Connect public, paid and private patent data with Google Patents Public Datasets

Optimized sensor geometry for an implantable glucose sensor

Download PDF

Info

Publication number
US20060200022A1
US20060200022A1 US11416058 US41605806A US2006200022A1 US 20060200022 A1 US20060200022 A1 US 20060200022A1 US 11416058 US11416058 US 11416058 US 41605806 A US41605806 A US 41605806A US 2006200022 A1 US2006200022 A1 US 2006200022A1
Authority
US
Grant status
Application
Patent type
Prior art keywords
sensor
body
surface
sensing
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11416058
Inventor
James Brauker
Victoria Carr-Brendel
Paul Neale
Laura Martinson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DexCom Inc
Original Assignee
DexCom Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6846Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive
    • A61B5/6879Means for maintaining contact with the body
    • A61B5/6882Anchoring means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14532Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring glucose, e.g. by tissue impedance measurement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14546Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring analytes not otherwise provided for, e.g. ions, cytochromes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/41Detecting, measuring or recording for evaluating the immune or lymphatic systems
    • A61B5/414Evaluating particular organs or parts of the immune or lymphatic systems
    • A61B5/415Evaluating particular organs or parts of the immune or lymphatic systems the glands, e.g. tonsils, adenoids or thymus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/41Detecting, measuring or recording for evaluating the immune or lymphatic systems
    • A61B5/414Evaluating particular organs or parts of the immune or lymphatic systems
    • A61B5/418Evaluating particular organs or parts of the immune or lymphatic systems lymph vessels, ducts or nodes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/18Shielding or protection of sensors from environmental influences, e.g. protection from mechanical damage
    • A61B2562/187Strain relief means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • A61B5/0031Implanted circuitry
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1486Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using enzyme electrodes, e.g. with immobilised oxidase

Abstract

An implantable sensor for use in measuring a concentration of an analyte such as glucose in a bodily fluid, including a body with a sensing region adapted for transport of analytes between the sensor and the bodily fluid, wherein the sensing region is located on a curved portion of the body such that when a foreign body capsule forms around the sensor, a contractile force is exerted by the foreign body capsule toward the sensing region. The body is partially or entirely curved, partially or entirely covered with an anchoring material for supporting tissue ingrowth, and designed for subcutaneous tissue implantation. The geometric design, including curvature, shape, and other factors minimize chronic inflammatory response at the sensing region and contribute to improved performance of the sensor in vivo.

Description

    RELATED APPLICATION
  • [0001]
    This application is a division of U.S. application Ser. No. 10/646,333 filed Aug. 22, 2003, which claims the benefit of priority under 35 U.S.C. § 119(e) to U.S. Provisional Application No. 60/460,825, filed Apr. 4, 2003, the contents of which are hereby incorporated by reference in their entirety.
  • FIELD OF THE INVENTION
  • [0002]
    The present invention relates generally to implantable sensors that measure the concentration of an analyte in a biological fluid. The sensor geometry optimizes the healing at the sensor-tissue interface and is less amenable to accidental movement due to shear and rotational forces than other sensor configurations.
  • BACKGROUND OF THE INVENTION
  • [0003]
    Implantable analyte sensors that are placed in the subcutaneous tissue or other soft tissue sites must develop and sustain a stable biointerface that allows the continuous and timely transport of analytes across the interface between the tissue and the device. For example, in the case of a glucose sensor, glucose must be able to freely diffuse from surrounding blood vessels to a membrane of the sensor. Glucose sensors may be implanted in the subcutaneous tissue or other soft tissue. Such devices include glucose oxidase based amperometric sensors that sense glucose for weeks, months or longer after implantation.
  • [0004]
    While the utility of such devices for glucose sensing has been demonstrated, the consistency of function for such devices is not optimal. For a particular device, the sensor may, for example: 1) fail to function (namely, fail to track glucose effectively) in a stable manner during the first few weeks after implantation; 2) not work at all during the first few weeks, but subsequently begin to function in a stable manner; 3) function well during the first few weeks, lose function, then regain effectiveness or never recover function; or 4) work immediately, and continue to function with high accuracy throughout the course of a several month study.
  • [0005]
    Glucose sensors with improved acceptance within the host tissue and decreased variability of response are required for reliable functionality in vivo. Accordingly, the present invention discloses systems and methods for providing this improved functionality and consistency of analyte sensor in a host.
  • SUMMARY OF THE INVENTION
  • [0006]
    A sensor, especially a sensor suitable for implantation into soft tissue that provides accurate analyte measurements while offering consistency of function is highly desirable.
  • [0007]
    Accordingly, in a first embodiment an implantable sensor is provided for use in measuring a concentration of an analyte in a bodily fluid, the sensor including a body including a sensing region adapted for transport of analytes between the sensor and the bodily fluid, wherein the sensing region is located on a curved portion of the body such that when a foreign body capsule forms around the sensor, a contractile force is exerted by the foreign body capsule toward the sensing region.
  • [0008]
    In an aspect of the first embodiment, the sensor is a subcutaneous sensor.
  • [0009]
    In an aspect of the first embodiment, the sensor is an intramuscular sensor.
  • [0010]
    In an aspect of the first embodiment, the sensor is an intraperitoneal sensor.
  • [0011]
    In an aspect of the first embodiment, the sensor is an intrafascial sensor.
  • [0012]
    In an aspect of the first embodiment, the sensor is suitable for implantation in an axillary region.
  • [0013]
    In an aspect of the first embodiment, the sensor is suitable for implantation in a soft tissue of a body.
  • [0014]
    In an aspect of the first embodiment, the sensor is suitable for implantation at the interface between two tissue types.
  • [0015]
    In an aspect of the first embodiment, the sensor includes a plurality of sensor regions.
  • [0016]
    In an aspect of the first embodiment, the plurality of sensor regions are located on curved portions of the body.
  • [0017]
    In an aspect of the first embodiment, the body includes a first major surface and a second major surface, and wherein the sensing region is located on the first surface, and wherein the second surface is flat.
  • [0018]
    In an aspect of the first embodiment, the body includes a first major surface and a second major surface, and wherein the sensing region is located on the first major surface, and wherein the second major surface includes a curvature.
  • [0019]
    In an aspect of the first embodiment, the body includes a first major surface and a second major surface, and wherein the sensor region is situated at a position on the first major surface offset from a center point of the first major surface.
  • [0020]
    In an aspect of the first embodiment, the body includes a first major surface and a second major surface, and wherein the sensor region is situated on the first major surface approximately at a center point of the first major surface.
  • [0021]
    In an aspect of the first embodiment, the body includes a first surface and a second surface, and wherein the sensor region is situated approximately at an apex of the first surface.
  • [0022]
    In an aspect of the first embodiment, the body includes a first surface and a second surface, and wherein the first surface, when viewed from a direction perpendicular to a center of the first surface, has a substantially rectangular profile.
  • [0023]
    In an aspect of the first embodiment, the body includes a first surface and a second surface, and wherein the first surface, when viewed from a direction perpendicular to a center of the first surface, has a substantially rectangular profile with rounded corners.
  • [0024]
    In an aspect of the first embodiment, the body includes a first surface and a second surface, and wherein the first surface, when viewed from a direction perpendicular to a center of the first surface, has a substantially oval profile.
  • [0025]
    In an aspect of the first embodiment, the body includes a first surface and a second surface, and wherein the first surface, when viewed from a direction perpendicular to a center of the first surface, has a substantially circular profile.
  • [0026]
    In an aspect of the first embodiment, the body is substantially cuboidal defined by six faces, eight vertices, and twelve edges, wherein at least one of the faces includes the sensing region.
  • [0027]
    In an aspect of the first embodiment, at least two of the faces are substantially curved.
  • [0028]
    In an aspect of the first embodiment, at least four of the faces are substantially curved.
  • [0029]
    In an aspect of the first embodiment, all six of the faces are substantially curved.
  • [0030]
    In an aspect of the first embodiment, the edges are substantially rounded.
  • [0031]
    In an aspect of the first embodiment, the vertices are substantially rounded.
  • [0032]
    In an aspect of the first embodiment, the entire body is curved.
  • [0033]
    In an aspect of the first embodiment, the body is substantially cylindrical defined by a curved lateral surface and two ends, and wherein the sensor region is located on the lateral surface.
  • [0034]
    In an aspect of the first embodiment, the body is substantially cylindrical defined by a curved lateral surface and two ends, and wherein at least one of the ends includes the substantially curved portion on which the sensor region is located.
  • [0035]
    In an aspect of the first embodiment, the body is substantially spherical.
  • [0036]
    In an aspect of the first embodiment, the body is substantially ellipsoidal.
  • [0037]
    In an aspect of the first embodiment, the body includes a first surface on which the sensing region is located and a second surface, and wherein the first surface includes anchoring material thereon for supporting tissue ingrowth.
  • [0038]
    In an aspect of the first embodiment, the second surface is located opposite the first surface, and wherein the second surface includes anchoring material thereon for supporting tissue ingrowth.
  • [0039]
    In an aspect of the first embodiment, the second surface is located opposite the first surface, and wherein the second surface is substantially smooth and includes a biocompatible material that is non-adhesive to tissues.
  • [0040]
    In an aspect of the first embodiment, the second surface is curved.
  • [0041]
    In an aspect of the first embodiment, a mechanical anchoring mechanism is formed on the body.
  • [0042]
    In an aspect of the first embodiment, the curved portion includes a plurality of radii of curvature.
  • [0043]
    In an aspect of the first embodiment, the curved portion includes a radius of curvature between about 0.5 mm and about 10 cm.
  • [0044]
    In an aspect of the first embodiment, the curved portion includes a radius of curvature between about 1 cm and about 5 cm.
  • [0045]
    In an aspect of the first embodiment, the curved portion includes a radius of curvature between about 2 cm and about 3 cm.
  • [0046]
    In an aspect of the first embodiment, the curved portion includes a radius of curvature between about 2.5 cm and about 2.8 cm.
  • [0047]
    In an aspect of the first embodiment, the sensor includes a major surface and wherein the curved portion is located on at least a portion of the major surface.
  • [0048]
    In an aspect of the first embodiment, the body further includes a flat portion adjacent the curved portion.
  • [0049]
    In an aspect of the first embodiment, an interface between the flat portion and the curved portion includes a gradual transition.
  • [0050]
    In an aspect of the first embodiment, the body includes a first major surface on which the sensing region is located and a second major surface, and wherein the first and second major surfaces together account for at least about 40% of the surface area of the device.
  • [0051]
    In an aspect of the first embodiment, the first and second major surfaces together account for at least about 50% of the surface area of the device.
  • [0052]
    In an aspect of the first embodiment, the body includes a first major surface on which the sensing region is located and a second major surface, wherein the first major surface has edges between which a width of the first major surface can be measured, and wherein the sensing region is spaced away from the edges by a distance that is at least about 10% of the width of the first major surface.
  • [0053]
    In an aspect of the first embodiment, the sensing region is spaced away from the edges by a distance that is at least about 15% of the width of the first major surface.
  • [0054]
    In an aspect of the first embodiment, the sensing region is spaced away from the edges by a distance that is at least about 20% of the width of the first major surface.
  • [0055]
    In an aspect of the first embodiment, the sensing region is spaced away from the edges by a distance that is at least about 25% of the width of the first major surface.
  • [0056]
    In an aspect of the first embodiment, the sensing region is spaced away from the edges by a distance that is at least about 30% of the width of the first major surface.
  • [0057]
    In an aspect of the first embodiment, the spacing of the sensing region from the edges is true for at least two width measurements, which measurements are taken generally transverse to each other.
  • [0058]
    In an aspect of the first embodiment, the body includes a first major surface on which the sensing region is located and a second major surface, wherein the first major surface is at least slightly convex.
  • [0059]
    In an aspect of the first embodiment, a reference plane may be defined that touches the first major surface at a point spaced in from edges of the first major surface, and is generally parallel to the first major surface, and is spaced away from opposite edges of the first major surface due to convexity of the first major surface, and wherein a location of an edge is the point at which a congruent line or a normal line is angled 45 degrees with respect to the reference plane.
  • [0060]
    In an aspect of the first embodiment, the reference plane is spaced from the edges a distance that is at least about 3% from the edges, and not more than 50% of the width.
  • [0061]
    In an aspect of the first embodiment, the reference plane is spaced from the edges a distance that is at least about 3% from the edges, and not more than 25% of the width.
  • [0062]
    In an aspect of the first embodiment, the reference plane is spaced from the edges a distance that is at least about 3% from the edges, and not more than 15% of the width.
  • [0063]
    In an aspect of the first embodiment, the body includes a first major surface on which the sensing region is located, and wherein edges of the first major surface are rounded and transition smoothly away from the first major surface.
  • [0064]
    In an aspect of the first embodiment, the body defines a surface area, and wherein between 10% and 100% of the surface area is convexly curved.
  • [0065]
    In an aspect of the first embodiment, the body defines a surface area, and wherein a substantial portion of the surface area is convexly curved.
  • [0066]
    In an aspect of the first embodiment, the body defines a surface area, and where at least about 90% of the surface area is convexly curved.
  • [0067]
    In an aspect of the first embodiment, the body includes plastic.
  • [0068]
    In an aspect of the first embodiment, the plastic is selected from the group consisting of thermoplastic and thermoset.
  • [0069]
    In an aspect of the first embodiment, the thermoset is epoxy.
  • [0070]
    In an aspect of the first embodiment, the thermoset is silicone.
  • [0071]
    In an aspect of the first embodiment, the thermoset is polyurethane.
  • [0072]
    In an aspect of the first embodiment, the plastic is selected from the group consisting of metal, ceramic, and glass.
  • [0073]
    In an aspect of the first embodiment, a porous biointerface material that covers at least a portion of the sensing region.
  • [0074]
    In an aspect of the first embodiment, the biointerface material includes interconnected cavities dimensioned and arranged to create contractile forces that counteract with the generally uniform downward fibrous tissue contracture caused by the foreign body capsule in vivo and thereby interfere with formation of occlusive cells.
  • [0075]
    In an aspect of the first embodiment, the sensor is a glucose sensor.
  • [0076]
    In a second embodiment, an implantable sensor is provided for use in measuring a concentration of an analyte in a bodily fluid, the sensor including: a body including a sensing region on a major surface of the body, wherein the major surface includes a continuous curvature substantially across the entire surface such that when a foreign body capsule forms around the sensor, a contractile force is exerted by the foreign body capsule toward the sensing region.
  • [0077]
    In a third embodiment, a wholly implantable sensor is provided to measure a concentration of an analyte in a bodily fluid, including: a wholly implantable body including a sensing region adapted for transport of analytes between the sensor and the bodily fluid, wherein the sensing region is located on a curved portion of a first surface of the body and wherein the first surface includes anchoring material thereon for supporting tissue ingrowth.
  • [0078]
    In a fourth embodiment, an implantable sensor is provided to measure a concentration of an analyte in a bodily fluid, including: a body having a first major surface and, opposite thereto, a second major surface, wherein the first major surface is generally planar, slightly convex, and has rounded edges, with a sensor region located on the first major surface that is spaced away from the rounded edges, wherein the first major surface is sufficiently convex that when a foreign body capsule forms around the sensor, contractile forces are exerted thereby generally uniformly towards the sensing region.
  • [0079]
    In a fifth embodiment, an implantable sensor is provided for use in measuring a concentration of an analyte in a bodily fluid, the sensor including: a body, the body including a sensing region adapted for transport of analytes between the sensor and the bodily fluid, wherein the sensing region is located on a curved portion of the body, and wherein a thermoset material substantially encapsulates the body outside the sensing region.
  • [0080]
    In a sixth embodiment, an implantable sensor for use in measuring a concentration of an analyte in a bodily fluid, the sensor including: sensing means for measuring a concentration of analyte in a bodily fluid; and housing means for supporting the sensing means, wherein the sensing means is located on a curved portion of housing means such that when a foreign body capsule forms around the housing means, a contractile force is exerted by the foreign body capsule toward the sensing means.
  • [0081]
    In a seventh embodiment, an implantable drug delivery device is provided that allows transport of analytes between the device and a bodily fluid, the device including: a body including an analyte transport region adapted for transport of analytes between the device and the bodily fluid, wherein the transport region is located on a curved portion of the body such that when a foreign body capsule forms around the device, a contractile force is exerted by the foreign body capsule toward the analyte transport region.
  • [0082]
    In an eighth embodiment, an implantable cell transplantation device is provided that allows transport of analytes between the device and a bodily fluid, the device including: a body including an analyte transport region adapted for transport of analytes between the device and the bodily fluid, wherein the transport region is located on a curved portion of the body such that when a foreign body capsule forms around the device, a contractile force is exerted by the foreign body capsule toward the analyte transport region.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • [0083]
    FIG. 1 is an illustration of classical foreign body response to an object implanted under the skin.
  • [0084]
    FIG. 2A is schematic side view of a prior art device that has a sensing region with an abrupt inside turn, causing a sub-optimal foreign body response.
  • [0085]
    FIG. 2B is a photomicrograph of the foreign body response to a portion of the device of FIG. 2A, after formation of the foreign body capsule and subsequent explantation, showing thickened immune response adjacent to the abrupt inside turn.
  • [0086]
    FIG. 3A is a schematic side view of another prior art device that has flattened surfaces across the entire device, and particularly across the sensing region, causing sub-optimal foreign body capsule healing.
  • [0087]
    FIG. 3B is a schematic side view of the sensing region of yet another device that has flattened surfaces across the entire device, and an inset sensing region, which is an example of another device that causes sub-optimal foreign body capsule healing in implantable sensors.
  • [0088]
    FIG. 4 is a cross-sectional view of the sensing region of an analyte sensor in one embodiment of the present invention, wherein the sensing region is continuously curved, thereby causing contractile forces from the foreign body capsule to press downwardly on the sensing region.
  • [0089]
    FIG. 5A is a perspective view of an analyte sensor in another embodiment, including a thin oblong body, a curved sensing region, and an overall curved surface on which the sensing region is located, thereby causing contractile forces from the foreign body capsule to press downward on the sensor head.
  • [0090]
    FIG. 5B is the analyte sensor of FIG. 5A shown implanted with the sensing region adjacent to the fascia underlying the subcutaneous space, and overlaying adjacent muscle.
  • [0091]
    FIG. 5C is an end view of the analyte sensor of FIG. 5A showing the contractile forces caused by the foreign body capsule.
  • [0092]
    FIG. 5D is a side view of the analyte sensor of FIG. 5A.
  • [0093]
    FIG. 6 is a perspective view of sensor geometry in an alternative embodiment wherein the sensor includes a curved sensor region and a flat region, wherein the interface between the flat region and the curved region includes a gradual transition.
  • [0094]
    FIG. 7 is a perspective view of sensor geometry in an alternative embodiment wherein the entire sensor body is curved.
  • [0095]
    FIG. 8 is a perspective view of sensor geometry in an alternative embodiment including a cylindrical geometry wherein a plurality of sensing regions are located on the curved lateral surface of the sensor body.
  • [0096]
    FIG. 9A is a perspective view of sensor geometry in an alternative embodiment including a substantially spherical body wherein a plurality of sensing regions are located about the circumference of the sphere.
  • [0097]
    FIG. 9B is a perspective view of a sensor geometry in an alternative embodiment including a substantially spherical body with a rod extending therefrom.
  • [0098]
    FIGS. 10A to 10D are perspective views of a sensor that has an expandable sensing body in one embodiment. FIGS. 10A and 10C are views of the sensor with the sensing body in a collapsed state, FIGS. 10B and 10D are views of the sensor with the sensing body in an expanded state.
  • [0099]
    FIGS. 11A to 11D are perspective views of sensors wherein one or more sensing bodies are tethered to an electronics body in a variety of alternative embodiments.
  • [0100]
    FIGS. 12A to 12B are perspective views of a sensor in an alternative embodiment wherein an electronics body is independent of the sensing bodies in a preassembled state and wherein the sensing bodies are independently inserted (and operatively connected) to the electronics body in a minimally invasive manner.
  • [0101]
    FIG. 13A is a side schematic view of an analyte sensor with anchoring material on a first and second major surface of the device, including the surface on which the sensing region is located, wherein the analyte sensor is implanted subcutaneously and is ingrown with fibrous, vascularized tissue.
  • [0102]
    13B is a side schematic view of an analyte sensor with anchoring material on a first major surface on which the sensing region is located, and wherein a second major surface is substantially smooth.
  • [0103]
    FIG. 14A is a graph showing the percentage of functional sensors from a study of two different sensor geometries implanted in a host.
  • [0104]
    FIG. 14B is a graph showing the average R-value of sensors from a study of two different sensor geometries implanted in a host.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
  • [0105]
    The following description and examples illustrate some exemplary embodiments of the disclosed invention in detail. Those of skill in the art will recognize that there are numerous variations and modifications of this invention that are encompassed by its scope. Accordingly, the description of a certain exemplary embodiment should not be deemed to limit the scope of the present invention.
  • [0000]
    Definitions
  • [0106]
    In order to facilitate an understanding of the disclosed invention, a number of terms are defined below.
  • [0107]
    The term “analyte,” as used herein, is a broad term and is used in its ordinary sense, including, without limitation, to refer to a substance or chemical constituent in a biological fluid (for example, blood, interstitial fluid, cerebral spinal fluid, lymph fluid or urine) that can be analyzed. Analytes may include naturally occurring substances, artificial substances, metabolites, and/or reaction products. In some embodiments, the analyte for measurement by the sensor heads, devices, and methods is glucose. However, other analytes are contemplated as well, including but not limited to acarboxyprothrombin; acylcarnitine; adenine phosphoribosyl transferase; adenosine deaminase; albumin; alpha-fetoprotein; amino acid profiles (arginine (Krebs cycle), histidine/urocanic acid, homocysteine, phenylalanine/tyrosine, tryptophan); andrenostenedione; antipyrine; arabinitol enantiomers; arginase; benzoylecgonine (cocaine); biotinidase; biopterin; c-reactive protein; carbon dioxide; carnitine; carnosinase; CD4; ceruloplasmin; chenodeoxycholic acid; chloroquine; cholesterol; cholinesterase; conjugated 1-β hydroxy-cholic acid; cortisol; creatine kinase; creatine kinase MM isoenzyme; cyclosporin A; d-penicillamine; de-ethylchloroquine; dehydroepiandrosterone sulfate; DNA (acetylator polymorphism, alcohol dehydrogenase, alpha 1-antitrypsin, cystic fibrosis, Duchenne/Becker muscular dystrophy, glucose-6-phosphate dehydrogenase, hemoglobinopathies, A,S,C,E, D-Punjab, beta-thalassemia, hepatitis B virus, HCMV, HIV-1, HTLV-1, Leber hereditary optic neuropathy, MCAD, RNA, PKU, Plasmodium vivax, sexual differentiation, 21-deoxycortisol); desbutylhalofantrine; dihydropteridine reductase; diptheria/tetanus antitoxin; erythrocyte arginase; erythrocyte protoporphyrin; esterase D; fatty acids/acylglycines; free β-human chorionic gonadotropin; free erythrocyte porphyrin; free thyroxine (FT4); free tri-iodothyronine (FT3); fumarylacetoacetase; galactose/gal-1-phosphate; galactose-1-phosphate uridyltransferase; gentamicin; glucose-6-phosphate dehydrogenase; glutathione; glutathione perioxidase; glycocholic acid; glycosylated hemoglobin; halofantrine; hemoglobin variants; hexosaminidase A; human erythrocyte carbonic anhydrase I; 17 alpha-hydroxyprogesterone; hypoxanthine phosphoribosyl transferase; immunoreactive trypsin; lactate; lead; lipoproteins ((a), B/A-1, β); lysozyme; mefloquine; netilmicin; oxygen; phenobarbitone; phenyloin; phytanic/pristanic acid; progesterone; prolactin; prolidase; purine nucleoside phosphorylase; quinine; reverse tri-iodothyronine (rT3); selenium; serum pancreatic lipase; sissomicin; somatomedin C; specific antibodies (adenovirus, anti-nuclear antibody, anti-zeta antibody, arbovirus, Aujeszky's disease virus, dengue virus, Dracunculus medinensis, Echinococcus granulosus, Entamoeba histolytica, enterovirus, Giardia duodenalisa, Helicobacter pylori, hepatitis B virus, herpes virus, HIV-1, IgE (atopic disease), influenza virus, Leishmania donovani, leptospira, measles/mumps/rubella, Mycobacterium leprae, Mycoplasma pneumoniae, Myoglobin, Onchocerca volvulus, parainfluenza virus, Plasmodium falciparum, poliovirus, Pseudomonas aeruginosa, pH, respiratory syncytial virus, rickettsia (scrub typhus), Schistosoma mansoni, Toxoplasma gondii, Trepenoma pallidium, Trypanosoma cruzi/rangeli, vesicular stomatis virus, Wuchereria bancrofti, yellow fever virus); specific antigens (hepatitis B virus, HIV-1); succinylacetone; sulfadoxine; theophylline; thyrotropin (TSH); thyroxine (T4); thyroxine-binding globulin; trace elements; transferrin; UDP-galactose-4-epimerase; urea; uroporphyrinogen I synthase; vitamin A; white blood cells; and zinc protoporphyrin. Salts, sugar, protein, fat, vitamins and hormones naturally occurring in blood or interstitial fluids may also constitute analytes in certain embodiments. The analyte may be naturally present in the biological fluid, for example, a metabolic product, a hormone, an antigen, an antibody, and the like. Alternatively, the analyte may be introduced into the body, for example, a contrast agent for imaging, a radioisotope, a chemical agent, a fluorocarbon-based synthetic blood, or a drug or pharmaceutical composition, including but not limited to insulin; ethanol; cannabis (marijuana, tetrahydrocannabinol, hashish); inhalants (nitrous oxide, amyl nitrite, butyl nitrite, chlorohydrocarbons, hydrocarbons); cocaine (crack cocaine); stimulants (amphetamines, methamphetamines, Ritalin, Cylert, Preludin, Didrex, PreState, Voranil, Sandrex, Plegine); depressants (barbituates, methaqualone, tranquilizers such as Valium, Librium, Miltown, Serax, Equanil, Tranxene); hallucinogens (phencyclidine, lysergic acid, mescaline, peyote, psilocybin); narcotics (heroin, codeine, morphine, opium, meperidine, Percocet, Percodan, Tussionex, Fentanyl, Darvon, Talwin, Lomotil); designer drugs (analogs of fentanyl, meperidine, amphetamines, methamphetamines, and phencyclidine, for example, Ecstasy); anabolic steroids; and nicotine. The metabolic products of drugs and pharmaceutical compositions are also contemplated analytes. Analytes such as neurochemicals and other chemicals generated within the body may also be analyzed, such as, for example, ascorbic acid, uric acid, dopamine, noradrenaline, 3-methoxytyramine (3MT), 3,4-Dihydroxyphenylacetic acid (DOPAC), Homovanillic acid (HVA), 5-Hydroxytryptamine (5HT), and 5-Hydroxyindoleacetic acid (FHIAA).
  • [0108]
    By the terms “evaluated”, “monitored”, “analyzed”, and the like, it is meant that an analyte may be detected and/or measured.
  • [0109]
    The terms “sensor head” and “sensing region” as used herein are broad terms and are used in their ordinary sense, including, without limitation, the region of a monitoring device responsible for the detection of a particular analyte. In one embodiment, the sensing region generally comprises a non-conductive body, a working electrode (anode), a reference electrode, and a counter electrode (cathode) passing through and secured within the body forming an electrochemically reactive surface at one location on the body and an electronic connective means at another location on the body, and a multi-region membrane affixed to the body and covering the electrochemically reactive surface. The counter electrode generally has a greater electrochemically reactive surface area than the working electrode. During general operation of the sensor a biological sample (for example, blood or interstitial fluid) or a portion thereof contacts (directly or after passage through one or more membranes or domains) an enzyme (for example, glucose oxidase); the reaction of the biological sample (or portion thereof) results in the formation of reaction products that allow a determination of the analyte (e.g., glucose) level in the biological sample. In preferred embodiments, the multi-region membrane further comprises an enzyme domain and an electrolyte phase, namely, a free-flowing liquid phase comprising an electrolyte-containing fluid described further below. While the preferred embodiments are generally illustrated by a sensor as described above, other sensor head configurations are also contemplated. While electrochemical sensors (including coulometric, voltammetric, and/or amperometric sensors) for the analysis of glucose are generally contemplated, other sensing mechanisms, including but not limited to optochemical sensors, biochemical sensors, electrocatalytic sensors, optical sensors, piezoelectric sensors, thermoelectric sensors, and acoustic sensors may be used. A device may include one sensing region, or multiple sensing regions. Each sensing region can be employed to determine the same or different analytes. The sensor region may include the entire surface of the device, a substantial portion of the surface of the device, or only a small portion of the surface of the device. Different sensing mechanisms may be employed by different sensor regions on the same device, or a device may include one or more sensor regions and also one or more regions for drug delivery, immunoisolation, cell transplantation, and the like. It may be noted that the preferred embodiments, the “sensor head” is the part of the sensor that houses the electrodes, while the “sensing region” includes the sensor head and area that surrounds the sensor head, particularly the area in such proximity to the sensor head that effects of the foreign body capsule on the sensor head.
  • [0110]
    The term “foreign body capsule” or “FBC,” as used herein, is a broad term and is used in its ordinary sense, including, without limitation, body's response to the introduction of a foreign object; there are three main layers of a FBC: 1) the innermost layer, adjacent to the object, is composed generally of macrophages, foreign body giant cells, and occlusive cell layers; 2) the intermediate FBC layer, lying distal to the first layer with respect to the object, is a wide zone (e.g., about 30-100 microns) composed primarily of fibroblasts, contractile fibrous tissue fibrous matrix; and 3) the outermost FBC layer is loose connective granular tissue containing new blood vessels. Over time, this FBC tissue becomes muscular in nature and contracts around the foreign object so that the object remains tightly encapsulated.
  • [0111]
    The term “subcutaneous,” as used herein, is a broad term and is used in its ordinary sense, including, without limitation, under the skin.
  • [0112]
    The term “intramuscular,” as used herein, is a broad term and is used in its ordinary sense, including, without limitation, within the substance of a muscle.
  • [0113]
    The term “intraperitoneal,” as used herein, is a broad term and is used in its ordinary sense, including, without limitation, within the peritoneal cavity, which is the area that contains the abdominal organs.
  • [0114]
    The term “intrafascial,” as used herein, is a broad term and is used in its ordinary sense, including, without limitation, within the fascia, which is a sheet or band of fibrous tissue such as lies deep to the skin or forms an investment for muscles and various other organs of the body.
  • [0115]
    The term “axillary region,” as used herein, is a broad term and is used in its ordinary sense, including, without limitation, the pyramidal region between the upper thoracic wall and the arm, its base formed by the skin and apex bounded by the approximation of the clavicle, coracoid process, and first rib; it contains axillary vessels, the brachial plexus of nerves, many lymph nodes and vessels, and loose areolar tissue.
  • [0116]
    The term “apex,” as used herein, is a broad term and is used in its ordinary sense, including, without limitation, the uppermost point; for example the outermost point of a convexly curved portion.
  • [0117]
    The term “cuboidal,” as used herein, is a broad term and is used in its ordinary sense, including, without limitation, a polyhedron composed of six faces, eight vertices, and twelve edges, wherein the faces.
  • [0118]
    The term “convex,” as used herein, is a broad term and is used in its ordinary sense, including, without limitation, outwardly protuberant; that is, an object is convex if for any pair of points within the object, any point on the line that joins them is also within the object. A convex portion is a portion of an object that is convex in that portion of the object. For example, a solid cube is convex, but anything that is hollow or has a dent in it is not convex.
  • [0119]
    The term “curvature,” “curved portion,” and “curved,” as used herein, are broad terms and is used in their ordinary sense, including, without limitation, one or more arcs defined by one or more radii.
  • [0120]
    The term “cylindrical,” as used herein, is a broad term and is used in its ordinary sense, including, without limitation, a solid of circular or elliptical cross section in which the centers of the circles or ellipses all lie on a single line. A cylinder defines a lateral surface and two ends.
  • [0121]
    The term “ellipsoidal,” as used herein, is a broad term and is used in its ordinary sense, including, without limitation, closed surface of which all plane sections are either ellipses or circles. An ellipsoid is symmetrical about three mutually perpendicular axes that intersect at the center.
  • [0122]
    The term “spherical,” as used herein, is a broad term and is used in its ordinary sense, including, without limitation, a solid that is bounded by a surface consisting of all points at a given distance from a point constituting its center.
  • [0123]
    The term “anchoring material,” as used herein, is a broad term and is used in its ordinary sense, including, without limitation, biocompatible material that is non-smooth, and particularly comprises an architecture that supports tissue ingrowth in order to facilitate anchoring of the material into bodily tissue in vivo. Some examples of anchoring materials include polyester, polypropylene cloth, polytetrafluoroethylene felts, expanded polytetrafluoroethylene, and porous silicone, for example.
  • [0124]
    The term “mechanical anchoring mechanism,” as used herein, is a broad term and is used in its ordinary sense, including, without limitation, mechanical mechanisms (e.g., prongs, spines, barbs, wings, hooks, helical surface topography, gradually changing diameter, or the like), which aids in immobilizing the sensor in the subcutaneous space, particularly prior to formation of a mature foreign body capsule
  • [0125]
    The term “biocompatible,” as used herein, is a broad term and is used in its ordinary sense, including, without limitation, compatibility with living tissue or a living system by not being toxic.
  • [0126]
    The term “non-adhesive to tissue,” as used herein, is a broad term and is used in its ordinary sense, including, without limitation, a material or surface of a material to which cells and/or cell processes do not adhere at the molecular level, and/or to which cells and/or cell processes do not adhere to the surface of the material.
  • [0127]
    The term “plastic,” as used herein, is a broad term and is used in its ordinary sense, including, without limitation, polymeric materials that have the capability of being molded or shaped, usually by the application of heat and pressure. Polymers that are classified as plastics can be divided into two major categories: thermoplastic and thermoset.
  • [0128]
    The term “thermoplastic,” as used herein, is a broad term and is used in its ordinary sense, including, without limitation, polymeric materials such as polyethylene and polystyrene that are capable of being molded and remolded repeatedly. The polymer structure associated with thermoplastics is that of individual molecules that are separate from one another and flow past one another.
  • [0129]
    The term “thermoset,” as used herein, is a broad term and is used in its ordinary sense, including, without limitation, polymeric materials such as epoxy, silicone, and polyurethane that cannot be reprocessed upon reheating. During their initial processing, thermosetting resins undergo a chemical reaction that results in an infusible, insoluble network. Essentially, the entire heated, finished article becomes one large molecule. For example, the epoxy polymer undergoes a cross-linking reaction when it is molded at a high temperature. Subsequent application of heat does not soften the material to the point where it can be reworked and indeed may serve only to break it down.
  • [0130]
    The term “substantially,” as used herein, is a broad term and is used in its ordinary sense, including, without limitation, refers to an amount greater than 50 percent, preferably greater than 75 percent and, most preferably, greater than 90 percent.
  • [0131]
    The term “host,” as used herein is a broad term and is used in its ordinary sense, including, without limitation, both humans and animals.
  • [0132]
    The term “R-value,” as used herein, is a broad term and is used in its ordinary sense, including, without limitation, one conventional way of summarizing the correlation of data; that is, a statement of what residuals (e.g., root mean square deviations) are to be expected if the data are fitted to a straight line by the a regression.
  • [0000]
    Overview
  • [0133]
    In a preferred embodiment, the sensor heads, devices, and methods of the preferred embodiments may be used to determine the level of glucose or other analytes in a host. The level of glucose is a particularly important measurement for individuals having diabetes in that effective treatment depends on the accuracy of this measurement.
  • [0134]
    Although the description that follows is primarily directed at implantable glucose sensors, the methods of the preferred embodiments are not limited to either electrochemical sensing or glucose measurement. Rather, the methods may be applied to any implantable sensor that detects and quantifies an analyte present in biological fluids (including, but not limited to, amino acids and lactate), including those analytes that are substrates for oxidase enzymes (see, e.g., U.S. Pat. No. 4,703,756 to Gough et al., hereby incorporated by reference), as well as to implantable sensors that detect and quantify analytes present in biological fluids by analytical methods other than electrochemical methods, as described above. The methods may also offer benefits and be suitable for use with implantable devices, other than sensors, that are concerned with the transport of analytes, for example, drug delivery devices, cell transplantation devices, tracking devices, or any other foreign body implanted subcutaneously or in other soft tissue of the body, for example, intramuscular, intraperitoneal, intrafascial, or in the axial region.
  • [0135]
    Methods and devices that may be suitable for use in conjunction with aspects of the preferred embodiments are disclosed in copending applications including U.S. application Ser. No. 09/916,386 filed Jul. 27, 2001 and entitled “MEMBRANE FOR USE WITH IMPLANTABLE DEVICES”; U.S. application Ser. No. 09/916,711 filed Jul. 27, 2001 and entitled “SENSOR HEAD FOR USE WITH IMPLANTABLE DEVICE”; U.S. application Ser. No. 09/447,227 filed Nov. 22, 1999 and entitled “DEVICE AND METHOD FOR DETERMINING ANALYTE LEVELS”; U.S. application Ser. No. 10/153,356 filed May 22, 2002 and entitled “TECHNIQUES TO IMPROVE POLYURETHANE MEMBRANES FOR IMPLANTABLE GLUCOSE SENSORS”; U.S. application Ser. No. 09/489,588 filed Jan. 21, 2000 and entitled “DEVICE AND METHOD FOR DETERMINING ANALYTE LEVELS”; U.S. application Ser. No. 09/636,369 filed Aug. 11, 2000 and entitled “SYSTEMS AND METHODS FOR REMOTE MONITORING AND MODULATION OF MEDICAL DEVICES”; and U.S. application Ser. No. 09/916,858 filed Jul. 27, 2001 and entitled “DEVICE AND METHOD FOR DETERMINING ANALYTE LEVELS,” as well as issued patents including U.S. Pat. No. 6,001,067 issued Dec. 14, 1999 and entitled “DEVICE AND METHOD FOR DETERMINING ANALYTE LEVELS”; U.S. Pat. No. 4,994,167 issued Feb. 19, 1991 and entitled “BIOLOGICAL FLUID MEASURING DEVICE”; and U.S. Pat. No. 4,757,022 filed Jul. 12, 1988 and entitled “BIOLOGICAL FLUID MEASURING DEVICE.” All of the above patents and patent applications are incorporated in their entirety herein by reference.
  • [0136]
    Such medical devices, including implanted analyte sensors, drug delivery devices and cell transplantation devices require close vascularization and transport of solutes across the device-tissue interface for proper function. These devices generally include a biointerface membrane, which encases the device or a portion of the device to prevent access by host inflammatory cells, immune cells, or soluble factors to sensitive regions of the device.
  • [0000]
    Nature of the Foreign Body Capsule
  • [0137]
    Biointerface membranes stimulate a local inflammatory response, called the foreign body response (FBR) that has long been recognized as limiting the function of implanted devices that require solute transport. The FBR has been well described in the literature.
  • [0138]
    FIG. 1 is a schematic drawing that illustrates a classical foreign body response (FBR) to an object implanted under the skin. There are three main regions of a FBR. The innermost FBR region 12, adjacent to the device, is composed generally of macrophages and foreign body giant cells 14 (herein referred to as the barrier cell layer). These cells form a monolayer of closely opposed cells over the entire surface of a microscopically smooth, macroscopically smooth (but microscopically rough), or microporous (i.e., less than about 1 μm pore size) membrane. The intermediate FBR region 16 (herein referred to as the fibrous zone), lying distal to the first region with respect to the device, is a wide zone (about 30-1000 microns) composed primarily of fibroblasts 18, contractile fibrous tissue 19, and fibrous matrix 20 (shown as empty space, which is actually filled with this fibrous matrix). It may be noted that the organization of the fibrous zone, and particularly the contractile fibrous tissue 19, contributes to the formation of the monolayer of closely opposed cells due to the contractile forces 21 around the surface of the foreign body (e.g., membrane 10). The outermost FBR region 22 is loose connective granular tissue containing new blood vessels 24 (herein referred to as the vascular zone). Over time, the foreign body capsule becomes muscular due to differentiation of fibroblasts into myofibroblasts and contracts around the foreign body so that the foreign body remains tightly encapsulated.
  • [0000]
    Sensor Geometry
  • [0139]
    It has been observed that the variability of function observed in implanted sensors may sometimes occur in several different devices implanted within the same host (e.g., human or animal). Accordingly, this observation suggests that individual variability of hosts may not be a significant factor in the observed variability. Data suggest that a major factor in the variability is the individual nature of how the surrounding tissue heals around each device. Accordingly, the present invention discloses methods and systems for selecting an appropriate geometry for a device that requires transport of analytes in vivo, such that the healing of the host tissue around the device is optimized. Optimizing the host response includes minimizing variability, increasing transport of analytes, and controlling motion artifact in vivo, for example.
  • [0140]
    FIG. 2A is schematic side view of a prior art device that has a sensing region with an abrupt inside turn, causing sub-optimal foreign body response. FIG. 2B is a photomicrograph of the type of device of FIG. 2A after formation of the foreign body capsule and subsequent explantation, showing thickened host response adjacent the abrupt inside turn and lymphocytic infiltrate.
  • [0141]
    Particularly, FIG. 2A depicts a sensor 26 wherein a dome sensor head 28 incorporating the sensing electrodes 30 or other sensing devices or means protrudes above a large, flat surface 32 of the device. Particularly noteworthy is the abrupt change in curvature of an approximately 90-degree turn between the sensor head 28 and the flat surface 32. Additionally, an O-ring 34 encircles the device to hold a biointerface membrane (not shown) over the dome sensor head 28 of the device and causes further discontinuity of the surface between the sensor head and the flat surface of the sensor body.
  • [0142]
    A wide variability in the healing of the tissue adjacent to the sensor dome of the device is observed. Particularly, the foreign body capsule is thickest in the area 42 adjacent to the discontinuous surface (e.g., O-ring and sensor head-sensor body interface). This thickest portion is a result of tissue contracture that occurs during the foreign body response, resulting in forces being applied to the portion of the device interfacing with the tissue. Notably, because the device of FIG. 2A has an inside turn where the dome meets the top plate at the O-ring, the forces 40 exerted by contracture pull outwards, and thus away from the device-tissue interface. This causes inflammation in the region of the inside turn. Greater tissue trauma and the formation of barrier cell layers are typically observed adjacent to the region of the device wherein the dome meets the top plate. It is believed that outward forces produced by tissue contraction cause wounding in this site, which stimulates higher levels of inflammation, resulting in occlusion. It should be noted that this more “turbulent area” 42 is marked by an increase chronic inflammatory response which is most occlusive at the discontinuous surface are, but spreads to include the thickening in sensing area 41 that may effect the transport of analytes and thus the function of the sensor in vivo.
  • [0143]
    FIG. 2B is a photomicrograph of the foreign body capsule, after a device having the sensor configuration of FIG. 2A was explanted from a host. The right side of the photomicrograph shows a thickening of the tissue response with inflammatory cells present near the inside turn (within 44). The o-ring 34 was located approximately as shown by the dashed line, which contributed to the thickening of the tissue response due to the abruptness of the surface area. It may be noted that the tissue response thins near the center of the dome (at 46 (the fold in the section near the center of the dome is an artifact of sample preparation)). The electrodes are located within the sensing region 47 as shown on the photomicrograph, over which occlusive cells extend from the thickened response 44. That is, the thickening of the tissues in the “turbulent area”, which is the area adjacent to the discontinuous surfaces at the inside turn, leads to the subsequent formation of barrier cell layers that may continue over the sensor head and block the transport of analytes across the device-tissue interface over time. The nature of the response suggests that trauma to the tissue may have occurred during or after the initial wound healing. If trauma occurs during wound healing, complete healing never occurs and the tissue stays in a hyper-inflammatory state during the entire course of the implant period. Alternatively, if trauma occurs subsequent to the initial wound healing, the wound heals but is re-injured, perhaps repeatedly, over time. Either of these trauma-induced wounding mechanisms may lead to improper healing and the growth of occlusive cells at the biointerface. It may be noted that it is the combination of the severity of the inside turn and its proximity to the sensing region that forms the occlusive cell layer, which may cause blockage of analyte transport to the sensor. In some alternative embodiments, certain turns (e.g., inside turns or otherwise) on the surface of the sensor body may not adversely effect the transport of analytes; for example, turns that are located at a sufficient distance from the sensing region may not produce a thickened inflammatory host response adjacent the sensing region and/or turns that are sufficiently gradual and/or lack abruptness may not adversely effect the host response adjacent the sensing regions.
  • [0144]
    The tissue response resulting in the growth of occlusive cells as described above tends to occur due to the contraction of the surrounding wound tissue. It is therefore desirable to ensure stable wound healing that does not change after the initial healing. As illustrated by the photomicrograph of FIG. 2B, the geometry of the device depicted does not favor stable healing because tissue contracture results in the pulling away of tissues from the device surface at the junction between the dome and top plate.
  • [0145]
    FIG. 3A is a schematic side view of another prior art device that has flattened surfaces across the entire device, and particularly across the sensing region, creating sub-optimal foreign body capsule healing. In the sensor of FIG. 3A, all surfaces are flat and all edges and corners are sharp; there is no curvature or convexity, particularly in the sensing region.
  • [0146]
    Consequently, contractile forces 54 pull laterally and outwardly along the flat surfaces, including the sensing region, which is the area proximal to the electrodes 52, as the FBC tightens around the device. Lateral contractile forces 54 caused by the FBC 50 along the flat surfaces are believed increase motion artifact and tissue damage due to shear forces 56 between the device 52 and the tissue. In other words, rather than firmly holding the tissue adjacent the sensing region with a downward force against the sensing region (such as will be shown with the geometry of the present invention), a lateral movement (indicated by arrow 56) is seen in the tissue adjacent to the sensing region, causing trauma-induced wounding mechanisms that may lead to improper healing and the growth of occlusive cells at the biointerface. This is especially harmful in the sensing region, which requires substantially consistent transport of analytes, because it is known that thickening of the FBC from chronic inflammation and occlusive cells decreases or blocks analyte transport to the device.
  • [0147]
    It may be noted that some prior art devices attempt to minimize tissue trauma by rounding edges and corners, however the effects of tissue trauma will still be seen in the flat surfaces (e.g., sensing region) of the device such as described above, thereby at least partially precluding function of a device requiring analyte transport. Similarly, placement of the sensing region, or a plurality of sensing regions, away from the center of the device (such as seen in some prior art devices) would not significantly improve the effects of the lateral contractile forces along the flat surface of the sensing region(s), because it is the flat surface, whether at the center and/or off center, that causes in the occlusive tissue trauma in vivo.
  • [0148]
    It may be noted that the thickness of the FBC appears to increase around the central portion of the device and be thinner around the ends. It is believed that this phenomenon is due to the loose and counteracting lateral contractile forces near the center of the device, while a tighter contractile force near the ends of the device indicates tighter control of the FBC.
  • [0149]
    FIG. 3B is a schematic side view of the sensing region of yet another prior art device that has flattened surfaces across the device, however includes an inset sensing region. The device of FIG. 3B is similar to the device of FIG. 3A, and is another example of a disadvantageous device due to sub-optimal foreign body capsule healing. Particularly, the inset portion 58, whether bounded by sharp or rounded edges, will cause contractile forces 54 of the foreign body capsule to pull outwardly and laterally. The inset region of the device will experience increased trauma-induced wounding mechanisms that may lead to improper healing and the growth of occlusive cells at the biointerface as compared to FIG. 3A. In other words, both flat and inset (e.g., concave) sensing regions will cause tissue wounding and chronic inflammatory response leading to decreased transport of analytes, increased time lag, and decreased device function.
  • [0150]
    In contrast to the prior art, a preferred embodiment of the present invention provides a sensor geometry that includes a sensing region adapted for transport of analytes between the sensor and the bodily fluid, wherein the sensing region is located on a curved portion of the sensor body such that when a foreign body capsule forms around the sensor, a contractile force is exerted by the foreign body capsule toward the sensing region. This contractile force provides sufficient support to maintain the foreign body capsule in close proximity to the sensing region without substantial motion artifact or shearing forces, thereby minimizing inflammatory trauma, minimizing the thickness of the foreign body capsule, and maximizing the transport of analytes through the foreign body capsule. Additionally, the overall design described herein ensures more stable wound healing, and therefore better acceptance in the body.
  • [0151]
    It may be noted that the disadvantageous outward forces (e.g., forces 40 as described with reference to FIG. 2A, and forces 54 such as described with reference to FIG. 3B) refer to forces that cause motion of the foreign body capsule relative to the device as a whole. In other words, the discontinuity of the surface on which the sensing region is located creates outward forces of the FBC as a whole, which unfortunately allows motion of the device within the FBC. These outside forces 40 create a thickened FBC due to chronic inflammatory response responsive to motion of the device within the FBC such as described with reference to FIGS. 2 and 3. It may be noted however that a biointerface material with interconnected cavities in at least a portion thereof may be placed over the sensor head such as described with reference to copending U.S. patent application Ser. No. 10/647,065 filed Aug. 22, 2003 and entitled “POROUS MEMBRANE FOR USE WITH IMPLANTABLE DEVICES”, which is incorporated herein in its entirety by reference. This biointerface material advantageously causes disruption of the contractile forces caused by the fibrous tissue of the FBC within the cavities of the biointerface material. Particularly, the biointerface material includes interconnected cavities with a multiple-cavity depth, which may affect the tissue contracture that typically occurs around a foreign body. That is, within the cavities of the biointerface material, forces from the foreign body response contract around the solid portions that define the cavities and away from the device. This architecture of the interconnected cavities of the biointerface material is advantageous because the contractile forces caused by the downward tissue contracture that may otherwise cause cells to flatten against the device and occlude the transport of analytes, is instead translated to and/or counteracted by the forces that contract around the solid portions (e.g., throughout the interconnected cavities) away from the device. Therefore, the mechanisms of the present invention (e.g., geometric configurations described herein) are designed to increase downward forces on the sensor head in order to decrease motion of the device relative to the FBC as a whole, which complements the mechanisms of the biointerface material that causes disruption of the contractile forces within the biointerface material in order to deflect the forces toward the solid portions within the biointerface and away from the device itself, both of which mechanisms work to prevent the formation of occlusive cells that block analyte transport. Therefore, a biointerface material such as described above may be placed over at least a portion (e.g., some or all) of the sensing region of the devices of the present invention to aid in preventing the formation of occlusive cells (e.g., barrier cell layer) and increasing the transport of analytes.
  • [0152]
    FIG. 4 is a cross-sectional view of the sensing region of an analyte sensor in one embodiment, wherein the sensing region is continuously curved, thereby causing contractile forces from the foreign body capsule to press downward thereon. The sensing region is located on an end of sensor that extends longitudinally (not shown). Particularly, the curved sensor region 70 includes no abrupt edges or discontinuous surfaces to ensure stable wound healing. For example, such a device 68 may be cylindrical with a collet that meets the head, as depicted in FIG. 4. The collet produces a continuous curvature from the sensor dome 72 to the wall of the cylinder 73. When this design is employed, tissue contracture (depicted by the arrows 74) results in forces oriented in towards the device interface along the entire surface of the dome (depicted by arrows 76). Thus, the foreign body capsule is pulled down against the surface of the device. Injury and re-injury is thereby minimized or even prevented because there are no outward forces produced by tissue contracture as in the design depicted in the devices of FIGS. 2 and 3. Improved biointerface healing is observed for this geometry, as evidenced by improved in vivo performance. A device with a design similar to that depicted in FIG. 4 was the subject of animal testing, which is described in more detail with reference to FIGS. 11A and 11B.
  • [0153]
    FIG. 5A is a perspective view of an analyte sensor in another embodiment, including a thin ellipsoidal geometry, a curved sensing region, and an overall curved surface on which the sensing region is located, thereby causing contractile forces from the foreign body capsule to press downward on the sensor head. FIG. 5B is the analyte sensor of FIG. 5A shown implanted with the sensing region adjacent to the muscle fascia underlying the subcutaneous space. FIG. 5C is an end view of the analyte sensor of FIG. 5A showing the contractile forces that would be caused by a foreign body capsule. FIG. 5D is a side view of the analyte sensor of FIG. 5A.
  • [0154]
    In this embodiment, the analyte sensor 80 includes the sensing region 82 located on a curved portion of the sensor body, and including no abrupt edge or discontinuous surface in the proximity of the sensing region. Additionally, the overall curvature of the surface on which the sensing region is located, including rounded edges, invokes a generally uniform FBC around that surface, decreasing inflammatory response and increasing analyte transport at the device-tissue interface 84.
  • [0155]
    In one aspect of this embodiment, the sensor geometry particularly suited for healing at the device-tissue interface 84 when the sensor is implanted between two tissue planes. That is, the geometry includes a thin, substantially oval sensor, wherein the sensor head is positioned on one of the major surfaces of the sensor rather than at the tip, as illustrated in FIG. 4. When implanted, the sensor is oriented such that the sensor head is adjacent to the fascia underlying the subcutaneous space.
  • [0156]
    Perpendicular forces 88, depicted in FIG. 5C by arrows pointing down, reduce or eliminate shear forces with the tissue at the sensor head. While lateral forces 90 may appear to create shear forces at the sensor head, several features of the sensor mitigate these forces. For example, the sensor is much thinner and is immediately adjacent to the fascia, underlying the fat, making it less prone to movement. As another example, the sensor may be sutured to the tough fascia, which further prevents lateral forces from being conveyed to the sensor head; while in other preferred embodiments, an anchoring material or other method of attachment may be employed. As yet another example, in order to facilitate proper healing, the side of the sensor upon which the sensor head is situated preferably has a curved radius extending from lateral side to lateral side. As depicted in the side view and end view (FIGS. 5C and 5D), the sensor head is positioned at the apex of the radius. When surrounding tissue contracts as it heals, the radius serves to optimize the forces 88 exerted down onto the curved surface, especially the forces in the lateral directions 90, to keep the tissue uniformly in contact with the surface and to produce a thinner foreign body capsule. The curvature ensures that the head is resting against the tissue and that when tissue contraction occurs, forces are generated downward on the head so that the tissue attachment is maintained. It may be noted that the downward forces bring the tissue into contact with porous biointerface materials used for ingrowth-mediated attachment and for biointerface optimization, such as described above and in copending U.S. patent application Ser. No. 10/647,065 filed Aug. 22, 2003 and entitled “POROUS MEMBRANE FOR USE WITH IMPLANTABLE DEVICES”. While it is preferable to have a curved radius extending longitudinally, in certain embodiments it may be acceptable to incorporate a longitudinally flat surface or longitudinal surface with another configuration. In a device as depicted in FIG. 5C, the radius of curvature in the lateral direction is preferably about 2.7 cm.
  • [0157]
    It may be noted that any curved surface can be deconvoluted to a series of radii, as is appreciated by one skilled in the art. It is generally preferred to have a radius of curvature in the lateral, longitudinal or other direction of from about 0.5 mm or less to about 10 cm or more. More preferably the radius of curvature is from about 1, 2, 3, 4, 5, 6, 7, 8, or 9 mm to about 5, 6, 7, 8, or 9 cm, even more preferably the radius of curvature is from about 1, 1.25, 1.5, 1.75, 2 or 2.25 cm to about 3, 3.25, 3.5, 3.75, 4, 4.25, 4.5, or 4.75 cm, and most preferably the radius of curvature is from about 2.5 or 2.6 cm to about 2.7, 2.8, or 2.9 cm. Radii of curvature in the longitudinal direction are generally preferred to be larger than those in the lateral direction. However, in certain embodiments the radii of curvature may be approximately the same, or smaller in the longitudinal direction.
  • [0158]
    In one embodiment, the preferred shape of the device can be defined in the context of a reference plane. In such an embodiment, the device has a first major surface and a second major surface opposite the first major surface, where the first major surface includes a sensor. The first and second major surfaces together preferably account for at least about 40% or 50% of the surface area of the device. The first major surface has edges between which a width of the first major surface can be measured, and the sensor is preferably spaced away from the edges by a distance that is at least about 10% of the width, and preferably at least about 15%, 20%, 25%, or 30% of the width of the first major surface. It is understood that the first major surface may have multiple edges and that multiple widths can be measured, and in the context of the foregoing, a width should be configured to run from one edge to an opposite edge. Preferably, spacing of the sensor from the edges specified above is true for at least two width measurements, which measurements are taken generally transverse to each other.
  • [0159]
    With the sensor situated on the first major surface of the device, a reference plane can be imagined that is congruent to the first major surface, which first major surface is preferably at least slightly convex. This plane, which would then touch the first major surface at a point spaced in from the edges of the first major surface, would be generally parallel to the first major surface and would additionally be spaced away from opposite edges of the first major surface due to the convex nature of the first major surface. In preferred embodiments, the reference plane would be spaced from the edges a distance that is at least about 3%, 4%, or 5% of the width between those edges, and more preferably 6%, 7%, 8% or more from the edges, but at the same time the distance is preferably not more than 50%, 40%, or 30% of the width, and may well be not more than 25%, 20%, or 15% of the width between the edges. In preferred embodiments, the edges of the first major surface are rounded, so that they transition smoothly away from the first major surface. In this situation, the location of the edge can be configured to be the point at which a congruent line and/or a normal line would be angled 45 degrees with respect to the reference plane.
  • [0160]
    In preferred embodiments, the sensor body defines a surface area, and wherein between 10% and 100% of the surface area is convexly curved. In some preferred embodiments a substantial portion of the surface area is convexly curved. In one preferred embodiment, at least about 90% of the surface area is convexly curved. In other preferred embodiments, 10, 20, 30, 40, 50, 60, 70, 80, 90, or 100% of the surface area is curved.
  • [0161]
    FIG. 6 is a perspective view of a sensor geometry in an alternative embodiment wherein the sensor includes a curved sensor region and a flat region, wherein the interface between the flat region and the curved region includes a gradual transition. The implantable sensor includes a major surface 100 with a curved portion 102 on which the sensing region 101 is located and a flat portion 104 adjacent to the curved portion 102. Although the major surface is not entirely curved in this embodiment, the interface 103 between the curved and flat portions has a gradual transition and is located sufficiently distal from the sensing region 101 (where the transport of analytes is required) that any chronic inflammation caused by the turn at the interface 103 will not likely translate to the sensing region 101. In other words, the contractile forces 106 from a foreign body capsule that forms around the sensor in vivo will tend to contract toward the sensing region 101; although some outward and lateral forces are seen at the interface 103 and flat surface 104, they are spaced sufficiently far from the sensing region such that any chronic inflammatory response will not likely cover the sensing region 101 and block analyte transport. Anchoring material may cover some part or the majority of the major surface 100, may encircle the circumference of the sensor body 107, and/or may cover some part or the entire surface 108 opposite the sensing region, such as described in more detail elsewhere herein.
  • [0162]
    FIG. 7 is a perspective view of a sensor geometry in an alternative embodiment wherein the entire sensor body is curved. The implantable sensor has a curvature over the entire surface area of the sensor body 110. The curvature includes a variety of different radii at varying locations of the sensor body, and the contractile forces 112 from a FBC that forms around the sensor in vivo will tend to contract toward the entire sensor body 110, including the sensing region 114 on a first major side 116. Accordingly, this embodiment optimizes foreign body healing by minimizing the chronic inflammatory response that is otherwise caused by motion within the FBC. In other words, the FBC holds tightly to the sensor body 110 to provide optimal control (e.g., minimal motion) of the tissues around the sensor geometry, and particularly around the sensing region 112. It may be noted that the second major side 118 has a slight curvature that allows the entire sensor body to be curved. However in some embodiments, the second major side 118 can be designed flat rather than curved; in these embodiments, it may be noted that the sensing region is located on the side opposite the flat surface and there is no concavity therein or thereon. Anchoring material may cover some part or a majority of the first major side 116, may encircle the circumference of the sensor body 117, and/or may cover some part or the entire second major side 118 opposite the sensing region.
  • [0163]
    FIG. 8 is a perspective view of a sensor 120 in an alternative embodiment including a cylindrical geometry wherein a plurality of sensors 124 are located on the curved lateral surface 122 of the sensor body. Anchoring material (not shown) may cover at least some of the non-electrode surface area of the cylindrical body. The sensor of this embodiment takes advantage of numerous features described herein, including, but not limited to, the following advantages.
  • [0164]
    As a first noted advantage, the cylindrical geometry of the sensor body 120 allows for discreet placement within or between tissue types when the overall surface area-to-volume ratio can be optimized to provide a maximal surface area with a minimal volume. That is, although the volume of a sensor often depends on the necessary electronics within the sensor body, the evolution of smaller batteries and circuit boards sanctions the design and manufacture of a cylindrical sensor with minimal volume; simultaneously, the surface area inherent in a cylindrical geometry allows for maximal tissue anchoring in vivo (e.g., as compared to a substantially rectangular or oval structure). In one exemplary embodiment, an application specific integrated circuit (ASIC) may be designed to fit within the geometric design of any of the embodiments disclosed herein to maximize the electronic capabilities while minimizing volume requirements as compared to conventional circuit boards. Sensor electronics requirements vary depend on the sensor type, however one example of electronics for a glucose sensor is described in more detail with reference to copending U.S. patent application Ser. No. 10/633,367 filed on Aug. 1, 2003 and entitled “SYSTEM AND METHODS FOR PROCESSING ANALYTE SENSOR DATA,” which is incorporated by reference herein in its entirety.
  • [0165]
    As a second noted advantage, the curved lateral surface 122 of the cylindrical structure lends itself to a plurality of sensing regions 124 (e.g., electrodes) and allows the sensor to sense a variety of different constituents (e.g., glucose, oxygen, interferants (e.g., ascorbate, urate, etc.)) using one compact sensor body.
  • [0166]
    As a third noted advantage, when the plurality of sensing regions 124 are configured to sense the same constituent (e.g., glucose) such as shown in FIG. 8, and are spread apart such as shown in FIG. 8, the likelihood of sensor location adjacent an area of the FBC that is optimized for transport of analytes is increased by the amount of increase of the area of the sensing regions 124. For example, inflammatory host response sometimes forms unevenly, therefore a distribution and increased surface area of sensing region(s) increases the likelihood of placement of the sensing region adjacent an area of minimum inflammatory host response and maximum transport of analytes to the sensor.
  • [0167]
    As a fourth noted advantage, the FBC that forms around the lateral curved surface 122 will create generally uniform forces 126 toward the sensing region 124 and around the entire lateral surface. Furthermore, when the ends 128 of the cylindrical sensor body 120 are designed with a curvature such as shown in the embodiment of FIG. 8, minimal chronic inflammatory foreign body response, and further induce a firm, substantially motion-free hold of the sensor body 120 within the host.
  • [0168]
    FIG. 9A is a perspective view of a sensor geometry in an alternative embodiment including a substantially spherical body. The spherical sensor body 130 a has a plurality of sensing regions 132 a that encircle the body. However, in some alternative embodiments one or more sensing regions may be provided in a collective location or spread across the surface area of the sphere. Anchoring material is placed on or around the sensor body; for example, the anchoring material 136 a may encircle the body in a manner similar to that of the sensing regions 132 a. The embodiment of FIG. 9 takes advantage of numerous features described herein, including, but not limited to, the following advantages.
  • [0169]
    As a first noted advantage, a spherical geometry defines an optimal surface-to-volume ratio when compared to other geometries of devices with a comparable volume (e.g., rectangular, oval, and cylindrical). That is, when volume is a constant, the spherical geometry will provide an optimal surface area for tissue ingrowth in vivo in combination with an optimal curvature for uniform contractile forces from a FBC in vivo as compared to other geometries.
  • [0170]
    As a second noted advantage, entirely curved surface area of the spherical geometry lends itself to a plurality of sensing regions (e.g., electrodes) 132 a and allows the sensor to sense a variety of different constituents (e.g., glucose, oxygen, interferants (e.g., ascorbate, urate, etc.)) using one compact sensor body 130 a.
  • [0171]
    As a third noted advantage, when a plurality of sensing regions 132 a that sense the same constituent (e.g., glucose) are spread apart, the likelihood of finding an area of the FBC that is optimized for transport of analytes is increased by the amount of increase of the area of the sensing regions.
  • [0172]
    As a fourth noted advantage, the FBC that forms around the spherical sensor body will create uniform forces 134 a toward the entire surface area, including the sensing regions 132 a, which may therefore be located anywhere on the sensor body. Consequently in vivo, a sensor body with a curvature such as shown in the embodiment of FIG. 9A will induce minimal chronic inflammatory foreign body response, and further induce a firm, substantially motion-free hold of the sensor body within the host.
  • [0173]
    FIG. 9B is a perspective view of a sensor geometry in an alternative embodiment including a substantially spherical body with a rod extending therefrom. The spherical sensing body 130 b has a plurality of sensing regions 132 b and anchoring material 136 b that encircle (or may be otherwise located on) the body such as described with reference to FIG. 9A. However, in contrast to the embodiment of FIG. 9A, a rod 138 is connected to the spherical body 130 b and houses some or all of the sensor electronics, which are described with reference to FIG. 8. The embodiment of FIG. 9B takes advantage of numerous features described herein, including those advantages described with reference to FIG. 9A, and further includes the following advantages.
  • [0174]
    The separation of at least some of the electronics between the sensing body which houses the electrodes, from the rod which may house, for example a cylindrical battery, allows for optimization of the sensing body design by minimizing the volume and/or mass requirements of the sensing body 130 b due electronics. The geometric design of the sphere and rod as shown in FIG. 9B enables good formation of a FBC because all surfaces, particularly on the sensing body 130 b) are curved, and there are not abrupt or flat turns or edges; that is, the contractile forces created by the FBC will be exerted generally uniformly toward at least the sensing body, and notably toward the sensing region 132 b. Additionally, the sensing regions 132 b are optimally located on a curved area that can be designed with maximum surface area and minimum mass and/or volume (e.g., some or all sensor electronics account for much of the mass and/or volume are located within the rod). It may be noted that in some alternative embodiments, the rod is removably attachable to the sensing body in vivo such that the electronics and/or sensing body may be individually removed and replaced (e.g., via minimally invasive methods).
  • [0175]
    FIGS. 10A to 10D are perspective views of a sensor that has an expandable sensing body in one embodiment. FIGS. 10A and 10C are views of the sensor with the sensing body in a collapsed state, FIGS. 10B and 10D are views of the sensor with the sensing body in an expanded state. An expandable sensor 140 is advantageous in that it can be inserted into the subcutaneous space in a minimally invasive manner (e.g., through a catheter) in its collapsed state. It may be, for example, less than or equal to about 3 mm in diameter 142 and may be designed with a guide wire (not shown) extending through the sensor in some embodiments. Once it has been delivered into the appropriate site in vivo, the sensing body expands to an increased surface area.
  • [0176]
    The sensor 140 includes a sensing body 144 on which the sensing region 145 is located and an electronics body 146 in which the sensor electronics are located such as described with reference to FIG. 8. In alternative embodiments, some portion of the electronics may be housed within the sensing body. The sensing body 144 is formed from an elastomeric material and adapted for expansion using a liquid (e.g., saline or silicone oil). As an alternative, the sensing body 144 may be formed from a non-elastomeric material (e.g., polyethylene terephthalate) and folded for insertion using a catheter (not shown). As another alternative, the sensing body can be formed from nitinol, or the like, which may be advantageous due to its ability to self-expand and memorize its shape long term. In some embodiments, the expandable sensing body is adapted to fill a particular subcutaneous pocket without leaving spaces in the subcutaneous space and without causing pressure necrosis. In one example a metal framework may be used to hold the sensing body in its expanded state. The sensing region 145 includes electrodes, which are connected to the electronics body via a flexible wire or the like (not shown). Anchoring material 148 encircles (or is otherwise located on) the sensing body 144 in order to anchor the sensing body stably in vivo. The sensor electronics portion may be formed with or without a curvature, with or without anchoring material, and with or without particular concern for its effect on the foreign body capsule in vivo as it relates to the sensing body. Additional advantages of this embodiment correspond to the advantages described with reference to FIG. 9B due to its substantially similar configuration in its expanded state.
  • [0177]
    FIGS. 11A to 11D are perspective views of sensors wherein one or more sensing bodies are tethered to an electronics body in a variety of alternative embodiments. In each of the embodiments, the sensor 150 includes a sensing body 152 with a sensing region 153 located on a curved portion of the sensing body 152 such that when a foreign body capsule forms around the sensing body 152, the foreign body capsule exerts a contractile force toward the sensing region 153 as described elsewhere herein. Anchoring material 154 is located on at least a portion of the sensing body 152 in any known manner such as described elsewhere herein. Furthermore, in each of these embodiments, the electronics body 156 may include the majority of the mass of the sensor 150, which is remote from the sensing body 152. The electronics body 156 is connected to the sensing body 152 via a tether 158, which may have a variety of configurations such as described herein. As an alternative to the tether, the electronics body 156 may be connected to the sensing body 152 via a wireless RF connection (not shown) such that the electronics body 156 and the sensing body 152 may be separately implanted, explanted, monitored, and/or replaced. It may be noted that in an embodiment that utilizes RF transmission to connect the sensing body to the electronics body, some electronics are housed in the sensing body 152 to enable measurement and transmission of sensor information. Additionally, in some alternative embodiments of the tethered sensor, at least some of the electronics are housed within the sensing body.
  • [0178]
    In these embodiments wherein the sensing body 152 is tethered to the electronics body 156, the sensing body 152 can be easily optimized for surface area, shape, size, geometry, mass, density, volume, surface area-to-volume, surface area-to-density, and surface area-to-mass as desired. That is, without the mass, size, and volume constraints normally imposed by the electronics portion of a sensor, the sensing body can be optimally designed for a particular implantation site, function, or other parameter. Additionally, the electronics body can be formed from any biocompatible material (e.g., metal, ceramic, or plastic) known in the art. Additionally, it may be hermetically sealed to protect the electronic components. The tether 158 may be formed from a polymeric material or other biocompatible material and encases a conductive wire (e.g., copper) that connects the electronics within the electronics body 156 to the electronics portion of the sensing body 152 (e.g. to electrodes on the sensing region 153).
  • [0179]
    This tethered sensor design of these embodiments advantageously allows for an optimal design of the sensing body without concern for the effects of the foreign body response caused by the electronics body. The tether can be design shorter or longer, and stiffer or more flexible, in order to optimize the isolation, strain relief, and/or implantation issues.
  • [0180]
    FIG. 11A illustrates a tethered sensor 150 a includes a sensing body 152 a, a flexible tether 158 a, and an electronics body 156 a. In this exemplary embodiment, the sensing body 152 a is disk-like with a curved surface on which the sensing region 153 a is located. An anchoring material 154 a encircles the sensing body for anchoring to the tissue. The tether acts as a strain relief, isolating the adverse effects of the FBC that forms around the electronics body 156 a from the FBC that forms around the sensing body 152 a.
  • [0181]
    FIG. 1B illustrates an alternative tethered sensor 150 b that includes a sensing body 152 b, a flexible tether 158 b, and an electronics body 156 b. In this exemplary embodiment, the sensing body 152 b comprises a cylindrical body with the sensing region 153 b on a curved end. The tether 158 b is formed from a flexible material and may be formed shorter or longer to adapt to an implantation site. It may be noted that a longer tether may better isolate the adverse effects of the FBC that forms around the electronics body 156 b from the FBC that forms around the sensing body 152 b, however a shorter tether may simplify the implantation considerations.
  • [0182]
    FIG. 11C illustrates an alternative tethered sensor 150 c that includes a sensing body 152 c, a tether 158 c, and an electronics body 156 c. In this exemplary embodiment, the tether may be formed from a slightly flexible to somewhat rigid material. A more rigid material may be advantageous in controlling the positioning of the sensing body 152 c in vivo, a more flexible material may act as a better strain relief in vivo.
  • [0183]
    FIG. 11D illustrates an alternative tethered sensor 150 d that includes a plurality of sensing bodies 152 d, a tether 158 d, and an electronics body 156 d. In this exemplary embodiment, the plurality of sensing bodies 152 d with sensing regions on a curved portion of the sensing body and anchoring material such as described elsewhere herein, however may provide additional advantages including for example, the ability to remotely turn on/off one or more of the sensing bodies 152 c, the ability to determine which sensing body 152 d is performing more optimally and/or consistently for optimizing accuracy and implantation site, and the ability to have a “back up” sensing body 152 d in the event one or more of the sensing bodies fails to function as required.
  • [0184]
    FIGS. 12A to 12B are perspective views of a sensor in an alternative embodiment wherein an electronics body is independent of the sensing bodies in a preassembled state and wherein the sensing bodies are independently inserted (and operatively connected) to the electronics body in a minimally invasive manner. Particularly, FIG. 12A illustrates the sensor wherein all four sensing bodies have been inserted and locked within the ports of the electronics body; FIG. 12B includes a cut-away portion to illustrate how the sensing body locks into electrical contact within a port of the electronics body. In this embodiment, the sensor 160 includes a plurality of independent sensing bodies 162, also referred to as biointerface probes, and include any necessary components (e.g., electrodes, biointerface materials, etc.) to sense an analyte of interest. The sensing bodies 162 further comprise electrical contacts 164 that allow the sensing bodies to operatively connect (and lock) within the multiple (optionally inclined) ports 166 of the electronics body 168. The sensing bodies 162 may be somewhat flexible and configured with a curvature and anchoring material such as described elsewhere herein.
  • [0185]
    In practice, the electronics body 168 may be implanted in the subcutaneous tissue without particular concern for the design (e.g., anchoring material, curvature, etc) and its effect on the formation of a FBC. After the FBC has healed around the electronics body 168, the sensing bodies 162 can be individually inserted in a minimally invasive manner (e.g., guide wire introduced with needle and sheath) as needed. Advantageously, each sensing body 162 functions up to about one year or more in vivo. Accordingly, when a sensing body fails to function as needed, another sensing body 162 may be inserted into another port 166 of the electronics body 168.
  • [0186]
    It may be noted that the sensors of preferred embodiments may be rigid or flexible, and of any suitable shape, including but not limited to rectangular, cylindrical, square, elliptical, oval, spherical, circular, ellipsoidal, ovoid, hourglass, bullet-shaped, porpoise-nosed, flat sheet, accordion, or any other suitable symmetrical or irregular shape. Corners may range from sharp to slightly round, to substantially round. While the sensors of preferred embodiments are preferably employed to determine the presence of an analyte, devices of preferred geometries may also be constructed for drug delivery, immunoisolation, cell transplantation, and the like. For example, the preferred device configurations can be suitable for use in fabricating an artificial pancreas.
  • [0187]
    In addition to a simple circular curvature, the curvature can also be elliptical or parabolic. The curvature can be perfectly symmetrical about the sensor head, or can possess some degree of asymmetry. While a true curvature is generally preferred, in certain embodiments a triangular profile or other polygonal profile with rounded edges may also be employed. While a smooth surface is generally preferred, in certain embodiments it may be desired to incorporate local features, such as bumps, dimples, ridges, and the like, while maintaining an overall curvature. It is generally preferred that each surface is convex, or less preferably flat but not concave. However, in certain embodiments a slightly concave or recessed surface may be acceptable presuming it is located sufficiently far from the sensing region that any chronic inflammatory response will not translate to the area adjacent the sensor head. The sensor head preferably protrudes above the radius of curvature or is flush with the radius of curvature. A recessed sensor head is generally not preferred. However, in certain embodiments such a configuration may be acceptable.
  • [0188]
    The sensor head may be positioned on any convenient location of on the device. Particularly preferred locations are the geometric center of a surface of the device, or offset to one side. In certain embodiments it may be desirable to incorporate multiple sensor heads on a single device. Such sensor heads may be spaced apart so as to maximize the distance between the sensor heads, or grouped together at one location on the device.
  • [0000]
    Manufacture of Sensor Body
  • [0189]
    In a preferred embodiment, the sensor is formed by substantially entirely epoxy encapsulating the sensor electronics; that is, the sensor body, outside the sensor head, is comprises an epoxy resin body. During the manufacture of the sensor body of the preferred embodiment, the sensitive electronic parts (e.g. battery, antenna, and circuit board, such as described in copending U.S. patent application Ser. No. 10/633,367 filed on Aug. 1, 2003 and entitled “SYSTEM AND METHODS FOR PROCESSING ANALYTE SENSOR DATA”) are substantially entirely encapsulated in epoxy, with the exception of the sensor head. In some molding processes, the epoxy body may be formed with a curvature on a portion thereof. After the epoxy has completely cured, additional curvature may be machined, milled, laser-etched, or otherwise processed into the epoxy body to form the final geometric shape. In alternative embodiments, a light epoxy coating may be applied to the sensitive electronic parts, after which injection molding or reaction injection molding (RIM) may be used to form the final shape of the epoxy body. While a preferred sensor is constructed of epoxy resin, a non-conductive metal, ceramic or other suitable material may be used.
  • [0000]
    Anchoring Material & Implantation
  • [0190]
    In one embodiment, the entire surface of the sensor is covered with an anchoring material to provide for strong attachment to the tissues. In another embodiment, only the sensor head side of the sensor incorporates anchoring material, with the other sides of the sensor lacking fibers or porous anchoring structures and instead presenting a very smooth, non-reactive biomaterial surface to prevent attachment to tissue and to support the formation of a thicker capsule. The anchoring material may be selected from the group consisting of: polyester, polypropylene cloth, polytetrafluoroethylene felts, expanded polytetrafluoroethylene, and porous silicone.
  • [0191]
    FIG. 13A is a side view of an analyte sensor with anchoring material on a first and second major surface of the device, including the surface on which the sensing region is located, wherein the analyte sensor is implanted subcutaneously and is ingrown with fibrous, vascularized tissue. FIG. 13B is a side view of an analyte sensor with anchoring material on a first major surface on which the sensing region is located, and wherein a second major surface is substantially smooth.
  • [0192]
    While these configurations of anchoring materials are particularly preferred, other configurations may also be suitable for use in certain embodiments, including configurations with different degrees of surface coverage. For example, from less than about 5, 10, 15, 20, 25, 30, 35, 40, 45, or 50% to more than about 55, 60, 65, 70, 75, 80, 85, 90, or 95% of the surface of the device may be covered with anchoring material. The anchoring material may cover one side, two sides, three sides, four sides, five sides, or six sides. The anchoring material may cover only a portion of one or more sides, for example, strips, dots, weaves, fibers, meshes, and other configurations or shapes of anchoring material may cover one or more sides. Likewise, while silicone and polyester fibers are particularly preferred, any biocompatible material capable of facilitating anchoring of tissue to the device may be employed.
  • [0193]
    It may be noted that the optimum amount of anchoring material that may be used for any particular sensor is dependent upon one or more of the following parameters: implantation site (e.g., location in the host), surface area, shape, size, geometry, mass, density, volume, surface area-to-volume, surface area-to-density, and surface area-to-mass. For example, a device with a greater mass as compared to a device with a lesser mass may require more anchoring material to support the greater mass differential.
  • [0194]
    In preferred embodiments, the sensor of the described geometry is implanted at the interface between two kinds of tissue, and is preferably anchored to the more robust tissue type. For example, the sensor may be placed adjacent to an organ (for example, a kidney, the liver, or the peritoneal wall), or adjacent to the fascia below adipose tissue. When implanted in such a fashion, the sensor geometry minimizes force transference, permitting non-anchored tissue to move over the smooth surface of the sensor, thereby minimizing the force transferred to the underlying tissue to which the sensor is anchored. While it is generally preferred to anchor the sensor to the more robust tissue type, in certain embodiments it may be preferred to anchor the sensor to the less robust tissue type, permitting the more robust tissue to move over the smooth surface of the sensor. While the sensor geometries of preferred embodiments are particularly preferred for use at tissue interfaces, such sensors are also suitable for use when implanted into a single type of tissue, for example, muscle tissue or adipose tissue. In such embodiments, however, the sensor geometry may not confer any benefit, or only a minimal benefit, in terms of force transference. Other benefits may be observed, however. In another embodiment, the sensor may be suspended, with or without sutures, in a single tissue type, or be placed between two tissue types, and anchoring material covering substantially the entire surface of the device may be employed.
  • [0195]
    In some alternative embodiments, a mechanical anchoring mechanism, such as prongs, spines, barbs, wings, hooks, helical surface topography, gradually changing diameter, or the like, may be used instead of or in combination with anchoring material such as described herein. For example when an oblong or cylindrical type sensor is implanted within the subcutaneous tissue, it may tend to slip along the pocket that was formed during implantation, particularly if some additional space exists within the pocket. This slippage can lead to increased inflammatory response and/or movement of the sensor prior to or during tissue ingrowth. Accordingly, a mechanical mechanism can aid in immobilizing the sensor in place, particularly prior to formation of a mature foreign body capsule. One example of mechanical anchoring means is shown on FIG. 13B, at 179; however, it should be noted that the placement and configuration of a mechanical anchoring mechanism is broad in scope as described herein.
  • [0196]
    FIG. 13A illustrates the surface of the sensor 140 in mechanical contact with the overlying tissue 172, as well as the underlying muscle fascia 174, due to the ingrowth of the fibrous tissue and vasculature. In this embodiment, any surface of the sensor 170 covered with anchoring material 176 is typically ingrown with fibrous, vascularized tissue 178, which aids in anchoring the sensor and mitigating motion artifact. It may be noted however, that in some cases, forces applied laterally to this tissue may be translated to the sensor, and likewise to the fascia side of the sensor, causing potential disruption of the interface with the fascia. Therefore, although the radial profile of the side of the sensor incorporating the sensor head assists in preventing forces in the distal subcutaneous tissue from exerting forces on the sensor head side, which is attached to the muscle fascia by an anchoring material, complete coverage of the device with anchoring material may not be preferred in certain embodiments.
  • [0197]
    An anchoring material covering the sensor may also make it difficult to remove the sensor for maintenance, repair, or permanent removal if its function is no longer necessary. It is generally difficult to cut down through the surrounding tissue to the surface of the sensor without also cutting into the anchoring material and leaving some of it behind in the patient's tissues. Leaving a portion of the sensor free of anchoring material enables the sensor to be more easily removed by locating the smooth surface, grasping the sensor with a holding tool, and then cutting along the plane of the anchoring material to fully remove the sensor. In certain embodiments, however, it may be desirable for the entire surface of the sensor, or a substantial portion thereof, to be covered with an anchoring material. For example, when implanted into a single tissue type (subcutaneous adipose tissue, or muscle tissue), it may be desirable to have anchoring over all or substantially the entire surface of the sensor. In still other embodiments, no anchoring at all may be preferred, for example, in sensors having very small dimensions. One contiguous sheet of anchoring material can be employed, or two or more different sheets may be employed, for example, an array of dots, stripes, mesh, or other suitable configuration of anchoring material.
  • [0198]
    FIG. 13B illustrates a preferred embodiment wherein the surface 180 of the sensor facing away from the muscle fascia 174 (e.g., surface opposite the sensing region) is not covered with anchoring material, but instead is a smooth, biocompatible material that is non-adhesive to tissues 182. It is also generally preferred that the surface 180 facing away from the fascia have a radius of curvature, although in certain embodiments it may also be acceptable for the surface to have another shape, for example, a flat surface. When mechanical force is applied to the overlying tissue, the force is dissipated in the elastic foreign body response overlying the sensor, and is not effectively translated through the sensor to the biointerface with the fascia. This preferred configuration decreases damage to the biointerface caused by external forces. Moreover, for sensor removal, the surgeon can easily find the outermost surface of the sensor without cutting into it. The outermost aspect of the sensor is surrounded by a thick foreign body capsule, which substantially frees the sensor when it is cut free. Once the sensor is located and grasped by the surgeon, complete removal by careful dissection of the face of the sensor associated with the fascia can be readily accomplished. Transference of lateral force around a sensor with anchoring material covering the entire surface compared to sensors with anchoring materials covering only the face with the sensor head are depicted in FIG. 13A and FIG. 13B, respectively.
  • [0199]
    In other words, in FIG. 13A, vascular and fibrous tissues 178 intertwine with the anchoring material 176. When a force is applied to tissue overlying the sensor of FIG. 13A, it may be translated into the sensor because of the mechanical attachment of the sensor to the fibrous tissue, which grows into the interstices of the anchoring material. In contrast, the sensor of FIG. 13B is smooth on the side opposite the fascia. When mechanical energy is applied to the overlying tissue, it is not effectively transferred to the sensor because the tissue is not attached to the sensor nor intertwined with it.
  • [0200]
    It may be noted that the smoothness of the surface of the device can be measured by any suitable method, for example, by profilometry as described in U.S. Pat. No. 6,517,571, the contents of which is hereby incorporated by reference in its entirety. Measurements are preferably taken from representative areas (for example, square areas of 500 microns length on each side) of the smooth surface of the device. A surface is generally considered “smooth” if it has a smoothness of less than 1.80 microns RMS. Surfaces with a smoothness greater than or equal to 1.80 microns RMS are generally considered “rough.” In certain embodiments, however, the cut-off between “rough” and “smooth” may be higher or lower than 1.80 microns RMS.
  • [0201]
    Profilometry measurements can be performed with a Tencor Profiler Model P-10, measuring samples of square areas of 500-micron length per side. Surface data measurements can be made using the Tencor Profiler Model P-10 with a MicroHead or Exchangeable Measurement Head (stylus tip radius of 2.0 microns with an angle of 60°). Preferred menu recipe settings for the profilometer are as follows:
    Scan length: 500 microns
    Scan speed: 50 microns/second
    Sampling rate: 200 Hz
    No. of traces: 50
    Spacing between traces: 10 microns
    No. of points/trace: 2000
    Point interval: 0.25 microns
    Stylus force: 5 mg
    Range/resolution: 65 microns/0.04 Angstroms
    Profile type: Peaks and valleys
    Waviness filter: 45 mm/1.8 in.
  • [0202]
    Cursors can be set at each end of the length of each area to be sampled, for example, at 0 microns and at 500 microns. Scans can be performed in the longitudinal direction of tubular samples, or in any convenient direction for samples of other shapes. A parameter correlating to roughness of surfaces of the devices of preferred embodiments is Rq, which is the Root-Mean-Square (RMS) roughness, defined as the geometric average of the roughness profile from the mean line measured in the sampling length, expressed in units of microns RMS.
  • [0203]
    The use of an alternative (finer) waviness filter during profilometry allows for materials that include gross surface non-uniformities, such as corrugated surfaces made from microscopically smooth materials.
  • [0204]
    In certain embodiments it is preferred that the smooth surfaces of the device are smooth in their entirety, namely, along the entire length of the surface. For surfaces of relatively uniform smoothness along their entire length, surface measurements are preferably made at three points along the length of the surface, specifically at points beginning at one fourth, one half and three fourths of the length of the surface as measured from one end of device to the other. For surfaces of non-uniform surface character along their entire length, five samples equally spaced along the length are preferably considered. The measurements from these 3-5 sample areas are then averaged to obtain the surface value for the smooth surface. In other embodiments, however, other methods of obtaining measurements may be employed.
  • [0205]
    An article entitled “Atomic force microscopy for characterization of the biomaterial interface” describes the use of AFM for consideration of surface smoothness (Siedlecki and Marchant, Biomaterials 19 (1998), pp. 441-454). AFM may be usefully employed for the smoothness evaluation of device surfaces where the resolution of profilometry is marginally adequate for extremely smooth surfaces. However, for purposes of the preferred embodiments, profilometry measurements made using the above-described Tencor profilometer are generally adequate for determining the smoothness of the device surface
  • EXAMPLES
  • [0206]
    Weekly infusion studies were conducted for four-weeks to investigate the effects of sensor geometries of preferred embodiments on the functional performance of glucose sensors. A first group of sensors (n=5) included a cylindrical geometry similar to that described with reference to FIG. 4. A second group of sensors (n=6) included a thin, oblong geometry similar to that described with reference to FIG. 5. The functional aspects of each sensor were constructed in a similar manner, such as described in Published Patent Application No. 2003/0032874, which is incorporated herein by reference. The sensors were then implanted into the subcutaneous tissue in dogs between the fascia and adipose tissues, and sensor function evaluated by weekly glucose infusion tests.
  • [0207]
    The implantation entailed making a 1-inch incision, then forming a pocket lateral to the incision by blunt dissection. After placement of the device with the sensing region facing towards the fascia, a suture was placed by pulling the connective tissue together at the end of the device proximal to the incision. It is believed that the sutures held effectively during wound healing and device integration with tissues.
  • [0208]
    FIG. 14A is a graph showing the percentage of functional sensors from the two different sensor geometry groups. The x-axis represents time in weeks; the y-axis represents percentage of functional sensors for each group during the weekly infusion studies. It is known that an initial startup period exists for sensors implanted in the subcutaneous space, between about one and three weeks, during which delayed sensor functionality may be related to the amount and speed of tissue ingrowth into the biointerface, as described with reference to copending U.S. patent application Ser. No. 10/647,065 filed Aug. 22, 2003 and entitled “POROUS MEMBRANE FOR USE WITH IMPLANTABLE DEVICES.” Interestingly, both sensor geometries functioned substantially as expected in that the majority of devices were functional by week four. However, the sensors of the thin, oblong sensor geometry group showed faster start-up times as evidenced by a higher percentage of functional sensors at weeks two and three.
  • [0209]
    The delayed start-up of the cylindrical group as compared to the thin, oblong group is believed to be due to delayed ingrowth of tissues or lack of ingrowth of tissues, which effects device function through lack of glucose sensitivity, compromised function after start-up, low sensitivity, and long time lags. One cause for this delay of or lack of tissue ingrowth in the cylindrical group is believed to be the placement of the sensing region on the device. Particularly, when a sensor is implanted in the subcutaneous space between two tissue types, such as the adipose subcutaneous tissue and the fascia, optimal tissue ingrowth may occur when the sensor is directly adjacent and fully engaged with the fascia, such as described with reference in FIG. 5B. In contrast to the sensors of the thin, oblong geometry group, when the sensors of the cylindrical are implanted in the pocket formed between the two tissue types, a space may exist adjacent at least a portion of the sensing region between the two tissue types creating delayed or lack of tissue ingrowth due to spacing from soft tissue. Accordingly, it may be advantageous to design the sensing region on a sensor body such that the entire sensing region is directly adjacent to the fascia or similar tissue immediately after implantation.
  • [0210]
    Some additional observations may be directly related to the delayed sensor function in the cylindrical sensors of this study. For example, the thin, oblong geometry as compared to the cylindrical geometry does not protrude from the host as much and is less amenable to accidental bumping or movement, and less available for patient “fiddling.” Thus, it may be inferred that overall dimensions may effect sensor geometry such that by increasing the discreetness of the geometry (e.g., mass, shape, dimensions), sensor functionality may improve. As another example, the thin, oblong geometry as compared to the cylindrical geometry is less susceptible to torsion and/or rotational forces, which may create motion artifact and therefore chronic inflammatory response at the device-tissue interface. In other words, with the sensor head oriented down towards the fascia, and nearer to the center of the sensor, downward pressure on either end is not transferred as shear force to the sensor head; even if the sensor is moved, the sensor head more likely remains adjacent to the tissue so that it may heal in a favorable fashion, unlike the sensors wherein the tip is positioned on an end of the sensor body, which can leave a space after lateral movement. From this observation, it may be hypothesized that surface area-to-volume ratio may effect the function of the sensor. Particularly, an increased surface area-to-volume ratio, particularly as a consequence of reducing the volume of the sensor, may decrease the effects of forces (e.g., torsion, rotational, and shearing) caused by behavioral and environment movement. Similarly, optimization of surface area-to-mass and surface area-to-density ratios may impact healing.
  • [0211]
    FIG. 14B is a graph showing the average R-value of sensors from a study of the two different sensor geometries implanted in a host. The x-axis represents time in weeks; the y-axis represents average R-value for each group of sensors during each weekly infusion study. R-values were obtained by correlating sensor output to the externally derived meter values, and performing a least squares analysis, such as described with reference to copending U.S. patent application Ser. No. 10/633,367 filed on Aug. 1, 2003 and entitled “SYSTEM AND METHODS FOR PROCESSING ANALYTE SENSOR DATA.”
  • [0212]
    It may be observed that both geometry groups performed with sufficient accuracy by week three (e.g., greater than 0.79 R-value constitutes sufficient accuracy in one example). It may also be observed that the sensors of the thin, oblong group increased in accuracy and were more consistent than the sensors of the cylindrical group. It is believed that the slightly improved performance of the thin, oblong group as compared to the cylindrical group may be due to a variety of factors, including those described with reference to FIG. 11A, and additional factors such as surface area, size, mass, density, volume, surface area-to-volume, surface area-to-density, and surface area-to-mass.
  • [0213]
    From the observations of the above described study, optimization of the sensor geometry may additionally include: 1) density optimization to better correspond to the density of tissue (e.g., fascia or adipose), 2) surface area-to-volume optimization by increasing the surface area-to-volume ratio of the sensor, 3) size optimization by decreasing the overall size, mass, and/or volume of the sensor, and 4) surface area-to-mass optimization by increasing the surface area-to-mass ratio of the sensor, for example.
  • [0214]
    Table 1 illustrates additional analysis from the above described infusion study, including a comparison of average R-value at week 4 and standard deviation at week 4 for the two groups of sensors.
    TABLE 1
    Thin, oblong
    Cylindrical geometry with
    Results of Geometry Geometry with sensor on curved
    Study sensor on curved end major surface
    Average R-value at 0.73 0.87
    Week 4
    Standard Deviation 0.41 0.08
    at Week 4
  • [0215]
    As described above with reference to FIG. 11B, the average R-value at week 4 was better for the thin, oblong group as compared to the cylindrical group. Additionally the average standard deviation of the thin, oblong group as compared to the cylindrical group was much lower, indicating greater consistency and tighter tolerances with the thin, oblong group. As described above with reference to FIGS. 11A and 11B, this performance differential may be due to additional geometric factors such as surface area-to-volume ratio, size, mass, and surface area-to-density ratio, for example.
  • [0216]
    The above description discloses several methods and materials of the present invention. This invention is susceptible to modifications in the methods and materials, as well as alterations in the fabrication methods and equipment. Such modifications will become apparent to those skilled in the art from a consideration of this disclosure or practice of the invention disclosed herein. Consequently, it is not intended that this invention be limited to the specific embodiments disclosed herein, but that it cover all modifications and alternatives coming within the true scope and spirit of the invention as embodied in the attached claims. All patents, applications, and other references cited herein are hereby incorporated by reference in their entirety.

Claims (29)

1. An implantable sensor for use in measuring a concentration of an analyte in a bodily fluid, the sensor comprising:
a body comprising a sensing region adapted for transport of analytes between the sensor and the bodily fluid, wherein the sensing region is located on a curved portion of the body such that when a foreign body capsule forms around the sensor, a contractile force is exerted by the foreign body capsule toward the sensing region, wherein the body is substantially cylindrical defined by a curved lateral surface and two ends, and wherein the sensor is a subcutaneous sensor suitable for implantation in a soft tissue of a body.
2. The sensor of claim 1, wherein the sensing region is located on said curved lateral surface.
3. The sensor of claim 1, wherein at least one of said ends comprises the curved portion on which the sensing region is located.
4. The sensor of claim 1, wherein the sensing region extends from one of said ends.
5. The sensor of claim 1, wherein the sensing region is located on a first surface, and wherein a second surface comprises a curvature.
6. The sensor of claim 1, wherein the body comprises a first major surface and a second major surface, and wherein the sensor region is situated at a position on said first major surface offset from a center point of said first major surface.
7. The sensor of claim 1, wherein the body comprises a first major surface and a second major surface, and wherein the sensor region is situated on said first major surface approximately at a center point of said first major surface.
8. The sensor of claim 1, wherein the body comprises a first surface on which the sensing region is located and a second surface, and wherein said second surface comprises anchoring material thereon for supporting tissue ingrowth.
9. The sensor of claim 1, wherein said sensing region tethered to one of said ends.
10. The sensor of claim 1, further comprising a mechanical anchoring mechanism formed on the body.
11. The sensor of claim 1, wherein said curved portion comprises a plurality of radii of curvature.
12. The sensor of claim 1, wherein said curved portion comprises a radius of curvature between about 0.5 mm and about 10 cm.
13. The sensor of claim 1, wherein the body comprises a first major surface on which said sensing region is located and a second major surface, wherein the first major surface has edges between which a width of the first major surface can be measured, and wherein the sensing region is spaced away from the edges by a distance that is at least about 10% of the width of the first major surface.
14. The sensor of claim 1, wherein the body comprises a plastic.
15. The sensor of claim 14, wherein the plastic is selected from the group consisting of thermoplastic and thermoset.
16. The sensor of claim 15, wherein the thermoset is selected from the group consisting of epoxy, silicone, and polyurethane.
17. The sensor of claim 1, further comprising a porous biointerface material that covers at least a portion of the sensing region.
18. The sensor of claim 17, wherein the biointerface material comprises interconnected cavities dimensioned and arranged to create contractile forces that counteract with the generally uniform downward fibrous tissue contracture caused by the foreign body capsule in vivo and thereby interfere with formation of occlusive cells.
19. The sensor of claim 1, wherein the sensor is an electrochemical glucose sensor.
20. An implantable sensor for use in measuring a concentration of an analyte in a bodily fluid, the sensor comprising:
a body comprising a sensing region on a first surface of said body, wherein said first surface comprises a continuous curvature substantially across the entire surface such that when a foreign body capsule forms around the sensor, a contractile force is exerted by the foreign body capsule toward the sensing region, wherein the body comprises substantially cylindrical configuration defined by a curved lateral surface and two ends, and wherein the sensor is a subcutaneous sensor suitable for implantation in a soft tissue of a body.
21. The sensor of claim 20, wherein the sensing region extends from one of said ends.
22. The implantable sensor of claim 20, wherein the sensing region is located on said curved lateral surface.
23. The implantable sensor of claim 20, wherein at least one of said ends comprises the curved portion on which the sensing region is located.
24. The implantable sensor of claim 20, wherein the implantable sensor is an electrochemical glucose sensor.
25. A wholly implantable sensor adapted to measure a concentration of an analyte in a bodily fluid, comprising:
a wholly implantable body comprising a sensing region adapted for transport of analytes between the sensor and the bodily fluid, wherein the sensing region is located on a curved portion of a first surface of said body and wherein said first surface comprises a porous material thereon, wherein the body is substantially cylindrical defined by a curved lateral surface and two ends, and wherein the sensor is a subcutaneous sensor suitable for implantation in a soft tissue of a body.
26. The sensor of claim 25, wherein the sensing region extends from one of said ends.
27. The wholly implantable sensor of claim 25, wherein the sensing region is located on said curved lateral surface.
28. The wholly implantable sensor of claim 25, wherein at least one of said ends comprises the curved portion on which the sensing region is located.
29. The wholly implantable sensor of claim 25, wherein the implantable sensor is an electrochemical glucose sensor.
US11416058 2003-04-04 2006-05-02 Optimized sensor geometry for an implantable glucose sensor Abandoned US20060200022A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US46082503 true 2003-04-04 2003-04-04
US10646333 US7134999B2 (en) 2003-04-04 2003-08-22 Optimized sensor geometry for an implantable glucose sensor
US11416058 US20060200022A1 (en) 2003-04-04 2006-05-02 Optimized sensor geometry for an implantable glucose sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11416058 US20060200022A1 (en) 2003-04-04 2006-05-02 Optimized sensor geometry for an implantable glucose sensor

Publications (1)

Publication Number Publication Date
US20060200022A1 true true US20060200022A1 (en) 2006-09-07

Family

ID=33101486

Family Applications (5)

Application Number Title Priority Date Filing Date
US10646333 Active US7134999B2 (en) 2003-04-04 2003-08-22 Optimized sensor geometry for an implantable glucose sensor
US11415631 Active 2026-11-06 US7881763B2 (en) 2003-04-04 2006-05-02 Optimized sensor geometry for an implantable glucose sensor
US11416346 Abandoned US20060224108A1 (en) 2003-04-04 2006-05-02 Optimized sensor geometry for an implantable glucose sensor
US11416058 Abandoned US20060200022A1 (en) 2003-04-04 2006-05-02 Optimized sensor geometry for an implantable glucose sensor
US13015950 Abandoned US20110124992A1 (en) 2003-04-04 2011-01-28 Optimized sensor geometry for an implantable glucose sensor

Family Applications Before (3)

Application Number Title Priority Date Filing Date
US10646333 Active US7134999B2 (en) 2003-04-04 2003-08-22 Optimized sensor geometry for an implantable glucose sensor
US11415631 Active 2026-11-06 US7881763B2 (en) 2003-04-04 2006-05-02 Optimized sensor geometry for an implantable glucose sensor
US11416346 Abandoned US20060224108A1 (en) 2003-04-04 2006-05-02 Optimized sensor geometry for an implantable glucose sensor

Family Applications After (1)

Application Number Title Priority Date Filing Date
US13015950 Abandoned US20110124992A1 (en) 2003-04-04 2011-01-28 Optimized sensor geometry for an implantable glucose sensor

Country Status (4)

Country Link
US (5) US7134999B2 (en)
JP (1) JP2006521867A (en)
EP (1) EP1610673A4 (en)
WO (1) WO2004093674A1 (en)

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050031689A1 (en) * 2003-05-21 2005-02-10 Dexcom, Inc. Biointerface membranes incorporating bioactive agents
US20050181012A1 (en) * 2004-01-12 2005-08-18 Sean Saint Composite material for implantable device
US20060015020A1 (en) * 2004-07-06 2006-01-19 Dexcom, Inc. Systems and methods for manufacture of an analyte-measuring device including a membrane system
US20080030738A1 (en) * 1997-02-04 2008-02-07 Biacore Ab Analytical method and apparatus
US7657297B2 (en) 2004-05-03 2010-02-02 Dexcom, Inc. Implantable analyte sensor
US7715893B2 (en) 2003-12-05 2010-05-11 Dexcom, Inc. Calibration techniques for a continuous analyte sensor
US7792562B2 (en) 1997-03-04 2010-09-07 Dexcom, Inc. Device and method for determining analyte levels
US7811231B2 (en) 2002-12-31 2010-10-12 Abbott Diabetes Care Inc. Continuous glucose monitoring system and methods of use
US7860544B2 (en) 1998-04-30 2010-12-28 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US7881763B2 (en) 2003-04-04 2011-02-01 Dexcom, Inc. Optimized sensor geometry for an implantable glucose sensor
US7896809B2 (en) 2003-07-25 2011-03-01 Dexcom, Inc. Dual electrode system for a continuous analyte sensor
US7920907B2 (en) 2006-06-07 2011-04-05 Abbott Diabetes Care Inc. Analyte monitoring system and method
US7976778B2 (en) 2001-04-02 2011-07-12 Abbott Diabetes Care Inc. Blood glucose tracking apparatus
US8000901B2 (en) 2003-08-01 2011-08-16 Dexcom, Inc. Transcutaneous analyte sensor
US8052601B2 (en) 2003-08-01 2011-11-08 Dexcom, Inc. System and methods for processing analyte sensor data
US8060174B2 (en) 2005-04-15 2011-11-15 Dexcom, Inc. Analyte sensing biointerface
US8118877B2 (en) 2003-05-21 2012-02-21 Dexcom, Inc. Porous membranes for use with implantable devices
US8126736B2 (en) 2009-01-23 2012-02-28 Warsaw Orthopedic, Inc. Methods and systems for diagnosing, treating, or tracking spinal disorders
US8155723B2 (en) 1997-03-04 2012-04-10 Dexcom, Inc. Device and method for determining analyte levels
US8160669B2 (en) 2003-08-01 2012-04-17 Dexcom, Inc. Transcutaneous analyte sensor
USRE43399E1 (en) 2003-07-25 2012-05-22 Dexcom, Inc. Electrode systems for electrochemical sensors
US8229535B2 (en) 2008-02-21 2012-07-24 Dexcom, Inc. Systems and methods for blood glucose monitoring and alert delivery
US8275437B2 (en) 2003-08-01 2012-09-25 Dexcom, Inc. Transcutaneous analyte sensor
US8287454B2 (en) 1998-04-30 2012-10-16 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8346337B2 (en) 1998-04-30 2013-01-01 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8465425B2 (en) 1998-04-30 2013-06-18 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8509871B2 (en) 2001-07-27 2013-08-13 Dexcom, Inc. Sensor head for use with implantable devices
US8527026B2 (en) 1997-03-04 2013-09-03 Dexcom, Inc. Device and method for determining analyte levels
WO2013152090A2 (en) 2012-04-04 2013-10-10 Dexcom, Inc. Transcutaneous analyte sensors, applicators therefor, and associated methods
WO2013184566A2 (en) 2012-06-05 2013-12-12 Dexcom, Inc. Systems and methods for processing analyte data and generating reports
US8612159B2 (en) 1998-04-30 2013-12-17 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
WO2014004460A1 (en) 2012-06-29 2014-01-03 Dexcom, Inc. Use of sensor redundancy to detect sensor failures
US8622905B2 (en) 2003-08-01 2014-01-07 Dexcom, Inc. System and methods for processing analyte sensor data
WO2014011488A2 (en) 2012-07-09 2014-01-16 Dexcom, Inc. Systems and methods for leveraging smartphone features in continuous glucose monitoring
US8652043B2 (en) 2001-01-02 2014-02-18 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8685093B2 (en) 2009-01-23 2014-04-01 Warsaw Orthopedic, Inc. Methods and systems for diagnosing, treating, or tracking spinal disorders
US8688188B2 (en) 1998-04-30 2014-04-01 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
WO2014052080A1 (en) 2012-09-28 2014-04-03 Dexcom, Inc. Zwitterion surface modifications for continuous sensors
US8792955B2 (en) 2004-05-03 2014-07-29 Dexcom, Inc. Transcutaneous analyte sensor
US8840552B2 (en) 2001-07-27 2014-09-23 Dexcom, Inc. Membrane for use with implantable devices
WO2014158405A2 (en) 2013-03-14 2014-10-02 Dexcom, Inc. Systems and methods for processing and transmitting sensor data
WO2014158327A2 (en) 2013-03-14 2014-10-02 Dexcom, Inc. Advanced calibration for analyte sensors
EP2796090A1 (en) 2006-10-04 2014-10-29 DexCom, Inc. Analyte sensor
EP2796093A1 (en) 2007-03-26 2014-10-29 DexCom, Inc. Analyte sensor
US8974386B2 (en) 1998-04-30 2015-03-10 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US9066695B2 (en) 1998-04-30 2015-06-30 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
WO2015156966A1 (en) 2014-04-10 2015-10-15 Dexcom, Inc. Sensors for continuous analyte monitoring, and related methods
EP3092949A1 (en) 2011-09-23 2016-11-16 Dexcom, Inc. Systems and methods for processing and transmitting sensor data
US9795331B2 (en) 2005-12-28 2017-10-24 Abbott Diabetes Care Inc. Method and apparatus for providing analyte sensor insertion

Families Citing this family (305)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5593852A (en) 1993-12-02 1997-01-14 Heller; Adam Subcutaneous glucose electrode
US20050033132A1 (en) 1997-03-04 2005-02-10 Shults Mark C. Analyte measuring device
US6036924A (en) 1997-12-04 2000-03-14 Hewlett-Packard Company Cassette of lancet cartridges for sampling blood
US6134461A (en) 1998-03-04 2000-10-17 E. Heller & Company Electrochemical analyte
US6391005B1 (en) 1998-03-30 2002-05-21 Agilent Technologies, Inc. Apparatus and method for penetration with shaft having a sensor for sensing penetration depth
JP4689825B2 (en) 1998-08-26 2011-05-25 センサーズ・フォー・メデセン・アンド・サイエンス・インコーポレーテッド Optical detection device
US7553280B2 (en) 2000-06-29 2009-06-30 Sensors For Medicine And Science, Inc. Implanted sensor processing system and method
US8641644B2 (en) 2000-11-21 2014-02-04 Sanofi-Aventis Deutschland Gmbh Blood testing apparatus having a rotatable cartridge with multiple lancing elements and testing means
US7892183B2 (en) 2002-04-19 2011-02-22 Pelikan Technologies, Inc. Method and apparatus for body fluid sampling and analyte sensing
CN100520372C (en) * 2001-05-04 2009-07-29 医药及科学传感器公司 Electro-optical sensing device with reference channel
US8267870B2 (en) 2002-04-19 2012-09-18 Sanofi-Aventis Deutschland Gmbh Method and apparatus for body fluid sampling with hybrid actuation
US9795334B2 (en) 2002-04-19 2017-10-24 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US7909778B2 (en) 2002-04-19 2011-03-22 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7547287B2 (en) 2002-04-19 2009-06-16 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8337419B2 (en) 2002-04-19 2012-12-25 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US7331931B2 (en) 2002-04-19 2008-02-19 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7226461B2 (en) 2002-04-19 2007-06-05 Pelikan Technologies, Inc. Method and apparatus for a multi-use body fluid sampling device with sterility barrier release
US7344507B2 (en) 2002-04-19 2008-03-18 Pelikan Technologies, Inc. Method and apparatus for lancet actuation
US7491178B2 (en) 2002-04-19 2009-02-17 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
EP1404235A4 (en) 2001-06-12 2008-08-20 Pelikan Technologies Inc Method and apparatus for lancet launching device integrated onto a blood-sampling cartridge
US7291117B2 (en) 2002-04-19 2007-11-06 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US9248267B2 (en) 2002-04-19 2016-02-02 Sanofi-Aventis Deustchland Gmbh Tissue penetration device
US7682318B2 (en) 2001-06-12 2010-03-23 Pelikan Technologies, Inc. Blood sampling apparatus and method
US8221334B2 (en) 2002-04-19 2012-07-17 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US7316700B2 (en) 2001-06-12 2008-01-08 Pelikan Technologies, Inc. Self optimizing lancing device with adaptation means to temporal variations in cutaneous properties
WO2002100460A3 (en) 2001-06-12 2003-05-08 Don Alden Electric lancet actuator
US7717863B2 (en) 2002-04-19 2010-05-18 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8579831B2 (en) 2002-04-19 2013-11-12 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US7041068B2 (en) 2001-06-12 2006-05-09 Pelikan Technologies, Inc. Sampling module device and method
US8784335B2 (en) 2002-04-19 2014-07-22 Sanofi-Aventis Deutschland Gmbh Body fluid sampling device with a capacitive sensor
US9314194B2 (en) 2002-04-19 2016-04-19 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US9226699B2 (en) 2002-04-19 2016-01-05 Sanofi-Aventis Deutschland Gmbh Body fluid sampling module with a continuous compression tissue interface surface
US7297122B2 (en) 2002-04-19 2007-11-20 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7699791B2 (en) 2001-06-12 2010-04-20 Pelikan Technologies, Inc. Method and apparatus for improving success rate of blood yield from a fingerstick
US7229458B2 (en) 2002-04-19 2007-06-12 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US9427532B2 (en) 2001-06-12 2016-08-30 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US7371247B2 (en) 2002-04-19 2008-05-13 Pelikan Technologies, Inc Method and apparatus for penetrating tissue
US7674232B2 (en) 2002-04-19 2010-03-09 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7981056B2 (en) 2002-04-19 2011-07-19 Pelikan Technologies, Inc. Methods and apparatus for lancet actuation
US7648468B2 (en) 2002-04-19 2010-01-19 Pelikon Technologies, Inc. Method and apparatus for penetrating tissue
US7901362B2 (en) 2002-04-19 2011-03-08 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7976476B2 (en) 2002-04-19 2011-07-12 Pelikan Technologies, Inc. Device and method for variable speed lancet
US7232451B2 (en) 2002-04-19 2007-06-19 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US20030036746A1 (en) 2001-08-16 2003-02-20 Avi Penner Devices for intrabody delivery of molecules and systems and methods utilizing same
US9282925B2 (en) 2002-02-12 2016-03-15 Dexcom, Inc. Systems and methods for replacing signal artifacts in a glucose sensor data stream
US8702624B2 (en) 2006-09-29 2014-04-22 Sanofi-Aventis Deutschland Gmbh Analyte measurement device with a single shot actuator
US8260393B2 (en) 2003-07-25 2012-09-04 Dexcom, Inc. Systems and methods for replacing signal data artifacts in a glucose sensor data stream
US7613491B2 (en) 2002-05-22 2009-11-03 Dexcom, Inc. Silicone based membranes for use in implantable glucose sensors
US8364229B2 (en) 2003-07-25 2013-01-29 Dexcom, Inc. Analyte sensors having a signal-to-noise ratio substantially unaffected by non-constant noise
US8423113B2 (en) 2003-07-25 2013-04-16 Dexcom, Inc. Systems and methods for processing sensor data
US7226978B2 (en) 2002-05-22 2007-06-05 Dexcom, Inc. Techniques to improve polyurethane membranes for implantable glucose sensors
US9763609B2 (en) 2003-07-25 2017-09-19 Dexcom, Inc. Analyte sensors having a signal-to-noise ratio substantially unaffected by non-constant noise
US7727181B2 (en) * 2002-10-09 2010-06-01 Abbott Diabetes Care Inc. Fluid delivery device with autocalibration
CA2501825C (en) 2002-10-09 2009-12-01 Therasense, Inc. Fluid delivery device, system and method
US7993108B2 (en) 2002-10-09 2011-08-09 Abbott Diabetes Care Inc. Variable volume, shape memory actuated insulin dispensing pump
US8574895B2 (en) 2002-12-30 2013-11-05 Sanofi-Aventis Deutschland Gmbh Method and apparatus using optical techniques to measure analyte levels
US7587287B2 (en) 2003-04-04 2009-09-08 Abbott Diabetes Care Inc. Method and system for transferring analyte test data
US7198603B2 (en) * 2003-04-14 2007-04-03 Remon Medical Technologies, Inc. Apparatus and methods using acoustic telemetry for intrabody communications
EP1618768B1 (en) * 2003-04-15 2013-06-12 Senseonics, Incorporated Implantable sensor processing system with integrated printed circuit board antenna
US7679407B2 (en) 2003-04-28 2010-03-16 Abbott Diabetes Care Inc. Method and apparatus for providing peak detection circuitry for data communication systems
US7850621B2 (en) 2003-06-06 2010-12-14 Pelikan Technologies, Inc. Method and apparatus for body fluid sampling and analyte sensing
US8066639B2 (en) 2003-06-10 2011-11-29 Abbott Diabetes Care Inc. Glucose measuring device for use in personal area network
US8460243B2 (en) 2003-06-10 2013-06-11 Abbott Diabetes Care Inc. Glucose measuring module and insulin pump combination
US8071028B2 (en) 2003-06-12 2011-12-06 Abbott Diabetes Care Inc. Method and apparatus for providing power management in data communication systems
US7722536B2 (en) 2003-07-15 2010-05-25 Abbott Diabetes Care Inc. Glucose measuring device integrated into a holster for a personal area network device
US8761856B2 (en) 2003-08-01 2014-06-24 Dexcom, Inc. System and methods for processing analyte sensor data
US8845536B2 (en) 2003-08-01 2014-09-30 Dexcom, Inc. Transcutaneous analyte sensor
US7933639B2 (en) 2003-08-01 2011-04-26 Dexcom, Inc. System and methods for processing analyte sensor data
US8886273B2 (en) 2003-08-01 2014-11-11 Dexcom, Inc. Analyte sensor
US8886272B2 (en) 2004-07-13 2014-11-11 Dexcom, Inc. Analyte sensor
US8369919B2 (en) 2003-08-01 2013-02-05 Dexcom, Inc. Systems and methods for processing sensor data
US8010174B2 (en) 2003-08-22 2011-08-30 Dexcom, Inc. Systems and methods for replacing signal artifacts in a glucose sensor data stream
US9247901B2 (en) 2003-08-22 2016-02-02 Dexcom, Inc. Systems and methods for replacing signal artifacts in a glucose sensor data stream
US8233959B2 (en) 2003-08-22 2012-07-31 Dexcom, Inc. Systems and methods for processing analyte sensor data
WO2005033659A3 (en) 2003-09-29 2007-01-18 Pelikan Technologies Inc Method and apparatus for an improved sample capture device
EP1520514A1 (en) * 2003-10-02 2005-04-06 Matsushita Electric Industrial Co., Ltd. Optical biological information measuring apparatus and method
WO2005037095A1 (en) 2003-10-14 2005-04-28 Pelikan Technologies, Inc. Method and apparatus for a variable user interface
US7299082B2 (en) 2003-10-31 2007-11-20 Abbott Diabetes Care, Inc. Method of calibrating an analyte-measurement device, and associated methods, devices and systems
US7519408B2 (en) 2003-11-19 2009-04-14 Dexcom, Inc. Integrated receiver for continuous analyte sensor
US8287453B2 (en) 2003-12-05 2012-10-16 Dexcom, Inc. Analyte sensor
EP1711791B1 (en) 2003-12-09 2014-10-15 DexCom, Inc. Signal processing for continuous analyte sensor
WO2005065414A3 (en) 2003-12-31 2005-12-29 Pelikan Technologies Inc Method and apparatus for improving fluidic flow and sample capture
US7364592B2 (en) * 2004-02-12 2008-04-29 Dexcom, Inc. Biointerface membrane with macro-and micro-architecture
US8771183B2 (en) 2004-02-17 2014-07-08 Abbott Diabetes Care Inc. Method and system for providing data communication in continuous glucose monitoring and management system
US7591801B2 (en) 2004-02-26 2009-09-22 Dexcom, Inc. Integrated delivery device for continuous glucose sensor
US8808228B2 (en) 2004-02-26 2014-08-19 Dexcom, Inc. Integrated medicament delivery device for use with continuous analyte sensor
GB2429478B (en) * 2004-04-12 2009-04-29 Baker Hughes Inc Completion with telescoping perforation & fracturing tool
US8277713B2 (en) * 2004-05-03 2012-10-02 Dexcom, Inc. Implantable analyte sensor
EP1751546A2 (en) 2004-05-20 2007-02-14 Albatros Technologies GmbH & Co. KG Printable hydrogel for biosensors
EP1765194A4 (en) 2004-06-03 2010-09-29 Pelikan Technologies Inc Method and apparatus for a fluid sampling device
WO2006001797A1 (en) 2004-06-14 2006-01-05 Pelikan Technologies, Inc. Low pain penetrating
US9247900B2 (en) 2004-07-13 2016-02-02 Dexcom, Inc. Analyte sensor
US8565848B2 (en) 2004-07-13 2013-10-22 Dexcom, Inc. Transcutaneous analyte sensor
US7946984B2 (en) 2004-07-13 2011-05-24 Dexcom, Inc. Transcutaneous analyte sensor
US8452368B2 (en) 2004-07-13 2013-05-28 Dexcom, Inc. Transcutaneous analyte sensor
US7783333B2 (en) 2004-07-13 2010-08-24 Dexcom, Inc. Transcutaneous medical device with variable stiffness
US20060016700A1 (en) 2004-07-13 2006-01-26 Dexcom, Inc. Transcutaneous analyte sensor
US8271093B2 (en) 2004-09-17 2012-09-18 Cardiac Pacemakers, Inc. Systems and methods for deriving relative physiologic measurements using a backend computing system
US7813808B1 (en) 2004-11-24 2010-10-12 Remon Medical Technologies Ltd Implanted sensor system with optimized operational and sensing parameters
US8571624B2 (en) 2004-12-29 2013-10-29 Abbott Diabetes Care Inc. Method and apparatus for mounting a data transmission device in a communication system
US8652831B2 (en) 2004-12-30 2014-02-18 Sanofi-Aventis Deutschland Gmbh Method and apparatus for analyte measurement test time
US7822454B1 (en) 2005-01-03 2010-10-26 Pelikan Technologies, Inc. Fluid sampling device with improved analyte detecting member configuration
US7545272B2 (en) 2005-02-08 2009-06-09 Therasense, Inc. RF tag on test strips, test strip vials and boxes
US7920906B2 (en) 2005-03-10 2011-04-05 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
EP1863559A4 (en) 2005-03-21 2008-07-30 Abbott Diabetes Care Inc Method and system for providing integrated medication infusion and analyte monitoring system
US7651596B2 (en) 2005-04-08 2010-01-26 Dexcom, Inc. Cellulosic-based interference domain for an analyte sensor
US7308292B2 (en) 2005-04-15 2007-12-11 Sensors For Medicine And Science, Inc. Optical-based sensing devices
US8112240B2 (en) 2005-04-29 2012-02-07 Abbott Diabetes Care Inc. Method and apparatus for providing leak detection in data monitoring and management systems
US7768408B2 (en) 2005-05-17 2010-08-03 Abbott Diabetes Care Inc. Method and system for providing data management in data monitoring system
US7620437B2 (en) 2005-06-03 2009-11-17 Abbott Diabetes Care Inc. Method and apparatus for providing rechargeable power in data monitoring and management systems
US7731657B2 (en) 2005-08-30 2010-06-08 Abbott Diabetes Care Inc. Analyte sensor introducer and methods of use
US7742815B2 (en) 2005-09-09 2010-06-22 Cardiac Pacemakers, Inc. Using implanted sensors for feedback control of implanted medical devices
US7883464B2 (en) 2005-09-30 2011-02-08 Abbott Diabetes Care Inc. Integrated transmitter unit and sensor introducer mechanism and methods of use
US7756561B2 (en) 2005-09-30 2010-07-13 Abbott Diabetes Care Inc. Method and apparatus for providing rechargeable power in data monitoring and management systems
US9398882B2 (en) 2005-09-30 2016-07-26 Abbott Diabetes Care Inc. Method and apparatus for providing analyte sensor and data processing device
US9521968B2 (en) 2005-09-30 2016-12-20 Abbott Diabetes Care Inc. Analyte sensor retention mechanism and methods of use
US8880138B2 (en) 2005-09-30 2014-11-04 Abbott Diabetes Care Inc. Device for channeling fluid and methods of use
US8512243B2 (en) 2005-09-30 2013-08-20 Abbott Diabetes Care Inc. Integrated introducer and transmitter assembly and methods of use
US7583190B2 (en) 2005-10-31 2009-09-01 Abbott Diabetes Care Inc. Method and apparatus for providing data communication in data monitoring and management systems
US7766829B2 (en) 2005-11-04 2010-08-03 Abbott Diabetes Care Inc. Method and system for providing basal profile modification in analyte monitoring and management systems
US8353881B2 (en) 2005-12-28 2013-01-15 Abbott Diabetes Care Inc. Infusion sets for the delivery of a therapeutic substance to a patient
CA2636034A1 (en) 2005-12-28 2007-10-25 Abbott Diabetes Care Inc. Medical device insertion
US8515518B2 (en) 2005-12-28 2013-08-20 Abbott Diabetes Care Inc. Analyte monitoring
US8160670B2 (en) 2005-12-28 2012-04-17 Abbott Diabetes Care Inc. Analyte monitoring: stabilizer for subcutaneous glucose sensor with incorporated antiglycolytic agent
US7736310B2 (en) 2006-01-30 2010-06-15 Abbott Diabetes Care Inc. On-body medical device securement
US8344966B2 (en) 2006-01-31 2013-01-01 Abbott Diabetes Care Inc. Method and system for providing a fault tolerant display unit in an electronic device
EP2407095A1 (en) 2006-02-22 2012-01-18 DexCom, Inc. Analyte sensor
US7616316B1 (en) 2006-02-27 2009-11-10 Southwest Sciences Incorporated Gas measurement over extreme dynamic range of concentrations
US7826879B2 (en) 2006-02-28 2010-11-02 Abbott Diabetes Care Inc. Analyte sensors and methods of use
US8029441B2 (en) 2006-02-28 2011-10-04 Abbott Diabetes Care Inc. Analyte sensor transmitter unit configuration for a data monitoring and management system
US7981034B2 (en) 2006-02-28 2011-07-19 Abbott Diabetes Care Inc. Smart messages and alerts for an infusion delivery and management system
US7885698B2 (en) 2006-02-28 2011-02-08 Abbott Diabetes Care Inc. Method and system for providing continuous calibration of implantable analyte sensors
EP2004241B1 (en) * 2006-03-28 2013-08-07 Glusense Ltd. Implantable sensor
US7620438B2 (en) 2006-03-31 2009-11-17 Abbott Diabetes Care Inc. Method and system for powering an electronic device
US7801582B2 (en) 2006-03-31 2010-09-21 Abbott Diabetes Care Inc. Analyte monitoring and management system and methods therefor
US8226891B2 (en) 2006-03-31 2012-07-24 Abbott Diabetes Care Inc. Analyte monitoring devices and methods therefor
US7809441B2 (en) 2006-05-17 2010-10-05 Cardiac Pacemakers, Inc. Implantable medical device with chemical sensor and related methods
US7526337B2 (en) * 2006-06-06 2009-04-28 Cardiac Pacemakers, Inc. Method and device for lymphatic system monitoring
US9119582B2 (en) 2006-06-30 2015-09-01 Abbott Diabetes Care, Inc. Integrated analyte sensor and infusion device and methods therefor
US7955268B2 (en) 2006-07-21 2011-06-07 Cardiac Pacemakers, Inc. Multiple sensor deployment
US7908334B2 (en) * 2006-07-21 2011-03-15 Cardiac Pacemakers, Inc. System and method for addressing implantable devices
US8206296B2 (en) 2006-08-07 2012-06-26 Abbott Diabetes Care Inc. Method and system for providing integrated analyte monitoring and infusion system therapy management
US8932216B2 (en) 2006-08-07 2015-01-13 Abbott Diabetes Care Inc. Method and system for providing data management in integrated analyte monitoring and infusion system
US7653425B2 (en) 2006-08-09 2010-01-26 Abbott Diabetes Care Inc. Method and system for providing calibration of an analyte sensor in an analyte monitoring system
US9867530B2 (en) 2006-08-14 2018-01-16 Volcano Corporation Telescopic side port catheter device with imaging system and method for accessing side branch occlusions
US8333714B2 (en) 2006-09-10 2012-12-18 Abbott Diabetes Care Inc. Method and system for providing an integrated analyte sensor insertion device and data processing unit
US7618369B2 (en) 2006-10-02 2009-11-17 Abbott Diabetes Care Inc. Method and system for dynamically updating calibration parameters for an analyte sensor
US8364231B2 (en) 2006-10-04 2013-01-29 Dexcom, Inc. Analyte sensor
US9788771B2 (en) 2006-10-23 2017-10-17 Abbott Diabetes Care Inc. Variable speed sensor insertion devices and methods of use
US9259175B2 (en) 2006-10-23 2016-02-16 Abbott Diabetes Care, Inc. Flexible patch for fluid delivery and monitoring body analytes
US7630748B2 (en) 2006-10-25 2009-12-08 Abbott Diabetes Care Inc. Method and system for providing analyte monitoring
JP2010508091A (en) 2006-10-26 2010-03-18 アボット ダイアベティス ケア インコーポレイテッドAbbott Diabetes Care Inc. The method for detecting a decrease sensitivity of the analyte sensor in real time systems, and computer program products
US8579853B2 (en) 2006-10-31 2013-11-12 Abbott Diabetes Care Inc. Infusion devices and methods
US8121857B2 (en) 2007-02-15 2012-02-21 Abbott Diabetes Care Inc. Device and method for automatic data acquisition and/or detection
US8732188B2 (en) 2007-02-18 2014-05-20 Abbott Diabetes Care Inc. Method and system for providing contextual based medication dosage determination
US8930203B2 (en) 2007-02-18 2015-01-06 Abbott Diabetes Care Inc. Multi-function analyte test device and methods therefor
US9636450B2 (en) 2007-02-19 2017-05-02 Udo Hoss Pump system modular components for delivering medication and analyte sensing at seperate insertion sites
US8123686B2 (en) 2007-03-01 2012-02-28 Abbott Diabetes Care Inc. Method and apparatus for providing rolling data in communication systems
US20100113897A1 (en) * 2007-03-19 2010-05-06 Bayer Health Care Llc Continuous analyte monitoring assembly and methods of using the same
US7768387B2 (en) 2007-04-14 2010-08-03 Abbott Diabetes Care Inc. Method and apparatus for providing dynamic multi-stage signal amplification in a medical device
CA2683959C (en) 2007-04-14 2017-08-29 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in medical communication system
US9008743B2 (en) 2007-04-14 2015-04-14 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in medical communication system
US9204827B2 (en) 2007-04-14 2015-12-08 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in medical communication system
EP2137637A4 (en) 2007-04-14 2012-06-20 Abbott Diabetes Care Inc Method and apparatus for providing data processing and control in medical communication system
US8456301B2 (en) 2007-05-08 2013-06-04 Abbott Diabetes Care Inc. Analyte monitoring system and methods
US8665091B2 (en) 2007-05-08 2014-03-04 Abbott Diabetes Care Inc. Method and device for determining elapsed sensor life
US8461985B2 (en) 2007-05-08 2013-06-11 Abbott Diabetes Care Inc. Analyte monitoring system and methods
US7928850B2 (en) 2007-05-08 2011-04-19 Abbott Diabetes Care Inc. Analyte monitoring system and methods
US8444560B2 (en) 2007-05-14 2013-05-21 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US8239166B2 (en) 2007-05-14 2012-08-07 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US8260558B2 (en) 2007-05-14 2012-09-04 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US8560038B2 (en) 2007-05-14 2013-10-15 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US9125548B2 (en) 2007-05-14 2015-09-08 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US8140312B2 (en) 2007-05-14 2012-03-20 Abbott Diabetes Care Inc. Method and system for determining analyte levels
US7996158B2 (en) 2007-05-14 2011-08-09 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US8103471B2 (en) 2007-05-14 2012-01-24 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US8600681B2 (en) 2007-05-14 2013-12-03 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
WO2008150917A1 (en) 2007-05-31 2008-12-11 Abbott Diabetes Care, Inc. Insertion devices and methods
EP2152350A4 (en) 2007-06-08 2013-03-27 Dexcom Inc Integrated medicament delivery device for use with continuous analyte sensor
US8597188B2 (en) 2007-06-21 2013-12-03 Abbott Diabetes Care Inc. Health management devices and methods
CA2690870C (en) 2007-06-21 2017-07-11 Abbott Diabetes Care Inc. Health monitor
US8641618B2 (en) 2007-06-27 2014-02-04 Abbott Diabetes Care Inc. Method and structure for securing a monitoring device element
US8085151B2 (en) 2007-06-28 2011-12-27 Abbott Diabetes Care Inc. Signal converting cradle for medical condition monitoring and management system
US8160900B2 (en) 2007-06-29 2012-04-17 Abbott Diabetes Care Inc. Analyte monitoring and management device and method to analyze the frequency of user interaction with the device
JP5524835B2 (en) 2007-07-12 2014-06-18 ヴォルカノ コーポレイションVolcano Corporation Vivo imaging catheter
US9596993B2 (en) 2007-07-12 2017-03-21 Volcano Corporation Automatic calibration systems and methods of use
US20090024015A1 (en) * 2007-07-17 2009-01-22 Edwards Lifesciences Corporation Sensing element having an adhesive backing
US7768386B2 (en) 2007-07-31 2010-08-03 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US8834366B2 (en) 2007-07-31 2014-09-16 Abbott Diabetes Care Inc. Method and apparatus for providing analyte sensor calibration
US8366652B2 (en) * 2007-08-17 2013-02-05 The Invention Science Fund I, Llc Systems, devices, and methods including infection-fighting and monitoring shunts
US8585627B2 (en) 2008-12-04 2013-11-19 The Invention Science Fund I, Llc Systems, devices, and methods including catheters configured to monitor biofilm formation having biofilm spectral information configured as a data structure
US8647292B2 (en) 2007-08-17 2014-02-11 The Invention Science Fund I, Llc Systems, devices, and methods including catheters having components that are actively controllable between two or more wettability states
US8460229B2 (en) 2007-08-17 2013-06-11 The Invention Science Fund I, Llc Systems, devices, and methods including catheters having components that are actively controllable between transmissive and reflective states
US20120041285A1 (en) 2008-12-04 2012-02-16 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Systems, devices, and methods including implantable devices with anti-microbial properties
US8706211B2 (en) 2007-08-17 2014-04-22 The Invention Science Fund I, Llc Systems, devices, and methods including catheters having self-cleaning surfaces
US8734718B2 (en) 2007-08-17 2014-05-27 The Invention Science Fund I, Llc Systems, devices, and methods including catheters having an actively controllable therapeutic agent delivery component
EP2384168B1 (en) 2008-12-04 2014-10-08 Searete LLC Actively-controllable sterilizing excitation delivery implants
US8753304B2 (en) 2007-08-17 2014-06-17 The Invention Science Fund I, Llc Systems, devices, and methods including catheters having acoustically actuatable waveguide components for delivering a sterilizing stimulus to a region proximate a surface of the catheter
US8162924B2 (en) 2007-08-17 2012-04-24 The Invention Science Fund I, Llc System, devices, and methods including actively-controllable superoxide water generating systems
US8702640B2 (en) 2007-08-17 2014-04-22 The Invention Science Fund I, Llc System, devices, and methods including catheters configured to monitor and inhibit biofilm formation
WO2009036256A1 (en) 2007-09-14 2009-03-19 Corventis, Inc. Injectable physiological monitoring system
EP2194858B1 (en) 2007-09-14 2017-11-22 Corventis, Inc. Medical device automatic start-up upon contact to patient tissue
US20090076345A1 (en) 2007-09-14 2009-03-19 Corventis, Inc. Adherent Device with Multiple Physiological Sensors
US9411936B2 (en) 2007-09-14 2016-08-09 Medtronic Monitoring, Inc. Dynamic pairing of patients to data collection gateways
EP2194864A4 (en) 2007-09-14 2014-11-12 Corventis Inc System and methods for wireless body fluid monitoring
EP2194856A4 (en) 2007-09-14 2014-07-16 Corventis Inc Adherent cardiac monitor with advanced sensing capabilities
US7710568B1 (en) 2007-09-28 2010-05-04 Southwest Sciences Incorporated Portable natural gas leak detector
US8377031B2 (en) 2007-10-23 2013-02-19 Abbott Diabetes Care Inc. Closed loop control system with safety parameters and methods
US8409093B2 (en) 2007-10-23 2013-04-02 Abbott Diabetes Care Inc. Assessing measures of glycemic variability
US8374668B1 (en) 2007-10-23 2013-02-12 Abbott Diabetes Care Inc. Analyte sensor with lag compensation
US8216138B1 (en) 2007-10-23 2012-07-10 Abbott Diabetes Care Inc. Correlation of alternative site blood and interstitial fluid glucose concentrations to venous glucose concentration
US8417312B2 (en) 2007-10-25 2013-04-09 Dexcom, Inc. Systems and methods for processing sensor data
US9839395B2 (en) 2007-12-17 2017-12-12 Dexcom, Inc. Systems and methods for processing sensor data
US9135402B2 (en) 2007-12-17 2015-09-15 Dexcom, Inc. Systems and methods for processing sensor data
US8041431B2 (en) * 2008-01-07 2011-10-18 Cardiac Pacemakers, Inc. System and method for in situ trimming of oscillators in a pair of implantable medical devices
US8473022B2 (en) 2008-01-31 2013-06-25 Abbott Diabetes Care Inc. Analyte sensor with time lag compensation
US8301262B2 (en) * 2008-02-06 2012-10-30 Cardiac Pacemakers, Inc. Direct inductive/acoustic converter for implantable medical device
US8725260B2 (en) 2008-02-11 2014-05-13 Cardiac Pacemakers, Inc Methods of monitoring hemodynamic status for rhythm discrimination within the heart
WO2009102640A1 (en) 2008-02-12 2009-08-20 Cardiac Pacemakers, Inc. Systems and methods for controlling wireless signal transfers between ultrasound-enabled medical devices
WO2009114548A1 (en) 2008-03-12 2009-09-17 Corventis, Inc. Heart failure decompensation prediction based on cardiac rhythm
US8396528B2 (en) 2008-03-25 2013-03-12 Dexcom, Inc. Analyte sensor
US8346335B2 (en) 2008-03-28 2013-01-01 Abbott Diabetes Care Inc. Analyte sensor calibration management
US8583205B2 (en) 2008-03-28 2013-11-12 Abbott Diabetes Care Inc. Analyte sensor calibration management
EP2982383A1 (en) 2008-04-10 2016-02-10 Abbott Diabetes Care, Inc. Method for sterilizing an analyte sensor
WO2009126900A1 (en) 2008-04-11 2009-10-15 Pelikan Technologies, Inc. Method and apparatus for analyte detecting device
WO2009146214A1 (en) 2008-04-18 2009-12-03 Corventis, Inc. Method and apparatus to measure bioelectric impedance of patient tissue
US8591410B2 (en) 2008-05-30 2013-11-26 Abbott Diabetes Care Inc. Method and apparatus for providing glycemic control
US8924159B2 (en) 2008-05-30 2014-12-30 Abbott Diabetes Care Inc. Method and apparatus for providing glycemic control
US7826382B2 (en) 2008-05-30 2010-11-02 Abbott Diabetes Care Inc. Close proximity communication device and methods
WO2010009172A1 (en) 2008-07-14 2010-01-21 Abbott Diabetes Care Inc. Closed loop control system interface and methods
WO2010019326A1 (en) 2008-08-14 2010-02-18 Cardiac Pacemakers, Inc. Performance assessment and adaptation of an acoustic communication link
US8622988B2 (en) 2008-08-31 2014-01-07 Abbott Diabetes Care Inc. Variable rate closed loop control and methods
US20100057040A1 (en) 2008-08-31 2010-03-04 Abbott Diabetes Care, Inc. Robust Closed Loop Control And Methods
US8734422B2 (en) 2008-08-31 2014-05-27 Abbott Diabetes Care Inc. Closed loop control with improved alarm functions
US9392969B2 (en) 2008-08-31 2016-07-19 Abbott Diabetes Care Inc. Closed loop control and signal attenuation detection
US8986208B2 (en) 2008-09-30 2015-03-24 Abbott Diabetes Care Inc. Analyte sensor sensitivity attenuation mitigation
US8219173B2 (en) 2008-09-30 2012-07-10 Abbott Diabetes Care Inc. Optimizing analyte sensor calibration
JP5465252B2 (en) 2008-10-10 2014-04-09 カーディアック ペースメイカーズ, インコーポレイテッド System and method for determining the cardiac output using pulmonary artery pressure measurements
US9326707B2 (en) 2008-11-10 2016-05-03 Abbott Diabetes Care Inc. Alarm characterization for analyte monitoring devices and systems
WO2010059291A1 (en) 2008-11-19 2010-05-27 Cardiac Pacemakers, Inc. Assessment of pulmonary vascular resistance via pulmonary artery pressure
US20100160749A1 (en) * 2008-12-24 2010-06-24 Glusense Ltd. Implantable optical glucose sensing
EP2378954A4 (en) * 2008-12-24 2013-05-15 Glusense Ltd Implantable optical glucose sensing
US8224415B2 (en) 2009-01-29 2012-07-17 Abbott Diabetes Care Inc. Method and device for providing offset model based calibration for analyte sensor
US8103456B2 (en) 2009-01-29 2012-01-24 Abbott Diabetes Care Inc. Method and device for early signal attenuation detection using blood glucose measurements
US9375169B2 (en) 2009-01-30 2016-06-28 Sanofi-Aventis Deutschland Gmbh Cam drive for managing disposable penetrating member actions with a single motor and motor and control system
US8560082B2 (en) 2009-01-30 2013-10-15 Abbott Diabetes Care Inc. Computerized determination of insulin pump therapy parameters using real time and retrospective data processing
US20100198034A1 (en) * 2009-02-03 2010-08-05 Abbott Diabetes Care Inc. Compact On-Body Physiological Monitoring Devices and Methods Thereof
WO2010111660A1 (en) 2009-03-27 2010-09-30 Dexcom, Inc. Methods and systems for promoting glucose management
WO2010121084A1 (en) 2009-04-15 2010-10-21 Abbott Diabetes Care Inc. Analyte monitoring system having an alert
WO2010127050A1 (en) 2009-04-28 2010-11-04 Abbott Diabetes Care Inc. Error detection in critical repeating data in a wireless sensor system
WO2010129375A1 (en) 2009-04-28 2010-11-11 Abbott Diabetes Care Inc. Closed loop blood glucose control algorithm analysis
US8368556B2 (en) 2009-04-29 2013-02-05 Abbott Diabetes Care Inc. Method and system for providing data communication in continuous glucose monitoring and management system
EP2425209A4 (en) 2009-04-29 2013-01-09 Abbott Diabetes Care Inc Method and system for providing real time analyte sensor calibration with retrospective backfill
US9517023B2 (en) * 2009-06-01 2016-12-13 Profusa, Inc. Method and system for directing a localized biological response to an implant
US8613892B2 (en) 2009-06-30 2013-12-24 Abbott Diabetes Care Inc. Analyte meter with a moveable head and methods of using the same
CN104799866A (en) 2009-07-23 2015-07-29 雅培糖尿病护理公司 The analyte monitoring device
EP2456351B1 (en) 2009-07-23 2016-10-12 Abbott Diabetes Care, Inc. Real time management of data relating to physiological control of glucose levels
US8478557B2 (en) 2009-07-31 2013-07-02 Abbott Diabetes Care Inc. Method and apparatus for providing analyte monitoring system calibration accuracy
EP2473098A4 (en) 2009-08-31 2014-04-09 Abbott Diabetes Care Inc Analyte signal processing device and methods
EP2473099A4 (en) 2009-08-31 2015-01-14 Abbott Diabetes Care Inc Analyte monitoring system and methods for managing power and noise
US8514086B2 (en) 2009-08-31 2013-08-20 Abbott Diabetes Care Inc. Displays for a medical device
EP2482720A4 (en) 2009-09-29 2014-04-23 Abbott Diabetes Care Inc Method and apparatus for providing notification function in analyte monitoring systems
US9351669B2 (en) 2009-09-30 2016-05-31 Abbott Diabetes Care Inc. Interconnect for on-body analyte monitoring device
WO2011053881A1 (en) 2009-10-30 2011-05-05 Abbott Diabetes Care Inc. Method and apparatus for detecting false hypoglycemic conditions
US9326709B2 (en) 2010-03-10 2016-05-03 Abbott Diabetes Care Inc. Systems, devices and methods for managing glucose levels
CA2766693A1 (en) 2010-03-24 2011-09-29 Abbott Diabetes Care Inc. Medical device inserters and processes of inserting and using medical devices
US8965476B2 (en) 2010-04-16 2015-02-24 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US9795747B2 (en) 2010-06-02 2017-10-24 Sanofi-Aventis Deutschland Gmbh Methods and apparatus for lancet actuation
US8635046B2 (en) 2010-06-23 2014-01-21 Abbott Diabetes Care Inc. Method and system for evaluating analyte sensor response characteristics
US9572534B2 (en) 2010-06-29 2017-02-21 Abbott Diabetes Care Inc. Devices, systems and methods for on-skin or on-body mounting of medical devices
CN107019515A (en) 2011-02-28 2017-08-08 雅培糖尿病护理公司 Devices, systems, and methods associated with analyte monitoring devices and devices incorporating the same
US9743862B2 (en) 2011-03-31 2017-08-29 Abbott Diabetes Care Inc. Systems and methods for transcutaneously implanting medical devices
WO2012170837A3 (en) * 2011-06-08 2014-05-08 Nader Najafi Implantable wireless sensor systems
US9037205B2 (en) 2011-06-30 2015-05-19 Glusense, Ltd Implantable optical glucose sensing
US9360630B2 (en) 2011-08-31 2016-06-07 Volcano Corporation Optical-electrical rotary joint and methods of use
WO2013066873A1 (en) 2011-10-31 2013-05-10 Abbott Diabetes Care Inc. Electronic devices having integrated reset systems and methods thereof
WO2013066849A1 (en) 2011-10-31 2013-05-10 Abbott Diabetes Care Inc. Model based variable risk false glucose threshold alarm prevention mechanism
US8710993B2 (en) 2011-11-23 2014-04-29 Abbott Diabetes Care Inc. Mitigating single point failure of devices in an analyte monitoring system and methods thereof
US9317656B2 (en) 2011-11-23 2016-04-19 Abbott Diabetes Care Inc. Compatibility mechanisms for devices in a continuous analyte monitoring system and methods thereof
US9339217B2 (en) 2011-11-25 2016-05-17 Abbott Diabetes Care Inc. Analyte monitoring system and methods of use
EP2713879B1 (en) 2011-12-11 2017-07-26 Abbott Diabetes Care, Inc. Analyte sensor devices, connections, and methods
US9113866B2 (en) 2011-12-15 2015-08-25 Ethicon Endo-Surgery, Inc. Devices and methods for endoluminal plication
US9173657B2 (en) 2011-12-15 2015-11-03 Ethicon Endo-Surgery, Inc. Devices and methods for endoluminal plication
US8992547B2 (en) 2012-03-21 2015-03-31 Ethicon Endo-Surgery, Inc. Methods and devices for creating tissue plications
WO2014024187A1 (en) * 2012-08-05 2014-02-13 Ramot At Tel-Aviv University Ltd. Placeable sensor and method of using same
US9324141B2 (en) 2012-10-05 2016-04-26 Volcano Corporation Removal of A-scan streaking artifact
US9307926B2 (en) 2012-10-05 2016-04-12 Volcano Corporation Automatic stent detection
US9286673B2 (en) 2012-10-05 2016-03-15 Volcano Corporation Systems for correcting distortions in a medical image and methods of use thereof
US9367965B2 (en) 2012-10-05 2016-06-14 Volcano Corporation Systems and methods for generating images of tissue
US9858668B2 (en) 2012-10-05 2018-01-02 Volcano Corporation Guidewire artifact removal in images
US9292918B2 (en) 2012-10-05 2016-03-22 Volcano Corporation Methods and systems for transforming luminal images
WO2014055880A3 (en) 2012-10-05 2014-05-30 David Welford Systems and methods for amplifying light
US20140107450A1 (en) 2012-10-12 2014-04-17 Dexcom, Inc. Sensors for continuous analyte monitoring, and related methods
US20140213866A1 (en) * 2012-10-12 2014-07-31 Dexcom, Inc. Sensors for continuous analyte monitoring, and related methods
US9675290B2 (en) 2012-10-30 2017-06-13 Abbott Diabetes Care Inc. Sensitivity calibration of in vivo sensors used to measure analyte concentration
US9730613B2 (en) 2012-12-20 2017-08-15 Volcano Corporation Locating intravascular images
US9709379B2 (en) 2012-12-20 2017-07-18 Volcano Corporation Optical coherence tomography system that is reconfigurable between different imaging modes
US9486143B2 (en) 2012-12-21 2016-11-08 Volcano Corporation Intravascular forward imaging device
US9612105B2 (en) 2012-12-21 2017-04-04 Volcano Corporation Polarization sensitive optical coherence tomography system
JP2016507892A (en) 2012-12-21 2016-03-10 デイビッド ウェルフォード, System and method for narrowing the wavelength emission of light
WO2014138555A1 (en) 2013-03-07 2014-09-12 Bernhard Sturm Multimodal segmentation in intravascular images
US9301687B2 (en) 2013-03-13 2016-04-05 Volcano Corporation System and method for OCT depth calibration
US9474475B1 (en) 2013-03-15 2016-10-25 Abbott Diabetes Care Inc. Multi-rate analyte sensor data collection with sample rate configurable signal processing
US9291552B2 (en) * 2014-04-22 2016-03-22 Engineered Medical Technologies System and method for determining the concentration of tetrahydrocannabinol
US20170055906A1 (en) * 2015-09-02 2017-03-02 Troy M. Bremer Systems and methods for continuous health monitoring using an opto-enzymatic analyte sensor

Citations (90)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8761A (en) * 1852-02-24 Apparatus foe boring hubs fob
US188185A (en) * 1877-03-06 Improvement in sponge-cups
US4073713A (en) * 1975-09-24 1978-02-14 The Yellow Springs Instrument Company, Inc. Membrane for enzyme electrodes
US4076656A (en) * 1971-11-30 1978-02-28 Debell & Richardson, Inc. Method of producing porous plastic materials
US4253469A (en) * 1979-04-20 1981-03-03 The Narda Microwave Corporation Implantable temperature probe
US4255500A (en) * 1979-03-29 1981-03-10 General Electric Company Vibration resistant electrochemical cell having deformed casing and method of making same
US4374013A (en) * 1980-03-05 1983-02-15 Enfors Sven Olof Oxygen stabilized enzyme electrode
US4431004A (en) * 1981-10-27 1984-02-14 Bessman Samuel P Implantable glucose sensor
US4431507A (en) * 1981-01-14 1984-02-14 Matsushita Electric Industrial Co., Ltd. Enzyme electrode
US4436094A (en) * 1981-03-09 1984-03-13 Evreka, Inc. Monitor for continuous in vivo measurement of glucose concentration
US4494950A (en) * 1982-01-19 1985-01-22 The Johns Hopkins University Plural module medication delivery system
US4506680A (en) * 1983-03-17 1985-03-26 Medtronic, Inc. Drug dispensing body implantable lead
US4571292A (en) * 1982-08-12 1986-02-18 Case Western Reserve University Apparatus for electrochemical measurements
US4577642A (en) * 1985-02-27 1986-03-25 Medtronic, Inc. Drug dispensing body implantable lead employing molecular sieves and methods of fabrication
US4650547A (en) * 1983-05-19 1987-03-17 The Regents Of The University Of California Method and membrane applicable to implantable sensor
US4721677A (en) * 1985-09-18 1988-01-26 Children's Hospital Medical Center Implantable gas-containing biosensor and method for measuring an analyte such as glucose
US4731726A (en) * 1986-05-19 1988-03-15 Healthware Corporation Patient-operated glucose monitor and diabetes management system
US4803243A (en) * 1986-03-26 1989-02-07 Shin-Etsu Chemical Co., Ltd. Block-graft copolymer
US4805624A (en) * 1985-09-09 1989-02-21 The Montefiore Hospital Association Of Western Pa Low-potential electrochemical redox sensors
US4805625A (en) * 1987-07-08 1989-02-21 Ad-Tech Medical Instrument Corporation Sphenoidal electrode and insertion method
US4810470A (en) * 1987-06-19 1989-03-07 Miles Inc. Volume independent diagnostic device
US4890621A (en) * 1988-01-19 1990-01-02 Northstar Research Institute, Ltd. Continuous glucose monitoring and a system utilized therefor
US4890620A (en) * 1985-09-20 1990-01-02 The Regents Of The University Of California Two-dimensional diffusion glucose substrate sensing electrode
US4984929A (en) * 1987-01-08 1991-01-15 Julius Blum Gesellschaft M.B.H. Fitting for fastening the rail member of a drawer
US4986271A (en) * 1989-07-19 1991-01-22 The University Of New Mexico Vivo refillable glucose sensor
US4986671A (en) * 1989-04-12 1991-01-22 Luxtron Corporation Three-parameter optical fiber sensor and system
US4992794A (en) * 1988-10-10 1991-02-12 Texas Instruments Incorporated Transponder and method for the production thereof
US4994167A (en) * 1986-04-15 1991-02-19 Markwell Medical Institute, Inc. Biological fluid measuring device
US5002572A (en) * 1986-09-11 1991-03-26 Picha George J Biological implant with textured surface
US5089112A (en) * 1989-03-20 1992-02-18 Associated Universities, Inc. Electrochemical biosensor based on immobilized enzymes and redox polymers
US5190041A (en) * 1989-08-11 1993-03-02 Palti Yoram Prof System for monitoring and controlling blood glucose
US5282848A (en) * 1990-08-28 1994-02-01 Meadox Medicals, Inc. Self-supporting woven vascular graft
US5298144A (en) * 1992-09-15 1994-03-29 The Yellow Springs Instrument Company, Inc. Chemically wired fructose dehydrogenase electrodes
US5380536A (en) * 1990-10-15 1995-01-10 The Board Of Regents, The University Of Texas System Biocompatible microcapsules
US5384028A (en) * 1992-08-28 1995-01-24 Nec Corporation Biosensor with a data memory
US5387327A (en) * 1992-10-19 1995-02-07 Duquesne University Of The Holy Ghost Implantable non-enzymatic electrochemical glucose sensor
US5390671A (en) * 1994-03-15 1995-02-21 Minimed Inc. Transcutaneous sensor insertion set
US5391250A (en) * 1994-03-15 1995-02-21 Minimed Inc. Method of fabricating thin film sensors
US5397848A (en) * 1991-04-25 1995-03-14 Allergan, Inc. Enhancing the hydrophilicity of silicone polymers
US5480711A (en) * 1994-07-12 1996-01-02 Ruefer; Bruce G. Nano-porous PTFE biomaterial
US5482008A (en) * 1991-09-13 1996-01-09 Stafford; Rodney A. Electronic animal identification system
US5494562A (en) * 1994-06-27 1996-02-27 Ciba Corning Diagnostics Corp. Electrochemical sensors
US5496453A (en) * 1991-05-17 1996-03-05 Kyoto Daiichi Kagaku Co., Ltd. Biosensor and method of quantitative analysis using the same
US5497772A (en) * 1993-11-19 1996-03-12 Alfred E. Mann Foundation For Scientific Research Glucose monitoring system
US5593440A (en) * 1990-10-31 1997-01-14 Baxter International Inc. Tissue implant systems and methods for sustaining viable high cell densities within a host
US5593852A (en) * 1993-12-02 1997-01-14 Heller; Adam Subcutaneous glucose electrode
US5607565A (en) * 1995-03-27 1997-03-04 Coulter Corporation Apparatus for measuring analytes in a fluid sample
US5704354A (en) * 1994-06-23 1998-01-06 Siemens Aktiengesellschaft Electrocatalytic glucose sensor
US5706807A (en) * 1991-05-13 1998-01-13 Applied Medical Research Sensor device covered with foam membrane
US5711861A (en) * 1995-11-22 1998-01-27 Ward; W. Kenneth Device for monitoring changes in analyte concentration
US5713888A (en) * 1990-10-31 1998-02-03 Baxter International, Inc. Tissue implant systems
US5733336A (en) * 1990-10-31 1998-03-31 Baxter International, Inc. Ported tissue implant systems and methods of using same
US5861019A (en) * 1997-07-25 1999-01-19 Medtronic Inc. Implantable medical device microstrip telemetry antenna
US5863400A (en) * 1994-04-14 1999-01-26 Usf Filtration & Separations Group Inc. Electrochemical cells
US5871514A (en) * 1997-08-01 1999-02-16 Medtronic, Inc. Attachment apparatus for an implantable medical device employing ultrasonic energy
US5882494A (en) * 1995-03-27 1999-03-16 Minimed, Inc. Polyurethane/polyurea compositions containing silicone for biosensor membranes
US6011984A (en) * 1995-11-22 2000-01-04 Minimed Inc. Detection of biological molecules using chemical amplification and optical sensors
US6013113A (en) * 1998-03-06 2000-01-11 Wilson Greatbatch Ltd. Slotted insulator for unsealed electrode edges in electrochemical cells
US6016448A (en) * 1998-10-27 2000-01-18 Medtronic, Inc. Multilevel ERI for implantable medical devices
US6175752B1 (en) * 1998-04-30 2001-01-16 Therasense, Inc. Analyte monitoring device and methods of use
US6187062B1 (en) * 1998-06-16 2001-02-13 Alcatel Current collection through thermally sprayed tabs at the ends of a spirally wound electrochemical cell
US6200772B1 (en) * 1997-08-23 2001-03-13 Sensalyse Holdings Limited Modified polyurethane membrane sensors and analytical methods
US6201980B1 (en) * 1998-10-05 2001-03-13 The Regents Of The University Of California Implantable medical sensor system
US6208894B1 (en) * 1997-02-26 2001-03-27 Alfred E. Mann Foundation For Scientific Research And Advanced Bionics System of implantable devices for monitoring and/or affecting body parameters
US6343225B1 (en) * 1999-09-14 2002-01-29 Implanted Biosystems, Inc. Implantable glucose sensor
US20020022883A1 (en) * 2000-06-13 2002-02-21 Burg Karen J.L. Tissue engineering composite
US6360888B1 (en) * 1999-02-25 2002-03-26 Minimed Inc. Glucose sensor package system
US20030006669A1 (en) * 2001-05-22 2003-01-09 Sri International Rolled electroactive polymers
US6512939B1 (en) * 1997-10-20 2003-01-28 Medtronic Minimed, Inc. Implantable enzyme-based monitoring systems adapted for long term use
US20030023317A1 (en) * 2001-07-27 2003-01-30 Dexcom, Inc. Membrane for use with implantable devices
US20030032874A1 (en) * 2001-07-27 2003-02-13 Dexcom, Inc. Sensor head for use with implantable devices
US6520997B1 (en) * 1999-12-08 2003-02-18 Baxter International Inc. Porous three dimensional structure
US20030036803A1 (en) * 2001-08-14 2003-02-20 Mcghan Jim J. Medical implant having bioabsorbable textured surface
US6528584B2 (en) * 2001-04-12 2003-03-04 The University Of Akron Multi-component polymeric networks containing poly(ethylene glycol)
US6527729B1 (en) * 1999-11-10 2003-03-04 Pacesetter, Inc. Method for monitoring patient using acoustic sensor
US6534711B1 (en) * 1998-04-14 2003-03-18 The Goodyear Tire & Rubber Company Encapsulation package and method of packaging an electronic circuit module
US6537318B1 (en) * 1998-04-06 2003-03-25 Konjac Technologies, Llc Use of glucomannan hydrocolloid as filler material in prostheses
US20040011671A1 (en) * 1997-03-04 2004-01-22 Dexcom, Inc. Device and method for determining analyte levels
US6699383B2 (en) * 1999-11-25 2004-03-02 Siemens Aktiengesellschaft Method for determining a NOx concentration
US20040045879A1 (en) * 1997-03-04 2004-03-11 Dexcom, Inc. Device and method for determining analyte levels
US20050027180A1 (en) * 2003-08-01 2005-02-03 Goode Paul V. System and methods for processing analyte sensor data
US20050033132A1 (en) * 1997-03-04 2005-02-10 Shults Mark C. Analyte measuring device
US20050031689A1 (en) * 2003-05-21 2005-02-10 Dexcom, Inc. Biointerface membranes incorporating bioactive agents
US20050043598A1 (en) * 2003-08-22 2005-02-24 Dexcom, Inc. Systems and methods for replacing signal artifacts in a glucose sensor data stream
US20060015020A1 (en) * 2004-07-06 2006-01-19 Dexcom, Inc. Systems and methods for manufacture of an analyte-measuring device including a membrane system
US20060016700A1 (en) * 2004-07-13 2006-01-26 Dexcom, Inc. Transcutaneous analyte sensor
US7166074B2 (en) * 1999-07-01 2007-01-23 Medtronic Minimed, Inc. Reusable analyte sensor site and method of using the same
US7169289B2 (en) * 2002-06-28 2007-01-30 november Aktiengesellschaft Gesellschaft für Molekulare Medizin Electrochemical detection method and device
US20070027370A1 (en) * 2004-07-13 2007-02-01 Brauker James H Analyte sensor
US20080045824A1 (en) * 2003-10-28 2008-02-21 Dexcom, Inc. Silicone composition for biocompatible membrane

Family Cites Families (331)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3381371A (en) * 1965-09-27 1968-05-07 Sanders Associates Inc Method of constructing lightweight antenna
USRE31916E (en) * 1970-11-10 1985-06-18 Becton Dickinson & Company Electrochemical detection cell
US3791871A (en) * 1971-04-14 1974-02-12 Lockheed Aircraft Corp Electrochemical cell
CA978457A (en) 1971-09-09 1975-11-25 Hoffmann-La Roche Limited Enzyme electrode
US3943918A (en) * 1971-12-02 1976-03-16 Tel-Pac, Inc. Disposable physiological telemetric device
US3775182A (en) 1972-02-25 1973-11-27 Du Pont Tubular electrochemical cell with coiled electrodes and compressed central spindle
GB1442303A (en) 1972-09-08 1976-07-14 Radiometer As Cell for electro-chemical analysis
US3929971A (en) 1973-03-30 1975-12-30 Research Corp Porous biomaterials and method of making same
US3898984A (en) 1974-02-04 1975-08-12 Us Navy Ambulatory patient monitoring system
US3966580A (en) 1974-09-16 1976-06-29 The University Of Utah Novel protein-immobilizing hydrophobic polymeric membrane, process for producing same and apparatus employing same
DE7537747U (en) * 1975-11-06 1977-08-11 Bbc Ag Brown, Boveri & Cie, Baden (Schweiz)
US4040908A (en) 1976-03-12 1977-08-09 Children's Hospital Medical Center Polarographic analysis of cholesterol and other macromolecular substances
NL7812318A (en) 1977-12-23 1979-06-26 Ceske Vysoke Uceni Tech Hemodialysis apparatus.
JPS5921500B2 (en) 1978-01-28 1984-05-21 Toyo Boseki
NL7801867A (en) * 1978-02-20 1979-08-22 Philips Nv A device for transcutaneously measuring the partieele pressure of oxygen in blood.
US4172770A (en) 1978-03-27 1979-10-30 Technicon Instruments Corporation Flow-through electrochemical system analytical method
US4225410A (en) 1978-12-04 1980-09-30 Technicon Instruments Corporation Integrated array of electrochemical sensors
DE2932761C2 (en) 1979-08-13 1987-11-19 Akzo Gmbh, 5600 Wuppertal, De
JPS6129667B2 (en) 1979-08-14 1986-07-08 Tokyo Shibaura Electric Co
US4260725A (en) * 1979-12-10 1981-04-07 Bausch & Lomb Incorporated Hydrophilic contact lens made from polysiloxanes which are thermally bonded to polymerizable groups and which contain hydrophilic sidechains
US4403984A (en) 1979-12-28 1983-09-13 Biotek, Inc. System for demand-based adminstration of insulin
US4861830A (en) 1980-02-29 1989-08-29 Th. Goldschmidt Ag Polymer systems suitable for blood-contacting surfaces of a biomedical device, and methods for forming
CA1174284A (en) 1980-09-02 1984-09-11 Medtronic, Inc. Body implantable lead
WO1982001306A1 (en) 1980-10-15 1982-04-29 Potter William D Coated articles and materials suitable for coating
US4353888A (en) 1980-12-23 1982-10-12 Sefton Michael V Encapsulation of live animal cells
US4442841A (en) * 1981-04-30 1984-04-17 Mitsubishi Rayon Company Limited Electrode for living bodies
US4418148A (en) 1981-11-05 1983-11-29 Miles Laboratories, Inc. Multilayer enzyme electrode membrane
US4415666A (en) 1981-11-05 1983-11-15 Miles Laboratories, Inc. Enzyme electrode membrane
EP0098592A3 (en) 1982-07-06 1985-08-21 Fujisawa Pharmaceutical Co., Ltd. Portable artificial pancreas
DE3228551A1 (en) 1982-07-30 1984-02-02 Siemens Ag Method for determining the glucose concentration
WO1984001715A1 (en) 1982-10-25 1984-05-10 Hellgren Lars G I Enzyme composition for therapeutical and/or non-therapeutical cleaning, the use thereof and preparation of the composition
US4603152A (en) 1982-11-05 1986-07-29 Baxter Travenol Laboratories, Inc. Antimicrobial compositions
US5059654A (en) 1983-02-14 1991-10-22 Cuno Inc. Affinity matrices of modified polysaccharide supports
CA1226036A (en) 1983-05-05 1987-08-25 Irving J. Higgins Analytical equipment and sensor electrodes therefor
US4484987A (en) 1983-05-19 1984-11-27 The Regents Of The University Of California Method and membrane applicable to implantable sensor
US4655880A (en) * 1983-08-01 1987-04-07 Case Western Reserve University Apparatus and method for sensing species, substances and substrates using oxidase
US4554927A (en) 1983-08-30 1985-11-26 Thermometrics Inc. Pressure and temperature sensor
GB8329375D0 (en) 1983-11-03 1983-12-07 Anderson J Sudden infant death syndrome monitor
US4753652A (en) 1984-05-04 1988-06-28 Children's Medical Center Corporation Biomaterial implants which resist calcification
US4883057A (en) 1984-05-09 1989-11-28 Research Foundation, The City University Of New York Cathodic electrochemical current arrangement with telemetric application
US5464013A (en) 1984-05-25 1995-11-07 Lemelson; Jerome H. Medical scanning and treatment system and method
US5171689A (en) 1984-11-08 1992-12-15 Matsushita Electric Industrial Co., Ltd. Solid state bio-sensor
US4702732A (en) 1984-12-24 1987-10-27 Trustees Of Boston University Electrodes, electrode assemblies, methods, and systems for tissue stimulation and transdermal delivery of pharmacologically active ligands
US5235003A (en) 1985-01-04 1993-08-10 Thoratec Laboratories Corporation Polysiloxane-polylactone block copolymers
US4963595A (en) 1985-01-04 1990-10-16 Thoratec Laboratories Corporation Polysiloxane-polylactone block copolymers
US4781798A (en) 1985-04-19 1988-11-01 The Regents Of The University Of California Transparent multi-oxygen sensor array and method of using same
US4671288A (en) 1985-06-13 1987-06-09 The Regents Of The University Of California Electrochemical cell sensor for continuous short-term use in tissues and blood
US4689309A (en) 1985-09-30 1987-08-25 Miles Laboratories, Inc. Test device, method of manufacturing same and method of determining a component in a sample
US4839296A (en) 1985-10-18 1989-06-13 Chem-Elec, Inc. Blood plasma test method
US4776944A (en) 1986-03-20 1988-10-11 Jiri Janata Chemical selective sensors utilizing admittance modulated membranes
US4757022A (en) 1986-04-15 1988-07-12 Markwell Medical Institute, Inc. Biological fluid measuring device
US4795542A (en) 1986-04-24 1989-01-03 St. Jude Medical, Inc. Electrochemical concentration detector device
US4703756A (en) 1986-05-06 1987-11-03 The Regents Of The University Of California Complete glucose monitoring system with an implantable, telemetered sensor module
GB8612861D0 (en) 1986-05-27 1986-07-02 Cambridge Life Sciences Immobilised enzyme biosensors
US4889744B1 (en) 1986-11-04 1993-03-09 Method for making open-cell,silicone-elastomer medical implant
US5007929B1 (en) 1986-11-04 1994-08-30 Medical Products Dev Open-cell silicone-elastomer medical implant
DE3700119A1 (en) 1987-01-03 1988-07-14 Inst Diabetestechnologie Gemei Implantable electrochemical sensor
US4750496A (en) * 1987-01-28 1988-06-14 Xienta, Inc. Method and apparatus for measuring blood glucose concentration
US4935345A (en) 1987-04-07 1990-06-19 Arizona Board Of Regents Implantable microelectronic biochemical sensor incorporating thin film thermopile
US4759828A (en) 1987-04-09 1988-07-26 Nova Biomedical Corporation Glucose electrode and method of determining glucose
US5540828A (en) 1987-06-08 1996-07-30 Yacynych; Alexander Method for making electrochemical sensors and biosensors having a polymer modified surface
JPH07122624B2 (en) 1987-07-06 1995-12-25 ダイキン工業株式会社 Biosensor
FI77569C (en) 1987-07-13 1989-04-10 Huhtamaeki Oy An apparatus Foer bestaemning of saorlaekningsfoermaogan in a operationssaor en eller vaevnad.
US4974929A (en) 1987-09-22 1990-12-04 Baxter International, Inc. Fiber optical probe connector for physiologic measurement devices
GB8725936D0 (en) 1987-11-05 1987-12-09 Genetics Int Inc Sensing system
US4852573A (en) 1987-12-04 1989-08-01 Kennedy Philip R Implantable neural electrode
US5019096A (en) 1988-02-11 1991-05-28 Trustees Of Columbia University In The City Of New York Infection-resistant compositions, medical devices and surfaces and methods for preparing and using same
US5034112A (en) 1988-05-19 1991-07-23 Nissan Motor Company, Ltd. Device for measuring concentration of nitrogen oxide in combustion gas
GB8817997D0 (en) 1988-07-28 1988-09-01 Cambridge Life Sciences Enzyme electrodes & improvements in manufacture thereof
EP0353328A1 (en) 1988-08-03 1990-02-07 Dräger Nederland B.V. A polarographic-amperometric three-electrode sensor
US5458631A (en) 1989-01-06 1995-10-17 Xavier; Ravi Implantable catheter with electrical pulse nerve stimulators and drug delivery system
US5269891A (en) 1989-03-09 1993-12-14 Novo Nordisk A/S Method and apparatus for determination of a constituent in a fluid
JPH02298855A (en) 1989-03-20 1990-12-11 Assoc Univ Inc Electrochemical biosensor using immobilized enzyme and redox polymer
US4953552A (en) 1989-04-21 1990-09-04 Demarzo Arthur P Blood glucose monitoring system
EP0396788A1 (en) 1989-05-08 1990-11-14 Dräger Nederland B.V. Process and sensor for measuring the glucose content of glucosecontaining fluids
US4988341A (en) 1989-06-05 1991-01-29 Eastman Kodak Company Sterilizing dressing device and method for skin puncture
US4927407A (en) * 1989-06-19 1990-05-22 Regents Of The University Of Minnesota Cardiac assist pump with steady rate supply of fluid lubricant
DE59005357D1 (en) 1989-07-07 1994-05-19 Disetronic Holding Ag Burgdorf Glucose meter.
US5431160A (en) 1989-07-19 1995-07-11 University Of New Mexico Miniature implantable refillable glucose sensor and material therefor
US5264104A (en) 1989-08-02 1993-11-23 Gregg Brian A Enzyme electrodes
US5101814A (en) 1989-08-11 1992-04-07 Palti Yoram Prof System for monitoring and controlling blood glucose
US5050612A (en) 1989-09-12 1991-09-24 Matsumura Kenneth N Device for computer-assisted monitoring of the body
FR2652736A1 (en) 1989-10-06 1991-04-12 Neftel Frederic Device implantable evaluation of glucose levels.
JPH0414980B2 (en) 1989-10-18 1992-03-16 Nishitomo Kk
US5985129A (en) 1989-12-14 1999-11-16 The Regents Of The University Of California Method for increasing the service life of an implantable sensor
FR2656423A1 (en) 1989-12-22 1991-06-28 Rhone Poulenc Chimie Electrochemical biosensor
US5108819A (en) 1990-02-14 1992-04-28 Eli Lilly And Company Thin film electrical component
US5316008A (en) * 1990-04-06 1994-05-31 Casio Computer Co., Ltd. Measurement of electrocardiographic wave and sphygmus
US5165407A (en) 1990-04-19 1992-11-24 The University Of Kansas Implantable glucose sensor
US5331555A (en) 1990-05-11 1994-07-19 Sharp Kabushiki Kaisha Electronic apparatus
DK0462426T3 (en) 1990-06-01 1998-02-23 Fidia Spa Biocompatible perforated membranes and their uses as artificial skin
US5202261A (en) 1990-07-19 1993-04-13 Miles Inc. Conductive sensors and their use in diagnostic assays
CA2070816A1 (en) 1990-10-31 1992-05-01 James H. Brauker Close vascularization implant material
US5348788A (en) 1991-01-30 1994-09-20 Interpore Orthopaedics, Inc. Mesh sheet with microscopic projections and holes
CA2050057A1 (en) 1991-03-04 1992-09-05 Adam Heller Interferant eliminating biosensors
JP3084642B2 (en) 1991-05-30 2000-09-04 株式会社ジェルテック Seisugata pad and a method of manufacturing the same
US5344454A (en) 1991-07-24 1994-09-06 Baxter International Inc. Closed porous chambers for implanting tissue in a host
US5453278A (en) 1991-07-24 1995-09-26 Baxter International Inc. Laminated barriers for tissue implants
US5328451A (en) 1991-08-15 1994-07-12 Board Of Regents, The University Of Texas System Iontophoretic device and method for killing bacteria and other microbes
DE4130742A1 (en) 1991-09-16 1993-03-18 Inst Diabetestechnologie Gemei Method and arrangement for determining the concentration of substances in body fluids
GB9120144D0 (en) 1991-09-20 1991-11-06 Imperial College A dialysis electrode device
US5222980A (en) * 1991-09-27 1993-06-29 Medtronic, Inc. Implantable heart-assist device
US5322063A (en) 1991-10-04 1994-06-21 Eli Lilly And Company Hydrophilic polyurethane membranes for electrochemical glucose sensors
US5249576A (en) 1991-10-24 1993-10-05 Boc Health Care, Inc. Universal pulse oximeter probe
EP0539625A1 (en) 1991-10-28 1993-05-05 Dräger Medical Electronics B.V. Electrochemical sensor for measuring the glucose content of glucose containing fluids
US5866217A (en) 1991-11-04 1999-02-02 Possis Medical, Inc. Silicone composite vascular graft
US5310469A (en) * 1991-12-31 1994-05-10 Abbott Laboratories Biosensor with a membrane containing biologically active material
NL9200207A (en) 1992-02-05 1993-09-01 Nedap Nv Implantable biomedical sensor device, in particular for measurement of the glucose concentration.
US5284140A (en) 1992-02-11 1994-02-08 Eli Lilly And Company Acrylic copolymer membranes for biosensors
EP0563795B1 (en) 1992-03-31 1998-07-22 Dai Nippon Printing Co., Ltd. Enzyme-immobilized electrode, composition for preparation of the same and electrically conductive enzyme
US5324322A (en) 1992-04-20 1994-06-28 Case Western Reserve University Thin film implantable electrode and method of manufacture
US5589563A (en) 1992-04-24 1996-12-31 The Polymer Technology Group Surface-modifying endgroups for biomedical polymers
WO1993022360A1 (en) 1992-04-24 1993-11-11 The Polymer Technology Group, Inc. Copolymers and non-porous, semi-permeable membrane thereof and its use for permeating molecules of predetermined molecular weight range
GB9211402D0 (en) 1992-05-29 1992-07-15 Univ Manchester Sensor devices
JPH0634596A (en) 1992-07-20 1994-02-08 Fujitsu Ltd Oxygen electrode, biosensor and manufacture thereof
CA2145996A1 (en) 1992-10-01 1994-04-14 Burkhard Raguse Improved sensor membranes
GB9221099D0 (en) 1992-10-07 1992-11-18 Ecossensors Ltd Improvements in and relating to gas permeable membranes for amperometric gas electrodes
US6256522B1 (en) 1992-11-23 2001-07-03 University Of Pittsburgh Of The Commonwealth System Of Higher Education Sensors for continuous monitoring of biochemicals and related method
CA2103325C (en) * 1992-11-23 2004-07-20 Kirk W. Johnson Techniques to improve the performance of electrochemical sensors
US5299571A (en) * 1993-01-22 1994-04-05 Eli Lilly And Company Apparatus and method for implantation of sensors
US5411866A (en) * 1993-03-30 1995-05-02 National Research Council Of Canada Method and system for determining bioactive substances
US5387329A (en) 1993-04-09 1995-02-07 Ciba Corning Diagnostics Corp. Extended use planar sensors
US5352351A (en) 1993-06-08 1994-10-04 Boehringer Mannheim Corporation Biosensing meter with fail/safe procedures to prevent erroneous indications
DE4329898A1 (en) 1993-09-04 1995-04-06 Marcus Dr Besson Wireless medical diagnostic and monitoring equipment
EP0670738A1 (en) 1993-09-24 1995-09-13 Baxter International Inc. Methods for enhancing vascularization of implant devices
US5582184A (en) 1993-10-13 1996-12-10 Integ Incorporated Interstitial fluid collection and constituent measurement
US5545220A (en) 1993-11-04 1996-08-13 Lipomatrix Incorporated Implantable prosthesis with open cell textured surface and method for forming same
KR970010981B1 (en) 1993-11-04 1997-07-05 구자홍 Alcohol concentration measuring bio-sensor, manufacturing method and related apparatus
US5791344A (en) 1993-11-19 1998-08-11 Alfred E. Mann Foundation For Scientific Research Patient monitoring system
US5508509A (en) * 1993-11-30 1996-04-16 Minnesota Mining And Manufacturing Company Sensing elements and methods for uniformly making individual sensing elements
US5443080A (en) 1993-12-22 1995-08-22 Americate Transtech, Inc. Integrated system for biological fluid constituent analysis
US5437824A (en) 1993-12-23 1995-08-01 Moghan Medical Corp. Method of forming a molded silicone foam implant having open-celled interstices
US5549675A (en) 1994-01-11 1996-08-27 Baxter International, Inc. Method for implanting tissue in a host
DE4401400A1 (en) * 1994-01-19 1995-07-20 Ernst Prof Dr Pfeiffer Method and apparatus for continuously monitoring the concentration of a metabolite
US5569186A (en) 1994-04-25 1996-10-29 Minimed Inc. Closed loop infusion pump system with removable glucose sensor
US5584876A (en) 1994-04-29 1996-12-17 W. L. Gore & Associates, Inc. Cell excluding sheath for vascular grafts
US5466356A (en) 1994-04-29 1995-11-14 Mine Safety Appliances Company Potentiostat circuit for electrochemical cells
DE4415896A1 (en) * 1994-05-05 1995-11-09 Boehringer Mannheim Gmbh Analysis system for monitoring the concentration of an analyte in the blood of a patient
DE59509994D1 (en) 1994-06-03 2002-02-21 Metrohm Ag Herisau Apparatus for voltammetry, indicator electrode assembly for such a device, in particular as part of a tape cartridge, and series analysis method for voltammetry
US5429735A (en) 1994-06-27 1995-07-04 Miles Inc. Method of making and amperometric electrodes
US5529066A (en) * 1994-06-27 1996-06-25 Cb-Carmel Biotechnology Ltd. Implantable capsule for enhancing cell electric signals
US5513636A (en) * 1994-08-12 1996-05-07 Cb-Carmel Biotechnology Ltd. Implantable sensor chip
US5462051A (en) 1994-08-31 1995-10-31 Colin Corporation Medical communication system
DE59507280D1 (en) 1994-09-14 1999-12-30 Avl Medical Instr Ag Planar sensor for determining a chemical parameter of a sample
US5807406A (en) 1994-10-07 1998-09-15 Baxter International Inc. Porous microfabricated polymer membrane structures
CA2159052C (en) 1994-10-28 2007-03-06 Rainer Alex Injection device
JPH10508518A (en) 1994-11-04 1998-08-25 イーラン・メディカル・テクノロジーズ・リミテッド Liquid is regulated by analyte dispensing device and analyte monitoring
US5697366A (en) 1995-01-27 1997-12-16 Optical Sensors Incorporated In situ calibration system for sensors located in a physiologic line
US5837728A (en) 1995-01-27 1998-11-17 Molecular Design International 9-cis retinoic acid esters and amides and uses thereof
US5586553A (en) 1995-02-16 1996-12-24 Minimed Inc. Transcutaneous sensor insertion set
US5568806A (en) 1995-02-16 1996-10-29 Minimed Inc. Transcutaneous sensor insertion set
CA2213854C (en) * 1995-03-10 2010-08-10 Meso Scale Technologies, Llc Multi-array, multi-specific electrochemiluminescence testing
US5582697A (en) 1995-03-17 1996-12-10 Matsushita Electric Industrial Co., Ltd. Biosensor, and a method and a device for quantifying a substrate in a sample liquid using the same
FR2733104B1 (en) * 1995-04-12 1997-06-06 Droz Francois Answering small size and method of manufacture of such answering machines
US5620579A (en) 1995-05-05 1997-04-15 Bayer Corporation Apparatus for reduction of bias in amperometric sensors
US5743262A (en) * 1995-06-07 1998-04-28 Masimo Corporation Blood glucose monitoring system
US5626561A (en) 1995-06-07 1997-05-06 Gore Hybrid Technologies, Inc. Implantable containment apparatus for a therapeutical device and method for loading and reloading the device therein
US5584813A (en) 1995-06-07 1996-12-17 Minimed Inc. Subcutaneous injection set
DE69630266D1 (en) * 1995-06-07 2003-11-13 Gore Hybrid Technologies Inc Implantable cradle for a therapeutic device
US5656707A (en) * 1995-06-16 1997-08-12 Regents Of The University Of Minnesota Highly cross-linked polymeric supports
US5840148A (en) 1995-06-30 1998-11-24 Bio Medic Data Systems, Inc. Method of assembly of implantable transponder
CA2259254C (en) * 1996-07-08 2008-02-19 Animas Corporation Implantable sensor and system for in vivo measurement and control of fluid constituent levels
US5995860A (en) 1995-07-06 1999-11-30 Thomas Jefferson University Implantable sensor and system for measurement and control of blood constituent levels
US5989409A (en) 1995-09-11 1999-11-23 Cygnus, Inc. Method for glucose sensing
US5735273A (en) * 1995-09-12 1998-04-07 Cygnus, Inc. Chemical signal-impermeable mask
US5628890A (en) 1995-09-27 1997-05-13 Medisense, Inc. Electrochemical sensor
US5855613A (en) * 1995-10-13 1999-01-05 Islet Sheet Medical, Inc. Retrievable bioartificial implants having dimensions allowing rapid diffusion of oxygen and rapid biological response to physiological change
US6063637A (en) * 1995-12-13 2000-05-16 California Institute Of Technology Sensors for sugars and other metal binding analytes
WO1997024059A1 (en) 1995-12-28 1997-07-10 Cygnus, Inc. Continuous monitoring of physiological analyte
US6309526B1 (en) 1997-07-10 2001-10-30 Matsushita Electric Industrial Co., Ltd. Biosensor
US5833603A (en) * 1996-03-13 1998-11-10 Lipomatrix, Inc. Implantable biosensing transponder
US5776324A (en) 1996-05-17 1998-07-07 Encelle, Inc. Electrochemical biosensors
US5964261A (en) 1996-05-29 1999-10-12 Baxter International Inc. Implantation assembly
JP2943700B2 (en) 1996-07-10 1999-08-30 日本電気株式会社 Biosensor
US6054142A (en) * 1996-08-01 2000-04-25 Cyto Therapeutics, Inc. Biocompatible devices with foam scaffolds
US5804048A (en) 1996-08-15 1998-09-08 Via Medical Corporation Electrode assembly for assaying glucose
US5963132A (en) 1996-10-11 1999-10-05 Avid Indentification Systems, Inc. Encapsulated implantable transponder
DE19642453C2 (en) 1996-10-15 1998-07-23 Bosch Gmbh Robert Arrangement for gas sensor electrodes
US5811487A (en) 1996-12-16 1998-09-22 Dow Corning Corporation Thickening silicones with elastomeric silicone polyethers
US5964993A (en) 1996-12-19 1999-10-12 Implanted Biosystems Inc. Glucose sensor
DE19653436C1 (en) 1996-12-20 1998-08-13 Inst Chemo Biosensorik An electrochemical sensor
US5914026A (en) * 1997-01-06 1999-06-22 Implanted Biosystems Inc. Implantable sensor employing an auxiliary electrode
US6093172A (en) 1997-02-05 2000-07-25 Minimed Inc. Injector for a subcutaneous insertion set
US7329239B2 (en) 1997-02-05 2008-02-12 Medtronic Minimed, Inc. Insertion device for an insertion set and method of using the same
US6001067A (en) 1997-03-04 1999-12-14 Shults; Mark C. Device and method for determining analyte levels
US6558321B1 (en) * 1997-03-04 2003-05-06 Dexcom, Inc. Systems and methods for remote monitoring and modulation of medical devices
FR2760962B1 (en) 1997-03-20 1999-05-14 Sillonville Francis Klefstad System support and medical supervision Remote
US5961451A (en) 1997-04-07 1999-10-05 Motorola, Inc. Noninvasive apparatus having a retaining member to retain a removable biosensor
US6059946A (en) * 1997-04-14 2000-05-09 Matsushita Electric Industrial Co., Ltd. Biosensor
US5944661A (en) 1997-04-16 1999-08-31 Giner, Inc. Potential and diffusion controlled solid electrolyte sensor for continuous measurement of very low levels of transdermal alcohol
CA2294610A1 (en) 1997-06-16 1998-12-23 George Moshe Katz Methods of calibrating and testing a sensor for in vivo measurement of an analyte and devices for use in such methods
US6093167A (en) 1997-06-16 2000-07-25 Medtronic, Inc. System for pancreatic stimulation and glucose measurement
US6013711A (en) 1997-06-18 2000-01-11 Ck Witco Corporation Hydrophilic polysiloxane compositions
US6259937B1 (en) 1997-09-12 2001-07-10 Alfred E. Mann Foundation Implantable substrate sensor
US5999848A (en) 1997-09-12 1999-12-07 Alfred E. Mann Foundation Daisy chainable sensors and stimulators for implantation in living tissue
US6117290A (en) 1997-09-26 2000-09-12 Pepex Biomedical, Llc System and method for measuring a bioanalyte such as lactate
WO1999017095A1 (en) 1997-09-30 1999-04-08 M-Biotech, Inc. Biosensor
US6475750B1 (en) 1999-05-11 2002-11-05 M-Biotech, Inc. Glucose biosensor
US7115884B1 (en) 1997-10-06 2006-10-03 Trustees Of Tufts College Self-encoding fiber optic sensor
US6119028A (en) * 1997-10-20 2000-09-12 Alfred E. Mann Foundation Implantable enzyme-based monitoring systems having improved longevity due to improved exterior surfaces
US6088608A (en) 1997-10-20 2000-07-11 Alfred E. Mann Foundation Electrochemical sensor and integrity tests therefor
US5967986A (en) 1997-11-25 1999-10-19 Vascusense, Inc. Endoluminal implant with fluid flow sensing capability
US6134461A (en) 1998-03-04 2000-10-17 E. Heller & Company Electrochemical analyte
CA2265119C (en) 1998-03-13 2002-12-03 Cygnus, Inc. Biosensor, iontophoretic sampling system, and methods of use thereof
US5904708A (en) * 1998-03-19 1999-05-18 Medtronic, Inc. System and method for deriving relative physiologic signals
GB9805896D0 (en) 1998-03-20 1998-05-13 Eglise David Remote analysis system
JP3104672B2 (en) 1998-03-31 2000-10-30 日本電気株式会社 Current detection type sensor element, and a manufacturing method thereof
US6091975A (en) 1998-04-01 2000-07-18 Alza Corporation Minimally invasive detecting device
US6074775A (en) * 1998-04-02 2000-06-13 The Procter & Gamble Company Battery having a built-in controller
US6241863B1 (en) * 1998-04-27 2001-06-05 Harold G. Monbouquette Amperometric biosensors based on redox enzymes
DE69910003D1 (en) 1998-05-13 2003-09-04 Cygnus Therapeutic Systems Monitoring physiological analytes
DE69914319D1 (en) * 1998-05-13 2004-02-26 Cygnus Therapeutic Systems Signal processing for measurement of physiological analytes
US6129757A (en) 1998-05-18 2000-10-10 Scimed Life Systems Implantable members for receiving therapeutically useful compositions
US6702972B1 (en) 1998-06-09 2004-03-09 Diametrics Medical Limited Method of making a kink-resistant catheter
US7344499B1 (en) * 1998-06-10 2008-03-18 Georgia Tech Research Corporation Microneedle device for extraction and sensing of bodily fluids
US6294281B1 (en) 1998-06-17 2001-09-25 Therasense, Inc. Biological fuel cell and method
US6290839B1 (en) 1998-06-23 2001-09-18 Clinical Micro Sensors, Inc. Systems for electrophoretic transport and detection of analytes
EP0967788A2 (en) 1998-06-26 1999-12-29 Hewlett-Packard Company Dynamic generation of multi-resolution and tile-based images from flat compressed images
US6495023B1 (en) 1998-07-09 2002-12-17 Michigan State University Electrochemical methods for generation of a biological proton motive force and pyridine nucleotide cofactor regeneration
US6325978B1 (en) 1998-08-04 2001-12-04 Ntc Technology Inc. Oxygen monitoring and apparatus
JP4689825B2 (en) * 1998-08-26 2011-05-25 センサーズ・フォー・メデセン・アンド・サイエンス・インコーポレーテッド Optical detection device
US6409674B1 (en) * 1998-09-24 2002-06-25 Data Sciences International, Inc. Implantable sensor with wireless communication
EP1102559B1 (en) 1998-09-30 2003-06-04 Cygnus, Inc. Method and device for predicting physiological values
US6338790B1 (en) 1998-10-08 2002-01-15 Therasense, Inc. Small volume in vitro analyte sensor with diffusible or non-leachable redox mediator
DE19852258A1 (en) 1998-11-11 2000-05-18 Agfa Gevaert Ag A radiation-sensitive recording material for the production of water-free offset printing plates
WO2000030532A1 (en) 1998-11-20 2000-06-02 University Of Connecticut Generic integrated implantable potentiostat telemetry unit for electrochemical sensors
US6066083A (en) * 1998-11-27 2000-05-23 Syntheon Llc Implantable brachytherapy device having at least partial deactivation capability
US6447448B1 (en) * 1998-12-31 2002-09-10 Ball Semiconductor, Inc. Miniature implanted orthopedic sensors
US6309384B1 (en) 1999-02-01 2001-10-30 Adiana, Inc. Method and apparatus for tubal occlusion
US6248067B1 (en) * 1999-02-05 2001-06-19 Minimed Inc. Analyte sensor and holter-type monitor system and method of using the same
US6895263B2 (en) * 2000-02-23 2005-05-17 Medtronic Minimed, Inc. Real time self-adjusting calibration algorithm
US6424847B1 (en) 1999-02-25 2002-07-23 Medtronic Minimed, Inc. Glucose monitor calibration methods
US6296615B1 (en) 1999-03-05 2001-10-02 Data Sciences International, Inc. Catheter with physiological sensor
US6230059B1 (en) * 1999-03-17 2001-05-08 Medtronic, Inc. Implantable monitor
WO2000059376A1 (en) 1999-04-07 2000-10-12 Endonetics, Inc. Implantable monitoring probe
US6285897B1 (en) 1999-04-07 2001-09-04 Endonetics, Inc. Remote physiological monitoring system
US6615078B1 (en) 1999-04-22 2003-09-02 Cygnus, Inc. Methods and devices for removing interfering species
US6300002B1 (en) 1999-05-13 2001-10-09 Moltech Power Systems, Inc. Notched electrode and method of making same
US6546268B1 (en) * 1999-06-02 2003-04-08 Ball Semiconductor, Inc. Glucose sensor
US7267665B2 (en) 1999-06-03 2007-09-11 Medtronic Minimed, Inc. Closed loop system for controlling insulin infusion
WO2000077163A1 (en) 1999-06-10 2000-12-21 Matsushita Electric Industrial Co., Ltd. Electrochemical device for moving particles covered with protein
US6368274B1 (en) * 1999-07-01 2002-04-09 Medtronic Minimed, Inc. Reusable analyte sensor site and method of using the same
US6471689B1 (en) 1999-08-16 2002-10-29 Thomas Jefferson University Implantable drug delivery catheter system with capillary interface
US6346583B1 (en) * 1999-08-25 2002-02-12 General Electric Company Polar solvent compatible polyethersiloxane elastomers
US6541107B1 (en) * 1999-10-25 2003-04-01 Dow Corning Corporation Nanoporous silicone resins having low dielectric constants
JP3426549B2 (en) 1999-11-12 2003-07-14 本田技研工業株式会社 Connection structure of the exhaust pipe
GB9928071D0 (en) * 1999-11-29 2000-01-26 Polybiomed Ltd Blood compatible medical articles
US6558320B1 (en) * 2000-01-20 2003-05-06 Medtronic Minimed, Inc. Handheld personal data assistant (PDA) with a medical device and method of using the same
US6551496B1 (en) * 2000-03-03 2003-04-22 Ysi Incorporated Microstructured bilateral sensor
US6365670B1 (en) * 2000-03-10 2002-04-02 Wacker Silicones Corporation Organopolysiloxane gels for use in cosmetics
US6442413B1 (en) 2000-05-15 2002-08-27 James H. Silver Implantable sensor
US6459917B1 (en) 2000-05-22 2002-10-01 Ashok Gowda Apparatus for access to interstitial fluid, blood, or blood plasma components
JP3701608B2 (en) * 2000-05-23 2005-10-05 ラジオメーター・メディカル・アー・ペー・エス Sensor membrane, their preparation, sensors and layered membrane structures for such sensors
US6773565B2 (en) 2000-06-22 2004-08-10 Kabushiki Kaisha Riken NOx sensor
US6591125B1 (en) 2000-06-27 2003-07-08 Therasense, Inc. Small volume in vitro analyte sensor with diffusible or non-leachable redox mediator
US6400974B1 (en) * 2000-06-29 2002-06-04 Sensors For Medicine And Science, Inc. Implanted sensor processing system and method for processing implanted sensor output
US6477392B1 (en) 2000-07-14 2002-11-05 Futrex Inc. Calibration of near infrared quantitative measurement device using optical measurement cross-products
US6991643B2 (en) 2000-12-20 2006-01-31 Usgi Medical Inc. Multi-barbed device for retaining tissue in apposition and methods of use
US7371400B2 (en) 2001-01-02 2008-05-13 The General Hospital Corporation Multilayer device for tissue engineering
US6793802B2 (en) 2001-01-04 2004-09-21 Tyson Bioresearch, Inc. Biosensors having improved sample application and measuring properties and uses thereof
US6666821B2 (en) 2001-01-08 2003-12-23 Medtronic, Inc. Sensor system
US6926670B2 (en) 2001-01-22 2005-08-09 Integrated Sensing Systems, Inc. Wireless MEMS capacitive sensor for physiologic parameter measurement
US6547839B2 (en) * 2001-01-23 2003-04-15 Skc Co., Ltd. Method of making an electrochemical cell by the application of polysiloxane onto at least one of the cell components
US7014610B2 (en) 2001-02-09 2006-03-21 Medtronic, Inc. Echogenic devices and methods of making and using such devices
US6721587B2 (en) * 2001-02-15 2004-04-13 Regents Of The University Of California Membrane and electrode structure for implantable sensor
US6952603B2 (en) 2001-03-16 2005-10-04 Roche Diagnostics Operations, Inc. Subcutaneous analyte sensor
FR2822383B1 (en) 2001-03-23 2004-12-17 Perouse Lab Prosthesis for plastic reconstruction hydrophilicity properties improved and process for their preparation
US6454710B1 (en) * 2001-04-11 2002-09-24 Motorola, Inc. Devices and methods for monitoring an analyte
US6613379B2 (en) 2001-05-08 2003-09-02 Isense Corp. Implantable analyte sensor
US6793632B2 (en) 2001-06-12 2004-09-21 Lifescan, Inc. Percutaneous biological fluid constituent sampling and measurement devices and methods
US6501976B1 (en) 2001-06-12 2002-12-31 Lifescan, Inc. Percutaneous biological fluid sampling and analyte measurement devices and methods
US6569309B2 (en) * 2001-07-05 2003-05-27 Asahi Kasei Kabushiki Kaisha Fuel cell type reactor and method for producing a chemical compound by using the same
US7481759B2 (en) * 2001-08-03 2009-01-27 Cardiac Pacemakers, Inc. Systems and methods for treatment of coronary artery disease
US7025760B2 (en) * 2001-09-07 2006-04-11 Medtronic Minimed, Inc. Method and system for non-vascular sensor implantation
US6809507B2 (en) * 2001-10-23 2004-10-26 Medtronic Minimed, Inc. Implantable sensor electrodes and electronic circuitry
US6705833B2 (en) * 2001-11-15 2004-03-16 Hewlett-Packard Development Company, L.P. Airflow flapper valve
US6952604B2 (en) * 2001-12-21 2005-10-04 Becton, Dickinson And Company Minimally-invasive system and method for monitoring analyte levels
US7018336B2 (en) * 2001-12-27 2006-03-28 Medtronic Minimed, Inc. Implantable sensor flush sleeve
EP1474038A1 (en) 2002-01-29 2004-11-10 Sicel Technologies, Inc. Implantable sensor housing and fabrication methods
US6936006B2 (en) 2002-03-22 2005-08-30 Novo Nordisk, A/S Atraumatic insertion of a subcutaneous device
WO2003082098A3 (en) 2002-03-22 2004-04-01 Cygnus Therapeutic Systems Improving performance of an analyte monitoring device
WO2003087775A3 (en) 2002-04-05 2004-02-26 Eyelab Group Llc Monitoring blood substances using self-sampled tears
US7153265B2 (en) 2002-04-22 2006-12-26 Medtronic Minimed, Inc. Anti-inflammatory biosensor for reduced biofouling and enhanced sensor performance
US8364229B2 (en) 2003-07-25 2013-01-29 Dexcom, Inc. Analyte sensors having a signal-to-noise ratio substantially unaffected by non-constant noise
US7226978B2 (en) 2002-05-22 2007-06-05 Dexcom, Inc. Techniques to improve polyurethane membranes for implantable glucose sensors
US7233649B2 (en) * 2002-07-12 2007-06-19 Utstarcom, Inc. Faster modem method and apparatus
US7150975B2 (en) 2002-08-19 2006-12-19 Animas Technologies, Llc Hydrogel composition for measuring glucose flux
US6737158B1 (en) * 2002-10-30 2004-05-18 Gore Enterprise Holdings, Inc. Porous polymeric membrane toughened composites
US7248912B2 (en) 2002-10-31 2007-07-24 The Regents Of The University Of California Tissue implantable sensors for measurement of blood solutes
US6965791B1 (en) 2003-03-26 2005-11-15 Sorenson Medical, Inc. Implantable biosensor system, apparatus and method
US7134999B2 (en) 2003-04-04 2006-11-14 Dexcom, Inc. Optimized sensor geometry for an implantable glucose sensor
US6949816B2 (en) 2003-04-21 2005-09-27 Motorola, Inc. Semiconductor component having first surface area for electrically coupling to a semiconductor chip and second surface area for electrically coupling to a substrate, and method of manufacturing same
US7192450B2 (en) 2003-05-21 2007-03-20 Dexcom, Inc. Porous membranes for use with implantable devices
US8454566B2 (en) 2003-07-10 2013-06-04 Medtronic Minimed, Inc. Methods and compositions for the inhibition of biofilms on medical devices
WO2005010518A1 (en) * 2003-07-23 2005-02-03 Dexcom, Inc. Rolled electrode array and its method for manufacture
EP1649260A4 (en) 2003-07-25 2010-07-07 Dexcom Inc Electrode systems for electrochemical sensors
WO2005011520A3 (en) 2003-07-25 2005-12-15 Dexcom Inc Oxygen enhancing membrane systems for implantable devices
US20050056552A1 (en) * 2003-07-25 2005-03-17 Simpson Peter C. Increasing bias for oxygen production in an electrode system
US7108778B2 (en) * 2003-07-25 2006-09-19 Dexcom, Inc. Electrochemical sensors including electrode systems with increased oxygen generation
US7774145B2 (en) 2003-08-01 2010-08-10 Dexcom, Inc. Transcutaneous analyte sensor
US8275437B2 (en) 2003-08-01 2012-09-25 Dexcom, Inc. Transcutaneous analyte sensor
ES2282898T3 (en) 2003-10-31 2007-10-16 Lifescan Scotland Ltd Electrochemical test strip to reduce the effect of the direct interference current.
EP2239567B1 (en) 2003-12-05 2015-09-02 DexCom, Inc. Calibration techniques for a continuous analyte sensor
US7081195B2 (en) 2003-12-08 2006-07-25 Dexcom, Inc. Systems and methods for improving electrochemical analyte sensors
US20050182451A1 (en) 2004-01-12 2005-08-18 Adam Griffin Implantable device with improved radio frequency capabilities
US7637868B2 (en) 2004-01-12 2009-12-29 Dexcom, Inc. Composite material for implantable device
US7364592B2 (en) * 2004-02-12 2008-04-29 Dexcom, Inc. Biointerface membrane with macro-and micro-architecture
US7591801B2 (en) 2004-02-26 2009-09-22 Dexcom, Inc. Integrated delivery device for continuous glucose sensor
US20050245799A1 (en) * 2004-05-03 2005-11-03 Dexcom, Inc. Implantable analyte sensor
US8277713B2 (en) 2004-05-03 2012-10-02 Dexcom, Inc. Implantable analyte sensor
US7657297B2 (en) 2004-05-03 2010-02-02 Dexcom, Inc. Implantable analyte sensor
US20050272989A1 (en) 2004-06-04 2005-12-08 Medtronic Minimed, Inc. Analyte sensors and methods for making and using them
US20080242961A1 (en) 2004-07-13 2008-10-02 Dexcom, Inc. Transcutaneous analyte sensor
US8060174B2 (en) 2005-04-15 2011-11-15 Dexcom, Inc. Analyte sensing biointerface
WO2006113618A1 (en) 2005-04-15 2006-10-26 Dexcom, Inc. Analyte sensing biointerface
WO2006130854A3 (en) 2005-06-02 2007-11-15 Isense Corp Use of multiple data points and filtering in an analyte sensor
US7725148B2 (en) 2005-09-23 2010-05-25 Medtronic Minimed, Inc. Sensor with layered electrodes
US7367604B2 (en) * 2005-12-21 2008-05-06 Porter Group, Llc Front latch assembly for vehicle seat cushion
US8962165B2 (en) 2006-05-02 2015-02-24 The Penn State Research Foundation Materials and configurations for scalable microbial fuel cells
CA2652025A1 (en) 2006-07-25 2008-01-31 Glumetrics, Inc. Flourescent dyes for use in glucose sensing
US20080036763A1 (en) * 2006-08-09 2008-02-14 Mediatek Inc. Method and system for computer graphics with out-of-band (oob) background
US7751863B2 (en) 2007-02-06 2010-07-06 Glumetrics, Inc. Optical determination of ph and glucose
WO2008098087A3 (en) 2007-02-06 2008-11-27 Glumetrics Inc Optical systems and methods for rationmetric measurement of blood glucose concentration
US8110251B2 (en) 2007-02-06 2012-02-07 Glumetrics, Inc. Method for polymerizing a monomer solution within a cavity to generate a smooth polymer surface
JP5706686B2 (en) 2007-05-01 2015-04-22 メドトロニック ミニメド インコーポレイテッド Pyridinium boronic acid quencher, a method of manufacturing the same, and glucose sensor
CA2686065A1 (en) 2007-05-10 2008-11-20 Glumetrics, Inc. Equilibrium non-consuming fluorescence sensor for real time intravascular glucose measurement
EP2150814A2 (en) 2007-05-10 2010-02-10 Glumetrics, Inc. Device and methods for calibrating analyte sensors
DK2222686T3 (en) 2007-07-11 2015-09-21 Medtronic Minimed Inc Polyviologenboronsyredeaktivatorer for use in analytsensorer
JP2010535903A (en) 2007-08-06 2010-11-25 グルメトリックス,インコーポレイテッドGluMetrics,Inc. Used in analyte sensor HPTS- mono- and bis -Cys-MA polymerizable fluorescent dyes
JP5631215B2 (en) 2007-11-21 2014-11-26 メドトロニック ミニメド インコーポレイテッド Blood sugar management maintenance system
WO2009129186A2 (en) 2008-04-17 2009-10-22 Glumetrics, Inc. Sensor for percutaneous intravascular deployment without an indwelling cannula

Patent Citations (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8761A (en) * 1852-02-24 Apparatus foe boring hubs fob
US188185A (en) * 1877-03-06 Improvement in sponge-cups
US4076656A (en) * 1971-11-30 1978-02-28 Debell & Richardson, Inc. Method of producing porous plastic materials
US4073713A (en) * 1975-09-24 1978-02-14 The Yellow Springs Instrument Company, Inc. Membrane for enzyme electrodes
US4255500A (en) * 1979-03-29 1981-03-10 General Electric Company Vibration resistant electrochemical cell having deformed casing and method of making same
US4253469A (en) * 1979-04-20 1981-03-03 The Narda Microwave Corporation Implantable temperature probe
US4374013A (en) * 1980-03-05 1983-02-15 Enfors Sven Olof Oxygen stabilized enzyme electrode
US4431507A (en) * 1981-01-14 1984-02-14 Matsushita Electric Industrial Co., Ltd. Enzyme electrode
US4436094A (en) * 1981-03-09 1984-03-13 Evreka, Inc. Monitor for continuous in vivo measurement of glucose concentration
US4431004A (en) * 1981-10-27 1984-02-14 Bessman Samuel P Implantable glucose sensor
US4494950A (en) * 1982-01-19 1985-01-22 The Johns Hopkins University Plural module medication delivery system
US4571292A (en) * 1982-08-12 1986-02-18 Case Western Reserve University Apparatus for electrochemical measurements
US4506680A (en) * 1983-03-17 1985-03-26 Medtronic, Inc. Drug dispensing body implantable lead
US4650547A (en) * 1983-05-19 1987-03-17 The Regents Of The University Of California Method and membrane applicable to implantable sensor
US4577642A (en) * 1985-02-27 1986-03-25 Medtronic, Inc. Drug dispensing body implantable lead employing molecular sieves and methods of fabrication
US4805624A (en) * 1985-09-09 1989-02-21 The Montefiore Hospital Association Of Western Pa Low-potential electrochemical redox sensors
US4721677A (en) * 1985-09-18 1988-01-26 Children's Hospital Medical Center Implantable gas-containing biosensor and method for measuring an analyte such as glucose
US4890620A (en) * 1985-09-20 1990-01-02 The Regents Of The University Of California Two-dimensional diffusion glucose substrate sensing electrode
US4803243A (en) * 1986-03-26 1989-02-07 Shin-Etsu Chemical Co., Ltd. Block-graft copolymer
US4994167A (en) * 1986-04-15 1991-02-19 Markwell Medical Institute, Inc. Biological fluid measuring device
US4731726A (en) * 1986-05-19 1988-03-15 Healthware Corporation Patient-operated glucose monitor and diabetes management system
US5002572A (en) * 1986-09-11 1991-03-26 Picha George J Biological implant with textured surface
US4984929A (en) * 1987-01-08 1991-01-15 Julius Blum Gesellschaft M.B.H. Fitting for fastening the rail member of a drawer
US4810470A (en) * 1987-06-19 1989-03-07 Miles Inc. Volume independent diagnostic device
US4805625A (en) * 1987-07-08 1989-02-21 Ad-Tech Medical Instrument Corporation Sphenoidal electrode and insertion method
US4890621A (en) * 1988-01-19 1990-01-02 Northstar Research Institute, Ltd. Continuous glucose monitoring and a system utilized therefor
US4992794A (en) * 1988-10-10 1991-02-12 Texas Instruments Incorporated Transponder and method for the production thereof
US5089112A (en) * 1989-03-20 1992-02-18 Associated Universities, Inc. Electrochemical biosensor based on immobilized enzymes and redox polymers
US4986671A (en) * 1989-04-12 1991-01-22 Luxtron Corporation Three-parameter optical fiber sensor and system
US4986271A (en) * 1989-07-19 1991-01-22 The University Of New Mexico Vivo refillable glucose sensor
US5190041A (en) * 1989-08-11 1993-03-02 Palti Yoram Prof System for monitoring and controlling blood glucose
US5282848A (en) * 1990-08-28 1994-02-01 Meadox Medicals, Inc. Self-supporting woven vascular graft
US5380536A (en) * 1990-10-15 1995-01-10 The Board Of Regents, The University Of Texas System Biocompatible microcapsules
US5593440A (en) * 1990-10-31 1997-01-14 Baxter International Inc. Tissue implant systems and methods for sustaining viable high cell densities within a host
US5733336A (en) * 1990-10-31 1998-03-31 Baxter International, Inc. Ported tissue implant systems and methods of using same
US5713888A (en) * 1990-10-31 1998-02-03 Baxter International, Inc. Tissue implant systems
US6514718B2 (en) * 1991-03-04 2003-02-04 Therasense, Inc. Subcutaneous glucose electrode
US5397848A (en) * 1991-04-25 1995-03-14 Allergan, Inc. Enhancing the hydrophilicity of silicone polymers
US5706807A (en) * 1991-05-13 1998-01-13 Applied Medical Research Sensor device covered with foam membrane
US5496453A (en) * 1991-05-17 1996-03-05 Kyoto Daiichi Kagaku Co., Ltd. Biosensor and method of quantitative analysis using the same
US5482008A (en) * 1991-09-13 1996-01-09 Stafford; Rodney A. Electronic animal identification system
US5384028A (en) * 1992-08-28 1995-01-24 Nec Corporation Biosensor with a data memory
US5298144A (en) * 1992-09-15 1994-03-29 The Yellow Springs Instrument Company, Inc. Chemically wired fructose dehydrogenase electrodes
US5387327A (en) * 1992-10-19 1995-02-07 Duquesne University Of The Holy Ghost Implantable non-enzymatic electrochemical glucose sensor
US5497772A (en) * 1993-11-19 1996-03-12 Alfred E. Mann Foundation For Scientific Research Glucose monitoring system
US5593852A (en) * 1993-12-02 1997-01-14 Heller; Adam Subcutaneous glucose electrode
US5391250A (en) * 1994-03-15 1995-02-21 Minimed Inc. Method of fabricating thin film sensors
US5390671A (en) * 1994-03-15 1995-02-21 Minimed Inc. Transcutaneous sensor insertion set
US5863400A (en) * 1994-04-14 1999-01-26 Usf Filtration & Separations Group Inc. Electrochemical cells
US5704354A (en) * 1994-06-23 1998-01-06 Siemens Aktiengesellschaft Electrocatalytic glucose sensor
US5494562A (en) * 1994-06-27 1996-02-27 Ciba Corning Diagnostics Corp. Electrochemical sensors
US5480711A (en) * 1994-07-12 1996-01-02 Ruefer; Bruce G. Nano-porous PTFE biomaterial
US5882494A (en) * 1995-03-27 1999-03-16 Minimed, Inc. Polyurethane/polyurea compositions containing silicone for biosensor membranes
US5607565A (en) * 1995-03-27 1997-03-04 Coulter Corporation Apparatus for measuring analytes in a fluid sample
US6011984A (en) * 1995-11-22 2000-01-04 Minimed Inc. Detection of biological molecules using chemical amplification and optical sensors
US5711861A (en) * 1995-11-22 1998-01-27 Ward; W. Kenneth Device for monitoring changes in analyte concentration
US6208894B1 (en) * 1997-02-26 2001-03-27 Alfred E. Mann Foundation For Scientific Research And Advanced Bionics System of implantable devices for monitoring and/or affecting body parameters
US20040011671A1 (en) * 1997-03-04 2004-01-22 Dexcom, Inc. Device and method for determining analyte levels
US20070032718A1 (en) * 1997-03-04 2007-02-08 Shults Mark C Device and method for determining analyte levels
US20040045879A1 (en) * 1997-03-04 2004-03-11 Dexcom, Inc. Device and method for determining analyte levels
US20050033132A1 (en) * 1997-03-04 2005-02-10 Shults Mark C. Analyte measuring device
US5861019A (en) * 1997-07-25 1999-01-19 Medtronic Inc. Implantable medical device microstrip telemetry antenna
US5871514A (en) * 1997-08-01 1999-02-16 Medtronic, Inc. Attachment apparatus for an implantable medical device employing ultrasonic energy
US6200772B1 (en) * 1997-08-23 2001-03-13 Sensalyse Holdings Limited Modified polyurethane membrane sensors and analytical methods
US6512939B1 (en) * 1997-10-20 2003-01-28 Medtronic Minimed, Inc. Implantable enzyme-based monitoring systems adapted for long term use
US6013113A (en) * 1998-03-06 2000-01-11 Wilson Greatbatch Ltd. Slotted insulator for unsealed electrode edges in electrochemical cells
US6537318B1 (en) * 1998-04-06 2003-03-25 Konjac Technologies, Llc Use of glucomannan hydrocolloid as filler material in prostheses
US6534711B1 (en) * 1998-04-14 2003-03-18 The Goodyear Tire & Rubber Company Encapsulation package and method of packaging an electronic circuit module
US6175752B1 (en) * 1998-04-30 2001-01-16 Therasense, Inc. Analyte monitoring device and methods of use
US6187062B1 (en) * 1998-06-16 2001-02-13 Alcatel Current collection through thermally sprayed tabs at the ends of a spirally wound electrochemical cell
US6201980B1 (en) * 1998-10-05 2001-03-13 The Regents Of The University Of California Implantable medical sensor system
US6016448A (en) * 1998-10-27 2000-01-18 Medtronic, Inc. Multilevel ERI for implantable medical devices
US6360888B1 (en) * 1999-02-25 2002-03-26 Minimed Inc. Glucose sensor package system
US7166074B2 (en) * 1999-07-01 2007-01-23 Medtronic Minimed, Inc. Reusable analyte sensor site and method of using the same
US6343225B1 (en) * 1999-09-14 2002-01-29 Implanted Biosystems, Inc. Implantable glucose sensor
US6527729B1 (en) * 1999-11-10 2003-03-04 Pacesetter, Inc. Method for monitoring patient using acoustic sensor
US6699383B2 (en) * 1999-11-25 2004-03-02 Siemens Aktiengesellschaft Method for determining a NOx concentration
US6520997B1 (en) * 1999-12-08 2003-02-18 Baxter International Inc. Porous three dimensional structure
US20020022883A1 (en) * 2000-06-13 2002-02-21 Burg Karen J.L. Tissue engineering composite
US6528584B2 (en) * 2001-04-12 2003-03-04 The University Of Akron Multi-component polymeric networks containing poly(ethylene glycol)
US20030006669A1 (en) * 2001-05-22 2003-01-09 Sri International Rolled electroactive polymers
US20030023317A1 (en) * 2001-07-27 2003-01-30 Dexcom, Inc. Membrane for use with implantable devices
US20030032874A1 (en) * 2001-07-27 2003-02-13 Dexcom, Inc. Sensor head for use with implantable devices
US20090045055A1 (en) * 2001-07-27 2009-02-19 Dexcom, Inc. Sensor head for use with implantable devices
US6702857B2 (en) * 2001-07-27 2004-03-09 Dexcom, Inc. Membrane for use with implantable devices
US20030036803A1 (en) * 2001-08-14 2003-02-20 Mcghan Jim J. Medical implant having bioabsorbable textured surface
US7169289B2 (en) * 2002-06-28 2007-01-30 november Aktiengesellschaft Gesellschaft für Molekulare Medizin Electrochemical detection method and device
US20050031689A1 (en) * 2003-05-21 2005-02-10 Dexcom, Inc. Biointerface membranes incorporating bioactive agents
US20080021666A1 (en) * 2003-08-01 2008-01-24 Dexcom, Inc. System and methods for processing analyte sensor data
US20050027463A1 (en) * 2003-08-01 2005-02-03 Goode Paul V. System and methods for processing analyte sensor data
US20050027181A1 (en) * 2003-08-01 2005-02-03 Goode Paul V. System and methods for processing analyte sensor data
US20050027180A1 (en) * 2003-08-01 2005-02-03 Goode Paul V. System and methods for processing analyte sensor data
US20090012379A1 (en) * 2003-08-01 2009-01-08 Dexcom, Inc. System and methods for processing analyte sensor data
US20050043598A1 (en) * 2003-08-22 2005-02-24 Dexcom, Inc. Systems and methods for replacing signal artifacts in a glucose sensor data stream
US20080045824A1 (en) * 2003-10-28 2008-02-21 Dexcom, Inc. Silicone composition for biocompatible membrane
US20060015020A1 (en) * 2004-07-06 2006-01-19 Dexcom, Inc. Systems and methods for manufacture of an analyte-measuring device including a membrane system
US20060016700A1 (en) * 2004-07-13 2006-01-26 Dexcom, Inc. Transcutaneous analyte sensor
US20090036763A1 (en) * 2004-07-13 2009-02-05 Dexcom, Inc. Analyte sensor
US20070027370A1 (en) * 2004-07-13 2007-02-01 Brauker James H Analyte sensor

Cited By (144)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080030738A1 (en) * 1997-02-04 2008-02-07 Biacore Ab Analytical method and apparatus
US7970448B2 (en) 1997-03-04 2011-06-28 Dexcom, Inc. Device and method for determining analyte levels
US9439589B2 (en) 1997-03-04 2016-09-13 Dexcom, Inc. Device and method for determining analyte levels
US9339223B2 (en) 1997-03-04 2016-05-17 Dexcom, Inc. Device and method for determining analyte levels
US8527026B2 (en) 1997-03-04 2013-09-03 Dexcom, Inc. Device and method for determining analyte levels
US8676288B2 (en) 1997-03-04 2014-03-18 Dexcom, Inc. Device and method for determining analyte levels
US7792562B2 (en) 1997-03-04 2010-09-07 Dexcom, Inc. Device and method for determining analyte levels
US8527025B1 (en) 1997-03-04 2013-09-03 Dexcom, Inc. Device and method for determining analyte levels
US7835777B2 (en) 1997-03-04 2010-11-16 Dexcom, Inc. Device and method for determining analyte levels
US8155723B2 (en) 1997-03-04 2012-04-10 Dexcom, Inc. Device and method for determining analyte levels
US8923947B2 (en) 1997-03-04 2014-12-30 Dexcom, Inc. Device and method for determining analyte levels
US7974672B2 (en) 1997-03-04 2011-07-05 Dexcom, Inc. Device and method for determining analyte levels
US8226557B2 (en) 1998-04-30 2012-07-24 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US7885699B2 (en) 1998-04-30 2011-02-08 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US9042953B2 (en) 1998-04-30 2015-05-26 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US9011331B2 (en) 1998-04-30 2015-04-21 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US9014773B2 (en) 1998-04-30 2015-04-21 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US9066694B2 (en) 1998-04-30 2015-06-30 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US9066697B2 (en) 1998-04-30 2015-06-30 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8974386B2 (en) 1998-04-30 2015-03-10 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US7869853B1 (en) 1998-04-30 2011-01-11 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8880137B2 (en) 1998-04-30 2014-11-04 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8840553B2 (en) 1998-04-30 2014-09-23 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8774887B2 (en) 1998-04-30 2014-07-08 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8744545B2 (en) 1998-04-30 2014-06-03 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US7860544B2 (en) 1998-04-30 2010-12-28 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8734348B2 (en) 1998-04-30 2014-05-27 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8738109B2 (en) 1998-04-30 2014-05-27 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8162829B2 (en) 1998-04-30 2012-04-24 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8175673B2 (en) 1998-04-30 2012-05-08 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8177716B2 (en) 1998-04-30 2012-05-15 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8734346B2 (en) 1998-04-30 2014-05-27 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8688188B2 (en) 1998-04-30 2014-04-01 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8224413B2 (en) 1998-04-30 2012-07-17 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US9066695B2 (en) 1998-04-30 2015-06-30 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8226558B2 (en) 1998-04-30 2012-07-24 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8672844B2 (en) 1998-04-30 2014-03-18 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8597189B2 (en) 1998-04-30 2013-12-03 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8231532B2 (en) 1998-04-30 2012-07-31 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8670815B2 (en) 1998-04-30 2014-03-11 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8235896B2 (en) 1998-04-30 2012-08-07 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8666469B2 (en) 1998-04-30 2014-03-04 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8255031B2 (en) 1998-04-30 2012-08-28 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8260392B2 (en) 1998-04-30 2012-09-04 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8265726B2 (en) 1998-04-30 2012-09-11 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8660627B2 (en) 1998-04-30 2014-02-25 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8273022B2 (en) 1998-04-30 2012-09-25 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8275439B2 (en) 1998-04-30 2012-09-25 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8649841B2 (en) 1998-04-30 2014-02-11 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8287454B2 (en) 1998-04-30 2012-10-16 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8306598B2 (en) 1998-04-30 2012-11-06 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8346337B2 (en) 1998-04-30 2013-01-01 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8346336B2 (en) 1998-04-30 2013-01-01 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8353829B2 (en) 1998-04-30 2013-01-15 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US9072477B2 (en) 1998-04-30 2015-07-07 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8366614B2 (en) 1998-04-30 2013-02-05 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8372005B2 (en) 1998-04-30 2013-02-12 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8380273B2 (en) 1998-04-30 2013-02-19 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8391945B2 (en) 1998-04-30 2013-03-05 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8641619B2 (en) 1998-04-30 2014-02-04 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US9326714B2 (en) 1998-04-30 2016-05-03 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8622906B2 (en) 1998-04-30 2014-01-07 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8617071B2 (en) 1998-04-30 2013-12-31 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8465425B2 (en) 1998-04-30 2013-06-18 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8473021B2 (en) 1998-04-30 2013-06-25 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8612159B2 (en) 1998-04-30 2013-12-17 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8480580B2 (en) 1998-04-30 2013-07-09 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8357091B2 (en) 1998-04-30 2013-01-22 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8409131B2 (en) 1998-04-30 2013-04-02 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8226555B2 (en) 1998-04-30 2012-07-24 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US9011332B2 (en) 2001-01-02 2015-04-21 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US9498159B2 (en) 2001-01-02 2016-11-22 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8668645B2 (en) 2001-01-02 2014-03-11 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US9610034B2 (en) 2001-01-02 2017-04-04 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8652043B2 (en) 2001-01-02 2014-02-18 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US7976778B2 (en) 2001-04-02 2011-07-12 Abbott Diabetes Care Inc. Blood glucose tracking apparatus
US8236242B2 (en) 2001-04-02 2012-08-07 Abbott Diabetes Care Inc. Blood glucose tracking apparatus and methods
US8765059B2 (en) 2001-04-02 2014-07-01 Abbott Diabetes Care Inc. Blood glucose tracking apparatus
US9477811B2 (en) 2001-04-02 2016-10-25 Abbott Diabetes Care Inc. Blood glucose tracking apparatus and methods
US8268243B2 (en) 2001-04-02 2012-09-18 Abbott Diabetes Care Inc. Blood glucose tracking apparatus and methods
US9328371B2 (en) 2001-07-27 2016-05-03 Dexcom, Inc. Sensor head for use with implantable devices
US8509871B2 (en) 2001-07-27 2013-08-13 Dexcom, Inc. Sensor head for use with implantable devices
US9804114B2 (en) 2001-07-27 2017-10-31 Dexcom, Inc. Sensor head for use with implantable devices
US9532741B2 (en) 2001-07-27 2017-01-03 Dexcom, Inc. Membrane for use with implantable devices
US8840552B2 (en) 2001-07-27 2014-09-23 Dexcom, Inc. Membrane for use with implantable devices
US8622903B2 (en) 2002-12-31 2014-01-07 Abbott Diabetes Care Inc. Continuous glucose monitoring system and methods of use
US8187183B2 (en) 2002-12-31 2012-05-29 Abbott Diabetes Care Inc. Continuous glucose monitoring system and methods of use
US7811231B2 (en) 2002-12-31 2010-10-12 Abbott Diabetes Care Inc. Continuous glucose monitoring system and methods of use
US7881763B2 (en) 2003-04-04 2011-02-01 Dexcom, Inc. Optimized sensor geometry for an implantable glucose sensor
US8118877B2 (en) 2003-05-21 2012-02-21 Dexcom, Inc. Porous membranes for use with implantable devices
US7875293B2 (en) 2003-05-21 2011-01-25 Dexcom, Inc. Biointerface membranes incorporating bioactive agents
US20050031689A1 (en) * 2003-05-21 2005-02-10 Dexcom, Inc. Biointerface membranes incorporating bioactive agents
USRE43399E1 (en) 2003-07-25 2012-05-22 Dexcom, Inc. Electrode systems for electrochemical sensors
US7896809B2 (en) 2003-07-25 2011-03-01 Dexcom, Inc. Dual electrode system for a continuous analyte sensor
US8700117B2 (en) 2003-08-01 2014-04-15 Dexcom, Inc. System and methods for processing analyte sensor data
US8622905B2 (en) 2003-08-01 2014-01-07 Dexcom, Inc. System and methods for processing analyte sensor data
US8000901B2 (en) 2003-08-01 2011-08-16 Dexcom, Inc. Transcutaneous analyte sensor
US8160669B2 (en) 2003-08-01 2012-04-17 Dexcom, Inc. Transcutaneous analyte sensor
US8442610B2 (en) 2003-08-01 2013-05-14 Dexcom, Inc. System and methods for processing analyte sensor data
US8676287B2 (en) 2003-08-01 2014-03-18 Dexcom, Inc. System and methods for processing analyte sensor data
US8052601B2 (en) 2003-08-01 2011-11-08 Dexcom, Inc. System and methods for processing analyte sensor data
US8986209B2 (en) 2003-08-01 2015-03-24 Dexcom, Inc. Transcutaneous analyte sensor
US8394021B2 (en) 2003-08-01 2013-03-12 Dexcom, Inc. System and methods for processing analyte sensor data
US8788006B2 (en) 2003-08-01 2014-07-22 Dexcom, Inc. System and methods for processing analyte sensor data
US8275437B2 (en) 2003-08-01 2012-09-25 Dexcom, Inc. Transcutaneous analyte sensor
US8915849B2 (en) 2003-08-01 2014-12-23 Dexcom, Inc. Transcutaneous analyte sensor
US8788007B2 (en) 2003-08-01 2014-07-22 Dexcom, Inc. Transcutaneous analyte sensor
US8249684B2 (en) 2003-12-05 2012-08-21 Dexcom, Inc. Calibration techniques for a continuous analyte sensor
US7917186B2 (en) 2003-12-05 2011-03-29 Dexcom, Inc. Calibration techniques for a continuous analyte sensor
US7715893B2 (en) 2003-12-05 2010-05-11 Dexcom, Inc. Calibration techniques for a continuous analyte sensor
US8428678B2 (en) 2003-12-05 2013-04-23 Dexcom, Inc. Calibration techniques for a continuous analyte sensor
US8483793B2 (en) 2003-12-05 2013-07-09 Dexcom, Inc. Dual electrode system for a continuous analyte sensor
US8160671B2 (en) 2003-12-05 2012-04-17 Dexcom, Inc. Calibration techniques for a continuous analyte sensor
USRE44695E1 (en) 2003-12-05 2014-01-07 Dexcom, Inc. Dual electrode system for a continuous analyte sensor
US20050181012A1 (en) * 2004-01-12 2005-08-18 Sean Saint Composite material for implantable device
US8792955B2 (en) 2004-05-03 2014-07-29 Dexcom, Inc. Transcutaneous analyte sensor
US7657297B2 (en) 2004-05-03 2010-02-02 Dexcom, Inc. Implantable analyte sensor
US9833143B2 (en) 2004-05-03 2017-12-05 Dexcom, Inc. Transcutaneous analyte sensor
US20060015020A1 (en) * 2004-07-06 2006-01-19 Dexcom, Inc. Systems and methods for manufacture of an analyte-measuring device including a membrane system
US9788766B2 (en) 2005-04-15 2017-10-17 Dexcom, Inc. Analyte sensing biointerface
US8060174B2 (en) 2005-04-15 2011-11-15 Dexcom, Inc. Analyte sensing biointerface
US8915850B2 (en) 2005-11-01 2014-12-23 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US9326716B2 (en) 2005-11-01 2016-05-03 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US9078607B2 (en) 2005-11-01 2015-07-14 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8920319B2 (en) 2005-11-01 2014-12-30 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US9795331B2 (en) 2005-12-28 2017-10-24 Abbott Diabetes Care Inc. Method and apparatus for providing analyte sensor insertion
US7920907B2 (en) 2006-06-07 2011-04-05 Abbott Diabetes Care Inc. Analyte monitoring system and method
EP2796090A1 (en) 2006-10-04 2014-10-29 DexCom, Inc. Analyte sensor
EP2796093A1 (en) 2007-03-26 2014-10-29 DexCom, Inc. Analyte sensor
US8229535B2 (en) 2008-02-21 2012-07-24 Dexcom, Inc. Systems and methods for blood glucose monitoring and alert delivery
US9143569B2 (en) 2008-02-21 2015-09-22 Dexcom, Inc. Systems and methods for processing, transmitting and displaying sensor data
US8591455B2 (en) 2008-02-21 2013-11-26 Dexcom, Inc. Systems and methods for customizing delivery of sensor data
US9020572B2 (en) 2008-02-21 2015-04-28 Dexcom, Inc. Systems and methods for processing, transmitting and displaying sensor data
US8685093B2 (en) 2009-01-23 2014-04-01 Warsaw Orthopedic, Inc. Methods and systems for diagnosing, treating, or tracking spinal disorders
US8126736B2 (en) 2009-01-23 2012-02-28 Warsaw Orthopedic, Inc. Methods and systems for diagnosing, treating, or tracking spinal disorders
EP3092949A1 (en) 2011-09-23 2016-11-16 Dexcom, Inc. Systems and methods for processing and transmitting sensor data
WO2013152090A2 (en) 2012-04-04 2013-10-10 Dexcom, Inc. Transcutaneous analyte sensors, applicators therefor, and associated methods
WO2013184566A2 (en) 2012-06-05 2013-12-12 Dexcom, Inc. Systems and methods for processing analyte data and generating reports
WO2014004460A1 (en) 2012-06-29 2014-01-03 Dexcom, Inc. Use of sensor redundancy to detect sensor failures
WO2014011488A2 (en) 2012-07-09 2014-01-16 Dexcom, Inc. Systems and methods for leveraging smartphone features in continuous glucose monitoring
WO2014052080A1 (en) 2012-09-28 2014-04-03 Dexcom, Inc. Zwitterion surface modifications for continuous sensors
WO2014158405A2 (en) 2013-03-14 2014-10-02 Dexcom, Inc. Systems and methods for processing and transmitting sensor data
WO2014158327A2 (en) 2013-03-14 2014-10-02 Dexcom, Inc. Advanced calibration for analyte sensors
WO2015156966A1 (en) 2014-04-10 2015-10-15 Dexcom, Inc. Sensors for continuous analyte monitoring, and related methods

Also Published As

Publication number Publication date Type
US20110124992A1 (en) 2011-05-26 application
WO2004093674A1 (en) 2004-11-04 application
US20040199059A1 (en) 2004-10-07 application
US20060224108A1 (en) 2006-10-05 application
EP1610673A1 (en) 2006-01-04 application
US7881763B2 (en) 2011-02-01 grant
US20060211921A1 (en) 2006-09-21 application
JP2006521867A (en) 2006-09-28 application
EP1610673A4 (en) 2009-05-27 application
US7134999B2 (en) 2006-11-14 grant

Similar Documents

Publication Publication Date Title
US20080119704A1 (en) Analyte sensor
US20070213611A1 (en) Dual electrode system for a continuous analyte sensor
US20110046467A1 (en) Dual electrode system for a continuous analyte sensor
US20100324403A1 (en) Transcutaneous analyte sensor
US20120262298A1 (en) Advanced analyte sensor calibration and error detection
US7860545B2 (en) Analyte measuring device
US20070235331A1 (en) Analyte sensors having a signal-to-noise ratio substantially unaffected by non-constant noise
US7494465B2 (en) Transcutaneous analyte sensor
US7875293B2 (en) Biointerface membranes incorporating bioactive agents
US20080242961A1 (en) Transcutaneous analyte sensor
US20090216103A1 (en) Transcutaneous analyte sensor
US8000901B2 (en) Transcutaneous analyte sensor
US20090124879A1 (en) Transcutaneous analyte sensor
US8275437B2 (en) Transcutaneous analyte sensor
US7783333B2 (en) Transcutaneous medical device with variable stiffness
US20110028815A1 (en) Analyte sensors and methods of manufacturing same
US7108778B2 (en) Electrochemical sensors including electrode systems with increased oxygen generation
US7925321B2 (en) System and methods for processing analyte sensor data
US7583990B2 (en) System and methods for processing analyte sensor data
US7651596B2 (en) Cellulosic-based interference domain for an analyte sensor
US20100168541A1 (en) System and methods for processing analyte sensor data
US7771352B2 (en) Low oxygen in vivo analyte sensor
US7379765B2 (en) Oxygen enhancing membrane systems for implantable devices
US7713574B2 (en) Transcutaneous analyte sensor
US20070045902A1 (en) Analyte sensor

Legal Events

Date Code Title Description
AS Assignment

Owner name: DEXCOM, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BRAUKER, JAMES H.;CARR-BRENDEL, VICTORIA;NEALE, PAUL V.;AND OTHERS;REEL/FRAME:017862/0125;SIGNING DATES FROM 20040312 TO 20040407