US20070022979A1 - Coolant pump for internal combustion engine - Google Patents

Coolant pump for internal combustion engine Download PDF

Info

Publication number
US20070022979A1
US20070022979A1 US11/194,382 US19438205A US2007022979A1 US 20070022979 A1 US20070022979 A1 US 20070022979A1 US 19438205 A US19438205 A US 19438205A US 2007022979 A1 US2007022979 A1 US 2007022979A1
Authority
US
United States
Prior art keywords
clutch
coolant
impeller
engine
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/194,382
Other languages
English (en)
Inventor
Mircea Gradu
Timothy Schlernitzauer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Timken Co
Original Assignee
Timken Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Timken Co filed Critical Timken Co
Priority to US11/194,382 priority Critical patent/US20070022979A1/en
Assigned to TIMKEN COMPANY, THE reassignment TIMKEN COMPANY, THE ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GRADU, MIRCEA, SCHLERNITZAUER, TIMOTHY
Priority to JP2008525032A priority patent/JP2009503364A/ja
Priority to KR1020087002804A priority patent/KR20080038326A/ko
Priority to CNA2006800282552A priority patent/CN101233338A/zh
Priority to EP06788605A priority patent/EP1910695A1/en
Priority to PCT/US2006/029101 priority patent/WO2007016194A1/en
Publication of US20070022979A1 publication Critical patent/US20070022979A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/164Controlling of coolant flow the coolant being liquid by thermostatic control by varying pump speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P5/00Pumping cooling-air or liquid coolants
    • F01P5/10Pumping liquid coolant; Arrangements of coolant pumps
    • F01P5/12Pump-driving arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/021Units comprising pumps and their driving means containing a coupling
    • F04D13/022Units comprising pumps and their driving means containing a coupling a coupling allowing slip, e.g. torque converter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/021Units comprising pumps and their driving means containing a coupling
    • F04D13/024Units comprising pumps and their driving means containing a coupling a magnetic coupling
    • F04D13/027Details of the magnetic circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D37/00Clutches in which the drive is transmitted through a medium consisting of small particles, e.g. centrifugally speed-responsive
    • F16D37/02Clutches in which the drive is transmitted through a medium consisting of small particles, e.g. centrifugally speed-responsive the particles being magnetisable
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P5/00Pumping cooling-air or liquid coolants
    • F01P5/02Pumping cooling-air; Arrangements of cooling-air pumps, e.g. fans or blowers
    • F01P5/04Pump-driving arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D37/00Clutches in which the drive is transmitted through a medium consisting of small particles, e.g. centrifugally speed-responsive
    • F16D2037/002Clutches in which the drive is transmitted through a medium consisting of small particles, e.g. centrifugally speed-responsive characterised by a single substantially axial gap in which the fluid or medium consisting of small particles is arranged

Definitions

  • This invention relates in general to pumps, and more particularly to a coolant pump for an internal combustion engine, to an engine equipped with such a pump, and to a method of dissipating heat from such an engine.
  • coolant passageways surround the cylinders of the engine and a water pump, driven by the engine itself, circulates the coolant through the passageways.
  • the water pump also circulates the coolant through a radiator where the heat is transferred to air passing through the radiator.
  • the water pump for this type of engine may also circulate the coolant through an additional heat exchanger in the form of a heater that supplies heat to the passenger compartment.
  • a thermostat restricts the flow of coolant to the radiator to maintain the temperature of the coolant in the coolant passageways generally uniform, once that coolant reaches a prescribed operating temperature.
  • the water pump being coupled directly to the crankshaft of the engine, operates at a speed that correlates at a fixed ratio to the speed of the crankshaft. If the speed of the crankshaft increases, so does the speed of the water pump. But that often does not produce optimal cooling for the engine or best supply coolant to either the radiator or the heater. For example, when an automobile engine operates at highway speeds for extended time and then is brought to idle at a stop, or to lower speeds in city driving, the flow of coolant may not be sufficient enough to dissipate the residual heat remaining from the high-speed operation. The engine should receive a greater flow of coolant. Also, at start up the engine may not circulate enough coolant through the heater.
  • FIG. 1 is a schematic view of an internal combustion engine equipped with a coolant pump constructed in accordance with and embodying the present invention
  • FIG. 2 is a sectional view of the pump
  • FIG. 3 is a perspective view, partially broken away and in section, of the pump.
  • an internal combustion engine 2 includes ( FIG. 1 ) a block 4 that contains cylinders 6 in which pistons 8 reciprocate, and the pistons 8 rotate a crankshaft 10 from which power is delivered from the engine 2 .
  • Fuel burns in the cylinders 6 beneath a head 10 to produce that power, but the combustion also produces excess heat, which must be dissipated to protect the engine from destruction.
  • the block 4 and the head 10 contain coolant passageways 14 through which a liquid coolant, such as a mixture of water and ethylene glycol, flows.
  • the engine 2 itself powers a coolant pump 16 which circulates the coolant through the passageways 14 to extract the excess heat produced in the cylinders 6 .
  • the power to operate the coolant pump 16 derives from the crankshaft 6 , which is equipped with a pulley 18 over which a belt 20 is trained.
  • the belt 20 delivers power to the coolant pump 16 and other accessories as well.
  • the coolant pump 16 and coolant passageways 14 lie in a coolant circuit that beyond the engine 2 also includes at least a primary heat exchanger that typically takes the form of a radiator 22 through which air flows to extract heat from the coolant in passing through the radiator 22 .
  • the circuit also includes a secondary heat exchanger in the form of a heater 24 designed to heat the passenger compartment of an automotive vehicle.
  • the inlet to the heater 24 communicates with one of the coolant passageways 14 downstream from the cylinders 6 , so that coolant flows into the heater 24 at an elevated temperature.
  • the heater 24 is provided with a valve 26 to control the rate of the flow of coolant through it.
  • the heater 24 discharges the coolant back into a coolant passageway 14 at the location where that passageway 14 discharges the coolant to the radiator 22 .
  • the passageway 14 contains a thermostat 28 , which has the capacity to restrict the flow of coolant, so that the temperature of the coolant within the passageways 14 and the heater 24 remains generally uniform once the engine 2 reaches its operating temperature.
  • the coolant pump 16 includes ( FIGS. 2 & 3 ) a housing 30 , an impeller 32 that rotates within the housing 30 about an axis X, a pulley 34 over which the belt 20 is trained, and a clutch 36 interposed between the impeller 32 and the pulley 34 .
  • the clutch 36 controls the angular velocity at which the impeller 32 rotates, so that the impeller 32 to a measure operates independently of the crankshaft 10 . At least the ratio between the velocity of the impeller 32 and the velocity of the crankshaft 10 is variable.
  • the clutch 36 is a magnetic particle clutch.
  • the housing 30 provides a cavity 40 that opens into a coolant passageway 14 at one end of the engine block 4 and as a consequence the cavity 40 forms part of the coolant circuit.
  • the end of the housing 30 is open and provided with a flange 42 along which it is secured to the block 4 .
  • the other end of the housing 70 is for the most part closed by an end wall 44 provided with an axially directed bearing mount 46 through which a portion of the impeller 32 projects.
  • the axially directed mount 46 contains sealed antifriction bearings 48 .
  • the housing 30 also includes an inlet 50 that opens into the cavity 40 near the end wall 44 .
  • the impeller 32 includes a shaft 52 that rotates in the bearings 48 of the housing 30 about an the axis X and extends both into the cavity 40 and in the other direction away from the cavity 40 .
  • the impeller 32 is fitted with vanes 54 that radiate from the axis X.
  • vanes 54 draw coolant from the inlet 50 and force it into the coolant passageways 14 of the block 4 and head 12 . That coolant after being heated also flows into the heater 24 unless restricted by the valve 26 .
  • the magnetic particle clutch 36 includes an inner clutch element 60 and an outer clutch element 62 which are organized concentrically about the axis X. In addition it has an electromagnet 64 that is carried by the outer clutch element 62 and a connector assembly 66 for connecting the electromagnet 64 to a source of electrical energy.
  • the inner clutch element 60 is coupled to and rotates with the shaft 52 of the impeller 32 . To this end, it has a sleeve 70 that fits over the impeller shaft 52 , to which it is coupled with a spline or key so that the two will always rotate at the same angular velocity.
  • the inner element 60 also has a rim 72 provided with a cylindrical surface that is presented outwardly away from the axis X. The sleeve 70 and the rim 72 are joined together by a web 76 that is considerably narrower than both.
  • the outer clutch element 62 encloses the inner clutch element 60 , yet is capable of rotating relative to the inner clutch element 60 . To this end, it has two sections 80 which fit along each side of the web 76 for the inner element 60 , and they provide a hub 82 which encircles the sleeve 70 of the inner element 60 . Between the hub 62 and sleeve 70 are antifriction bearings 84 that enable the outer element 62 to rotate relative to the inner element 60 , with the axis X being the axis of rotation. The two bearings 84 are isolated from exterior contaminants by seals that likewise fit between the sleeve 70 and hub 82 .
  • the sections 80 of the outer element 62 also extend over the rim 72 of the inner element 60 where they provide a cylindrical surface that is presented inwardly toward the axis X and toward the cylindrical surface on the rim 72 of the inner element 60 . Between the two cylindrical surfaces is a gap g of uniform thickness. It contains magnetic particles, that is to say, particles that are capable of being magnetized in the magnetic field and when magnetized are capable of transferring torque from the outer clutch element 62 to the inner clutch element 60 . That field is produced by the electromagnet 64 , which is captured in the outer element 62 slightly outwardly from the cylindrical interior surface. Thus, the magnetic particles constitute a torque-transfer substance.
  • the connector assembly 66 lies between the housing 30 and the two elements 60 and 62 of the clutch 35 . It includes a stationary connector 90 which is attached to the end wall 44 of the housing 30 and is formed from a dielectric substance.
  • the connector 90 carries an inner and outer slip rings 92 , which are formed from an electrically conductive material.
  • the connector assembly 66 includes a rotating connector 94 which is likewise formed from a dielectric substance. It carries inner and outer brushes 96 which are formed from an electrically conductive material and are biased by springs against the inner and outer slip rings 92 , respectively, on the stationary connector 90 .
  • the two connectors 92 and 94 create a labyrinth that excludes contaminants from the slip rings 92 and brushes 94 .
  • the electromagnet 64 is in effect an annular coil having two leads, one attached to the inner brush 96 and the other to the outer brush 96 .
  • the slip rings 92 of the stationary connector 90 are connected across a source of electrical energy, such as the storage battery of an automotive vehicle, there being a control module interposed between the slip rings 92 and the energy source to control the electrical potential impressed across the electromagnet 64 and hence the current that flows through the magnet 64 .
  • the control monitors and responds to several operating conditions of the engine 2 , including the temperature of the coolant in the coolant passageways 14 of the engine block 4 , and also the speed of impeller 32 through a speed sensor which may be mounted on the housing 30 .
  • the magnetic particles in the gap g between the of two clutch elements 60 and 62 transfer torque from the outer section 62 to the inner section 60 , but only when the electromagnet 64 is energized. Moreover, when the electromagnet 64 is energized and the transfer of torque occurs, the velocity of the inner section 60 relative to the outer section 62 depends on the magnitude of the current passing through the magnet 64 which in turn depends on the magnitude of the electrical potential impressed across it. In any event, the electromagnet 64 creates a magnetic field in the gap g, and the strength of that field determines the relative speed between the inner and outer clutch elements 60 and 62 .
  • the pulley 34 of the coolant pump 16 serves as a drive member for the pump 16 . It encircles the outer element 62 of the magnetic particle clutch 36 and is coupled to the outer section 62 through machine screws 98 , so that the pulley 36 and outer section 62 rotate together always at the same angular velocity.
  • the belt 20 passes over the pulley 18 on the crankshaft 10 and the pulley 34 of the clutch 36 so that the crankshaft 10 drives the outer element 62 of the clutch 36 such that a fixed ratio exists between the velocities of the two.
  • the ratio between the crankshaft pulley 18 and the pump pulley 36 are such that the pump pulley 36 will rotate at a higher velocity than the pulleys on conventional pumps for internal combustion engines.
  • the increased velocity is modulated by the magnetic particle clutch 36 so that the impeller 32 of the pump 16 may not—and indeed often does not—operate at the velocity of the pulley 34 .
  • a reserve for increased velocity of the impeller 32 is available. Some operating conditions may require that the reserve be called upon.
  • the control module for the pump 16 will sense an elevation in the temperature of the coolant in the passageways 14 and will direct enough current through the electromagnet 64 of the clutch 36 to rotate the impeller 32 at a velocity great enough to circulate the coolant at a rate that prevents the engine 2 from overheating.
  • This capability is particularly useful if the engine 2 is brought to idle after an extended period of operation at high power output.
  • the reserve velocity can circulate the coolant, even as it heats, through the heater 24 to bring warmer coolant to the heater 24 and thereby hasten the time required to heat the passenger compartment.
  • the drive element represented by the pulley 34 of the pump 16 may be part of a gear train or a sprocket for a chain drive.
  • the housing 30 of the pump 16 may be cast in part into the block 4 of the engine 2 .
  • the electromagnet 64 of the clutch 36 may be carried by the inner clutch element 60 or it may be located externally of both clutch elements 60 and 62 , yet close enough to enable the magnetic field produced by it to pass through the gap g between the clutch elements 60 and 62 .
  • a magnetorheological clutch may be substituted for the magnetic particle clutch 36 . This type of clutch utilizes a magnetorheological fluid as its torque-transfer substance.
  • the viscosity of the fluid may be altered with a magnetic filed—the stronger the field greater the viscosity.
  • the clutch includes an electromagnet for producing the magnetic fluid that controls the viscosity of the fluid in the clutch. Also, in the event the engine 2 is used for marine applications, a body of water may serve as the primary heat exchanger and the water itself as the coolant.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
US11/194,382 2005-08-01 2005-08-01 Coolant pump for internal combustion engine Abandoned US20070022979A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US11/194,382 US20070022979A1 (en) 2005-08-01 2005-08-01 Coolant pump for internal combustion engine
JP2008525032A JP2009503364A (ja) 2005-08-01 2006-07-26 内燃機関用冷却剤ポンプ
KR1020087002804A KR20080038326A (ko) 2005-08-01 2006-07-26 내연기관용 냉각펌프
CNA2006800282552A CN101233338A (zh) 2005-08-01 2006-07-26 用于内燃机的冷却剂泵
EP06788605A EP1910695A1 (en) 2005-08-01 2006-07-26 Coolant pump for internal combustion engine
PCT/US2006/029101 WO2007016194A1 (en) 2005-08-01 2006-07-26 Coolant pump for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/194,382 US20070022979A1 (en) 2005-08-01 2005-08-01 Coolant pump for internal combustion engine

Publications (1)

Publication Number Publication Date
US20070022979A1 true US20070022979A1 (en) 2007-02-01

Family

ID=37402708

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/194,382 Abandoned US20070022979A1 (en) 2005-08-01 2005-08-01 Coolant pump for internal combustion engine

Country Status (6)

Country Link
US (1) US20070022979A1 (zh)
EP (1) EP1910695A1 (zh)
JP (1) JP2009503364A (zh)
KR (1) KR20080038326A (zh)
CN (1) CN101233338A (zh)
WO (1) WO2007016194A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080222799A1 (en) * 2007-03-17 2008-09-18 Robert William Stimpson Pumped shower draining device
WO2009129050A2 (en) * 2008-04-17 2009-10-22 Borgwarner Inc. Coolant pump
US20110048390A1 (en) * 2009-09-03 2011-03-03 Gm Global Technology Operations, Inc. Switchable water pump control systems and methods
US9464635B2 (en) 2011-03-24 2016-10-11 Pierburg Pump Technology Gmbh Mechanical coolant pump
US9976606B2 (en) 2012-08-23 2018-05-22 Pierburg Pump Technology Gmbh Mechanical combustion-engine-driven fluid pump
US10024322B2 (en) 2012-08-23 2018-07-17 Pierburg Pump Technology Gmbh Mechanical combustion-engine-driven fluid pump with a magneto-rheological multi-disk clutch
CN108331762A (zh) * 2018-03-12 2018-07-27 兰州理工大学 一种基于电磁活塞径向驱动的一体式轴流泵
US20180258832A1 (en) * 2015-08-20 2018-09-13 Pierburg Pump Technology Gmbh Mechanical switchable automotive coolant pump

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008046424A1 (de) * 2008-09-09 2010-03-11 Schaeffler Kg Regelbare Kühlmittelpumpe
US8430071B2 (en) 2009-07-10 2013-04-30 GM Global Technology Operations LLC Engine cooling system for a vehicle
GB2471891B (en) * 2009-07-17 2015-10-28 Gm Global Tech Operations Inc Assembly of a clutch and a water pump
EP2476914B1 (de) * 2011-01-13 2017-08-02 Pierburg Pump Technology GmbH Elektrische Kfz-Kühlmittelpumpe
DE102011077029A1 (de) * 2011-06-07 2012-12-13 Schaeffler Technologies AG & Co. KG Stufenlos regelbare Kühlmittelpumpe
DE102011079310A1 (de) * 2011-07-18 2013-01-24 Schaeffler Technologies AG & Co. KG Kühlmittelpumpe für einen Kühlmittelkreislauf einer Brennkraftmaschine
CN102562255B (zh) * 2012-01-16 2015-01-07 宁波市鄞州德来特技术有限公司 一种发动机及其冷却系统
CN102966423B (zh) * 2012-10-25 2015-02-04 浙江吉利汽车研究院有限公司杭州分公司 汽车发动机的水泵系统及其控制方法
CN105896224A (zh) * 2015-01-22 2016-08-24 贵州航空发动机研究所 一种引电器的高速刷环冷却装置
CN105065293A (zh) * 2015-08-21 2015-11-18 苏州睿昕汽车配件有限公司 一种用于发动机的磁流体电动水泵及其控制方法
CN106090066B (zh) * 2016-08-23 2018-06-05 莱顿汽车部件(苏州)有限公司 一种无级变速调节的磁流变离合器、调节方法及水泵

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6561141B2 (en) * 2001-01-19 2003-05-13 Borg Warner, Inc. Water-cooled magnetorheological fluid controlled combination fan drive and water pump
US6668766B1 (en) * 2002-07-22 2003-12-30 Visteon Global Technologies, Inc. Vehicle engine cooling system with variable speed water pump

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB905002A (en) * 1959-08-21 1962-09-05 Smith & Sons Ltd S Improvements in or relating to cooling systems for internal combustion engines
US6581739B1 (en) * 2000-10-31 2003-06-24 Eaton Corporation Lightweight magnetic particle device
EP1353051B1 (en) * 2002-04-08 2007-07-18 Baruffaldi S.p.A. Device for controlling the actuating shaft of means for recirculating a cooling fluid in vehicle engines
DE10332947A1 (de) * 2003-07-19 2005-02-03 Daimlerchrysler Ag Brennkraftmaschine für ein Kraftfahrzeug

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6561141B2 (en) * 2001-01-19 2003-05-13 Borg Warner, Inc. Water-cooled magnetorheological fluid controlled combination fan drive and water pump
US6668766B1 (en) * 2002-07-22 2003-12-30 Visteon Global Technologies, Inc. Vehicle engine cooling system with variable speed water pump

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080222799A1 (en) * 2007-03-17 2008-09-18 Robert William Stimpson Pumped shower draining device
EP1975328A1 (en) * 2007-03-17 2008-10-01 DLP Limited Pumped shower draining device
US7937785B2 (en) 2007-03-17 2011-05-10 Dlp Limited Pumped shower draining device
WO2009129050A3 (en) * 2008-04-17 2009-12-17 Borgwarner Inc. Coolant pump
CN102007302A (zh) * 2008-04-17 2011-04-06 博格华纳公司 冷却剂泵
WO2009129050A2 (en) * 2008-04-17 2009-10-22 Borgwarner Inc. Coolant pump
US20110048390A1 (en) * 2009-09-03 2011-03-03 Gm Global Technology Operations, Inc. Switchable water pump control systems and methods
US9097172B2 (en) 2009-09-03 2015-08-04 GM Global Technology Operations LLC Switchable water pump control systems and methods
US9464635B2 (en) 2011-03-24 2016-10-11 Pierburg Pump Technology Gmbh Mechanical coolant pump
US9976606B2 (en) 2012-08-23 2018-05-22 Pierburg Pump Technology Gmbh Mechanical combustion-engine-driven fluid pump
US10024322B2 (en) 2012-08-23 2018-07-17 Pierburg Pump Technology Gmbh Mechanical combustion-engine-driven fluid pump with a magneto-rheological multi-disk clutch
US20180258832A1 (en) * 2015-08-20 2018-09-13 Pierburg Pump Technology Gmbh Mechanical switchable automotive coolant pump
CN108331762A (zh) * 2018-03-12 2018-07-27 兰州理工大学 一种基于电磁活塞径向驱动的一体式轴流泵

Also Published As

Publication number Publication date
EP1910695A1 (en) 2008-04-16
JP2009503364A (ja) 2009-01-29
CN101233338A (zh) 2008-07-30
WO2007016194A1 (en) 2007-02-08
KR20080038326A (ko) 2008-05-06

Similar Documents

Publication Publication Date Title
US20070022979A1 (en) Coolant pump for internal combustion engine
US5573184A (en) Heating device for motor vehicles
US6644933B2 (en) Water pump with electronically controlled viscous coupling drive
JPH11329691A (ja) マグネット式ヒーター
EP1227226B1 (en) Water-cooled remote fan drive
EP1211398B1 (en) Water pump driven by viscous coupling
JP4332873B2 (ja) マグネット式ファンクラッチ・ヒーター装置
US7380728B2 (en) Heating device for motor vehicles
GB2391048A (en) An engine coolant pump having a clutch in a pumping chamber
US6408621B1 (en) Fluid coupling assembly
JP4017266B2 (ja) マグネット式ヒーター
JPH11139148A (ja) 熱発生器
US5899173A (en) Viscous fluid heater
US20220213833A1 (en) Hybrid pump apparatus
JPH11245653A (ja) 熱発生器
KR20010066496A (ko) 자동차의 워터 펌프
JP4433548B2 (ja) 回転数可変継手
JPH11291748A (ja) 熱発生器
KR100411040B1 (ko) 차량용 워터 펌프
JP2000227025A (ja) エンジン冷却水の温度制御装置
US6227452B1 (en) Combined assembly for a power steering pump and a viscous heater
KR100254976B1 (ko) 자동차용 냉각팬
JPH1191344A (ja) ウォータポンプ一体型剪断発熱器
JP2000272331A (ja) マグネット式ヒーター
JP3988904B2 (ja) マグネット式ヒーター

Legal Events

Date Code Title Description
AS Assignment

Owner name: TIMKEN COMPANY, THE, OHIO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GRADU, MIRCEA;SCHLERNITZAUER, TIMOTHY;REEL/FRAME:016832/0188

Effective date: 20050715

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION