US20070004227A1 - Semiconductor processing methods - Google Patents
Semiconductor processing methods Download PDFInfo
- Publication number
- US20070004227A1 US20070004227A1 US11/517,742 US51774206A US2007004227A1 US 20070004227 A1 US20070004227 A1 US 20070004227A1 US 51774206 A US51774206 A US 51774206A US 2007004227 A1 US2007004227 A1 US 2007004227A1
- Authority
- US
- United States
- Prior art keywords
- exposed
- portions
- layer
- unexposed portions
- unexposed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 17
- 238000003672 processing method Methods 0.000 title claims abstract description 10
- 239000000463 material Substances 0.000 claims abstract description 60
- 239000000758 substrate Substances 0.000 claims abstract description 23
- 230000000704 physical effect Effects 0.000 claims abstract description 11
- 238000000034 method Methods 0.000 claims description 23
- 229910007156 Si(OH)4 Inorganic materials 0.000 claims description 7
- 238000005520 cutting process Methods 0.000 claims description 7
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 4
- 229910052710 silicon Inorganic materials 0.000 claims description 4
- 239000010703 silicon Substances 0.000 claims description 4
- 238000000151 deposition Methods 0.000 claims description 3
- 238000010894 electron beam technology Methods 0.000 claims description 2
- 125000001183 hydrocarbyl group Chemical group 0.000 claims description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims 2
- 229910052760 oxygen Inorganic materials 0.000 claims 2
- 239000001301 oxygen Substances 0.000 claims 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims 1
- 229910052799 carbon Inorganic materials 0.000 claims 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 abstract description 12
- 229910020411 SiO2-x Inorganic materials 0.000 abstract description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 22
- 229920002120 photoresistant polymer Polymers 0.000 description 18
- 238000012545 processing Methods 0.000 description 12
- 239000012634 fragment Substances 0.000 description 11
- 239000000377 silicon dioxide Substances 0.000 description 10
- AIPVRBGBHQDAPX-UHFFFAOYSA-N hydroxy(methyl)silane Chemical compound C[SiH2]O AIPVRBGBHQDAPX-UHFFFAOYSA-N 0.000 description 8
- SCPYDCQAZCOKTP-UHFFFAOYSA-N silanol Chemical compound [SiH3]O SCPYDCQAZCOKTP-UHFFFAOYSA-N 0.000 description 8
- 235000012239 silicon dioxide Nutrition 0.000 description 8
- WDCKRYQAVLUEDJ-UHFFFAOYSA-N methyl(oxo)silicon Chemical compound C[Si]=O WDCKRYQAVLUEDJ-UHFFFAOYSA-N 0.000 description 7
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 6
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 230000005855 radiation Effects 0.000 description 4
- 239000007788 liquid Substances 0.000 description 3
- 230000000873 masking effect Effects 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 206010073306 Exposure to radiation Diseases 0.000 description 2
- 238000000429 assembly Methods 0.000 description 2
- 230000000712 assembly Effects 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 229910052681 coesite Inorganic materials 0.000 description 2
- 229910052906 cristobalite Inorganic materials 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical class [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 229910052682 stishovite Inorganic materials 0.000 description 2
- 229910052905 tridymite Inorganic materials 0.000 description 2
- 229910018557 Si O Inorganic materials 0.000 description 1
- 229910007217 Si(OH)x Inorganic materials 0.000 description 1
- 150000001721 carbon Chemical class 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229910000078 germane Inorganic materials 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- UIUXUFNYAYAMOE-UHFFFAOYSA-N methylsilane Chemical compound [SiH3]C UIUXUFNYAYAMOE-UHFFFAOYSA-N 0.000 description 1
- NCWQJOGVLLNWEO-UHFFFAOYSA-N methylsilicon Chemical compound [Si]C NCWQJOGVLLNWEO-UHFFFAOYSA-N 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 125000000962 organic group Chemical group 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/77—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
- H01L21/78—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02112—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
- H01L21/02123—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
- H01L21/02126—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02112—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
- H01L21/02123—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
- H01L21/02164—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02225—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
- H01L21/0226—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
- H01L21/02263—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
- H01L21/02271—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02296—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
- H01L21/02318—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
- H01L21/02345—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to radiation, e.g. visible light
- H01L21/02348—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to radiation, e.g. visible light treatment by exposure to UV light
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/314—Inorganic layers
- H01L21/316—Inorganic layers composed of oxides or glassy oxides or oxide based glass
- H01L21/31604—Deposition from a gas or vapour
- H01L21/31608—Deposition of SiO2
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/314—Inorganic layers
- H01L21/316—Inorganic layers composed of oxides or glassy oxides or oxide based glass
- H01L21/31604—Deposition from a gas or vapour
- H01L21/31633—Deposition of carbon doped silicon oxide, e.g. SiOC
Definitions
- the invention pertains to semiconductor processing methods, and particularly pertains to methods of removing some portions of a layer from over a semiconductive substrate, while leaving other portions of the layer remaining over the substrate.
- An exemplary prior art method for forming small structures from a layer of material is as follows. First, the layer of material is provided over a semiconductive substrate. Subsequently, a layer of photoresist is provided over the layer of material. A photolithographic mask is then provided over the layer of photoresist and light is shined through the mask to expose portions of the layer of photoresist while leaving other portions unexposed.
- the photoresist typically comprises an unsaturated organic material, such as, for example, a material comprising one or more unsaturated carbon-containing rings. The exposed portions are rendered either more or less soluble in a solvent relative to the unexposed portions.
- the resist is referred to as a positive photoresist (as a positive image of a pattern from the photolithographic mask is transferred to the photoresist), and if the exposed portions are rendered less soluble, the photoresist is referred to as a negative photoresist (as a negative image of the pattern from the photolithographic mask is transferred to the photoresist).
- the photoresist is exposed to a solvent and either the exposed or unexposed portions are removed while leaving the other of the exposed or unexposed portions remaining over the layer of material.
- Such patterns the photoresist into a patterned mask overlaying the layer of material.
- the layer of material is then exposed to conditions which transfer a pattern from the patterned mask to the layer of material (i.e., which removes portions of the layer of material not covered by photoresist, while leaving the portions of the layer material that are covered by photoresist). Subsequently, the photoresist is removed and the substrate having the patterned layer of material thereon is subjected to subsequent processing steps to form an integrated circuit over the substrate.
- the semiconductive substrate referred to above is in the form of a wafer and a plurality of semiconductor packages (i.e., individual integrated circuits) are simultaneously formed over the wafer.
- the wafer is subjected to a die-cutting process to separate the individual integrated circuits from one another.
- photoresist is entirely removed from a wafer prior to subjecting the wafer to a die-cutting process.
- the photoresist is not a material suitable for incorporation into semiconductor circuits. It would be desirable to develop alternative methods for patterning structures during semiconductor circuit fabrication processes.
- FlowfillTM Technology which has been developed by Trikon Technology of Bristol, U.K.
- the process can be utilized for forming either silicon dioxide or methylsilicon oxide ((CH 3 ) x SiO 2-x ), for example.
- the process for forming silicon dioxide is as follows. First, SiH 4 and H 2 O 2 are separately introduced into a chemical vapor deposition (CVD) chamber, such as a parallel plate reaction chamber. The reaction rate between SiH 4 and H 2 O 2 can be moderated by the introduction of nitrogen into the reaction chamber.
- CVD chemical vapor deposition
- a semiconductive wafer is provided within the chamber, and ideally maintained at a suitably low temperature, such, as 0° C., at an exemplary pressure of 1 Torr to achieve formation of a silanol-type structure of the formula Si(OH) x , which is predominantly Si(OH) 4 .
- the Si(OH) 4 condenses onto the wafer surface. Although the reaction occurs in the gas phase, the deposited Si(OH) 4 is in the form of a viscous liquid which flows to fill small gaps on the wafer surface. In applications where deposition thickness increases, surface tension drives the deposited layer flat, thus forming a planarized layer over the substrate.
- the liquid Si(OH) 4 is typically converted to a silicon dioxide structure by a two-step process.
- planarization of the liquid film is promoted by increasing the temperature to above 100° C., while maintaining the pressure of about 1 Torr, to result in solidification and formation of a polymer layer.
- the temperature is raised to above 400° C., while maintaining the pressure of greater than 1 Torr, to form SiO 2 .
- the processing above 400° C. also provides the advantage of driving undesired water from the resultant SiO 2 layer.
- methylsilicon oxide is accomplished similarly to that described above for forming silicon dioxide, with the exception that methylsilane ((CH 3 ) x SiH 4-z , wherein z is at least 1 and no greater than 4) is combined with the hydrogen peroxide to produce a methylsilanol, instead of combining the silane (SiH 4 ) with the hydrogen peroxide to form silanol.
- the invention encompasses a semiconductor processing method wherein a layer of material is formed over a semiconductive wafer substrate. Some portions of the layer are exposed to energy while other portions are not exposed. The exposure to energy alters physical properties of the exposed portions relative to the unexposed portions. After the portions are exposed, the exposed and unexposed portions of the layer are subjected to common conditions. The common conditions are effective to remove the material and comprise a rate of removal that is influenced by the altered physical properties of the layer. The common conditions remove either the exposed or unexposed portions faster than the other of the exposed and unexposed portions. After the selective removal of the exposed or unexposed portions, and while the other of the exposed and unexposed portions remains over the substrate, the wafer is cut into separated die.
- the invention encompasses another semiconductor processing method.
- a layer of (CH 3 ) y Si(OH) 4-y is formed over a substrate, wherein y is greater than 0 and less than 4. Some portions of the layer are exposed to ultraviolet light while other portions are not exposed. The exposure to ultraviolet light converts the exposed portions to (CH 3 ) x SiO 2-x , wherein x is greater than 0 and less than 2.
- the exposed and unexposed portions of the layer are subjected to hydrofluoric acid to selectively remove the (CH 3 ) y Si(OH) 4-y of the unexposed portions relative to the (CH 3 ) x SiO 2-x of the exposed portions.
- FIG. 1 is a fragmentary, diagrammatic, cross-sectional view of a semiconductive wafer fragment at a first step of a processing method in accordance with the present invention.
- FIG. 2 is a view of the FIG. 1 wafer fragment at a step subsequent to that of FIG. 1 .
- FIG. 3 is a view of the FIG. 1 wafer fragment at a step subsequent to that of FIG. 2 in accordance with a first embodiment processing method of the present invention.
- FIG. 4 is a view of the FIG. 1 wafer fragment at a processing step subsequent to that of FIG. 3 .
- FIG. 5 is a view of the FIG. 1 wafer fragment shown at a step is subsequent to that of FIG. 2 , and in accordance with a second embodiment processing sequence of the present invention.
- FIG. 6 is a view of the FIG. 1 wafer fragment at a processing step subsequent to that of FIG. 5 .
- FIG. 7 is a top view of a semiconductive wafer, such as the wafer incorporating the fragment of FIG. 1 , shown prior to subjecting the wafer to a die-cutting process.
- FIG. 8 is a top view of portions of the FIG. 7 semiconductive wafer shown after the wafer is subjected to a die-cutting process.
- the invention encompasses methods for utilizing energy to form patterned masking materials on a wafer.
- the patterned masking materials are retained on a wafer after a die-cutting process.
- the patterned masking materials comprise silicon. The invention is described with reference to a preferred embodiment in FIGS. 1-8 .
- Wafer fragment 10 comprises a semiconductive substrate 12 .
- Substrate 12 can comprise, for example, monocrystalline silicon lightly doped with a p-type conductivity enhancing dopant.
- semiconductive substrate is defined to mean any construction comprising semiconductive material, including, but not limited to, bulk semiconductive materials such as a semiconductive wafer (either alone or in assemblies comprising other materials thereon), and semiconductive material layers (either alone or in assemblies comprising other materials).
- substrate refers to any supporting structure, including, but not limited to, the semiconductive substrates described above.
- a first layer of material 14 is formed over substrate 12
- a second layer of material 16 is formed over first layer 14 .
- the material of first layer 14 can be either a conductive material or an insulative material, and is not particularly germane to the present invention.
- the material of second layer 16 has physical properties which can be altered by exposure to energy.
- the material of second layer 16 can comprise, for example, methylsilanol ((CH 3 ) y Si(OH) 4-y ) or silanol (Si(OH) 4 , either of which can be formed by methods described above in the “Background” section of this disclosure. Both methylsilanol and silanol have physical properties which can be altered by exposure to, for example, electron beam energy, ultraviolet light or plasma.
- portions of either silanol or methylsilanol are exposed to ultraviolet light, such portions will have a higher etch rate in hydrofluoric acid than will portions not exposed to the ultraviolet light.
- the exposure of methylsilanol to ultraviolet light converts it to the insulative material (CH 3 ) x SiO 2-x , and exposure of silanol to ultraviolet light converts it silicon dioxide.
- an energy source 18 is provided over wafer fragment 10 , and a patterned photolithographic mask 20 is provided between source 18 and second layer 16 .
- Mask 20 comprises orifices 22 extending therethrough.
- energy 24 is emitted from source 18 and toward mask 20 .
- the energy is shown as light waves which can comprise, for example, wavelengths corresponding to ultraviolet light.
- Mask 20 blocks some of the light waves, while other light waves penetrate through orifices 22 to reach layer 16 .
- Layer 16 is thus divided into portions 30 which are exposed to the radiation from source 18 and portions 32 which are shielded by mask 20 and not exposed to radiation 24 .
- the exposure of layer 16 to radiation 24 alters physical properties of the material of layer 16 within exposed regions 30 relative to physical properties of the material in unexposed portions 32 .
- the exposed portions 30 and unexposed portions 32 of layer 16 are exposed to common conditions which are effective to remove the material of layer 16 .
- the common conditions comprise a rate of removal of the material of layer 16 that is influenced by physical properties altered by exposure to radiation 24 . Accordingly, exposed portions 30 are removed at a different rate than unexposed portions 32 .
- FIGS. 3 and 4 illustrate an embodiment wherein exposed portions 30 are removed at a slower rate than unexposed portions 32
- FIGS. 5 and 6 illustrate an embodiment wherein the exposed portions are removed at a faster rate than the unexposed portions.
- substrate 10 is illustrated after exposure to conditions which remove exposed portions 32 ( FIG. 2 ) more rapidly than unexposed portions 30 , to leave only unexposed portions 30 remaining over first material 14 .
- the material of layer 16 can comprise either methylsilanol or silanol
- the radiation 24 ( FIG. 2 ) can comprise ultraviolet light
- the common conditions can comprise exposure to hydrofluoric acid. The ultraviolet light converts exposed material of layer 16 to either methylsilicon dioxide or silicon dioxide, and thus renders such exposed portions more resistant to hydrofluoric acid removal than unexposed portions comprising either methylsilanol or silanol.
- a first material is “selectively removed” relative to another material if the first material is removed at a rate that is at least 3 times faster than a rate at which the other material is removed.
- a pattern is transferred from exposed portions 30 to underlying layer 14 .
- portions of layer 14 are removed by an etch.
- the conditions of the etch will vary depending on the material of layer 14 , and can comprise conventional methods which will be recognized by persons of ordinary skill in the art for utilization with various materials of layer 14 .
- FIGS. 3 and 4 processing similar to that of FIGS. 3 and 4 is illustrated with the exception that it is exposed portions 30 ( FIG. 2 ) that have a faster rate of removal than unexposed portions 32 when layer 16 is subjected to conditions for removing the material of layer 16 .
- layer 16 can have attributes desired in structures formed over substrate 12 .
- the remaining portions 30 of layer 16 comprise an insulative material (either silicon dioxide or methylsilicon oxide).
- insulative material can be utilized for separating conductive components of a semiconductor circuit from one another.
- the methylsilicon oxide can be more preferred than the silicon dioxide, as methylsilicon oxide has a lower dielectric constant than silicon oxide. Accordingly, methylsilicon oxide can reduce parasitic capacitance between adjacent conductive components relative to silicon dioxide.
- the advantages of utilizing methylsilicon oxide can be generally realized from silicon oxides having the generic formula R—Si—O, wherein R is an organic group. R can comprise, for example, a hydrocarbon group.
- FIGS. 7 and 8 illustrate subsequent processing which can occur after the processing of either FIGS. 3 and 4 , or the processing of FIGS. 5 and 6 .
- FIG. 7 is a view of an entirety of a semiconductive wafer 50 which has been processed.
- the semiconductive wafer has a plurality of semiconductor structures (e.g., circuitry) formed thereover (not shown) and is subdivided into circuit packages 52 (only some of which are labeled).
- Imaginary dashed lines 53 are provided to show boundaries between adjacent semiconductor circuit packages 52 .
- structures comprised by packages 52 can comprise portions of photolithographically patterned layer 16 incorporated therein.
- wafer fragment 50 ( FIG. 7 ) is illustrated after being subjected to a die-cutting process, wherein the wafer has been cut into separated die corresponding to packages 52 .
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
Abstract
In one aspect, the invention encompasses a semiconductor processing method. A layer of material is formed over a semiconductive wafer substrate. Some portions of the layer are exposed to energy while other portions are not exposed. The exposure to energy alters physical properties of the exposed portions relative to the unexposed portions. After the portions are exposed, the exposed and unexposed portions of the layer are subjected to common conditions. The common conditions are effective to remove the material and comprise a rate of removal that is influenced by the altered physical properties of the layer. The common conditions remove either the exposed or unexposed portions faster than the other of the exposed and unexposed portions. After the selective removal of the exposed or unexposed portions, and while the other of the exposed and unexposed portions remains over the substrate, the wafer is cut into separated die. In another aspect, the invention encompasses another semiconductor processing method. A layer of (CH3)ySi(OH)4-y is formed over a substrate. Some portions of the layer are exposed to ultraviolet light while other portions are not exposed. The exposure to ultraviolet light converts the exposed portions to (CH3)xSiO2-x. After the exposure to ultraviolet light, the exposed and unexposed portions of the layer are subjected to hydrofluoric acid to selectively remove the (CH3)ySi(OH)4-y of the unexposed portions relative to the (CH3)xSiO2-x of the exposed portions.
Description
- The invention pertains to semiconductor processing methods, and particularly pertains to methods of removing some portions of a layer from over a semiconductive substrate, while leaving other portions of the layer remaining over the substrate.
- Modern semiconductor processing frequently involves photolithographic methods to pattern materials into very small structures, which are ultimately incorporated into a semiconductor circuit. An exemplary prior art method for forming small structures from a layer of material is as follows. First, the layer of material is provided over a semiconductive substrate. Subsequently, a layer of photoresist is provided over the layer of material. A photolithographic mask is then provided over the layer of photoresist and light is shined through the mask to expose portions of the layer of photoresist while leaving other portions unexposed. The photoresist typically comprises an unsaturated organic material, such as, for example, a material comprising one or more unsaturated carbon-containing rings. The exposed portions are rendered either more or less soluble in a solvent relative to the unexposed portions. If the exposed portions are rendered more soluble, the resist is referred to as a positive photoresist (as a positive image of a pattern from the photolithographic mask is transferred to the photoresist), and if the exposed portions are rendered less soluble, the photoresist is referred to as a negative photoresist (as a negative image of the pattern from the photolithographic mask is transferred to the photoresist). In any event, the photoresist is exposed to a solvent and either the exposed or unexposed portions are removed while leaving the other of the exposed or unexposed portions remaining over the layer of material. Such patterns the photoresist into a patterned mask overlaying the layer of material. The layer of material is then exposed to conditions which transfer a pattern from the patterned mask to the layer of material (i.e., which removes portions of the layer of material not covered by photoresist, while leaving the portions of the layer material that are covered by photoresist). Subsequently, the photoresist is removed and the substrate having the patterned layer of material thereon is subjected to subsequent processing steps to form an integrated circuit over the substrate.
- Typically, the semiconductive substrate referred to above is in the form of a wafer and a plurality of semiconductor packages (i.e., individual integrated circuits) are simultaneously formed over the wafer. After the formation of the plurality of semiconductor packages is complete, the wafer is subjected to a die-cutting process to separate the individual integrated circuits from one another. In wafer fabrication processes employed to date, photoresist is entirely removed from a wafer prior to subjecting the wafer to a die-cutting process. Among the reasons for removal of the photoresist is that the photoresist is not a material suitable for incorporation into semiconductor circuits. It would be desirable to develop alternative methods for patterning structures during semiconductor circuit fabrication processes.
- In an area of semiconductor processing considered to be unrelated to the above-described photolithographic processing methods, a recently developed technique for forming insulative materials is Flowfill™ Technology, which has been developed by Trikon Technology of Bristol, U.K. The process can be utilized for forming either silicon dioxide or methylsilicon oxide ((CH3)xSiO2-x), for example. The process for forming silicon dioxide is as follows. First, SiH4 and H2O2 are separately introduced into a chemical vapor deposition (CVD) chamber, such as a parallel plate reaction chamber. The reaction rate between SiH4 and H2O2 can be moderated by the introduction of nitrogen into the reaction chamber. A semiconductive wafer is provided within the chamber, and ideally maintained at a suitably low temperature, such, as 0° C., at an exemplary pressure of 1 Torr to achieve formation of a silanol-type structure of the formula Si(OH)x, which is predominantly Si(OH)4. The Si(OH)4 condenses onto the wafer surface. Although the reaction occurs in the gas phase, the deposited Si(OH)4 is in the form of a viscous liquid which flows to fill small gaps on the wafer surface. In applications where deposition thickness increases, surface tension drives the deposited layer flat, thus forming a planarized layer over the substrate.
- The liquid Si(OH)4 is typically converted to a silicon dioxide structure by a two-step process. First, planarization of the liquid film is promoted by increasing the temperature to above 100° C., while maintaining the pressure of about 1 Torr, to result in solidification and formation of a polymer layer. Thereafter, the temperature is raised to above 400° C., while maintaining the pressure of greater than 1 Torr, to form SiO2. The processing above 400° C. also provides the advantage of driving undesired water from the resultant SiO2 layer.
- The formation of methylsilicon oxide is accomplished similarly to that described above for forming silicon dioxide, with the exception that methylsilane ((CH3)xSiH4-z, wherein z is at least 1 and no greater than 4) is combined with the hydrogen peroxide to produce a methylsilanol, instead of combining the silane (SiH4) with the hydrogen peroxide to form silanol.
- In one aspect, the invention encompasses a semiconductor processing method wherein a layer of material is formed over a semiconductive wafer substrate. Some portions of the layer are exposed to energy while other portions are not exposed. The exposure to energy alters physical properties of the exposed portions relative to the unexposed portions. After the portions are exposed, the exposed and unexposed portions of the layer are subjected to common conditions. The common conditions are effective to remove the material and comprise a rate of removal that is influenced by the altered physical properties of the layer. The common conditions remove either the exposed or unexposed portions faster than the other of the exposed and unexposed portions. After the selective removal of the exposed or unexposed portions, and while the other of the exposed and unexposed portions remains over the substrate, the wafer is cut into separated die.
- In another aspect, the invention encompasses another semiconductor processing method. A layer of (CH3)ySi(OH)4-y is formed over a substrate, wherein y is greater than 0 and less than 4. Some portions of the layer are exposed to ultraviolet light while other portions are not exposed. The exposure to ultraviolet light converts the exposed portions to (CH3)xSiO2-x, wherein x is greater than 0 and less than 2. After the exposure to ultraviolet light, the exposed and unexposed portions of the layer are subjected to hydrofluoric acid to selectively remove the (CH3)ySi(OH)4-y of the unexposed portions relative to the (CH3)xSiO2-x of the exposed portions.
- Preferred embodiments of the invention are described below with reference to the following accompanying drawings.
-
FIG. 1 is a fragmentary, diagrammatic, cross-sectional view of a semiconductive wafer fragment at a first step of a processing method in accordance with the present invention. -
FIG. 2 is a view of theFIG. 1 wafer fragment at a step subsequent to that ofFIG. 1 . -
FIG. 3 is a view of theFIG. 1 wafer fragment at a step subsequent to that ofFIG. 2 in accordance with a first embodiment processing method of the present invention. -
FIG. 4 is a view of theFIG. 1 wafer fragment at a processing step subsequent to that ofFIG. 3 . -
FIG. 5 is a view of theFIG. 1 wafer fragment shown at a step is subsequent to that ofFIG. 2 , and in accordance with a second embodiment processing sequence of the present invention. -
FIG. 6 is a view of theFIG. 1 wafer fragment at a processing step subsequent to that ofFIG. 5 . -
FIG. 7 is a top view of a semiconductive wafer, such as the wafer incorporating the fragment ofFIG. 1 , shown prior to subjecting the wafer to a die-cutting process. -
FIG. 8 is a top view of portions of theFIG. 7 semiconductive wafer shown after the wafer is subjected to a die-cutting process. - This disclosure of the invention is submitted in furtherance of the constitutional purposes of the U.S. Patent Laws “to promote the progress of science and useful arts” (Article 1, Section 8).
- The invention encompasses methods for utilizing energy to form patterned masking materials on a wafer. In particular aspects of the invention, the patterned masking materials are retained on a wafer after a die-cutting process. In other particular aspects of the invention, the patterned masking materials comprise silicon. The invention is described with reference to a preferred embodiment in
FIGS. 1-8 . - Referring to
FIG. 1 , asemiconductive wafer fragment 10 is illustrated at a preliminary step of a processing sequence encompassed by the present invention. Waferfragment 10 comprises asemiconductive substrate 12.Substrate 12 can comprise, for example, monocrystalline silicon lightly doped with a p-type conductivity enhancing dopant. To aid in interpretation of the claims that follow, the term “semiconductive substrate” is defined to mean any construction comprising semiconductive material, including, but not limited to, bulk semiconductive materials such as a semiconductive wafer (either alone or in assemblies comprising other materials thereon), and semiconductive material layers (either alone or in assemblies comprising other materials). The term “substrate” refers to any supporting structure, including, but not limited to, the semiconductive substrates described above. - A first layer of
material 14 is formed oversubstrate 12, and a second layer ofmaterial 16 is formed overfirst layer 14. The material offirst layer 14 can be either a conductive material or an insulative material, and is not particularly germane to the present invention. The material ofsecond layer 16 has physical properties which can be altered by exposure to energy. The material ofsecond layer 16 can comprise, for example, methylsilanol ((CH3)ySi(OH)4-y) or silanol (Si(OH)4, either of which can be formed by methods described above in the “Background” section of this disclosure. Both methylsilanol and silanol have physical properties which can be altered by exposure to, for example, electron beam energy, ultraviolet light or plasma. For instance, if portions of either silanol or methylsilanol are exposed to ultraviolet light, such portions will have a higher etch rate in hydrofluoric acid than will portions not exposed to the ultraviolet light. The exposure of methylsilanol to ultraviolet light converts it to the insulative material (CH3)xSiO2-x, and exposure of silanol to ultraviolet light converts it silicon dioxide. - Referring to
FIG. 2 , anenergy source 18 is provided overwafer fragment 10, and a patternedphotolithographic mask 20 is provided betweensource 18 andsecond layer 16.Mask 20 comprisesorifices 22 extending therethrough. In operation,energy 24 is emitted fromsource 18 and towardmask 20. In the illustrated embodiment, the energy is shown as light waves which can comprise, for example, wavelengths corresponding to ultraviolet light.Mask 20 blocks some of the light waves, while other light waves penetrate throughorifices 22 to reachlayer 16.Layer 16 is thus divided intoportions 30 which are exposed to the radiation fromsource 18 andportions 32 which are shielded bymask 20 and not exposed toradiation 24. The exposure oflayer 16 toradiation 24 alters physical properties of the material oflayer 16 within exposedregions 30 relative to physical properties of the material inunexposed portions 32. - After the exposure to
radiation 24, the exposedportions 30 andunexposed portions 32 oflayer 16 are exposed to common conditions which are effective to remove the material oflayer 16. Further, the common conditions comprise a rate of removal of the material oflayer 16 that is influenced by physical properties altered by exposure toradiation 24. Accordingly, exposedportions 30 are removed at a different rate thanunexposed portions 32.FIGS. 3 and 4 illustrate an embodiment wherein exposedportions 30 are removed at a slower rate thanunexposed portions 32, andFIGS. 5 and 6 illustrate an embodiment wherein the exposed portions are removed at a faster rate than the unexposed portions. - Referring first to the embodiment of
FIGS. 3 and 4 , and specifically referring toFIG. 3 ,substrate 10 is illustrated after exposure to conditions which remove exposed portions 32 (FIG. 2 ) more rapidly thanunexposed portions 30, to leave onlyunexposed portions 30 remaining overfirst material 14. In an exemplary embodiment, the material oflayer 16 can comprise either methylsilanol or silanol, the radiation 24 (FIG. 2 ) can comprise ultraviolet light, and the common conditions can comprise exposure to hydrofluoric acid. The ultraviolet light converts exposed material oflayer 16 to either methylsilicon dioxide or silicon dioxide, and thus renders such exposed portions more resistant to hydrofluoric acid removal than unexposed portions comprising either methylsilanol or silanol. In the exemplary embodiment, it is found that the portions of a methylsilanol orsilanol layer 16 exposed to ultraviolet light are removed by hydrofluoric acid at a rate that is at least about 5 times slower than portions oflayer 16 not exposed to ultraviolet light. The portions not exposed to ultraviolet light can thus be selectively removed relative to the portions that have been exposed to ultraviolet light. For purposes of interpreting this disclosure and the claims that follow, a first material is “selectively removed” relative to another material if the first material is removed at a rate that is at least 3 times faster than a rate at which the other material is removed. - Referring to
FIG. 4 , a pattern is transferred from exposedportions 30 tounderlying layer 14. Specifically, portions oflayer 14 are removed by an etch. The conditions of the etch will vary depending on the material oflayer 14, and can comprise conventional methods which will be recognized by persons of ordinary skill in the art for utilization with various materials oflayer 14. - Referring to 5 and 6, processing similar to that of
FIGS. 3 and 4 is illustrated with the exception that it is exposed portions 30 (FIG. 2 ) that have a faster rate of removal thanunexposed portions 32 whenlayer 16 is subjected to conditions for removing the material oflayer 16. - An advantage of the present invention relative to prior art methods described above in the “Background” section of this disclosure is that the photolithographically
patterned layer 16 does not comprise photoresist. Accordingly,layer 16 can have attributes desired in structures formed oversubstrate 12. For instance, in the above-described exemplary embodiment ofFIGS. 3 and 4 , the remainingportions 30 oflayer 16 comprise an insulative material (either silicon dioxide or methylsilicon oxide). Such insulative material can be utilized for separating conductive components of a semiconductor circuit from one another. In some applications, the methylsilicon oxide can be more preferred than the silicon dioxide, as methylsilicon oxide has a lower dielectric constant than silicon oxide. Accordingly, methylsilicon oxide can reduce parasitic capacitance between adjacent conductive components relative to silicon dioxide. The advantages of utilizing methylsilicon oxide can be generally realized from silicon oxides having the generic formula R—Si—O, wherein R is an organic group. R can comprise, for example, a hydrocarbon group. -
FIGS. 7 and 8 illustrate subsequent processing which can occur after the processing of eitherFIGS. 3 and 4 , or the processing ofFIGS. 5 and 6 . Specifically,FIG. 7 is a view of an entirety of asemiconductive wafer 50 which has been processed. The semiconductive wafer has a plurality of semiconductor structures (e.g., circuitry) formed thereover (not shown) and is subdivided into circuit packages 52 (only some of which are labeled). Imaginary dashedlines 53 are provided to show boundaries between adjacent semiconductor circuit packages 52. For reasons discussed above, structures comprised bypackages 52 can comprise portions of photolithographically patternedlayer 16 incorporated therein. - Referring to
FIG. 8 , wafer fragment 50 (FIG. 7 ) is illustrated after being subjected to a die-cutting process, wherein the wafer has been cut into separated die corresponding to packages 52. - In compliance with the statute, the invention has been described in language more or less specific as to structural and methodical features. It is to be understood, however, that the invention is not limited to the specific features shown and described, since the means herein disclosed comprise preferred forms of putting the invention into effect. The invention is, therefore, claimed in any of its forms or modifications within the proper scope of the appended claims appropriately interpreted in accordance with the doctrine of equivalents.
Claims (12)
1. A semiconductor processing method, comprising:
forming a layer of material over a semiconductive wafer substrate;
exposing some portions of the layer to energy while leaving other portions unexposed, the exposing altering physical properties of the exposed portions of material relative to the unexposed portions of material;
after the exposing, subjecting the exposed and unexposed portions of the layer to common conditions, the common conditions being effective to remove the material and comprising a rate of removal that is influenced by the altered physical properties of the layer, the common conditions removing either the exposed or unexposed portions faster than the other of the exposed and unexposed portions; and
after the selective removal of the exposed or unexposed portions, and while the other of the exposed and unexposed portions remains over the substrate, cutting the wafer into separated die.
2. The method of claim 1 wherein the material comprises silicon.
3. The method of claim 1 wherein the material comprises carbon, silicon and oxygen.
4. The method of claim 1 wherein the material comprises silicon bound to a hydrocarbon group and bound to oxygen.
5. The method of claim 1 wherein the material comprises (CH3)ySi(OH)4-y, with y being greater than 0 and less than 4.
6. The method of claim 1 wherein the material comprises Si(OH)4.
7. The method of claim 1 wherein the energy is in the form of ultraviolet light.
8. The method of claim 1 wherein the energy is in the form of an electron beam.
9. The method of claim 1 wherein the energy is in the form of a plasma.
10-29. (canceled)
30. The method of claim 1 wherein the forming a layer comprises depositing a layer of material comprising (CH3)ySi(OH)4-y, as initially deposited, with y being greater than 0 and less than 4.
31. The method of claim 1 wherein the forming a layer comprises depositing a layer of material comprising Si(OH)4, as initially deposited.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/517,742 US20070004227A1 (en) | 1999-01-20 | 2006-09-08 | Semiconductor processing methods |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/234,233 US7235499B1 (en) | 1999-01-20 | 1999-01-20 | Semiconductor processing methods |
US11/517,742 US20070004227A1 (en) | 1999-01-20 | 2006-09-08 | Semiconductor processing methods |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/234,233 Continuation US7235499B1 (en) | 1999-01-20 | 1999-01-20 | Semiconductor processing methods |
Publications (1)
Publication Number | Publication Date |
---|---|
US20070004227A1 true US20070004227A1 (en) | 2007-01-04 |
Family
ID=37590183
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/234,233 Expired - Lifetime US7235499B1 (en) | 1999-01-20 | 1999-01-20 | Semiconductor processing methods |
US11/517,742 Abandoned US20070004227A1 (en) | 1999-01-20 | 2006-09-08 | Semiconductor processing methods |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/234,233 Expired - Lifetime US7235499B1 (en) | 1999-01-20 | 1999-01-20 | Semiconductor processing methods |
Country Status (1)
Country | Link |
---|---|
US (2) | US7235499B1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5674304B2 (en) * | 2009-11-13 | 2015-02-25 | ラピスセミコンダクタ株式会社 | Manufacturing method of SOI wafer |
Citations (97)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4158717A (en) * | 1977-02-14 | 1979-06-19 | Varian Associates, Inc. | Silicon nitride film and method of deposition |
US4444617A (en) * | 1983-01-06 | 1984-04-24 | Rockwell International Corporation | Reactive ion etching of molybdenum silicide and N+ polysilicon |
US4523214A (en) * | 1981-07-03 | 1985-06-11 | Fuji Photo Film Co., Ltd. | Solid state image pickup device utilizing microcrystalline and amorphous silicon |
US4592129A (en) * | 1985-04-01 | 1986-06-03 | Motorola, Inc. | Method of making an integral, multiple layer antireflection coating by hydrogen ion implantation |
US4600671A (en) * | 1983-09-12 | 1986-07-15 | Canon Kabushiki Kaisha | Photoconductive member having light receiving layer of A-(Si-Ge) and N |
US4648904A (en) * | 1986-02-14 | 1987-03-10 | Scm Corporation | Aqueous systems containing silanes for rendering masonry surfaces water repellant |
US4695859A (en) * | 1986-10-20 | 1987-09-22 | Energy Conversion Devices, Inc. | Thin film light emitting diode, photonic circuit employing said diode imager employing said circuits |
US4755478A (en) * | 1987-08-13 | 1988-07-05 | International Business Machines Corporation | Method of forming metal-strapped polysilicon gate electrode for FET device |
US4764247A (en) * | 1987-03-18 | 1988-08-16 | Syn Labs, Inc. | Silicon containing resists |
US4805683A (en) * | 1988-03-04 | 1989-02-21 | International Business Machines Corporation | Method for producing a plurality of layers of metallurgy |
US4833096A (en) * | 1988-01-19 | 1989-05-23 | Atmel Corporation | EEPROM fabrication process |
US4910160A (en) * | 1989-06-06 | 1990-03-20 | National Semiconductor Corporation | High voltage complementary NPN/PNP process |
US4940509A (en) * | 1988-03-25 | 1990-07-10 | Texas Instruments, Incorporated | Isotropic etchant for capped silicide processes |
US4992306A (en) * | 1990-02-01 | 1991-02-12 | Air Products Abd Chemicals, Inc. | Deposition of silicon dioxide and silicon oxynitride films using azidosilane sources |
US5034348A (en) * | 1990-08-16 | 1991-07-23 | International Business Machines Corp. | Process for forming refractory metal silicide layers of different thicknesses in an integrated circuit |
US5036383A (en) * | 1989-04-27 | 1991-07-30 | Kabushiki Kaisha Toshiba | Semiconductor device having an improved bonding pad |
US5140390A (en) * | 1990-02-16 | 1992-08-18 | Hughes Aircraft Company | High speed silicon-on-insulator device |
US5219613A (en) * | 1990-06-13 | 1993-06-15 | Wacker-Chemitronic Gesellschaft Fur Elektronik-Grundstoffe Mbh | Process for producing storage-stable surfaces of polished silicon wafers |
US5234869A (en) * | 1990-06-28 | 1993-08-10 | Kabushiki Kaisha Toshiba | Method of manufacturing silicon nitride film |
US5276347A (en) * | 1991-12-18 | 1994-01-04 | Sgs-Thomson Microelectronics, Inc. | Gate overlapping LDD structure |
US5285017A (en) * | 1991-12-31 | 1994-02-08 | Intel Corporation | Embedded ground plane and shielding structures using sidewall insulators in high frequency circuits having vias |
US5286661A (en) * | 1992-08-26 | 1994-02-15 | Motorola, Inc. | Method of forming a bipolar transistor having an emitter overhang |
US5302366A (en) * | 1991-03-28 | 1994-04-12 | Phillips Petroleum Company | Production of silicon product containing both carbon and nitrogen |
US5312768A (en) * | 1993-03-09 | 1994-05-17 | Micron Technology, Inc. | Integrated process for fabricating raised, source/drain, short-channel transistors |
US5314724A (en) * | 1991-01-08 | 1994-05-24 | Fujitsu Limited | Process for forming silicon oxide film |
US5340621A (en) * | 1992-03-30 | 1994-08-23 | Nippon Sheet Glass Co., Ltd. | Plasma CVD method |
US5405489A (en) * | 1991-10-30 | 1995-04-11 | Samsung Electronics Co., Ltd. | Method for fabricating an interlayer-dielectric film of a semiconductor device by using a plasma treatment prior to reflow |
US5413963A (en) * | 1994-08-12 | 1995-05-09 | United Microelectronics Corporation | Method for depositing an insulating interlayer in a semiconductor metallurgy system |
US5429987A (en) * | 1993-01-25 | 1995-07-04 | Sharp Microelectronics Technology, Inc. | Method for profile control of selective metallization |
US5439838A (en) * | 1994-09-14 | 1995-08-08 | United Microelectronics Corporation | Method of thinning for EEPROM tunneling oxide device |
US5441797A (en) * | 1993-04-27 | 1995-08-15 | International Business Machines Corporation | Antireflective polyimide dielectric for photolithography |
US5482894A (en) * | 1994-08-23 | 1996-01-09 | Texas Instruments Incorporated | Method of fabricating a self-aligned contact using organic dielectric materials |
US5498555A (en) * | 1994-11-07 | 1996-03-12 | United Microelectronics Corporation | Method of making LDD with polysilicon and dielectric spacers |
US5536857A (en) * | 1994-07-05 | 1996-07-16 | Ford Motor Company | Single source volatile precursor for SiO2.TiO2 powders and films |
US5541445A (en) * | 1991-08-14 | 1996-07-30 | Mitel Corporation | High performance passivation for semiconductor devices |
US5543654A (en) * | 1992-01-28 | 1996-08-06 | Thunderbird Technologies, Inc. | Contoured-tub fermi-threshold field effect transistor and method of forming same |
US5591566A (en) * | 1991-12-30 | 1997-01-07 | Sony Corporation | Method of forming a resist pattern by using a silicon carbide anti-reflective layer |
US5591494A (en) * | 1993-09-24 | 1997-01-07 | Applied Materials, Inc. | Deposition of silicon nitrides by plasma-enhanced chemical vapor deposition |
US5593741A (en) * | 1992-11-30 | 1997-01-14 | Nec Corporation | Method and apparatus for forming silicon oxide film by chemical vapor deposition |
US5600165A (en) * | 1994-07-27 | 1997-02-04 | Sony Corporation | Semiconductor device with antireflection film |
US5639687A (en) * | 1993-07-06 | 1997-06-17 | Motorola Inc. | Method for forming an integrated circuit pattern on a semiconductor substrate using silicon-rich silicon nitride |
US5641607A (en) * | 1991-12-30 | 1997-06-24 | Sony Corporation | Anti-reflective layer used to form a semiconductor device |
US5652187A (en) * | 1991-10-30 | 1997-07-29 | Samsung Electronics Co., Ltd. | Method for fabricating doped interlayer-dielectric film of semiconductor device using a plasma treatment |
US5656337A (en) * | 1993-08-31 | 1997-08-12 | Samsung Electronics Co., Ltd. | Method of forming a dielectric layer |
US5656330A (en) * | 1994-03-22 | 1997-08-12 | Futaba Denshi Kogyo K.K. | Resistive element having a resistivity which is thermally stable against heat treatment, and method and apparatus for producing same |
US5661093A (en) * | 1996-09-12 | 1997-08-26 | Applied Materials, Inc. | Method for the stabilization of halogen-doped films through the use of multiple sealing layers |
US5709741A (en) * | 1995-02-28 | 1998-01-20 | Dow Corning Toray Silicone Co., Ltd. | Water repellent for application to glass and water-repellent glass |
US5710067A (en) * | 1995-06-07 | 1998-01-20 | Advanced Micro Devices, Inc. | Silicon oxime film |
US5711987A (en) * | 1996-10-04 | 1998-01-27 | Dow Corning Corporation | Electronic coatings |
US5731242A (en) * | 1993-10-15 | 1998-03-24 | Intel Corporation | Self-aligned contact process in semiconductor fabrication |
US5741721A (en) * | 1994-02-01 | 1998-04-21 | Quality Microcircuits Corporation | Method of forming capacitors and interconnect lines |
US5744399A (en) * | 1995-11-13 | 1998-04-28 | Lsi Logic Corporation | Process for forming low dielectric constant layers using fullerenes |
US5747388A (en) * | 1992-09-18 | 1998-05-05 | Siemens Aktiengesellschaft | Antireflection layer and process for lithographically structuring a layer |
US5750442A (en) * | 1995-09-25 | 1998-05-12 | Micron Technology, Inc. | Germanium as an antireflective coating and method of use |
US5753320A (en) * | 1985-09-26 | 1998-05-19 | Canon Kabushiki Kaisha | Process for forming deposited film |
US5759755A (en) * | 1993-08-08 | 1998-06-02 | Samsung Electronics, Co., Ltd. | Semiconductor substrate containing anti-reflective layer |
US5759746A (en) * | 1996-05-24 | 1998-06-02 | Kabushiki Kaisha Toshiba | Fabrication process using a thin resist |
US5783493A (en) * | 1997-01-27 | 1998-07-21 | Taiwan Semiconductor Manufacturing Company Ltd. | Method for reducing precipitate defects using a plasma treatment post BPSG etchback |
US5786039A (en) * | 1995-05-15 | 1998-07-28 | France Telecom | Process for electrical insulation in microelectronics, applicable in narrow cavities, by deposition of oxide in the viscous state and corresponding device |
US5789819A (en) * | 1994-05-20 | 1998-08-04 | Texas Instruments Incorporated | Low dielectric constant material for electronics applications |
US5792688A (en) * | 1996-11-06 | 1998-08-11 | Vanguard International Semiconductor Corporation | Method to increase the surface area of a storage node electrode, of an STC structure, for DRAM devices, via formation of polysilicon columns |
US5796151A (en) * | 1996-12-19 | 1998-08-18 | Texas Instruments Incorporated | Semiconductor stack having a dielectric sidewall for prevention of oxidation of tungsten in tungsten capped poly-silicon gate electrodes |
US5858880A (en) * | 1994-05-14 | 1999-01-12 | Trikon Equipment Limited | Method of treating a semi-conductor wafer |
US5872035A (en) * | 1996-06-29 | 1999-02-16 | Hyundai Electronics Industries Co., Ltd. | Method of forming a floating gate in a flash memory device |
US5872385A (en) * | 1994-05-02 | 1999-02-16 | Motorola Inc. | Conductive interconnect structure and method of formation |
US5874367A (en) * | 1992-07-04 | 1999-02-23 | Trikon Technologies Limited | Method of treating a semi-conductor wafer |
US5883011A (en) * | 1997-06-18 | 1999-03-16 | Vlsi Technology, Inc. | Method of removing an inorganic antireflective coating from a semiconductor substrate |
US5883014A (en) * | 1997-06-03 | 1999-03-16 | United Microelectronics Corp. | Method for treating via sidewalls with hydrogen plasma |
US5933721A (en) * | 1997-04-21 | 1999-08-03 | Advanced Micro Devices, Inc. | Method for fabricating differential threshold voltage transistor pair |
US6017779A (en) * | 1994-06-15 | 2000-01-25 | Seiko Epson Corporation | Fabrication method for a thin film semiconductor device, the thin film semiconductor device itself, liquid crystal display, and electronic device |
US6017614A (en) * | 1997-07-14 | 2000-01-25 | Vanguard International Semiconductor Corporation | Plasma-enhanced chemical vapor deposited SIO2 /SI3 N4 multilayer passivation layer for semiconductor applications |
US6020243A (en) * | 1997-07-24 | 2000-02-01 | Texas Instruments Incorporated | Zirconium and/or hafnium silicon-oxynitride gate dielectric |
US6022404A (en) * | 1995-01-12 | 2000-02-08 | Degussa Aktiengesellschaft | Surface-modified, pyrogenically produced mixed oxides, method of their production and use |
US6040619A (en) * | 1995-06-07 | 2000-03-21 | Advanced Micro Devices | Semiconductor device including antireflective etch stop layer |
US6057217A (en) * | 1996-07-25 | 2000-05-02 | Nec Corporation | Process for production of semiconductor device with foreign element introduced into silicon dioxide film |
US6060765A (en) * | 1998-01-05 | 2000-05-09 | Mitsubishi Denki Kabushiki Kaisha | Semiconductor device and a method of manufacturing the same |
US6060766A (en) * | 1997-08-25 | 2000-05-09 | Advanced Micro Devices, Inc. | Protection of hydrogen sensitive regions in semiconductor devices from the positive charge associated with plasma deposited barriers or layers |
US6071799A (en) * | 1997-06-30 | 2000-06-06 | Hyundai Electronics Industries Co., Ltd. | Method of forming a contact of a semiconductor device |
US6072227A (en) * | 1998-02-11 | 2000-06-06 | Applied Materials, Inc. | Low power method of depositing a low k dielectric with organo silane |
US6080529A (en) * | 1997-12-12 | 2000-06-27 | Applied Materials, Inc. | Method of etching patterned layers useful as masking during subsequent etching or for damascene structures |
US6083852A (en) * | 1997-05-07 | 2000-07-04 | Applied Materials, Inc. | Method for applying films using reduced deposition rates |
US6087064A (en) * | 1998-09-03 | 2000-07-11 | International Business Machines Corporation | Silsesquioxane polymers, method of synthesis, photoresist composition, and multilayer lithographic method |
US6087267A (en) * | 1986-03-04 | 2000-07-11 | Motorola, Inc. | Process for forming an integrated circuit |
US6184151B1 (en) * | 1997-08-21 | 2001-02-06 | International Business Machines Corporation | Method for forming cornered images on a substrate and photomask formed thereby |
US6184158B1 (en) * | 1996-12-23 | 2001-02-06 | Lam Research Corporation | Inductively coupled plasma CVD |
US6187694B1 (en) * | 1997-11-10 | 2001-02-13 | Intel Corporation | Method of fabricating a feature in an integrated circuit using two edge definition layers and a spacer |
US6200835B1 (en) * | 1994-10-07 | 2001-03-13 | Micron Technology, Inc. | Methods of forming conductive polysilicon lines and bottom gated thin film transistors, and conductive polysilicon lines and thin film transistors |
US6204168B1 (en) * | 1998-02-02 | 2001-03-20 | Applied Materials, Inc. | Damascene structure fabricated using a layer of silicon-based photoresist material |
US6208004B1 (en) * | 1998-08-19 | 2001-03-27 | Philips Semiconductor, Inc. | Semiconductor device with high-temperature-stable gate electrode for sub-micron applications and fabrication thereof |
US6209484B1 (en) * | 1996-06-28 | 2001-04-03 | Applied Materials, Inc. | Method and apparatus for depositing an etch stop layer |
US6218292B1 (en) * | 1997-12-18 | 2001-04-17 | Advanced Micro Devices, Inc. | Dual layer bottom anti-reflective coating |
US6225217B1 (en) * | 1997-06-27 | 2001-05-01 | Nec Corporation | Method of manufacturing semiconductor device having multilayer wiring |
US6238976B1 (en) * | 1997-07-08 | 2001-05-29 | Micron Technology, Inc. | Method for forming high density flash memory |
US6268282B1 (en) * | 1998-09-03 | 2001-07-31 | Micron Technology, Inc. | Semiconductor processing methods of forming and utilizing antireflective material layers, and methods of forming transistor gate stacks |
US6274292B1 (en) * | 1998-02-25 | 2001-08-14 | Micron Technology, Inc. | Semiconductor processing methods |
US6281100B1 (en) * | 1998-09-03 | 2001-08-28 | Micron Technology, Inc. | Semiconductor processing methods |
US6373114B1 (en) * | 1998-10-23 | 2002-04-16 | Micron Technology, Inc. | Barrier in gate stack for improved gate dielectric integrity |
Family Cites Families (41)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2553314A (en) | 1944-07-01 | 1951-05-15 | Gen Electric | Method of rendering materials water repellent |
US4474975A (en) | 1983-05-09 | 1984-10-02 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Process for producing tris (N-methylamino) methylsilane |
US4702936A (en) | 1984-09-20 | 1987-10-27 | Applied Materials Japan, Inc. | Gas-phase growth process |
JPS63157443A (en) | 1986-12-22 | 1988-06-30 | Matsushita Electric Ind Co Ltd | Manufacture of semiconductor device |
US5855880A (en) | 1987-06-04 | 1999-01-05 | Washington University | Avirulent microbes and uses therefor |
JPS63316476A (en) | 1987-06-18 | 1988-12-23 | Seiko Instr & Electronics Ltd | Semiconductor device and manufacture thereof |
US4863755A (en) | 1987-10-16 | 1989-09-05 | The Regents Of The University Of California | Plasma enhanced chemical vapor deposition of thin films of silicon nitride from cyclic organosilicon nitrogen precursors |
US5270267A (en) | 1989-05-31 | 1993-12-14 | Mitel Corporation | Curing and passivation of spin on glasses by a plasma process wherein an external polarization field is applied to the substrate |
US5061509A (en) | 1989-08-25 | 1991-10-29 | Kabushiki Kaisha Toshiba | Method of manufacturing polyimide thin film and method of manufacturing liquid crystal orientation film of polyimide |
JP2814009B2 (en) | 1990-06-05 | 1998-10-22 | 三菱電機株式会社 | Method for manufacturing semiconductor device |
US5356515A (en) | 1990-10-19 | 1994-10-18 | Tokyo Electron Limited | Dry etching method |
US5470772A (en) | 1991-11-06 | 1995-11-28 | Intel Corporation | Silicidation method for contactless EPROM related devices |
US5677111A (en) | 1991-12-20 | 1997-10-14 | Sony Corporation | Process for production of micropattern utilizing antireflection film |
US5670297A (en) | 1991-12-30 | 1997-09-23 | Sony Corporation | Process for the formation of a metal pattern |
JPH05263255A (en) | 1992-03-19 | 1993-10-12 | Hitachi Electron Eng Co Ltd | Plasma cvd device |
EP0572704B1 (en) | 1992-06-05 | 2000-04-19 | Semiconductor Process Laboratory Co., Ltd. | Method for manufacturing a semiconductor device including method of reforming an insulating film formed by low temperature CVD |
TW349185B (en) | 1992-08-20 | 1999-01-01 | Sony Corp | A semiconductor device |
KR950034588A (en) | 1994-03-17 | 1995-12-28 | 오가 노리오 | Tantalum high dielectric material and formation method of high dielectric film and semiconductor device |
KR100366910B1 (en) | 1994-04-05 | 2003-03-04 | 소니 가부시끼 가이샤 | Manufacturing method of semiconductor device |
US5461003A (en) | 1994-05-27 | 1995-10-24 | Texas Instruments Incorporated | Multilevel interconnect structure with air gaps formed between metal leads |
US5554567A (en) | 1994-09-01 | 1996-09-10 | Taiwan Semiconductor Manufacturing Company Ltd. | Method for improving adhesion to a spin-on-glass |
NO303649B1 (en) | 1995-02-03 | 1998-08-10 | Bj Services As | The bridge plug |
US5962581A (en) * | 1995-04-28 | 1999-10-05 | Kabushiki Kaisha Toshiba | Silicone polymer composition, method of forming a pattern and method of forming an insulating film |
JP3061255B2 (en) | 1995-08-18 | 2000-07-10 | キヤノン販売株式会社 | Film formation method |
US5948482A (en) | 1995-09-19 | 1999-09-07 | University Of New Mexico | Ambient pressure process for preparing aerogel thin films reliquified sols useful in preparing aerogel thin films |
TW362118B (en) | 1995-10-30 | 1999-06-21 | Dow Corning | Method for depositing amorphous SiNC coatings |
US5968324A (en) | 1995-12-05 | 1999-10-19 | Applied Materials, Inc. | Method and apparatus for depositing antireflective coating |
EP0793271A3 (en) | 1996-02-22 | 1998-12-02 | Matsushita Electric Industrial Co., Ltd. | Semiconductor device having a metal silicide film and method of fabricating the same |
US5838052A (en) | 1996-03-07 | 1998-11-17 | Micron Technology, Inc. | Reducing reflectivity on a semiconductor wafer by annealing titanium and aluminum |
US5923999A (en) | 1996-10-29 | 1999-07-13 | International Business Machines Corporation | Method of controlling dopant diffusion and metal contamination in thin polycide gate conductor of mosfet device |
US5807660A (en) | 1997-02-03 | 1998-09-15 | Taiwan Semiconductor Manufacturing Company Ltd. | Avoid photoresist lifting by post-oxide-dep plasma treatment |
JPH1116904A (en) | 1997-06-26 | 1999-01-22 | Mitsubishi Electric Corp | Semiconductor device and manufacture thereof |
US5968611A (en) | 1997-11-26 | 1999-10-19 | The Research Foundation Of State University Of New York | Silicon nitrogen-based films and method of making the same |
US6118163A (en) | 1998-02-04 | 2000-09-12 | Advanced Micro Devices, Inc. | Transistor with integrated poly/metal gate electrode |
EP0942330A1 (en) * | 1998-03-11 | 1999-09-15 | Applied Materials, Inc. | Process for depositing and developing a plasma polymerized organosilicon photoresist film |
US6001741A (en) | 1998-04-15 | 1999-12-14 | Lucent Technologies Inc. | Method for making field effect devices and capacitors with improved thin film dielectrics and resulting devices |
US6159871A (en) | 1998-05-29 | 2000-12-12 | Dow Corning Corporation | Method for producing hydrogenated silicon oxycarbide films having low dielectric constant |
US5960289A (en) | 1998-06-22 | 1999-09-28 | Motorola, Inc. | Method for making a dual-thickness gate oxide layer using a nitride/oxide composite region |
US6156674A (en) | 1998-11-25 | 2000-12-05 | Micron Technology, Inc. | Semiconductor processing methods of forming insulative materials |
US6156485A (en) | 1999-01-19 | 2000-12-05 | Taiwan Semiconductor Manufacturing Company Ltd. | Film scheme to solve high aspect ratio metal etch masking layer selectivity and improve photo I-line PR resolution capability in quarter-micron technology |
US6028015A (en) | 1999-03-29 | 2000-02-22 | Lsi Logic Corporation | Process for treating damaged surfaces of low dielectric constant organo silicon oxide insulation material to inhibit moisture absorption |
-
1999
- 1999-01-20 US US09/234,233 patent/US7235499B1/en not_active Expired - Lifetime
-
2006
- 2006-09-08 US US11/517,742 patent/US20070004227A1/en not_active Abandoned
Patent Citations (100)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4158717A (en) * | 1977-02-14 | 1979-06-19 | Varian Associates, Inc. | Silicon nitride film and method of deposition |
US4523214A (en) * | 1981-07-03 | 1985-06-11 | Fuji Photo Film Co., Ltd. | Solid state image pickup device utilizing microcrystalline and amorphous silicon |
US4444617A (en) * | 1983-01-06 | 1984-04-24 | Rockwell International Corporation | Reactive ion etching of molybdenum silicide and N+ polysilicon |
US4600671A (en) * | 1983-09-12 | 1986-07-15 | Canon Kabushiki Kaisha | Photoconductive member having light receiving layer of A-(Si-Ge) and N |
US4592129A (en) * | 1985-04-01 | 1986-06-03 | Motorola, Inc. | Method of making an integral, multiple layer antireflection coating by hydrogen ion implantation |
US5753320A (en) * | 1985-09-26 | 1998-05-19 | Canon Kabushiki Kaisha | Process for forming deposited film |
US4648904B1 (en) * | 1986-02-14 | 1988-12-06 | ||
US4648904A (en) * | 1986-02-14 | 1987-03-10 | Scm Corporation | Aqueous systems containing silanes for rendering masonry surfaces water repellant |
US6087267A (en) * | 1986-03-04 | 2000-07-11 | Motorola, Inc. | Process for forming an integrated circuit |
US4695859A (en) * | 1986-10-20 | 1987-09-22 | Energy Conversion Devices, Inc. | Thin film light emitting diode, photonic circuit employing said diode imager employing said circuits |
US4764247A (en) * | 1987-03-18 | 1988-08-16 | Syn Labs, Inc. | Silicon containing resists |
US4755478A (en) * | 1987-08-13 | 1988-07-05 | International Business Machines Corporation | Method of forming metal-strapped polysilicon gate electrode for FET device |
US4833096A (en) * | 1988-01-19 | 1989-05-23 | Atmel Corporation | EEPROM fabrication process |
US4805683A (en) * | 1988-03-04 | 1989-02-21 | International Business Machines Corporation | Method for producing a plurality of layers of metallurgy |
US4940509A (en) * | 1988-03-25 | 1990-07-10 | Texas Instruments, Incorporated | Isotropic etchant for capped silicide processes |
US5036383A (en) * | 1989-04-27 | 1991-07-30 | Kabushiki Kaisha Toshiba | Semiconductor device having an improved bonding pad |
US4910160A (en) * | 1989-06-06 | 1990-03-20 | National Semiconductor Corporation | High voltage complementary NPN/PNP process |
US4992306A (en) * | 1990-02-01 | 1991-02-12 | Air Products Abd Chemicals, Inc. | Deposition of silicon dioxide and silicon oxynitride films using azidosilane sources |
US5140390A (en) * | 1990-02-16 | 1992-08-18 | Hughes Aircraft Company | High speed silicon-on-insulator device |
US5219613A (en) * | 1990-06-13 | 1993-06-15 | Wacker-Chemitronic Gesellschaft Fur Elektronik-Grundstoffe Mbh | Process for producing storage-stable surfaces of polished silicon wafers |
US5234869A (en) * | 1990-06-28 | 1993-08-10 | Kabushiki Kaisha Toshiba | Method of manufacturing silicon nitride film |
US5034348A (en) * | 1990-08-16 | 1991-07-23 | International Business Machines Corp. | Process for forming refractory metal silicide layers of different thicknesses in an integrated circuit |
US5314724A (en) * | 1991-01-08 | 1994-05-24 | Fujitsu Limited | Process for forming silicon oxide film |
US5302366A (en) * | 1991-03-28 | 1994-04-12 | Phillips Petroleum Company | Production of silicon product containing both carbon and nitrogen |
US5541445A (en) * | 1991-08-14 | 1996-07-30 | Mitel Corporation | High performance passivation for semiconductor devices |
US5652187A (en) * | 1991-10-30 | 1997-07-29 | Samsung Electronics Co., Ltd. | Method for fabricating doped interlayer-dielectric film of semiconductor device using a plasma treatment |
US5405489A (en) * | 1991-10-30 | 1995-04-11 | Samsung Electronics Co., Ltd. | Method for fabricating an interlayer-dielectric film of a semiconductor device by using a plasma treatment prior to reflow |
US5276347A (en) * | 1991-12-18 | 1994-01-04 | Sgs-Thomson Microelectronics, Inc. | Gate overlapping LDD structure |
US5641607A (en) * | 1991-12-30 | 1997-06-24 | Sony Corporation | Anti-reflective layer used to form a semiconductor device |
US5591566A (en) * | 1991-12-30 | 1997-01-07 | Sony Corporation | Method of forming a resist pattern by using a silicon carbide anti-reflective layer |
US5648202A (en) * | 1991-12-30 | 1997-07-15 | Sony Corporation | Method of forming a photoresist pattern using an anti-reflective |
US5285017A (en) * | 1991-12-31 | 1994-02-08 | Intel Corporation | Embedded ground plane and shielding structures using sidewall insulators in high frequency circuits having vias |
US5543654A (en) * | 1992-01-28 | 1996-08-06 | Thunderbird Technologies, Inc. | Contoured-tub fermi-threshold field effect transistor and method of forming same |
US5340621A (en) * | 1992-03-30 | 1994-08-23 | Nippon Sheet Glass Co., Ltd. | Plasma CVD method |
US5874367A (en) * | 1992-07-04 | 1999-02-23 | Trikon Technologies Limited | Method of treating a semi-conductor wafer |
US5286661A (en) * | 1992-08-26 | 1994-02-15 | Motorola, Inc. | Method of forming a bipolar transistor having an emitter overhang |
US5747388A (en) * | 1992-09-18 | 1998-05-05 | Siemens Aktiengesellschaft | Antireflection layer and process for lithographically structuring a layer |
US5593741A (en) * | 1992-11-30 | 1997-01-14 | Nec Corporation | Method and apparatus for forming silicon oxide film by chemical vapor deposition |
US5429987A (en) * | 1993-01-25 | 1995-07-04 | Sharp Microelectronics Technology, Inc. | Method for profile control of selective metallization |
US5312768A (en) * | 1993-03-09 | 1994-05-17 | Micron Technology, Inc. | Integrated process for fabricating raised, source/drain, short-channel transistors |
US5441797A (en) * | 1993-04-27 | 1995-08-15 | International Business Machines Corporation | Antireflective polyimide dielectric for photolithography |
US5639687A (en) * | 1993-07-06 | 1997-06-17 | Motorola Inc. | Method for forming an integrated circuit pattern on a semiconductor substrate using silicon-rich silicon nitride |
US5759755A (en) * | 1993-08-08 | 1998-06-02 | Samsung Electronics, Co., Ltd. | Semiconductor substrate containing anti-reflective layer |
US5656337A (en) * | 1993-08-31 | 1997-08-12 | Samsung Electronics Co., Ltd. | Method of forming a dielectric layer |
US5591494A (en) * | 1993-09-24 | 1997-01-07 | Applied Materials, Inc. | Deposition of silicon nitrides by plasma-enhanced chemical vapor deposition |
US5731242A (en) * | 1993-10-15 | 1998-03-24 | Intel Corporation | Self-aligned contact process in semiconductor fabrication |
US5741721A (en) * | 1994-02-01 | 1998-04-21 | Quality Microcircuits Corporation | Method of forming capacitors and interconnect lines |
US5656330A (en) * | 1994-03-22 | 1997-08-12 | Futaba Denshi Kogyo K.K. | Resistive element having a resistivity which is thermally stable against heat treatment, and method and apparatus for producing same |
US5872385A (en) * | 1994-05-02 | 1999-02-16 | Motorola Inc. | Conductive interconnect structure and method of formation |
US5858880A (en) * | 1994-05-14 | 1999-01-12 | Trikon Equipment Limited | Method of treating a semi-conductor wafer |
US5789819A (en) * | 1994-05-20 | 1998-08-04 | Texas Instruments Incorporated | Low dielectric constant material for electronics applications |
US6017779A (en) * | 1994-06-15 | 2000-01-25 | Seiko Epson Corporation | Fabrication method for a thin film semiconductor device, the thin film semiconductor device itself, liquid crystal display, and electronic device |
US5536857A (en) * | 1994-07-05 | 1996-07-16 | Ford Motor Company | Single source volatile precursor for SiO2.TiO2 powders and films |
US5600165A (en) * | 1994-07-27 | 1997-02-04 | Sony Corporation | Semiconductor device with antireflection film |
US5413963A (en) * | 1994-08-12 | 1995-05-09 | United Microelectronics Corporation | Method for depositing an insulating interlayer in a semiconductor metallurgy system |
US5482894A (en) * | 1994-08-23 | 1996-01-09 | Texas Instruments Incorporated | Method of fabricating a self-aligned contact using organic dielectric materials |
US5439838A (en) * | 1994-09-14 | 1995-08-08 | United Microelectronics Corporation | Method of thinning for EEPROM tunneling oxide device |
US6200835B1 (en) * | 1994-10-07 | 2001-03-13 | Micron Technology, Inc. | Methods of forming conductive polysilicon lines and bottom gated thin film transistors, and conductive polysilicon lines and thin film transistors |
US5498555A (en) * | 1994-11-07 | 1996-03-12 | United Microelectronics Corporation | Method of making LDD with polysilicon and dielectric spacers |
US6022404A (en) * | 1995-01-12 | 2000-02-08 | Degussa Aktiengesellschaft | Surface-modified, pyrogenically produced mixed oxides, method of their production and use |
US5709741A (en) * | 1995-02-28 | 1998-01-20 | Dow Corning Toray Silicone Co., Ltd. | Water repellent for application to glass and water-repellent glass |
US5786039A (en) * | 1995-05-15 | 1998-07-28 | France Telecom | Process for electrical insulation in microelectronics, applicable in narrow cavities, by deposition of oxide in the viscous state and corresponding device |
US5710067A (en) * | 1995-06-07 | 1998-01-20 | Advanced Micro Devices, Inc. | Silicon oxime film |
US6040619A (en) * | 1995-06-07 | 2000-03-21 | Advanced Micro Devices | Semiconductor device including antireflective etch stop layer |
US5750442A (en) * | 1995-09-25 | 1998-05-12 | Micron Technology, Inc. | Germanium as an antireflective coating and method of use |
US5744399A (en) * | 1995-11-13 | 1998-04-28 | Lsi Logic Corporation | Process for forming low dielectric constant layers using fullerenes |
US5759746A (en) * | 1996-05-24 | 1998-06-02 | Kabushiki Kaisha Toshiba | Fabrication process using a thin resist |
US6209484B1 (en) * | 1996-06-28 | 2001-04-03 | Applied Materials, Inc. | Method and apparatus for depositing an etch stop layer |
US5872035A (en) * | 1996-06-29 | 1999-02-16 | Hyundai Electronics Industries Co., Ltd. | Method of forming a floating gate in a flash memory device |
US6057217A (en) * | 1996-07-25 | 2000-05-02 | Nec Corporation | Process for production of semiconductor device with foreign element introduced into silicon dioxide film |
US5661093A (en) * | 1996-09-12 | 1997-08-26 | Applied Materials, Inc. | Method for the stabilization of halogen-doped films through the use of multiple sealing layers |
US5711987A (en) * | 1996-10-04 | 1998-01-27 | Dow Corning Corporation | Electronic coatings |
US5792688A (en) * | 1996-11-06 | 1998-08-11 | Vanguard International Semiconductor Corporation | Method to increase the surface area of a storage node electrode, of an STC structure, for DRAM devices, via formation of polysilicon columns |
US5796151A (en) * | 1996-12-19 | 1998-08-18 | Texas Instruments Incorporated | Semiconductor stack having a dielectric sidewall for prevention of oxidation of tungsten in tungsten capped poly-silicon gate electrodes |
US6184158B1 (en) * | 1996-12-23 | 2001-02-06 | Lam Research Corporation | Inductively coupled plasma CVD |
US5783493A (en) * | 1997-01-27 | 1998-07-21 | Taiwan Semiconductor Manufacturing Company Ltd. | Method for reducing precipitate defects using a plasma treatment post BPSG etchback |
US5933721A (en) * | 1997-04-21 | 1999-08-03 | Advanced Micro Devices, Inc. | Method for fabricating differential threshold voltage transistor pair |
US6083852A (en) * | 1997-05-07 | 2000-07-04 | Applied Materials, Inc. | Method for applying films using reduced deposition rates |
US5883014A (en) * | 1997-06-03 | 1999-03-16 | United Microelectronics Corp. | Method for treating via sidewalls with hydrogen plasma |
US5883011A (en) * | 1997-06-18 | 1999-03-16 | Vlsi Technology, Inc. | Method of removing an inorganic antireflective coating from a semiconductor substrate |
US6225217B1 (en) * | 1997-06-27 | 2001-05-01 | Nec Corporation | Method of manufacturing semiconductor device having multilayer wiring |
US6071799A (en) * | 1997-06-30 | 2000-06-06 | Hyundai Electronics Industries Co., Ltd. | Method of forming a contact of a semiconductor device |
US6238976B1 (en) * | 1997-07-08 | 2001-05-29 | Micron Technology, Inc. | Method for forming high density flash memory |
US6017614A (en) * | 1997-07-14 | 2000-01-25 | Vanguard International Semiconductor Corporation | Plasma-enhanced chemical vapor deposited SIO2 /SI3 N4 multilayer passivation layer for semiconductor applications |
US6020243A (en) * | 1997-07-24 | 2000-02-01 | Texas Instruments Incorporated | Zirconium and/or hafnium silicon-oxynitride gate dielectric |
US6184151B1 (en) * | 1997-08-21 | 2001-02-06 | International Business Machines Corporation | Method for forming cornered images on a substrate and photomask formed thereby |
US6060766A (en) * | 1997-08-25 | 2000-05-09 | Advanced Micro Devices, Inc. | Protection of hydrogen sensitive regions in semiconductor devices from the positive charge associated with plasma deposited barriers or layers |
US6187694B1 (en) * | 1997-11-10 | 2001-02-13 | Intel Corporation | Method of fabricating a feature in an integrated circuit using two edge definition layers and a spacer |
US6080529A (en) * | 1997-12-12 | 2000-06-27 | Applied Materials, Inc. | Method of etching patterned layers useful as masking during subsequent etching or for damascene structures |
US6218292B1 (en) * | 1997-12-18 | 2001-04-17 | Advanced Micro Devices, Inc. | Dual layer bottom anti-reflective coating |
US6060765A (en) * | 1998-01-05 | 2000-05-09 | Mitsubishi Denki Kabushiki Kaisha | Semiconductor device and a method of manufacturing the same |
US6204168B1 (en) * | 1998-02-02 | 2001-03-20 | Applied Materials, Inc. | Damascene structure fabricated using a layer of silicon-based photoresist material |
US6072227A (en) * | 1998-02-11 | 2000-06-06 | Applied Materials, Inc. | Low power method of depositing a low k dielectric with organo silane |
US6274292B1 (en) * | 1998-02-25 | 2001-08-14 | Micron Technology, Inc. | Semiconductor processing methods |
US6208004B1 (en) * | 1998-08-19 | 2001-03-27 | Philips Semiconductor, Inc. | Semiconductor device with high-temperature-stable gate electrode for sub-micron applications and fabrication thereof |
US6087064A (en) * | 1998-09-03 | 2000-07-11 | International Business Machines Corporation | Silsesquioxane polymers, method of synthesis, photoresist composition, and multilayer lithographic method |
US6268282B1 (en) * | 1998-09-03 | 2001-07-31 | Micron Technology, Inc. | Semiconductor processing methods of forming and utilizing antireflective material layers, and methods of forming transistor gate stacks |
US6281100B1 (en) * | 1998-09-03 | 2001-08-28 | Micron Technology, Inc. | Semiconductor processing methods |
US6727173B2 (en) * | 1998-09-03 | 2004-04-27 | Micron Technology, Inc. | Semiconductor processing methods of forming an utilizing antireflective material layers, and methods of forming transistor gate stacks |
US6373114B1 (en) * | 1998-10-23 | 2002-04-16 | Micron Technology, Inc. | Barrier in gate stack for improved gate dielectric integrity |
Also Published As
Publication number | Publication date |
---|---|
US7235499B1 (en) | 2007-06-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101155141B1 (en) | Techniques for the use of amorphous carbonapf for various etch and litho integration scheme | |
US6734107B2 (en) | Pitch reduction in semiconductor fabrication | |
EP1114444B1 (en) | Semiconductor processing method and gate stack | |
US7432212B2 (en) | Methods of processing a semiconductor substrate | |
US20050227450A1 (en) | Methods of forming trench isolation regions | |
CN112262227B (en) | Conformal carbon film deposition | |
CN112017946B (en) | Method for forming semiconductor structure and transistor | |
US6136511A (en) | Method of patterning substrates using multilayer resist processing | |
US8058176B2 (en) | Methods of patterning insulating layers using etching techniques that compensate for etch rate variations | |
US20110254142A1 (en) | Stacked structure | |
US6797628B2 (en) | Methods of forming integrated circuitry, semiconductor processing methods, and processing method of forming MRAM circuitry | |
US20070004227A1 (en) | Semiconductor processing methods | |
US9728421B2 (en) | High aspect ratio patterning of hard mask materials by organic soft masks | |
US20090098735A1 (en) | Method of forming isolation layer in semicondcutor device | |
KR100632422B1 (en) | Method for forming a structure in a semiconductor substrate | |
KR100826964B1 (en) | Method for fabricating semiconductor device | |
WO2001035455A1 (en) | Etch process that resists notching at electrode bottom | |
US20220359200A1 (en) | Methods for fabricating semiconductor devices | |
KR20080085280A (en) | Method for forming pattern in semiconductor device | |
KR100744089B1 (en) | Method for fabricating semiconductor device | |
CN117936370A (en) | Method for forming semiconductor structure | |
JP2004165286A (en) | Method for manufacturing thin film transistor | |
CN118629866A (en) | Preparation method of semiconductor structure and semiconductor structure | |
CN117410171A (en) | Thin film structure, preparation method thereof, pattern transfer method and semiconductor structure | |
KR20080085287A (en) | Semiconductor structure for forming pattern and method for forming pattern using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: EXPRESSLY ABANDONED -- DURING EXAMINATION |