US20070149082A1 - Textile laminate - Google Patents

Textile laminate Download PDF

Info

Publication number
US20070149082A1
US20070149082A1 US11/707,145 US70714507A US2007149082A1 US 20070149082 A1 US20070149082 A1 US 20070149082A1 US 70714507 A US70714507 A US 70714507A US 2007149082 A1 US2007149082 A1 US 2007149082A1
Authority
US
United States
Prior art keywords
hydrophobic membrane
fabric layer
textile laminate
polymer fibers
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/707,145
Inventor
Cheng-Wu Ying
Chi-Heng Lee
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US11/707,145 priority Critical patent/US20070149082A1/en
Publication of US20070149082A1 publication Critical patent/US20070149082A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D31/00Materials specially adapted for outerwear
    • A41D31/04Materials specially adapted for outerwear characterised by special function or use
    • A41D31/10Impermeable to liquids, e.g. waterproof; Liquid-repellent
    • A41D31/102Waterproof and breathable
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D31/00Materials specially adapted for outerwear
    • A41D31/04Materials specially adapted for outerwear characterised by special function or use
    • A41D31/12Hygroscopic; Water retaining
    • A41D31/125Moisture handling or wicking function through layered materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • B01D71/36Polytetrafluoroethene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/12Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4374Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece using different kinds of webs, e.g. by layering webs
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/58Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by applying, incorporating or activating chemical or thermoplastic bonding agents, e.g. adhesives
    • D04H1/593Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by applying, incorporating or activating chemical or thermoplastic bonding agents, e.g. adhesives to layered webs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/12Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives
    • B32B37/1207Heat-activated adhesive
    • B32B2037/1238Heat-activated adhesive in the form of powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0253Polyolefin fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/726Permeability to liquids, absorption
    • B32B2307/7265Non-permeable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/73Hydrophobic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2327/00Polyvinylhalogenides
    • B32B2327/12Polyvinylhalogenides containing fluorine
    • B32B2327/18PTFE, i.e. polytetrafluoroethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2437/00Clothing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24273Structurally defined web or sheet [e.g., overall dimension, etc.] including aperture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24273Structurally defined web or sheet [e.g., overall dimension, etc.] including aperture
    • Y10T428/24322Composite web or sheet
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24273Structurally defined web or sheet [e.g., overall dimension, etc.] including aperture
    • Y10T428/24322Composite web or sheet
    • Y10T428/24331Composite web or sheet including nonapertured component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/659Including an additional nonwoven fabric
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/659Including an additional nonwoven fabric
    • Y10T442/668Separate nonwoven fabric layers comprise chemically different strand or fiber material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/674Nonwoven fabric with a preformed polymeric film or sheet
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/674Nonwoven fabric with a preformed polymeric film or sheet
    • Y10T442/677Fluorinated olefin polymer or copolymer sheet or film [e.g., TeflonR, etc.]

Definitions

  • the present invention relates to a textile laminate and a method of fabricating the same, and more particularly, to a waterproof and breathable textile laminate and fabrication method thereof.
  • U.S. Pat. No. 5,928,582 discloses a method of forming a microporous membrane that utilizes an ultraviolet irradiation process to form microsphereulites, followed by a thermally-induced phase separation, yielding microporous membranes that have improved flow and mechanical properties.
  • Gore et al. disclose a waterproof laminate for use in constructing sport apparel having air and water vapor permeability with liquid water resist properties.
  • Breathable waterproof laminates are particularly advantageous in traditional waterproof textile fabric applications, such as garments.
  • a garment formed of conventional waterproof textile fabric can prevent environmental water, such as rain, from entering the garment, but often tends to be uncomfortable to the wearer, as moisture, such as perspiration, cannot evaporate through the garment. The moisture generally remains trapped in the garment.
  • Breathable waterproof material is a microporous film comprising a plurality of pores with a size about 1/20000 of liquid water droplets and 700 times that of water vapor.
  • breathable waterproof material can prevent water from penetration while allowing air and water vapor to escape.
  • the waterproof textile laminate for a garment includes a plurality of layers for various functions, such as a fabric layer with thermal regulative property. Accordingly, adhesive agents are required during the manufacturing process to combine these multiple layers. In order to avoid delamination, the adhesive agent must be coated over a majority of each layer. Most adhesive agents, however, are hydrophobic and have very low water permeability, leading to significant deterioration of the water vapor permeability of the textile laminate as the water vapor cannot pass through the adhesive agents. In other words, the breathable ability of a garment is still limited. For example, when massive perspiration is generated due to heavy sport or a high temperature, the perspiration remains on a wearer's body until the perspiration evaporated through the breathable textile laminate gradually. This evaporation process typically takes long time and makes the wearer feels wet and uncomfortable.
  • Dutta et al. disclose a grid pattern of an adhesive layer for bonding a fabric layer and a hydrophilic layer.
  • the improvement of water permeability is very limited.
  • a new waterproof textile laminate with high water vapor permeability is desirable.
  • Embodiments of the invention provide a waterproof textile laminate and a method of fabricating the same to solve the aforementioned problems.
  • a textile laminate comprising a hydrophobic membrane, an inner fabric layer, and an outer fabric layer.
  • the hydrophobic membrane has a plurality of tangled polymer fibers, a plurality of pores among the polymer fibers, and a plurality of adhesive powders attached on the polymer fibers on the top surface and the bottom surface for bonding the outer fabric layer and the inner fabric layer to the top surface and the bottom surface of the hydrophobic membrane.
  • the grain size of each adhesive powder is small enough to remain the pores, but leave the pores unobstructed.
  • the pores in the PTFE film are large enough to allow permeation of while blocking liquid water.
  • a hydrophobic membrane with a top surface and a bottom surface is first provided.
  • the hydrophobic membrane has a plurality of tangled polymer fibers and a plurality of water impermeable pores among the polymer fibers.
  • a plurality of adhesive powders are then applied to the polymer fibers on the top surface and the bottom surface uniformly utilizing static to spread the adhesive powders.
  • a grain size of each adhesive powder is small enough to cling to the polymer fibers without obstructing the permeability of the hydrophobic membrane.
  • an outer fabric layer and an inner fabric layer sandwich the hydrophobic membrane, secured by the adhesive powders.
  • FIG. 1 is a schematic diagram of a textile laminate according to an embodiment of the invention.
  • FIG. 2 is a schematic diagram of a hydrophobic membrane in FIG. 1 ;
  • FIG. 3 is a locally enlarged view of the hydrophobic membrane in FIG. 2 ;
  • FIG. 4 is a schematic diagram of the waterproof and breathable mechanism of textile laminate.
  • FIG. 5 is a schematic diagram of a garment fabricated according to an embodiment of the invention.
  • FIG. 1 is a schematic diagram of a textile laminate 100 according to an embodiment of the invention.
  • the textile laminate 100 comprises an outer fabric layer 110 , a hydrophobic membrane 120 , and an inner fabric layer 130 stacked in sequence.
  • the outer fabric layer 110 can comprise cloth materials capable of supporting and enhancing the strength of the textile laminate 100 , such as synthetic or natural fibers or blends thereof.
  • the outer fabric 110 can comprise windproof or thermally insolating properties or additional functions according to requirements.
  • the outer fabric layer 110 is a fabric layer comprising polyester fibers, nylon fibers, or natural fibers, such as wool, cotton, or T/C blended yarns.
  • FIG. 2 is a schematic diagram of the hydrophobic membrane 120 in FIG. 1 .
  • FIG. 3 is a locally enlarged diagram of an area “A” enclosed by a dotted line in FIG. 2 .
  • the hydrophobic membrane 120 with a top surface 122 a and a bottom surface 122 b comprises a plurality of tangled polymer fibers 124 , a plurality of pores 126 among the polymer fibers 124 , and a plurality of adhesive powders 128 distributed on the polymer fibers 124 on the top surface 122 a and the bottom surface 122 b .
  • the outer fabric layer 110 and the inner fabric layer 130 can be bonded by the adhesive powders 128 to the top surface 122 a and the bottom surface 122 b of the hydrophobic membrane 120 respectively.
  • Each pore 126 has an irregular shape and a size about 1/20000 of liquid water droplets and 700 times that of water vapor. Thus, liquid water is prevented from while air and water vapor are allowed to escape.
  • the grain size of each adhesive powder 128 is small enough to remain the pores 126 unobstructed.
  • the adhesive powder 128 can securely bond the outer fabric layer 110 and inner fabric layer 130 without reducing humidity transmission of the hydrophobic membrane 120 .
  • the hydrophobic membrane 120 comprises a PTFE (polyterafluoroethylene) film and the polymer fibers 124 are PTFE fibers, but are not limited thereto.
  • the grain size of adhesive powder 128 is about 50 to 500 nm.
  • the inner fabric layer 130 is formed of a hydrophilic material bonded on the bottom surface 122 b of the hydrophobic membrane 130 by adhesive powders 128 .
  • the inner fabric layer 130 comprises improved polyester fibers with negative ion groups.
  • the inner fabric layer 130 can be formed of other materials, such as cotton, wool, felt, synthetic fibers, or a combination thereof.
  • the inner fabric layer 130 is formed of a hydrophilic material with enhanced hydrophilicity and rewetting properties, such as aliphatic polyamide or polyester polymers with appropriate hydrophilic add-on agents or coatings.
  • the inner fabric layer 130 comprises AKWATEKR polyester fibers produced by Comfortable Technologies, Inc. The properties and fabrication method of AKWATEKR polyester fibers is shown in U.S. Pat. No. 5,408,012.
  • the inner fabric layer 130 has high hydrophlicity, rewetting, and thermal regulative properties. It can provide a high water absorption ability to remove water or perspiration from a wearer rapidly, improve a water diffusion ability of the textile laminate 100 , and make the wearer dry and comfortable.
  • Embodiments of the invention additionally provides a method of fabricating the aforementioned textile laminate 100 .
  • the inner fabric layer 130 and the outer fabric layer 110 are first subjected to a pretreatment, such as dyeing, according to product requirements.
  • a hydrophobic membrane 120 with a top surface 122 a and a bottom surface 122 b is then provided.
  • the hydrophobic membrane 120 has a plurality of tangled polymer fibers 124 and a plurality of pores 126 among the polymer fibers 124 . Pores 126 have irregular shapes and sizes about 1/20000 of liquid water droplets and 700 times that of water vapor.
  • the hydrophobic membrane 120 is permeable for water vapor but impermeable for liquid water.
  • a plurality of adhesive powders 128 are attached to the polymer fibers 124 on both surfaces 122 a and 122 b of the hydrophobic membrane 120 .
  • the adhesive powders 128 are spread uniformly over the entirety of both surfaces.
  • the adhesive powders 128 can be also disposed in a specific pattern according to product requirements.
  • the adhesive powders tend to aggregate themselves together and are difficult to separate when the grain sizes of the adhesive powders 128 are extremely small, such as 50 to 500 nm. Put simply, if the adhesive powders 128 are directly attached to the hydrophobic membrane 120 without an additional dispersal process, clusters of the aggregated adhesive powders 128 will jam the pores 126 on the top and bottom surfaces 122 a and 122 b of the hydrophobic membrane 120 .
  • a static force is utilized to disperse the adhesive powders 128 and uniformly attach them on both surfaces of the hydrophobic membrane 120 .
  • static charges with a first type are applied to the adhesive powders 128 and static charges of a second type are applied to the polymer fibers 124 on the top surface 122 a and the bottom surface 122 b of the hydrophobic membrane 120 .
  • the aggregated adhesive powders 128 are separated from each other due to the repellant force and attached to the top surface 122 a and the bottom surface 122 b of the hydrophobic membrane 120 due to the attracting force.
  • the grain size of each adhesive powder 128 is small enough in comparison with the size of the polymer fibers 124 and the pores 126 , the pores 126 remain unobstructed after the adhesive powders 128 are attached to the hydrophobic membrane 120 .
  • the outer fabric layer 110 and the inner fabric layer 130 then sandwich the top surface 122 a and the bottom surface 122 b of the hydrophobic membrane by the adhesive powders 128 on the both surfaces of the hydrophobic membrane 120 .
  • FIG. 4 is a schematic diagram of the waterproof and breathable mechanism of the textile laminate 100 of an embodiment of the invention. As shown in FIG. 4 , due to the waterproof characteristics of the hydrophobic membrane 120 , liquid water 140 penetrating from the upper side of textile laminate 100 will be blocked by the outer fabric layer 110 and the hydrophobic membrane 120 and thereby preventing permeation of the textile laminate 100 .
  • the waterproof textile laminate is not only waterproof, but also has high rewetting ability since the inner fabric layer 130 can absorb water or perspiration from the body of a wearer and assists in evaporation through the breathable waterproof layer.
  • a test sample according to an embodiment of the invention is tested in China Textile Institute.
  • Table 1 shows the diffusion ability and an evaporation rate of the test sample.
  • Table 2 shows the moisture picking ability.
  • Table 3 shows the water resistance hydrostatic pressure and moisture permeability.
  • the moisture permeability of the sample of the textile laminate 100 is over 10000 g/m 2 -24 hr and the water resistant ability based on the water pressure method is over 10000 mm. It shows a great waterproof ability and an excellent breathable ability.
  • the dry effect, diffusion ability, and moisture picking ability tests show high water absorption ability of the invention. It means generated perspiration can be absorbed from a wearer's body in a very short time, making the wearer dry and comfortable.
  • FIG. 5 is a schematic diagram of a garment 200 comprising the textile laminate 100 .
  • the garment manufacturing method is omitted herein as it is well-known for those skilled in the art and not directly related to the invention.
  • the outer fabric layer 110 of the textile laminate 100 is located on an outer side of the garment 200 and the inner fabric layer 130 of the textile laminate 100 is located on an inner side of the garment 200 adjacent to the wearer.
  • the perspiration generated from the wearer can be rapidly absorbed by the high hydrophilic inner fabric layer 130 and evaporated through the hydrophobic membrane 120 and the outer fabric layer 130 .
  • the liquid water from the environment such as rain or snow, cannot pass through the garment 200 to the wearer's body due to the waterproof ability of the textile laminate 100 .
  • the invention provides a new textile laminate structure and a method of fabricating the same. According to the invention, the method of combining the outer fabric layer 110 , the hydrophobic membrane 120 , and the inner fabric layer 130 does not reduce the humidity transmission of the hydrophobic membrane 120 substantially. Furthermore, the invention provides a laminate structure having a hydrophobic membrane, and an inner fabric layer with high hydrophilicity and rewetting properties. Thus, the humidity transmission of the textile laminate can be improved significantly, leading to a more comfortable garment.

Abstract

A textile laminate includes a hydrophobic membrane, an inner fabric layer and an outer fabric layer sandwiching the hydrophobic membrane. The hydrophobic membrane has a plurality of tangled polymer fibers, a plurality of pores among the polymer fibers, and a plurality of adhesive powder attached on the polymer fibers on the top and bottom surfaces. The grain size of each adhesive powders is small enough to remain the pores without obstructing permeability. The pores in the PTFE film are water vapor permeable and liquid water impermeable.

Description

  • This application is a Divisional of co-pending application Ser. No. 10/932,007 filed on Sep. 2, 2004, and for which priority is claimed under 35 U.S.C. § 120, and this application claims priority of Application No. 92/215,858 filed in Taiwan on Sep. 2, 2003 under 35 U.S.C. § 119; the entire contents of all are hereby incorporated by reference.
  • BACKGROUND
  • The present invention relates to a textile laminate and a method of fabricating the same, and more particularly, to a waterproof and breathable textile laminate and fabrication method thereof.
  • A wide variety of air and water vapor permeable materials have been developed for different purposes. For example, these materials can be used in filtration, separation, and apparel. U.S. Pat. No. 5,928,582, for example, discloses a method of forming a microporous membrane that utilizes an ultraviolet irradiation process to form microsphereulites, followed by a thermally-induced phase separation, yielding microporous membranes that have improved flow and mechanical properties. In U.S. Pat. No. 4,194,041, Gore et al. disclose a waterproof laminate for use in constructing sport apparel having air and water vapor permeability with liquid water resist properties.
  • Breathable waterproof laminates are particularly advantageous in traditional waterproof textile fabric applications, such as garments. A garment formed of conventional waterproof textile fabric can prevent environmental water, such as rain, from entering the garment, but often tends to be uncomfortable to the wearer, as moisture, such as perspiration, cannot evaporate through the garment. The moisture generally remains trapped in the garment.
  • Continuous development of the waterproof material has greatly improved breathability of the waterproof garments. Breathable waterproof material is a microporous film comprising a plurality of pores with a size about 1/20000 of liquid water droplets and 700 times that of water vapor. Thus, breathable waterproof material can prevent water from penetration while allowing air and water vapor to escape.
  • Typically, the waterproof textile laminate for a garment includes a plurality of layers for various functions, such as a fabric layer with thermal regulative property. Accordingly, adhesive agents are required during the manufacturing process to combine these multiple layers. In order to avoid delamination, the adhesive agent must be coated over a majority of each layer. Most adhesive agents, however, are hydrophobic and have very low water permeability, leading to significant deterioration of the water vapor permeability of the textile laminate as the water vapor cannot pass through the adhesive agents. In other words, the breathable ability of a garment is still limited. For example, when massive perspiration is generated due to heavy sport or a high temperature, the perspiration remains on a wearer's body until the perspiration evaporated through the breathable textile laminate gradually. This evaporation process typically takes long time and makes the wearer feels wet and uncomfortable.
  • In U.S. Pat. No. 5,660,918, Dutta et al. disclose a grid pattern of an adhesive layer for bonding a fabric layer and a hydrophilic layer. The improvement of water permeability, however, is very limited. Thus, a new waterproof textile laminate with high water vapor permeability is desirable.
  • SUMMARY
  • Embodiments of the invention provide a waterproof textile laminate and a method of fabricating the same to solve the aforementioned problems.
  • Accordingly, a textile laminate comprising a hydrophobic membrane, an inner fabric layer, and an outer fabric layer is provided. The hydrophobic membrane has a plurality of tangled polymer fibers, a plurality of pores among the polymer fibers, and a plurality of adhesive powders attached on the polymer fibers on the top surface and the bottom surface for bonding the outer fabric layer and the inner fabric layer to the top surface and the bottom surface of the hydrophobic membrane. The grain size of each adhesive powder is small enough to remain the pores, but leave the pores unobstructed. The pores in the PTFE film are large enough to allow permeation of while blocking liquid water.
  • In accordance with an embodiment of the fabrication method of the invention, a hydrophobic membrane with a top surface and a bottom surface is first provided. The hydrophobic membrane has a plurality of tangled polymer fibers and a plurality of water impermeable pores among the polymer fibers. A plurality of adhesive powders are then applied to the polymer fibers on the top surface and the bottom surface uniformly utilizing static to spread the adhesive powders. A grain size of each adhesive powder is small enough to cling to the polymer fibers without obstructing the permeability of the hydrophobic membrane. Thereafter, an outer fabric layer and an inner fabric layer sandwich the hydrophobic membrane, secured by the adhesive powders.
  • Further scope of the applicability of the present invention will become apparent from the detailed description given hereinafter. However, it should be understood that the detailed description and specific examples, while indicating preferred embodiments of the invention, are given by way of illustration only, since various changes and modifications within the spirit and scope of the invention will become apparent to those skilled in the art from this detailed description
  • DESCRIPTION OF THE DRAWINGS
  • The present invention will become more fully understood from the detailed description given hereinbelow and the accompanying drawings which are given by way of illustration only, and thus are not limitative of the present invention, and wherein:
  • FIG. 1 is a schematic diagram of a textile laminate according to an embodiment of the invention;
  • FIG. 2 is a schematic diagram of a hydrophobic membrane in FIG. 1;
  • FIG. 3 is a locally enlarged view of the hydrophobic membrane in FIG. 2;
  • FIG. 4 is a schematic diagram of the waterproof and breathable mechanism of textile laminate; and
  • FIG. 5 is a schematic diagram of a garment fabricated according to an embodiment of the invention.
  • DETAILED DESCRIPTION
  • FIG. 1 is a schematic diagram of a textile laminate 100 according to an embodiment of the invention. As shown in FIG. 1, the textile laminate 100 comprises an outer fabric layer 110, a hydrophobic membrane 120, and an inner fabric layer 130 stacked in sequence.
  • In this embodiment of the invention, the outer fabric layer 110 can comprise cloth materials capable of supporting and enhancing the strength of the textile laminate 100, such as synthetic or natural fibers or blends thereof. The outer fabric 110 can comprise windproof or thermally insolating properties or additional functions according to requirements. Preferably, the outer fabric layer 110 is a fabric layer comprising polyester fibers, nylon fibers, or natural fibers, such as wool, cotton, or T/C blended yarns.
  • FIG. 2 is a schematic diagram of the hydrophobic membrane 120 in FIG. 1. FIG. 3 is a locally enlarged diagram of an area “A” enclosed by a dotted line in FIG. 2. As shown in FIG. 2 and FIG. 3, the hydrophobic membrane 120 with a top surface 122 a and a bottom surface 122 b comprises a plurality of tangled polymer fibers 124, a plurality of pores 126 among the polymer fibers 124, and a plurality of adhesive powders 128 distributed on the polymer fibers 124 on the top surface 122 a and the bottom surface 122 b. Thus, the outer fabric layer 110 and the inner fabric layer 130 can be bonded by the adhesive powders 128 to the top surface 122 a and the bottom surface 122 b of the hydrophobic membrane 120 respectively.
  • Each pore 126 has an irregular shape and a size about 1/20000 of liquid water droplets and 700 times that of water vapor. Thus, liquid water is prevented from while air and water vapor are allowed to escape. Note that the grain size of each adhesive powder 128 is small enough to remain the pores 126 unobstructed. Thus, the adhesive powder 128 can securely bond the outer fabric layer 110 and inner fabric layer 130 without reducing humidity transmission of the hydrophobic membrane 120. Preferably, the hydrophobic membrane 120 comprises a PTFE (polyterafluoroethylene) film and the polymer fibers 124 are PTFE fibers, but are not limited thereto. The grain size of adhesive powder 128 is about 50 to 500 nm.
  • The inner fabric layer 130 is formed of a hydrophilic material bonded on the bottom surface 122 b of the hydrophobic membrane 130 by adhesive powders 128. Preferably, the inner fabric layer 130 comprises improved polyester fibers with negative ion groups. The inner fabric layer 130 can be formed of other materials, such as cotton, wool, felt, synthetic fibers, or a combination thereof.
  • Furthermore, in one embodiment of the invention, the inner fabric layer 130 is formed of a hydrophilic material with enhanced hydrophilicity and rewetting properties, such as aliphatic polyamide or polyester polymers with appropriate hydrophilic add-on agents or coatings. Preferably, the inner fabric layer 130 comprises AKWATEKR polyester fibers produced by Comfortable Technologies, Inc. The properties and fabrication method of AKWATEKR polyester fibers is shown in U.S. Pat. No. 5,408,012. In this embodiment, the inner fabric layer 130 has high hydrophlicity, rewetting, and thermal regulative properties. It can provide a high water absorption ability to remove water or perspiration from a wearer rapidly, improve a water diffusion ability of the textile laminate 100, and make the wearer dry and comfortable.
  • Embodiments of the invention additionally provides a method of fabricating the aforementioned textile laminate 100. According to the method of this embodiment, the inner fabric layer 130 and the outer fabric layer 110 are first subjected to a pretreatment, such as dyeing, according to product requirements. A hydrophobic membrane 120 with a top surface 122 a and a bottom surface 122 b is then provided. The hydrophobic membrane 120 has a plurality of tangled polymer fibers 124 and a plurality of pores 126 among the polymer fibers 124. Pores 126 have irregular shapes and sizes about 1/20000 of liquid water droplets and 700 times that of water vapor. Thus, the hydrophobic membrane 120 is permeable for water vapor but impermeable for liquid water.
  • Thereafter, a plurality of adhesive powders 128 are attached to the polymer fibers 124 on both surfaces 122 a and 122 b of the hydrophobic membrane 120. Preferably, the adhesive powders 128 are spread uniformly over the entirety of both surfaces. The adhesive powders 128, however, can be also disposed in a specific pattern according to product requirements.
  • Note that although the preparation of the adhesive powders with small grain sizes is not problematic for one skilled in the art, the adhesive powders tend to aggregate themselves together and are difficult to separate when the grain sizes of the adhesive powders 128 are extremely small, such as 50 to 500 nm. Put simply, if the adhesive powders 128 are directly attached to the hydrophobic membrane 120 without an additional dispersal process, clusters of the aggregated adhesive powders 128 will jam the pores 126 on the top and bottom surfaces 122 a and 122 b of the hydrophobic membrane 120.
  • To prevent this problem, a static force is utilized to disperse the adhesive powders 128 and uniformly attach them on both surfaces of the hydrophobic membrane 120. Accordingly, static charges with a first type are applied to the adhesive powders 128 and static charges of a second type are applied to the polymer fibers 124 on the top surface 122 a and the bottom surface 122 b of the hydrophobic membrane 120. As a result, the aggregated adhesive powders 128 are separated from each other due to the repellant force and attached to the top surface 122 a and the bottom surface 122 b of the hydrophobic membrane 120 due to the attracting force. In addition, since the grain size of each adhesive powder 128 is small enough in comparison with the size of the polymer fibers 124 and the pores 126, the pores 126 remain unobstructed after the adhesive powders 128 are attached to the hydrophobic membrane 120.
  • The outer fabric layer 110 and the inner fabric layer 130 then sandwich the top surface 122 a and the bottom surface 122 b of the hydrophobic membrane by the adhesive powders 128 on the both surfaces of the hydrophobic membrane 120.
  • FIG. 4 is a schematic diagram of the waterproof and breathable mechanism of the textile laminate 100 of an embodiment of the invention. As shown in FIG. 4, due to the waterproof characteristics of the hydrophobic membrane 120, liquid water 140 penetrating from the upper side of textile laminate 100 will be blocked by the outer fabric layer 110 and the hydrophobic membrane 120 and thereby preventing permeation of the textile laminate 100.
  • Conversely, due to the high hydrophilic and rewetting ability of the inner fabric layer 130, the humidity or water 150 on the inner fabric layer 130 is absorbed rapidly by the inner fabric layer 130 and then evaporated upward through the hydrophobic membrane 120. In addition, due to a presence of the inner fabric layer 130 with a high diffusion rate, generated perspiration is absorbed from a wearer's body in a very short time, making the wearer dry and comfortable. The evaporating rate through the hydrophobic membrane 120 can be further enhanced, leading to make a wearer more dry and comfortable. In this case, the waterproof textile laminate is not only waterproof, but also has high rewetting ability since the inner fabric layer 130 can absorb water or perspiration from the body of a wearer and assists in evaporation through the breathable waterproof layer.
  • A test sample according to an embodiment of the invention is tested in China Textile Institute. Table 1 shows the diffusion ability and an evaporation rate of the test sample. Table 2 shows the moisture picking ability. Table 3 shows the water resistance hydrostatic pressure and moisture permeability. According to the testing result of China Textile Institute, the moisture permeability of the sample of the textile laminate 100 is over 10000 g/m2-24 hr and the water resistant ability based on the water pressure method is over 10000 mm. It shows a great waterproof ability and an excellent breathable ability. In addition, the dry effect, diffusion ability, and moisture picking ability tests show high water absorption ability of the invention. It means generated perspiration can be absorbed from a wearer's body in a very short time, making the wearer dry and comfortable.
    TABLE 1
    Test Items Test Results Testing Methods
    Water Resistance Over 10000 JIS L1092-1992
    Hydrostatic 5.1.2B
    Pressure (mm)
    Moisture 10016 JIS L1099-1993 A-1
    Permeability (CaCl2)40° C. * 90% RH
    (g/m2-24 hr)
  • TABLE 2
    Testing Testing
    Item Testing Results Method
    5 sec 10 sec 20 sec 30 sec 60 sec 90 sec
    Diffusion 951 1568 2464 2659 2784 2798 Diffusion ability
    Area method of
    (mm2) China
    Textile
    Institute
    10 min 20 min 40 min 60 min 80 min 100 min
    Remained 71.4 46.0 1.3 0.3 0.2 0.1 Drying effect
    Water method of
    Ratio (%) China
    Textile
    Institute
  • TABLE 3
    Testing
    Testing Item Results Testing Methods
    Moisture Picking 21.15 Moisture picking
    Ratio (%) ability method of
    China Textile
    Institute
  • An embodiment of the present invention further provides a garment comprising the aforementioned textile laminate. FIG. 5 is a schematic diagram of a garment 200 comprising the textile laminate 100. For clarity, the garment manufacturing method is omitted herein as it is well-known for those skilled in the art and not directly related to the invention.
  • As shown in FIG. 5, the outer fabric layer 110 of the textile laminate 100 is located on an outer side of the garment 200 and the inner fabric layer 130 of the textile laminate 100 is located on an inner side of the garment 200 adjacent to the wearer. Thus, it is more comfortable for the wearer since the perspiration generated from the wearer can be rapidly absorbed by the high hydrophilic inner fabric layer 130 and evaporated through the hydrophobic membrane 120 and the outer fabric layer 130. Additionally, the liquid water from the environment, such as rain or snow, cannot pass through the garment 200 to the wearer's body due to the waterproof ability of the textile laminate 100.
  • The invention provides a new textile laminate structure and a method of fabricating the same. According to the invention, the method of combining the outer fabric layer 110, the hydrophobic membrane 120, and the inner fabric layer 130 does not reduce the humidity transmission of the hydrophobic membrane 120 substantially. Furthermore, the invention provides a laminate structure having a hydrophobic membrane, and an inner fabric layer with high hydrophilicity and rewetting properties. Thus, the humidity transmission of the textile laminate can be improved significantly, leading to a more comfortable garment.
  • The invention being thus described, it will be obvious that the same may be varied in many ways. Such variations are not to be regarded as a departure from the spirit and scope of the invention, and all such modifications as would be obvious to one skilled in the art are intended to be included within the scope of the following claims.

Claims (14)

1. A textile laminate comprising:
a hydrophobic membrane with a top surface and a bottom surface, the hydrophobic membrane having a plurality of tangled polymer fibers, a plurality of pores among the polymer fibers, and a plurality of adhesive powder attached to the polymer fibers on the top surface and the bottom surface, and a grain size of each adhesive powder is small enough to remain the pores without obstructing permeability;
an outer fabric layer bonded on the top surface of the hydrophobic membrane by the adhesive powder located on the top surface of the hydrophobic membrane; and
an inner fabric layer bonded on the bottom surface of the hydrophobic membrane by the adhesive powder located on the bottom surface of the hydrophobic membrane;
wherein the pores in the hydrophobic membrane are water vapor permeable and liquid water impermeable.
2. The textile laminate as claimed in claim 1 wherein the hydrophobic membrane comprises a PTFE (polyterafluoroethylene) film and the polymer fibers are PTFE fibers.
3. The textile laminate as claimed in claim 1 wherein the outer fabric layer comprises synthetic or natural fibers or blends thereof.
4. The textile laminate as claimed in claim 1 wherein the inner fabric layer comprises a hydrophilic material.
5. The textile laminate as claimed in claim 4 wherein the inner fabric layer comprises cotton, wool, felt, synthetic fibers, or a combination thereof.
6. The textile laminate as claimed in claim 1 wherein the inner fabric layer comprises a hydrophilic material with high hydrophilicity and rewetting properties to provide a rapid water absorption ability and improve a water diffusion ability of the textile laminate.
7. The textile laminate as claimed in claim 1 wherein the grain size of the adhesive powder have diameters about 50 to 500 nm in diameter.
8. A garment formed of the textile laminate as claimed in claim 1 wherein the inner fabric layer is an inner side of the garment in contact with a wearer and the outer fabric layer is an outer side of the garment exposed to the environment.
9. A textile laminate comprising:
a hydrophobic membrane with a top surface and a bottom surface, the hydrophobic membrane having a plurality of tangled polymer fibers, a plurality of pores among the polymer fibers, and a plurality of adhesive powder attached to the top surface and the bottom surface of hydrophobic membrane;
an outer fabric layer bonded on the top surface of the hydrophobic membrane by the adhesive powder located on the top surface of the hydrophobic membrane; and
an inner fabric layer comprising a hydrophilic material bonded on the bottom surface of the hydrophobic membrane by the adhesive powder located on the bottom surface of the hydrophobic membrane;
wherein the pores in the hydrophobic membrane are water vapor permeable and liquid water impermeable.
10. The textile laminate as claimed in claim 9 wherein the hydrophobic membrane comprises a PTFE (polyterafluoroethylene) film and the polymer fibers are PTFE fibers.
11. The textile laminate as claimed in claim 9 wherein the outer fabric layer comprises synthetic or natural fibers or blends thereof
12. The textile laminate as claimed in claim 9 wherein the inner fabric layer comprises cotton, wool, felt, synthetic fibers, or a combination thereof.
13. The textile laminate as claimed in claim 9 wherein the inner fabric layer comprises a hydrophilic material with high hydrophilicity and rewetting properties to provide a rapid water absorption ability and improve a water diffusion ability of the textile laminate.
14. A garment formed of the textile laminate as claimed in claim 9 wherein the inner fabric layer is an inner side of the garment in contact with a wearer and the outer fabric layer is an outer side of the garment exposed to the environment.
US11/707,145 2003-09-02 2007-02-16 Textile laminate Abandoned US20070149082A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/707,145 US20070149082A1 (en) 2003-09-02 2007-02-16 Textile laminate

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
TW92215858 2003-09-02
TW92215858U TWM251728U (en) 2003-09-02 2003-09-02 Highly air permeable, moisture permeable, wet-proof, wind-blocking fast dried functional cloth
US10/932,007 US7214288B2 (en) 2003-09-02 2004-09-02 Fabrication method of textile laminate
US11/707,145 US20070149082A1 (en) 2003-09-02 2007-02-16 Textile laminate

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/932,007 Division US7214288B2 (en) 2003-09-02 2004-09-02 Fabrication method of textile laminate

Publications (1)

Publication Number Publication Date
US20070149082A1 true US20070149082A1 (en) 2007-06-28

Family

ID=34215219

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/932,007 Active 2025-04-06 US7214288B2 (en) 2003-09-02 2004-09-02 Fabrication method of textile laminate
US11/707,145 Abandoned US20070149082A1 (en) 2003-09-02 2007-02-16 Textile laminate

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/932,007 Active 2025-04-06 US7214288B2 (en) 2003-09-02 2004-09-02 Fabrication method of textile laminate

Country Status (2)

Country Link
US (2) US7214288B2 (en)
TW (1) TWM251728U (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2054220B1 (en) * 2006-08-01 2017-09-06 BNP Brinkmann GmbH & Co. KG Textile sealing membrane
ATE524079T1 (en) * 2007-11-13 2011-09-15 Du Pont BREATHABLE GARMENT WITH A FLUID DISTRIBUTION LAYER
JP5518352B2 (en) * 2008-04-15 2014-06-11 株式会社ニチエイ 3D face mask
US9446563B2 (en) 2012-12-11 2016-09-20 Hi-Tex, Inc. Liquid repelling coating
CN103932436A (en) * 2014-04-02 2014-07-23 湖州森诺氟材料科技有限公司 Ultrathin leisure fabric with windproof and breathable functions and manufacturing method thereof
US10710345B2 (en) 2014-08-27 2020-07-14 W. L. Gore & Associates Gmbh Waterproof and water vapor permeable laminate
CN104325730A (en) * 2014-10-29 2015-02-04 常熟市建华织造有限责任公司 Health-care type clipping and carving fabric
US10660381B2 (en) * 2014-11-19 2020-05-26 Acushnet Company Golf jacket having weather-protective collar
CN108514165A (en) * 2018-04-13 2018-09-11 浙江肯特科技股份有限公司 A kind of wash resistant tippet fabric
CN113183555B (en) * 2021-04-23 2022-02-18 恒天嘉华非织造有限公司 Breathable and dry double-layer non-woven fabric and processing technology thereof

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4194041A (en) * 1978-06-29 1980-03-18 W. L. Gore & Associates, Inc. Waterproof laminate
US4847142A (en) * 1986-12-22 1989-07-11 Allied-Signal Inc. Moisture permeable film for lamination to a textile material
US5234739A (en) * 1991-07-23 1993-08-10 Daikin Industries Ltd. Polytetrafluoroethylene porous film and preparation and use thereof
US5408012A (en) * 1993-05-27 1995-04-18 Comfort Technologies, Inc. Polymers having enhanced durable hydrophilicity and durable rewetting properties and process of producing the same
US5660918A (en) * 1996-04-17 1997-08-26 W. L. Gore & Associates, Inc. Wash durable fabric laminates
US5928582A (en) * 1996-03-19 1999-07-27 Xenon Research, Inc. Microporous membranes, method of manufacture
US6228477B1 (en) * 1999-02-12 2001-05-08 Bha Technologies, Inc. Porous membrane structure and method
US6274043B1 (en) * 1998-04-07 2001-08-14 Pall Corporation Porous polytetrafluoroethylene membrane
US6410465B1 (en) * 1999-06-02 2002-06-25 E. I. Du Pont De Nemours And Company Composite sheet material
US20030215617A1 (en) * 2002-05-15 2003-11-20 Hussein Shehata Waterproof and breathable microporous thermoplastic laminated fabric

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0673643B2 (en) * 1986-02-10 1994-09-21 ノードソン株式会社 Electrostatic coating method and apparatus for powder on non-conductive and void-containing coating object
US5560974A (en) * 1991-03-22 1996-10-01 Kappler Safety Group, Inc. Breathable non-woven composite barrier fabric and fabrication process
US5599610A (en) * 1994-02-04 1997-02-04 Fabrite Laminating Corp. Trilaminate fabric for surgical gowns and drapes
US6436528B1 (en) * 1998-10-24 2002-08-20 Tesa Ag Adhesive tape based on a binder-consolidated web

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4194041A (en) * 1978-06-29 1980-03-18 W. L. Gore & Associates, Inc. Waterproof laminate
US4847142A (en) * 1986-12-22 1989-07-11 Allied-Signal Inc. Moisture permeable film for lamination to a textile material
US5234739A (en) * 1991-07-23 1993-08-10 Daikin Industries Ltd. Polytetrafluoroethylene porous film and preparation and use thereof
US5408012A (en) * 1993-05-27 1995-04-18 Comfort Technologies, Inc. Polymers having enhanced durable hydrophilicity and durable rewetting properties and process of producing the same
US5928582A (en) * 1996-03-19 1999-07-27 Xenon Research, Inc. Microporous membranes, method of manufacture
US5660918A (en) * 1996-04-17 1997-08-26 W. L. Gore & Associates, Inc. Wash durable fabric laminates
US6274043B1 (en) * 1998-04-07 2001-08-14 Pall Corporation Porous polytetrafluoroethylene membrane
US6228477B1 (en) * 1999-02-12 2001-05-08 Bha Technologies, Inc. Porous membrane structure and method
US6410465B1 (en) * 1999-06-02 2002-06-25 E. I. Du Pont De Nemours And Company Composite sheet material
US20030215617A1 (en) * 2002-05-15 2003-11-20 Hussein Shehata Waterproof and breathable microporous thermoplastic laminated fabric

Also Published As

Publication number Publication date
US7214288B2 (en) 2007-05-08
US20050048860A1 (en) 2005-03-03
TWM251728U (en) 2004-12-01

Similar Documents

Publication Publication Date Title
US20070149082A1 (en) Textile laminate
FI75304C (en) FLEXIBEL SKIKTAD PRODUCT.
US5364678A (en) Windproof and water resistant composite fabric with barrier layer
US8334227B2 (en) Breathable, chemical resistant, durable, and waterproof coated porous membrane
US9185941B2 (en) Synthetic insulation with microporous membrane
US5529830A (en) Two-way stretchable fabric laminate and articles made from it
US4194041A (en) Waterproof laminate
JP4931938B2 (en) Moisture permeable waterproof sheet and method for producing the same
US20110097571A1 (en) Oleophobic, air permeable, and breathable composite membrane
KR20100080794A (en) Fabric and fabric laminate
JP4178416B2 (en) Adsorption material
KR20090075870A (en) Liquid water resistant and water vapor permeable garments
JP2010120385A (en) Air permeable waterproof bicomponent film
CA2951931A1 (en) Fabrics containing expanded polytetrafluoroethylene fibers
CA2556530C (en) Chemical-resistant breathable textile laminate
JP2000508979A (en) Washable durable fabric laminate
Maity et al. Waterproof breathable fabrics and suits
JPH07505588A (en) Soft stretch composite fabric
JP2011062816A (en) Moisture absorbing and releasing material
WO2024004784A1 (en) Moisture-permeable waterproofing layered fabric, production method therefor, and garment obtained using same
TWI685424B (en) Textile
JPH0441778A (en) Moisture-permeable waterproof cloth
KR20090129039A (en) Water-proof and moisture-permeable fabric
CZ37497U1 (en) A textile composite containing feathers
CN114585509A (en) Textile composite material and shoe

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION