US20070184955A1 - Heated cylinder - Google Patents

Heated cylinder Download PDF

Info

Publication number
US20070184955A1
US20070184955A1 US10/599,754 US59975405A US2007184955A1 US 20070184955 A1 US20070184955 A1 US 20070184955A1 US 59975405 A US59975405 A US 59975405A US 2007184955 A1 US2007184955 A1 US 2007184955A1
Authority
US
United States
Prior art keywords
heated cylinder
sleeve layer
cylinder according
outer sleeve
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/599,754
Other languages
English (en)
Inventor
Thomas Gruber-Nadlinger
Stevan Lomic
Guenter Halmschlager
Christoph Haase
Herbert Schrefl
Josef Kerschbaumer
Stefan Lehner-Dittenberger
Berkes Hermann
Erich Rollenitz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Voith Patent GmbH
Original Assignee
Voith Patent GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=34964138&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20070184955(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Voith Patent GmbH filed Critical Voith Patent GmbH
Assigned to VOITH PATENT GMBH reassignment VOITH PATENT GMBH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HALMSCHLAGER, GUENTER, KERSCHBAUMER, JOSEF, SCHREFL, HERBERT, LOMIC, STEVAN, HAASE, CHRISTOPH, GRUBER-NADLINGER, THOMAS, HERMANN, BERKES, LEHNER-DITTENBERGER, STEFAN, ROLLENITZ, ERICH
Publication of US20070184955A1 publication Critical patent/US20070184955A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21FPAPER-MAKING MACHINES; METHODS OF PRODUCING PAPER THEREON
    • D21F5/00Dryer section of machines for making continuous webs of paper
    • D21F5/02Drying on cylinders
    • D21F5/022Heating the cylinders
    • D21F5/028Heating the cylinders using steam
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21FPAPER-MAKING MACHINES; METHODS OF PRODUCING PAPER THEREON
    • D21F5/00Dryer section of machines for making continuous webs of paper
    • D21F5/02Drying on cylinders
    • D21F5/021Construction of the cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F5/00Elements specially adapted for movement
    • F28F5/02Rotary drums or rollers

Definitions

  • This invention relates to a heated cylinder for heating a paper web, cardboard web, tissue web or other fiber web in a machine used for producing and/or refining the fiber web, said heated cylinder comprising a cylinder sleeve which is impinged upon at least in part from the inside by a hot fluid and has at least one inner and an outer sleeve layer.
  • Such a heated cylinder is known from DE 102 60 509.2.
  • the tensile stresses which arise because the inner region of the cylinder expands more intensively than the outer region are minimized by the cylinder sleeve being comprised of at least two sleeve layers and by the material of the outer sleeve layer having, compared to the material of the inner sleeve layer, a larger coefficient of thermal expansion at a mounted temperature below the mean operating temperature and a smaller coefficient of thermal expansion at a mounted temperature above the mean operating temperature.
  • a further measure consists of the layer thickness of the outer sleeve layer being smaller than that of the inner sleeve layer.
  • a dryer for drying a fiber web on which a through-flow cylinder is used in conjunction with a hood blower.
  • the latter is equipped with a nozzle arrangement with whose help jets of drying gas are directed on to the outer surface of the web to be dried while said web is being guided over a sector of approx. 270° or more around the heated cylinder.
  • the sleeve of the cylinder is equipped with a system of duct pipes into which a coolant can be conveyed from a coolant source. Thanks to the jets of drying gas, water in the web is vaporized outwards and removed through spaces in the hood blower.
  • the object of the present invention is to increase the drying performance of a heatable cylinder.
  • the wall thickness of the outer sleeve layer can be kept small; in particular the loads of the outer wall of the cylinder can be kept small by supports resting against the core of the cylinder or by cross-struts.
  • the temperature gradient in this sleeve layer can also be kept small.
  • the pressure in the double-shell solution of the invention acts only in the ring-shaped cross section between the outer shell and the outside of the inner shell, which are fixed relative to each other by means of connection elements.
  • the outer shell is held back by the connection elements as the result of the pressure acting in opposite direction on the inner shell, thus reducing the load on the inner shell likewise.
  • the remaining load for both shells is defined by the pressure and the difference of the pressurized areas, which corresponds to the difference of their diameters.
  • the shells can be constructed far thinner thanks to the reduction of the load, enabling a reduction of dead weight for the same load capacity and an improvement of heat transfer due to the smaller wall thickness.
  • the inventive measure proves to be particularly advantageous in the case of a drying arrangement in which the cylinder, as known from EP 0 559 628 B1, is covered with a hood over a large overrolling region of its sleeve surface, for example 270°.
  • the hood is filled with a medium, in particular water, at a positive pressure of 1 to 5 bar. Owing to the fact that the hood is stationary and does not enclose the entire circumference, the sleeve surface is subjected to a cyclic load. Therefore, a compressive load acts on a point on the sleeve surface of the cylinders as soon as the point moves into the region which is enwrapped by the pressure hood. The pressure is relieved again as soon as the point leaves this region. The pressurization produces a high mechanical load that acts on the cylinder surface moreover cyclically with each rotation. Drying cylinders of conventional design would be unable to withstand such compressive loading.
  • the outer shelf is preferably thin-walled in construction and has a wall thickness in the range between 5 and 15 mm, in particular between 8 and 15 mm. It is connected to the rigid core of the cylinder by means of bars. Between the thin outer shell and the core is the steam space.
  • the steam in the hollow space between the two sleeve layers has a positive pressure of between 2 and 13 bar.
  • An advantageous measure entails applying a structure with ribs or platelets on to the inner surface of the outer sleeve layer facing the hollow space, with the structure extending in axial direction. This contributes to the temperature gradient between the outer sleeve surface of the drying cylinder and the hollow space with the hot medium between the inner wall and the outer wall being kept small.
  • the condensate collects at the bottom of the ribs. Even a small condensate film thickness would have a great thermally insulating effect and increase the temperature gradient toward the cylinder surface.
  • the flank region of the ribs is not covered with condensate and therefore stands in direct contact with the steam, thus catering for a high thermal flow.
  • the enlarged surface of the outer shell of the cylinder resulting from the ribs improves the heat transfer by increasing the area of contact with the steam.
  • copper or aluminium is used to manufacture at least the ribs or the ribs as well as the inside of the cylinder sleeve.
  • steel or high-grade steel or some other metal or metal alloy can also be used to manufacture the structures applied to the inside of the cylinder sleeve provided a big enough factor for enlarging the surface is selected.
  • the material used to improve the thermal conductivity is the same as that of the cylinder sleeve connected to the structures in order to ensure that no stresses arise due to different thermal expansions.
  • the outer layer is comprised of boiler steel. Steels with an austenitic microstructure are less suited.
  • the material from which the inner sleeve layer is made does not have to satisfy any special requirements with regard to thermal conductivity; nevertheless it is an advantage for the inner sleeve layer to have a high modulus of elasticity and at least the strength of an average structural steel.
  • the advantages of the invention lie in the low mechanical load which exists because the steam is distributed only in ducts. A high thermal flow density is possible as the result of a reduced temperature gradient toward the surface.
  • the heated cylinder is suitable for high compressive loads from outside and for high temperature stresses.
  • a steam with a lower saturated steam pressure can be used.
  • the steam can expand to a lower pressure in the turbine and thus produce more electric power.
  • the cylinder prefferably connected by way of pipes between the inner and the outer sleeve layer via rotary bushings to a fixed steam supply or an exhaust steam and condensed water tank.
  • the inner sleeve layer performs the load-bearing function and has a rigid core, it absorbs the loads acting on the outer sleeve layer.
  • the platelets are arranged preferably parallel with each other, in particular in axial direction or also in circumferential direction of the cylinder, alternatively also crosswise, helically or in a honeycomb or lattice structure.
  • a few platelets form a screw-shaped helix around the longitudinal axis of the cylinder.
  • the platelets have either a flat or a profiled surface. It is also an advantage for the platelets to become wider as they approach the outer sleeve shell.
  • the invention also relates to a heated cylinder for heating a paper web, cardboard web, tissue web and some other fiber web in a machine for producing and/or refining the fiber web which has only one outer cylinder sleeve.
  • the latter is invested with high stability according to the invention in that it is supported by struts inside the cylinder.
  • the struts can be, for example, bars extending in radial direction; however, provision can be made similarly for supporting walls which dissect the longitudinal axis.
  • the struts or walls lend the cylinder such stability that the sleeve wall needs to have only a small thickness. It is comprised of an efficiently heat-conducting material that transfers the heat, which was introduced into the inside of the cylinder by the fluid, to the fiber web being conveyed over its outer sleeve wall. This results in a higher energy yield than compared with the state of the art and a reduction of operating costs.
  • FIG. 1 is a cross section through a first cylinder
  • FIG. 2 is a longitudinal section through the cylinder according to FIG. 1 ,
  • FIG. 3 is a perspective partial view of a second cylinder
  • FIG. 4 is a greatly enlarged detail from the sleeve of the second cylinder in a sectional view along a line IV-IV in FIG. 3 ,
  • FIG. 5 is a detail from a sectional view of a third cylinder
  • FIG. 6 is a cross section through another cylinder.
  • a cylinder 1 used as a heated cylinder ( FIG. 1 ) comprises a core with a central axis 2 and an inner shell 5 which is connected to it via the end walls 3 , 4 ( FIG. 2 ).
  • struts (not illustrated here) extending in radial direction between the central axis 2 and the inner shell 5 may be present to increase the stability of the cylinder 1 .
  • the inner shell 5 has a much greater thickness than an outer sleeve layer 6 .
  • the inner sleeve layer or inner shell 5 is separated from and firmly connected to the outer sleeve layer 5 by means of bars 7 .
  • the regions between the bars 7 form ducts which extend parallel to the longitudinal axis of the cylinders 1 and together represent the steam space.
  • ribs 8 are fastened to the inner side of the sleeve layer 6 and enlarge the surface of the sleeve layer 6 .
  • the cylinder 1 has in at least one of its bearing journals 9 , 10 an outer ring-shaped pipe 11 and an inner pipe 12 .
  • an outer ring-shaped pipe 11 instead of the single outer pipe 11 it is also possible for there to be several outer pipes.
  • Hot steam flows via the outer pipe 11 into the cylinder 1 and is routed first along the end wall 3 and then between the outer sleeve-side wall of the inner shell 5 and the inner wall of the outer sleeve layer 6 .
  • heat is transferred from the steam via the sleeve layer 6 to the fiber web which runs along between said sleeve layer and along the hood blower.
  • the steam is cooled as the result and condenses in part to form water.
  • the cooled steam and the condensate from the steam are directed on between the end wall 4 of the inner shell 5 and then through a central pipe 13 in the axis 2 .
  • the pipe 13 leads into the pipe 12 in the bearing journal 9 .
  • the pipes 11 , 12 are connected to a fixed steam supply or an exhaust steam and condensed water tank.
  • the two pipes 11 , 12 are routed through the same rotary journal 9 it is also possible for one of the two pipes 11 , 12 to be directed through another bearing journal 10 .
  • a cylinder 14 is constructed similarly with a double shell.
  • an inner shell 15 mainly performs the load-bearing function and serves as a rigid core that also absorbs, among other things, the loads of an outer thin sleeve layer 16 .
  • the connection between the inner shell 15 and the sleeve layer 16 is made preferably by means of pins 17 , which are either hollow-walled or are comprised of solid material. Said pins can have any cross sectional shape and be round, rectangular or hexagonal for example. The cross sectional shape can also change over the pin length.
  • the pins 17 are pushed through openings in the sleeve layer 16 or in the inner shell 15 and are connected to the sleeve layer 16 and/or the inner shall 15 preferably by welding, in particular friction welding, or by gluing, screwing, soldering, clamping or some other techniques.
  • the pins 17 can also be constructed in two or more parts. Various methods such as screwing, gluing, clamping and welding or plastically deforming methods such as riveting are suitable for connecting the parts of the pins 17 to each other.
  • the pins 17 can be screwed into the inner shell 15 in specially prepared drilled holes, punched holes or torch-cut holes with screw threads and be joined to the inner side of the sleeve layer 16 by friction welding or gluing. If the pins 17 are comprised of two parts, the first part for example can be attached to the inner side of the sleeve layer by friction welding while the second part of the pin is press-fitted to the inner shell 15 .
  • a cylinder 18 constructed essentially like the cylinder 1 is equipped with one inner wall 19 and one outer wall 20 .
  • Platelets 21 are fitted between the two walls 19 , 20 .
  • the platelets 21 extend either parallel to the longitudinal axis of the cylinder 18 or are helical.
  • the hollow spaces between the platelets 21 are supplied with steam, as shown in FIG. 2 by the example of cylinder 1 , in order to heat the outer wall 19 which is very much thinner compared to the inner wall 20 .
  • Either all the platelets 21 are equally thick and all used to carry the outer wall 20 , or provision is made between the platelets 21 for additionally reinforced platelets 22 which have mainly a load-bearing function while the platelets 21 perform mainly the heat transfer function.
  • the cylinder 18 is comprised of steel, in particular stainless steel.
  • the platelets 21 , 22 either have the same cross section over their entire length or they become wider in the direction of the outer wall 20 , as shown in FIG. 5 .
  • An outer structure can be applied in addition on to the platelets 21 , 22 in order to enlarge once again the surface for the heat transfer between the steam and the outer wall 20 .
  • FIG. 6 In another embodiment of the invention ( FIG. 6 ) provision is made for a cylinder 23 with just one outer wall 24 which is supported by struts 25 , 26 , 27 in the inside of the cylinder 18 .
  • the struts 25 , 26 , 27 are constructed either as bars or as continuous walls in longitudinal direction of the cylinder 23 . Like the pins 17 they are connected to the outer wall 24 by screwed connections, welding, soldering, clamping or plastic deformation.
  • the struts 25 , 26 , 27 can also be connected to each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Drying Of Solid Materials (AREA)
  • Glass Compositions (AREA)
  • Paper (AREA)
US10/599,754 2004-04-13 2005-03-21 Heated cylinder Abandoned US20070184955A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102004017811.9 2004-04-13
DE102004017811A DE102004017811A1 (de) 2004-04-13 2004-04-13 Beheizter Zylinder
PCT/EP2005/051283 WO2005100683A1 (de) 2004-04-13 2005-03-21 Beheizter zylinder

Publications (1)

Publication Number Publication Date
US20070184955A1 true US20070184955A1 (en) 2007-08-09

Family

ID=34964138

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/599,754 Abandoned US20070184955A1 (en) 2004-04-13 2005-03-21 Heated cylinder

Country Status (6)

Country Link
US (1) US20070184955A1 (de)
EP (1) EP1738022B1 (de)
AT (1) ATE395460T1 (de)
AU (1) AU2005233311B2 (de)
DE (2) DE102004017811A1 (de)
WO (1) WO2005100683A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070060457A1 (en) * 2005-09-15 2007-03-15 Eastman Kodak Company Circumferentially variable surface temperature roller
US10843010B2 (en) 2011-10-21 2020-11-24 Accuray Incorporated Image-guided radiation treatment with imaging data using imaging radiation at different energy levels

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005000795A1 (de) * 2005-01-05 2006-07-13 Voith Paper Patent Gmbh Vorrichtung und Verfahren zur Herstellung und/oder Veredelung einer Faserstoffbahn
DE102006015796A1 (de) * 2005-05-13 2006-11-16 Voith Patent Gmbh Trockenzylinder
DE102006051053A1 (de) 2006-10-30 2008-05-08 Voith Patent Gmbh Trockenpartie einer Papiermaschine
DE102006051051A1 (de) 2006-10-30 2008-05-08 Voith Patent Gmbh Trockenpartie einer Papiermaschine
DE102006051054A1 (de) 2006-10-30 2008-05-08 Voith Patent Gmbh Beheizbarer Zylinder und Trockenvorrichtung
ITPI20080133A1 (it) * 2008-12-23 2010-06-24 Fomat S R L Struttura perfezionata di cilindri a riscaldamento periferico, in particolare cilindri ondulatori per la produzione di cartone ondulato
WO2016086250A2 (de) 2014-12-01 2016-06-09 Georg Michael Ickinger Trockenzylinder als koaxialer doppelzylinder und ringspalt
AT516398B1 (de) * 2014-12-01 2016-05-15 Georg Michael Dipl Ing Dr Techn Ickinger Vorrichtung einer mit Wärmeträgermedium beheizten gerillten Zylinderinnenfläche

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US29870A (en) * 1860-09-04 fickett
US192673A (en) * 1877-07-03 Improvement in machines for manufacturing compound lumber
US2932091A (en) * 1956-10-08 1960-04-12 Day George Donald Heated shell drum dryers
US3425488A (en) * 1966-04-28 1969-02-04 Skandinaviska Apparatind Heat exchange roll
US4453593A (en) * 1977-06-06 1984-06-12 Thune-Eureka S/S Oil-heated roller
US4781795A (en) * 1986-04-08 1988-11-01 Ray R. Miller Heated drum having high thermal flux and belt press using same
US4955268A (en) * 1987-06-15 1990-09-11 Sulzer-Escher Wyss Gmbh Apparatus containing a work surface heated with a heat carrier medium
US5383288A (en) * 1992-03-02 1995-01-24 Valmet Paper Machinery Inc. Method and device for drying paper
US5887644A (en) * 1996-02-16 1999-03-30 Ishikawa Jima-Harima Heavy Industries Company Limited Roll cooling structure for twin roll continuous caster
US5920961A (en) * 1997-11-10 1999-07-13 John D. Hollingsworth On Wheels, Inc. Ventilating carding roll
US5983993A (en) * 1996-08-30 1999-11-16 International Paper Company High production chill roll

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19936077A1 (de) * 1999-07-30 2001-04-26 Kelzenberg & Co Gmbh & Co Kg Temperierwalze
ES2280276T3 (es) * 2000-03-14 2007-09-16 Walzen Irle Gmbh Rodillo rotatorio.

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US29870A (en) * 1860-09-04 fickett
US192673A (en) * 1877-07-03 Improvement in machines for manufacturing compound lumber
US2932091A (en) * 1956-10-08 1960-04-12 Day George Donald Heated shell drum dryers
US3425488A (en) * 1966-04-28 1969-02-04 Skandinaviska Apparatind Heat exchange roll
US4453593A (en) * 1977-06-06 1984-06-12 Thune-Eureka S/S Oil-heated roller
US4781795A (en) * 1986-04-08 1988-11-01 Ray R. Miller Heated drum having high thermal flux and belt press using same
US4955268A (en) * 1987-06-15 1990-09-11 Sulzer-Escher Wyss Gmbh Apparatus containing a work surface heated with a heat carrier medium
US5383288A (en) * 1992-03-02 1995-01-24 Valmet Paper Machinery Inc. Method and device for drying paper
US5887644A (en) * 1996-02-16 1999-03-30 Ishikawa Jima-Harima Heavy Industries Company Limited Roll cooling structure for twin roll continuous caster
US5983993A (en) * 1996-08-30 1999-11-16 International Paper Company High production chill roll
US5920961A (en) * 1997-11-10 1999-07-13 John D. Hollingsworth On Wheels, Inc. Ventilating carding roll

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070060457A1 (en) * 2005-09-15 2007-03-15 Eastman Kodak Company Circumferentially variable surface temperature roller
US10843010B2 (en) 2011-10-21 2020-11-24 Accuray Incorporated Image-guided radiation treatment with imaging data using imaging radiation at different energy levels
US11185715B2 (en) 2011-10-21 2021-11-30 Accuray Incorporated Image-guided radiation treatment with imaging data using imaging radiation at different energy levels

Also Published As

Publication number Publication date
EP1738022A1 (de) 2007-01-03
ATE395460T1 (de) 2008-05-15
EP1738022B1 (de) 2008-05-14
WO2005100683A1 (de) 2005-10-27
AU2005233311B2 (en) 2010-05-13
AU2005233311A1 (en) 2005-10-27
DE102004017811A1 (de) 2005-10-27
DE502005004122D1 (de) 2008-06-26

Similar Documents

Publication Publication Date Title
AU2005233311B2 (en) Heated cylinder
US20080005921A1 (en) Device and method for producing and/or finishing a web of fibrous material
FI91297C (fi) Kuumennettava tela
US20070289156A1 (en) Device and method for producing and/or finishing a fibrous material
KR20150083830A (ko) 강철제 양키 실린더
JP4019218B2 (ja) ロケットエンジン部材並びにロケットエンジン部材の製造方法
US7802377B2 (en) Drying cylinder
JP6198452B2 (ja) 中間媒体式気化器
US5119886A (en) Heat transfer cylinder
CA2463279A1 (en) Heat exchanger and evaporator
US20090139700A1 (en) Heat exchanger
US8408003B2 (en) Combined cycle power plant
JP2004518058A (ja) ロケットエンジン用の出口ノズルの製造方法
JP2013024543A (ja) 熱交換器及びそれを用いたヒートポンプ式加熱装置
KR20050086420A (ko) 증기 발생기용 관류 증발기
JP4019217B2 (ja) ロケットエンジン部材並びにロケットエンジン部材の製造方法
CA2290291C (en) Heatable calender roll
FI110703B (sv) Förfarande och cylinder för uppvärmning eller avkylning av en fibermaterialbana
CN210085926U (zh) 造纸机用宽幅钢制节能烘缸
CN205368886U (zh) 一种双金属造纸烘缸
FI119122B (fi) Termotela
CN105544274B (zh) 一种双金属造纸烘缸及制备方法
CN104452408A (zh) 一种新型大直径干燥烘缸
CA2025408A1 (en) Hood for a contact drying cylinder
US135758A (en) Improvement in steam-radiators

Legal Events

Date Code Title Description
AS Assignment

Owner name: VOITH PATENT GMBH, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GRUBER-NADLINGER, THOMAS;LOMIC, STEVAN;HALMSCHLAGER, GUENTER;AND OTHERS;REEL/FRAME:018412/0281;SIGNING DATES FROM 20060925 TO 20061003

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION