US20070175546A1 - Solder alloy, use of the solder alloy and method for processing, particularly repairing, workpieces, particularly gas turbine components - Google Patents

Solder alloy, use of the solder alloy and method for processing, particularly repairing, workpieces, particularly gas turbine components Download PDF

Info

Publication number
US20070175546A1
US20070175546A1 US10/581,778 US58177804A US2007175546A1 US 20070175546 A1 US20070175546 A1 US 20070175546A1 US 58177804 A US58177804 A US 58177804A US 2007175546 A1 US2007175546 A1 US 2007175546A1
Authority
US
United States
Prior art keywords
proportion
solder alloy
nickel
cobalt
molybdenum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/581,778
Other languages
English (en)
Inventor
Barbara Hoppe
Debashis Mukherji
Joachim Roesler
Andreas Vossberg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MTU Aero Engines AG
Original Assignee
MTU Aero Engines GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MTU Aero Engines GmbH filed Critical MTU Aero Engines GmbH
Assigned to MTU AERO ENGINES GMBH reassignment MTU AERO ENGINES GMBH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HOPPE, BARBARA, VOSSBERG, ANDREAS, MUKHERJI, DEBASHIS, ROESLER, JOACHIM
Publication of US20070175546A1 publication Critical patent/US20070175546A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3033Ni as the principal constituent
    • B23K35/304Ni as the principal constituent with Cr as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/056Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 10% but less than 20%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/057Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being less 10%

Definitions

  • Gas turbines as for example aircraft engines or stationary gas turbines, in operation are subject to high mechanical and thermal stress.
  • blades e.g., turbine blades
  • thermal stress and material removal This results in thermal fatigue cracks and eroded surfaces, which must be completely and reliable repaired when servicing or repairing the aircraft engine.
  • soldering methods are used in addition to welding methods.
  • the solder alloy is a nickel-based alloy and includes at least the following elements: chromium (Cr), cobalt (Co), molybdenum (Mo) and nickel (Ni).
  • the molybdenum (Mo) replaces the tungsten (W) using in conventional solder alloy.
  • molybdenum (Mo) increases the strength of the ⁇ -nickel matrix, without, however, disadvantageously increasing the melting point of the solder alloy to the same extent as tungsten (W).
  • the solder alloy may additionally include tantalum (Ta), niobium (Nb) and aluminum (Al). This may achieve an additional strength by particle hardening effects. Tantalum (Ta), niobium (Nb) and aluminum (Al) are ⁇ ′-forming elements.
  • the solder alloy may additionally include palladium (Pd) in a proportion of 0.5 to 5 wt. % and boron (B) in a proportion of 0.5 to 2.5 wt. %.
  • Palladium (Pd) lowers the melting point of the solder alloy and increases the strength of the ⁇ -nickel matrix by mixed crystal hardening. Furthermore, it may be provided that palladium (Pd) improves the wetting behavior and the fluidity of the molten solder alloy or of the molten multi-component soldering system.
  • the solder alloy may additionally include yttrium (Y) in a proportion of 0.1 to 1 wt. % and hafnium (Hf) in a proportion of 1 to 5 wt. %.
  • Y yttrium
  • Hf hafnium
  • Palladium (Pd) hafnium
  • hafnium (Hf) may improve the wetting behavior and the fluidity of the molten solder alloy or of the molten multi-component soldering system and increases at the same time the oxidation-resistance of the soldered regions.
  • the hafnium portion is limited to 5 wt. %.
  • yttrium may lower the melting point or the melting range of the solder alloy such that soldering temperatures may be set specifically in the range of 1200° C. to 1260° C. by the combination of elements Pd—B—Y.
  • the melting range is defined as the temperature interval between the melting of the first alloy components (solidus point) and the completely liquid state (liquidus point) of the particular alloy.
  • the melting point of the solder alloy may be lowered further in combination with the palladium, boron and yttrium.
  • Example embodiments of the present invention relate to the use of a soldering method for repairing thermodynamically stressed components of a gas turbine, for example of guide blades of an aircraft engine or also of a stationary gas turbine.
  • Example embodiments of the present invention relate not only to the soldering method itself, but rather also to the provision of a solder alloy or a multi-component soldering system as well as to a use of the solder alloy and the multi-component soldering system.
  • the solder alloy and the multi-component soldering system are suitable both for repairing turbine components, which are manufactured from a polycrystalline alloy, as well as for turbine components that are manufactured from a directedly solidified or monocrystalline alloy.
  • soldering method or solder alloy or multi-component soldering system makes it possible to achieve sufficiently high mechanical properties in the soldered regions of the gas turbine components such as, e.g., the fatigue-resistances such that the structural integrity of the relevant component of a gas turbine is maintained. Furthermore, improved oxidation and corrosion properties may be achieved in the soldered regions as compared to those regions that are repaired using conventional soldering methods.
  • the solder alloy is a nickel-based alloy and in addition to nickel (Ni) includes at least also chromium (Cr), cobalt (Co) and molybdenum (Mo).
  • Cr chromium
  • Co cobalt
  • Mo molybdenum
  • the tungsten (W) used in conventional solder alloys is largely replaced by molybdenum (Mo). This may increase the strength of the repaired region by mixed crystal hardening of the ⁇ -nickel matrix without raising the melting point of the solder alloy.
  • the solder alloy includes palladium (Pd) as well as yttrium (Y). Both palladium (Pd) as well as yttrium (Y) may lower the melting range of the solder alloy into a range of 1050° C. to 1200° C. and simultaneously may improve the oxidation properties of the solder alloy or of the soldered region. Palladium (Pd) may be limited to a maximum portion of 5 wt. % since it may make the solder material much more expensive if it is alloyed in excessively high concentrations.
  • boron (B) Another element that may be included in the solder alloy is boron (B). Like palladium (Pd) and yttrium (Y), boron (B) may lower the melting range of the solder alloy into a range of 1050° C. to 1200° C. and may be limited to a maximum portion of 2.5 wt. %. By limiting boron (B) to a maximum of 2.5 wt. %, it is possible effectively to limit the boride phase portion in the soldered regions, which has an embrittling effect.
  • the solder alloy may include a suitable proportion of aluminum (Al), tantalum (Ta) and niobium (Nb) in addition to the above-mentioned elements.
  • the portion of aluminum (Al) may be between 2 and 8 wt. %.
  • tantalum (Ta) is included in a proportion of 1 to 8 wt. %
  • niobium (Nb) is included in a proportion of 0.1 to 2 wt. %.
  • the solder alloy may include hafnium (Hf) in a proportion of 1 to 5 wt. %.
  • hafnium may have a positive effect on the wetting and flow properties of the molten solder alloy and the oxidation-resistance of the repaired regions of the respective component.
  • the portion of hafnium (Hf) is limited to the specified maximum value of 5 wt. % in order to limit the portion of the hafnium-containing hard phases in the soldered regions, which have an embrittling effect.
  • the solder alloy may include silicon (Si) in a proportion of 0.1 to 1 wt. %.
  • silicon (Si) is able to support and strengthen the melting point-reducing effect of the palladium (Pd), yttrium (Y) and boron (B), without increasing the boride phase portion in the repaired regions of the component.
  • the solder alloy may have the following composition:
  • the solder alloy may be particularly suitable for use in repairing guide blades of an aircraft engine, the guide blades being made either from a polycrystalline or a directedly solidified or monocrystalline alloy. Following the repair of the relevant regions of the gas turbine using the solder alloy, the soldered regions may have mechanical properties that correspond as much as possible to the material of the undamaged guide blade.
  • the solder alloy is adapted specifically for the purpose of repairing engine components.
  • the solder alloy may have optimized melting properties, flow properties and wetting properties as well an optimized ability to fill cracks.
  • solder alloys A2, A3, A5 and A10 are compared.
  • Table 1 Compositions of the solder alloys, concentrations in percentages by weight.
  • Solder alloy Ni Cr Co Mo Al Ta Nb Y Hf Pd B A2 Bal. 10 10 4 4 2 1 0.5 4 4 1.8 A3 Bal. 10 10 4 4 2 1 0 0 4 1.8 A5 Bal. 10 10 4 4 2 1 0.5 0 0 1.8 A10 Bal. 10 10 4 4 2 1 0 4 0 1.8
  • Table 2 shows the solidus and liquidus points of the examined solder alloys A2, A3, A5 and A10 determined by the DSC analysis. TABLE 2 Melting Ranges of the Solder Alloys Solder alloy T solidus/° C. T liquidus/° C. A2 1059 1196 A3 1010 1254 A5 1039 1249 A10 1068 1244
  • the solidus and liquidus point listed in Table 2 illustrate the effect of the melting point-lowering elements Y and Pd used in addition to the element boron.
  • Solder alloy A5 includes 0.5 wt. % of Y, but no Pd. Compared to A10, A5 has a reduced solidus temperature of 1039° C., although at 1249° C. its liquidus temperature is even somewhat higher than A10.
  • a similar effect occurs in A3, which includes Pd at 4 wt. %, but no Y.
  • both the solidus temperature (1059° C.) as well as the liquidus temperature (1196° C.) are reduced as compared to A10.
  • the combination of the two alloy elements yttrium and palladium and their use, in addition to boron, as melting point-reducers in the solder alloy may be particularly advantageous.
  • soldering temperature of the solder alloy described here is adjusted to the different solution annealing temperatures of the polycrystalline or directedly solidified or monocrystalline alloys.
  • the multi-component soldering system includes the solder alloy, as already described above, and additionally of at least one additive material.
  • the multi-component soldering system is obtained by mixing the solder alloy and the additive material, the mixing not having to be limited to the powdery components.
  • additive materials namely, a metal powder, which in addition to nickel (Ni) also include one or more of the following elements:
  • the additive material may have the following composition:
  • the mechanical properties of the multi-component soldering systems made up of the solder alloy and the additive material may ensure that the solder structures in the repaired regions have, on the basis of their static and cyclical strength, a sufficiently high resistance with respect to the thermal and mechanical stresses in the gas turbines.
  • solder alloy A2 is mixed with an additive material M1 at a mixture ratio of 1:1 (percentage by weight), M1 having the following composition:
  • the hot tensile tests are conducted at a temperature of 871° C. ⁇ 3° C. Using a radiation furnace, the specimens are heated such that a homogeneous temperature distribution may be ensured across the entire sample. The tests are conducted in a servohydraulic machine. The extension rate may be 0.93 mm/min such that the tests must be classified as displacement-controlled.
  • Table 3 shows the averages of hot tensile strengths (UTS) as well as the UTS values of the nickel-based alloys René-80 (polycrystalline) and DS René-142 (directedly solidified) as basic material data.
  • UTS hot tensile strengths
  • Table 3 shows that multi-component soldering system A2/M1 has remarkably good hot tensile properties.
  • the hot tensile strength (UTS) of A2/M1 corresponds to the value of the base material René-80, which corresponds to a UTS value of 75% of DSR142. Even at a gap width of 0.5 mm and 1.0 mm, 80% (with respect to René-80) or 60% (with respect to René-142) of the hot tensile strength (UTS) are still achieved.
  • the hot tensile tests provide guide values for the strength properties of the solder structures.
  • the results of the LCF tests are more meaningful since they more closely reflect the actual thermomechanical alternating stress of the gas turbine components.
  • the test temperature of the LCF tests is 982° C.+/ ⁇ 10° C., the flat specimens made of the DS alloy René-142 heated inductively.
  • the flat tensile specimens have a cross section of 9.53 ⁇ 1.55 mm and a measuring path of 12.7 mm.
  • the test is conducted as an axial, force-controlled tensile threshold test having a sinusoidal stress characteristic. For this purpose, 20 cycles/min at a ratio of stress amplitude/average stress of 0.95 are applied to the specimen.
  • Average values are in Table 4. TABLE 4 LCF data (average values) of the multi-component soldering system A2/M1 for different gap widths and maximum voltages.
  • Soldering system Gap width/mm Max. voltage/MPa Load changes A2/M1 0.25 152 50244 173 6729 207 4626 241 702 A2/M1 0.5 152 9146 173 11785 241 949 A2/M1 1.0 152 9679 173 4406 207 842 241 454 René - 142 DS 311 13243 345 7369 380 2793 414 1283 René - 80 283 5000 276 7000 262 10000 255 30000
  • Table 4 shows that multi-component soldering system A2/M1 has remarkably good fatigue properties.
  • the LCF tests show a dependency of the fatigue or tensile threshold strength on the gap width of the solder structures.
  • the fatigue strength of the A2/M1 solder structures for gap widths of 0.26 mm and 0.5 mm amounts to 65-70% of the value of the René-80 base material or 50-55% of the value of the René-142 base material.
  • a gap width of 1.0 mm only a low decline to 60% (with respect to René-80) or 48% of the fatigue strength of the base material (with respect to René-142) is ascertained.
  • solder alloy hereof or the multi-component soldering system hereof, a method may be provided for processing, e.g., repairing, workpieces, that is, for processing guide blades of an aircraft engine.
  • the workpieces may be manufactured from a polycrystalline or directedly solidified or monocrystalline alloy.
  • the method is based on high-temperature diffusion soldering using the solder alloy hereof or using the multi-component soldering system hereof. This is a repair method.
  • the high-temperature diffusion soldering occurs under the following conditions:
  • the high-temperature diffusion soldering may be followed by the following heat treatment: Heating under vacuum or protective gas to a temperature of 1065-1093° C. with a subsequent holding time of approximately 240 min, this, e.g., occurring in the context of a coating process.
  • the high-temperature diffusion soldering may be followed by the following heat treatment: heating under vacuum or protective gas or ambient atmosphere to a temperature of 871-927° C. with a subsequent holding time of 60-960 min, this, e.g., occurring in the context of an aging process.
  • solder alloy and of the multi-component soldering system is not limited to pure repair methods. Rather, the solder alloy and the multi-component soldering system are generally also applicable for joining processes. Due to the mixing ratio of the solder alloy and possibly additive materials optimized for repair purposes, however, the use in the repair of guide blades of an aircraft engine may be particularly advantageous.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Chemically Coating (AREA)
US10/581,778 2003-12-04 2004-11-13 Solder alloy, use of the solder alloy and method for processing, particularly repairing, workpieces, particularly gas turbine components Abandoned US20070175546A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10356562.0 2003-12-04
DE10356562A DE10356562A1 (de) 2003-12-04 2003-12-04 Lotlegierung, Verwendung der Lotlegierung und Verfahren zur Bearbeitung, insbesondere Reparatur, von Werkstücken, insbesondere Gasturbinenbauteilen
PCT/DE2004/002516 WO2005054528A1 (de) 2003-12-04 2004-11-13 Wolframfreie lotlegierung auf nickelbasis mit einem speziellen verhältnis aus bor, yttrium und paladium

Publications (1)

Publication Number Publication Date
US20070175546A1 true US20070175546A1 (en) 2007-08-02

Family

ID=34625525

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/581,778 Abandoned US20070175546A1 (en) 2003-12-04 2004-11-13 Solder alloy, use of the solder alloy and method for processing, particularly repairing, workpieces, particularly gas turbine components

Country Status (6)

Country Link
US (1) US20070175546A1 (de)
EP (1) EP1702081B1 (de)
JP (1) JP4842140B2 (de)
AT (1) ATE387513T1 (de)
DE (2) DE10356562A1 (de)
WO (1) WO2005054528A1 (de)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070075430A1 (en) * 2005-09-30 2007-04-05 Daewoong Suh Solder joint intermetallic compounds with improved ductility and toughness
US20070107216A1 (en) * 2005-10-31 2007-05-17 General Electric Company Mim method for coating turbine shroud
US20090140030A1 (en) * 2007-10-30 2009-06-04 Sundar Amancherla Braze formulations and processes for making and using
US20090314825A1 (en) * 2008-06-23 2009-12-24 Ingo Berger Method for soldering with a multistep temperature profile
US20100291405A1 (en) * 2006-06-08 2010-11-18 Andreas Vossberg Method of producing or repairing turbine or engine components, and a component, namely a turbine or engine component
US20120084980A1 (en) * 2010-10-12 2012-04-12 Alstom Technology Ltd. Extending Useful Life of a Cobalt-Based Gas Turbine Component
EP2546021A1 (de) * 2011-07-12 2013-01-16 Siemens Aktiengesellschaft Nickelbasierte Legierung, Verwendung und Verfahren
US20130029179A1 (en) * 2010-04-12 2013-01-31 Michael Ott Germanium-containing solder, a component comprising a solder and a process for soldering
US8679642B2 (en) * 2009-08-04 2014-03-25 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration System for repairing cracks in structures
MD4269C1 (ro) * 2012-10-15 2014-08-31 Институт Прикладной Физики Академии Наук Молдовы Aliaj pe bază de nichel
EP2868427A3 (de) * 2013-11-04 2016-01-06 Siemens Energy, Inc. Hartlötlegierungszusammensetzungen und Hartlötverfahren für Superlegierungen
US9346131B2 (en) 2010-07-03 2016-05-24 MTU Aero Engines AG Nickel-based solder alloy
CN106282667A (zh) * 2015-06-12 2017-01-04 中南大学 一种镍基高温合金及其制备方法
CN106378506A (zh) * 2016-10-20 2017-02-08 江苏科技大学 一种用于SiC基复合材料钎焊的钎料及钎焊工艺
EP3231548A1 (de) * 2016-04-14 2017-10-18 Siemens Energy, Inc. Verfahren zum hartlöten breiter spalten in superlegierungen auf nickelbasis ohne wesentliche verschlechterung der eigenschaften
CN110900037A (zh) * 2019-12-13 2020-03-24 安泰天龙钨钼科技有限公司 一种焊接钼铼合金与钢的钎料及方法
EP3636381A1 (de) * 2018-10-12 2020-04-15 Siemens Aktiengesellschaft Zusammensetzung für material zur flüssigmetallabscheidung oder generativen fertigung, verfahren und produkt
CN114871631A (zh) * 2022-03-24 2022-08-09 哈尔滨工业大学(深圳) 一种用于镍基高温合金表面修复的镍基合金粉末焊料
CN115647651A (zh) * 2022-11-07 2023-01-31 中国航发沈阳黎明航空发动机有限责任公司 用于Ni3Al基单晶合金涡轮导向叶片修理的钎料及其制备方法
US11795832B2 (en) 2019-11-13 2023-10-24 Siemens Energy, Inc. System and method for repairing high-temperature gas turbine components
US11939884B2 (en) 2019-07-30 2024-03-26 Siemens Energy, Inc. System and method for repairing high-temperature gas turbine blades

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1764182A1 (de) * 2005-09-14 2007-03-21 Siemens Aktiengesellschaft Nickelbasis-Lotlegierung und Verfahren zur Reperatur eines Bauteils
US8353444B2 (en) 2005-10-28 2013-01-15 United Technologies Corporation Low temperature diffusion braze repair of single crystal components
US7156280B1 (en) * 2005-12-15 2007-01-02 General Electric Company Braze alloy compositions
US8999231B2 (en) * 2006-05-24 2015-04-07 United Technologies Corporation Nickel alloy for repairs
EP2145968A1 (de) 2008-07-14 2010-01-20 Siemens Aktiengesellschaft Gamma-Strich-verstärkte Superlegierung auf Nickelbasis
DE102008052602A1 (de) * 2008-10-21 2010-04-22 Siemens Aktiengesellschaft Swirler und Fertigungsverfahren für einen Swirler
EP2182084A1 (de) * 2008-11-04 2010-05-05 Siemens Aktiengesellschaft Schweisszusatzwerkstoff, Verwendung des Schweisszusatzwserkstoffes und Bauteil
CN101890593B (zh) * 2010-07-23 2013-02-06 安泰科技股份有限公司 一种钎焊金刚石工具用镍基钎焊料及其制备方法
RU2452600C1 (ru) * 2011-06-22 2012-06-10 Российская Федерация, от имени которой выступает государственный заказчик - Министерство промышленности и торговли Российской Федерации (Минпромторг России) Припой на основе никеля
US9174314B2 (en) * 2011-11-03 2015-11-03 Siemens Energy, Inc. Isothermal structural repair of superalloy components including turbine blades
US9101996B2 (en) * 2012-05-09 2015-08-11 Siemens Energy, Inc. Low melting point braze alloy for high temperature applications
KR101476145B1 (ko) * 2012-12-21 2014-12-24 한국기계연구원 도재 금속간 접합 특성과 기계적 특성이 우수한 니켈-크롬-코발트계 도재소부용 합금
DE102014204408A1 (de) * 2014-03-11 2015-09-17 Siemens Aktiengesellschaft Nickelbasis-Superlegierung mit erhöhter Oxidationsbeständigkeit, Pulver, Verfahren zum Schweißen und Bauteil
US11426822B2 (en) 2020-12-03 2022-08-30 General Electric Company Braze composition and process of using
DE102021201067A1 (de) 2021-02-05 2022-08-11 Siemens Energy Global GmbH & Co. KG Legierung, insbesondere für additive Fertigung, Pulver, Verfahren und Produkt

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4288247A (en) * 1978-07-06 1981-09-08 The International Nickel Company, Inc. Nickel-base superalloys
US4678635A (en) * 1984-12-20 1987-07-07 Bbc Aktiengesellschaft Brown, Boveri & Cie Metallic joining material
US4802933A (en) * 1988-04-21 1989-02-07 Allied-Signal Inc. Nickel-palladium based brazing alloys
US4830934A (en) * 1987-06-01 1989-05-16 General Electric Company Alloy powder mixture for treating alloys
US5240491A (en) * 1991-07-08 1993-08-31 General Electric Company Alloy powder mixture for brazing of superalloy articles
US20020157737A1 (en) * 2000-12-15 2002-10-31 Chesnes Richard Patrick Nickel diffusion braze alloy and method for repair of superalloys
US6530971B1 (en) * 2001-01-29 2003-03-11 General Electric Company Nickel-base braze material and braze repair method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2153845A (en) * 1984-02-07 1985-08-29 Inco Alloys Products Limited Production of superalloy sheet
JPS62144897A (ja) * 1985-12-20 1987-06-29 Tanaka Kikinzoku Kogyo Kk ろう材
JPS6365044A (ja) * 1986-09-05 1988-03-23 Ishikawajima Harima Heavy Ind Co Ltd 拡散ろう付け用溶加材

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4288247A (en) * 1978-07-06 1981-09-08 The International Nickel Company, Inc. Nickel-base superalloys
US4678635A (en) * 1984-12-20 1987-07-07 Bbc Aktiengesellschaft Brown, Boveri & Cie Metallic joining material
US4830934A (en) * 1987-06-01 1989-05-16 General Electric Company Alloy powder mixture for treating alloys
US4802933A (en) * 1988-04-21 1989-02-07 Allied-Signal Inc. Nickel-palladium based brazing alloys
US5240491A (en) * 1991-07-08 1993-08-31 General Electric Company Alloy powder mixture for brazing of superalloy articles
US20020157737A1 (en) * 2000-12-15 2002-10-31 Chesnes Richard Patrick Nickel diffusion braze alloy and method for repair of superalloys
US6530971B1 (en) * 2001-01-29 2003-03-11 General Electric Company Nickel-base braze material and braze repair method

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070075430A1 (en) * 2005-09-30 2007-04-05 Daewoong Suh Solder joint intermetallic compounds with improved ductility and toughness
US20070107216A1 (en) * 2005-10-31 2007-05-17 General Electric Company Mim method for coating turbine shroud
US8555500B2 (en) 2006-06-08 2013-10-15 Mtu Aero Engines Gmbh Method of producing or repairing turbine or engine components, and a component, namely a turbine or engine component
US20100291405A1 (en) * 2006-06-08 2010-11-18 Andreas Vossberg Method of producing or repairing turbine or engine components, and a component, namely a turbine or engine component
US20090140030A1 (en) * 2007-10-30 2009-06-04 Sundar Amancherla Braze formulations and processes for making and using
US20090314825A1 (en) * 2008-06-23 2009-12-24 Ingo Berger Method for soldering with a multistep temperature profile
EP2138258A1 (de) * 2008-06-23 2009-12-30 Siemens Aktiengesellschaft Verfahren zum Löten mit mehrstufigem Temperaturprofil
EP2239079A1 (de) * 2008-06-23 2010-10-13 Siemens Aktiengesellschaft Verfahren zum Löten mit mehrstufigem Temperaturprofil
US7832620B2 (en) 2008-06-23 2010-11-16 Siemens Aktiengesellschaft Method for soldering with a multistep temperature profile
US20110017809A1 (en) * 2008-06-23 2011-01-27 Ingo Berger Method for Soldering with a Multistep Temperature Profile
US8123110B2 (en) * 2008-06-23 2012-02-28 Siemens Aktiengesellschaft Method for soldering with a multistep temperature profile
US8679642B2 (en) * 2009-08-04 2014-03-25 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration System for repairing cracks in structures
US20130029179A1 (en) * 2010-04-12 2013-01-31 Michael Ott Germanium-containing solder, a component comprising a solder and a process for soldering
US8808872B2 (en) * 2010-04-12 2014-08-19 Siemens Aktiengesellschaft Germanium-containing solder, a component comprising a solder and a process for soldering
US9346131B2 (en) 2010-07-03 2016-05-24 MTU Aero Engines AG Nickel-based solder alloy
US20120084980A1 (en) * 2010-10-12 2012-04-12 Alstom Technology Ltd. Extending Useful Life of a Cobalt-Based Gas Turbine Component
US9056372B2 (en) * 2010-10-12 2015-06-16 Alstom Technology Ltd Extending useful life of a cobalt-based gas turbine component
WO2013007461A1 (de) * 2011-07-12 2013-01-17 Siemens Aktiengesellschaft Nickelbasierte legierung, verwendung und verfahren
EP2546021A1 (de) * 2011-07-12 2013-01-16 Siemens Aktiengesellschaft Nickelbasierte Legierung, Verwendung und Verfahren
CN103702793A (zh) * 2011-07-12 2014-04-02 西门子公司 镍基的合金、应用和方法
MD4269C1 (ro) * 2012-10-15 2014-08-31 Институт Прикладной Физики Академии Наук Молдовы Aliaj pe bază de nichel
US9611741B2 (en) 2013-11-04 2017-04-04 Siemens Energy, Inc. Braze alloy compositions and brazing methods for superalloys
EP2868427A3 (de) * 2013-11-04 2016-01-06 Siemens Energy, Inc. Hartlötlegierungszusammensetzungen und Hartlötverfahren für Superlegierungen
CN106282667A (zh) * 2015-06-12 2017-01-04 中南大学 一种镍基高温合金及其制备方法
EP3231548A1 (de) * 2016-04-14 2017-10-18 Siemens Energy, Inc. Verfahren zum hartlöten breiter spalten in superlegierungen auf nickelbasis ohne wesentliche verschlechterung der eigenschaften
US9839980B2 (en) 2016-04-14 2017-12-12 Siemens Energy, Inc. Methods of brazing wide gaps in nickel base superalloys without substantial degradation of properties
CN106378506A (zh) * 2016-10-20 2017-02-08 江苏科技大学 一种用于SiC基复合材料钎焊的钎料及钎焊工艺
EP3636381A1 (de) * 2018-10-12 2020-04-15 Siemens Aktiengesellschaft Zusammensetzung für material zur flüssigmetallabscheidung oder generativen fertigung, verfahren und produkt
WO2020074150A1 (en) * 2018-10-12 2020-04-16 Siemens Aktiengesellschaft Composition for material for liquid metal deposition or additive manufacturing, method and product
US11440090B2 (en) 2018-10-12 2022-09-13 Siemens Energy Global GmbH & Co. KG Composition for material for liquid metal deposition or additive manufacturing, method and product
US11994040B2 (en) 2019-07-30 2024-05-28 Siemens Energy, Inc. System and method for repairing high-temperature gas turbine components
US11939884B2 (en) 2019-07-30 2024-03-26 Siemens Energy, Inc. System and method for repairing high-temperature gas turbine blades
US11795832B2 (en) 2019-11-13 2023-10-24 Siemens Energy, Inc. System and method for repairing high-temperature gas turbine components
CN110900037A (zh) * 2019-12-13 2020-03-24 安泰天龙钨钼科技有限公司 一种焊接钼铼合金与钢的钎料及方法
CN114871631A (zh) * 2022-03-24 2022-08-09 哈尔滨工业大学(深圳) 一种用于镍基高温合金表面修复的镍基合金粉末焊料
CN115647651A (zh) * 2022-11-07 2023-01-31 中国航发沈阳黎明航空发动机有限责任公司 用于Ni3Al基单晶合金涡轮导向叶片修理的钎料及其制备方法

Also Published As

Publication number Publication date
EP1702081B1 (de) 2008-02-27
WO2005054528A1 (de) 2005-06-16
DE10356562A1 (de) 2005-06-30
JP2007518877A (ja) 2007-07-12
DE502004006362D1 (de) 2008-04-10
EP1702081A1 (de) 2006-09-20
ATE387513T1 (de) 2008-03-15
JP4842140B2 (ja) 2011-12-21

Similar Documents

Publication Publication Date Title
US20070175546A1 (en) Solder alloy, use of the solder alloy and method for processing, particularly repairing, workpieces, particularly gas turbine components
US5240491A (en) Alloy powder mixture for brazing of superalloy articles
US4830934A (en) Alloy powder mixture for treating alloys
EP1341639B1 (de) Diffusionslötlegierung auf nickelbasis und verfahren zur reparatur von superlegierungen
US5902421A (en) Nickel-base braze material
JP5334017B2 (ja) 耐熱部材
EP1004684A1 (de) Eine Legierung zur Reparatur von Turbinenschaufeln, ein Verfahren und das so reparierte Werkstück
US8353444B2 (en) Low temperature diffusion braze repair of single crystal components
KR20070064289A (ko) 브레이즈 합금 조성물
Song et al. Microstructure and mechanical properties of novel Ni–Cr–Co-based superalloy GTAW joints
EP1342803A2 (de) Werkstoff aus Superlegierung mit verbesserter Schweissbarkeit
US6554920B1 (en) High-temperature alloy and articles made therefrom
CN112853154B (zh) 镍基中间层合金材料及其制备方法、焊件及焊接方法以及应用
EP4105443A1 (de) Artikel aus einer hybriden superlegierung und verfahren zu dessen herstellung
EP2846962B1 (de) Niedrigschmelzende hartlötlegierung für hochtemperaturanwendungen
CN102471833A (zh) Ni基单晶超合金和涡轮叶片
Henhoeffer et al. Microstructure and high temperature tensile properties of wide gap brazed cobalt based superalloy X-40
LIN et al. Effect of bonding parameters on microstructures and properties during TLP bonding of Ni-based super alloy
EP0095668B1 (de) Homogenes Legierungspulver und Verfahren zum Reparieren eines Superlegierungskörpers
US6565680B1 (en) Superalloy weld composition and repaired turbine engine component
Asavavisithchai et al. Strain-age cracking after postweld heat treatments in Inconel 738 superalloy
CN112872652A (zh) 一种高Al、Ti、Ta含量的Ni基高温合金焊丝及其制备方法和应用
US11759877B2 (en) Amorphous ductile braze alloy compositions, and related methods and articles
Miglietti et al. High Strength, Ductile Braze Repairs for Stationary Gas Turbine Components: Part 1
US12055056B2 (en) Hybrid superalloy article and method of manufacture thereof

Legal Events

Date Code Title Description
AS Assignment

Owner name: MTU AERO ENGINES GMBH, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HOPPE, BARBARA;MUKHERJI, DEBASHIS;ROESLER, JOACHIM;AND OTHERS;REEL/FRAME:019096/0760;SIGNING DATES FROM 20060820 TO 20060924

STCB Information on status: application discontinuation

Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION