US20070193156A1 - Additive building material mixtures containing spray-dried microparticles - Google Patents

Additive building material mixtures containing spray-dried microparticles Download PDF

Info

Publication number
US20070193156A1
US20070193156A1 US11/388,048 US38804806A US2007193156A1 US 20070193156 A1 US20070193156 A1 US 20070193156A1 US 38804806 A US38804806 A US 38804806A US 2007193156 A1 US2007193156 A1 US 2007193156A1
Authority
US
United States
Prior art keywords
microparticles
void
polymeric microparticles
concrete
building material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/388,048
Other languages
English (en)
Inventor
Holger Kautz
Jan Hendrik Schattka
Gerd Lohden
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Roehm GmbH Darmstadt
Original Assignee
Roehm GmbH Darmstadt
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Roehm GmbH Darmstadt filed Critical Roehm GmbH Darmstadt
Assigned to ROEHM GMBH & CO. KG reassignment ROEHM GMBH & CO. KG ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LOEHDEN, GERD, KAUTZ, HOLGER, SCHATTKA, JAN HENDRIK
Publication of US20070193156A1 publication Critical patent/US20070193156A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/24Macromolecular compounds
    • C04B24/26Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B24/2641Polyacrylates; Polymethacrylates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/24Macromolecular compounds
    • C04B24/26Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B16/00Use of organic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of organic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B16/04Macromolecular compounds
    • C04B16/08Macromolecular compounds porous, e.g. expanded polystyrene beads or microballoons
    • C04B16/085Macromolecular compounds porous, e.g. expanded polystyrene beads or microballoons expanded in situ, i.e. during or after mixing the mortar, concrete or artificial stone ingredients
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/24Macromolecular compounds
    • C04B24/26Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B24/2664Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of ethylenically unsaturated dicarboxylic acid polymers, e.g. maleic anhydride copolymers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/0045Polymers chosen for their physico-chemical characteristics
    • C04B2103/0049Water-swellable polymers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/0045Polymers chosen for their physico-chemical characteristics
    • C04B2103/0057Polymers chosen for their physico-chemical characteristics added as redispersable powders
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/0045Polymers chosen for their physico-chemical characteristics
    • C04B2103/0058Core-shell polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249967Inorganic matrix in void-containing component
    • Y10T428/249968Of hydraulic-setting material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • Y10T428/254Polymeric or resinous material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated
    • Y10T428/2998Coated including synthetic resin or polymer

Definitions

  • the present invention relates to the use of polymeric microparticles in hydraulically setting building material mixtures for the purpose of enhancing their frost resistance and cyclical freeze/thaw durability.
  • Concrete is an important building material and is defined by DIN 1045 (07/1988) as artificial stone formed by hardening from a mixture of cement, aggregate and water, together where appropriate with concrete admixtures and concrete additions.
  • DIN 1045 07/1988
  • One way in which concrete is classified is by its subdivision into strength groups (BI-BII) and strength classes (B5-B55).
  • BI-BII strength groups
  • B5-B55 strength classes
  • Mixing in gas-formers or foam-formers produces aerated concrete or foamed concrete (Römpp Lexikon, 10th ed., 1996, Georg Thieme Verlag).
  • Concrete has two time-dependent properties. Firstly, by drying out, it undergoes a reduction in volume that is termed shrinkage. The majority of the water, however, is bound in the form of water of crystallization. Concrete, rather than drying, sets: that is, the initially highly mobile cement paste (cement and water) starts to stiffen, becomes rigid, and, finally, solidifies, depending on the timepoint and progress of the chemical/mineralogical reaction between the cement and the water, known as hydration. As a result of the water-binding capacity of the cement it is possible for concrete, unlike quicklime, to harden and remain solid even under water. Secondly, concrete undergoes deformation under load, known as creep.
  • the freeze/thaw cycle refers to the climatic alternation of temperatures around the freezing point of water. Particularly in the case of mineral-bound building materials such as concrete, the freeze/thaw cycle is a mechanism of damage.
  • Valenza Methods for protecting concrete from freeze damage, U.S. Pat. No. 6,485,560 B1 (2002); M. Pigeon, B. Zuber & J. Marchand, Freeze/thaw resistance, Advanced Concrete Technology 2 (2003) 11/1-11/17; B. Erlin & B. Mather, A new process by which cyclic freezing can damage concrete—the Erlin/Mather effect, Cement & Concrete Research 35 (2005) 1407-11].
  • a precondition for improved resistance of the concrete on exposure to the freezing and thawing cycle is that the distance of each point in the hardened cement from the next artificial air pore does not exceed a defined value. This distance is also referred to as the “Powers spacing factor” [T. C. Powers, The air requirement of frost-resistant concrete, Proceedings of the Highway Research Board 29 (1949) 184-202]. Laboratory tests have shown that exceeding the critical “Power spacing factor” of 500 ⁇ m leads to damage to the concrete in the freezing and thawing cycle. In order to achieve this with a limited air-pore content, the diameter of the artificially introduced air pores must therefore be less than 200-300 ⁇ m [K. Snyder, K. Natesaiyer & K. Hover, The stereological and statistical properties of entrained air voids in concrete: A mathematical basis for air void systems characterization, Materials Science of Concrete VI (2001) 129-214].
  • an artificial air-pore system depends critically on the composition and the conformity of the aggregates, the type and amount of the cement, the consistency of the concrete, the mixer used, the mixing time, and the temperature, but also on the nature and amount of the agent that forms the air pores, the air entrainer. Although these influencing factors can be controlled if account is taken of appropriate production rules, there may nevertheless be a multiplicity of unwanted adverse effects, resulting ultimately in the concrete's air content being above or below the desired level and hence adversely affecting the strength or the frost resistance of the concrete.
  • These hydrophobic salts reduce the surface tension of the water and collect at the interface between cement particle, air and water. They stabilize the microbubbles and are therefore encountered at the surfaces of these air pores in the concrete as it hardens.
  • the other type for example sodium lauryl sulfate (SDS) or sodium dodecyl-phenylsulphonate—reacts with calcium hydroxide to form calcium salts which, in contrast, are soluble, but which exhibit an abnormal solution behavior. Below a certain critical temperature the solubility of these surfactants is very low, while above this temperature their solubility is very good. As a result of preferential accumulation at the air/water boundary they likewise reduce the surface tension, thus stabilize the microbubbles, and are preferably encountered at the surfaces of these air pores in the hardened concrete.
  • SDS sodium lauryl sulfate
  • sodium dodecyl-phenylsulphonate reacts with calcium hydroxide to form calcium salts which, in contrast, are soluble, but which exhibit an abnormal solution behavior. Below a certain critical temperature the solubility of these surfactants is very low, while above this temperature their solubility is very good. As a result of preferential accumulation at the air/water boundary they likewise reduce the surface tension,
  • the amount of fine substances in the concrete e.g. cement with different alkali content, additions such as flyash, silica dust or color additions
  • additions such as flyash, silica dust or color additions
  • air entrainment There may also be interactions with flow improvers that have a defoaming action and hence expel air pores, but may also introduce them in an uncontrolled manner.
  • a further disadvantage of the introduction of air pores is seen as being the decrease in the mechanical strength of the concrete with increasing air content.
  • microparticles of this kind for improving the frost resistance and cyclical freeze/thaw durability of concrete is already known from the prior art [cf. DE 2229094 A1, U.S. Pat. No. 4,057,526 B1, U.S. Pat. No. 4,082,562 B1, DE 3026719 A1].
  • the microparticles described therein have diameters of at least 10 ⁇ m (usually substantially larger) and possess air-filled or gas-filled voids. This likewise includes porous particles, which can be larger than 100 ⁇ m and may possess a multiplicity of relatively small voids and/or pores.
  • the object has been achieved through the use of polymeric microparticles, containing a void, in hydraulically setting building material mixtures, characterized in that gas-filled microparticles are used.
  • Gas-filled microparticles used are spray-dried core shell polymers.
  • the gas-filled microparticles are active as early as on incorporation into the building material mixture, since there is no need for water to diffuse out of the inside of the particle. Consequently, effective frost resistance and cyclical freeze/thaw durability is ensured almost immediately after hardening.
  • the (meth)acrylate notation here denotes not only methacrylate, such as methyl methacrylate, ethyl methacrylate, etc., but also acrylate, such as methyl acrylate, ethyl acrylate, etc., and also mixtures of both.
  • microparticles of the invention can be prepared preferably by emulsion polymerization and preferably have an average particle size of 100 to 5000 nm; particular preference is given to an average particle size of 200 to 2000 nm. The most preferred are average particle sizes of 250 to 1000 nm.
  • the average particle size is determined by, for example, counting a statistically significant amount of particles, using transmission electron micrographs.
  • microparticles are obtained in the form of an aqueous dispersion.
  • Microparticles of this kind are already known in the prior art and are described in the publications EP 22 633 B1, EP 73 529 B1 and EP 188 325 B1.
  • the voids in the microparticles are water-filled.
  • the dispersion is spray-dried. Spray drying removes the liquid from the core-shell polymer particles. Gas-filled hollow microspheres are obtained which are very stable.
  • the microparticles used are composed of polymer particles which possess a core (A) and at least one shell (B), the core/shell polymer particles having been swollen by means of a base.
  • the core (A) of the particle contains one or more ethylenically unsaturated carboxylic acid (derivative) monomers which permit swelling of the core; these monomers are preferably selected from-the group of acrylic acid, methacrylic acid, maleic acid, maleic anhydride, fumaric acid, itaconic acid and crotonic acid and mixtures thereof. Acrylic acid and methacrylic acid are particularly preferred.
  • the shell (B) predominantly of nonionic, ethylenically unsaturated monomers.
  • monomers use is made preferably of styrene, butadiene, vinyltoluene, ethylene, vinyl acetate, vinyl chloride, vinylidene chloride, acrylonitrile, acrylamide, methacrylamide, C1-C12 alkyl esters of (meth)acrylic acid or mixtures thereof.
  • core-shell particles which have a single-shell or multi-shell construction, or whose shells exhibit a gradient.
  • the polymer content of the microparticles used may be situated, as a function for example of the diameter, the core/shell ratio and the swelling efficiency, at 2% to 98% by volume.
  • the gas-filled microparticles are added to the building material mixture in a preferred amount of 0 . 01 % to 5 % by volume, in particular 0.1% to 0.5% by volume.
  • the building material mixture in the form for example of concrete or mortar, may in this case include the customary hydraulically setting binders, such as cement, lime, gypsum or anhydrite, for example.
  • the advantage according to the invention is manifested above all in the weathering factor, which represents a quantitative evaluation of the visible frost damage at the surface of a sample.
  • microparticles of the invention it is possible to keep the uncontrolled introduction of air into the building material mixture at an extraordinarily low level.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • On-Site Construction Work That Accompanies The Preparation And Application Of Concrete (AREA)
US11/388,048 2006-02-23 2006-03-24 Additive building material mixtures containing spray-dried microparticles Abandoned US20070193156A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DEDE102006008966.9 2006-02-23
DE200610008966 DE102006008966A1 (de) 2006-02-23 2006-02-23 Additive Baustoffmischungen mit sprühgetrockneten Mikropartikeln

Publications (1)

Publication Number Publication Date
US20070193156A1 true US20070193156A1 (en) 2007-08-23

Family

ID=38066511

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/388,048 Abandoned US20070193156A1 (en) 2006-02-23 2006-03-24 Additive building material mixtures containing spray-dried microparticles

Country Status (10)

Country Link
US (1) US20070193156A1 (ru)
EP (1) EP1986976A1 (ru)
JP (1) JP5065302B2 (ru)
KR (1) KR20080112206A (ru)
CN (1) CN101024557B (ru)
BR (1) BRPI0708118A2 (ru)
CA (1) CA2643456A1 (ru)
DE (1) DE102006008966A1 (ru)
RU (1) RU2008137544A (ru)
WO (1) WO2007096235A1 (ru)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040116567A1 (en) * 2001-02-07 2004-06-17 Gunter Schmitt Hot sealing compound for aluminum foils applied to polypropylene and polystyrene
US20070117948A1 (en) * 2003-10-29 2007-05-24 Roehm Gmbh & Co. Kg Mixtures for producing reactive hot melt adhesives and reactive hot melt adhesives obtained on the basis thereof
US20070259987A1 (en) * 2004-07-23 2007-11-08 Roehm Gmbh Low Water-Absorption Plastisol Polymers
US20080237529A1 (en) * 2005-10-28 2008-10-02 Evonik Roehm Gmbh Sprayable Acoustic Compositions
US20080262176A1 (en) * 2005-09-22 2008-10-23 Evonik Roehm Gmbh Process for Preparing (Meth) Acrylate-Based Aba Triblock Copolymers
US20080292893A1 (en) * 2006-02-28 2008-11-27 Evonik Roehm Gmbh Heat-Sealing Material for Aluminum Foils and Polyethylene Terephthalate Foils Against Polypropyl, Polyvinyl Chloride, and Polystyrol Containers
US20090048401A1 (en) * 2006-02-28 2009-02-19 Evonik Roehm Gmbh Synthesis of polyester-graft-poly(meth)acrylate copolymers
US20090062508A1 (en) * 2006-04-03 2009-03-05 Evonik Roehm Gmbh Copper removal from atrp products by means of addition of sulfur compounds
US20090165949A1 (en) * 2006-02-16 2009-07-02 Evonik Roehm Gmbh Method of bonding materials of construction using nanoscale, superparamagnetic poly(meth)acrylate polymers
US20090275707A1 (en) * 2006-08-09 2009-11-05 Evonik Roehm Gmbh Process for preparing halogen-free atrp products
US20090312498A1 (en) * 2006-08-09 2009-12-17 Evonik Roehm Gmbh Process for preparing hydroxy-telechelic atrp products
US20090326163A1 (en) * 2006-08-09 2009-12-31 Evonik Roehm Gmbh Process for preparing acid-terminated atrp products
US20100041852A1 (en) * 2006-10-10 2010-02-18 Evonik Roehm Gmbh Method for producing silyl telechelic polymers
US20100062271A1 (en) * 2006-11-22 2010-03-11 Evonik Roehm Gmbh Process for producing improved binders for plastisols
US20100280182A1 (en) * 2006-07-28 2010-11-04 Evonik Roehm Gmbh Method for the production of (meth) acrylate-based aba triblock copolymers
US8025758B2 (en) 2005-06-17 2011-09-27 Evonik Rohm Gmbh Heat-sealing compound for sealing aluminium foil and polyethylene terephthalate film to polypropylene, polyvinyl chloride and polystyrene containers

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2562313C1 (ru) * 2014-08-01 2015-09-10 федеральное государственное автономное образовательное учреждение высшего образования "Нижегородский государственный университет им. Н.И. Лобачевского" Цементная композиция

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3611583A (en) * 1970-05-28 1971-10-12 Dow Chemical Co Method for expanding and drying expandable microspheres
US4057526A (en) * 1975-05-12 1977-11-08 Akzo N.V. Process for preparing frost resistant concrete
US5794403A (en) * 1995-10-21 1998-08-18 Degussa Aktiengesellschaft Fireproof transparent pane panel
US6288174B1 (en) * 1995-07-07 2001-09-11 Mitsubishi Rayon Co., Ltd. Powdery material and modifier for cementitious material
US6498209B1 (en) * 1998-03-31 2002-12-24 Roehm Gmbh & Co. Kg Poly(meth)acrylate plastisols
US6566441B1 (en) * 1999-06-21 2003-05-20 Roehm Gmbh & Co Kg Poly(meth)acrylate plastisols and process for the production thereof
US6620487B1 (en) * 2000-11-21 2003-09-16 United States Gypsum Company Structural sheathing panels
US20040034147A1 (en) * 2002-08-13 2004-02-19 Jsr Corporation Hollow polymer particle, process for producing the same, paper coating composition using the same, coated paper and process for producing the same
US20040116567A1 (en) * 2001-02-07 2004-06-17 Gunter Schmitt Hot sealing compound for aluminum foils applied to polypropylene and polystyrene
US6809163B2 (en) * 2000-12-28 2004-10-26 Roehm Gmbh & Co Kg Process for preparing bead polymers with an average particle size in the range from 1 to 40 μM, moulding compositions comprising bead polymer, and mouldings and PAMA plastisols
US20050274294A1 (en) * 2004-06-15 2005-12-15 Brower Lynn E Freeze-thaw durability of dry cast cementitious mixtures
US6989409B2 (en) * 2002-06-21 2006-01-24 Roehm Gmbh & Co. Kg Method for synthesis of spray-dried poly(METH)acrylate polymers, use of same as polymer components for plastisols, and plastisols produced therewith
US7049355B2 (en) * 1998-06-16 2006-05-23 Roehm Gmbh & Co. Kg Low-odor, cold-curing (METH) acrylate reaction resin for floor coating, a floor coating containing the reaction resin, and a process for the preparation of the floor coating
US20070068088A1 (en) * 2005-09-29 2007-03-29 Lars Einfeldt Use of polymeric microparticles in building material mixtures
US20070117948A1 (en) * 2003-10-29 2007-05-24 Roehm Gmbh & Co. Kg Mixtures for producing reactive hot melt adhesives and reactive hot melt adhesives obtained on the basis thereof
US20070259987A1 (en) * 2004-07-23 2007-11-08 Roehm Gmbh Low Water-Absorption Plastisol Polymers
US20080057205A1 (en) * 2005-06-17 2008-03-06 Roehm Gmbh Heat-Sealing Compound For Sealing Aluminium Foil And Polyethlene Terephthalate Film To Polypropylene, Polyvinyl Chloride and Polystyrene Containers
US20080292893A1 (en) * 2006-02-28 2008-11-27 Evonik Roehm Gmbh Heat-Sealing Material for Aluminum Foils and Polyethylene Terephthalate Foils Against Polypropyl, Polyvinyl Chloride, and Polystyrol Containers
US20090048401A1 (en) * 2006-02-28 2009-02-19 Evonik Roehm Gmbh Synthesis of polyester-graft-poly(meth)acrylate copolymers
US20090062508A1 (en) * 2006-04-03 2009-03-05 Evonik Roehm Gmbh Copper removal from atrp products by means of addition of sulfur compounds

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT311863B (de) * 1971-06-15 1973-12-10 Theodor Chvatal Frostbeständiger Beton
DE3026719A1 (de) * 1979-07-17 1981-05-21 Gerhard Dipl.-Ing. Dr.techn. Wien Schwarz Hydraulisches bindemittel sowie verfahren zur herstellung von hohlteilchen fuer dieses bindemittel
EP0654454A1 (en) * 1993-11-22 1995-05-24 Rohm And Haas Company A core-shell polymer powder
EP0725092A3 (de) * 1995-02-06 1997-08-27 Chemie Linz Gmbh Redispergierbare, pulverförmige Kern-Mantel-Polymere, deren Herstellung und Verwendung
DE19833062A1 (de) * 1998-07-22 2000-02-03 Elotex Ag Sempach Station Redispergierbares Pulver und dessen wäßrige Dispersion, Verfahren zur Herstellung sowie Verwendung
JP2000178055A (ja) * 1998-12-17 2000-06-27 Mitsubishi Rayon Co Ltd セメント混和剤およびその製造方法

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3611583A (en) * 1970-05-28 1971-10-12 Dow Chemical Co Method for expanding and drying expandable microspheres
US4057526A (en) * 1975-05-12 1977-11-08 Akzo N.V. Process for preparing frost resistant concrete
US6288174B1 (en) * 1995-07-07 2001-09-11 Mitsubishi Rayon Co., Ltd. Powdery material and modifier for cementitious material
US5794403A (en) * 1995-10-21 1998-08-18 Degussa Aktiengesellschaft Fireproof transparent pane panel
US6498209B1 (en) * 1998-03-31 2002-12-24 Roehm Gmbh & Co. Kg Poly(meth)acrylate plastisols
US7049355B2 (en) * 1998-06-16 2006-05-23 Roehm Gmbh & Co. Kg Low-odor, cold-curing (METH) acrylate reaction resin for floor coating, a floor coating containing the reaction resin, and a process for the preparation of the floor coating
US6566441B1 (en) * 1999-06-21 2003-05-20 Roehm Gmbh & Co Kg Poly(meth)acrylate plastisols and process for the production thereof
US6620487B1 (en) * 2000-11-21 2003-09-16 United States Gypsum Company Structural sheathing panels
US6809163B2 (en) * 2000-12-28 2004-10-26 Roehm Gmbh & Co Kg Process for preparing bead polymers with an average particle size in the range from 1 to 40 μM, moulding compositions comprising bead polymer, and mouldings and PAMA plastisols
US20040116567A1 (en) * 2001-02-07 2004-06-17 Gunter Schmitt Hot sealing compound for aluminum foils applied to polypropylene and polystyrene
US6989409B2 (en) * 2002-06-21 2006-01-24 Roehm Gmbh & Co. Kg Method for synthesis of spray-dried poly(METH)acrylate polymers, use of same as polymer components for plastisols, and plastisols produced therewith
US20040034147A1 (en) * 2002-08-13 2004-02-19 Jsr Corporation Hollow polymer particle, process for producing the same, paper coating composition using the same, coated paper and process for producing the same
US20070117948A1 (en) * 2003-10-29 2007-05-24 Roehm Gmbh & Co. Kg Mixtures for producing reactive hot melt adhesives and reactive hot melt adhesives obtained on the basis thereof
US20050274294A1 (en) * 2004-06-15 2005-12-15 Brower Lynn E Freeze-thaw durability of dry cast cementitious mixtures
US20070259987A1 (en) * 2004-07-23 2007-11-08 Roehm Gmbh Low Water-Absorption Plastisol Polymers
US20080057205A1 (en) * 2005-06-17 2008-03-06 Roehm Gmbh Heat-Sealing Compound For Sealing Aluminium Foil And Polyethlene Terephthalate Film To Polypropylene, Polyvinyl Chloride and Polystyrene Containers
US20070068088A1 (en) * 2005-09-29 2007-03-29 Lars Einfeldt Use of polymeric microparticles in building material mixtures
US20080292893A1 (en) * 2006-02-28 2008-11-27 Evonik Roehm Gmbh Heat-Sealing Material for Aluminum Foils and Polyethylene Terephthalate Foils Against Polypropyl, Polyvinyl Chloride, and Polystyrol Containers
US20090048401A1 (en) * 2006-02-28 2009-02-19 Evonik Roehm Gmbh Synthesis of polyester-graft-poly(meth)acrylate copolymers
US20090062508A1 (en) * 2006-04-03 2009-03-05 Evonik Roehm Gmbh Copper removal from atrp products by means of addition of sulfur compounds

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040116567A1 (en) * 2001-02-07 2004-06-17 Gunter Schmitt Hot sealing compound for aluminum foils applied to polypropylene and polystyrene
US7498373B2 (en) 2001-02-07 2009-03-03 Roehm Gmbh & Co. Kg Hot sealing compound for aluminum foils applied to polypropylene and polystyrene
US20070117948A1 (en) * 2003-10-29 2007-05-24 Roehm Gmbh & Co. Kg Mixtures for producing reactive hot melt adhesives and reactive hot melt adhesives obtained on the basis thereof
US20070259987A1 (en) * 2004-07-23 2007-11-08 Roehm Gmbh Low Water-Absorption Plastisol Polymers
US8933169B2 (en) 2004-07-23 2015-01-13 Kaneka Belguim N.V. Low water-absorption plastisol polymers
US8025758B2 (en) 2005-06-17 2011-09-27 Evonik Rohm Gmbh Heat-sealing compound for sealing aluminium foil and polyethylene terephthalate film to polypropylene, polyvinyl chloride and polystyrene containers
US7868098B2 (en) 2005-09-22 2011-01-11 Evonik Roehm Gmbh Process for preparing (meth) acrylate-based ABA triblock copolymers
US20080262176A1 (en) * 2005-09-22 2008-10-23 Evonik Roehm Gmbh Process for Preparing (Meth) Acrylate-Based Aba Triblock Copolymers
US20080237529A1 (en) * 2005-10-28 2008-10-02 Evonik Roehm Gmbh Sprayable Acoustic Compositions
US8025756B2 (en) 2006-02-16 2011-09-27 Evonik Degussa Gmbh Method of bonding materials of construction using nanoscale, superparamagnetic poly(meth)acrylate polymers
US20090165949A1 (en) * 2006-02-16 2009-07-02 Evonik Roehm Gmbh Method of bonding materials of construction using nanoscale, superparamagnetic poly(meth)acrylate polymers
US20090048401A1 (en) * 2006-02-28 2009-02-19 Evonik Roehm Gmbh Synthesis of polyester-graft-poly(meth)acrylate copolymers
US20080292893A1 (en) * 2006-02-28 2008-11-27 Evonik Roehm Gmbh Heat-Sealing Material for Aluminum Foils and Polyethylene Terephthalate Foils Against Polypropyl, Polyvinyl Chloride, and Polystyrol Containers
US8084136B2 (en) 2006-02-28 2011-12-27 Evonik Röhm Gmbh Heat-sealing material for aluminum foils and polyethylene terephthalate foils against polypropyl, polyvinyl chloride, and polystyrol containers
US8053522B2 (en) 2006-02-28 2011-11-08 Evonik Roehm Gmbh Synthesis of polyester-graft-poly(meth)acrylate copolymers
US7999066B2 (en) 2006-04-03 2011-08-16 Evonik Roehm Gmbh Copper removal from ATRP products by means of addition of sulfur compounds
US20090062508A1 (en) * 2006-04-03 2009-03-05 Evonik Roehm Gmbh Copper removal from atrp products by means of addition of sulfur compounds
US20100280182A1 (en) * 2006-07-28 2010-11-04 Evonik Roehm Gmbh Method for the production of (meth) acrylate-based aba triblock copolymers
US8106129B2 (en) 2006-07-28 2012-01-31 Evonik Röhm Gmbh Method for the production of (meth) acrylate-based ABA triblock copolymers
US20090275707A1 (en) * 2006-08-09 2009-11-05 Evonik Roehm Gmbh Process for preparing halogen-free atrp products
US20090312498A1 (en) * 2006-08-09 2009-12-17 Evonik Roehm Gmbh Process for preparing hydroxy-telechelic atrp products
US20090326163A1 (en) * 2006-08-09 2009-12-31 Evonik Roehm Gmbh Process for preparing acid-terminated atrp products
US8143354B2 (en) * 2006-08-09 2012-03-27 Evonik Röhm Gmbh Process for preparing acid-terminated ATRP products
US20100041852A1 (en) * 2006-10-10 2010-02-18 Evonik Roehm Gmbh Method for producing silyl telechelic polymers
US20100062271A1 (en) * 2006-11-22 2010-03-11 Evonik Roehm Gmbh Process for producing improved binders for plastisols

Also Published As

Publication number Publication date
CN101024557A (zh) 2007-08-29
EP1986976A1 (de) 2008-11-05
KR20080112206A (ko) 2008-12-24
DE102006008966A1 (de) 2007-08-30
JP5065302B2 (ja) 2012-10-31
RU2008137544A (ru) 2010-03-27
CA2643456A1 (en) 2007-08-30
CN101024557B (zh) 2012-12-05
BRPI0708118A2 (pt) 2011-05-17
WO2007096235A1 (de) 2007-08-30
JP2009527448A (ja) 2009-07-30

Similar Documents

Publication Publication Date Title
US20070193156A1 (en) Additive building material mixtures containing spray-dried microparticles
US8039521B2 (en) Additive building material mixtures containing different-sized microparticles
US20070196655A1 (en) Additive building material mixtures containing microparticles whose shells are porous and/or hydrophilic
US20070208107A1 (en) Additive building material mixtures containing microparticles swollen in the building material mixture
US8177904B2 (en) Use of polymeric microparticles in building material mixtures
US20070197671A1 (en) Additive building material mixtures containing microparticles having very thin shells
US20070197689A1 (en) Additive building material mixtures containing nonionic emulsifiers
US20070193478A1 (en) Additive building material mixtures containing microparticles having non-polar shells
US20070197690A1 (en) Additive building material mixtures containing sterically or electrostatically repulsive monomers in the microparticles' shell
US20070204543A1 (en) Additive building material mixtures containing ionically swollen microparticles
US20070197691A1 (en) Additive building material mixtures containing ionic emulsifiers
MX2008009251A (en) Additive building material mixtures comprising microparticles with apolar shells

Legal Events

Date Code Title Description
AS Assignment

Owner name: ROEHM GMBH & CO. KG, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KAUTZ, HOLGER;SCHATTKA, JAN HENDRIK;LOEHDEN, GERD;REEL/FRAME:018117/0771;SIGNING DATES FROM 20060518 TO 20060519

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION