluminum alloy products having improved property combinations and method for artificially aging same |
FR2925523B1 (en) * | 2007-12-21 | 2010-05-21 | Alcan Rhenalu | ALUMINUM-LITHIUM ALLOY IMPROVED LAMINATED PRODUCT FOR AERONAUTICAL APPLICATIONS |
US8206517B1 (en) | 2009-01-20 | 2012-06-26 | Alcoa Inc. | Aluminum alloys having improved ballistics and armor protection performance |
CN104561692B (en) * | 2015-02-09 | 2017-01-11 | 苏州劲元油压机械有限公司 | High-friction-resistance aluminum alloy material and heat treatment technique thereof |
CN107881369B (en) * | 2017-10-27 | 2020-06-30 | 大唐东北电力试验研究所有限公司 | Aluminum-calcium-antimony intermediate alloy inoculant and preparation method thereof |
DE102018208435A1 (en) * | 2018-05-29 | 2019-12-05 | Volkswagen Aktiengesellschaft | Plasma spraying method for coating a cylinder bore of a cylinder crankcase of a reciprocating internal combustion engine |
RU2713526C1 (en) * | 2019-06-07 | 2020-02-05 | Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС" | High-strength foundry aluminum alloy with calcium additive |
CN111235443A (en) * | 2020-03-30 | 2020-06-05 | 天津忠旺铝业有限公司 | Preparation method of low-processing-deformation 2-series aluminum alloy plate |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3273833A (en) * | 1965-01-21 | 1966-09-20 | Dow Chemical Co | Airfoil structure |
US3310389A (en) * | 1963-10-02 | 1967-03-21 | High Duty Alloys Ltd | Sheets of aluminum alloy and methods of manufacturing same |
US3466170A (en) * | 1966-01-13 | 1969-09-09 | Metallgesellschaft Ag | Process for improving grain structure of aluminum silicon alloys |
US4631172A (en) * | 1984-05-08 | 1986-12-23 | Nadagawa Corrosion Protecting Co., Ltd. | Aluminum alloys for galvanic anode |
US4711762A (en) * | 1982-09-22 | 1987-12-08 | Aluminum Company Of America | Aluminum base alloys of the A1-Cu-Mg-Zn type |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB596178A (en) * | 1945-07-24 | 1947-12-30 | Tennyson Fraser Bradbury | Aluminium base alloys |
GB505728A (en) * | 1938-03-11 | 1939-05-16 | Electr Ass Cooperative D Ouvri | Improvements in or relating to light aluminium alloys |
CH328148A (en) * | 1952-06-30 | 1958-02-28 | Wilhelm Dr Neu | Zinc-aluminum alloy, method of making and using such an alloy |
JPS6196052A (en) * | 1984-05-08 | 1986-05-14 | Nakagawa Boshoku Kogyo Kk | Aluminium alloy for galvanic anode |
CN86105578A (en) * | 1986-07-19 | 1988-02-24 | 江苏工学院 | Refined Metamorphic Flux |
CN1097811A (en) * | 1994-05-07 | 1995-01-25 | 鞍山第一工程机械股份有限公司特种精密铸造厂 | Zinc-nickel-aluminium alloy and smelting technology thereof |
RU2184167C2 (en) * | 2000-09-14 | 2002-06-27 | Государственное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" | Aluminum-based alloy and product manufactured therefrom |
-
2004
- 2004-06-25 FR FR0406957A patent/FR2872172B1/en not_active Expired - Fee Related
-
2005
- 2005-06-22 CN CNB2005800212752A patent/CN100564571C/en not_active Expired - Fee Related
- 2005-06-22 BR BRPI0512590-1A patent/BRPI0512590A/en not_active IP Right Cessation
- 2005-06-22 US US11/571,189 patent/US20070243097A1/en not_active Abandoned
- 2005-06-22 AT AT05778801T patent/ATE417136T1/en not_active IP Right Cessation
- 2005-06-22 WO PCT/FR2005/001572 patent/WO2006010817A1/en active Application Filing
- 2005-06-22 CA CA002570618A patent/CA2570618A1/en not_active Abandoned
- 2005-06-22 EP EP05778801A patent/EP1766102B1/en not_active Expired - Lifetime
- 2005-06-22 DE DE602005011619T patent/DE602005011619D1/en not_active Expired - Lifetime
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3310389A (en) * | 1963-10-02 | 1967-03-21 | High Duty Alloys Ltd | Sheets of aluminum alloy and methods of manufacturing same |
US3273833A (en) * | 1965-01-21 | 1966-09-20 | Dow Chemical Co | Airfoil structure |
US3466170A (en) * | 1966-01-13 | 1969-09-09 | Metallgesellschaft Ag | Process for improving grain structure of aluminum silicon alloys |
US4711762A (en) * | 1982-09-22 | 1987-12-08 | Aluminum Company Of America | Aluminum base alloys of the A1-Cu-Mg-Zn type |
US4631172A (en) * | 1984-05-08 | 1986-12-23 | Nadagawa Corrosion Protecting Co., Ltd. | Aluminum alloys for galvanic anode |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10301710B2 (en) | 2005-01-19 | 2019-05-28 | Otto Fuchs Kg | Aluminum alloy that is not sensitive to quenching, as well as method for the production of a semi-finished product |
US20110008202A1 (en) * | 2005-01-19 | 2011-01-13 | Otto Fuchs Kg | Alluminum alloy that is not sensitive to quenching, as well as method for the production of a semi-finished product |
AU2008267121B2 (en) * | 2007-05-14 | 2013-11-14 | Arconic Technologies Llc | Aluminium alloy products having improved property combinations and method for their production |
US10661338B2 (en) | 2010-04-26 | 2020-05-26 | Hydro Extruded Solutions Ab | Damage tolerant aluminium material having a layered microstructure |
RU2473709C1 (en) * | 2011-10-28 | 2013-01-27 | Закрытое акционерное общество "Военно-промышленная инвестиционная группа "ВИЛС" | High-strength heat-treatable aluminium alloy and article made thereof |
RU2503734C1 (en) * | 2012-10-09 | 2014-01-10 | Закрытое акционерное общество "Военно-промышленная инвестиционная группа "ВИЛС" | High-strength heat-treatable aluminium alloy and article made thereof |
RU2514748C1 (en) * | 2013-03-29 | 2014-05-10 | Открытое акционерное общество "Всероссийский институт легких сплавов" (ОАО "ВИЛС") | HIGH-STRENGTH Al-Zn-Mg-Cu-SYSTEM ALUMINIUM-BASED WROUGHT ALLOY OF DECREASED DENSITY AND ARTICLE MADE THEREOF |
US11898232B2 (en) * | 2015-09-29 | 2024-02-13 | United Company RUSAL Engineering and Technology Centre LLC | High-strength alloy based on aluminium and method for producing articles therefrom |
CN105441838A (en) * | 2015-11-24 | 2016-03-30 | 苏州有色金属研究院有限公司 | Heat treatment method for improving fatigue crack growth rate of 2xxx-T3 plate |
US20200235247A1 (en) * | 2017-08-01 | 2020-07-23 | Idemitsu Kosan Co.,Ltd. | Sputtering target, oxide semiconductor thin film, thin film transistor, and electronic device |
CN113039300A (en) * | 2018-11-16 | 2021-06-25 | 奥科宁克技术有限责任公司 | 2XXX aluminium alloy |
US20210017630A1 (en) * | 2019-07-19 | 2021-01-21 | University Of Florida Research Foundation, Inc. | High temperature lightweight al-fe-si based alloys |
US11840746B2 (en) * | 2019-07-19 | 2023-12-12 | University Of Florida Research Foundation, Inc. | High temperature lightweight Al—Fe—Si based alloys |
CN117987694A (en) * | 2024-04-03 | 2024-05-07 | 有研工程技术研究院有限公司 | High-conductivity and high-corrosion-resistance aluminum monofilament and production process and application thereof |
Also Published As
Publication number | Publication date |
---|---|
ATE417136T1 (en) | 2008-12-15 |
CA2570618A1 (en) | 2006-02-02 |
BRPI0512590A (en) | 2008-03-25 |
FR2872172B1 (en) | 2007-04-27 |
EP1766102A1 (en) | 2007-03-28 |
FR2872172A1 (en) | 2005-12-30 |
DE602005011619D1 (en) | 2009-01-22 |
CN100564571C (en) | 2009-12-02 |
EP1766102B1 (en) | 2008-12-10 |
CN1977063A (en) | 2007-06-06 |
WO2006010817A1 (en) | 2006-02-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20070243097A1 (en) | Process for Fabrication of Products Made of an Aluminium Alloy With High Toughness and High Fatigue Resistance | |
US7550110B2 (en) | Al-Zn-Mg-Cu alloys and products with improved ratio of static mechanical characteristics to damage tolerance | |
US10472707B2 (en) | Al—Zn—Mg—Cu alloy with improved damage tolerance-strength combination properties | |
US7666267B2 (en) | Al-Zn-Mg-Cu alloy with improved damage tolerance-strength combination properties | |
US7229509B2 (en) | Al-Cu-Li-Mg-Ag-Mn-Zr alloy for use as structural members requiring high strength and high fracture toughness | |
RU2394113C1 (en) | High-tensile deformed alloy on base of aluminium and item out of this alloy | |
US8877123B2 (en) | Al—Cu alloy product suitable for aerospace application | |
US4636357A (en) | Aluminum alloys | |
US20080138236A1 (en) | Mg Alloys Containing Misch Metal Manufacturing Method of Wrought Mg Alloys Containing Misch Metal, and Wrought Mg Alloys Thereby | |
EP0642598B1 (en) | Low density, high strength al-li alloy having high toughness at elevated temperatures | |
US6726878B1 (en) | High strength aluminum based alloy and the article made thereof | |
Campbell | Aluminum | |
KR102589669B1 (en) | Method of manufacturing scroll members and scroll forgings | |
JPH0440418B2 (en) | ||
CN105401013A (en) | Cast aluminum alloy for automotive structural parts and preparation method thereof | |
US20230227954A1 (en) | Low-density aluminum-copper-lithium alloy products | |
RU2468107C1 (en) | High-strength deformable alloy based on aluminium with lower density and method of its processing | |
CN102400020B (en) | High-toughness aluminum-copper-lithium alloy sheets for aircraft fuselages | |
KR100904503B1 (en) | High-strength wrought aluminum alloy | |
JPH0610087A (en) | High strength superplastic aluminum alloy excellent in corrosion resistance and its manufacture | |
KR102742846B1 (en) | Aluminum-scandium alloy and manufacturing method thereof | |
US20240189894A1 (en) | Oxidation resistant al-mg high strength die casting foundry alloys | |
CN117701959A (en) | Ni/Ca composite Al-5Cu-0.5Mn-0.3Ti added high-strength and high-toughness die-casting aluminum alloy and preparation method thereof | |
WO2025080164A1 (en) | Aluminium-based alloy and article made of same | |
Smith | Aluminium—lithium alloys in helicopters |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: ALCAN RHENALU, FRANCE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SARRAZIN, EMMANUELLE;JARRY, PHILIPPE;REEL/FRAME:022100/0539 Effective date: 20070529 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |