US20070227120A1 - System Containing Oxygen Enriched Diesel Particulate Filter and Method Thereof - Google Patents

System Containing Oxygen Enriched Diesel Particulate Filter and Method Thereof Download PDF

Info

Publication number
US20070227120A1
US20070227120A1 US10/575,194 US57519404A US2007227120A1 US 20070227120 A1 US20070227120 A1 US 20070227120A1 US 57519404 A US57519404 A US 57519404A US 2007227120 A1 US2007227120 A1 US 2007227120A1
Authority
US
United States
Prior art keywords
engine
oxygen
exhaust emissions
particulate filter
diesel particulate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/575,194
Other languages
English (en)
Inventor
Richard Yodice
Daniel Daly
Fred Antoon
Michael Griggs
Edward Akucewich
Ted Tadrous
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lubrizol Corp
ECS Holdings Inc
Original Assignee
Lubrizol Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lubrizol Corp filed Critical Lubrizol Corp
Priority to US10/575,194 priority Critical patent/US20070227120A1/en
Assigned to FIFTH THIRD BANK - CANADA BRANCH reassignment FIFTH THIRD BANK - CANADA BRANCH SECURITY AGREEMENT Assignors: ECS HOLDINGS, INC.
Assigned to ECS HOLDINGS, INC. reassignment ECS HOLDINGS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: THE LUBRIZOL CORPORATION
Assigned to ECS HOLDINGS, INC. reassignment ECS HOLDINGS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: THE LUBRIZOL CORPORATION
Assigned to THE LUBRIZOL CORPORATION reassignment THE LUBRIZOL CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: YODICE, RICHARD, DALY, DANIEL T., AKUCEWICH, EDWARD S., TADROUS, TED N., ANTOON, FRED A., GRIGGS, MICHAEL S.
Publication of US20070227120A1 publication Critical patent/US20070227120A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/944Simultaneously removing carbon monoxide, hydrocarbons or carbon making use of oxidation catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • F01N13/0097Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are arranged in a single housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/022Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous
    • F01N3/0222Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous the structure being monolithic, e.g. honeycombs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/027Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using electric or magnetic heating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/033Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
    • F01N3/035Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/30Arrangements for supply of additional air
    • F01N3/32Arrangements for supply of additional air using air pump
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/10Oxidants
    • B01D2251/102Oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/10Oxidants
    • B01D2251/11Air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/01Engine exhaust gases
    • B01D2258/012Diesel engines and lean burn gasoline engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/02Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/16Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being an electric heater, i.e. a resistance heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2250/00Combinations of different methods of purification
    • F01N2250/02Combinations of different methods of purification filtering and catalytic conversion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2270/00Mixing air with exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2470/00Structure or shape of gas passages, pipes or tubes
    • F01N2470/30Tubes with restrictions, i.e. venturi or the like, e.g. for sucking air or measuring mass flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2510/00Surface coverings
    • F01N2510/06Surface coverings for exhaust purification, e.g. catalytic reaction
    • F01N2510/065Surface coverings for exhaust purification, e.g. catalytic reaction for reducing soot ignition temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/206Adding periodically or continuously substances to exhaust gases for promoting purification, e.g. catalytic material in liquid form, NOx reducing agents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D21/00Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas
    • F02D21/06Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas peculiar to engines having other non-fuel gas added to combustion air
    • F02D21/08Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas peculiar to engines having other non-fuel gas added to combustion air the other gas being the exhaust gas of engine

Definitions

  • the present invention involves a system comprising a diesel particulate filter (catalyzed or uncatalyzed) for treatment of exhaust emissions from a compression-ignited internal combustion engine and a method that is effective for improving the performance of the diesel particulate filter by operating the engine and treating the engine exhaust emissions with the system.
  • a diesel particulate filter catalyzed or uncatalyzed
  • Diesel particulate filters (DPFs) and in particular catalyzed diesel particulate filters (CDPFs) are generally effective in removing 90% or greater of particulates which are in the form of carbon soot and hydrocarbons.
  • the Derwent WPI abstract of Japanese Publication No. JP 2002/188427A discloses a bellows-shaped catalyzed diesel particulate filter which includes a power supply terminal for heating a catalyst layer and an air pump for supplying air to a chamber in which the particulate filter is installed.
  • the Derwent WPI abstract of German Publication No. DE 10137050A1 discloses treatment of exhaust from an internal combustion engine, especially a diesel engine, that involves a particulate filter which can include a supplementary heating unit, a control unit, and a unit for supplying air to the exhaust where the particulate filter can be regenerated without a reduction in engine power.
  • Vigeland et al. in U.S. Pat. No. 6,503,296B1 disclose a dense single phase membrane having both high ionic and electronic conductivity and capable of separating oxygen from an oxygen containing gaseous mixture where the separated oxygen can be used in catalytic and noncatalytic processes where oxygen is one of the reactants.
  • Kakwani et al. in International Publication No. WO 02/14657A1 disclose a diesel engine after treatment exhaust system that uses a combination of a catalyzed soot filter and a urea selective catalytic reduction catalyst for simultaneous reduction of particulate matter and NO x .
  • An object of the present invention is to improve the performance of a diesel particulate filter or catalyzed diesel particulate filter in a compression-ignited internal combustion engine.
  • Another object of the invention is to lower the temperature for regeneration of a diesel particulate filter or catalyzed diesel particulate filter in a compression-ignited internal combustion engine.
  • a further object of this invention is to improve exhaust emissions performance of a diesel particulate filter or catalyzed diesel particulate filter in a compression-ignited internal combustion engine for the reduction of soot, hydrocarbons including polyaromatic hydrocarbons, aldehydes and carbon monoxide.
  • An additional object of the present invention is to improve the durability of a diesel particulate filter or catalyzed diesel particulate filter in a compression-ignited internal combustion engine.
  • Yet an additional object of this invention is to improve the fuel economy of a compression-ignited internal combustion engine.
  • Still a further object of the invention is to improve wear performance of a compression-ignited internal combustion engine.
  • a system for treatment of exhaust emissions from a compression-ignited internal combustion engine comprises (A) a superatmospheric-pressurized source of gaseous oxygen, (B) an inlet for the gaseous oxygen from the superatmospheric-pressurized source wherein the exhaust emissions from the engine flow past the inlet and form a mixture with the gaseous oxygen from the inlet, and (C) a diesel particulate filter or catalyzed diesel particulate filter through which the mixture of exhaust emissions from the engine and gaseous oxygen from the inlet flows, wherein the oxygen content of the mixture is greater than the oxygen content of the exhaust emissions from the engine.
  • the above described exhaust emissions treatment system comprises one or more additional components which is or are taken from (D) at least one heat source, (E) a control unit, (F) at least one component selected from the group consisting of a diesel oxidation catalyst, a selective catalytic reduction catalyst and a lean NO x catalyst, and (G) an outlet for recirculating a portion of the exhaust emissions from the engine to an air intake of a combustion system of the engine.
  • a method for improving the performance of a diesel particulate filter or catalyzed diesel particulate filter in a compression-ignited internal combustion engine comprises operating the engine and treating the exhaust emissions from the engine with the above described exhaust emissions treatment system comprising components (A), (B) and (C) and optionally one or more of the components (D), (E), (F) and (G).
  • the present invention comprises a system for treatment of exhaust emissions from a compression-ignited internal combustion engine that comprises (A) a superatmospheric-pressurized source of gaseous oxygen, (B) an inlet for the gaseous oxygen from the superatmospheric-pressurized source wherein the exhaust emissions from the engine flow past the inlet and form a mixture with the gaseous oxygen from the inlet, and (C) a diesel particulate filter or catalyzed diesel particulate filter through which the mixture of exhaust emissions from the engine and gaseous oxygen from the inlet flows, wherein the oxygen content of the mixture is greater than the oxygen content of the exhaust emissions from the engine.
  • the gaseous oxygen from a superatmospheric-pressurized source or from atmospheric air is continuously introduced into the inlet for mixing with the engine exhaust emissions during operation of the compression-ignited internal combustion engine.
  • the gaseous oxygen from a superatmospheric-pressurized source or from atmospheric air is intermittently introduced into the inlet for mixing with the engine exhaust emissions during the operation of the engine which can be based on operating parameters of the engine and/or exhaust system comprising for example exhaust emissions temperature, diesel particulate filter (catalyzed or uncatalyzed) temperature, engine back pressure, or a combination thereof.
  • the superatmospheric-pressurized source of gaseous oxygen (A) can be any pressurized source of oxygen that can be introduced into the exhaust system of a compression-ignited internal combustion engine and that upon mixing with exhaust emissions from the engine forms a mixture having an oxygen content greater than the oxygen content of the exhaust emissions from the engine.
  • the source of gaseous oxygen can be air, oxygen, an oxygen containing gas, or a mixture thereof.
  • the oxygen containing gas can have an oxygen content of 1 to 99% by volume, and in other instances can have an oxygen content greater than 21% by volume to 99% by volume, greater than 21% by volume to 70% by volume, and greater than 21% by volume to 40% by volume.
  • the source of gaseous oxygen will generally have a pressure greater than the atmospheric pressure, and in other instances will have a pressure that is 1.05 to 1000 times the atmospheric pressure or 1.1 to 500 times the atmospheric pressure.
  • the source of the gaseous oxygen can have a pressure greater than the exhaust pressure of the exhaust system, and in several instances the source of the gaseous oxygen can have a pressure that is 1.05 to 1000 times or 1.1 to 500 times the exhaust pressure of the exhaust system.
  • the source of gaseous oxygen can raise the oxygen content of the mixture, that forms from exhaust emissions from the engine and the source of gaseous oxygen, to be greater than the oxygen content of the exhaust emissions from the engine by at least 0.1% by volume, and in other instances by at least 1% by volume, by at least 2% by volume, by at least 3% by volume, by at least 4% by volume, by at least 5% by volume, by at least 6% by volume and by at least 7% by volume.
  • the oxygen content of the mixture from the engine exhaust emissions and the source of gaseous oxygen can be 10.1 to 99% by volume, and in other embodiments can be 11 to 50% by volume, and 12 to 30% by volume.
  • the superatmospheric-pressurized source of gaseous oxygen can comprise a compressor, a blower, a compressed gas storage container, or a mixture thereof.
  • the gas in the compressed gas storage container can be air, oxygen, or an oxygen containing gas having an oxygen content as described hereinabove.
  • the source of gaseous oxygen can be obtained from a compressor or blower that is normally present such as for example a turbocharger, a supercharger, and a compressor for air brakes.
  • the source of gaseous oxygen can be obtained from a dedicated compressor or blower which can be powered by an electric motor, the internal combustion engine, the exhaust flow of the engine, or a mixture thereof.
  • the source of gaseous oxygen can be obtained from a combination of a compressor or blower normally present and a dedicated compressor or blower.
  • the compressors and/or blowers of this invention can compress or blow air and in certain instances oxygen or an oxygen containing gas having an oxygen content as described hereinabove.
  • the source of gaseous oxygen can further comprise, in addition to a compressor, a blower, a compressed gas storage container, or a mixture thereof, a permeable membrane wherein the membrane provides oxygen or a gas having an increased oxygen content from mixture of gases that includes oxygen.
  • a permeable membrane wherein the membrane provides oxygen or a gas having an increased oxygen content from mixture of gases that includes oxygen.
  • the mixture of gases that includes oxygen, from which the permeable membrane provides oxygen or a gas having an increased oxygen content is air.
  • the permeable membrane is an organic polymeric permeable membrane, as described in U.S. Pat. No. 4,537,606, having a higher permeability for oxygen relative to nitrogen.
  • Organic polymers which can function as permeable membranes include for example poly(butadiene), ethyl cellulose, poly(propylene), poly(styrene), poly(dimethylsiloxane) and polysulfone.
  • Permeable membranes from organic polymers are available commercially and include an oxygen enriching membrane Prism® PA4050 from Air Products.
  • the permeable membrane is a dense single phase permeable membrane from lanthanide-transition metal oxide material having both high ionic and electronic conductivity and capable of separating oxygen from a mixture of gases that includes oxygen as described in U.S. Pat. No. 6,503,296.
  • a blower or compressor drives air through an organic polymeric permeable membrane, and the oxygen enriched gas exiting the permeable membrane is stored in a compressed gas storage container for later use and/or is allowed to enter the engine exhaust system.
  • a dense single phase permeable membrane produces oxygen from air, the produced oxygen is compressed with a compressor or blower, and the compressed oxygen is stored in a compressed gas storage container for future use and/or allowed to enter the engine exhaust system.
  • the system of the present invention for treating exhaust emissions from a compression-ignited internal combustion engine can comprise (B) an inlet for the gaseous oxygen of component (A) where the inlet is generally downstream from the entrance of the engine exhaust emissions into the exhaust system and generally upstream from a DPF or CDPF.
  • the inlet of component (B) can include a valve for controlling the flow and flow rate of the gaseous oxygen of component (A) into the exhaust system.
  • the system of the present invention for treating the exhaust emissions from a compression-ignited internal combustion engine can comprise (C) a diesel particulate filter (DPF) or a catalyzed diesel particulate filter (CDPF).
  • the treatment system for engine exhaust emissions comprises a CDPF.
  • the DPF or CDPF can include filters from a porous ceramic wall-flow monolith, a wire mesh, wound or packed ceramic fiber media, an open-cell ceramic foam and a sintered metal.
  • the DPF or CDPF is from a porous wall-flow ceramic monolith.
  • the porous wall-flow ceramic monolith can be composed of one or more ceramic materials such as for example cordierite, spodumene, zirconium silicate, alumina, silica, zirconia, silicon carbide, silicon nitride, mullite, and alumina-silica-magnesia.
  • the CDPF can be prepared by coating a filter substrate, such as a porous wall-flow ceramic monolith from cordierite, with a catalyst which is generally a metal or metal oxide where the metal can be platinum, palladium, rhodium, ruthenium, vanadium, magnesium, calcium, strontium, barium, copper, silver, or a mixture thereof.
  • the catalyst typically includes platinum due to its high catalytic activity which substantially lowers the temperature for regeneration of the CDPF from trapped carbon soot.
  • the preparation of a CDPF generally involves impregnating the filter substrate with a solution or slurry, which is usually water based, of a catalyst precursor followed by drying and calcining to leave a metal or metal oxide catalyst.
  • the preparation of a CDPF can also include application of an oxide catalyst carrier, such as alumina or silica or zirconia, to the filter substrate prior to application of the catalyst to enhance catalyst surface activity and durability.
  • a CDPF can also contain a promoter to include an alkaline earth metal oxide such as magnesium oxide or a rare earth metal oxide such as cerium dioxide.
  • the catalyst coating on the filter substrate can comprise 5 to 150 g/ft 3 of a catalyst metal, and in other instances can comprise 15 to 100, 25 to 60, or 40 to 85 g/ft 3 of a catalyst metal.
  • Catalyzed diesel particulate filters are available commercially from various suppliers including Engelhard Corporation.
  • the DPF or CDPF of component (C) can comprise two or more sections where the sections can run from the entrance to the exit of the filter and where each section is capable of being separately regenerated while the other section or sections continue to filter engine exhaust emissions.
  • the sections can be separated from each other by some means to include a semipermeable barrier such as ceramic glass beads or by an impermeable barrier such as a nonporous ceramic or metal.
  • the sectioned filter can have a means such as a baffle for directing a flow of the gaseous oxygen from component (A) to a section of the filter for regeneration and for directing a flow of engine exhaust emissions to the other section or sections of the filter.
  • the means for directing a flow of the gaseous oxygen of component (A) and the engine exhaust emissions will generally be changeable so that each section of the filter can be regenerated under a flow of the gaseous oxygen from component (A).
  • the DPF or CDPF can comprise two or more separate units that are parallel and in close proximity to each other.
  • a means such as a manifold can selectively deliver gaseous oxygen of component (A) to one of the units of the filter for regeneration while another means such as a second manifold can selectively deliver engine exhaust emissions to the other unit or units of the filter.
  • the system for treatment of exhaust emissions from a compression-ignited internal combustion engine comprises atmospheric air as a source of gaseous oxygen, an inlet for the atmospheric air wherein exhaust emissions from the engine flow through a venturi which draws in the atmospheric air through the inlet forming a mixture of exhaust emissions and atmospheric air, and a diesel particulate filter or catalyzed diesel particulate filter through which the mixture of exhaust emissions and atmospheric air flows wherein the oxygen content of the mixture is greater than the oxygen content of the exhaust emissions from the engine.
  • the system of the present invention as described above for treating exhaust emissions from a compression-ignited internal combustion engine can further comprise one or more additional components taken from (D) at least one heat source, (E) a control unit, (F) at least one component selected from the group consisting of a diesel oxidation catalyst, a selective catalytic reduction catalyst and a lean NO x catalyst, and (G) an outlet for recirculating a portion of the exhaust emissions from the engine to an air intake of a combustion system of the engine.
  • the one or more additional components (D), (E), (F) and (G) can be present to further improve the performance of the exhaust emissions treatment system.
  • the heat source of component (D) can be any source of heat to include a heater, a heat exchanger, and/or the injection and combustion of fuel in the exhaust system.
  • One or more heat sources can be present to heat the exhaust emissions from the engine, to heat the gaseous oxygen of component (A), to heat a DPF or CDPF of component (C), to heat the one or more catalysts of component (F), or a combination thereof.
  • the heater of component (D) is usually an electrical heater to include for example a heating filament.
  • the heat exchanger of component (D) can obtain surplus heat from any heat source of the engine and/or related systems comprising for example heat from the engine, heat from the engine exhaust emissions, heat from various air conditioners and/or coolers, heat from an air brake system, heat from the DPF or CDPF outlet emissions, or a combination thereof.
  • the control unit of component (E) is usually an electronic control unit and can be a computer such as for example the engine's electronic command module.
  • the control unit (E) can control the components (A), (B), (C), (D), (F), (G) and/or their related subcomponents as described throughout this disclosure based on sensors which are generally located throughout the exhaust system and which can measure temperature, pressure and composition of the exhaust system gases.
  • the control unit generally functions to optimize the performance of the exhaust treatment system.
  • Component (F) of the present invention can comprise at least one catalyst selected from a diesel oxidation catalyst (DOC), a selective catalytic reduction (SCR) catalyst, and a lean NO x catalyst.
  • DOC diesel oxidation catalyst
  • SCR selective catalytic reduction
  • the exhaust treatment system includes a DOC.
  • the exhaust treatment system includes a SCR catalyst or a lean NO x catalyst.
  • the exhaust treatment system includes a DOC and either a SCR catalyst or a lean NO x catalyst.
  • a DOC when present in the exhaust treatment system can be located anywhere in the system which will improve performance, but is generally located either upstream from components (B) and (C) or downstream of a SCR catalyst or lean NO x catalyst.
  • a DOC can oxidize various components in the exhaust emissions from the engine including carbon monoxide and hydrocarbons as well as any surplus reductants such as ammonia or hydrocarbons from a SCR catalyst or lean NO x catalyst as described below.
  • a DOC is generally a catalyzed ceramic or metallic monolith that is sufficiently large in size, in terms of volume capacity and cell size, so that it does not readily become clogged with carbon soot.
  • a DOC can be prepared by applying to a monolith substrate a washcoat layer which can include alumina with a zeolite or a rare earth metal or an alkaline earth metal followed by application of a catalyst where the metal of the catalyst can be platinum, palladium or a mixture thereof.
  • Diesel oxidation catalysts are available commercially from several suppliers.
  • a SCR or lean NO x catalyst when present in the exhaust treatment system will generally be located downstream of the DPF or CDPF of component (C). Both a SCR or a lean NO x catalyst can reduce NO x from the engine exhaust emissions to nitrogen using a reductant that is respectively ammonia, or an ammonia precursor of aqueous urea, or hydrocarbons from the fuel.
  • the reductant can be introduced into the exhaust system from a valved inlet upstream of the SCR or lean NO x catalyst.
  • a SCR catalyst, as described in International Publication No. WO 02/14657 can include a flow-through monolith to which is applied a catalyst and a transition metal oxide binder where the catalyst can be an iron or copper or titanium/vanadium exchanged zeolite.
  • a lean NO % catalyst as described in International Publication No. WO 02/14657, can be of the low or high temperature type.
  • the low temperature type is platinum based that can use a platinum/zeolite or platinum/alumina catalyst.
  • the high temperature type uses a base metal/zeolite catalyst such as copper/zeolite. Both SCR and lean NO x catalysts are commercially available with SCR catalysts being supplied by Engelhard Corporation.
  • Component (G) of the present invention can comprise an outlet for exhaust gas recirculation which can be located throughout the exhaust treatment system, but it is generally located just downstream from the entrance of the exhaust emissions from the engine into the exhaust treatment system.
  • the outlet of component (G) can include a valve for controlling the flow and flow rate of exhaust emissions back to an air intake of the combustion system of the engine.
  • a method of the present invention for improving the performance of a diesel particulate filter or catalyzed diesel particulate filter in a compression-ignited internal combustion engine comprises operating the engine and treating the exhaust emissions from the engine with the exhaust emission treatment system as described throughout this disclosure comprising components (A), (B) and (C) and optionally one or more of the components (D), (E), (F) and (G).
  • the exhaust emissions treatment system and method of the present invention for using the system in the operation of a compression-ignited internal combustion engine improves the performance of a DPF or CDPF which can result in a lower temperature for regeneration of the DPF or CDPF, a general improvement in exhaust emissions performance in terms of soot and hydrocarbons and carbon monoxide, improved durability of the DPF or CDPF, improved fuel economy, and improved engine wear performance.
  • the system and method of the present invention improve the performance of a DPF or CDPF in a compression-ignited internal combustion engine that employs exhaust gas recirculation to help control NO x generation.
  • the temperature for regeneration of the DPF or CDPF is decreased by 1 to 200° C., and in other embodiments is decreased by 5 to 150° C., and by 10 to 100° C.
  • the rate for regeneration of the DPF or CDPF is increased.
  • a diesel engine was operated on a dynamometer in a series of CDPF evaluations that included three base line runs and two runs in which compressed air was used to increase the oxygen content of the gases passing through the CDPF. Measurements included the gas temperature near the entrance of the CDPF, pressure in the exhaust system, and oxygen content in the exhaust system upstream of the CDPF. Regeneration occurred based on the maximum pressure drops obtained for the base line runs at 357° C. and 9.2% by volume oxygen and for the compressed air runs at 289° C. and 15.7% by volume oxygen.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Exhaust Gas After Treatment (AREA)
US10/575,194 2003-10-08 2004-10-07 System Containing Oxygen Enriched Diesel Particulate Filter and Method Thereof Abandoned US20070227120A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/575,194 US20070227120A1 (en) 2003-10-08 2004-10-07 System Containing Oxygen Enriched Diesel Particulate Filter and Method Thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US50972003P 2003-10-08 2003-10-08
US10/575,194 US20070227120A1 (en) 2003-10-08 2004-10-07 System Containing Oxygen Enriched Diesel Particulate Filter and Method Thereof
PCT/US2004/033063 WO2005035951A1 (en) 2003-10-08 2004-10-07 System containing oxygen enriched diesel particulate filter and method thereof

Publications (1)

Publication Number Publication Date
US20070227120A1 true US20070227120A1 (en) 2007-10-04

Family

ID=34435018

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/575,194 Abandoned US20070227120A1 (en) 2003-10-08 2004-10-07 System Containing Oxygen Enriched Diesel Particulate Filter and Method Thereof

Country Status (3)

Country Link
US (1) US20070227120A1 (de)
EP (1) EP1706606A1 (de)
WO (1) WO2005035951A1 (de)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070015002A1 (en) * 2005-07-14 2007-01-18 Ut-Battele, Llc Oxygen-donor and catalytic coatings of metal oxides and metals
US20090098289A1 (en) * 2007-10-12 2009-04-16 Deininger Mark A Pig and Method for Applying Prophylactic Surface Treatments
US20090283059A1 (en) * 2008-05-16 2009-11-19 Gm Global Technology Operations, Inc. Enhanced oxygen pressure engine
US8474258B2 (en) 2008-09-24 2013-07-02 Deere & Company Stoichiometric compression ignition engine with increased power output
US8623301B1 (en) 2008-04-09 2014-01-07 C3 International, Llc Solid oxide fuel cells, electrolyzers, and sensors, and methods of making and using the same
US9905871B2 (en) 2013-07-15 2018-02-27 Fcet, Inc. Low temperature solid oxide cells
US10344389B2 (en) 2010-02-10 2019-07-09 Fcet, Inc. Low temperature electrolytes for solid oxide cells having high ionic conductivity

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1880715A1 (de) * 2006-07-19 2008-01-23 Abbott GmbH & Co. KG Pharmazeutisch annehmbare lösungsvermittelnde Zusammensetzung und diese enthaltende pharmazeutische Darreichungsform

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4099377A (en) * 1975-04-28 1978-07-11 Nissan Motor Company, Limited Internal combustion engine equipped with catalytic converter
US4404795A (en) * 1980-06-19 1983-09-20 Toyota Jidosha Kogyo Kabushiki Kaisha Method of and apparatus for reducing emitted amount of particulates contained in exhaust gas of diesel engine
US4437606A (en) * 1982-03-26 1984-03-20 Manville Service Corp. Beverage package and production blank with improved locking features
US4477417A (en) * 1981-10-21 1984-10-16 Degussa Aktiengesellschaft Catalyst for reducing the ignition temperature of diesel soot
US4537606A (en) * 1980-12-19 1985-08-27 Matsushita Electric Industrial Co., Ltd. Oxygen enriched gas supply arrangement for combustion
US4902309A (en) * 1987-06-24 1990-02-20 Hempenstall George T Improved method for the ignition and combustion of particulates in diesel exhaust gases
US5716586A (en) * 1993-06-03 1998-02-10 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Exhaust gas purifier
US6173567B1 (en) * 1998-09-14 2001-01-16 The University Of Chicago Method to reduce diesel engine exhaust emissions
US6467257B1 (en) * 2000-06-19 2002-10-22 Southwest Research Institute System for reducing the nitrogen oxide (NOx) and particulate matter (PM) emissions from internal combustion engines
US6503296B1 (en) * 1998-05-20 2003-01-07 Norsk Hydro Asa Membrane and use thereof
US6602822B2 (en) * 1998-03-24 2003-08-05 Ngk Insulators, Ltd. Catalyst for exhaust gas purification and exhaust gas purification system using the same
US6615580B1 (en) * 1999-06-23 2003-09-09 Southwest Research Institute Integrated system for controlling diesel engine emissions
US6622480B2 (en) * 2001-02-21 2003-09-23 Isuzu Motors Limited Diesel particulate filter unit and regeneration control method of the same
US6637204B2 (en) * 2000-12-14 2003-10-28 Siemens Aktiengesellschaft Device and method for the heating of a catalytic converter for a supercharged internal combustion engine
US20040065078A1 (en) * 2000-09-29 2004-04-08 Adolf Schafer-Sindlinger Catalytic soot filter and use thereof in treatment of lean exhaust gases
US6786041B2 (en) * 2000-02-16 2004-09-07 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification method and exhaust gas purification apparatus

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB892659A (en) * 1959-07-08 1962-03-28 Schweizerische Lokomotiv Apparatus for cleaning the exhaust gases of internal combustion engines
DE19900967A1 (de) * 1999-01-13 2000-07-20 Volkswagen Ag Vorrichtung zur Reinigung des Abgases einer Brennkraftmaschine
DE10204073A1 (de) * 2002-02-01 2003-08-14 Eberspaecher J Gmbh & Co Abgasanlage und Verfahren zur Regeneration eines Partikelfilters

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4099377A (en) * 1975-04-28 1978-07-11 Nissan Motor Company, Limited Internal combustion engine equipped with catalytic converter
US4404795A (en) * 1980-06-19 1983-09-20 Toyota Jidosha Kogyo Kabushiki Kaisha Method of and apparatus for reducing emitted amount of particulates contained in exhaust gas of diesel engine
US4537606A (en) * 1980-12-19 1985-08-27 Matsushita Electric Industrial Co., Ltd. Oxygen enriched gas supply arrangement for combustion
US4477417A (en) * 1981-10-21 1984-10-16 Degussa Aktiengesellschaft Catalyst for reducing the ignition temperature of diesel soot
US4437606A (en) * 1982-03-26 1984-03-20 Manville Service Corp. Beverage package and production blank with improved locking features
US4902309A (en) * 1987-06-24 1990-02-20 Hempenstall George T Improved method for the ignition and combustion of particulates in diesel exhaust gases
US5716586A (en) * 1993-06-03 1998-02-10 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Exhaust gas purifier
US6602822B2 (en) * 1998-03-24 2003-08-05 Ngk Insulators, Ltd. Catalyst for exhaust gas purification and exhaust gas purification system using the same
US6503296B1 (en) * 1998-05-20 2003-01-07 Norsk Hydro Asa Membrane and use thereof
US6173567B1 (en) * 1998-09-14 2001-01-16 The University Of Chicago Method to reduce diesel engine exhaust emissions
US6615580B1 (en) * 1999-06-23 2003-09-09 Southwest Research Institute Integrated system for controlling diesel engine emissions
US6786041B2 (en) * 2000-02-16 2004-09-07 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification method and exhaust gas purification apparatus
US6467257B1 (en) * 2000-06-19 2002-10-22 Southwest Research Institute System for reducing the nitrogen oxide (NOx) and particulate matter (PM) emissions from internal combustion engines
US20040065078A1 (en) * 2000-09-29 2004-04-08 Adolf Schafer-Sindlinger Catalytic soot filter and use thereof in treatment of lean exhaust gases
US6637204B2 (en) * 2000-12-14 2003-10-28 Siemens Aktiengesellschaft Device and method for the heating of a catalytic converter for a supercharged internal combustion engine
US6622480B2 (en) * 2001-02-21 2003-09-23 Isuzu Motors Limited Diesel particulate filter unit and regeneration control method of the same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070015002A1 (en) * 2005-07-14 2007-01-18 Ut-Battele, Llc Oxygen-donor and catalytic coatings of metal oxides and metals
US20090098289A1 (en) * 2007-10-12 2009-04-16 Deininger Mark A Pig and Method for Applying Prophylactic Surface Treatments
US8623301B1 (en) 2008-04-09 2014-01-07 C3 International, Llc Solid oxide fuel cells, electrolyzers, and sensors, and methods of making and using the same
US9670586B1 (en) 2008-04-09 2017-06-06 Fcet, Inc. Solid oxide fuel cells, electrolyzers, and sensors, and methods of making and using the same
US20090283059A1 (en) * 2008-05-16 2009-11-19 Gm Global Technology Operations, Inc. Enhanced oxygen pressure engine
US8176884B2 (en) * 2008-05-16 2012-05-15 GM Global Technology Operations LLC Enhanced oxygen pressure engine
US8474258B2 (en) 2008-09-24 2013-07-02 Deere & Company Stoichiometric compression ignition engine with increased power output
US10344389B2 (en) 2010-02-10 2019-07-09 Fcet, Inc. Low temperature electrolytes for solid oxide cells having high ionic conductivity
US11560636B2 (en) 2010-02-10 2023-01-24 Fcet, Inc. Low temperature electrolytes for solid oxide cells having high ionic conductivity
US9905871B2 (en) 2013-07-15 2018-02-27 Fcet, Inc. Low temperature solid oxide cells
US10707511B2 (en) 2013-07-15 2020-07-07 Fcet, Inc. Low temperature solid oxide cells

Also Published As

Publication number Publication date
EP1706606A1 (de) 2006-10-04
WO2005035951A1 (en) 2005-04-21

Similar Documents

Publication Publication Date Title
US8844274B2 (en) Compact diesel engine exhaust treatment system
EP2732141B1 (de) Verfahren und vorrichtung zur reaktivierung von abgasreinigungssystemen von dieselmotoren mit niederdruck-agr
US6497851B1 (en) Engine exhaust treatment apparatus and method of use
US9441517B2 (en) Diesel engine exhaust treatment system
CN108561211B (zh) 一种具有低背压、低起燃温度催化层的dpf及其制备工艺
EP1802856B1 (de) Motorgetriebenes fahrzeug mit abgasemissionskontrolle
KR20110041502A (ko) 린번 내연 엔진용 배기 시스템
JPWO2007114082A1 (ja) 内燃機関排気ガスの浄化方法
KR20130040881A (ko) 희박 연소 엔진용 배기 가스 후처리에서 질소 산화물 고갈 방법
KR20130003980A (ko) 배기 가스 정화 장치 및 이를 포함하는 배기 장치
EP2278132A1 (de) Abgasreinigungssystem
US20110030350A1 (en) Exhaust gas purifying apparatus
JP2009106913A (ja) 選択還元型触媒
JP2007130624A (ja) 排ガス浄化フィルタ
EP2299080B1 (de) Abgasreinigungsvorrichtung
JP4784761B2 (ja) 排気浄化装置
JP2008128046A (ja) 排気浄化装置
CN110785546A (zh) 排气净化系统
JP4736724B2 (ja) 内燃機関の排気浄化装置
US20070227120A1 (en) System Containing Oxygen Enriched Diesel Particulate Filter and Method Thereof
JP2006266192A (ja) エンジンの排気ガス浄化装置
US20080317643A1 (en) Selective reduction catalyst and engine exhaust gas purifier using the same
JP2002089240A (ja) 排気ガス浄化装置及びこれを用いた排気ガス浄化方法
JP2015507127A (ja) 排気ガスシステム
JP4671048B2 (ja) 排気浄化装置

Legal Events

Date Code Title Description
AS Assignment

Owner name: FIFTH THIRD BANK - CANADA BRANCH, CANADA

Free format text: SECURITY AGREEMENT;ASSIGNOR:ECS HOLDINGS, INC.;REEL/FRAME:016967/0271

Effective date: 20051230

AS Assignment

Owner name: ECS HOLDINGS, INC., OHIO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:THE LUBRIZOL CORPORATION;REEL/FRAME:016987/0605

Effective date: 20051230

AS Assignment

Owner name: ECS HOLDINGS, INC., OHIO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:THE LUBRIZOL CORPORATION;REEL/FRAME:019693/0449

Effective date: 20051230

Owner name: THE LUBRIZOL CORPORATION, OHIO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:YODICE, RICHARD;DALY, DANIEL T.;ANTOON, FRED A.;AND OTHERS;REEL/FRAME:019693/0418;SIGNING DATES FROM 20060110 TO 20060113

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION