US20060128728A1 - Pyridinylpyrazolopyrimidinone derivatives as pde 7 inhibitors - Google Patents

Pyridinylpyrazolopyrimidinone derivatives as pde 7 inhibitors Download PDF

Info

Publication number
US20060128728A1
US20060128728A1 US10/560,386 US56038605A US2006128728A1 US 20060128728 A1 US20060128728 A1 US 20060128728A1 US 56038605 A US56038605 A US 56038605A US 2006128728 A1 US2006128728 A1 US 2006128728A1
Authority
US
United States
Prior art keywords
compound
group
solvent
methyl
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/560,386
Other languages
English (en)
Inventor
Hidekazu Inoue
Hidenobu Murafuji
Yasuhiro Hayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiichi Sankyo Co Ltd
Original Assignee
Daiichi Asubio Pharma Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiichi Asubio Pharma Co Ltd filed Critical Daiichi Asubio Pharma Co Ltd
Assigned to DAIICHI ASUBIO PHARMA CO., LTD. reassignment DAIICHI ASUBIO PHARMA CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HAYASHI, YASUHIRO, INOUE, HIDEKAZU, MURAFUJI, HIDENOBU
Publication of US20060128728A1 publication Critical patent/US20060128728A1/en
Assigned to ASUBIO PHARMA CO. LTD. reassignment ASUBIO PHARMA CO. LTD. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: DAIICHI ASUBIO PHARMA CO., LTD.
Priority to US11/748,421 priority Critical patent/US7943624B2/en
Assigned to DAIICHI SANKYO COMPANY, LIMITED reassignment DAIICHI SANKYO COMPANY, LIMITED MERGER (SEE DOCUMENT FOR DETAILS). Assignors: ASUBIO PHARMA CO., LTD.
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/04Drugs for disorders of the alimentary tract or the digestive system for ulcers, gastritis or reflux esophagitis, e.g. antacids, inhibitors of acid secretion, mucosal protectants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/18Drugs for disorders of the alimentary tract or the digestive system for pancreatic disorders, e.g. pancreatic enzymes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • A61P11/02Nasal agents, e.g. decongestants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • A61P11/06Antiasthmatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/06Antipsoriatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • A61P27/14Decongestants or antiallergics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/16Otologicals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/06Immunosuppressants, e.g. drugs for graft rejection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/08Antiallergic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis

Definitions

  • the present invention relates to pyridinylpyrazolopyrimidinone compounds, pharmaceutically acceptable salts and solvates thereof, having selective PDE 7 (phosphodiesterase VII) inhibiting effect. These compounds are effective compounds for treating various kinds of disease such as allergic disease, inflammatory disease and immunologic disease.
  • the PDE 7 selectively decomposes CAMP, and is characterized as an enzyme not decomposed by rolipram.
  • Rolipram is a selective inhibitor of PDE 4 which decomposes CAMP.
  • PDE 7 plays an important role for activating T cells (Beavo, et al., Science, 283, 848 (1999)), and well known that activating of T-cell is concerned with the exacerbation of allergic disease, inflammatory disease or immunologic disease.
  • bronchial asthma chronic bronchitis, chronic obstructive pulmonary disease, allergic rhinitis, psoriasis, atopic dermatitis, conjunctivitis, osteoarthritis, rheumatoid arthritis, multiple sclerosis, systemic lupus erythematosus, inflammatory bowel disease, hepatitis, pancreatitis, encephalomyelitis, septicemia, Crohn's disease, rejection for organ transplantation, graft versus host disease (GVH disease), and restenosis after angioplasty.
  • bronchial asthma chronic bronchitis, chronic obstructive pulmonary disease
  • allergic rhinitis psoriasis
  • atopic dermatitis conjunctivitis
  • osteoarthritis osteoarthritis
  • rheumatoid arthritis multiple sclerosis
  • systemic lupus erythematosus inflammatory bowel disease
  • a compound having PDE 7 inhibiting effect is useful for treating various kinds of disease such as allergic disease, inflammatory disease or immunologic disease concerned with T cells.
  • the purpose of the present invention is to provide novel compounds having PDE 7 inhibiting effect, and PDE 7 inhibiting composition containing the same as an active ingredient.
  • the compounds of the present invention inhibit PDE 7 selectively, and therefore, enhance cellular cAMP level. Consequently, the compounds of the present invention are useful for treating various kinds of disease such as allergic disease, inflammatory disease or immunologic disease.
  • the compounds of the present invention are useful for treating or preventing the diseases such as bronchial asthma, chronic bronchitis, chronic obstructive pulmonary disease, allergic rhinitis, psoriasis, atopicdermatitis, conjunctivitis, osteoarthritis, rheumatoid arthritis, multiple sclerosis, systemic lupus erythematosus, inflammatory bowel disease, hepatitis, pancreatitis, encephalomyelitis, septicemia, Crohn's disease, rejection for organ transplantation, GVH disease, restenosis after angioplasty.
  • diseases such as bronchial asthma, chronic bronchitis, chronic obstructive pulmonary disease, allergic rhinitis, ps
  • pyridinylpyrazolopyrimidinone compounds represented by the following formula (IA) or (IB): wherein:
  • R 1 is substituted or unsubsituted C 3 -C 8 cycloalkyl group or tert-butyl group;
  • R 2 is a hydrogen atom or C 1 -C 3 alkyl group
  • R 4 is a hydrogen atom or C 1 -C 3 alkoxy group which is unsubstututed or substituted by one or more fluorine atom(s);
  • R 5 and R 6 are, same or different from each other, a hydrogen atom, substituted or unsubsituted C 1 -C 6 alkyl group, substituted or unsubsituted acyl group, substituted or unsubsituted heterocycloalkyl group, and substituted or unsubsituted heterocycloalkyl ring is formed with nitrogen atom which is binding R 5 and R 6 ;
  • R 7 is a group: —OR 9 or —NR 5 R 6 ;
  • R 8 is a hydrogen atom, a halogen atom, a group: —NR 5 R 6 , substituted or unsubsituted C 1 -C 6 alkyl group, or substituted or unsubsituted aryl group;
  • R 9 is a hydrogen atom or substituted or unsubsituted C 1 -C 6 alkyl group
  • C 1 -C 3 alkyl group of the present invention includes a straight or branched-chained alkyl group having 1 to 3 carbon atoms, such as methyl, ethyl and propyl group
  • C 1 -C 6 alkyl group of the present invention means a straight or branched-chained alkyl group having 1 to 6 carbon atoms such as methyl, ethyl, propyl, butyl, pentyl and hexyl group.
  • C 3 -C 8 cycloalkyl group of the present invention includes a cycloalkyl group having 3 to 8 carbon atoms such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl and cyclooctyl.
  • heterocycloalkyl group is 3 to 7 membered heterocyclic group containing the same or different 1 to 4 hetero atom(s) such as oxygen, nitrogen or sulfur atom(s), and examples may include pyrrolidinyl, piperidinyl, piperazinyl, homopiperazinyl, tetrahydrofuryl, tetrahydropyranyl, morpholinyl and azetidinyl.
  • C 1 -C 3 alkoxy group means alkoxy group having 1 to 3 carbon atoms and examples include methoxy, ethoxy and propoxy.
  • acyl group means acyl group having 1 to 8 carbon atoms, and examples include formyl, acetyl, propionyl, butanoyl, pentanoyl, benzoylandtoluoyl.
  • halogen atom includes fluorine, chlorine, bromine and iodine.
  • aryl group is phenyl, naphthyl, biphenyl group which is consisted by 6 to 12 carbon atoms, and the term “heteroaryl group” is 5 to 7 membered monocyclic or polycyclic group thereof containing 2 to 8 carbon atoms and the same or different 1 to 4 hetero atom(s) such as oxygen, nitrogen, sulfuratom(s).
  • the examples includepyrrole, furyl, thienyl, imidazolyl, thiazolyl, pyrazinyl, indolyl, quinolinyl, isoquinolinyl, tetrazolyl, pyridinyl, pyrazolyl pyridazinyl and pyrimidinyl.
  • Examples of suitable substituent of “substituted or unsubstituted C 1 -C 6 alkyl group” include hydroxyl group and halogen atom
  • examples of suitable substituent of “substituted or unsubstituted acyl group” include halogen atom and nitro group.
  • examples of suitable substituent of “substituted or unsubstituted aryl group” include C 1 -C 3 alkyl, halogenatom, amino group, acylgroup, amidegroup, hydroxyl group, acylamino group, carboxyl group and sulfonyl group.
  • Examples of suitable substituent of “substituted or unsubstituted C 3 -C8 cycloalkyl group” is C 1 -C 3 alkyl, hydroxyl group and oxo group
  • suitable substituent of “substituted or unsubstituted heterocycloalkyl group” may include carboxy group, acyl group, alkoxy group, amino group, alkylamino group, acylamino group, hydroxyl group, oxo group, ethylenedioxy group, ethyl group, ethyl group and hydroxyethyl group.
  • Preferable compounds of the formula (IA) and (IB) of the present invention include the compounds wherein R 1 is cyclohexyl group or cycloheptyl group; R 2 is methyl group; R 3 is the group —NR 5 R 6 or —S(O) 0-2 R 8 ; and R 4 is methoxy or ethoxy group.
  • the compounds of the formula (IA) and (IB) of the present invention may exist in the tautomeric mixtures, the tautomeric isomers per se, and the mixture thereof. Furthermore, the radio labelled compounds of the formula (IA) and (IB) shall be included within the scope of the compounds of the present invention.
  • the compounds of the present invention may contain one or more asymmetric carbon atom and therefore, the compounds of the present invention may exist as optically isomer of (R)-form or (S)-form, racemic forms, as well as diastereomers. Further, the compounds of the present invention may exist as geometrical isomer such as (Z)-form or (E)-form due to the double bond in the substituent. Therefore, the compounds of the present invention should include these isomers per se as well as the isomeric mixtures thereof.
  • the compounds of the present invention may form acid additional salt thereof with various acids.
  • the acid additional salt include the salts with inorganic acid such as hydrochloric acid, hydrobromic acid, hydriodic acid, sulfuric acid, nitric acid and phosphoric acid; salts with organic acid such as formic acid, acetic acid, propionic acid, oxalic acid, malonic acid, succinic acid, fumaric acid, maleic acid, lactic acid, malic acid, citric acid, tartaric acid, benzoic acid, picric acid, methanesulfonic acid, toluenesulfonic acid, benzenesulfonic acid, trichloroacetic acid, trifluoroacetic acid, asparaginic acid and glutamic acid.
  • inorganic acid such as hydrochloric acid, hydrobromic acid, hydriodic acid, sulfuric acid, nitric acid and phosphoric acid
  • organic acid such as formic acid, acetic acid, propionic
  • the compounds of the present invention may form pharmaceutically acceptable metal salts by treating with various kinds of metal, especially alkali metal or alkali earth metal. These salts may include sodium salt, potassium salt and calcium salt. Further, the compounds of the present invention may include hydrate or solvate with water, ethanol or isopropanol, and polymorphisms thereof.
  • the following compounds are preferable pyridinylpyrazolo-pyrimidinone compounds of the formula (IA) or (IB).
  • the compound of the formula (IA) of the present invention can be synthesized by the following methods. (wherein, R 1 , R 2 , R 4 , R 5 , R 6 and R 8 have same meaning mentioned above; L is C 1 -C 3 lower alkyl, and Y is hydroxyl group or halogen atom, preferably chlorine atom)
  • R′NHNH 2 or salt thereof in accordance with the known method. Namely, the compound (X) is reacted with 1 to 2 equivalent, preferably about 1 equivalent of R 1 NHNH 2 or salt thereof in the solvent or absent of the solvent at room temperature to 120° C.
  • the solvent to be used in the reaction is inorganic acid aqueous solution such as hydrochloric acid or sulfuric acid; aromatic carbon hydrate such as benzene or toluene; organic acid such as acetic acid; alcohols such as methanol or ethanol; or the mixture solvent there of.
  • inorganic base aqueous solution such as sodium hydroxide aqueous solution is added to the reaction mixture and the mixture is extracted wit an organic solvent, which is nonmiscible solvent with water, and the organic layer is washed sequentially with water and saturated saline solution. Then, the compound (IX) can be obtained by removal of the solvent. This compound (IX) can be purified by recrystallization, if necessary.
  • the compound (X) to be used in this reaction can be commercially available or can be easily prepared from known compounds by using common methods. Further, the compound represent by the formula R 1 NHNH 2 or salt thereof can also be commercially available or can be easily prepared from known compounds by using common methods (For example: J. Org. Chem., 1981, 46, 5414-5415).
  • the compound (IX) is converted to the compound (VIII) in accordance with the common method.
  • the reaction can be conducted by reacting the compound (IX) with 1 to 5 equivalent of halogenate reagent such as phosphorus oxychloride or thionyl chloride in aromatic hydrocarbon solvent such as benzene or toluene, or the absence of the solvent, at room temperature to refluxing temperature of the solvent.
  • halogenate reagent such as phosphorus oxychloride or thionyl chloride
  • aromatic hydrocarbon solvent such as benzene or toluene
  • the obtained compound (VIII) is converted, without further purification, to the compound (VII) by nitration in accordance with the common method.
  • the nitration can be conducted by using nitric acid with sulfuric acid or acetic anhydride at the temperature from ⁇ 20° to room temperature. After the reaction is completed, the reaction mixture is poured into ice and the resulting precipitate is collected to obtain the purpose compound (VII).
  • This compound (VII) can be purified by recrystallization, if necessary.
  • the obtained compound (VII) is converted to the compound (VI) in accordance with the common method.
  • the reaction can be conducted by reacting the compound (VII) with 1 to 3 equivalent metal cyanide such as potassium cyanide or sodium cyanide in a polar solvent such as N,N-dimethylformamide at room temperature to 120° C.
  • a polar solvent such as N,N-dimethylformamide
  • water is added to the reaction mixture and the mixture is extracted with an organic solvent, which is nonmiscible solvent with water, and the organic layer is washed sequentially with water and saturated saline solution.
  • the compound (VI) can be obtained by removal of the solvent.
  • This compound (VI) can be purified by chromatography, if necessary.
  • the obtained compound (VI) is converted to the compound (V) in accordance with the common method.
  • This reaction is hydrolysis reaction of nitrile group converting to the corresponding acid amide group, and various methods are applied.
  • the reaction can be conducted by reacting the compound (VI) with hydrogen peroxide in the presence of base such as sodium hydroxide or potassium carbonate in a solvent at 0° C. to the room temperature.
  • the solvent to be used is water, alcohols such as methanol or ethanol, ethers such as 1,4-dioxane or tetrahydrofuran, or the mixture thereof.
  • the reaction mixture is extracted with an organic solvent, which is nonmiscible solvent with water, and the organic layer is washed sequentially with water and saturated saline solution. Then, the compound (V) can be obtained by removal of the solvent. This compound (V) can be purified by recrystallization, if necessary.
  • the obtained compound (V) is converted to the compound (III) in accordance with the common method.
  • This reaction is reduction of nitro group converting to the corresponding amino group, and various methods are applied.
  • the reaction can be conducted by reacting the compound (V) with 2 to 10 equivalent of tin(II) chloride in the presence of inorganic acid such as hydrochloric acid at 0° C. to the refluxing temperature.
  • inorganic acid such as hydrochloric acid
  • the reaction mixture is neutralized by inorganic base such as sodium hydroxide, and filtrate by Celite®.
  • the obtained filtrate is extracted with an organic solvent, which is nonmiscible solvent with water, and the organic layer is washed sequentially with water and saturated saline solution.
  • the compound (III) can be obtained by removal of the solvent.
  • This compound (III) can be purified by chromatography, if necessary.
  • the obtained compound (III) is, then, converted to the compound (II) in accordance with the common method.
  • This reaction can be conducted by the reaction of the amine compound (III) with carboxylic compound (IV) to obtain the corresponding acid amide compound (II), and various methods are applied.
  • the reaction can be conducted by reacting the compound (III) with 1.0 to 1.5 equivalent, preferably 1.2 equivalent of the compound (IV) in the presence of 1 to 5 equivalent, preferably 2.5 equivalent of tertiary amine such as triethylamine, based on the compound (III), and if necessary in the presence of the catalyst such as 4-dimethylaminopyridine.
  • the reaction can be carried out in the presence of inert solvent such as dichloromethane at 0° C. to the room temperature.
  • the reaction can be conducted by reacting the compound (III) with 1.0 to 1.5 equivalent, preferably 1.2 equivalent of the compound (IV) 15 in the presence of 1 to 5 equivalent, preferably 1.2 equivalent of the condensing agent such as 1-ethyl-3-(3-dimethyl-aminopropyl) carbodiimide hydrochloride, based on the compound (III), and if necessary in the presence of the catalyst such as 4-dimethylaminopyridine in the inert solvent such as dichloromethane.
  • the condensing agent such as 1-ethyl-3-(3-dimethyl-aminopropyl) carbodiimide hydrochloride
  • the reaction mixture is diluted with an organic solvent, which is nonmiscible solvent with water, and the organic layer is washed sequentially with water and saturated saline solution, then, the solvent is removed to give the purpose compound (II).
  • This compound can be purified by column chromatography, if necessary.
  • the obtained compound (II) is converted to the compound (IA′) by pyrimidine ring formation reaction.
  • This ring formation reaction can be carried out by heating the compound (II) with base such as sodium hydroxide, potassium t-butoxide or potassium carbonate in ethanol/water in the seal tube at 120 to 140° C. Further, the reaction can be carried out in high boiling solvent such as methoxyethanol in the presence of base such as potassium t-butoxide at 120 to 140° C.
  • the reaction mixture is diluted with an organic solvent, which is nonmiscible solvent with water, and the organic layer is washed sequentially with water and saturated saline solution.
  • the compound (IA′) can be obtained by removal of the solvent.
  • This compound (IA′) can be purified by chromatography or recrystallization, if necessary.
  • the compound (IA′′) can be obtained from the obtained compound (IA′) by the function group converting reaction with per acid such as m-chloroperbenzoic acid or magnesium mono-peroxyphthalate in chloroform or dichloromethane or chloroform at ° C. to the room temperature.
  • per acid such as m-chloroperbenzoic acid or magnesium mono-peroxyphthalate in chloroform or dichloromethane or chloroform at ° C. to the room temperature.
  • the compound (IA′′′) can be obtained by reacting the compound (IA′′) with lithium amide, which is obtained by reacting the amine compound with n-butyllithium.
  • lithium amide which is obtained by reacting the amine compound with n-butyllithium.
  • ethers such as 1,4-dioxan or tertahydrofuran
  • the compound (IA′′) is added to this mixture of lithium amide solution to obtain the compound (IA′′′).
  • the carboxylic compound (IV) to be used in the above reaction can be obtained by the following reaction scheme. (wherein, L, Y, R 4 and R 6 have same meaning mentioned above; and X is a halogen atom)
  • the compound (XII) is obtained from the compound (XIII) in accordance with the known method (e.g., Chem. Pharm. Bull., 48(12), 1847-1853 (2000)).
  • the reaction can be conducted by reacting the compound (XIII) with about 1 equivalent thiol compound such as ethanethiol or benzenethiol in the presence of base such as potassium t-butoxide, in polar solvent such as N,N-dimethylformamide at the room temperature to ⁇ 30° C., preferably ⁇ 30° C.
  • compound (XII) is converted to the compound (XI) in accordance with common method.
  • the reaction is conducted by reacting the compound (XII) with small excess of metal alcoholate such as sodium methylate in ethers solvent such as 1,4-dioxan or tetrahydrofuran at the room temperature to refluxing temperature.
  • metal alcoholate such as sodium methylate
  • ethers solvent such as 1,4-dioxan or tetrahydrofuran
  • water is added to the reaction mixture and the mixture is extracted with an organic solvent, which is nonmiscible solvent with water, and the organic layer is washed sequentially with water and saturated saline solution.
  • the compound (XI) can be obtained by removal of the solvent.
  • This compound (XI) can be purified by recrystallization, if necessary.
  • the obtained compound (XI) is converted to the compound (IV) in accordance with common method.
  • This reaction is hydrolysis reaction of ester compound and various methods are applied.
  • the reaction is conducted by reacting the compound (XI) with base such as sodium hydroxide in the alcohol solvent such as methanol or water, as well as a mixture thereof at the room temperature to refluxing temperature. After the reaction is completed, the reaction mixture is condensed and the residue is neutralized to give the compound (IV).
  • the compound of the formula (IB) of the present invention may be synthesized by the following methods. (wherein, R 1 , R 2 , R 3 and R 4 have same meaning mentioned above; and Y is hydroxyl group or halogen atom, preferably chlorine atom)
  • the compound (XIX) is obtained from the compound (XX) in accordance with the known method (e.g., J. Chem. Soc, Perkin Trans. I, 1996, 1545-1552).
  • This method can be conducted by the reaction of the compound (XX) with 1 to 1.5 equivalent of the compound (XXI) based on the compound (XX), in the presence of the 2 to 2.5 equivalent of alkali metal hydride such as sodium hydride and potassium hydride, or tertiary amine such as triethlyamine based on the compound (XX).
  • the reaction can be carried out in an appropriate solvent and these are halogenated hydrocarbons such as dichloromethane; aromatic hydrocarbon such as toluene and benzene; ethers solvent such as diethyl ether tetrahydrofuran; or a mixture of solvent thereof.
  • the reaction temperature is a range from 0° C. to the room temperature.
  • the reaction mixture is diluted with an organic solvent, which is nonmiscible solvent with water, and the organic layer is washed sequentially with water and saturated saline solution. Then, the compound (XIX) can be obtained by removal of the solvent. This compound (XIX) can be purified by chromatography, if necessary.
  • the obtained compound (XIX) is converted to the compound (XVIII) in accordance with the common method (e.g., J. Chem. Soc, Perkin Trans. I , 1996, 1545-1552).
  • the reaction can be carried out by the reacting the compound (XIX) with 5 to 10 equivalent of the methylation reagent such as dimethyl sulfate in an appropriate solvent.
  • the solvent to be used in this reaction may include halogenated hydrocarbons such as dichloromethane; aromatic hydrocarbon such as toluene and benzene; ethers solvent such as diethyl ether tetrahydrofuran; or a mixture of solvent thereof, and the reaction temperature is from the room temperature to the refluxing temperature of the solvent.
  • the reaction mixture is diluted with an organic solvent, which is nonmiscible solvent with water, and the organic layer is washed sequentially with water and saturated saline solution. Then, the compound (XVIII) can be obtained by removal of the solvent. This compound (XVIII) can be purified by chromatography, if necessary.
  • the obtained compound (XVIII) is converted to the compound (XVI) in accordance with the common method (e.g., J. Chem. Soc, Perkin Trans. I, 1996, 1545-1552).
  • the reaction can be carried out by the reacting the compound (XVIII) with 1 to 1.5 equivalent of the compound XVII) based on the compound (XVIII) in an appropriate solvent.
  • the solvent to be used in this reaction may include halogenated hydrocarbons such as dichloromethane; aromatic hydrocarbon such as toluene and benzene; ethers solvent such as diethyl ether tetrahydrofuran; or a mixture solvent thereof, and the reaction temperature is from the room temperature to the refluxing temperature of the solvent.
  • the solvent is removed to give the compound (XVI).
  • This compound (XVI) can be purified by chromatography, if necessary.
  • the obtained compound (XVI) is converted to the compound (XV) in accordance with the common method.
  • This reaction is hydrolysis reaction of nitrile group converting to the corresponding acid amide group, and various methods are applied.
  • the reaction can be conducted by treating the compound (XVI) with catalyst such as sulfuric acid or hydrochloric acid in an appropriate solvent at the room temperature to 100° C.
  • the solvent to be used is water, alcohols such as methanol or ethanol, ethers such as diethyl ether, tetrahydrofuran or dioxane, or the mixture thereof.
  • reaction mixture After the reaction is completed, the pH of reaction mixture is adjusted to alkali side, and the reaction mixture is extracted with an organic solvent, which is nonmiscible solvent with water, and the organic layer is washed sequentially with water and saturated saline solution. Then, the compound (XV) can be obtained by removal of the solvent. This compound (XV) can be purified by recrystallization, if necessary.
  • the obtained compound (XV) is, then, converted to the compound (XIV) in accordance with the common method.
  • This reaction can be conducted by the reaction of the compound (XV) with compound (IV) to obtain the corresponding acid amide compound (XIV).
  • the reaction can be conducted by reacting the compound (XV) with 1.0 to 2.0 equivalent, preferably about 1.4 equivalent of the compound (IV) in the presence of 1 to 5 equivalent, preferably 2.5 equivalent of tertiary amine such as triethylamine, based on the compound (XV), and if necessary in the presence of the catalyst such as 4-dimethylaminopyridine.
  • the reaction can be carried out in the presence of inert solvent such as dichloromethane at 0° C. to the room temperature.
  • the reaction can be conducted by reacting the compound (XV) with 1.0 to 1.5 equivalent, preferably about 1.2 equivalent of the compound (IV) in the presence of 1 to 5 equivalent, preferably about 1.2 equivalent of the condensing agent such as 1-ethyl-3-(3-dimethyl-aminopropyl)-carbodiimide hydrochloride, based on the compound (XV), and if necessary in the presence of the catalyst such as 4-dimethylaminopyridine in the inert solvent such as dichloromethane.
  • the condensing agent such as 1-ethyl-3-(3-dimethyl-aminopropyl)-carbodiimide hydrochloride
  • the reaction mixture is diluted with an organic solvent, which is nonmiscible solvent with water, and the organic layer is washed sequentially with water and saturated saline solution, then, the solvent is removed to give the purpose compound (XIV).
  • the obtained compound (XIV) is used for the next reaction without further purification, and is converted to the compound (IB) by pyrimidine ring formation reaction by mean of the known method (e.g., J. Med. Chem., 39 1635-1644 (1996)).
  • This ring formation reaction can be carried out by heating the compound (XIV) with base such as sodium hydroxide, potassium t-butoxide or potassium carbonate in ethanol/water in the seal tube at 120 to 140° C. Further, the reaction can be carried out in high boiling solvent such as methoxyethanol in the presence of base such as potassium t-butoxide at 120 to 140° C.
  • the reaction mixture is diluted with an organic solvent, which is nonmiscible solvent with water, and the organic layer is washed sequentially with water and saturated saline solution. Then, the compound (IB) can be obtained by removal of the solvent. This compound (IB) can be purified by chromatography or recrystallization, if necessary.
  • PDE 7 phosphodiesterase VII
  • the PDE 7 (phosphodiesterase VII) inhibiting effect of the compounds of the present invention was performed by the following method, which was modified assay method described in Biochemical. Pharmacol. 48(6), 1219-1223 (1994).
  • the compounds of the present invention showed significant PDE 7 inhibiting effect.
  • the compounds of the present invention selectively inhibit PDE 7 and their selectivities are more than 10 times compared to PDE 4 (phosphodiesterase IV), which is similar to the PDE 7. Therefore, it is expected that the side effect of the compounds of the present invention caused by PDE 4 to be less.
  • the selectivity against PDE 4 (phosphodiesterase IV) of the compounds of the present invention was affirmed by means of the following Biological Test.
  • the PDE 4 (phosphodiesterase IV) inhibiting effect of the compounds of the present invention was performed by the following method, which was modified assay method described in Biochemical. Pharmacol. 48(6), 1219-1223 (1994).
  • the IC 50 of the compounds of the present invention was more than 10 times weaker than that of PDE 7 inhibiting effect.
  • the compounds of the present invention inhibit PDE 7 selectively, and therefore, enhance cellular cAMP level. Consequently, the compounds of the present invention are useful for treating various kinds of disease such as allergic disease, inflammatory disease or immunologic disease.
  • the compounds of the present invention are useful for treating or preventing the diseases such as bronchial asthma, chronic bronchitis, chronic obstructive pulmonary disease, allergic rhinitis, psoriasis, atopic dermatitis, conjunctivitis, osteoarthritis, rheumatoid arthritis, multiple sclerosis, systemic lupus erythematosus, inflammatory bowel disease, hepatitis, pancreatitis, encephalomyelitis, septicemia, CrohnIs disease, rejection for organ transplantation, GVH disease, and restenosis after angioplasty.
  • diseases such as bronchial asthma, chronic bronchitis, chronic obstructive pulmonary disease, allergic rhinitis,
  • the compounds of the present invention can be used for preparation of the pharmaceutical composition or PDE 7 inhibitor.
  • one or more compounds may be administered in the appropriated formulation.
  • the formulation for oral administration may include for example, capsules, granules, fine granules, syrups, dry syrups or the like;
  • the formulation for parenteral administration may include, for example injectable solution, suppository formulation such as rectal suppository or vaginal suppository, nasal administration such as sprays, or percutaneous absorption formulation such as ointment and tapes, and the like.
  • the administration dose may vary depending on the various kinds of factors. These factors may be the condition of the patients, the severity of the disease, ages, existence of a complication, as well as formulation.
  • a usual recommended daily dose for oral administration is within the range of 0.1-1,000 mg/day/adult, preferably 0.1-500 mg/day/adult, and more preferably1-100 mg/day/adult.
  • a usual recommended daily dose is within the range of 1/1000 to 1 ⁇ 2 based on dose of oral administration. These doses can be adjusted depending on age, as well as the patient's condition.
  • the toxicological properties of the compounds of the present invention is low, therefore, the compounds of the present invention is expected to have high safety margin.
  • the obtained crude crystalline was further purified by recrystallization (hexane-ethyl acetate) to give 20.7 g (39%) of the title compound.
  • the obtained amide compound was suspended in 50 mL of methoxyethanol and to this suspension was added 2.30 g (20.4 mmol) of potassium t-butoxide, then the mixture was stirred for 2 hours at 140° C. After the reaction mixture was cooled to the-room temperature, the mixture was condensed under reduced pressure and water was added to the residue. Further added 21 mL of 1N-HCl to the mixture, the mixture was extracted with chloroform. The organic layer was washed with water and saturated saline solution, and dried over anhydrous sodium sulfate.
  • the title compound 1.02 g (87%) was obtained in a manner similar to the Example 9 by using the compound obtained in the Example 14, instead of the compound obtained in the Example 8.
  • the title compound 16 mg (12%) was obtained in a manner similar to the Example 16 by using N-methyl-homopiperazine, instead of N-methylpiperazine.
  • the title compound 58 mg (45%) was obtained in a manner similar to the Example 16 using morpholine and the compound obtained in the Example 15, instead of N-methylpiperazine and the compound obtained in the Example 9, respectively.
  • the title compound 255 mg (50%) was obtained in a manner similar to the Example 24 using the compound obtained in the Example 30 instead of the compound obtained in the Example 23.
  • the title compound 68 mg (55%) was obtained in a manner similar to the Example 26 using the compound obtained in the Example 31 instead of the compound obtained in the Example 24.
  • the title compound 102 mg (94%) was obtained in a manner similar to the Example 26 using the compound obtained in the Example 31 and dimethylamine instead of the compound obtained in the Example 24 and methylamine, respectively.
  • the title compound 733 mg (60%) was obtained in a manner similar to the Example 25 using the compound obtained in the Example 31 instead of the compound obtained in the Example 24.
  • the title compound 131 mg (98%) was obtained in a manner similar to the Example 16 using the compound obtained in the Example 42 instead of the compound obtained in the Example 9.
  • the title compound 128 mg (93%) was obtained in a manner similar to the Example 16 using N-methylhomopiperazine and the compound obtained in the Example 42, instead of N-methylpiperazine and the compound obtained in the Example 9, respectively.
  • the title compound 791 mg (97%) was obtained in a manner similar to the Example 24 using the compound obtained in the Example 45 instead of the compound obtained in the Example 23.
  • the title compound 122 mg (86%) was obtained in a manner similar to the Example 26 using dimethylamine and the compound obtained in the Example4 6, instead of methylamine and the compound obtained in the Example 24, respectively.
  • the title compound 103 mg (83%) was obtained in a manner similar to the Example 26 by using the compound obtained in the Example 46 instead of the compound obtained in the Example 24.
  • the title compound 92 mg (76%) was obtained in a manner similar to the Example 25 using the compound obtained in the Example 46 instead of the compound obtained in the Example 24.
  • the compounds of the present invention inhibit PDE 7 selectively, and therefore, enhance cellular CAMP level. Consequently, the compounds of the present invention are useful for treating various kinds of disease such as allergic disease, inflammatory disease or immunologic disease.
  • the compounds of the present invention are useful for treating or preventing the diseases such as bronchial asthma, chronic bronchitis, chronic obstructive pulmonary disease, allergic rhinitis, psoriasis, atopic dermatitis, conjunctivitis, osteoarthritis, rheumatoid arthritis, multiple sclerosis, systemic lupus erythematosus, inflammatory bowel disease, hepatitis, pancreatitis, encephalomyelitis, septicemia, Crohn's disease, rejection for organ transplantation, GVH disease, and restenosis after angioplasty.
  • diseases such as bronchial asthma, chronic bronchitis, chronic obstructive pulmonary disease, allergic rhinitis, psoriasis, atopic dermatitis, conjunctivitis, osteoarthritis, rheumatoid arthritis, multiple sclerosis, systemic lupus erythematosus,

Landscapes

  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Immunology (AREA)
  • Pulmonology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Rheumatology (AREA)
  • Dermatology (AREA)
  • Ophthalmology & Optometry (AREA)
  • Cardiology (AREA)
  • Vascular Medicine (AREA)
  • Oncology (AREA)
  • Communicable Diseases (AREA)
  • Biomedical Technology (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • Pain & Pain Management (AREA)
  • Transplantation (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Otolaryngology (AREA)
  • Urology & Nephrology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Pyridine Compounds (AREA)
  • Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)
US10/560,386 2003-06-13 2004-06-11 Pyridinylpyrazolopyrimidinone derivatives as pde 7 inhibitors Abandoned US20060128728A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/748,421 US7943624B2 (en) 2003-06-13 2007-05-14 Pyridinylpyrazolopyrimidinone derivatives as PDE 7 inhibitors

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003-170094 2003-06-13
JP2003170094A JP2006219373A (ja) 2003-06-13 2003-06-13 Pde7阻害作用を有するピリジニルピラゾロピリミジノン誘導体
PCT/JP2004/008643 WO2004111054A1 (en) 2003-06-13 2004-06-11 Pyridinylpyrazolopyrimidinone derivatives as pde 7 inhibitors

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/748,421 Continuation US7943624B2 (en) 2003-06-13 2007-05-14 Pyridinylpyrazolopyrimidinone derivatives as PDE 7 inhibitors

Publications (1)

Publication Number Publication Date
US20060128728A1 true US20060128728A1 (en) 2006-06-15

Family

ID=33549403

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/560,386 Abandoned US20060128728A1 (en) 2003-06-13 2004-06-11 Pyridinylpyrazolopyrimidinone derivatives as pde 7 inhibitors
US11/748,421 Expired - Fee Related US7943624B2 (en) 2003-06-13 2007-05-14 Pyridinylpyrazolopyrimidinone derivatives as PDE 7 inhibitors

Family Applications After (1)

Application Number Title Priority Date Filing Date
US11/748,421 Expired - Fee Related US7943624B2 (en) 2003-06-13 2007-05-14 Pyridinylpyrazolopyrimidinone derivatives as PDE 7 inhibitors

Country Status (7)

Country Link
US (2) US20060128728A1 (de)
EP (1) EP1636235B1 (de)
JP (2) JP2006219373A (de)
AT (1) ATE445619T1 (de)
DE (1) DE602004023606D1 (de)
ES (1) ES2331073T3 (de)
WO (1) WO2004111054A1 (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008119057A2 (en) 2007-03-27 2008-10-02 Omeros Corporation The use of pde7 inhibitors for the treatment of movement disorders
US20090131413A1 (en) * 2004-07-01 2009-05-21 Asubio Pharma Co., Ltd. Thienopyrazole Derivative Having PDE7 Inhibitory Activity
US20100113486A1 (en) * 2007-03-27 2010-05-06 Omeros Corporation Use of pde7 inhibitors for the treatment of movement disorders
WO2012064667A2 (en) 2010-11-08 2012-05-18 Omeros Corporation Treatment of addiction and impulse-control disorders using pde7 inhibitors
US9220715B2 (en) 2010-11-08 2015-12-29 Omeros Corporation Treatment of addiction and impulse-control disorders using PDE7 inhibitors
WO2024038089A1 (en) 2022-08-18 2024-02-22 Mitodicure Gmbh Use of a therapeutic agent with phosphodiesterase-7 inhibitory activity for the treatment and prevention of diseases associated with chronic fatigue, exhaustion and/or exertional intolerance

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5264392B2 (ja) * 2008-09-30 2013-08-14 富士フイルム株式会社 5−アミノピラゾール誘導体の製造方法
AU2013296627C9 (en) * 2012-07-30 2018-03-22 Concert Pharmaceuticals, Inc. Deuterated ibrutinib
TW201811782A (zh) * 2016-08-26 2018-04-01 日商田邊三菱製藥股份有限公司 二環式含氮雜環化合物
CN108069974B (zh) * 2016-11-15 2019-12-10 杭州和正医药有限公司 一种选择性布鲁顿酪氨酸激酶抑制剂及其应用
CN110337437B (zh) 2016-12-28 2023-02-03 达特神经科学有限公司 作为pde2抑制剂的取代的吡唑并嘧啶酮化合物
CA3120971A1 (en) 2017-11-27 2019-05-31 Dart Neuroscience, Llc Substituted furanopyrimidine compounds as pde1 inhibitors

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5541187A (en) * 1992-03-30 1996-07-30 Sterling Winthrop Inc. 6-heterocycyclyl pyrazolo[3,4-d]pyrimidin-4-ones and compositions and method of use thereof
US5541487A (en) * 1994-01-24 1996-07-30 Alps Electric Co., Ltd. Driving circuit for stepping motor
US6407114B1 (en) * 1998-10-23 2002-06-18 Pfizer Inc. Pyrazolopyrimidinone CGMP PDE5 inhibitors for the treatment of sexual dysfunction
US6613778B1 (en) * 1999-11-06 2003-09-02 MERCK Patent Gesellschaft mit beschränkter Haftung Imidazopyridine derivatives as phosphodiesterase VII inhibitors
US6627651B1 (en) * 1999-05-07 2003-09-30 Takeda Chemical Industries, Ltd. Cyclic compounds and uses thereof
US6677335B1 (en) * 1999-10-11 2004-01-13 Pfizer Inc Pharmaceutically active compounds
US6737436B1 (en) * 1999-11-04 2004-05-18 Merck Patent Gmbh Pyrrole derivatives as phosphodiesterase VII inhibitors
US20040138279A1 (en) * 1999-10-21 2004-07-15 Hans-Michael Eggenweiler Imidazole derivatives as phosphodiesterase VII inhibitors

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5075310A (en) 1988-07-01 1991-12-24 Smith Kline & French Laboratories, Ltd. Pyrimidone derivatives as bronchodilators
GB9013750D0 (en) 1990-06-20 1990-08-08 Pfizer Ltd Therapeutic agents
GB9114760D0 (en) 1991-07-09 1991-08-28 Pfizer Ltd Therapeutic agents
GB9315017D0 (en) 1993-07-20 1993-09-01 Glaxo Lab Sa Chemical compounds
JP3713783B2 (ja) 1995-01-20 2005-11-09 大正製薬株式会社 1H−ピラゾロ[3,4−d]ピリミジン−4−オン誘導体
GB9823101D0 (en) * 1998-10-23 1998-12-16 Pfizer Ltd Pharmaceutically active compounds
AU5995699A (en) * 1998-10-23 2000-05-15 Bunnage, Mark Edward Pyrazolopyrimidinone cgmp pde5 inhibitors for the treatment of sexual dysfunction
BR0014695A (pt) * 1999-10-11 2002-06-18 Pfizer 5-(2-substituìdo-5-heterociclilsulfonilpirid-3-il)-dihi dropirazolo[4,3-d]pirimidin-7-onas como inibidoras de fosfodiesterase
YU59100A (sh) * 1999-10-11 2003-10-31 Pfizer Inc. Postupak za dobijanje pirazolo (4,3-d) pirimidin-7-ona-3-piridilsulfonil jedinjenja i njihova intermedijera
DE19950647A1 (de) 1999-10-21 2001-04-26 Merck Patent Gmbh Imidazolderivate als Phosphodiesterase VII-Hemmer
GB0007934D0 (en) 2000-03-31 2000-05-17 Darwin Discovery Ltd Chemical compounds
GB0015095D0 (en) 2000-06-20 2000-08-09 Celltech Chiroscience Ltd Chemical compounds
EP1176147A1 (de) * 2000-07-28 2002-01-30 Pfizer Limited Verfahren zur Herstellung von Pyrazolo[4,3-d]pyrimidin-7-onen und Zwischenprodukten davon
EP1193261A1 (de) 2000-10-02 2002-04-03 Warner-Lambert Company Thiadiazole und ihre Verwendung als Phosphodiesterase-7 Inhibitoren
SK5782003A3 (en) 2000-11-14 2003-10-07 Altana Pharma Ag 3,4-Dihydroisoquinoline and isoquinoline compounds, pharmaceutical composition comprising the same and their use
AP1699A (en) 2001-03-21 2006-12-26 Warner Lambert Co New spirotricyclic derivatives and their use as phosphodiesterase-7 inhibitors
WO2002088079A2 (en) 2001-05-01 2002-11-07 Bristol-Myers Squibb Company Dual inhibitors of pde 7 and pde 4
PE20030008A1 (es) 2001-06-19 2003-01-22 Bristol Myers Squibb Co Inhibidores duales de pde 7 y pde 4
CA2439784C (en) * 2001-12-13 2010-11-02 Daiichi Suntory Pharma Co., Ltd. Pyrazolopyrimidinone derivatives having pde7 inhibiting action

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5541187A (en) * 1992-03-30 1996-07-30 Sterling Winthrop Inc. 6-heterocycyclyl pyrazolo[3,4-d]pyrimidin-4-ones and compositions and method of use thereof
US5541487A (en) * 1994-01-24 1996-07-30 Alps Electric Co., Ltd. Driving circuit for stepping motor
US6407114B1 (en) * 1998-10-23 2002-06-18 Pfizer Inc. Pyrazolopyrimidinone CGMP PDE5 inhibitors for the treatment of sexual dysfunction
US6627651B1 (en) * 1999-05-07 2003-09-30 Takeda Chemical Industries, Ltd. Cyclic compounds and uses thereof
US6677335B1 (en) * 1999-10-11 2004-01-13 Pfizer Inc Pharmaceutically active compounds
US20040138279A1 (en) * 1999-10-21 2004-07-15 Hans-Michael Eggenweiler Imidazole derivatives as phosphodiesterase VII inhibitors
US6737436B1 (en) * 1999-11-04 2004-05-18 Merck Patent Gmbh Pyrrole derivatives as phosphodiesterase VII inhibitors
US6613778B1 (en) * 1999-11-06 2003-09-02 MERCK Patent Gesellschaft mit beschränkter Haftung Imidazopyridine derivatives as phosphodiesterase VII inhibitors

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7932250B2 (en) 2004-07-01 2011-04-26 Daiichi Sankyo Company, Limited Thienopyrazole derivative having PDE7 inhibitory activity
US8901315B2 (en) 2004-07-01 2014-12-02 Daiichi Sankyo Company, Limited Thienopyrazole derivative having PDE7 inhibitory activity
US20090131413A1 (en) * 2004-07-01 2009-05-21 Asubio Pharma Co., Ltd. Thienopyrazole Derivative Having PDE7 Inhibitory Activity
US20110166343A1 (en) * 2004-07-01 2011-07-07 Daiichi Sankyo Company, Limited Thienopyrazole derivative having pde7 inhibitory activity
US8637528B2 (en) 2007-03-27 2014-01-28 Omeros Corporation Use of PDE7 inhibitors for the treatment of movement disorders
US20110091388A1 (en) * 2007-03-27 2011-04-21 Omeros Corporation Use of pde7 inhibitors for the treatment of movement disorders
US20100113486A1 (en) * 2007-03-27 2010-05-06 Omeros Corporation Use of pde7 inhibitors for the treatment of movement disorders
WO2008119057A2 (en) 2007-03-27 2008-10-02 Omeros Corporation The use of pde7 inhibitors for the treatment of movement disorders
US20080260643A1 (en) * 2007-03-27 2008-10-23 Omeros Corporation Use of pde7 inhibitors for the treatment of movement disorders
US9119822B2 (en) 2007-03-27 2015-09-01 Omeros Corporation Use of PDE7 inhibitors for the treatment of movement disorders
WO2012064667A2 (en) 2010-11-08 2012-05-18 Omeros Corporation Treatment of addiction and impulse-control disorders using pde7 inhibitors
US9220715B2 (en) 2010-11-08 2015-12-29 Omeros Corporation Treatment of addiction and impulse-control disorders using PDE7 inhibitors
US11207275B2 (en) 2010-11-08 2021-12-28 Omeros Corporation Treatment of addiction and impulse-control disorders using PDE7 inhibitors
US11464785B2 (en) 2010-11-08 2022-10-11 Omeros Corporation Treatment of addiction and impulse-control disorders using PDE7 inhibitors
EP4275752A2 (de) 2010-11-08 2023-11-15 Omeros Corporation Behandlung von erkrankungen im zusammenhang mit sucht und impulskontrolle mittels pde7-inhibitoren
WO2024038089A1 (en) 2022-08-18 2024-02-22 Mitodicure Gmbh Use of a therapeutic agent with phosphodiesterase-7 inhibitory activity for the treatment and prevention of diseases associated with chronic fatigue, exhaustion and/or exertional intolerance

Also Published As

Publication number Publication date
ATE445619T1 (de) 2009-10-15
ES2331073T3 (es) 2009-12-21
JP2006219373A (ja) 2006-08-24
DE602004023606D1 (de) 2009-11-26
US7943624B2 (en) 2011-05-17
JP4721452B2 (ja) 2011-07-13
WO2004111054A1 (en) 2004-12-23
JP2008501618A (ja) 2008-01-24
EP1636235B1 (de) 2009-10-14
EP1636235A1 (de) 2006-03-22
US20070270419A1 (en) 2007-11-22

Similar Documents

Publication Publication Date Title
US7943624B2 (en) Pyridinylpyrazolopyrimidinone derivatives as PDE 7 inhibitors
US7268128B2 (en) 1,3,5-trisubstituted-5-phenyl and 5-pyridyl pyrazolopyrimidinone derivatives having PDE7 inhibiting action
US8188097B2 (en) Pyrazolo[1,5-A]pyrimidine compounds
AU2012347350C1 (en) Kinase inhibitors
US7776867B2 (en) Furanopyrimidines
US11974999B2 (en) Bruton's tyrosine kinase inhibitors
US8653272B2 (en) Fused pyridine derivatives as kinase inhibitors
WO2007024680A1 (en) Pyrazolopyridine and pyrazolopyrimidine compounds useful as kinase enzymes modulators
JP5538555B2 (ja) ピラゾロピリミジン化合物及びpde10阻害剤としてのその使用
AU2012288491A1 (en) Indazoles
MX2011002340A (es) Pirazolopirimidinas y su uso para el tratamiento de trastornos del snc.
US10864201B2 (en) Heteroaromatic compounds as Vanin inhibitors
CA2585557C (en) Pyrazolo[4,3-d] pyrimidine derivatives useful as pde-5 inhibitors
JP2008501618A6 (ja) Pde7阻害作用を有するピリジニルピラゾロピリミジノン誘導体
US7713972B2 (en) Imidazotriazinone derivatives as PDE 7 (phosphodiesterase 7) inhibitors
JP5531066B2 (ja) ピラゾロピリミジン化合物及びpde10阻害剤としてのその使用
US20110218189A1 (en) PYRROLO[2,3-d]PYRIMIDIN-2-YL-AMINE DERIVATIVES AS PKC-THETA INHIBITORS

Legal Events

Date Code Title Description
AS Assignment

Owner name: DAIICHI ASUBIO PHARMA CO., LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:INOUE, HIDEKAZU;MURAFUJI, HIDENOBU;HAYASHI, YASUHIRO;REEL/FRAME:017377/0052

Effective date: 20051202

AS Assignment

Owner name: ASUBIO PHARMA CO. LTD.,JAPAN

Free format text: CHANGE OF NAME;ASSIGNOR:DAIICHI ASUBIO PHARMA CO., LTD.;REEL/FRAME:019243/0375

Effective date: 20070401

Owner name: ASUBIO PHARMA CO. LTD., JAPAN

Free format text: CHANGE OF NAME;ASSIGNOR:DAIICHI ASUBIO PHARMA CO., LTD.;REEL/FRAME:019243/0375

Effective date: 20070401

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION