US20060155202A1 - Hemodynamic assessment/adjustment - Google Patents

Hemodynamic assessment/adjustment Download PDF

Info

Publication number
US20060155202A1
US20060155202A1 US11/264,328 US26432805A US2006155202A1 US 20060155202 A1 US20060155202 A1 US 20060155202A1 US 26432805 A US26432805 A US 26432805A US 2006155202 A1 US2006155202 A1 US 2006155202A1
Authority
US
United States
Prior art keywords
time
heart
display
hemodynamic
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/264,328
Other languages
English (en)
Inventor
Patricia Arand
Peter Bauer
Robert Warner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inovise Medical Inc
Original Assignee
Inovise Medical Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inovise Medical Inc filed Critical Inovise Medical Inc
Priority to US11/264,328 priority Critical patent/US20060155202A1/en
Assigned to INOVISE MEDICAL, INC. reassignment INOVISE MEDICAL, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ARAND, PATRICIA A., BAUER, PETER T., WARNER, ROBERT A.
Priority to PCT/US2005/039782 priority patent/WO2006076068A2/fr
Publication of US20060155202A1 publication Critical patent/US20060155202A1/en
Priority to US12/148,168 priority patent/US20080195168A1/en
Priority to US12/148,214 priority patent/US8065002B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/02028Determining haemodynamic parameters not otherwise provided for, e.g. cardiac contractility or left ventricular ejection fraction
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • A61B5/742Details of notification to user or communication with user or patient ; user input means using visual displays
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B7/00Instruments for auscultation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B7/00Instruments for auscultation
    • A61B7/02Stethoscopes
    • A61B7/04Electric stethoscopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/362Heart stimulators
    • A61N1/37Monitoring; Protecting
    • A61N1/3702Physiological parameters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7203Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal
    • A61B5/7217Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal of noise originating from a therapeutic or surgical apparatus, e.g. from a pacemaker

Definitions

  • This invention pertains to a certain aspect of cardiology, and in particular, to methodology and associated system apparatus that are employable with respect to both pacemaker and non-pacemaker patients to obtain useful heart-sound and ECG-electrical information which enables a very accurate, and graphically intuitive, assessment of a patient's hemodynamic status.
  • the invention also provides an important feedback opportunity for adjusting a patient's current medical treatment, including the making of a pacemaker operational adjustment in the case of a pacemaker patient, in a manner aimed at improving that patient's hemodynamic condition. With the system and methodology of the invention in operation, the results of such feedback can be viewed immediately in real time.
  • the invention thus addresses an important area of cardiology wherein it is considered to be very useful and important to be able, under real-time, result-observation conditions, to fine-tune a person's hemodynamic behavior and condition.
  • Preferred implementation of the invention while relevant to all categories of patients, is particularly described herein, in the interest of giving a full illustration of the invention, in the context of a pacemaker patient, with the understanding that practice of the invention for a non-pacemaker patient is similar, save those descriptive details herein which especially focus on pacemaker behavior, per se.
  • the terms “pacemaker” and “pacemaker patient” are employed herein to include situations involving patients and implant equipment relating to cardiac resynchronization therapy.
  • too vigorous a pacemaker ventricular pacing pulse an issue in and of itself, can produce such stimulation which, in turn generates an acoustic artifact that can “confuse” a heart-sound diagnostic algorithm in a way which mars accurate heart-sound investigation.
  • the present invention in the context of improving heart-sound collection and display for hemodynamic status assessment and adjustment in the realm of pacemaker operation, takes particular aim at this circumstance and these issues—namely, at the above-mentioned, unwanted events involving a subject whose heart has been equipped with a pacemaker. It does so, as will be seen, with unique methodology which leads to very accurate and reliable gathering and intuitive presentation of both ECG-electrical and heart-sound acoustic information, with appropriate processing being applied to the gathered information to assure a high level of certainty regarding acquired audio data containing heart-sound information in categories that are important to the assessment and management of a subject's hemodynamic condition.
  • This presentation capability of the invention is, of course, offered whether or not a pacemaker is involved.
  • the present invention is structurable to recognize potential “phrenic nerve stimulation” problems, and when so structured, provides signal-collection and signal-processing circuitry which responds to real time pacemaker operation in a manner that effectively (a) prevents the mentioned heart-sound confusion issue from surfacing, (b) informs a physician, clinician, etc. that a pacemaker's ventricular pacing pulse may need to be adjusted, and (c) opens a significant door for the improved gathering and processing accuracy, and the presentation, of heart-sound information leading to accurate assessment (indeed “picturing”) of a subject's hemodynamic condition.
  • the invention addresses the utility of employing such carefully gathered and processed information in a manner enabling feedback control to be applied to an operating pacemaker so as to enable the physician, or other party, (working with a particular pacemaker subject) to fine-tune the interrelated operations of the subject's heart and the associated pacemaker so as to improve that subject's hemodynamic condition.
  • Medical treatment feedback other than that relating to pacemaker operation, is also encouraged, promoted, and made available, based on operation of the invention, for improving, and for observing feedback results in real time regarding, a patient's hemodynamic condition.
  • the invention further features a unique, visual, graphical presentation (with geometric elements) of gathered ECG-electrical and heart-sound acoustic information, in a real time manner, and in such as fashion that the employment of feedback to control various medical treatment and/or pacemaker operations so as to improve hemodynamic behavior can be seen immediately on a very intuitive visual representation of the associated subject's actual, then-existent, hemodynamic condition and behavior.
  • FIG. 1 provides a graphical illustration, well known to those skilled in the art, of a parameter legended illustration of the various basic events of the usual left heart cardiac cycle. This figure specifically carries labels of certain time intervals which are referenced in relation to what is shown in FIG. 6 .
  • FIG. 2 is a block/schematic diagram labeled to illustrate detection of pacemaker-triggered phrenic nerve stimulation, and the creation of a special sound-information blanking window to eliminate unwanted and confusion-prone processing of any acoustic artifact created by such stimulation.
  • FIG. 3 provides a graphical illustration which relates to the operation of what is shown in FIG. 2 .
  • FIGS. 4 and 5 provide two different high-level block/schematic diagrams illustrating pacemaker control-feedback to improve subject hemodynamic status in accordance with practice of certain features of the present invention.
  • FIG. 4 in a slightly modified form which will be described, can be viewed as illustrating practice of the invention with non-pacemaker patients.
  • FIG. 6 is a multi-component graphic illustration derived from information gathered in accordance with practice of the present invention to furnish an intuitive display, over a period of time including about one-dozen cardiac cycles, of a particular patient's (subject's) hemodynamic status.
  • This figure which has been prepared to show display output operation of the invention for all categories of relevant patients, including pacemaker patients, specifically shows, among other things, an effect of pacemaker feedback control.
  • FIG. 7 is a high-level, block/schematic diagram which can be viewed as illustrating both the overall methodology and the overall systemic and apparatus nature, of the present invention. This drawing can be read to cover operation of the invention regarding both pacemaker and non-pacemaker patients.
  • FIG. 1 indicated generally at 10 is a relatively well known and conventional illustration of the events, and of certain measures of events, of a typical, single cardiac cycle with respect to the left side of the heart, referred to for simplicity purposes simply as the left heart. These events are those which normally take place, and are expected to take place, during such a cardiac cycle.
  • certain timing intervals that are relevant in different ways to the practice of the present invention are specifically labeled by different clusters of capital letters. Set forth immediately below is a listing of the meanings of these letter labels:
  • this figure specifically shows a simple parameter model based on ECG/Sound timing intervals. These intervals are close approximations to hemodynamically relevant aspects of the cardiac cycle which can be extracted from echo, cardiac cath, ECG, and heart-sound measurements.
  • simultaneous ECG-electrical and heart-sound acoustic signals are collected from anatomical contact sensors applied to the anatomy of a pacemaker patient, with that patient's, or subject's, pacemaker in full operation during this time interval.
  • one aspect of the present invention involves the capability of the methodology and system of the present invention accurately to obtain very useful ECG-electrical and heart-sound acoustic signals, with the latter basically “freed” from being “processed-confused” by any potentially troublesome pacemaker-induced acoustical artifact, such as a pacemaker-induced phrenic-nerve-stimulation artifact.
  • Another aspect of the invention involves, in relation to ECG-electrical and heart-sound acoustic data which is so gathered, and which is handled in a manner that avoids artifact disturbance, using that data in a feedback-loop manner to control various things, such as current medical treatment, and where a pacemaker is involved, various operating parameters and conditions of a subject's pacemaker, so as to improve the associated subject's hemodynamic status, and to do so in a fashion which can be observed immediately in real time as feedback information is employed, and as ECG-electrical and heart-sound acoustic signals continue to be simultaneously gathered and observed.
  • Still a further feature and aspect of the present invention involves the graphical presentation, as output information which is displayable on a screen, or on a printed strip chart, etc., in a manner which intuitively and quickly describes to a skilled observer various pieces of information which lead to an understanding of the relevant subject's hemodynamic condition.
  • FIGS. 2 and 3 effectively illustrate that aspect of the present invention which relates to handling the issue of pacemaker-induced phrenic nerve stimulation.
  • FIGS. 2 and 3 taken along with the related descriptive text which now follows, will fully explain the two special ways in which the present invention deals with such stimulation.
  • FIG. 2 includes seven blocks 22 , 24 , 26 , 28 , 30 , 32 , 34 which are interconnected functionally as shown by obvious interconnection lines. These blocks are labeled to indicate generally the function which they perform.
  • Block 22 represents both system apparatus and methodology involved in collecting various electrically discernable biologic signal information, such as pacemaker timing and other information, which may be utilized directly or indirectly in the practice of this invention, either in cooperative addition to, or in some selectable ancillary manner with respect to, the gathering of heart-produced ECG-electrical signals and heart-sound acoustic signals which are sensed and collected, respectively, by blocks 24 , 26 .
  • various pacemaker electrical activity now to be discussed, may be collected for use in the practice of the present invention, either by block 22 or by block 24 .
  • Blocks 22 , 24 , 26 collect their respective, associated signals from any suitable anatomical locations on a subject's body, with ECG-electrical signal information gathered from a classically recognizable anatomical site, such as the Lead II ECG anatomical site (as is represented in FIG. 3 ), and sound or acoustic information gathered from another recognized anatomical site, such as the V3 anatomical site (also represented in FIG. 3 ).
  • ECG-electrical, and heart-sound acoustic signals may preferably be acquired essentially from the same, common site, and along a substantially common signal-collection axis.
  • Signals collected by blocks 22 , 24 , 26 are passed, in various ways to be explained, to signal-processing block 34 , wherein one or more appropriate processing and diagnostic algorithms operate to create, ultimately, from acquired signal information, the useful output display information which is produced in accordance with practice of the present invention.
  • Signals from these three blocks effectively pass “through” block 28 , which performs pacemaker event detection functions that will be explained shortly, out of which block 28 , acoustic signals, effectively en route to signal-processing block 34 , are “sent” to that block either through a route including block 30 , with respect to which a special acoustic blanking window is utilized in accordance with practice of the invention, or through block 32 wherein specific acoustic detection of phrenic nerve stimulation is detected, as will shortly be explained.
  • ECG-electrical signals which are gathered and handled in the fashion illustrated in FIG. 2 are collected in such a fashion as to focus upon ECG-electrical signals and heart-sound acoustic signals which can be processed for diagnostic purposes in a manner which does not allow the desired heart-sound acoustic signals to become confusingly treated by virtue of any phrenic nerve stimulation acoustic artifact that may be generated by operation of a subject's pacemaker.
  • an ECG-electrical signal from Lead site II, collected by block 24 is shown generally at 36 in FIG. 3 .
  • Atrial and ventricular electrical pacing pulses which are produced by the associated pacemaker, with atrial pulses Ap being shown generally at 38 in FIG. 3 , and ventricular pacing pulses Vp being shown generally at 40 in FIG. 3 .
  • An acoustic signal gathered by a block 26 in FIG. 2 is shown generally at 42 in FIG. 3 , with there being superimposed on this acoustic signal an acoustic artifact 44 which results from the fact that ventricular pacing pulses 40 are energetic enough to be causing phrenic nerve stimulation.
  • pacemaker events such as ventricular pacing pulses 40 are detected to initiate certain important operations that are performed in the practice of the present invention.
  • block 30 creates what is referred to herein as a blanking time, or a blanking window, which begins at the onset of each pulse 40 .
  • These blanking times, or windows, are illustrated in FIG. 3 by the solid, darkened blocks which are shown at 46 in FIG. 3 . While different specific time durations may be selected for establishing the length of each of these blanking windows, we have found that a blanking window which has a duration of about 30- to about 40-milliseconds is quite appropriate. These blanking windows prevent any acoustic-signal information from being furnished to signal-processing block 34 in a manner which would cause that information to become confused with anatomical acoustic signals which are intended to be gathered for the purpose of interpreting the presence of various heart sounds.
  • this automatically triggered blanking window triggered by the onset of a pacemaker's ventricular pacing pulse, prevents the likelihood that any phrenic nerve stimulation which produces an acoustic artifact will result in that artifact being confused by the signal-processing circuitry in block 34 with true heart-sound information.
  • ventricular pacing pulses 40 as seen in FIG. 3 are energetic enough to be producing phrenic nerve stimulation at a level which produces related acoustic artifacts 44 , and it is these artifacts which are blocked by the blanking time window from becoming confused with real heart-sound acoustical signals.
  • a sound artifact 44 which is produced as illustrated in FIG. 3 by phrenic nerve stimulation triggered by pacemaker operation, is provided a special time window, i.e., it is “windowed” as illustrated by the darkened rectangles shown in FIG. 3 at 48 .
  • This windowing operation furnished in accordance with the operation of block 32 in FIG.
  • each window 48 herein is about 30- to about 60-milliseconds.
  • pacemaker ventricular pacing pulses trigger two kinds of windows, or intervals, one of which performs a blanking function to prevent any resulting sound artifacts derived from phrenic nerve stimulation from becoming confused in the analysis provided and produced for heart sounds, while at the same time permitting any acoustic artifact which results from phrenic nerve stimulation to be noted so as to allow for immediate corrective adjustment, if necessary, of the pacing energy output by the associated pacemaker.
  • Control over pacemaker pulsing operation based upon observation of phrenic-nerve-stimulation-produced acoustic artifacts may, as suggested immediately above, preferably be performed by an attending clinician or physician, etc. but may also be handled in a computer-controlled automatic fashion, if so desired. Any such adjustment will, of course, become immediately “readable” with respect to its effect, as along as electrical and acoustic information continues to be gathered from the relevant subject.
  • FIGS. 4 and 5 are provided two different block/schematic diagrams showing the methodology of the invention implemented in two, slightly different manners, all in accordance with practice of the present invention, especially in the context of a pacemaker patient.
  • These two drawing figures are seen to include visual representations of certain ones of the operational blocks which are also shown in, and described with respect to, FIG. 2 . It will be soon be understood that the respective operations of the not-specifically-shown blocks ( 28 . 30 , 32 ) are carried out “within the confines” of certain other blocks which are specifically pictured in FIGS. 4 and 5 .
  • FIG. 4 in addition to including blocks 22 , 24 , 26 , 34 , includes (a) a block 50 which is shown interposed blocks 22 , 24 , 26 , and block 34 , and which performs a certain amount of signal-processing with respect to marking and identifying various ECG and pacemaker fiducials and timing intervals, (b) a block 52 which generally represents anatomy-attachable ECG and acoustic sensors that feed data to blocks 24 , 26 , (c) a block 54 which represents a patient's pacemaker as well as access to the control circuitry for that pacemaker, and (d) a block 56 which plays a direct role in creating a visual output display on a display screen, or on a strip chart, etc., such as the display-screen display which is illustrated in FIG. 6 in the drawings.
  • a block 50 which is shown interposed blocks 22 , 24 , 26 , and block 34 , and which performs a certain amount of signal-processing with respect to marking and identifying various ECG and pacemaker
  • a line 58 in FIG. 4 represents a feedback connection between block 56 and the pacemaker and its control circuitry 54 .
  • feedback information between block 56 and a pacemaker and its “controls” 54 may be implemented either automatically under appropriately programmed computer control, or manually. Such feedback is preferably performed during a data-gathering time with a patient, whereby the result(s) of information fed back to the pacemaker, in terms of how that feedback information affects pacemaker operation, and hence also affects a patient's hemodynamic behavior, can be observed rapidly in real time.
  • acoustic artifacts such as artifact 44
  • artifact 44 thus do not enter the data stream which is being processed in block 34 to establish reliable heart-sound information, but are employed to enable pacemaker pacing control with respect to overly aggressive ventricular pacing pulses.
  • Other audio information such as that information which is provided by pulses like those shown at 60 , 62 in FIG. 3 , is supplied for algorithmic processing for the purpose of non-confusingly and reliably noting and presenting information regarding true heart-sound acoustic data.
  • ECG-electrical, and proper heart-sound acoustic information becomes processed (i.e., signal-processed) and presented in several very useful intuitive ways, as are illustrated in FIG. 6 , and as will be discussed shortly herein.
  • FIG. 5 in the drawings is very similar to FIG. 4 as presented, except that this figure ( 5 ) shows an included block 64 .
  • This included block generally represents the fact that the system and methodology of this invention can readily accommodate the presence of other kinds (than pacemakers) of cardiovascular-related devices, such as cardiovascular diagnostic devices, both invasive, and noninvasive, with respect at least to the reception of useful diagnostic signals fed through block 22 into the system.
  • FIG. 6 in the drawings illustrates, generally at 66 , a multi-component, highly intuitive, computer display-screen output display, produced by operation of the system and methodology of this invention.
  • This display (which could also be presented in an output printing manner) has been generated, in terms of what is shown operationally in FIGS. 4 and 5 , by blocks 56 therein.
  • Display 66 includes, generally speaking, (a) a graphical waveform portion 68 including two, vertically spaced traces 68 a , 68 b , (b) a time-based geometrical marker portion, or trace, 70 , (c) a geometrical bar-graph portion, or trace, 72 , and (d) a geometrical pie-chart portion, or trace, 74 .
  • Traces 70 , 72 , 74 are said herein to be keyed to information present in waveform traces 68 a , 68 b .
  • twelve successive cardiac cycles are shown, these being designated generally A, B, C, D, E, F, G, H, I, J, K, L.
  • FIG. 6 the events taking place within each of these twelve respective cardiac cycles, both electrically and sonically, are quite different from one another.
  • Trace 68 a is an electrical waveform trace, which includes a blend of (1) ECG-electrical signals drawn directly from the classical V3 electrode Lead position on the anatomy, and (2) spike-like pulses 40 which are the same in character as pulses 40 illustrated in FIG. 3 . These spike-like pulses, thus, represent a pacemaker's ventricular pacing pulses.
  • Trace 68 b is an acoustic waveform trace which presents the acoustical information derived from the recognized V3 site on the anatomy.
  • Traces 68 a , 68 b therefore, present a very clear time-related image of electrical and sound activity associated with the relevant subject's pacemaker-paced heart activity. These traces also provide, at a certain level, recognizable information relating to the subject patient's real time, current hemodynamic behavior (condition/status).
  • Trace 70 provides, projecting above and below a neutral axis line 76 , intuitively displayed heart-sound markers which take the forms of upwardly and downwardly extending geometrical departures progressing from the datum of line 76 .
  • Those markers which extend above line 76 are related to systolically-associated heart-sound data, and those which extend below line 76 , and which are represented by small, darkened rectangles, are related to diastolically-associated heart-sound signals.
  • heart sounds S 1 and S 2 provide the upwardly extending markers relative to line 76
  • the S 3 and S 4 heart sounds are those which are illustrated extending below line 76 .
  • the aspect ratios of these rectangles may be “calibrated” to provide information such as heart-sound intensity and heart-sound frequency content.
  • bar-graph trace 72 for each of the twelve different cardiac cycles illustrated in FIG. 6 , there is presented a cluster of (geometrical) rectangles, with four such rectangles appearing in relation to the first seven cardiac cycles, and three-only such rectangles being presented with respect to the last five illustrated cardiac cycles.
  • the particular block illustrations presented in FIG. 6 which are associated with cardiac cycle D have been labeled to relate the information contained by these rectangles to four of the interval measurements which are presented at the bottom of FIG. 1 .
  • the vertical dimensions of these rectangles represent duration times.
  • the combined vertical dimensions of the blocks representing PADT and AAFT represent the DT time duration. This summing of the heights of the PADT and AAFT blocks is specifically illustrated in FIG. 6 with respect to the blocks that picture information contained in cardiac cycle E.
  • cardiac cycles H-L, inclusive represent a somewhat elevated heart rate as compared with what is shown in cardiac cycles A-G, inclusive.
  • PADT pre-atrial diastolic time
  • Pie chart trace 74 presents, in recognizable, classical, geometrical pie-chart format, two important relatable time intervals, which are EMAT and (RR-EMAT). Those skilled in the art will understand that the proportional relationships between these two intervals as illustrated, for example, with respect to cardiac cycles D, E, F, and G represent a “better” hemodynamic patient status than, for example, do the pie-chart “proportional relationships” which are presented for cardiac cycles A, B, and H-L, inclusive.
  • FIG. 7 in eleven blocks 82 , 84 , 86 , 88 , 90 , 92 , 94 , 96 , 98 , 100 , 102 is the flow architecture of the methodology of the present invention.
  • Reference numeral 80 can also be viewed as illustrating generally the system of this invention.
  • this methodology in high-level, general terms, and expressed first of all in the context of dealing with a pacemaker patient, takes the form of a method, utilizing signal-processed ECG-electrical and heart-sound acoustic signal information, for assessing a pacemaker patient's hemodynamic condition including the steps of: (1) collecting (block 82 ), over a selected time span, for transmission for hemodynamic-condition signal-processing, simultaneous ECG-electrical and heart-sound acoustic signals; (2) while so collecting, detecting, electrically, (block 84 ) pacemaker-induced ventricular stimulation; and (3) on detecting such stimulation, creating and applying (block 92 ) a selected blanking time which effectively prevents hemodynamic-condition signal-processing of acoustic signals that are collected during that blanking time.
  • block 82 represents a sensor structure, block 84 a detecting structure, block 94 a signal-processing structure, and blocks 96 , 98 , 100 collectively, along with portions of block 94 , a display structure.
  • methodology 80 further includes the step of generating (block 86 ), substantially simultaneously with respect to the beginning of the created and applied blanking time, an acoustic window which permits examining (block 88 ) during that window, of any collected and thus windowed acoustic signal, in order to determine (block 88 ) whether that signal represents an acoustic artifact produced by pacemaker-induced phrenic nerve stimulation.
  • the method of the invention further includes the step of selectively using the determination of the presence of phrenic nerve stimulation to modify (block 90 ) the operation of a patient's pacemaker.
  • a time-based graphical display containing indicia which are visually descriptive of selective components of the patient's hemodynamic condition. It is with respect to this producing step (block 94 ) that hemodynamic-condition signal-processing takes place, and thus the functions of previously mentioned blocks 50 , 34 , (and in part 56 ) can be visualized as taking place (in the context of FIG. 7 ) within block 94 .
  • This producing step includes establishing (block 98 ) (a) an ECG-signal display component, (b) a heart-sound acoustic signal display component, and (c) an intuitive, heart-sound marker display designating the time locations of at least one of heart sounds S 1 , S 2 , S 3 and S 4 . Additionally, the step of establishing an intuitive heart-sound marker display includes placing therein (block 100 ) systolically-associated markers which are presented above a neutral axis line, and diastolically-associated sound markers which are displayed below the same neutral axis line.
  • the display producing step (block 94 ) involves including in that display (block 96 ) elements relating to (a) electromechanical activation time, (b) LV systolic time, (c) pre-atrial diastolic time, and (d) accelerated atrial filling time.
  • One further way of visualizing the methodology of this invention is to recognize that it includes utilizing (block 102 ) collected ECG-electrical and heart-sound acoustic signals in a feedback manner to effect changes in the operation of a patient's pacemaker, and to do this in a fashion which is aimed at improving the patient's hemodynamic status.
  • FIG. 7 should be revisualized as including just blocks 82 , 94 , 96 , 98 , 100 , 102 interrelated as illustrated (a) by the dashed lines in FIG. 7 that interconnect blocks 82 , 94 and 102 , and (b) by the solid lines that interconnect blocks 94 , 96 , 98 , 100 .
  • the invention in relation to a pacemaker patient, features a unique approach for collecting ECG-electrical and heart-sound acoustic anatomical signals, for processing those signals in a manner whereby an event of pacemaker-induced phrenic nerve stimulation does not produce a condition of confusion with respect to heart-sound analysis, for allowing information to be gathered whereby the vigor with respect to which a pacemaker applies pacing pulses can be adjusted, and for producing, ultimately, results presentable in a highly intuitive output display that is readable easily by an expert to assess the current hemodynamic condition of a particular patient.
  • the methodology of this invention also features the opportunity to apply feedback control information to a patient's pacemaker in a manner observable in real time with respect to the effect of a feedback adjustment, aimed at improving a patient's current hemodynamic status or condition.
  • medical treatment feedback (other than pacemaker-control feedback) based on what the display of the invention shows is possible, and can be viewed immediately in real time as to feedback result(s).

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • Surgery (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Cardiology (AREA)
  • Pathology (AREA)
  • Acoustics & Sound (AREA)
  • Physiology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Electrotherapy Devices (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)
US11/264,328 2005-01-12 2005-11-01 Hemodynamic assessment/adjustment Abandoned US20060155202A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US11/264,328 US20060155202A1 (en) 2005-01-12 2005-11-01 Hemodynamic assessment/adjustment
PCT/US2005/039782 WO2006076068A2 (fr) 2005-01-12 2005-11-03 Evaluation/ajustement hemodynamique
US12/148,168 US20080195168A1 (en) 2005-01-12 2008-04-16 Pacemaker-patient hemodynamic assessment/adjustment system
US12/148,214 US8065002B2 (en) 2005-01-12 2008-04-16 Pacemaker-patient hemodynamic assessment/adjustment methodology

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US64450105P 2005-01-12 2005-01-12
US11/264,328 US20060155202A1 (en) 2005-01-12 2005-11-01 Hemodynamic assessment/adjustment

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12/148,214 Division US8065002B2 (en) 2005-01-12 2008-04-16 Pacemaker-patient hemodynamic assessment/adjustment methodology
US12/148,168 Division US20080195168A1 (en) 2005-01-12 2008-04-16 Pacemaker-patient hemodynamic assessment/adjustment system

Publications (1)

Publication Number Publication Date
US20060155202A1 true US20060155202A1 (en) 2006-07-13

Family

ID=36654174

Family Applications (3)

Application Number Title Priority Date Filing Date
US11/264,328 Abandoned US20060155202A1 (en) 2005-01-12 2005-11-01 Hemodynamic assessment/adjustment
US12/148,168 Abandoned US20080195168A1 (en) 2005-01-12 2008-04-16 Pacemaker-patient hemodynamic assessment/adjustment system
US12/148,214 Active 2027-12-01 US8065002B2 (en) 2005-01-12 2008-04-16 Pacemaker-patient hemodynamic assessment/adjustment methodology

Family Applications After (2)

Application Number Title Priority Date Filing Date
US12/148,168 Abandoned US20080195168A1 (en) 2005-01-12 2008-04-16 Pacemaker-patient hemodynamic assessment/adjustment system
US12/148,214 Active 2027-12-01 US8065002B2 (en) 2005-01-12 2008-04-16 Pacemaker-patient hemodynamic assessment/adjustment methodology

Country Status (2)

Country Link
US (3) US20060155202A1 (fr)
WO (1) WO2006076068A2 (fr)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090112108A1 (en) * 2007-10-26 2009-04-30 Inovise Medical, Inc. Q-onset ventricular depolarization detection in the presence of a pacemaker
US20090192561A1 (en) * 2008-01-29 2009-07-30 Inovise Medical, Inc. On-again, off-again physiologic-demand heart pacing
US20090227886A1 (en) * 2008-03-06 2009-09-10 Inovise Medical, Inc. Heart-activity sound monitoring
US20100228311A1 (en) * 2009-03-04 2010-09-09 Atcor Medical Pty Ltd Optimization of pacemaker settings
US20110004264A1 (en) * 2009-07-02 2011-01-06 Siejko Krzysztof Z Systems and Methods for Ranking and Selection of Pacing Vectors
US20110105932A1 (en) * 2009-11-05 2011-05-05 Inovise Medical, Inc. Multi-axial heart sounds and murmur detection for hemodynamic-condition assessment
US20120296388A1 (en) * 2011-05-19 2012-11-22 Xusheng Zhang Phrenic nerve stimulation detection using heart sounds
US8548588B1 (en) 2012-09-21 2013-10-01 Inovise Medical, Inc. CRM-device ventricular-pacing blanking control
US9220903B2 (en) 2013-12-16 2015-12-29 AtCor Medical Pty, Ltd. Optimization of pacemaker settings with R-wave detection
US9457191B2 (en) 2013-12-18 2016-10-04 Cardiac Pacemakers, Inc. System and method for assessing and selecting stimulation vectors in an implantable cardiac resynchronization therapy device
US9498625B2 (en) 2012-12-19 2016-11-22 Viscardia, Inc. Hemodynamic performance enhancement through asymptomatic diaphragm stimulation
US9750942B2 (en) 2013-12-18 2017-09-05 Cardiac Pacemakers, Inc. Systems and methods for determining parameters for each of a plurality of vectors
US9955938B2 (en) 2013-06-26 2018-05-01 Zoll Medical Corporation Therapeutic device including acoustic sensor
US10335592B2 (en) 2012-12-19 2019-07-02 Viscardia, Inc. Systems, devices, and methods for improving hemodynamic performance through asymptomatic diaphragm stimulation
US10369361B2 (en) 2016-04-29 2019-08-06 Viscardia, Inc. Leads for implantable medical device that affects pressures within the intrathoracic cavity through diaphragmatic stimulation
US10434318B2 (en) 2013-12-18 2019-10-08 Cardiac Pacemakers, Inc. Systems and methods for facilitating selecting of one or more vectors in a medical device
US20210353247A1 (en) * 2020-05-14 2021-11-18 Quanta Computer Inc. Auscultation device and auscultation method using auscultation device
US11458312B2 (en) 2019-09-26 2022-10-04 Viscardia, Inc. Implantable medical systems, devices, and methods for affecting cardiac function through diaphragm stimulation, and for monitoring diaphragmatic health
US11957914B2 (en) 2020-03-27 2024-04-16 Viscardia, Inc. Implantable medical systems, devices and methods for delivering asymptomatic diaphragmatic stimulation

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8265736B2 (en) 2007-08-07 2012-09-11 Cardiac Pacemakers, Inc. Method and apparatus to perform electrode combination selection
US9037239B2 (en) 2007-08-07 2015-05-19 Cardiac Pacemakers, Inc. Method and apparatus to perform electrode combination selection
US8617082B2 (en) 2011-05-19 2013-12-31 Medtronic, Inc. Heart sounds-based pacing optimization
US8777874B2 (en) 2011-05-24 2014-07-15 Medtronic, Inc. Acoustic based cough detection
US8886311B2 (en) 2012-01-27 2014-11-11 Medtronic, Inc. Techniques for mitigating motion artifacts from implantable physiological sensors
US9095718B2 (en) 2012-04-04 2015-08-04 Medtronic, Inc. Heart-sounds based adaptive cardiac resynchronization therapy timing parameter optimization system
EP4088662A1 (fr) * 2021-05-13 2022-11-16 Pacesetter, Inc. Procédé et système de surveillance de la fonction cardiaque basés sur le centre de masse du son cardiaque

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5392780A (en) * 1991-12-19 1995-02-28 Nihon Kogden Corporation Apparatus for measuring biological signal
US6247474B1 (en) * 1998-04-29 2001-06-19 Medtronic, Inc. Audible sound communication from an implantable medical device
US20030065365A1 (en) * 2001-09-28 2003-04-03 Qingsheng Zhu Method and apparatus for avoidance of phrenic nerve stimulation during cardiac pacing
US20040220636A1 (en) * 2003-04-29 2004-11-04 Medtronic, Inc. Cardiac pacing therapy parameter programming
US20050027323A1 (en) * 2001-10-30 2005-02-03 Medtronic, Inc. Implantable medical device for monitoring cardiac blood pressure and chamber dimension

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7050853B2 (en) * 2003-07-07 2006-05-23 Cardiac Pacemakers, Inc. Detection of patient mortality by an implantable medical device
US7225021B1 (en) 2004-01-30 2007-05-29 Pacesetter, Inc. Differentiation of central sleep apnea and obstructive sleep apnea using an implantable cardiac device
US7174203B2 (en) 2004-11-18 2007-02-06 Inovise Medical, Inc. Method and system relating to monitoring and characterizing heart condition
WO2007040566A2 (fr) * 2004-11-23 2007-04-12 Drexel University Procede et dispositif pour la detection en interface
US7912548B2 (en) * 2006-07-21 2011-03-22 Cardiac Pacemakers, Inc. Resonant structures for implantable devices
US7736319B2 (en) 2007-01-19 2010-06-15 Cardiac Pacemakers, Inc. Ischemia detection using heart sound timing
US20080243017A1 (en) * 2007-03-28 2008-10-02 Zahra Moussavi Breathing sound analysis for estimation of airlow rate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5392780A (en) * 1991-12-19 1995-02-28 Nihon Kogden Corporation Apparatus for measuring biological signal
US6247474B1 (en) * 1998-04-29 2001-06-19 Medtronic, Inc. Audible sound communication from an implantable medical device
US20030065365A1 (en) * 2001-09-28 2003-04-03 Qingsheng Zhu Method and apparatus for avoidance of phrenic nerve stimulation during cardiac pacing
US20050027323A1 (en) * 2001-10-30 2005-02-03 Medtronic, Inc. Implantable medical device for monitoring cardiac blood pressure and chamber dimension
US20040220636A1 (en) * 2003-04-29 2004-11-04 Medtronic, Inc. Cardiac pacing therapy parameter programming

Cited By (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9986926B2 (en) 2007-10-26 2018-06-05 Inovise Medical, Inc. Q-onset ventricular depolarization detection in the presence of a pacemaker
US20090112108A1 (en) * 2007-10-26 2009-04-30 Inovise Medical, Inc. Q-onset ventricular depolarization detection in the presence of a pacemaker
US8185190B2 (en) 2008-01-29 2012-05-22 Inovise Medical, Inc. Assessment of ischemia, and risk of sudden cardiac death, via heart-functionality parameter and acoustic cardiographic monitoring
US20090192561A1 (en) * 2008-01-29 2009-07-30 Inovise Medical, Inc. On-again, off-again physiologic-demand heart pacing
US20090204167A1 (en) * 2008-01-29 2009-08-13 Inovise Medical, Inc. Assessment of ischemia, and risk of sudden cardiac death, VIA heart-functionality parameter and acoustic cardiographic monitoring
US8412323B2 (en) 2008-01-29 2013-04-02 Inovise Medical, Inc. Rest phase heart pacing
US20090227886A1 (en) * 2008-03-06 2009-09-10 Inovise Medical, Inc. Heart-activity sound monitoring
US8348852B2 (en) 2008-03-06 2013-01-08 Inovise Medical, Inc. Heart-activity sound monitoring
WO2010101764A1 (fr) 2009-03-04 2010-09-10 Atcor Medical Pty Ltd Optimisation des réglages d'un stimulateur cardiaque
US20100228311A1 (en) * 2009-03-04 2010-09-09 Atcor Medical Pty Ltd Optimization of pacemaker settings
US8112150B2 (en) 2009-03-04 2012-02-07 Atcor Medical Pty Ltd Optimization of pacemaker settings
US8886313B2 (en) 2009-07-02 2014-11-11 Cardiac Pacemakers Inc. Systems and methods for ranking and selection of pacing vectors
US11135433B2 (en) 2009-07-02 2021-10-05 Cardiac Pacemakers, Inc. Systems and methods for ranking and selection of pacing vectors
US9393426B2 (en) 2009-07-02 2016-07-19 Cardiac Pacemarkers, Inc. Systems and methods for ranking and selection of pacing vectors
US10195443B2 (en) 2009-07-02 2019-02-05 Cardiac Pacemakers, Inc. Systems and methods for ranking and selection of pacing vectors
US20110004264A1 (en) * 2009-07-02 2011-01-06 Siejko Krzysztof Z Systems and Methods for Ranking and Selection of Pacing Vectors
US8409108B2 (en) 2009-11-05 2013-04-02 Inovise Medical, Inc. Multi-axial heart sounds and murmur detection for hemodynamic-condition assessment
US9675268B2 (en) 2009-11-05 2017-06-13 Inovise Medical, Inc. Detection and differentiation of sleep disordered breathing
US20110105932A1 (en) * 2009-11-05 2011-05-05 Inovise Medical, Inc. Multi-axial heart sounds and murmur detection for hemodynamic-condition assessment
US20110105915A1 (en) * 2009-11-05 2011-05-05 Inovise Medical, Inc. Detection and differentiation of sleep disordered breathing
US8876727B2 (en) * 2011-05-19 2014-11-04 Medtronic, Inc. Phrenic nerve stimulation detection using heart sounds
US20120296387A1 (en) * 2011-05-19 2012-11-22 Xusheng Zhang Phrenic nerve stimulation detection using heart sounds
US20120296388A1 (en) * 2011-05-19 2012-11-22 Xusheng Zhang Phrenic nerve stimulation detection using heart sounds
US8548588B1 (en) 2012-09-21 2013-10-01 Inovise Medical, Inc. CRM-device ventricular-pacing blanking control
US9694185B2 (en) 2012-12-19 2017-07-04 Viscardia, Inc. Hemodynamic performance enhancement through asymptomatic diaphragm stimulation
US11147968B2 (en) 2012-12-19 2021-10-19 Viscardia, Inc. Systems, devices, and methods for improving hemodynamic performance through asymptomatic diaphragm stimulation
US9498625B2 (en) 2012-12-19 2016-11-22 Viscardia, Inc. Hemodynamic performance enhancement through asymptomatic diaphragm stimulation
US11020596B2 (en) 2012-12-19 2021-06-01 Viscardia, Inc. Hemodynamic performance enhancement through asymptomatic diaphragm stimulation
US9968786B2 (en) 2012-12-19 2018-05-15 Viscardia, Inc. Hemodynamic performance enhancement through asymptomatic diaphragm stimulation
US11666757B2 (en) 2012-12-19 2023-06-06 Viscardia, Inc. Systems, devices, and methods for improving hemodynamic performance through asymptomatic diaphragm stimulation
US11684783B2 (en) 2012-12-19 2023-06-27 Viscardia, Inc. Hemodynamic performance enhancement through asymptomatic diaphragm stimulation
US10335592B2 (en) 2012-12-19 2019-07-02 Viscardia, Inc. Systems, devices, and methods for improving hemodynamic performance through asymptomatic diaphragm stimulation
US10315035B2 (en) 2012-12-19 2019-06-11 Viscardia, Inc. Hemodynamic performance enhancement through asymptomatic diaphragm stimulation
US10993693B2 (en) 2013-06-26 2021-05-04 Zoll Medical Corporation Therapeutic device including acoustic sensor
US11850088B2 (en) 2013-06-26 2023-12-26 Zoll Medical Corporation Therapeutic device including acoustic sensor
US10307133B2 (en) 2013-06-26 2019-06-04 Zoll Medical Corporation Therapeutic device including acoustic sensor
US9955938B2 (en) 2013-06-26 2018-05-01 Zoll Medical Corporation Therapeutic device including acoustic sensor
US9220903B2 (en) 2013-12-16 2015-12-29 AtCor Medical Pty, Ltd. Optimization of pacemaker settings with R-wave detection
US9457191B2 (en) 2013-12-18 2016-10-04 Cardiac Pacemakers, Inc. System and method for assessing and selecting stimulation vectors in an implantable cardiac resynchronization therapy device
US10434318B2 (en) 2013-12-18 2019-10-08 Cardiac Pacemakers, Inc. Systems and methods for facilitating selecting of one or more vectors in a medical device
US10441795B2 (en) 2013-12-18 2019-10-15 Cardiac Pacemakers, Inc. System and method for assessing and selecting stimulation vectors in an implantable cardiac resynchronization therapy device
US9878163B2 (en) 2013-12-18 2018-01-30 Cardiac Pacemakers, Inc. System and method for assessing and selecting stimulation vectors in an implantable cardiac resynhronization therapy device
US9750942B2 (en) 2013-12-18 2017-09-05 Cardiac Pacemakers, Inc. Systems and methods for determining parameters for each of a plurality of vectors
US11400286B2 (en) 2016-04-29 2022-08-02 Viscardia, Inc. Implantable medical devices, systems, and methods for selection of optimal diaphragmatic stimulation parameters to affect pressures within the intrathoracic cavity
US10369361B2 (en) 2016-04-29 2019-08-06 Viscardia, Inc. Leads for implantable medical device that affects pressures within the intrathoracic cavity through diaphragmatic stimulation
US10537735B2 (en) 2016-04-29 2020-01-21 Viscardia, Inc. Implantable medical devices and methods for real-time or near real-time adjustment of diaphragmatic stimulation parameters to affect pressures within the intrathoracic cavity
US10493271B2 (en) 2016-04-29 2019-12-03 Viscardia, Inc. Implantable medical devices, systems, and methods for selection of optimal diaphragmatic stimulation parameters to affect pressures within the intrathoracic cavity
US11458312B2 (en) 2019-09-26 2022-10-04 Viscardia, Inc. Implantable medical systems, devices, and methods for affecting cardiac function through diaphragm stimulation, and for monitoring diaphragmatic health
US11524158B2 (en) 2019-09-26 2022-12-13 Viscardia, Inc. Implantable medical systems, devices, and methods for affecting cardiac function through diaphragm stimulation, and for monitoring diaphragmatic health
US11911616B2 (en) 2019-09-26 2024-02-27 Viscardia, Inc. Implantable medical systems, devices, and methods for affecting cardiac function through diaphragm stimulation, and for monitoring diaphragmatic health
US11925803B2 (en) 2019-09-26 2024-03-12 Viscardia, Inc. Implantable medical systems, devices, and methods for affecting cardiac function through diaphragm stimulation, and for monitoring diaphragmatic health
US11957914B2 (en) 2020-03-27 2024-04-16 Viscardia, Inc. Implantable medical systems, devices and methods for delivering asymptomatic diaphragmatic stimulation
US20210353247A1 (en) * 2020-05-14 2021-11-18 Quanta Computer Inc. Auscultation device and auscultation method using auscultation device
US11819358B2 (en) * 2020-05-14 2023-11-21 Quanta Computer Inc. Auscultation device and auscultation method using auscultation device

Also Published As

Publication number Publication date
WO2006076068A3 (fr) 2007-11-15
US20080195164A1 (en) 2008-08-14
US8065002B2 (en) 2011-11-22
US20080195168A1 (en) 2008-08-14
WO2006076068A2 (fr) 2006-07-20

Similar Documents

Publication Publication Date Title
US8065002B2 (en) Pacemaker-patient hemodynamic assessment/adjustment methodology
US8905942B2 (en) Apparatus and method for outputting heart sounds
US9220903B2 (en) Optimization of pacemaker settings with R-wave detection
DE69828176T2 (de) Ischämie-detektor
DE69533124T2 (de) Vorrichtung zur Analyse und Überwachung von Infarkten und der Ischämie des Myokards
JP5308443B2 (ja) 込心臓刺激システム用の患者スクリーニングキットおよび患者スクリーニング装置
DE69825566T2 (de) Implantierbarer herzschrittmacher
CN104853673A (zh) 用于非侵入式自主神经活动监视的系统和方法
EP2364644B1 (fr) Implant électromédical et système de surveillance
US20110166618A1 (en) System for Cardiac Arrhythmia Detection
US6516220B2 (en) Pictorial-display electrocardiographic interpretation system and method
EP2364643B1 (fr) Implant électromédical et système de surveillance doté de cet implant électromédical
DE60212467T2 (de) Vorrichtung zur Festsetzung des Einfangens und des Schwellwertes mittels einer Programmiereinrichtung
Saad et al. Detection of heart blocks in ECG signals by spectrum and time-frequency analysis
DE3804616A1 (de) Stethoskop mit vorrichtung und verfahren zur erfassung, auswertung und darstellung verschiedener biosignale
US11752341B2 (en) Display signal to assess autonomic response to vagus nerve stimulation treatment
US20160213333A1 (en) Diagnostic digital data mining of biological waves with spectral electrocardiography (secg)
WO2005051201A1 (fr) Controle de blocage neuromusculaire mis en oeuvre par phonomyographie
Shen et al. High-pass filter settings and possible mechanism of discrete electrograms in left bundle branch pacing
RU2218862C1 (ru) Способ обработки и отображения кардиологической информации
DE102005021580B4 (de) Vorrichtung zur Erfassung von Herzrhythmussignalen im menschlichen Körper sowie zur Erkennung und Signalisierung auftretender Anomalien im Herzrhythmus
DE102005021581A1 (de) Aufnahmemodul für ein in einen menschlichen Körper implantierbares Gerät
Sohaib " Cardiac resynchronisation therapy": does the haemodynamic improvement of biventricular pacing truly arise from cardiac resynchronisation?
WO2001067951A1 (fr) Systeme et procede d'interpretation electrocardiographique avec representation graphique

Legal Events

Date Code Title Description
AS Assignment

Owner name: INOVISE MEDICAL, INC., OREGON

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ARAND, PATRICIA A.;BAUER, PETER T.;WARNER, ROBERT A.;REEL/FRAME:017173/0042

Effective date: 20051027

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION