US20070075199A1 - Wire sideplates - Google Patents

Wire sideplates Download PDF

Info

Publication number
US20070075199A1
US20070075199A1 US11/405,142 US40514206A US2007075199A1 US 20070075199 A1 US20070075199 A1 US 20070075199A1 US 40514206 A US40514206 A US 40514206A US 2007075199 A1 US2007075199 A1 US 2007075199A1
Authority
US
United States
Prior art keywords
wire
sideplate
sideplates
upper
wire sideplates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/405,142
Inventor
Brian Stewart
Jeffrey Ambrose
Original Assignee
Stewart Brian J
Ambrose Jeffrey A
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US67174705P priority Critical
Application filed by Stewart Brian J, Ambrose Jeffrey A filed Critical Stewart Brian J
Priority to US11/405,142 priority patent/US20070075199A1/en
Publication of US20070075199A1 publication Critical patent/US20070075199A1/en
Application status is Abandoned legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47BTABLES; DESKS; OFFICE FURNITURE; CABINETS; DRAWERS; GENERAL DETAILS OF FURNITURE
    • A47B96/00Details of cabinets, racks or shelf units not covered by a single one of groups A47B43/00 - A47B95/00; General details of furniture
    • A47B96/02Shelves
    • A47B96/025Shelves with moving elements, e.g. movable extensions or link elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT COVERED BY ANY OTHER SUBCLASS
    • F25D2325/00Charging, supporting or discharging the articles to be cooled, not provided for in other groups of this subclass
    • F25D2325/023Shelves made of wires
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT COVERED BY ANY OTHER SUBCLASS
    • F25D25/00Charging, supporting, and discharging the articles to be cooled
    • F25D25/02Charging, supporting, and discharging the articles to be cooled by shelves

Abstract

A wire sideplate (102) is disclosed for use with various shelving assemblies, including use within a wire sideplate frame (100). The wire sideplate (102) includes a ladder connector (114) having a flattened configuration. The sideplate (102) also includes an upper sideplate arm (116) and a lower sideplate arm (118). The sideplate (102) is composed of a single piece of wire which is formed and then pressed or stamped so as to be releasably interconnected into a number of different types of cantilever ladders (194).

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application claims priority of U.S. Provisional Patent Application Ser. No. 60/671,747 filed Apr. 15, 2005.
  • STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT
  • Not applicable.
  • REFERENCE TO A MICROFISHE APPENDIX
  • Not applicable.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The invention relates to supporting apparatus which may be used for support of shelving articles adapted for use in various environments and, more particularly, to sideplates for support of shelving articles in cantilever configurations.
  • 2. Background Art
  • Various types of prior art shelving have been developed for use in a number of environments. Along with this shelving, use is often made of support bracing. This support bracing and these shelving articles are often adapted for use in environments such as refrigerators, store fixtures, store displays, kitchen pantries and similar residential, commercial and industrial devices and interiors. In these environments, it is important to provide means for adequate support for the shelving articles.
  • For example, for various shelving articles in a number of different environments, it is known to employ stationary devices often referred to as “cantilever ladders.” The cantilever ladders are typically fixed to a permanent wall of a room interior, a back wall of a refrigerator compartment or secured in similar environments. These cantilever ladders are often elongated in structure and may be mounted to the walls or other supporting structures through conventional means (such as screws, bolts and the like) in a vertical configuration. These ladders will often include a series of vertically disposed slots. These slots provide a means for releasably securing supporting devices to the cantilever ladders, with the supporting devices directly supporting shelving articles.
  • These supporting devices or braces are often referred to as “support brackets.” These support brackets typically include formed latch mechanisms releasably securable within the slots of the cantilever ladders. These support brackets are also typically elongated in structure, and extend outwardly from the cantilever ladders. The reference to the term “cantilever” with respect to the ladders results from the fact that the supporting interconnection or “latching” between the ladders and the support brackets is often an interconnection where cantilever forces are exerted onto the ladders by the interconnection and structure of the support brackets, and the weight of articles supported by the brackets. The elongated portions of the support brackets are typically structured so as to support a shelving article in a horizontal or possibly angled orientation.
  • It is common for two or more support brackets to be utilized to support one shelving article. When the support brackets are located at or adjacent opposing lateral sides of the shelving article being supported, the support brackets are often referred to as “sideplates.” As earlier stated, numerous designs for shelving and supporting apparatus exist in the prior art. For example, Kene, et al., U.S. Pat. No. 5,564,809, issued Oct. 14, 1996, discloses an encapsulated shelf assembly with a shelf support supporting a panel. Herrmann, et al., U.S. Pat. No. 5,735,589, issued Apr. 7, 1998, discloses a shelfassembly for a refrigerator compartment. The assembly includes a member slidably movable for extension and retraction on a support. The shelf member includes slide members preferably molded as a rim on an article support surface. A guide member extends from one or both of the side members to guide the sliding movement. A stop on the guide member limits travel by engaging a limit surface on a shelf support.
  • Bird, et al., U.S. Pat. No. 5,454,638, issued Oct. 3, 1995, discloses adjustable refrigerator shelving having a shelf rail for supporting a partial width shelf within a refrigerator compartment. The shelf is supported on first and second spaced apart shelf tracks vertically oriented in the compartment. The shelf tracks releasably engage with a number of support brackets for cantilever support of one or more shelves at a plurality of vertically spaced locations. The shelf rail includes rearwardly projecting hooks at each of the two opposing ends, for releasable engagement with the shelf tracks. Locking tabs are included on the hooks to retain the shelf rails on the track. A rub strip is provided between the partial shelf and the shelf rail, along a top edge of the shelf rail.
  • Bird, et al., U.S. Pat. No. 5,429,433, issued Jul. 4, 1995, describes a refrigerator shelf adapted for containment of spills on the shelf. In one embodiment, the shelf is slidably mounted to allow horizontal extension of the shelf, with access to the rear portion of the shelf using slide guides molded into the rim along each side of the shelf. The shelf is cantilevered upon support brackets from the rear wall of a refrigerator, so as to allow air flow around the shelf sides. These support brackets are adapted to support the shelf at a plurality of vertical positions.
  • Meier, et al., U.S. Pat. No. 6,120,720, issued Sep. 19, 2000, discloses a method of manufacturing a shelf with a plastic edge. The glass panel is placed on a cavity of a mold, with the cavity having side cavity portions, each housing one of pair of shelf brackets.
  • The traditional supporting brackets or sideplates utilized as support for shelving articles often have certain disadvantages. For example, a number of known shelving systems comprise sideplates which are formed from solid pieces of stamped metal. These types of sideplates utilize a substantial amount of metal. Also, in view of the substantial amount of surface area, a corresponding amount of finishing material is required. In addition, the volume of stamped metal can be relatively heavy. Still further, sideplates formed of solid pieces of stamped metal often prohibit any substantial amount of light transmission or air flow around the sideplates that support shelving articles.
  • SUMMARY OF THE INVENTION
  • In accordance with the invention, wire sideplates are adapted for use with a shelving assembly and support means for supporting the shelving assembly in a cantilever manner. Wire sideplates in accordance with the invention employ relatively less steel than known shelving systems, which typically utilize solid pieces of stamped metal as support brackets are side plates for shelving assemblies. Wire sideplates in accordance with the invention also require relatively less finishing material, in view of the surface area reduction. Sideplates in accordance with the invention are also of relatively lighter weight.
  • More specifically, the wire sideplates include sideplate means coupled to the support means for supporting the shelving assembly. The sideplate means comprises a pair of wire sideplates, each sideplate comprising a single piece of wire formed and then pressed or stamped into a desired configuration, so as to be coupled to the support means. The wire sideplates in accordance with the invention permit a substantially larger amount of airflow around and through the sideplates, relative to airflow permitted around other sideplates of equivalent size, but formed of solid metal pieces. Wire sideplates in accordance with the invention also permit a substantially larger amount of light transmission through the wire sideplates, relative to the light transmission permitted through other sideplates of equivalent size, but formed of solid pieces of stamped metal.
  • The shelving assembly can include at least one shelf, and the side plates may be welded to the shelf or to support materials intermediate the shelf and the sideplates. The shelving assembly can include securing means for securing the wire sideplates to the shelf, so that the wire sideplates can be rotated inwardly toward a center of the shelf. In this manner, the sideplates can be substantially collapsed for purposes of facilitating storage and shipment of the shelving assembly.
  • The shelving assembly can include sliding means, so as to provide for a sliding movement of the shelf relative to the wire sideplates. The wire sideplate frame can include wire support rods connected to and extending between opposing ones of the pair of wire sideplates, so as to provide additional strength and rigidity.
  • Each of the wire sideplates can include a ladder connector, having a flattened configuration and adapted to releasably interconnect with the support means. Each wire sideplate can also include an upper sideplate arm extending forwardly from the connector, and a lower sideplate arm also extending forwardly from the connector. Each of the connectors can include an upper and lower connector bracket, with an intermediate flange located intermediate the connector brackets. The rear portion of the upper connector bracket can terminate in a downwardly projecting tongue, with the tongue being shaped and sized so as to form an undercut slot between the tongue and an upper portion of the intermediate flange. The tongue is adapted to fit within a slot of the support means, when the connector is releasably connected to the support means. The lower connector bracket can include a tab at a top portion thereof, with the tab having a vertical orientation and adapted to fit within a slot of the connector.
  • The connector can also include an upper angled portion extending forwardly from the upper connector bracket. The upper angled portion can extend from the upper connector bracket to an upper reverse taper section. The upper reverse taper section can be integral with the upper sideplate arm. The upper angled section, taper section and upper sideplate arm can all be integral with each other, and with adjacent elements of the wire sideplate.
  • Extending forwardly from the lower connector bracket is a lower angled portion. The lower angled portion extends from the lower connector bracket to a lower reverse taper section. The lower reverse taper section is integral with an upwardly angled extension of the lower sideplate arm. The upwardly angled extension extends upwardly and is integral at a termination with a first curved section. The first curved section is integral and intermediate the upwardly angled extension and a horizontal extension. An integral second curved section is located at a forward portion of the horizontal extension. The second curved section terminates in a position immediately below and slightly behind a terminating end of the upper sideplate arm.
  • The first curved section of the lower arm can be welded or otherwise secured to the upper arm. The second curved section of the lower arm can also be welded or otherwise secured to the upper arm.
  • A forward extension of the upper sideplate arm is integrally formed at a forward end of the upper reverse taper section. The forward extension extends forwardly from the connector and terminates in a downwardly projecting lip.
  • The ladder connector can have an offset configuration relative to a plane formed by the upper sideplate arm and the lower sideplate arm. The offset configuration facilitates releasable interconnection of the ladder connector with the support means. Further, the shelving assembly can include sets of upper clamps positioned on the inside of sides of the shelf. The upper clamps can be resilient and sized so as to securely receive a forwardly extension of the upper sideplate arms of both of the wire sideplates. Each of the sides of the shelf can have a tab positioned adjacent a forward portion of the shelving assembly, and extending downwardly. A pair of lower clamps can be positioned on the inside of each of the tabs. The lower clamps can be resilient and sized so as to releasably secure a horizontal extension of each lower sideplate arm.
  • The shelving assembly can include a set of channel guides, so as to form a plurality of channels and assist in maintaining the wire sideplates positioned within the channels. The shelving assembly can include a transverse support rod connected to each of the upper sideplate arms of each of the pair of wire sideplates. The rod extends transversely between each of the wire sideplates. At least one support rod clamp extends downwardly from an underside of a frame of the shelf assembly on each of the opposing sides of the frame. Each of the support rod clamps has resilient properties and is sized so that external forces can be exerted to cause this transverse support rod to be captured within the clamps.
  • The shelf assembly can also include a pair of opposing lateral sides, with each of the wire sideplates positioned adjacent one of the sides. Sets of upper clamps and sets of lower clamps are positioned on the opposing lateral sides. Each of the wire sideplates is releasably secured within the lower clamps positioned on the opposing lateral sides when the shelf assembly is to be used to support items. When it is desired to store or ship the shelf assembly, each of the wire sideplates can be rotated inwardly toward a center of the shelf surface, by releasing each of the lower sideplate arms from the sets of lower clamps.
  • The shelf assembly can include means for permitting sliding movement of the shelf assembly on the wire sideplates, with the shelf assembly moving between a retracted and an extended position. The extended position of the shelf assembly relative to the wire sideplate can be limited by a set of stop stubs. A rear edge can be positioned at each edge of a frame of the shelf assembly. If the frame initiates a tilting movement, the wire sideplates will abut the rear ledges, preventing any additional tilting movement.
  • BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWING
  • The invention will now be described with respect to the drawings, in which:
  • FIG. 1 is a perspective view of a sideplate assembly, illustrating a pair of sideplates in accordance with the invention, interconnected to a pair of transverse support rods;
  • FIG. 2 is a side elevation view of one of the sideplates illustrated in FIG. 1, in accordance with the invention;
  • FIG. 3 is a front elevation view of the sideplate illustrated in FIG. 2;
  • FIG. 4 is a plan view of the sideplate illustrated in FIG. 2;
  • FIG. 5 is a downwardly projecting perspective view of the sideplate illustrated in FIG. 2;
  • FIG. 6 is an enlarged view of the section identified in FIG. 2 by the circle 6, illustrating detail of the ladder connector of the sideplate;
  • FIG. 7 is a perspective view of a single one of the sideplates illustrated in FIGS. 1-6;
  • FIG. 8 is an enlarged view in perspective showing a ladder connector of one of the sideplates in accordance with the invention;
  • FIG. 9 is a perspective view showing one of the sideplates in accordance with the invention connected to a vertical ladder strip, and also shows a prior art sideplate as connected to the same vertical ladder strip;
  • FIG. 10 is a perspective view of a front corner interconnection of a sideplate with a shelf assembly;
  • FIG. 11 is a perspective view of a glass shelf assembly mounted on a sideplate assembly in accordance with the invention, with the interconnection of the sideplate assembly with the shelf assembly having the capability of being folded under;
  • FIG. 12 is an enlarged, perspective view of a corner interconnection of one of the sideplates and the glass shelf assembly illustrated in FIG. 12;
  • FIG. 13 is an underside, perspective view of the shelf assembly and the sideplate assembly shown in FIG. 12, utilizing two sideplates in accordance with the invention, and illustrating the sideplates as being “rolled under” or otherwise “folded under” the interconnected shelf assembly;
  • FIG. 14 is a perspective view similar to FIG. 14, illustrating the two sideplates of the sideplate assembly being in a “folded under” configuration;
  • FIG. 15 is a perspective, upside view of the sideplates and shelf assembly shown in FIGS. 13 and 14, in a “folded under” configuration;
  • FIG. 16 is a perspective view of the use of sideplates in accordance with the invention, with a series of three shelf assemblies;
  • FIG. 17 is an exploded view of a glass shelf assembly for use in a slidable configuration with a pair of wire sideplates;
  • FIG. 18 is a perspective view of a glass shelf assembly interconnected to a side plate assembly in accordance with the invention, with the configuration providing for the glass shelf assembly to be slidably engaged with the sideplate assembly, and with the shelf assembly in an extended position relative to the sideplate assembly;
  • FIG. 19 is an enlarged view of a corner interconnection of the glass shelf assembly and the sideplate assembly shown in FIG. 18, and with the shelf assembly being in a retracted position relative to the sideplate assembly;
  • FIG. 20 is an underside perspective view of the slidable engagement between the shelf assembly and the sideplate assembly of FIG. 18, and with the shelf assembly being in an extended position relative to the sideplate assembly;
  • FIG. 21 illustrates a pair of sideplates constructed in accordance with the invention, in use with a wire shelf assembly;
  • FIG. 22 is a perspective view of an alternative embodiment of a wire sideplate and in accordance with the invention;
  • FIG. 23 is a side elevation view of the sideplate illustrated in FIG. 22 in accordance with the invention;
  • FIG. 24 is a front elevation view of the wire sideplate illustrated in FIG. 23;
  • FIG. 25 is a top, plan view of the wire sideplate illustrated in FIG. 23;
  • FIG. 26 is an enlarged view of the connector portion of the sideplate identified in FIG. 23 by the circle 26, illustrating detail of the ladder connector of the wire sideplate;
  • FIG. 27 is an enlarged view of the top plan view of the ladder connector of the wire sideplate identified in FIG. 25 by the circle 27, illustrating greater detail of the angled offset of the ladder connector of the wire sideplate;
  • FIG. 28 is an enlarged view of a stamped and perforated section of the wire sideplate, identified in FIG. 23 by the circle 28;
  • FIG. 29 is a side elevation view of a further embodiment of a wire sideplate in accordance with the invention, which can be utilized with a wire sideplate frame, with the wire sideplate shown in FIG. 29 being characterized as a “right side” sideplate;
  • FIG. 30 is an end elevation view of the wire sideplate illustrated in FIG. 29;
  • FIG. 31 is a top plan view of the wire sideplate illustrated in FIG. 29;
  • FIG. 32 is a side elevation view of an alternative embodiment of a wire sideplate in accordance with the invention, and comprising a companion sideplate which is used in conjunction with the wire sideplate illustrated in FIG. 29, the wire sideplate in FIG. 32 being characterized as a “left side” wire sideplate;
  • FIG. 33 is an end elevation view of the wire sideplate illustrated in FIG. 32;
  • FIG. 34 is a top plan view of the wire sideplate illustrated in FIG. 32;
  • FIG. 35 is a side elevation and stand-alone view of a flange, with the flange being illustrated in FIGS. 29-34 as being used with the wire sideplates also shown in FIGS. 29-34;
  • FIG. 36 is a top plan view of the flange illustrated in FIG. 35;
  • FIG. 37 is a side elevation view of a still further embodiment of a wire sideplate and flange in accordance with the invention;
  • FIG. 38 is an end elevation view of the wire sideplate and flange shown in FIG. 37; and
  • FIG. 39 is a top plan view of the wire sideplate and flange illustrated in FIG. 37.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The principles of the invention are disclosed, by way of example, in certain embodiments of sideplates, sideplate frames and use of the sideplates and sideplate frames in shelving assemblies, as illustrated in FIGS. 1-39. As described in subsequent paragraphs herein, the wire sideplates in accordance with the invention comprise single pieces of wire which are formed and then pressed or stamped so as to be releasably interconnected into a number of different types of cantilever ladders which are commonly used to support shelving systems in various environments. The wire sideplates in accordance with the invention employ relatively less steel than known shelving systems which typically utilize solid pieces of stamped metal as support brackets or sideplates for shelving assemblies. Still further, wire sideplates in accordance with the invention require relatively less finishing material, in view of the reduction in surface area as compared to known support brackets or sideplates. Also, in view of the wire sideplates in accordance with the invention requiring less steel or other metals, the sideplates in accordance with the invention are of relatively lighter weight than prior art sideplates.
  • Still further, wire sideplates in accordance with the invention may be welded to support materials or shelving assemblies themselves, or may be plastic injection molded with the shelving assemblies, for purposes of providing additional strength and rigidity. In addition, wire sideplates in accordance with the invention may be folded or otherwise “collapsed” for efficient storage and shipping of shelving assemblies. Another advantage exists in that the configurations of the wire sideplates in accordance with the invention allow for substantially more light transmission and airflow then known sideplate configurations. Still further, wire sideplates in accordance with the invention may be utilized in a facilitative manner for purposes of providing either stationary or sliding movement of supported shelf assemblies. Still further, the wire sideplates in accordance with the invention lend themselves to use with wire support rods or similar additional supporting elements, for purposes of providing additional strength, support, rigidity and the like.
  • Turning to the drawings, the first embodiment of an assembly or frame utilizing wire sideplates in accordance with the invention is identified as wire sideplate frame 100, as illustrated in FIG. 1. The wire sideplate frame 100 illustrated in FIG. 1 employs a pair of opposing wire sideplates 102 in accordance with the invention. For purposes of description, one of the wire sideplates 102 is identified in FIG. 1 as left hand wire sideplate 110, while the other is identified as right hand wire sideplate 112. The references to “left hand” and “right hand” are for purposes of identification only, and have no specific meaning with respect to concepts of the invention. As further illustrated in FIG. 1, the wire sideplates 102 are shown in opposing lateral positions, and are interconnected by a rear transverse support rod 106 and a front transverse support rod 108. For purposes of support and rigidity, the rear transverse support rod 106 may be interconnected to each of the wire sideplates 102 through weld points 152. Correspondingly, the front transverse support rod 108 may be connected to the front portion of each of the wire sideplates 110, 112 through weld points 154.
  • Details of one of the wire sideplates 102 in accordance with the invention are further illustrated in FIGS. 2-8. With reference first to FIGS. 2 and 8, the wire sideplate 102 shown therein includes a rearwardly projecting ladder connector 114. The ladder connector 114 has a flattened configuration and, as will be described in greater detail herein, is adapted to releasably interconnect with conventional cantilever ladders traditionally used for shelf supports and the like. Extending forward from the rear ladder connector 114 is an upper sideplate arm 116, as shown in a number of the illustrations, including FIGS. 2, 4 and 5. In addition to the upper sideplate arm 116, a lower sideplate arm 118 also extends forward from the ladder connector 114. Details of the sideplate arms 116, 118 will be described in subsequent paragraphs herein.
  • Returning to the ladder connector 114, the connector 114 is shown in enlarged detail in FIG. 6. With reference thereto, the ladder connector 114 includes an upper connector bracket 120 and a corresponding lower connector bracket 122. As shown primarily in FIGS. 4 and 5, the ladder connector 114 may have an offset configuration relative to a plane formed by the elongated sideplate arms 116, 118. This offset configuration facilitates the releasable interconnection with the cantilever ladders.
  • In addition to the upper connector bracket 120 and lower connector bracket 122, the ladder connector 114 also includes an intermediate flange 124, having an elongated configuration and a vertically disposed orientation when the sideplate 102 is in use. The flange 124 is primarily illustrated in FIG. 6. Returning to the upper connector bracket 120, and as further shown in FIG. 6, the rear portion of the upper connector bracket 120 terminates in a downwardly projecting tongue 126. The tongue 126 is shaped and sized so as to form an undercut slot 128 between the tongue and the upper portion of the intermediate flange 124. When releasably connected to a cantilever ladder, the tongue 126 is designed so as to fit within a conventional slot of a known cantilever ladder. Further, the tongue 126 and the slot 128 are sized so that when the tongue 126 is fitted within a slot of a cantilever ladder, the tongue 126 (and the entirety of the sideplate 102) can be moved downwardly, so as to releasably engage the sideplate 102 with the cantilever ladder. With known cantilever ladders, this type of configuration prevents the sideplate 102 from being inadvertently released from the cantilever ladder. Instead, forces must be directed upwardly on the sideplate 102 so as to disengage the tongue 126 from the cantilever ladder.
  • Further, the lower connector bracket 122 includes a tab section 130 at the top portion thereof. The tab also has a vertical orientation and, like the tongue 126, is adapted to fit within a slot of a conventional cantilever ladder. It is the interconnections of the tongue 126 and the tab 130 within the slots of the cantilever ladder which provide for releasable interconnection and support of the wire sideplate 102 on the cantilever ladder. As clear from this configuration, when the wire sideplate 102 supports weight on its extended support arms 116, 118, such weight will exert cantilever forces on the cantilever ladder through the connections of the tongue 126 and tab 130. Also, it should be noted that other ladder connectors having structures and configurations different from ladder connector 114 may be utilized, without departing from the principal concepts of the invention.
  • Extending forwardly from the upper connector bracket 120 is an upper angled portion 132, shown in FIGS. 4, 6 and 8. The upper angled portion 132 extends from the bracket 120 to an upper reverse taper section 136. The section 136 is integral with the upper sideplate arm 116. It should be emphasized at this point, and throughout the specification, that although the wire sideplate 102 in accordance with the invention is described with respect to individual elements, the sideplate 102 is actually formed from a single wire composed of steel or other appropriate components. In this regard, the ladder connector 114 is actually formed and stamped so as to have a flattened configuration. However, the relationship between the upper angled portion 132, section 136 and arm 116 is one where all elements are integral with adjacent elements. That is, these and all other elements of the wire sideplate 102 are formed (and remain) as a single steel (or other material) component.
  • Extending forward from the lower connector bracket is a lower angled portion 134 having an angled configuration as primarily shown in FIGS. 6 and 8. The lower angled portion 134 extends from the lower connector bracket 122 to a lower reverse taper section 138.
  • The lower reverse taper section 138 is integral with an upwardly angled extension 144 of the lower sideplate arm 118. As shown primarily in FIG. 2, the upwardly angled extension 144 extends upwardly and is integral at its termination with a first curved section 146. The first curved section 146 is integral and intermediate the upwardly angled extension 144 and a horizontal extension 148. At the forward portion of the horizontal extension 148 is an integral second curved section 150. The second curved section 150 terminates in a position immediately below and slightly behind a terminating end of the upper sideplate arm 116. If desired, the lower sideplate arm 118 can be welded to the upper sideplate arm 116 at various locations, for purposes of providing additional rigidity of the sideplate 102. For example, the first curved section 146 of the lower arm 118 could be welded or otherwise secured to upper arm 116 at weld point 147 shown in FIG. 2. Correspondingly, the second curved section 150 of the lower arm 118 could be welded or otherwise secured to upper arm 116 at weld point 149 as also shown in FIG. 2. Again, these weld connections provide additional rigidity.
  • Returning to the upper portions of the wire sideplate 102, the upper angled portion 132 is integral with and extends between the upper connector bracket 120 and the upper reverse taper 136. The angled and tapered configuration of the upper angled portion 132 and upper reverse taper 136 are primarily shown in FIG. 8. At the forward end of the upper reverse taper 136, a forward extension 140 of the upper sideplate arm 116 is integrally formed. The forward extension 140 extends forwardly from the ladder connector 114 and terminates in a downwardly projecting lip 142, as primarily shown in FIG. 2.
  • The foregoing has described a wire sideplate frame or assembly 100, utilizing a pair of wire sideplates 102 in accordance with the invention. As apparent from this description, each of the wire sideplates 102 used in the frame 100 illustrated in FIG. I can be identical to the other.
  • As earlier stated, a number of known shelving systems comprise sideplates which are formed from solid pieces of stamped metal. To clarify the comparison between such prior art sideplates and wire sideplates in accordance with the invention, FIG. 9 illustrates both types of sideplates as releasably secured to a conventional cantilever ladder. More specifically, FIG. 9 illustrates a conventional cantilever ladder or strip 250. The conventional cantilever ladder 250 is well known in the shelving arts and may be secured to a wall, refrigerator interior or numerous other surfaces where cantilever shelving is desired. The conventional cantilever ladder 250 normally has a vertical orientation and includes a series of slots 252 located at spaced apart intervals along the ladder 250. At the top of the cantilever ladder 250 as illustrated in FIG. 9 is a prior art sideplate 254. This type of sideplate is well known in the shelving industry, and typically comprises a solid piece of steel or other metallic components. This solid piece of steel or other metallic components forms a connector ladder 256 and a solid extension piece 258 projecting forwardly from the solid connector ladder 256. In contrast, and as further shown in FIG. 9, a wire sideplate 102 is illustrated in accordance with the invention. This sideplate corresponds to the sideplate previously described with respect to FIGS. 2-8. As apparent from FIG. 9, the wire sideplate 102 in accordance with the invention utilizes substantially less metal than does the prior art sideplate 254.
  • FIG. 10 illustrates, as an underside perspective view, one corner of a shelf assembly 170 utilizing a wire sideplate frame having a pair of wire sideplates 102 (only one of which is partially shown in FIG. 10) in accordance with the invention. In contrast to other versions of shelf assemblies described herein for use with wire sideplates in accordance with the invention, the shelf assembly 170 can be characterized as a “fixed” shelf assembly, in that the shelf frame 172 is fixed in position relative to the wire sideplates 102, and there is no sliding engagement therebetween. More specifically, the shelf assembly 170 includes the shelf frame 172 having sides 174 (one of which is shown in FIG. 10) and a front portion 176. A shelf surface 178 can be secured in a suitable manner to the shelf frame 172. There are several known methods for securing the surface 178 to the frame 172. For example, one such procedure is disclosed in U.S. patent application Ser. No. 10/375,632, entitled ADHESIVELY BONDED, LEAK-PROOF SHELF filed Feb. 27, 2003. In the particular configuration illustrated in FIG. 10, the shelf frame 172 may be composed of a plastic material, and the shelf surface 178 may be composed of a glass material.
  • Still referring to FIG. 10, the portion of the sideplate 102 shown therein includes the forward extension 140 of the upper sideplate arm 116, the horizontal extension 148 of the lower sideplate arm 118, and the second curved section 150 of the lower sideplate arm 118. In addition, a front transverse support rod 108 is shown in part, and is connected to the upper sideplate arm 116 at weld point 154. In addition to the foregoing elements, which have been previously described herein, the view of the shelf assembly 170 in FIG. 10 also shows a specific means for coupling this portion of the wire sideplate 102 to the shelf assembly 170. Specifically, a support rod clamp 184 is shown as extending downwardly from the underside of the frame 172. Preferably, the clamp 184 may be formed of a plastic material or otherwise be resilient in nature. The clamp 184 is sized so that forces can be exerted to cause the front transverse support rod 108 to be captured within the clamp 184, in the position shown in FIG. 10. In this position, the clamp 184 acts so as to secure the transverse support rod 108 and the interconnected wire sideplate 102 to the shelf assembly 170 in a supporting manner. Again, it should be noted that with this type of connection, the position of the shelf assembly 184 is fixed, relative to the wire sideplates 102.
  • In addition to the foregoing elements, FIG. 10 also illustrates the use of channel guides 182. The channels 182 project downwardly. The channel guides 182 can be integral with or otherwise connected to the shelf frame 172 in any desired manner. The channel guides 182 can be utilized to essentially form a channel between the outside of the shelf frame 172 and the channel guides 182, with the forward extension 140 being positioned within the formed channel. In this manner, the channel guides 182 facilitate maintaining of stability of the wire sideplate frame 100 relative to the shelf assembly 170. Also, the channel guides 182 are particularly useful in maintaining stability of shelving assemblies on wire sideplate frames when the shelf assemblies are adapted to slide on the sideplate frames.
  • As earlier stated, one of the advantages of the use of wire sideplates in accordance with the invention is that they may be configured in shelving assemblies such that the sideplates can be “folded” or otherwise “collapsed” for efficient storage and shipping. One such embodiment is illustrated in FIGS. 11-15. FIG. 11 is a perspective view of a “roll under” shelf assembly 160. FIG. 12 is an underside perspective view of one corner section of the shelf assembly 160, showing the relationship between one of the wire sideplates 102 and other elements of the shelf assembly 160. FIG. 12 also shows the wire sideplate 102 when the shelf assembly 170 is in a “unfolded” configuration. FIG. 13 is an underside perspective view illustrating the relative positioning of the wire sideplates 102 with other components of the shelf assembly 160 when the sideplates 102 are in a folded configuration. FIG. 14 is similar to FIG. 13, while FIG. 15 is a conventional perspective view of the shelf assembly 160, when the wire sideplates 102 are in a folded configuration.
  • Turning specifically to FIGS. 11-15, the shelf assembly 160 includes a shelf 162. The shelf 162 includes a pair of opposing sides 163 and a front portion 161. The shelf 162 also includes a shelf surface 167.
  • As further shown in FIG. 13, the shelf assembly 160 includes a pair of wire sideplates 102 positioned on opposing lateral sides 163 of the shelf 162. The wire sideplates 102 correspond in structure and function to the wire sideplate 102 illustrated with respect to FIG. 2. As further shown, on the inside of the sides 163 of the shelf 162 are sets of upper clamps 164. These clamps 164 may be somewhat resilient in structure and are positioned and sized so as to securely receive the forward extension 140 of the upper sideplate arms 116 of both wire sideplates 102. Correspondingly, each of the sides 163 of the shelf 162 also includes a tab 165 positioned adjacent the forward portion of the shelf assembly 160 and extending downwardly. As further shown in FIGS. 12 and 13, on the inside of each of the tabs 165 is a pair of lower clamps 166. The clamps 166 maybe resilient in structure and are sized so as to releasably secure the horizontal extension 148 of each of the lower sideplate arms 118 of a corresponding wire sideplate 102. In addition to the foregoing elements, the shelf assembly 160 can also include, as shown in FIGS. 12, 13 and 14, channel guides 180, with a series of tabs projecting downwardly therefrom. The channel guides 180 act in the same manner as those previously described with respect to the shelf assembly 170 shown in FIG. 10. That is, they serve to maintain the forward extensions 140 positioned within channels formed by the channel guides 180 and other portions of the shelf frame 162. In this manner, relatively greater stability is provided for support of the shelf assembly 160 on the wire sideplate frame 100.
  • When the shelf assembly 160 is being used to support various items, the wire sideplates 102 are interconnected to cantilever ladders (not shown) in the manner previously described herein. Further, the horizontal extensions 148 of each of the wire sideplates 102 will be releasably secured within the lower clamps 166 on each tab 165 of the sides 163 of the shelf 162. However, when it is desired to store or ship the shelf assembly 160, each of the wire sideplates 102 can be “rotated” about a longitudinal axis extending through each of the forward extensions 140 of the corresponding wire sideplate 102. If the wire sideplates 102 are rotated inwardly toward the center of the shelf surface 167, they are essentially “collapsed” against the shelf surface 167. This configuration is illustrated in FIGS. 13, 14 and 15. In this configuration, storage and shipping of the shelf assembly 160 is clearly facilitated.
  • FIG. 16 illustrates an example shelving and sideplate assembly 260, where multiple shelves are employed. In this configuration, a pair of cantilever ladders or tracks 262 are illustrated as being attached to a back wall of a display case, refrigerator interior or other type of vertical supporting surface. The cantilever ladders or tracks 262 are conventional in design, as previously described herein.
  • With reference specifically to FIG. 16, a first shelf assembly 266 is shown as being connected to the pair of cantilever ladders 262 through a supporting pair of first wire sideplates 268. The first wire sideplates 268 correspond to the wire sideplates 102 previously described herein. The first shelf assembly 266 can correspond to a number of different types of known shelf assemblies, including the shelf assembly 170 previously described herein. As further shown in FIG. 16, the first shelf assembly 266 does not include any transverse support rods. Accordingly, the shelf assembly 266 may be utilized with the pair of wire sideplates 268 with a “roll under” capability.
  • Below the first shelf assembly 266, and offset to one side thereof, is a second shelf assembly 270, partially shown in FIG. 16. The shelf assembly 270, like the first shelf assembly 266, can be supported by a second pair of wire sideplates 272, only one of which is shown in FIG. 16. The wire sideplates 272 can correspond to the first pair of wire sideplates 268. It is apparent from the foregoing description that the side of the second shelf assembly 270 which is not shown in FIG. 16 would be supported by the second one of the pair of wire sideplates 272, with the second one of the wire sideplates 272 being releasably secured to a further cantilever ladder (not shown).
  • In the FIG. 16 configuration, a third shelf assembly 274 is shown mounted to the connector ladders 262 directly below the first shelf assembly 266. The third shelf assembly 274 is supported on the cantilever ladders 262 through a third pair of wire sideplates 276. In this particular instance, all of the wire sideplates 268, 272 and 276 can be identical to each other.
  • As previously described herein, the wire sideplates in accordance with the invention may be utilized with numerous types of shelving assemblies. For example, sideplates in accordance with the invention may be utilized with a sliding shelf assembly 280 illustrated in FIGS. 17-20. FIG. 17 is an exploded view, showing the individual components of the shelf assembly 280. FIG. 18 illustrates the sliding shelf assembly 280, with the shelf partially slid outwardly from its retracted position. FIG. 19 is an underside view showing one corner of the shelf assembly 280, with the shelf assembly in a fully retracted position. FIG. 20 illustrates an underside view of one side of the shelf assembly 280, with the shelf assembly in a partially extended position.
  • With reference to these drawings, the sliding shelf assembly 280 is adapted for use with a pair of wire sideplates 282. The wire sideplates 282 correspond in structure and function to the wire sideplates 102 previously described herein. Accordingly, components of the wire sideplates 282 are shown with numerical references in FIGS. 17-20, with the numerical references corresponding to the references for identical components of the wire sideplates 102 previously described herein.
  • The assembly 280 includes a front portion 284, a pair of opposing side portions 286 and a rear portion 287. The front 284, sides 286 and rear 287 form a shelf frame 289. The shelf frame 289 secures a glass shelf 288.
  • With respect to the wire sideplates 282, they are positioned one on each side of the shelf assembly 280 and are interconnected by a rear transverse support rod 290 and a forward transverse support rod 292. As shown in FIGS. 19 and 20, with respect to one of the wire sideplates 282, the forward extension 140 of the wire sideplate 282 rides within a channel 298 formed within the shelf frame 289 of the shelf assembly 280. Also shown in FIGS. 17, 19 and 20 are channel guides 296. The channel guides 296 correspond in function to the previously described channel guides 182 associated with the shelf assembly 170. Also shown in FIGS. 17, 19 and 20 is a stop stub 300 which projects downwardly from the side 286 of the shelf frame 289. It is apparent that although FIGS. 19 and 20 only show one side 286 of the shelf frame 289, and one of the pair of wire sideplates 282, a corresponding structure will exist with respect to the other sideplate 282 and the other side 286 of the shelf frame 289. This is apparent from the exploded view of FIG. 17.
  • With the configuration as shown in FIGS. 17-20, the shelf assembly 280, comprising the shelf frame 289 and glass shelf 288, is free to move between a retracted position (as shown in FIG. 19) and an extended position. FIGS. 18 and 20 illustrate the shelf assembly 280 as being almost in a fully extended position. The extension of the shelf assembly 280 relative to the wire sideplates 282 is limited by the stop stubs 300. More specifically, as the shelf assembly 280 is extended on the wire sideplates 282, the front transverse support rod 292 will abut the stop stubs 300, thereby preventing further relative extension of the shelf assembly 280. Further, to prevent the shelf frame 289 from “tipping” forward, if weight is placed on the forward portion of the shelf 288, each side 286 of frame 289 includes a rear ledge 291. One of the rear ledges 291 is shown in FIG. 20. If the frame 289 starts to tip forward, the forward extension 140 will abut the corresponding ledge 291, thereby preventing any additional tilting movement.
  • The particular shelf assemblies previously described herein for use with wire sideplates in accordance with the invention have primarily comprised assemblies which are typically constructed with plastic frames and glass shelf surfaces. It should be emphasized that the wire sideplates in accordance with the invention are not, in any manner, limited to use with such shelf assemblies. The wire sideplates in accordance with the invention can be utilized with various other types of shelf assemblies. For example, wire sideplates in accordance with the invention can be utilized with a wire shelf assembly, such as the wire shelf assembly 302 illustrated in FIG. 21.
  • Referring specifically to FIG. 21, the wire shelf assembly 302 is formed with a pair of opposing wire sideplates 304. The wire sideplates 304 correspond to the wire sideplates 102 previously described herein. The shelf assembly 302 also includes a rear transverse support rod 306 and front transverse support rod 308. Both of the support rods 306, 308 may be welded or otherwise fixedly secured to both of the wire sideplates 304. The transverse support rods 306, 308 are welded or otherwise secured to the upper, forward extension 140 of each of the wire sideplates 304. To form the surface portion of the shelf assembly 302, a series of wire shelf supports or rods 310 may be longitudinally positioned and have their opposing ends welded or otherwise fixedly secured to both the rear transverse support rod 306 and front transverse support rod 308. The wire shelf supports 310 may be formed, as shown in FIG. 21, so as to be parallel to each other. The shelf supports 310 may also be varied in number, depending upon the density of the shelf supports 310 desired for purposes of forming a shelf surface. In addition to the use of the sideplates 304 with the rods 310, the sideplates 304 may be used with other steel shelving, such as with sheet steel shelving. Still further, wire sideplates in accordance with the invention may be used with numerous other types of shelf assemblies, in addition to those specifically described herein.
  • The wire sideplates in accordance with the invention have now been described with respect to various example embodiments of shelf assemblies. As described in the foregoing, the wire sideplates in accordance with the invention comprise single pieces of wire which are formed and then pressed or stamped, so as to be releasably interconnected into a number of different types of cantilever ladders or tracks. Such ladders or tracks are commonly used to support shelving items in various environments. Advantageously, the wire sideplates in accordance with the invention employ relatively less steel than known shelving systems, which typically utilize solid pieces of stamped metal as support brackets or sideplates for shelving assemblies. Also, wire sideplates in accordance with the invention may require relatively less finishing material, in view of the reduction in surface area, as compared to known support brackets or sideplates. Further, in view of the wire sideplates in accordance with the invention requiring less steel or other metals, the sideplates are of relatively lighter weight than prior art sideplates.
  • As also made apparent from the foregoing, wire sideplates in accordance with the invention may be welded to support elements or shelving assemblies themselves for purposes of providing additional strength and rigidity. In addition, wire sideplates in accordance with the invention may be folded or otherwise “collapsed” for efficient storage and shipping of shelving assemblies. Another advantage exists in that the configurations of the wire sideplates in accordance with the invention allow for substantially more light transmission and airflow than known sideplate configurations. Still further, wire sideplates in accordance with the invention may be utilized in a facilitative manner for purposes of providing either stationary or sliding movement of supported shelf assemblies. The wire sideplates in accordance with the invention also lend themselves to use with wire support rods or similar additional supporting elements, for purposes of providing additional strength, support, rigidity and the like.
  • To this point, wire sideplate frames and wire sideplates in accordance with the invention have been described, wherein the wire sideplates are essentially positioned below a shelf and corresponding shelf frame, with the wire sideplates partially received within channel guides, captured by clamps, or otherwise releasably secured to a shelf frame. Of course, even with the previously described wire sideplates in accordance with the invention, other means can be utilized for securing the wire sideplates to shelf assemblies, or otherwise having the wire sideplates support the shelf assemblies, without departing from the principal concepts of the invention.
  • Still further, however, many known shelf assemblies, at least in part, are composed of thermoplastic materials (i.e., plastics which have the properties of becoming soft and moldable when subjected to heat). With these types of shelf assemblies, shelf frames and shelves can be assembled through injection molding methods. Injection molding methods consist of shaping various materials, such as thermoplastic substances, by forcing the heated, syrupy thermoplastic resins into, for example, water-chilled molds, for purposes of cooling and setting. Correspondingly, with such injection molding processes for forming shelf assemblies, it is advantageous to encapsulate or otherwise secure supporting elements (such as wire sideplates) with the shelf assemblies themselves. This can be accomplished by positioning at least part of the wire sideplates within the plastic injection mold, and then molding the plastic material in and around the portion of the wire sideplates within the mold.
  • To facilitate securing of the wire sideplates to the shelf assemblies through encapsulation of the wire sideplates by means of injection molding processes, a further embodiment of a wire sideplate in accordance with the invention has been developed. This embodiment is described herein as wire sideplate 350 and is illustrated in FIGS. 22-28. Although the wire sideplate 350 is not shown in association with a companion wire sideplate frame or any particular shelf assembly, it is apparent that wire sideplate 350 can be utilized with cantilever ladders and other supporting elements for supporting shelf assemblies as previously described herein for the other embodiments of wire sideplates in accordance with the invention.
  • The wire sideplate 350, like the other wire sideplates described herein in accordance with the invention, comprises a single piece of wire which is formed and then pressed or stamped so as to releasably interconnect with a number of different types of cantilever ladders uses for shelving systems in various embodiments. As with the other wire sideplates previously described herein, the wire sideplate 350 employs relatively less steel than known shelving systems, which typically utilize solid pieces of stamped metal as support brackets or sideplates for shelving assemblies. Further, wire sideplates in accordance with the invention require relatively less finishing material, in view of the relative reduction in surface area. Also, sideplate 350 is of relatively lighter weight than prior art sideplates. In addition, wire sideplate 350 allows for substantially more light transmission and airflow than known sideplate configurations.
  • Turning to the drawings, the wire sideplate 350 is shown in perspective view in FIG. 22. For purposes of supporting a shelf assembly (not shown in FIG. 22), the wire sideplate 350 would be utilized with a companion wire sideplate 350, in a manner similar to the prior description of wire sideplate frame 100. Details of the wire sideplate 350 are particularly shown in FIGS. 23-28. With reference first to FIGS. 23 and 26, the wire sideplate 350 includes a rearwardly projecting ladder connector 352. This ladder connector 352 is similar in structure to the previously described ladder connector 114 utilized with the wire sideplates 102. The ladder connector 352 has a flattened configuration and, similar to previously-described ladder connector 114, is adapted to releasably interconnect with conventional cantilever ladders traditionally used for shelf supports and the like. Extending forward from the rearwardly positioned ladder connector 352 is an upper sideplate arm 354, shown in particular in FIG. 23 and partially shown in FIG. 28. In addition to the upper sideplate arm 354, a lower sideplate arm 356 also extends forwardly from the ladder connector 114. Details of the sideplate arms 354, 356 will be described in subsequent paragraphs herein.
  • Returning to the ladder connector 352, the connector 352 is shown in enlarged detail in FIG. 26. With reference thereto, the ladder connector includes an upper connector bracket 358 and a corresponding lower connector bracket 360. As shown primarily in FIGS. 25 and 27, the ladder connector 352 may have an offset configuration relative to a plane formed by the elongated sideplate arms 354, 356. This offset configuration facilitates the releasable interconnection with cantilever ladders.
  • In addition to the upper connector 358 and lower connector bracket 360, the ladder connector 352 also includes an intermediate flange 362, having an elongated configuration and a vertically disposed orientation when the sideplate 350 is in use. Returning to the upper connector bracket 358, the rear portion of the upper connector bracket 358 terminates in a downwardly projecting tongue 364. The tongue 364 is shaped and sized so as to form an undercut slot 366 between the tongue 364 and the upper portion of the intermediate flange 362. When releasably connected to a cantilever ladder, the tongue 364 is designed so as to fit within a conventional slot of a known cantilever ladder. Further, the tongue 364 and the slot 366 are sized so that when the tongue 364 is fitted within a slot of a cantilever ladder, the tongue 364 (and the entirety of the sideplate 350) can be moved downwardly so as to releasably engage the sideplate 350 with the cantilever ladder. With known cantilever ladders, this type of configuration prevents the sideplate 350 from being inadvertently released from the cantilever ladder. Instead, forces must be directed upwardly on the sideplate 350 so as to disengage the tongue 364 from the cantilever ladder.
  • Further, the lower connector bracket 360 includes a tab 370 at the upper portion thereof. The tab 370 also has a vertical orientation and, like the tongue 364, is adapted to fit within a slot of a conventional cantilever ladder. It is the interconnections of the tongue 364 and tab 370 within the slots of the cantilever ladder which provide for releasable interconnection and support of the wire sideplate 350 on the cantilever ladder. As apparent from the configuration of the ladder 352, when the wire sideplate 350 supports weight on its extended support arms 354, 356, such weight will exert cantilever forces on the cantilever ladder through the connections of the tongue 364 and tab 370. However, it should be noted that although the foregoing has described one embodiment of a ladder connector 352 in accordance with the invention, other ladder connectors can be utilized with the wire sideplate 350, without departing from the spirit and scope of the principal novel concepts of the invention.
  • Turning again to FIGS. 23-28, extending forwardly from the lower connector bracket 360 is a lower angled portion 372 having an angled configuration as primarily shown in FIGS. 25 and 27. The lower angled portion 372 extends from the lower connector bracket 360 to a lower reverse taper section 376. The lower reverse taper section 376 is integral with an upwardly angled extension or a section 378 of the lower sideplate arm 356. As shown in substantial part in FIGS. 22 and 23, the upwardly angled extension 378 extends upwardly and is integral in its termination with a first curved section 380. The first curved section 380 is integral with an upwardly angled extension 378 and a horizontal extension 382. At the forward portion of the horizontal extension 382 is an integral second curved section 384. The second curved section 384 terminates at a distal end section 385. The distal end section 385 terminates in a position immediately below and slightly behind a terminating end of the upper sideplate arm 354.
  • Returning to the upper portions of the wire sideplate 350, the upper sideplate arm 354 and associated sections of the wire sideplate 350 will now be described. It is the upper sideplate arm 354 of the wire sideplate 350 which consists of the features which most distinguish the wire sideplate 350 from the previously described wire sideplates 102. More specifically, extending forwardly from the upper connector bracket 358 is an upper angled section 368. This angle or offset is primarily shown in FIGS. 25 and 27. The upper angled portion 368 extends from the upper connector bracket 358 to an upper reverse taper section 374. The upper reverse taper section 374 is integral with the upper sideplate arm 354. It is worthwhile at this point to emphasize that although the wire sideplate 350 in accordance with the invention is being described with respect to “individual” portions or elements, the wire sideplate 350 is actually formed from a single wire composed of steel or other appropriate components. The relationship between the upper angled portion 368, upper reverse taper section 374 and upper sideplate arm 354 is one where all elements are integral with adjacent elements. That is, these and other elements of the wire sideplate 350 are formed (and remain) as a single steel (or other material) component.
  • Returning to the upper portions of the wire sideplate 350, a forward end of the upper reverse taper section 374 is integral with the proximal end of the upper sideplate arm 354. More specifically, the upper reverse taper section 374 is integral with an upwardly angled section 386, primarily shown in FIGS. 22, 23 and 28. The upwardly angled section 386 terminates and is integral with a first encapsulate section 388, having the configuration primarily shown in FIGS. 22, 23 and 28. As will be described in greater detail herein, this section 388 is referred to as an “encapsulate” section, in view of the fact that it will be encapsulated through injection molding processes with the shelf assembly to which it is to be attached. As shown in the drawings, the first encapsulate section 388 has a relatively “flattened” configuration which is achieved through stamping processes. A series of perforations 390 is formed along the upper portion of the encapsulate section 388. During the injection molding process, the perforations 390 facilitate the flow of the thermoplastic material around the encapsulate section 388.
  • At the terminating end of the first encapsulate section 388 is an integral downwardly angled section 392. The downwardly angled section 392 is integral with a substantially horizontal intermediate section 382. The terminating end of the intermediate section 394 is integral with a further upwardly angled section 396. The upwardly angled section 396 terminates in a second encapsulate section 398. In the particular embodiment of the wire sideplate 350 shown herein, the second encapsulate section 398 is configured in substantially the same manner as the first encapsulate section 388, but is of a relatively shorter length. The particular sizes of the encapsulate section 388 and 390 essentially comprise design features. As with the first encapsulate section 388, the second encapsulate section 398 has a substantially flattened configuration, which again would be achieved through stamping processes. Also similar to the first encapsulate section 388, the second encapsulate section 398 may include perforations 390, for purposes of facilitating flow of thermoplastic resin around the second encapsulate section 398 during injection molding processes.
  • The second encapsulate section 398 terminates in a downwardly angled section 406. Correspondingly, the downwardly angled section 406 terminates in a distal section 400 forming the distal end of the upper sideplate arm 354. If desired, and for purposes of potentially providing additional rigidity to the wire sideplate 350, the upper sideplate arm 354 can be welded or otherwise secured to the lower sideplate arm 356 at various locations. For example, the first curved section 380 of the lower sideplate arm 356 could be welded or otherwise secured to the upper sideplate arm 354 at weld point 402, shown in FIGS. 22 and 23. Correspondingly, the second curved section 384 of the lower sideplate arm 356 could be welded or otherwise secured to the upper sideplate arm 354 at weld point 404 also shown in FIGS. 22 and 23. Again, these weld connections (or other connection means) can be utilized to provide additional rigidity to the wire sideplate 350.
  • As earlier mentioned, an advantage of the wire sideplate 350 in accordance with the invention is that it is configured so as to be utilized with injection molding processes and essentially encapsulated with thermoplastic materials which form the shelf frame and/or associated shelves. To provide this encapsulation, the first encapsulate section 388 and the second encapsulated section 398 would be positioned within a mold holding heated thermoplastic material. Also, as earlier stated, the use of the perforations 390 at the upper portions of the encapsulate sections 388, 398 will serve to facilitate flow of the thermoplastic materials around the sections 388, 398 during the injection molding process.
  • Certain of the wire sideplates previously described herein in accordance with the invention, such as wire sideplate 102, are adapted to support a shelf assembly through portions of the wire sideplate fitting within channel guides. As an alternative, or in addition to use of the channel guides, the previously described wire sideplate 102 could be utilized in a manner where it is releasably clamped or otherwise releasably secured to shelf frame or other components of a shelf assembly. Correspondingly, the wire sideplate 350 in accordance with the invention is adapted to be utilized with shelf assemblies having thermoplastic materials, with portions of the wire sideplate 350 being encapsulated with portions of the shelf assembly through injection molding processes.
  • In addition to these previously described wire sideplates 102 and 350, other wire sideplates in accordance with the invention may employ other means for supporting shelf assemblies. Such further embodiments of wire sideplates in accordance with the invention are described herein and illustrated in FIGS. 29-36 as wire sideplates 430 and 432 utilized with wire sideplate assemblies 426 and 428, respectively. As will be described in greater detail herein, each of the wire sideplate assemblies 426, 428 utilize wire sideplates similar to those previously described herein, with the sideplate assemblies incorporating a flange for connection of the wire sideplate assemblies to components of shelf assemblies to be supported.
  • The wire sideplate assembly 426 illustrated in FIGS. 29, 30 and 31 utilizes a wire sideplate 430 which is described in subsequent paragraphs herein. Correspondingly, wire sideplate assembly 428 illustrated in FIGS. 32, 33 and 34 utilizes a wire sideplate 432. The wire sideplate 432 is substantially identical to the wire sideplate 430, with relatively minor distinctions described subsequently herein. Still further, the wire sideplate 430 includes components configured substantially identical to certain components of the previously described wire sideplate 102 and the previously described wire sideplate 350. Turning first to wire sideplate 430 and FIGS. 29, 30 and 31, the wire sideplate 430 includes a rearwardly projecting ladder connector 434. The ladder connector 434 is substantially identical to the ladder connector 352 previously described with respect to wire sideplate 350. More specifically, the ladder connector 434 has a flattened configuration and is adapted to releasably interconnect with conventional cantilever ladders traditionally used for shelf supports and the like. Extending forward from the rear ladder connector 434 is an upper sideplate arm 436. The upper sideplate arm 436 is substantially identical to the upper sideplate arm 116 previously described with respect to wire sideplate 102. In addition to the upper sideplate arm 436, the wire sideplate 430 also includes a lower sideplate arm 438 extending forward from the ladder connector 434. The lower sideplate arm 438 is substantially identical to both the lower sideplate arm 118 previously described with respect to wire sideplate 102, and the lower sideplate arm 356 previously described with respect to wire sideplate 350.
  • The ladder connector 434 includes an upper connector bracket 440 and a lower connector bracket 442. As shown primarily in FIG. 31, the ladder connector 434 may have an offset configuration relative to a plane formed by the elongated sideplate arms 436, 438. This offset configuration may be utilized to facilitate the releasable interconnection with cantilever ladders. However, it should be emphasized that this offset configuration is not necessary to meet the principal concepts of the invention.
  • In addition to the upper connector bracket 440 and lower connector bracket 442, the ladder connector 434 also includes an intermediate flange 444, having an elongated configuration and a vertically disposed orientation when the sideplate 430 is in use. As shown in FIG. 29, the rear portion of the upper connector bracket 440 terminates in a downwardly projecting tongue 446. The tongue 446 is shaped and sized so as to form an undercut slot 448 between the tongue 446 and the upper portion of the intermediate flange 444. The tongue 446 and undercut slot 448 are substantially identical to the tongue 364 and undercut slot 366 previously described herein with respect to wire sideplate 350. The configuration of the tongue 446 and undercut slot 448 prevents the sideplate 430 from being inadvertently released from a cantilever ladder. Instead, forces must be directed upwardly on the sideplate 430 so as to disengage the tongue 446 from a cantilever ladder to which it is secured.
  • The lower connector bracket 442 includes a tab 452 at the top portion thereof. The tab 452 has a vertical orientation and, like the tongue 446, is adapted to fit within a slot of a conventional cantilever ladder. It is the interconnections of the tongue 446 and the tab 452 which provides for releasable interconnection and support of the wire sideplate 430 on a cantilever ladder. Again, the ladder connector 434 and the functional operation thereof is substantially identical to the structure and function of the ladder connector 352 associated with the wire sideplate 350.
  • Extending forwardly from the upper connector bracket 440 is an upper angled portion 450 as shown in FIGS. 29 and 31. The upper angled portion 450 extends from the upper connector bracket 440 to an upper reverse taper section 456. The upper reverse taper section 456 is integral with the upper sideplate arm 436. As with the previously described wire sideplates 102 and 350 in accordance with the invention, the wire sideplate 430, although being described with respect to individual elements, is formed from a single wire composed of steel or other appropriate components. Accordingly, the ladder connector 434 is actually formed and stamped so as to have a flattened configuration. However, the relationship between the upper angled portion 450, upper reverse taper section 456 and arm 436 is one where all elements are integral with adjacent elements.
  • Extending forward from the lower connector bracket 442 is a lowered angled portion 454 having an angled configuration substantially identical to the angled configuration of the upper angled portion 450. The lower angled portion 454 extends from the lower connector bracket 442 to a lower reverse taper section 458. The lower reverse taper section 458 is integral with an upwardly angled extension 460 of the lower sideplate arm 438. The lower sideplate arm 438 is substantially identical to the lower sideplate arms 118 of wire sideplate 102 and 356 of wire sideplate 350. Accordingly, the upwardly angled extension section 460 extends upwardly and is integral at its termination with a first curved section 462. The first curved section 462 is integral with a horizontal section 464. At the distal end of the horizontal section 464 is an integral second curved section 466. The second curved section 456 is integral with a distal end section 468. The distal end section 468 terminates a position immediately below and slightly behind a terminating end of the upper sideplate arm 436.
  • Returning to the upper portions of the wire sideplate 430, the upper angled section 450 is integral with and extends between the upper connector bracket 440 and the upper reverse taper 456. At the forward end of the upper reverse taper section 456, a proximal and of a horizontal section 470 is integrally formed. The horizontal section 470 extends forwardly, terminating in a distal end 472 as shown in FIG. 31.
  • As earlier stated, the wire sideplate assembly 426 differs from the previously described wire sideplates 102 and 350, in that the wire sideplate assembly 426 includes a connection flange 478, illustrated in FIGS. 29, 30 and 31 as attached to the wire sideplate 430. The flange 478 is also shown in a stand alone configuration in FIGS. 35 and 36. The connection flange 478 has a substantially elongated and rectangular configuration, and is adapted to be secured in any suitable manner to the wire sideplate 430. In the particular embodiment shown in FIGS. 29, 30 and 31, the connection flange 478 can be secured by welds between the horizontal extension 464 of the wire sideplate 430 and the connection flange 478. Such welds could be in the form of a weld 482 extending entirely along the length of the connection flange 478 and the horizontal section 464. Alternatively, weld points 484 could be utilized at spaced apart locations between the connection flange 478 and the horizontal section 464. Still further, other types of connection means may be utilized, without departing from the principal concepts of the invention. Still further, the connection flange 478 may be secured to other elements of the wire sideplate 430. As further shown in FIG. 29, the flange 478 may include a series of through holes 480 extending laterally through the sides of the connection flange 478. The through holes may be utilized as perforations to assist in encapsulation of the flange 478 during injection molding procedures. In this manner, the flange 478 is secured to a shelf assembly. Also, it should be apparent that other types of connection means may be utilized to secure the flange 478 to a shelf assembly.
  • With the use of flange 478 and the structural configurations shown in FIGS. 29, 30 and 31 wherein the connection flange 478 is secured to one side of the horizontal section 470, it would be preferable for the connection flange 478 to be “inside” the wire sideplate 430 when the wire sideplate 430 is connection to a shelf assembly. In this regard, the wire sideplate assembly 426 shown in FIGS. 29, 30 and 31 could be characterized as a “right side” wire sideplate assembly. That is, with the assumption that a person is looking from the rear of the wire sideplate assembly 426 toward the forward portion thereof, the wire sideplate assembly 426 should be positioned to the right of the shelf assembly being supported and to which the connection flange 478 is secured.
  • The wire sideplate assembly 428 is illustrated in FIGS. 32, 33 and 34, and utilizes wire sideplate 432. The wire sideplate assembly 428 is substantially similar to the wire sideplate assembly 426. However, with the previous reference to the wire sideplate assembly 426 as being a “right side” sideplate assembly, the wire sideplate assembly 428 can be characterized as a “left side” wire assembly. That is, keeping in mind that the flange 478 is preferably located “inside” of the wire sideplate 432, the wire sideplate 432 would be positioned on the left side of a shelf assembly to which is connected, if the viewer is positioned at the rear portion of the wire sideplate 428 and is looking toward the forward end of the wire sideplate 432. Because of the substantial similarities between the wire sideplate assembly 426 and the wire sideplate assembly 428, like elements of the assemblies 426, 428 are shown as being like numbered. With respect to the distinctions between the wire sideplate 430 and the wire sideplate 432, the only distinctions lie in the offset configurations which may be utilized with the wire sideplates 430, 432. As shown in FIGS. 29 and 31, the wire sideplate 430 includes upper and lower angled portions 450, 454, respectively, to offset the sideplate arms 436, 438 from the ladder connector 434. As shown in FIGS. 32 and 34, the wire sideplate 432 also has corresponding upper and lower angled portions 474, 476 respectively. However, as apparent from comparison of the illustrations, the offsets provided by angled portions 450, 454 for the wire sideplate 430 are in an opposite configuration relative to the offsets provided by the angled portions 474, 476 for wire sideplate 432. Also, as apparent from the prior discussion relating to the fact that the connection flange 478 is preferably on the “inside” of its corresponding wire sideplate, the connection flange 478 utilized with the wire sideplate 432 is secured to the wire sideplate 432 on the opposite side of its connection to wire sideplate 430. Again, however, it should be emphasized that the offset configurations of the wire sideplates are not an absolute requirement, and the flange 478 can be secured to various portions (and by various means) of the wire sideplates 430, 432. Of primary importance is that the wire sideplate assemblies 426, 428 provide a means for utilizing the advantageous properties of wire sideplates in accordance with the invention, while also providing a means for rigidly securing the wire sideplates to a shelf assembly.
  • A still further wire sideplate assembly in accordance with the invention is described herein as wire sideplate assembly 477 and illustrated in FIGS. 37, 38 and 39. As will be described in subsequent paragraphs herein, the wire sideplate assembly 477 is advantageous in that it provides a means for conveniently coupling a shelf assembly (not shown in the drawings) to wire sideplates of the wire sideplate assembly 477 in a manner so as to permit slidable movement of the shelf assembly relative to the wire sideplate assembly 477. Still further, the wire sideplate assembly 477 also permits an additional shelf assembly or other type of shelving elements to be encapsulated with components of the wire sideplate assembly 477 through use of plastic injection molding or the like.
  • More specifically, the wire sideplate assembly 477 can utilize a wire sideplate corresponding to the wire sideplate 432 previously described with respect to the wire sideplate assembly 428 illustrated in FIGS. 32, 33 and 34. Accordingly, the wire sideplate utilized in the wire sideplate assembly 477 is identified as wire sideplate 432, and numerical references for elements of the wire sideplate 432 shown in FIGS. 37, 38 and 39 correspond to the numerical references shown in FIGS. 32, 33 and 34 for identical elements of the wire sideplate 432. That is, with reference to FIGS. 37, 38 and 39, the wire sideplate assembly 477 comprises a wire sideplate 432 having a ladder connector 434, upper support arm 436 and lower support arm 438. Also included within the wire sideplate 432 shown in these drawings is an upper connector bracket 440, lower connector bracket 442 and intermediate flange 444. The wire sideplate 432 also includes a tongue 446, undercut slot 448, upper angled portion 474 and lower angled portion 476. A tab 452 is included on the intermediate flange 444, and the ladder connector 434 also includes an upper reverse taper 456 and a lower reverse taper 458. The lower support arm 438 includes an upwardly angled section 460 and first curved section 462.
  • Unlike the wire sideplate assembly 428, the wire sideplate assembly 477 includes a horizontally positioned and elongated slide flange 482. The slide flange 482 includes, at the lower portion thereof, a C-channel 484, as shown in the drawings. The C-channel 484 is adapted to receive, in a slidable manner, a portion of a shelf frame or shelf of a shelf assembly. In addition, the slide flange 482 also includes an elongated aperture 486, as primarily shown in FIG. 37. The elongated aperture 486 extends laterally through the sides of the slide flange 482, and is adapted to receive rollers or similar devices for facilitating sliding movement (and for limiting sliding movement) of an associated shelf assembly.
  • Still further, the slide flange 482 can also include an upper flange 488 having a series of perforations 490 extending thereto. The slide flange 482 can be constructed with this upper flange 488, so that this upper flange 488 could be encapsulated with a shelf assembly through injection molding processes or other processes utilizing thermoplastic materials. The perforations 490 facilitate flow of the thermal plastic materials around the upper flange 488 during the injection molding process. In this manner, the upper flange 488 can serve the same functions as the flange 478 previously described herein and illustrated in FIGS. 35 and 36.
  • It will apparent to those skilled in the pertinent arts that other embodiments of wire sideplates in accordance with the invention may be designed. That is, the principles of wire sideplates in accordance with the invention are not limited to the specific embodiments described herein. Accordingly, it will be apparent to those skilled in the art that modifications and other variations of the above-described illustrative embodiments of the invention may be effected without departing from the spirit and scope of the novel concepts of the invention.

Claims (28)

1. One or more wire sideplates adapted for use with a shelving assembly and support means for supporting said shelving assembly in a cantilevered manner, said wire sideplates comprise:
sideplate means coupled to said support means for supporting said shelving assembly; and
said sideplate means comprises a pair of wire sideplates, each sideplate comprising a single piece of wire formed and then pressed or stamped into a desired configuration so as to be coupled to said support means.
2. One or more wire sideplates in accordance with claim 1, characterized in that said wire sideplates each comprise a substantially smaller amount of metal than other sideplates of equivalent size but formed of solid pieces of stamped metal.
3. One or more wire sideplates in accordance with claim 1, characterized in that said wire sideplates comprise a substantially smaller amount of surface area than other sideplates of equivalent size but formed of solid pieces of stamped metal.
4. One or more wire sideplates in accordance with claim 1, characterized in that said wire sideplates permit a substantially larger amount of airflow around and through said sideplates, relative to airflow permitted around other sideplates of equivalent size but formed of solid pieces of stamped metal.
5. One or more wire sideplates in accordance with claim 1, characterized in that said wire sideplates permit a substantially larger amount of light transmission through said wire sideplates, relative to the light transmission permitted through other sideplates of equivalent size but formed of solid pieces of stamped metal.
6. One or more wire sideplates in accordance with claim 1, characterized in that said wire sideplates comprise a substantially smaller amount of weight than other sideplates of equivalent size but formed of solid pieces of stamped metal.
7. One or more wire sideplates in accordance with claim 1, said shelving assembly comprises at least one shelf, and said wire sideplates are welded to said shelf and/or to support materials intermediate said shelf and said wire sideplates.
8. One or more wire sideplates in accordance with claim 1, characterized in that said shelving assembly further comprises securing means for securing said wire sideplates to said shelf, so that said wire sideplates can be rotated inwardly toward a center of said shelf, so as to be substantially collapsed adjacent a surface of said shelf, for purposes of facilitating storage and shipment of said shelving assembly.
9. One or more wire sideplates in accordance with claim 1, characterized in that said shelving assembly further comprises sliding means so as to provide for a sliding movement of said shelf relative to said wire sideplates.
10. One or more wire sideplates in accordance with claim 1, characterized in that said wire sideplate frame further comprises wire support rods connected to and extending between opposing ones of said pair of wire sideplates, for providing additional strength and rigidity to said wire sideplate frame.
11. One or more wire sideplates in accordance with claim 1, characterized in that each of said wire sideplates comprises a rearwardly projecting ladder connector, said ladder connector having a flattened configuration and adapted to releasably interconnect with said support means.
12. One or more wire sideplates in accordance with claim 1, characterized in that each of said wire sideplates comprises:
a rearwardly projecting connector adapted to releasably interconnect with said support means;
an upper sideplate arm extending forwardly from said rearwardly projecting connector; and
a lower sideplate arm also extending forwardly from said rearwardly projecting connector.
13. One or more wire sideplates in accordance with claim 1, characterized in that each of said wire sideplates comprises a rearwardly projecting connector, adapted to be releasably connected to said support means, each of said connectors comprising:
an upper connector bracket;
a lower connector bracket;
an intermediate flange, said flange having an elongated configuration and a vertically disposed orientation when said corresponding sideplate is in use;
said rear portion of said upper connector bracket terminating in a downwardly projecting tongue, said tongue being shaped and sized so as to form an undercut slot between said tongue and an upper portion of said intermediate flange; and
when releasably connected to said support means, said tongue is adapted to fit within a slot of said support means.
14. One or more wire sideplates in accordance with claim 13, characterized in that said lower connector bracket comprises a tab at a top portion thereof, said tab having a vertical orientation and adapted to fit within a slot of said connector.
15. One or more wire sideplates in accordance with claim 1, characterized in that each of said wire sideplates comprises a rearwardly projecting connector, said connector having a flattened configuration and adapted to releasably interconnect with said support means, said connector comprising:
an upper connector bracket;
a lower connector bracket; and
an upper angled portion extending forwardly from said upper connector bracket, said upper angled portion extending from said upper connector bracket to an upper reverse taper section, said upper reverse taper section being integral with said upper sideplate arm, said upper angled section, taper section and upper sideplate arm all being integral with each other and with adjacent elements of said wire sideplate.
16. One or more wire sideplates in accordance with claim 15, characterized in that:
extending forwardly from said lower connector bracket is a lower angled portion having an angled configuration, said lower angled portion extending from said lower connector bracket to a lower reverse taper section;
said lower reverse taper section being integral with an upwardly angled extension of said lower sideplate arm, said upwardly angled extension extending upwardly and integral at a termination with a first curved section, said first curved section being integral and intermediate said upwardly angled extension and a horizontal extension;
an integral second curved section located at a forward portion of said horizontal extension, said second curved section terminating in a position immediately below and slightly behind a terminating end of said upper sideplate arm.
17. One or more wire sideplates in accordance with claim 16, characterized in that:
said first curved section of said lower arm being welded or otherwise secured to said upper arm; and
said second curved section of said lower arm being welded or otherwise secured to said upper arm.
18. One or more wire sideplates in accordance with claim 16, characterized in that:
said upper angled portion of each of said wire sideplates is integral with and extends between said upper connector bracket and said upper reverse taper section;
a forward extension of said upper sideplate arm is integrally formed at a forward end of said upper reverse taper section; and
said forward extension extends forwardly from said connector and terminates in a downwardly projecting lip.
19. One or more wire sideplates in accordance with claim 1, characterized in that each of said wire sideplates comprises:
a rearwardly projecting ladder connector, having a flattened configuration and adapted to releasably interconnect with said support means;
an upper sideplate arm extending forwardly from said rear ladder connector;
a lower sideplate arm also extending forwardly from said ladder connector; and
said ladder connector having an offset configuration relative to a plane formed by said upper sideplate arm and said lower sideplate arm, said offset configuration facilitating releasable interconnection of said ladder connector with said support means.
20. One or more wire sideplates in accordance with claim 1, characterized in that said pair of wire sideplates are positioned on opposing lateral sides of said shelf, and said shelving assembly further comprises:
sets of upper clamps positioned on the inside of sides of said shelf, said upper clamps being somewhat resilient and sized so as to securely receive a forward extension of upper sideplate arms of both of said wire sideplates; and
each of said sides of said shelf having a tab positioned adjacent a forward portion of the shelving assembly and extending downwardly, with a pair of lower clamps positioned on the inside of each of said tabs, said lower clamps being resilient and sized so as to releasably secure a horizontal extension of each of lower sideplate arms of said wire sideplates.
21. One or more wire sideplates in accordance with claim 1, characterized in that said shelving assembly further comprises a plurality of channel guides, so as to form a plurality of channels and assist in maintaining said wire sideplates positioned within said channels.
22. One or more wire sideplates in accordance with claim 1, characterized in that each of said pair of wire sideplates comprises an upper sideplate arm, and said shelving assembly further comprises:
a transverse support rod connected to each of said upper sideplate arms of each of said pair of wire sideplates, and extending transversely between each of said pair of wire sideplates; and
at least one support rod clamp extending downwardly from an underside of a frame of said shelf assembly on each of opposing sides of said frame of said shelf assembly, each of said support rod clamps having resilient properties and sized so that external forces can be exerted so as to cause said transverse support rod to be captured within said clamps.
23. One or more wire sideplates in accordance with claim 22, characterized in that said shelf assembly further comprises a plurality of channel guides positioned adjacent each of said wire sideplates, and utilized so as to form a plurality of channels and assist in maintaining and positioning said wire sideplates within said channels.
24. One or more wire sideplates in accordance with claim 1, characterized in that said shelf assembly further comprises:
a pair of opposing lateral sides, with each of said pair of wire sideplates being positioned adjacent one of said opposing lateral sides;
sets of upper clamps positioned on said opposing lateral sides of said shelf assembly, said upper clamps having resilient properties and positioned and sized so as to releasably receive upper sideplate arms of said pair of wire sideplates;
sets of lower clamps also positioned on said opposing lateral sides, said lower clamps having resilient properties and sized and positioned so as to releasably secure lower sideplate arms of said pair of wire sideplates;
when said shelf assembly is to be used to support items, each of said pair of wire sideplates is releasably secured within said lower clamps positioned on said opposing lateral sides; and
when it is desired to store or ship said shelf assembly, each of said wire sideplates can be rotated inwardly toward a center of said shelf surface by releasing each of said lower sideplate arms from said sets of lower clamps.
25. One or more wire sideplates in accordance with claim 1, characterized in that said shelf assembly comprises:
means for permitting sliding movement of said shelf assembly on said wire sideplates, with said shelf assembly moving between a retracted position and an extended position;
said extended position of said shelf assembly relative to said wire sideplates being limited by a set of stop stubs; and
a rear ledge positioned at each side of a frame of said shelf assembly, so that if said frame initiates a tilting movement, said wire sideplates will abut said rear ledges, preventing any additional tilting movement.
26. One or more wire sideplates adapted to support a shelving assembly in a cantilevered manner, said wire support frame comprises:
a pair of wire sideplates, each sideplate comprising a single piece of wire formed and then pressed or stamped into a desired configuration, each of said wire sideplates comprising:
a rearwardly projecting connector;
an upper sideplate arm extending forwardly from and integral with said rearwardly projecting connector; and
a lower sideplate arm also extending forwardly from and integral with said rearwardly projecting connector.
27. One or more wire sideplates in accordance with claim 26, characterized in that:
said connector comprises an upper connector bracket and a lower connector bracket;
said lower sideplate arm comprises an upwardly angled extension extending upwardly and forwardly from said lower connector bracket; and
said upper sideplate arm extends forwardly from said upper connector bracket.
28. One or more wire sideplates in accordance with claim 27, characterized in that said connector comprises means for releasably securing said wire sideplate to a cantilever ladder.
US11/405,142 2005-04-15 2006-04-17 Wire sideplates Abandoned US20070075199A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US67174705P true 2005-04-15 2005-04-15
US11/405,142 US20070075199A1 (en) 2005-04-15 2006-04-17 Wire sideplates

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/405,142 US20070075199A1 (en) 2005-04-15 2006-04-17 Wire sideplates

Publications (1)

Publication Number Publication Date
US20070075199A1 true US20070075199A1 (en) 2007-04-05

Family

ID=37900973

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/405,142 Abandoned US20070075199A1 (en) 2005-04-15 2006-04-17 Wire sideplates

Country Status (1)

Country Link
US (1) US20070075199A1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090283091A1 (en) * 2008-05-16 2009-11-19 Deng Eric H Y Char Broiler Grate Assembly
US20100026156A1 (en) * 2008-07-30 2010-02-04 Saint-Gobain Glass France Shelf for refrigeration units
US20110164399A1 (en) * 2008-06-04 2011-07-07 John Patrick Driver Shelf with led assembly
US8286561B2 (en) 2008-06-27 2012-10-16 Ssw Holding Company, Inc. Spill containing refrigerator shelf assembly
US9067821B2 (en) 2008-10-07 2015-06-30 Ross Technology Corporation Highly durable superhydrophobic, oleophobic and anti-icing coatings and methods and compositions for their preparation
US9074778B2 (en) 2009-11-04 2015-07-07 Ssw Holding Company, Inc. Cooking appliance surfaces having spill containment pattern
US9139744B2 (en) 2011-12-15 2015-09-22 Ross Technology Corporation Composition and coating for hydrophobic performance
US9259088B1 (en) 2014-12-19 2016-02-16 Electrolux Home Products, Inc. Shelf assembly
US9357845B1 (en) 2014-12-19 2016-06-07 Electrolux Home Products, Inc. Shelf assembly
US9388325B2 (en) 2012-06-25 2016-07-12 Ross Technology Corporation Elastomeric coatings having hydrophobic and/or oleophobic properties
US9546299B2 (en) 2011-02-21 2017-01-17 Ross Technology Corporation Superhydrophobic and oleophobic coatings with low VOC binder systems
US9914849B2 (en) 2010-03-15 2018-03-13 Ross Technology Corporation Plunger and methods of producing hydrophobic surfaces
US10317129B2 (en) 2011-10-28 2019-06-11 Schott Ag Refrigerator shelf with overflow protection system including hydrophobic layer

Citations (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US874014A (en) * 1906-01-25 1907-12-17 Morris Kurtzon Adjustable bracket.
US1035967A (en) * 1910-05-16 1912-08-20 Henry Francis Keil Bracket-clamp.
US1254094A (en) * 1916-10-16 1918-01-22 Engelbert J Vogt Adjustable bracket.
US1847486A (en) * 1928-02-10 1932-03-01 Keil Francis & Son Inc Support for shelves and the like
US1931321A (en) * 1931-07-21 1933-10-17 Keil Francis & Son Inc Shelf bracket construction
US2602620A (en) * 1950-07-14 1952-07-08 Harold A Patton Whaler holder
US3185426A (en) * 1961-05-03 1965-05-25 Bjerke Alf Johan Dismountable shelf supporting unit and bracket therefor
US3355134A (en) * 1965-10-22 1967-11-28 Chesley Ind Inc Shelf support
US3565381A (en) * 1968-10-21 1971-02-23 Earl J Oliver Bracket structure
US4250815A (en) * 1978-08-04 1981-02-17 White Consolidated Industries, Inc. Cantilevered shelf and supporting means
US4492169A (en) * 1982-04-05 1985-01-08 S.B.F. Corporation Adjustable cantilevered shelving
US4658969A (en) * 1984-03-26 1987-04-21 Mastrodicasa Arthur R Adjustable bracket assembly for supporting a shelf
US4777888A (en) * 1987-06-10 1988-10-18 United Steel & Wire Company Cantilever wall-mount shelving
US4951908A (en) * 1989-07-20 1990-08-28 James H. Kallio Shelf assembly for a closet
US5429433A (en) * 1991-03-07 1995-07-04 Donnelly Technology, Inc. Molded refrigerator shelf
US5441338A (en) * 1991-03-07 1995-08-15 Donnelly Corporation Snap-on shelf
US5454638A (en) * 1991-03-07 1995-10-03 Donnelly Technology, Inc. Adjustable refrigerator shelving
US5482168A (en) * 1993-08-25 1996-01-09 Metro Industries, Inc. Modular wall-mounted storage system
US5486046A (en) * 1994-06-24 1996-01-23 General Electric Company Cantilever slide out refrigerator shelf
US5564809A (en) * 1991-03-07 1996-10-15 Donnelly Technology, Inc. Encapsulated shelf for refrigerated compartments
US5655740A (en) * 1995-05-18 1997-08-12 Lazarus; Abraham M. Shelving support system
US5735589A (en) * 1994-04-29 1998-04-07 Donnelly Technology, Inc. Sliding refrigerator shelf assembly
US5868263A (en) * 1996-09-11 1999-02-09 Metal Masters Foodservice & Equipment Co., Inc. Wall mounted storage system
US5970887A (en) * 1997-11-13 1999-10-26 Rtc Industries, Inc. Anti-racking pull-out shelf
US6120720A (en) * 1994-09-08 2000-09-19 Gemtron Corporation Method of manufacturing a plastic edged glass shelf
US6364273B1 (en) * 2000-04-10 2002-04-02 Martin Otema Light rail for a shelf and shelf with light rail
US6672226B2 (en) * 2000-07-18 2004-01-06 Tegometall (International) Ag Bracket system for shelving
US20050011420A1 (en) * 2002-12-18 2005-01-20 Frazer Costa Adjustable closet organizer system

Patent Citations (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US874014A (en) * 1906-01-25 1907-12-17 Morris Kurtzon Adjustable bracket.
US1035967A (en) * 1910-05-16 1912-08-20 Henry Francis Keil Bracket-clamp.
US1254094A (en) * 1916-10-16 1918-01-22 Engelbert J Vogt Adjustable bracket.
US1847486A (en) * 1928-02-10 1932-03-01 Keil Francis & Son Inc Support for shelves and the like
US1931321A (en) * 1931-07-21 1933-10-17 Keil Francis & Son Inc Shelf bracket construction
US2602620A (en) * 1950-07-14 1952-07-08 Harold A Patton Whaler holder
US3185426A (en) * 1961-05-03 1965-05-25 Bjerke Alf Johan Dismountable shelf supporting unit and bracket therefor
US3355134A (en) * 1965-10-22 1967-11-28 Chesley Ind Inc Shelf support
US3565381A (en) * 1968-10-21 1971-02-23 Earl J Oliver Bracket structure
US4250815A (en) * 1978-08-04 1981-02-17 White Consolidated Industries, Inc. Cantilevered shelf and supporting means
US4492169A (en) * 1982-04-05 1985-01-08 S.B.F. Corporation Adjustable cantilevered shelving
US4658969A (en) * 1984-03-26 1987-04-21 Mastrodicasa Arthur R Adjustable bracket assembly for supporting a shelf
US4777888A (en) * 1987-06-10 1988-10-18 United Steel & Wire Company Cantilever wall-mount shelving
US4951908A (en) * 1989-07-20 1990-08-28 James H. Kallio Shelf assembly for a closet
US5564809A (en) * 1991-03-07 1996-10-15 Donnelly Technology, Inc. Encapsulated shelf for refrigerated compartments
US5441338A (en) * 1991-03-07 1995-08-15 Donnelly Corporation Snap-on shelf
US5454638A (en) * 1991-03-07 1995-10-03 Donnelly Technology, Inc. Adjustable refrigerator shelving
US5429433A (en) * 1991-03-07 1995-07-04 Donnelly Technology, Inc. Molded refrigerator shelf
US5482168A (en) * 1993-08-25 1996-01-09 Metro Industries, Inc. Modular wall-mounted storage system
US5735589A (en) * 1994-04-29 1998-04-07 Donnelly Technology, Inc. Sliding refrigerator shelf assembly
US5486046A (en) * 1994-06-24 1996-01-23 General Electric Company Cantilever slide out refrigerator shelf
US6120720A (en) * 1994-09-08 2000-09-19 Gemtron Corporation Method of manufacturing a plastic edged glass shelf
US5655740A (en) * 1995-05-18 1997-08-12 Lazarus; Abraham M. Shelving support system
US5868263A (en) * 1996-09-11 1999-02-09 Metal Masters Foodservice & Equipment Co., Inc. Wall mounted storage system
US5970887A (en) * 1997-11-13 1999-10-26 Rtc Industries, Inc. Anti-racking pull-out shelf
US6364273B1 (en) * 2000-04-10 2002-04-02 Martin Otema Light rail for a shelf and shelf with light rail
US6672226B2 (en) * 2000-07-18 2004-01-06 Tegometall (International) Ag Bracket system for shelving
US20050011420A1 (en) * 2002-12-18 2005-01-20 Frazer Costa Adjustable closet organizer system

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090283091A1 (en) * 2008-05-16 2009-11-19 Deng Eric H Y Char Broiler Grate Assembly
US8944621B2 (en) * 2008-06-04 2015-02-03 Ssw Holding Company, Inc. Shelf with LED assembly
US20110164399A1 (en) * 2008-06-04 2011-07-07 John Patrick Driver Shelf with led assembly
US9532649B2 (en) 2008-06-27 2017-01-03 Ssw Holding Company, Inc. Spill containing refrigerator shelf assembly
US10130176B2 (en) 2008-06-27 2018-11-20 Ssw Holding Company, Llc Spill containing refrigerator shelf assembly
US8286561B2 (en) 2008-06-27 2012-10-16 Ssw Holding Company, Inc. Spill containing refrigerator shelf assembly
US8596205B2 (en) 2008-06-27 2013-12-03 Ssw Holding Company, Inc. Spill containing refrigerator shelf assembly
US9179773B2 (en) 2008-06-27 2015-11-10 Ssw Holding Company, Inc. Spill containing refrigerator shelf assembly
US9207012B2 (en) 2008-06-27 2015-12-08 Ssw Holding Company, Inc. Spill containing refrigerator shelf assembly
US20100026156A1 (en) * 2008-07-30 2010-02-04 Saint-Gobain Glass France Shelf for refrigeration units
FR2934481A1 (en) * 2008-07-30 2010-02-05 Saint Gobain Shelf, particularly for refrigerated facilities.
US9067821B2 (en) 2008-10-07 2015-06-30 Ross Technology Corporation Highly durable superhydrophobic, oleophobic and anti-icing coatings and methods and compositions for their preparation
US9926478B2 (en) 2008-10-07 2018-03-27 Ross Technology Corporation Highly durable superhydrophobic, oleophobic and anti-icing coatings and methods and compositions for their preparation
US9096786B2 (en) 2008-10-07 2015-08-04 Ross Technology Corporation Spill resistant surfaces having hydrophobic and oleophobic borders
US9279073B2 (en) 2008-10-07 2016-03-08 Ross Technology Corporation Methods of making highly durable superhydrophobic, oleophobic and anti-icing coatings
US9243175B2 (en) 2008-10-07 2016-01-26 Ross Technology Corporation Spill resistant surfaces having hydrophobic and oleophobic borders
US9074778B2 (en) 2009-11-04 2015-07-07 Ssw Holding Company, Inc. Cooking appliance surfaces having spill containment pattern
US9914849B2 (en) 2010-03-15 2018-03-13 Ross Technology Corporation Plunger and methods of producing hydrophobic surfaces
US10240049B2 (en) 2011-02-21 2019-03-26 Ross Technology Corporation Superhydrophobic and oleophobic coatings with low VOC binder systems
US9546299B2 (en) 2011-02-21 2017-01-17 Ross Technology Corporation Superhydrophobic and oleophobic coatings with low VOC binder systems
US10317129B2 (en) 2011-10-28 2019-06-11 Schott Ag Refrigerator shelf with overflow protection system including hydrophobic layer
US9139744B2 (en) 2011-12-15 2015-09-22 Ross Technology Corporation Composition and coating for hydrophobic performance
US9528022B2 (en) 2011-12-15 2016-12-27 Ross Technology Corporation Composition and coating for hydrophobic performance
US9388325B2 (en) 2012-06-25 2016-07-12 Ross Technology Corporation Elastomeric coatings having hydrophobic and/or oleophobic properties
US9357845B1 (en) 2014-12-19 2016-06-07 Electrolux Home Products, Inc. Shelf assembly
US9486078B2 (en) 2014-12-19 2016-11-08 Electrolux Home Products, Inc. Shelf assembly
US9259088B1 (en) 2014-12-19 2016-02-16 Electrolux Home Products, Inc. Shelf assembly

Similar Documents

Publication Publication Date Title
US3328075A (en) Base construction for furniture and utility chair
US3080980A (en) Adjustable shelf bracket assembly
US3168365A (en) Cabinet structure with shelf attaching and supporting means
US3556306A (en) Shelf supporting structure and joint therefor
US6164467A (en) Free-standing modular slat-wall system
US2788902A (en) Attachment mechanism
US7124898B2 (en) Merchandising system
US4809479A (en) Slat wall system
US20050189310A1 (en) Merchandising system
US5352034A (en) Holding apparatus for removably connecting a drawer side wall to a pull-out rail
JP3668897B2 (en) Modular storage system with movable level storage features
US5941026A (en) Slatwall display system
US3749465A (en) Knock down cabinet and hardware for assembling the same
US5222611A (en) Wall-unit hanging system
US3351313A (en) Adjustable shelf support
US6357606B1 (en) Modular self-adjusting merchandise display system
US4508231A (en) Wall unit
US5056285A (en) Partition wall, particularly for offices
US6000497A (en) Detachable tray for step stool
US4021973A (en) Partition system
US5454638A (en) Adjustable refrigerator shelving
US5412912A (en) Modular slatwall assembly
US20040011754A1 (en) Telescoping shelf divider
US20050127805A1 (en) Refrigerator compartment housing vertically adjustable shelves, each formed from a piece of tempered glass to which is injection molded a frame in the form of front and rear border members
US7108103B2 (en) Rigidified step ladder

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION