US20070161122A1 - Albumin-purification method comprising a nanofiltration step, solution, and composition for therapeutic use containing the same - Google Patents
Albumin-purification method comprising a nanofiltration step, solution, and composition for therapeutic use containing the same Download PDFInfo
- Publication number
- US20070161122A1 US20070161122A1 US10/589,825 US58982505A US2007161122A1 US 20070161122 A1 US20070161122 A1 US 20070161122A1 US 58982505 A US58982505 A US 58982505A US 2007161122 A1 US2007161122 A1 US 2007161122A1
- Authority
- US
- United States
- Prior art keywords
- albumin
- solution
- nanofiltration
- aqueous
- solutions
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000001728 nano-filtration Methods 0.000 title claims abstract description 54
- 238000000034 method Methods 0.000 title claims abstract description 49
- 239000000203 mixture Substances 0.000 title claims abstract description 32
- 230000001225 therapeutic effect Effects 0.000 title claims abstract description 15
- 238000000746 purification Methods 0.000 title claims abstract description 9
- 102000009027 Albumins Human genes 0.000 claims abstract description 148
- 108010088751 Albumins Proteins 0.000 claims abstract description 148
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims description 48
- 108090000623 proteins and genes Proteins 0.000 claims description 30
- 102000004169 proteins and genes Human genes 0.000 claims description 29
- 239000011780 sodium chloride Substances 0.000 claims description 24
- 230000000694 effects Effects 0.000 claims description 15
- 239000004480 active ingredient Substances 0.000 claims description 13
- 229920000642 polymer Polymers 0.000 claims description 11
- 150000003839 salts Chemical class 0.000 claims description 9
- 229910052783 alkali metal Inorganic materials 0.000 claims description 4
- 230000003247 decreasing effect Effects 0.000 claims description 4
- 230000006641 stabilisation Effects 0.000 claims description 4
- 150000001340 alkali metals Chemical class 0.000 claims description 3
- 238000004255 ion exchange chromatography Methods 0.000 claims description 3
- 239000000546 pharmaceutical excipient Substances 0.000 claims description 3
- 108010047303 von Willebrand Factor Proteins 0.000 claims description 3
- 102100036537 von Willebrand factor Human genes 0.000 claims description 3
- 229960001134 von willebrand factor Drugs 0.000 claims description 3
- 102000004127 Cytokines Human genes 0.000 claims description 2
- 108090000695 Cytokines Proteins 0.000 claims description 2
- 108010054218 Factor VIII Proteins 0.000 claims description 2
- 102000001690 Factor VIII Human genes 0.000 claims description 2
- 238000003744 In vitro fertilisation Methods 0.000 claims description 2
- 238000001042 affinity chromatography Methods 0.000 claims description 2
- 239000013566 allergen Substances 0.000 claims description 2
- 238000002481 ethanol extraction Methods 0.000 claims description 2
- 229960000301 factor viii Drugs 0.000 claims description 2
- 239000005556 hormone Substances 0.000 claims description 2
- 229940088597 hormone Drugs 0.000 claims description 2
- 238000011534 incubation Methods 0.000 claims description 2
- 210000000287 oocyte Anatomy 0.000 claims description 2
- 238000012545 processing Methods 0.000 claims description 2
- 239000004627 regenerated cellulose Substances 0.000 claims description 2
- 239000011833 salt mixture Substances 0.000 claims description 2
- 229940043517 specific immunoglobulins Drugs 0.000 claims description 2
- 229960005486 vaccine Drugs 0.000 claims description 2
- 239000004615 ingredient Substances 0.000 abstract 1
- 239000000243 solution Substances 0.000 description 109
- 238000001914 filtration Methods 0.000 description 47
- 235000018102 proteins Nutrition 0.000 description 25
- 238000012360 testing method Methods 0.000 description 25
- 241000700605 Viruses Species 0.000 description 13
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 12
- 239000000706 filtrate Substances 0.000 description 12
- AAOVKJBEBIDNHE-UHFFFAOYSA-N diazepam Chemical compound N=1CC(=O)N(C)C2=CC=C(Cl)C=C2C=1C1=CC=CC=C1 AAOVKJBEBIDNHE-UHFFFAOYSA-N 0.000 description 10
- 229960003529 diazepam Drugs 0.000 description 10
- 230000003612 virological effect Effects 0.000 description 10
- 101710153593 Albumin A Proteins 0.000 description 9
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 8
- 238000009928 pasteurization Methods 0.000 description 8
- 239000003381 stabilizer Substances 0.000 description 8
- 238000010438 heat treatment Methods 0.000 description 7
- 238000011084 recovery Methods 0.000 description 7
- 239000007858 starting material Substances 0.000 description 7
- PJVWKTKQMONHTI-UHFFFAOYSA-N warfarin Chemical compound OC=1C2=CC=CC=C2OC(=O)C=1C(CC(=O)C)C1=CC=CC=C1 PJVWKTKQMONHTI-UHFFFAOYSA-N 0.000 description 7
- 210000004027 cell Anatomy 0.000 description 6
- 230000014759 maintenance of location Effects 0.000 description 6
- 210000002381 plasma Anatomy 0.000 description 6
- 238000000502 dialysis Methods 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- 239000004471 Glycine Substances 0.000 description 4
- 239000000872 buffer Substances 0.000 description 4
- 239000000356 contaminant Substances 0.000 description 4
- 229940079593 drug Drugs 0.000 description 4
- 239000003814 drug Substances 0.000 description 4
- 238000005194 fractionation Methods 0.000 description 4
- 239000012528 membrane Substances 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 229960005480 sodium caprylate Drugs 0.000 description 4
- BYKRNSHANADUFY-UHFFFAOYSA-M sodium octanoate Chemical compound [Na+].CCCCCCCC([O-])=O BYKRNSHANADUFY-UHFFFAOYSA-M 0.000 description 4
- 239000004475 Arginine Substances 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 3
- 239000003153 chemical reaction reagent Substances 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 238000000605 extraction Methods 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 229920002521 macromolecule Polymers 0.000 description 3
- 102000004196 processed proteins & peptides Human genes 0.000 description 3
- 108090000765 processed proteins & peptides Proteins 0.000 description 3
- 239000008213 purified water Substances 0.000 description 3
- 239000012465 retentate Substances 0.000 description 3
- 238000000108 ultra-filtration Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 108010076282 Factor IX Proteins 0.000 description 2
- 108010074864 Factor XI Proteins 0.000 description 2
- -1 HCl Chemical class 0.000 description 2
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical compound NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 description 2
- 241001465754 Metazoa Species 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 2
- 229930006000 Sucrose Natural products 0.000 description 2
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 2
- 239000012141 concentrate Substances 0.000 description 2
- 230000002596 correlated effect Effects 0.000 description 2
- 230000000875 corresponding effect Effects 0.000 description 2
- 230000036425 denaturation Effects 0.000 description 2
- 238000004925 denaturation Methods 0.000 description 2
- 238000011026 diafiltration Methods 0.000 description 2
- 201000010099 disease Diseases 0.000 description 2
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 238000003379 elimination reaction Methods 0.000 description 2
- 239000002158 endotoxin Substances 0.000 description 2
- 229960004222 factor ix Drugs 0.000 description 2
- 230000002779 inactivation Effects 0.000 description 2
- 229920006008 lipopolysaccharide Polymers 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 244000309711 non-enveloped viruses Species 0.000 description 2
- 150000002894 organic compounds Chemical class 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000008194 pharmaceutical composition Substances 0.000 description 2
- 239000008363 phosphate buffer Substances 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 229920001184 polypeptide Polymers 0.000 description 2
- 229920000136 polysorbate Polymers 0.000 description 2
- 230000000750 progressive effect Effects 0.000 description 2
- 230000035755 proliferation Effects 0.000 description 2
- 229910052938 sodium sulfate Inorganic materials 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000005720 sucrose Substances 0.000 description 2
- 239000012905 visible particle Substances 0.000 description 2
- 101710153591 Albumin B Proteins 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 241000537222 Betabaculovirus Species 0.000 description 1
- 108010039209 Blood Coagulation Factors Proteins 0.000 description 1
- 102000015081 Blood Coagulation Factors Human genes 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- UDHXJZHVNHGCEC-UHFFFAOYSA-N Chlorophacinone Chemical compound C1=CC(Cl)=CC=C1C(C=1C=CC=CC=1)C(=O)C1C(=O)C2=CC=CC=C2C1=O UDHXJZHVNHGCEC-UHFFFAOYSA-N 0.000 description 1
- 102100022641 Coagulation factor IX Human genes 0.000 description 1
- 208000020406 Creutzfeldt Jacob disease Diseases 0.000 description 1
- 208000003407 Creutzfeldt-Jakob Syndrome Diseases 0.000 description 1
- 208000010859 Creutzfeldt-Jakob disease Diseases 0.000 description 1
- 108010041986 DNA Vaccines Proteins 0.000 description 1
- 229940021995 DNA vaccine Drugs 0.000 description 1
- 102000018997 Growth Hormone Human genes 0.000 description 1
- 108010051696 Growth Hormone Proteins 0.000 description 1
- 208000005176 Hepatitis C Diseases 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 102000008100 Human Serum Albumin Human genes 0.000 description 1
- 108091006905 Human Serum Albumin Proteins 0.000 description 1
- 241000702617 Human parvovirus B19 Species 0.000 description 1
- 206010020751 Hypersensitivity Diseases 0.000 description 1
- 239000007832 Na2SO4 Substances 0.000 description 1
- 102000029797 Prion Human genes 0.000 description 1
- 108091000054 Prion Proteins 0.000 description 1
- 241000125945 Protoparvovirus Species 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000000172 allergic effect Effects 0.000 description 1
- 230000007815 allergy Effects 0.000 description 1
- 235000001014 amino acid Nutrition 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 239000003146 anticoagulant agent Substances 0.000 description 1
- 229940127219 anticoagulant drug Drugs 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- 208000010668 atopic eczema Diseases 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 230000000721 bacterilogical effect Effects 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 238000012742 biochemical analysis Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000003114 blood coagulation factor Substances 0.000 description 1
- 229940019700 blood coagulation factors Drugs 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000001010 compromised effect Effects 0.000 description 1
- 230000003750 conditioning effect Effects 0.000 description 1
- 210000000805 cytoplasm Anatomy 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 238000004108 freeze drying Methods 0.000 description 1
- 239000000122 growth hormone Substances 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 208000005252 hepatitis A Diseases 0.000 description 1
- 208000002672 hepatitis B Diseases 0.000 description 1
- 239000012678 infectious agent Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 239000013067 intermediate product Substances 0.000 description 1
- 238000010253 intravenous injection Methods 0.000 description 1
- 150000008040 ionic compounds Chemical class 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 230000009916 joint effect Effects 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002941 microtiter virus yield reduction assay Methods 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 102000039446 nucleic acids Human genes 0.000 description 1
- 108020004707 nucleic acids Proteins 0.000 description 1
- 150000007523 nucleic acids Chemical class 0.000 description 1
- 238000000424 optical density measurement Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 150000007530 organic bases Chemical class 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000010979 pH adjustment Methods 0.000 description 1
- 230000001717 pathogenic effect Effects 0.000 description 1
- 230000010412 perfusion Effects 0.000 description 1
- 239000000902 placebo Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000011045 prefiltration Methods 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 230000000135 prohibitive effect Effects 0.000 description 1
- 239000012460 protein solution Substances 0.000 description 1
- 239000002510 pyrogen Substances 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 239000012088 reference solution Substances 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000001509 sodium citrate Substances 0.000 description 1
- 235000011152 sodium sulphate Nutrition 0.000 description 1
- WPLOVIFNBMNBPD-ATHMIXSHSA-N subtilin Chemical compound CC1SCC(NC2=O)C(=O)NC(CC(N)=O)C(=O)NC(C(=O)NC(CCCCN)C(=O)NC(C(C)CC)C(=O)NC(=C)C(=O)NC(CCCCN)C(O)=O)CSC(C)C2NC(=O)C(CC(C)C)NC(=O)C1NC(=O)C(CCC(N)=O)NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C1NC(=O)C(=C/C)/NC(=O)C(CCC(N)=O)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)CNC(=O)C(NC(=O)C(NC(=O)C2NC(=O)CNC(=O)C3CCCN3C(=O)C(NC(=O)C3NC(=O)C(CC(C)C)NC(=O)C(=C)NC(=O)C(CCC(O)=O)NC(=O)C(NC(=O)C(CCCCN)NC(=O)C(N)CC=4C5=CC=CC=C5NC=4)CSC3)C(C)SC2)C(C)C)C(C)SC1)CC1=CC=CC=C1 WPLOVIFNBMNBPD-ATHMIXSHSA-N 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 239000003017 thermal stabilizer Substances 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 238000002054 transplantation Methods 0.000 description 1
- HRXKRNGNAMMEHJ-UHFFFAOYSA-K trisodium citrate Chemical compound [Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O HRXKRNGNAMMEHJ-UHFFFAOYSA-K 0.000 description 1
- 229940038773 trisodium citrate Drugs 0.000 description 1
- QIVBCDIJIAJPQS-UHFFFAOYSA-M tryptophanate Chemical compound C1=CC=C2C(CC(N)C([O-])=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-M 0.000 description 1
- 241001515965 unidentified phage Species 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/76—Albumins
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P7/00—Drugs for disorders of the blood or the extracellular fluid
- A61P7/08—Plasma substitutes; Perfusion solutions; Dialytics or haemodialytics; Drugs for electrolytic or acid-base disorders, e.g. hypovolemic shock
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K1/00—General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
- C07K1/14—Extraction; Separation; Purification
- C07K1/34—Extraction; Separation; Purification by filtration, ultrafiltration or reverse osmosis
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/745—Blood coagulation or fibrinolysis factors
- C07K14/755—Factors VIII, e.g. factor VIII C (AHF), factor VIII Ag (VWF)
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/76—Albumins
- C07K14/765—Serum albumin, e.g. HSA
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
Definitions
- the present invention relates to an albumin purification method comprising a nanofiltration step, a solution and a composition for therapeutic use containing the same, obtainable by the method of the invention.
- Albumin is a major protein of human or animal blood plasma. Clinical use of albumin, as an active ingredient, requires its extraction and purification, which is traditionally carried out by known methods, such as those of Cohn et al. (J. Am. Chem. Soc., 68, 459, 1946) and Kistler et al. (Vox Sang., 7, 1962, 414-424) which are additionally applicable to an industrial scale.
- Albumin requirements amount to about 100-300 kg per million inhabitants according to country; for that reason, it is necessary, for clinical purposes, to provide an albumin free from pathogenic viruses and contaminants, which are sources of diseases.
- transfusion-transmissible viruses safety is ensured by viral inactivation methods such as liquid-state pasteurisation of an albumin composition at 60° C. for 10 hours in the presence of a biologically compatible stabiliser (sodium caprylate and/or tryptophanate) .
- a biologically compatible stabiliser sodium caprylate and/or tryptophanate
- recombinant albumin In order to avoid the risk of transmissible infectious agents being present, it has been suggested to produce a so-called “recombinant” albumin, according to U.S. Pat. No. 6,210,683: the gene of albumin is introduced s into a host cell, yeast or bacterium, having a high proliferation potential. In turn, this host cell produces albumin in the culture medium or its cytoplasm. This albumin is then separated from the cells by extraction and purified. However, the presence of host cell proteins is often detected and the purification methods must therefore have a very high resolution, which is generally detrimental to the yield. The production cost of a recombinant albumin may then prove to be too high in comparison to that of an albumin generated from plasma.
- a solution consists of adjusting the physicochemical parameters influencing the recovery yield of solutes, while avoiding the passage of contaminants through the filter. Varying these parameters—such as ionic strength, the nature of the solute to be filtered and the pH of the solution to be filtered—as well as the working conditions of the filtration—such as flow rate and pressure—has been the subject of many studies. For instance, the scientific publications by C. Wallis et al., Ann. Rev. Microbiol., 33, p. 413-437, 1979 and S. Jacob, Methods of Biochemical Analysis, 22, p. 307-350, 1974, show that the effect of each parameter can individually result in increased or decreased efficiency of virus retention and recovery yield of solutes, and that combining several parameters does not systematically favour a synergy of the effects of improvement of the filtration conditions.
- the object of the present invention is to provide a solution corresponding to a good compromise between two criteria, the retention efficiency of viruses and/or other macromolecules likely to induce diseases or side effects in patients, and the recovery yield of albumin, the relative importance of these two criteria depending on the desired application.
- the invention relates to a method for purifying albumin comprising a step of submitting an aqueous solution of albumin, with a concentration of 15 g/L to 80 g/L and a pH not lower than 7, to a nanofiltration in a temperature range of 15° C. to 55° C.
- the Applicant surprisingly found that using a judicious combination of pH, albumin concentration and temperature (and consequently viscosity) values, in the aqueous albumin solution submitted to the nanofiltration step, makes it possible to reach an efficient optimisation of the albumin recovery yield, and rates of reduction of viruses and other undesirable macromolecules higher than the limits set by the control authorities (4 log). It has been brought to light that a nanofiltration carried out under the conditions of the invention makes it possible to filter amounts higher than 5 kg albumin per m 2 filter, thus defining the protein load, while optimising the duration of the operation and the filtrate flow rate.
- the nanofiltered albumin solutions show a very high degree of safety in respect of particulate contaminants with a size of e.g.
- aqueous albumin solutions are also an intermediate product capable of being processed into pharmaceutical formulations for clinical use (see further on).
- the aqueous albumin solutions are solutions free from any reagent employed during various classical steps of albumin manufacture or purification, such as e.g. polyethyleneglycol (PEG), ethanol, organic salts (sodium caprylate, etc.) and inorganic salts.
- PEG polyethyleneglycol
- organic salts sodium caprylate, etc.
- inorganic salts such as sodium caprylate, etc.
- these various reagents are removed from the albumin solution by known processes, such as diafiltration, ultrafiltration, dialysis, etc.
- the presence of such reagents, or variations in their respective concentrations from one sample to another can result in unfavourable efficiencies in terms of virus retention and albumin recovery.
- the Applicant has further found that a decreasing ionic strength is correlated with a better viral reduction.
- the aqueous albumin solutions submitted to the nanofiltration may have an ionic strength lower than a maximum threshold connected, in this case, with the maximum allowable basic pH value. This value typically corresponds to about 11.5.
- the pH must be controlled in particular so that the variation in ionic strength caused by the addition of a pH control agent to the aqueous albumin solution is only very small, if not insignificant.
- pH controllers will preferably be selected among strong alkali metal bases such as NaOH and KOH, and among strong acids such as HCl, while respecting the above-mentioned criteria. Furthermore, it is preferable to avoid pH controllers based on organic compounds, such as organic bases.
- the method of the invention may be implemented with is all types of frontal or tangential nanofiltration devices, in particular frontal nanofiltration devices, known to those skilled in the art.
- frontal nanofiltration devices in particular frontal nanofiltration devices, known to those skilled in the art.
- filters have pore sizes smaller than 100 nm.
- the nanofiltration step according to the invention is preferably carried out on qualified filters having porosities of at least 13 nm, for example the nanometric filters with porosities of 15 ⁇ 2 or 20 ⁇ 2 nm which are commercially available as pleated membranes, flat membranes or hollow fibres.
- Regenerated cellulose nanofilters such as PLANOVA® having a porosities of 15 nm and surface areas of 0.01 m 2 (from Asahi, Japan), or PALL virus filters (U.S.A.) with porosities of 20 or 50 nm, may be mentioned by way of example.
- albumin starting material freeze-dried pure product, concentrate, etc.
- Any source of albumin starting material may be used, in particular those resulting from the fractionation of human or animal blood plasma according to the methods of Cohn et al. (J. Am. Chem. Soc., 68, 459, 1946) or Kistler et al. (Vox Sang., 7, 1962, 414-424).
- the pH of the aqueous albumin solution is preferably in the range from about 7.8 to about 11.5, and more preferably, from 9 to 10.5. Albumin is irreversibly altered by pH values higher than approximately 11.5.
- the method of the invention is preferably implemented with aqueous albumin solutions having concentrations in the range of 40 to 60 g/L and in a temperature range of 30 to 55° C.
- the method may further comprise a step of adding a pharmaceutically acceptable salt or salt mixture to the aqueous albumin solution to provide a solution with an ionic strength higher than 0.0032, and preferably, in the range of 0.01to 0.55, more preferably, of 0.01 to 0.3, even more preferably, of 0.05 to 0.15, and in particular, of 0.1 to 0.13.
- Alkali metal salts are preferably used, in particular sodium chloride present in an amount imparting to the albumin solution an ionic strength of 0.15.
- albumin may be suitably used as starting material, its origin may be a factor affecting the nanofiltration yield, depending on whether it contains thermal stabilisers or was heat-treated (thermal shock or pasteurisation).
- thermal stabilisers thermal stabilisers or was heat-treated (thermal shock or pasteurisation).
- using an albumin obtained by ethanol extraction according to Cohn et al. or Kistler et al. as mentioned above, and purified by ion-exchange or affinity chromatography can result in an increased albumin recovery and/or a reduced filtration duration.
- the nanofiltration of the aqueous albumin solution can be carried out in two successive steps on two filters with decreasing porosities, respectively.
- these two successive steps are carried out on filters with porosities of 23 to 50 nm and 15 or 20 nm, respectively.
- the method of the invention is implemented at pressures not exceeding 1 bar, preferably in the range of 0.2 to 0.8 bar.
- the method may comprise a subsequent step of known specific process intended to make the aqueous albumin solutions suitable to various therapeutic uses in accordance with the European Pharmacopoeia, such as their adjustment to the physiological pH if appropriate, to the isotonicity in the case of an intravenous injection and to a physiologically acceptable salt concentration, and/or conditioning, for example in freeze-dried or liquid form.
- European Pharmacopoeia such as their adjustment to the physiological pH if appropriate, to the isotonicity in the case of an intravenous injection and to a physiologically acceptable salt concentration, and/or conditioning, for example in freeze-dried or liquid form.
- the invention also relates to a virally safe aqueous albumin solution obtainable by implementing the method of the invention, in which the transport and binding sites of therapeutically active ingredients are available in the albumin.
- This albumin solution is further characterised in that it is free from macromolecules having a sedimentation constant, according to Svedberg Ph. et al. (“Ultracentri colg”, 7th edition, Ed. Steinkopff, Dresden, 1940) above 7 S (i.e. a molecular weight of about 160 kDa).
- this albumin solution contains at most 1% albumin polymers with a size smaller than 100 nm, preferably smaller than 20 nm.
- the invention further relates to an albumin composition for therapeutic use obtained by processing said albumin solution according to the invention to make it suitable to a clinical use.
- albumin compositions for therapeutic use makes it possible to suppress the pasteurisation step, a source of drawbacks as mentioned above, and therefore, to add usual protection stabilisers against thermal effects, which also bind on the albumin sites, thus preventing albumin from binding the relevant molecules.
- the albumin of these compositions according to the invention retains its binding and transport potential of various active ingredients, and through this binding, reduces their toxicity or increases the bioavailability by a depot effect.
- albumin compositions according to the invention may be used:
- FIG. 1 shows a device for implementing the method s of the invention
- FIGS. 2 to 6 are plots showing the variations of the instantaneous filtration flow rate (mL/min) versus the nanofiltration duration, obtained on the basis of various parameters.
- a filtration device 1 containing a PLANOVA® 15-nm filter with a surface area of 0.01 m 2 is equipped with tubes 10 , 11 at the retentate (pre-filtration solution) outlet and at the filtrate (post-filtration solution) inlet and outlet, made of pharmaceutically compatible materials, with diameters of about 5 mm, closed by clamps.
- the device is arranged on a stand (not shown) in vertical position with the help of graspers.
- the inlet of the 15-nm filter is connected, through the tube 10 , to a pressure vessel 12 the pressure of which is measured with a digital pressure gauge 13 connected to the upstream filter circuit.
- an integrity test is carried out on the 15-nm filter in accordance with the manufacturer's procedure: “Air leakage test during the integrity pre-and post-filtration test of PLANOVA® 15, 35, 75-nm filters”.
- the compressed air inlet 14 is connected to the pressure vessel 12 filled with a volume of about 100 mL NaCl at 9 g/L.
- the flask is pressurised progressively until a pressure of 0.5 bar is reached at the inlet of the 15-nm filter.
- the 15-nm filter is filled while air is released at the retentate outlet, without filling the outside of the filter fibres.
- the lower outlet is open and connected to an optical density measurement detection cell 15 connected to a recording device 16 , the top filtrate outlet remaining clamped.
- the rinse filtrate is collected in a container 17 on a weighing scale 18 connected to and controlled by a microcomputer 19 that records the filtrate weight increase, which makes it possible to is monitor the instantaneous filtration flow rate.
- the necessary time to filter a minimum volume of 40 mL at 0.5 bar is measured, and the average flow rate in mL/min is deduced.
- the system is progressively depressurised and all the outlets are clamped.
- the system can be at room temperature (about 20° C. ) or placed in an oven in which the working temperature is between 25 and 60° C.
- albumin starting material used is the one obtained by fractionation of human plasma according to Kistler et al. and having undergone alcohol elimination process, diafiltration and concentration by ultrafiltration. It should be noted that the above fractionation of various sources of plasma generally results in albumin with variable characteristics due to the biological nature of the starting material. This albumin may therefore influence the duration of the nanofiltration, the yield, etc.
- Albumin aqueous solutions to be filtered are prepared from the reference solutions above, by modification of characteristics thereof such as concentration, pH and ionic strength. Their volumes are adjusted so as to provide the desired protein loads. Depending on the particular example, the albumin concentrations vary from 15 g/L to 80 g/L. The pH is adjusted by adding 0.5 M NaOH or HCl and the ionic strength is adjusted by adding sodium chloride. Then, the albumin solutions are all prefiltered on commercially available 0.2- ⁇ m filters.
- the filter inlet is closed.
- one volume of purified water for injection (PWI) is introduced into the repressurised vessel 12 , and the filter is flushed out.
- the filtrate is collected until a perceptible reduction in optical density which is monitored on the recording device 16 .
- the downstream circuit is then flushed out to collect the finished filtrate.
- Samples are taken from the filtrate and submitted to subsequent analytic tests such as polymer assays, virus titrations, etc.
- the duration of filtration of one volume of albumin solution required to provide a fixed protein load is also measured, and the filtration yield is determined as the quotient between the albumin amount contained in the filtrate and in the retentate.
- an integrity test is carried out on the 15-nm filter in accordance with the manufacturer's procedure: “Air leakage test during the integrity pre-and post-filtration test of PLANOVA® 15, 35, 75-nm filters”.
- the dependence of the filtration durations and yields to the pH of the albumin solutions in a such a way as a protein load of 4 kg/m 2 is provided is determined using a batch of albumin A as starting material.
- Five solutions of albumin at 40 g/L, A1 to A5 are prepared in a solution of NaCl at 9 g/L, and adjusted to pH 5, 7, 9, 9.5 and 10 respectively, with 0.5 M solutions of HCl or NaOH, and submitted to a nanofiltration.
- the nanofiltration tests are carried out at 20° C. at a pressure of 0.5 bar.
- FIG. 2 shows the plots of filtration flow rate (mL/min) versus nanofiltration duration for each of the solutions considered.
- the shortest nanofiltration duration is that observed with A′1. However, the most optimal initial flow rate is observed with solution A4.
- the albumin used is obtained by fractionation according to the method of Kistler et al. and is made therapeutically active by heating at 60° C. for 10 hours in the presence of a suitable stabiliser, in accordance with the requirements of the European Pharmacopoeia.
- the albumin B thus obtained is then mixed with a buffer comprising: 0.01 M trisodium citrate, 0.12 M glycine, 0.016 M L-Lysine, 0.001 M calcium chloride and 0.17 M sodium chloride, pH 7-7.5.
- the final concentration of the albumin solutions is 20 g/L.
- Example 9 The same solutions B and working conditions as in Example 9 are used to measure the reduction in polymer content after nanofiltration (Table 8). TABLE 8 Polymer content Polymer content before filtration after filtration Solutions B (%) (%) Filter of 0.01 m 2 3.1 0.47 ⁇ 0.13 Filter of 1 m 2 4.3 ⁇ 0.7 0.38 ⁇ 0.05
- viruses are introduced into different solutions of albumin A (20 g/L) which are submitted to nanofiltration tests.
- the tests are carried out by infecting the albumin solutions with bacteriophage virus Phi-X 174, suspensions of which are obtained in accordance with AFNOR Standard NFT 72-181 (December 1989).
- This virus is a good marker for the 15-nm filter as its size is between 25 and 30 nm, which corresponds to the non-enveloped viruses that are transmissible to humans, such as parvovirus B19, the inactivation by pasteurisation of which is not satisfactory.
- albumin A nanofiltered without any stabiliser, in the transport and binding of medicines, are studied by comparing them with those obtained with two different albumin A batches pasteurised in the presence of sodium caprylate.
- three solutions A4 (Example 3) are provided, one of which has been nanofiltered under the conditions of the invention. These solutions are then processed into pharmaceutical formulations in a 0.07 M phosphate buffer, pH 7.4, to give albumin compositions, A′4, A′′′4 and A′′′4, with concentrations of 2.5 g/L.
- the albumin compositions A′′4 and A′′′4, not nanofiltered, are pasteurised in the presence of sodium caprylate, respectively.
- a sample of 1 mL is taken from each of the compositions, and a volume of between 10 ⁇ L and 1 000 ⁇ L of a parent alcohol-based solution of [ 14 C]warfarine and [ 14 C]diazepam at 0.1 M respectively, two active ingredients of the respective class of anticoagulants and neurotropes, is added to the albumin compositions considered in order to provide variable concentrations in these active ingredients.
- the mixture is then homogenised.
- a dialysis device including a cell with two compartments separated by a suitable dialysis membrane is obtained.
- One volume V of an albumin/active ingredient mixture is introduced into compartment 1 and the same volume V of dialysis buffer (phosphate buffer, as defined above) is introduced into compartment 2 .
- V of dialysis buffer phosphate buffer, as defined above
- compartment 1 contains albumin-bound and unbound active ingredient
- compartment 2 contains unbound active ingredient.
- Table 10 gives the percentages of albumin-bound [ 14 C]diazepam obtained with compositions A′4, A′′4 and A′′′4 respectively, in which increasing volumes of active ingredient have been added.
- Table 11 shows the results obtained with [ 14 C]warfarine instead of [ 14 C]diazepam. The results are shown as the average value of 5 tests.
- compositions A′′4 and A′′′4 Increasing the concentration in [ 14 C]diazepam in the albumin compositions A′′4 and A′′′4 results in appreciably constant percentages of albumin-bound [ 14 C]diazepam. Therefore, the binding site identified in the albumin A, nanofiltered without any stabiliser, in composition A′4 is no more functional since it is occupied by the stabiliser.
- vWf von Willebrand factor
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Medicinal Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Molecular Biology (AREA)
- Genetics & Genomics (AREA)
- Biophysics (AREA)
- Biochemistry (AREA)
- Toxicology (AREA)
- Gastroenterology & Hepatology (AREA)
- Zoology (AREA)
- Engineering & Computer Science (AREA)
- Hematology (AREA)
- Analytical Chemistry (AREA)
- Water Supply & Treatment (AREA)
- Diabetes (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Veterinary Medicine (AREA)
- Pharmacology & Pharmacy (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Public Health (AREA)
- General Chemical & Material Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Peptides Or Proteins (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Medicinal Preparation (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/611,460 US9611311B2 (en) | 2004-02-27 | 2015-02-02 | Albumin-purification method comprising a nanofiltration step, solution, and composition for therapeutic use containing the same |
US15/443,884 US10562957B2 (en) | 2004-02-27 | 2017-02-27 | Albumin-purification method comprising a nanofiltration step, solution, and composition for therapeutic use containing the same |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0402001 | 2004-02-27 | ||
FR0402001A FR2866890B1 (fr) | 2004-02-27 | 2004-02-27 | Procede de purification d'albumine comprenant une etape de nanofiltration, solution et composition a usage therapeutique la contenant |
PCT/FR2005/000416 WO2005090402A1 (fr) | 2004-02-27 | 2005-02-23 | Procede de purificaton d’albumine comprenant une etape de nanofiltration, solution et composition a usage therapeutique la contenant |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/FR2005/000416 A-371-Of-International WO2005090402A1 (fr) | 2004-02-27 | 2005-02-23 | Procede de purificaton d’albumine comprenant une etape de nanofiltration, solution et composition a usage therapeutique la contenant |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/611,460 Continuation US9611311B2 (en) | 2004-02-27 | 2015-02-02 | Albumin-purification method comprising a nanofiltration step, solution, and composition for therapeutic use containing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
US20070161122A1 true US20070161122A1 (en) | 2007-07-12 |
Family
ID=34834103
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/589,825 Abandoned US20070161122A1 (en) | 2004-02-27 | 2005-02-23 | Albumin-purification method comprising a nanofiltration step, solution, and composition for therapeutic use containing the same |
US14/611,460 Expired - Lifetime US9611311B2 (en) | 2004-02-27 | 2015-02-02 | Albumin-purification method comprising a nanofiltration step, solution, and composition for therapeutic use containing the same |
US15/443,884 Expired - Lifetime US10562957B2 (en) | 2004-02-27 | 2017-02-27 | Albumin-purification method comprising a nanofiltration step, solution, and composition for therapeutic use containing the same |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/611,460 Expired - Lifetime US9611311B2 (en) | 2004-02-27 | 2015-02-02 | Albumin-purification method comprising a nanofiltration step, solution, and composition for therapeutic use containing the same |
US15/443,884 Expired - Lifetime US10562957B2 (en) | 2004-02-27 | 2017-02-27 | Albumin-purification method comprising a nanofiltration step, solution, and composition for therapeutic use containing the same |
Country Status (16)
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080207878A1 (en) * | 2005-06-29 | 2008-08-28 | Laboratoire Francais Du Fractionnement Et Des Biotechnologies | Process for separating proteins fibrinogen, factor XIII and biological glue from a solubilized plasma fraction and for preparing lyophilised concentrates of said proteins |
WO2015140751A1 (en) * | 2014-03-21 | 2015-09-24 | Boreal Invest | Terminal nanofiltration of solubilized protein compositions for removal of immunogenic aggregates |
US11640846B2 (en) * | 2020-01-30 | 2023-05-02 | Fresenius Medical Care Holdings, Inc. | Techniques for modelling and optimizing dialysis toxin displacer compounds |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2866890B1 (fr) * | 2004-02-27 | 2008-04-04 | Lab Francais Du Fractionnement | Procede de purification d'albumine comprenant une etape de nanofiltration, solution et composition a usage therapeutique la contenant |
FR2894831B1 (fr) | 2005-12-16 | 2008-02-15 | Lab Francais Du Fractionnement | Colle biologique exempte de thrombine et son utilisation comme medicament. |
ES2294976B1 (es) * | 2007-11-12 | 2008-12-16 | Grifols, S.A. | "procedimiento de obtencion de albumina humana de alta eficacia para su uso en terapia de detoxificacion". |
CN103429272A (zh) | 2010-12-30 | 2013-12-04 | 法国化学与生物科技实验室 | 作为病原体灭活剂的二元醇 |
FR3004451B1 (fr) * | 2013-04-11 | 2015-12-11 | Lab Francais Du Fractionnement | Procede de preparation d'une solution de proteine c viralement securisee par une double etape de nanofiltration |
FR3040882A1 (fr) * | 2015-09-10 | 2017-03-17 | Lab Francais Du Fractionnement | Composition liquide d'albumine humaine a usage therapeutique |
US12161777B2 (en) | 2020-07-02 | 2024-12-10 | Davol Inc. | Flowable hemostatic suspension |
US11739166B2 (en) | 2020-07-02 | 2023-08-29 | Davol Inc. | Reactive polysaccharide-based hemostatic agent |
CN116744984A (zh) | 2020-12-28 | 2023-09-12 | 达沃有限公司 | 包含蛋白质和多官能化改性的基于聚乙二醇的交联剂的反应性干粉状止血材料 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5346992A (en) * | 1991-02-07 | 1994-09-13 | Pasteur Merieux Serums Et Vaccins | Process for isolating human albumin from supernatant IV, in particular IV-4, or from COHN's fraction V or from an analogous supernatant or fraction |
US6150504A (en) * | 1991-07-12 | 2000-11-21 | Dsm Patents & Trademarks | Process for the purification of serum albumin |
US6210683B1 (en) * | 1997-09-05 | 2001-04-03 | Merck & Co., Inc. | Stabilizers containing recombinant human serum albumin for live virus vaccines |
US6399357B1 (en) * | 1994-06-23 | 2002-06-04 | Biovitrum Ab | Filtration |
US20030232969A1 (en) * | 2002-03-15 | 2003-12-18 | Thomas Lengsfeld | Method for separating off viruses from a protein solution by means of nanofiltration |
US6806355B2 (en) * | 2001-08-14 | 2004-10-19 | Statens Serum Institut | Purification process for large scale production of Gc-globulin, the Gc-globulin produced hereby, a use of Gc.globulin and a Gc-globulin medicinal product |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB9019919D0 (en) | 1990-09-12 | 1990-10-24 | Delta Biotechnology Ltd | Purification of proteins |
US5440018A (en) | 1992-05-20 | 1995-08-08 | The Green Cross Corporation | Recombinant human serum albumin, process for producing the same and pharmaceutical preparation containing the same |
JPH06279296A (ja) * | 1993-03-25 | 1994-10-04 | Asahi Chem Ind Co Ltd | 血漿分画製剤中から蛋白質会合物の除去方法 |
JP4798832B2 (ja) * | 2000-10-24 | 2011-10-19 | 一般財団法人化学及血清療法研究所 | ヒト血清アルブミン多量体の除去方法 |
CN1651462A (zh) * | 2000-10-24 | 2005-08-10 | 财团法人化学及血清疗法研究所 | 人血清白蛋白多聚体的单体化方法 |
JPWO2004089402A1 (ja) * | 2003-04-09 | 2006-07-06 | 財団法人化学及血清療法研究所 | アルブミン製剤の製造方法 |
FR2866890B1 (fr) * | 2004-02-27 | 2008-04-04 | Lab Francais Du Fractionnement | Procede de purification d'albumine comprenant une etape de nanofiltration, solution et composition a usage therapeutique la contenant |
-
2004
- 2004-02-27 FR FR0402001A patent/FR2866890B1/fr not_active Expired - Lifetime
-
2005
- 2005-02-23 ES ES05731028T patent/ES2294696T3/es not_active Expired - Lifetime
- 2005-02-23 EP EP05731028A patent/EP1718673B1/fr not_active Expired - Lifetime
- 2005-02-23 JP JP2007500249A patent/JP4979571B2/ja not_active Expired - Fee Related
- 2005-02-23 PT PT05731028T patent/PT1718673E/pt unknown
- 2005-02-23 WO PCT/FR2005/000416 patent/WO2005090402A1/fr active IP Right Grant
- 2005-02-23 AT AT05731028T patent/ATE373014T1/de active
- 2005-02-23 BR BRPI0507886-5A patent/BRPI0507886A/pt active Search and Examination
- 2005-02-23 DE DE602005002461T patent/DE602005002461T2/de not_active Expired - Lifetime
- 2005-02-23 US US10/589,825 patent/US20070161122A1/en not_active Abandoned
- 2005-02-23 CA CA2557174A patent/CA2557174C/fr not_active Expired - Lifetime
- 2005-02-23 DK DK05731028T patent/DK1718673T3/da active
- 2005-02-23 PL PL05731028T patent/PL1718673T3/pl unknown
- 2005-02-23 AU AU2005223418A patent/AU2005223418B2/en not_active Ceased
-
2006
- 2006-08-03 IL IL177286A patent/IL177286A/en not_active IP Right Cessation
-
2007
- 2007-12-12 CY CY20071101575T patent/CY1107082T1/el unknown
-
2011
- 2011-12-21 JP JP2011280288A patent/JP2012102115A/ja active Pending
-
2015
- 2015-02-02 US US14/611,460 patent/US9611311B2/en not_active Expired - Lifetime
-
2017
- 2017-02-27 US US15/443,884 patent/US10562957B2/en not_active Expired - Lifetime
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5346992A (en) * | 1991-02-07 | 1994-09-13 | Pasteur Merieux Serums Et Vaccins | Process for isolating human albumin from supernatant IV, in particular IV-4, or from COHN's fraction V or from an analogous supernatant or fraction |
US6150504A (en) * | 1991-07-12 | 2000-11-21 | Dsm Patents & Trademarks | Process for the purification of serum albumin |
US6399357B1 (en) * | 1994-06-23 | 2002-06-04 | Biovitrum Ab | Filtration |
US6210683B1 (en) * | 1997-09-05 | 2001-04-03 | Merck & Co., Inc. | Stabilizers containing recombinant human serum albumin for live virus vaccines |
US6806355B2 (en) * | 2001-08-14 | 2004-10-19 | Statens Serum Institut | Purification process for large scale production of Gc-globulin, the Gc-globulin produced hereby, a use of Gc.globulin and a Gc-globulin medicinal product |
US20030232969A1 (en) * | 2002-03-15 | 2003-12-18 | Thomas Lengsfeld | Method for separating off viruses from a protein solution by means of nanofiltration |
Non-Patent Citations (1)
Title |
---|
Mehta, A. et al., "Purifying Therapeutic Monoclonal Antibodies", Society for Biological Engineering, CEP, 104(5), p. S14-S20, (2008). * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080207878A1 (en) * | 2005-06-29 | 2008-08-28 | Laboratoire Francais Du Fractionnement Et Des Biotechnologies | Process for separating proteins fibrinogen, factor XIII and biological glue from a solubilized plasma fraction and for preparing lyophilised concentrates of said proteins |
US8598319B2 (en) | 2005-06-29 | 2013-12-03 | Laboratoire Francais Du Fractionnement Et Des Biotechnologies | Process for separating proteins fibrinogen, factor XIII and biological glue from a solubilized plasma fraction and for preparing lyophilised concentrates of said proteins |
US9320779B2 (en) | 2005-06-29 | 2016-04-26 | Laboratoire Francais Du Fractionnement Et Des Biotechnologies | Process for separating proteins fibrinogen, factor XIII and biological glue from a solubilized plasma fraction and for preparing lyophilised concentrates of said proteins |
US9339530B2 (en) | 2005-06-29 | 2016-05-17 | Laboratoire Francais Du Fractionnement Et Des Biotechnologies | Process for separating proteins fibrinogen, factor XIII and biological glue from a solubilized plasma fraction and for preparing lyophilised concentrates of said proteins |
WO2015140751A1 (en) * | 2014-03-21 | 2015-09-24 | Boreal Invest | Terminal nanofiltration of solubilized protein compositions for removal of immunogenic aggregates |
US11640846B2 (en) * | 2020-01-30 | 2023-05-02 | Fresenius Medical Care Holdings, Inc. | Techniques for modelling and optimizing dialysis toxin displacer compounds |
Also Published As
Publication number | Publication date |
---|---|
US10562957B2 (en) | 2020-02-18 |
IL177286A0 (en) | 2006-12-10 |
WO2005090402A1 (fr) | 2005-09-29 |
CY1107082T1 (el) | 2012-10-24 |
DK1718673T3 (da) | 2008-01-14 |
JP2007535495A (ja) | 2007-12-06 |
JP4979571B2 (ja) | 2012-07-18 |
AU2005223418B2 (en) | 2008-12-18 |
EP1718673A1 (fr) | 2006-11-08 |
FR2866890A1 (fr) | 2005-09-02 |
AU2005223418A1 (en) | 2005-09-29 |
DE602005002461T2 (de) | 2008-06-12 |
ATE373014T1 (de) | 2007-09-15 |
IL177286A (en) | 2012-08-30 |
CA2557174C (fr) | 2013-04-30 |
JP2012102115A (ja) | 2012-05-31 |
EP1718673B1 (fr) | 2007-09-12 |
FR2866890B1 (fr) | 2008-04-04 |
US20170166626A1 (en) | 2017-06-15 |
PT1718673E (pt) | 2007-12-13 |
CA2557174A1 (fr) | 2005-09-29 |
US9611311B2 (en) | 2017-04-04 |
US20150152162A1 (en) | 2015-06-04 |
PL1718673T3 (pl) | 2008-03-31 |
BRPI0507886A (pt) | 2007-08-07 |
DE602005002461D1 (de) | 2007-10-25 |
ES2294696T3 (es) | 2008-04-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10562957B2 (en) | Albumin-purification method comprising a nanofiltration step, solution, and composition for therapeutic use containing the same | |
CA2192683C (en) | Filtration | |
TW390887B (en) | A method for chromatographic removal of prions | |
EP2272870B1 (en) | Process for manufacturing immunoglobulins for intravenous administration and other immunoglobulin-like products | |
DE69839218T2 (de) | Verfahren zur beseitigung von viren | |
JP3297433B2 (ja) | ウイルスで汚染された薬理組成物中のウイルスの不活性化方法 | |
JP4808864B2 (ja) | ウイルスの不活化方法 | |
EP2078730B9 (en) | Process for obtaining a concentrate of von Willebrand factor or a complex of factor VIII/ von Willebrand factor and use of the same | |
JP5711369B2 (ja) | 蛋白製剤の製造方法 | |
Troccoli et al. | Removal of viruses from human intravenous immune globulin by 35 nm nanofiltration | |
SK287633B6 (sk) | Spôsob výroby humánneho gamaglobulínu G a humánny gamaglobulín G s inaktivovanými vírusmi | |
JP2008500959A (ja) | ウイルスについて安全な免疫グロブリンの製造方法 | |
KR20230125282A (ko) | 면역글로불린 G의 공정 규모 단리를 위한 시스템 및방법 (Systems and Methods for Process Scale Isolation of Immunoglobulin G) | |
Roberts | Efficient removal of viruses by a novel polyvinylidene fluoride membrane filter | |
EP1086120A1 (en) | Method for preparing virus-safe pharmaceutical compositions | |
KR101146946B1 (ko) | 알부민 제제의 제조 방법 | |
JP2000212097A (ja) | 伝達性海綿状脳症病原因子を除去する方法 | |
HK1151044B (en) | Process for manufacturing immunoglobulins for intravenous administration and other immunoglobulin-like products |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: LABRATOIRE FRANCAIS DU FRACTIONNEMENT ET DES BIOTE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BOULANGE, PAUL;CHTOUROU, SAMI;BOYER, STEPHANE;AND OTHERS;REEL/FRAME:018641/0471;SIGNING DATES FROM 20060922 TO 20061023 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |