Connect public, paid and private patent data with Google Patents Public Datasets

Array of light emitting devices to produce a white light source

Download PDF

Info

Publication number
US20060105482A1
US20060105482A1 US11297287 US29728705A US2006105482A1 US 20060105482 A1 US20060105482 A1 US 20060105482A1 US 11297287 US11297287 US 11297287 US 29728705 A US29728705 A US 29728705A US 2006105482 A1 US2006105482 A1 US 2006105482A1
Authority
US
Grant status
Application
Patent type
Prior art keywords
light
led
optical
element
die
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11297287
Inventor
Robertus Alferink
Michael Krames
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lumileds LLC
Original Assignee
Lumileds LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHTING NOT OTHERWISE PROVIDED FOR
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • H05B33/08Circuit arrangements not adapted to a particular application
    • H05B33/0803Circuit arrangements not adapted to a particular application for light emitting diodes (LEDs) comprising only inorganic semi-conductor materials
    • H05B33/0842Circuit arrangements not adapted to a particular application for light emitting diodes (LEDs) comprising only inorganic semi-conductor materials with control
    • H05B33/0857Circuit arrangements not adapted to a particular application for light emitting diodes (LEDs) comprising only inorganic semi-conductor materials with control of the color point of the light
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L51/00, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L51/00, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L51/00, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L51/00, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Abstract

A device is provided with an array of a plurality of phosphor converted light emitting devices (LEDs) that produce broad spectrum light. The phosphor converted LEDs may produce light with different correlated color temperature (CCT) and are covered with an optical element that assists in mixing the light from the LEDs to produce a desired correlated color temperature. The phosphor converted LEDs may also be combined in an array with color LEDs. The color LEDs may be controlled to vary their brightness such that light with an approximately continuous broad spectrum is produced. By controlling the brightness of the color LEDs, light can be produced with a fixed brightness over a large range of white points with a high color rendering quality.

Description

    CROSS REFERENCE TO RELATED APPLICATION
  • [0001]
    The present application is a continuation of and claims priority to U.S. patent application Ser. No. 10/987,241, filed Nov. 12, 2004, entitled “Bonding an Optical Element to a Light Emitting Device”, by Michael D. Camras et al, which is incorporated herein by reference.
  • FIELD OF THE INVENTION
  • [0002]
    The present invention relates generally to light emitting devices and, more particularly, to an array of light emitting devices to produce a white light source.
  • BACKGROUND
  • [0003]
    Adding or mixing a number of different color light emitting devices (LEDs) can be used to produce light with a broad spectrum. The spectrum produced, however, consists of the peaks of the narrow band spectra produced by the individual LEDs. Consequently, the color rendering of such a light source is poor. White light sources with high color rendering, such as that produced by a halogen lamp, have a continuous or near continuous spectrum over the full visible light spectrum (400-700 nm).
  • [0004]
    Thus, a white light source with high color rendering that is produced using an array of LEDs is desired
  • SUMMARY
  • [0005]
    In accordance with one embodiment of the present invention, a plurality of phosphor converted light emitting devices may be combined in an array to obtain light with a desired correlated color temperature (CCT). In one embodiment, the phosphor converted light emitting devices produce light with different CCTs. An array of the plurality of phosphor converted light emitting devices may be covered with an optical element that optionally can be filled with a material that assists in light extraction and mixing the light to produce light with the desired CCT. In another embodiment, a plurality of color light emitting devices are combined with the plurality of phosphor converted light emitting devices and the brightness of the color light emitting devices are controlled to produce light with the desired characteristics.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • [0006]
    FIG. 1A illustrates a side view of an LED die mounted on a submount and an optical element that is to be bonded to the LED die.
  • [0007]
    FIG. 1B illustrates the optical element bonded to the LED die.
  • [0008]
    FIG. 2 illustrates an embodiment in which multiple LED dice are mounted to a submount and a separate optical element is bonded to each LED die.
  • [0009]
    FIG. 3 illustrates an embodiment in which multiple LED dice are mounted to a submount and a single optical element is bonded to the LED dice.
  • [0010]
    FIG. 4 is a flow chart of one implementation of producing such an LED device with wavelength converting material covering the optical element.
  • [0011]
    FIG. 5 illustrates an embodiment in which a layer of wavelength converting material is disposed between the bonding layer and the optical element.
  • [0012]
    FIG. 6 illustrates an embodiment in which a layer of wavelength converting material is deposited on the LED die.
  • [0013]
    FIG. 7 illustrates an array of LEDs, which are mounted on a board.
  • [0014]
    FIG. 8 is a graph of the broad spectrum produced by a phosphor converted blue LED.
  • [0015]
    FIG. 9 is a CIE chromaticity diagram for the spectrum shown in FIG. 8.
  • [0016]
    FIG. 10 is a graph of the spectra produced by phosphor converted LEDs and colored LEDs, which are combined to produce an approximately continuous spectrum.
  • [0017]
    FIG. 11 is a portion of a CIE chromaticity diagram that shows the variation in the CCT that may be produced by varying the brightness of the colored LEDs.
  • [0018]
    FIG. 12 is a portion of another CIE chromaticity diagram that illustrates variable CCT values for an array of 29 phosphor converted LEDs and 12 color LEDs.
  • DETAILED DESCRIPTION
  • [0019]
    FIG. 1A illustrates a side view of a transparent optical element 102 and a light emitting diode (LED) die 104 that is mounted on a submount 106. The optical element 102 is to be bonded to the LED die 104 in accordance with an embodiment of the present invention. FIG. 1B illustrates the optical element 102 bonded to the LED die 104.
  • [0020]
    The term “transparent” is used herein to indicate that the element so described, such as a “transparent optical element,” transmits light at the emission wavelengths of the LED with less than about 50%, preferably less than about 10%, single pass loss due to absorption or scattering. The emission wavelengths of the LED may lie in the infrared, visible, or ultraviolet regions of the electromagnetic spectrum. One of ordinary skill in the art will recognize that the conditions “less than 50% single pass loss” and “less than 10% single pass loss” may be met by various combinations of transmission path length and absorption constant.
  • [0021]
    LED die 104 illustrated in FIGS. 1A and 1B includes a first semiconductor layer 108 of n-type conductivity (n-layer) and a second semiconductor layer 110 of p-type conductivity (p-layer). Semiconductor layers 108 and 110 are electrically coupled to an active region 112. Active region 112 is, for example, a p-n diode junction associated with the interface of layers 108 and 110. Alternatively, active region 112 includes one or more semiconductor layers that are doped n-type or p-type or are undoped. LED die 104 includes an n-contact 114 and a p-contact 116 that are electrically coupled to semiconductor layers 108 and 110, respectively. Contact 114 and contact 116 are disposed on the same side of LED die 104 in a “flip chip” arrangement. A transparent superstrate 118 coupled to the n layer 108 is formed from a material such as, for example, sapphire, SiC, GaN, GaP, diamond, cubic zirconia (ZrO2), aluminum oxynitride (AlON), AlN, spinel, ZnS, oxide of tellurium, oxide of lead, oxide of tungsten, polycrystalline alumina oxide (transparent alumina), and ZnO.
  • [0022]
    Active region 112 emits light upon application of a suitable voltage across contacts 114 and 116. In alternative implementations, the conductivity types of layers 108 and 110, together with respective contacts 114 and 116, are reversed. That is, layer 108 is a p-type layer, contact 114 is a p-contact, layer 110 is an n-type layer, and contact 116 is an n-contact.
  • [0023]
    Semiconductor layers 108 and 110 and active region 112 may be formed from III-V semiconductors including but not limited to AlN, AlP, AlAs, AlSb, GaN, GaP, GaAs, GaSb, InN, InP, InAs, InSb, II-VI semiconductors including but not limited to ZnS, ZnSe, CdSe, ZnO, CdTe, group IV semiconductors including but not limited to Ge, Si, SiC, and mixtures or alloys thereof.
  • [0024]
    Contacts 114 and 116 are, in one implementation, metal contacts formed from metals including but not limited to gold, silver, nickel, aluminum, titanium, chromium, platinum, palladium, rhodium, rhenium, ruthenium, tungsten, and mixtures or alloys thereof.
  • [0025]
    Although FIGS. 1A and 1B illustrate a particular structure of LED die 104, the present invention is independent of the structure of the LED die. Accordingly, other types of LED configurations may be used instead of the specific configuration shown. Further, the number of semiconductor layers in LED die 104 and the detailed structure of active region 112 may differ. It should be noted that dimensions of the various elements of LED die 104 illustrated in the various figures are not to scale.
  • [0026]
    The LED die 104 is mounted to submount 106 via contacts elements 120, such as solder bumps, pads, or other appropriate elements, such as a layer of solder. Contact elements 120 will be sometimes referred to herein as bumps 120 for the sake of simplicity. Bumps 120 are manufactured from Au, Sn, Ag, Sb, Cu, Pb, Bi, Cd, In, Zn or alloys thereof including AuSn, SnSb, SnCu, SnAg, SnAgBi, InSn, BiPbSn, BiPbCd, BiPbIn, InCd, BiPb, BiSn, InAg, BiCd, InBi, InGa, or other appropriate material with a melting temperature that is greater than the temperature that will be used to bond the optical element 102 to the LED die 104, but is preferably Au or AuSn. In one implementation, the melting temperature of bumps 120 is greater than 250° C. and preferably greater than 300° C. The submount 106 may be, e.g., silicon, alumina or AlN and may include vias for backside connections.
  • [0027]
    The LED die 104 is mounted to the submount 106, e.g., using thermosonic bonding. For example, during the thermosonic bonding process, the LED die 104 with bumps 120 are aligned with the submount 106 in the desired position while the submount 106 is heated to approximately 150-160° C. A bond force of, e.g., approximately 50-100 gm/bump, is applied to the LED die 104 by a bonding tool, while ultrasonic vibration is applied. If desired other processes may be used, such as thermo-compression, to bond the LED die 104 to the submount 106. As is well known in the art, with thermo-compression higher temperatures and greater bonding forces are typically required.
  • [0028]
    In some embodiments, an underfill may be used with the LED die 104 and submount 106. The underfill material may have good thermal conductivity and have a coefficient of thermal expansion that approximately matches the LED die 104 and the submount 106. In another embodiment, a protective side coat, e.g., of silicone or other appropriate material, may be applied to the sides of the LED die 104 and the submount 106. The protective side coating acts as a sealant and limits exposure of the LED 104 and the bumps 120 to contamination and the environment.
  • [0029]
    For more information regarding producing bumps 120 from Au or Au/Sn and for submounts with backside vias and bonding LED dice with Au or Au/Sn bumps to a submount, see U.S. Ser. No. 10/840,459, by Ashim S. Haque, filed May 5, 2004, which has the same assignee as the present disclosure and is incorporated herein by reference. It should be understood, however, that the present invention is not limited to any specific type of submount and that any desired submount configuration may be used if desired.
  • [0030]
    After the LED die 104 is mounted to the submount 106, the optical element 102 is thermally bonded to the LED die 104. In one embodiment, a layer of bonding material is applied to the bottom surface of the optical element 102 to form transparent bonding layer 122 that is used to bond optical element 102 to LED die 104. In some embodiments, the transparent bonding layer 122 may be applied to the top surface of the LED die 104, e.g., to superstrate 118, (as indicated by the dotted lines 122 in FIG. 1A). The bonding layer 122 can be applied to the LED die 104 prior to or after mounting the LED die 104 to the submount 106. Alternatively, no bonding layer may be used and the optical element 102 may be bonded directly to the LED die 104, e.g., the superstrate 118. The transparent bonding layer 122 is, for example, about 10 Angstroms (Å) to about 100 microns (μm) thick, and is preferably about 1000 Å to about 10 μm thick, and more specifically, about 0.5 μm to about 5 μm thick. The bonding material is applied, for example, by conventional deposition techniques including but not limited to spinning, spraying, sputtering, evaporation, chemical vapor deposition (CVD), or material growth by, for example, metal-organic chemical vapor deposition (MOCVD), vapor phase epitaxy (VPE), liquid phase epitaxy (LPE), or molecular beam epitaxy (MBE). In one embodiment, the optical element 102 may be covered with a wavelength converting material 124, which will be discussed in more detail below.
  • [0031]
    In one implementation, the bonding material from which transparent bonding layer 122 is formed from glass such as SF59, LaSF 3, LaSF N18, SLAH51, LAF10, NZK7, NLAF21, LASFN35, SLAM60, or mixtures thereof, which are available from manufactures such as Schott Glass Technologies Incorporated, of Duryea, Pa. and Ohara Corporation in Somerville, N.J. Bonding layer 122 may also be formed from a high index glass, such as (Ge, As, Sb,Ga)(S,Se, Te, Cl, Br) chalcogenide or chalcogen-halogenide glasses, for example.
  • [0032]
    In other implementations, bonding layer 122 may be formed from III-V semiconductors including but not limited to GaP, InGaP, GaAs, and GaN; II-VI semiconductors including but not limited to ZnS, ZnSe, ZnTe, CdS, CdSe, and CdTe; group IV semiconductors and compounds including but not limited to Si, and Ge; organic semiconductors, metal oxides including but not limited to oxides of antimony, bismuth, boron, copper, niobium, tungsten, titanium, nickel, lead, tellurium, phosphor, potassium, sodium, lithium, zinc, zirconium, indium tin, or chromium; metal fluorides including but not limited to magnesium fluoride, calcium fluoride, potassium fluoride, sodium fluoride, and zinc fluoride; metals including but not limited to Zn, In, Mg, and Sn; yttrium aluminum garnet (YAG), phosphide compounds, arsenide compounds, antimonide compounds, nitride compounds, high index organic compounds; and mixtures or alloys thereof.
  • [0033]
    In implementations where the LED die 104 is configured with the n-contact and p-contact on opposite sides of the die 104, the transparent bonding layer 122 or 122′ may be patterned with, for example, conventional photolithographic and etching techniques to leave the top contact uncovered by bonding material and thus to permit contact to make electrical contact with a metallization layer on the optical element 102, which may serve as a lead, as is described in U.S. Ser. No. 09/880,204, filed Jun. 12, 2001, by Michael D. Camras et al., entitled “Light Emitting Diodes with Improved Light Extraction Efficiency” having Pub. No. 2002/0030194, which is incorporated herein by reference.
  • [0034]
    In one implementation, the optical element 102 is formed from optical glass, high index glass, GaP, CZ, ZnS, SiC, sapphire, diamond, cubic zirconia (ZrO2), AlON, by Sienna Technologies, Inc., polycrystalline aluminum oxide (transparent alumina), spinel, Schott glass LaFN21, Schott glass LaSFN35, LaF2, LaF3, and LaF10 available from Optimax Systems Inc. of Ontario, N.Y., an oxide of Pb, Te, Zn, Ga, Sb, Cu, Ca, P, La, Nb, or W, or any of the materials listed above for use as bonding materials in transparent bonding layer 122, excluding thick layers of the metals.
  • [0035]
    The transparent optical element 102 may have a shape and a size such that light entering optical element 102 from LED die 104 will intersect surface 102 a of optical element 102 at angles of incidence near normal incidence. Total internal reflection at the interface of surface 102 a and the ambient medium, typically air, is thereby reduced. In addition, since the range of angles of incidence is narrow, Fresnel reflection losses at surface 102 a can be reduced by applying a conventional antireflection coating to the surface 102 a. The shape of optical element 102 is, for example, a portion of a sphere such as a hemisphere, a Weierstrass sphere (truncated sphere), or a portion of a sphere less than a hemisphere. Alternatively, the shape of optical element 102 is a portion of an ellipsoid such as a truncated ellipsoid. The angles of incidence at surface 102 a for light entering optical element 102 from LED die 4 more closely approach normal incidence as the size of optical element 102 is increased. Accordingly, the smallest ratio of a length of the base of transparent optical element 102 to a length of the surface of LED die 104 is preferably greater than about 1, more preferably greater than about 2.
  • [0036]
    After the LED die 104 is mounted on the submount 106, the optical element 102 is thermally bonded to the LED die 104. For example, to bond the optical element 102 to the LED die 104, the temperature of bonding layer 122 is raised to a temperature between about room temperature and the melting temperature of the contact bumps 120, e.g., between approximately 150° C. to 450° C., and more particularly between about 200° C. and 400° C., and optical element 102 and LED die 104 are pressed together at the bonding temperature for a period of time of about one second to about 6 hours, preferably for about 30 seconds to about 30 minutes, at a pressure of about 1 pound per square inch (psi) to about 6000 psi. By way of example, a pressure of about 700 psi to about 3000 psi may be applied for between about 3 to 15 minutes.
  • [0037]
    The thermal bonding of the optical element 102 to the LED die 104 requires the application of elevated temperatures. With the use of bumps 120 that have a high melting point, i.e., higher than the elevated temperature used in the thermal bonding process, the LED die 104 may be mounted to the submount 106 before the optical element 102 is bonded to the LED die 104 without damaging the LED die/submount connection. Mounting the LED die 104 to the submount 106 prior to bonding the optical element 102 simplifies the pick and place process.
  • [0038]
    Bonding an optical element 102 to an LED die 104 is described in U.S. Pub. No. 2002/0030194; Ser. No. 10/633,054, filed Jul. 31, 2003, by Michael D. Camras et al., entitled “Light Emitting Devices with Improved Light Extraction Efficiency”; Ser. No. 09/660,317, filed Sep. 12, 2000, by Michael D. Camras et al., entitled “Light Emitting Diodes with Improved Light Extraction Efficiency; Ser. No. 09/823,841, filed Mar. 30, 2001, by Douglas Pocius, entitled “Forming an Optical Element on the Surface of a Light Emitting Device for Improved Light Extraction” having Pub. No. 2002/0141006, which have the same assignee as the present application and which are incorporated herein by reference. Further, the process of bonding optical element 102 to LED die 104 described above may be performed with devices disclosed in U.S. Pat. Nos. 5,502,316 and 5,376,580, incorporated herein by reference, previously used to bond semiconductor wafers to each other at elevated temperatures and pressures. The disclosed devices may be modified to accommodate LED dice and optical elements, as necessary. Alternatively, the bonding process described above may be performed with a conventional vertical press.
  • [0039]
    It should be noted that due to the thermal bonding process, a mismatch between the coefficient of thermal expansion (CTE) of optical element 102 and LED die 104 can cause optical element 102 to detach from LED die 104 upon heating or cooling. Accordingly, optical element 102 should be formed from a material having a CTE that approximately matches the CTE of LED die 104. Approximately matching the CTEs additionally reduces the stress induced in the LED die 104 by bonding layer 122 and optical element 102. With suitable CTE matching, thermal expansion does not limit the size of the LED die that may be bonded to the optical element and, thus, the optical element 102 may be bonded to a large LED die 104, e.g., up to 16 mm2 or larger.
  • [0040]
    FIG. 2 illustrates an embodiment in which multiple LED dice 204 a, 204 b, and 204 c (sometimes collectively referred to as LED dice 204) are mounted on a submount 206. The LED dice 204 are schematically illustrated in FIG. 2 without showing the specific semiconductor layers. Nevertheless, it should be understood that the LED dice 204 may be similar to LED die 104 discussed above.
  • [0041]
    The LED dice 204 are each mounted to submount 206 as described above. Once the LED dice 204 are mounted on submount 206, individual optical elements 202 a, 202 b, and 202 c are bonded to LED dice 204 a, 204 b, and 204 c, respectively, in a manner such as that described above.
  • [0042]
    If desired, the LED dice 204 may be the same type of LED and may produce the same wavelengths of light. In another implementation, one or more of the LED dice 204 may produce different wavelengths of light, which when combined may be used to produce light with a desired correlated color temperature (CCT), e.g., white light. Another optical element (not shown in FIG. 2) may be used to cover optical elements 202 a, 202 b, and 202 c and aid in mixing the light.
  • [0043]
    FIG. 3 illustrates an embodiment of an LED device 300 that includes multiple LED dice 304 a, 304 b, and 304 c (sometimes collectively referred to as LED dice 304) mounted on a submount 306 and a single optical element 302 bonded to the LED dice 304. The LED dice 304 may be similar to LED die 104 discussed above.
  • [0044]
    The use of a single optical element 302 with multiple LED dice 304, as shown in FIG. 3, is advantageous as the LED dice 304 can be mounted close together on submount 306. Optical components typically have a larger footprint than an LED die to which it is bonded, and thus, the placement of LED dice with separate optical elements is constrained by the size of the optical elements.
  • [0045]
    After the LED dice 304 are mounted to the submount, there may be slight height variations in the top surfaces of the LED dice 304, e.g., due to the differences in the height of the bumps 320 and thickness of the dice. When the single optical element 302 is thermally bonded to the LED dice 304, any differences in the height of the LED dice 304 may be accommodated by the compliance of the bumps 320.
  • [0046]
    During the thermal bonding process of the optical element 302 to the LED dice 304, the LED dice 304 may shift laterally due to the heating and cooling of the submount 306. With the use of some bumps 320, such as Au, the compliance of the bumps 320 can be inadequate to accommodate lateral shift of the LED dice 304. Accordingly, the coefficient of thermal expansion of the optical element 302 (CTE302) should approximately match the coefficient of thermal expansion of the submount 306 (CTE306). With an approximate match between CTE302 and CTE306 any movement of the LED dice 304 caused by the expansion and contraction of the submount 306 will be approximately matched by the expansion and contraction of the optical element 302. A mismatch between CTE302 and CTE306, on the other hand, can result in the detachment of the LED dice 304 from the optical element 302 or other damage to the LED device 300, during the heating and cooling of the thermal bonding process.
  • [0047]
    With the use of sufficiently small LED dice 304, the thermal expansion of the LED dice 304 themselves during the thermal bonding process may be minimized. With the use of large LED dice 304, however, the amount of thermal expansion of the LED dice 304 during the thermal bonding process may be large and thus, the CTE for the LED dice 304 also should be appropriately matched to the CTE of the submount 306.
  • [0048]
    The LED dice 304 may be, e.g., InGaN, AlInGaP, or a combination of InGaN and AlInGaP devices. In one implementation, the submount 302 may be manufactured from AlN, while the optical element 302 may be manufactured from, e.g., SLAM60 by Ohara Corporation, or NZK7 available from Schott Glass Technologies Incorporated. In another implementation, an Alumina submount 306 may be used along with an optical element 302 manufactured from sapphire, Ohara Glass SLAH51 or Schott glass NLAF21. In some implementations, a bulk filler 305 between the LED dice 304 and the submount 306 may be used. The bulk filler 305 may be, e.g., silicone or glass. The bulk filler 305 may have good thermal conductivity and may approximately match the CTE of the submount 306 and the dice 304. If desired, a protective side coating may be applied alternatively or in addition to the bulk filler 305.
  • [0049]
    In one implementation, all of the LED dice 304 may be the same type and produce different or approximately the same wavelengths of light. Alternatively, with an appropriate choice of LED dice 304 and/or wavelength conversion materials, different wavelengths of light may be produced, e.g., blue, green and red. When LED dice 304 are the same type, the CTE for the LED dice 304 will be approximately the same. It may be desirable for the CTE of the LED dice 304 to closely match the coefficient of thermal expansion of the optical element 302 and the submount 306 to minimize the risk of detachment or damage to the LED dice 304 during the thermal bonding process.
  • [0050]
    In another implementation, the LED dice 304 may be different types and produce different wavelengths of light. With the use of different types of LED dice, the CTE of the dice can vary making it difficult to match the CTE for all the LED dice 304 with that of the optical element 302 and the submount 306. Nevertheless, with a judicious choice of the optical element 302 and submount 306 with CTEs that are as close as possible to that of the LED dice 304, problems associated with detachment of the LED dice 304 or other damage to the device 300 during the thermal bonding process may be minimized. Additionally, with the use of relatively small LED dice 304, e.g., the area smaller than approximately 1 mm2, problems associated with thermal bonding a single optical element 302 to multiple dice 304 may also be reduced. The use of a bulk filler 305 may also prevent damage to the device during thermal processing or operation.
  • [0051]
    As shown in FIG. 3, in one implementation, the optical element 302 may be coated with a wavelength converting material 310, such as a phosphor coating. In one embodiment, the wavelength converting material 310 is YAG. FIG. 4 is a flow chart of one implementation of producing such a device. As illustrated in FIG. 4, the LED dice 304 are mounted to the submount 306 (step 402) and the optical element 302 is bonded to the LED dice 304 (step 404). After the optical element 302 is bonded to the LED dice 304, a layer of the wavelength converting material 310 is deposited over the optical element 302 (step 406). The device can then be tested, e.g., by applying a voltage across the active regions of the LED dice 304 and detecting the wavelengths of light produced by the device (step 408). If the device does not produce the desired wavelengths (step 410), the thickness of the wavelength converting material is altered (step 411), e.g., by depositing additional wavelength converting material 310 over the optical element 302 or by removing some of the wavelength converting material by etching or dissolution and the device is again tested (step 408). The process stops once the desired wavelengths of light are produced (step 412).
  • [0052]
    Thus, the thickness of the wavelength converting material 310 coating is controlled in response to the light produced by the LED dice 304 resulting in a highly reproducible correlated color temperature. Moreover, because the deposition of the wavelength converting material 310 is in response to the specific wavelengths produced by the LED dice 304, a variation in the wavelengths of light produced by LED dice 304 can be accommodated. Accordingly, fewer LED dice 304 will be rejected for producing light with wavelengths outside a useful range of wavelengths.
  • [0053]
    It should be understood that the process of coating the optical element with a wavelength converting material may be applied to the embodiments shown in FIGS. 1B and 2 as well.
  • [0054]
    In another implementation, the coating of wavelength converting material may be placed between the LED die and the optical element, e.g., within, over, or under the bonding layer 322. FIG. 5, by way of example, illustrates an LED die 502 mounted to a submount 504 and bonded to an optical element 506 via bonding layer 508, where a layer of wavelength converting material 510 is disposed between the bonding layer 508 and the optical element 506. The wavelength converting material 510 may be bonded to the bottom surface of the optical element 506 by bonding layer 509 prior to or during the bonding the optical element 506 to the LED die 502. The wavelength converting material 510 may be, e.g., a phosphor impregnated glass or wavelength converting ceramic that is formed independently and then bonded to the LED die 502 and optical element 506. In some embodiments, the wavelength converting material 510 may be bonded directly to one or both of the LED die 502 and optical element 506. In one embodiment, the optical element 506, LED die 502 and wavelength converting material 510 may be bonded together simultaneously. In another embodiment, the wavelength converting material 510 may be bonded first to the optical element 506 and subsequently bonded to the LED die 502, e.g., where the bonding layer 509 has a higher bonding temperature than the bonding layer 508. A suitable wavelength converting material, such as a phosphor impregnated glass, is discussed in more detail in U.S. Ser. No. 10/863,980, filed on Jun. 9, 2004, by Paul S. Martin et al., entitled “Semiconductor Light Emitting Device with Pre-Frabricated Wavelength Converting Element”, which has the same assignee as the present application and is incorporated herein by reference.
  • [0055]
    FIG. 6 illustrates another embodiment, similar to the embodiment shown in FIG. 5, except a wavelength converting material 520 is bonded directly to the LED die 502 (and optionally over the edges of the LED die 502) prior to or during bonding of the optical element 506. Thus, as shown in FIG. 6, the wavelength converting material 520 is placed between the LED die 502 and the bonding layer 509. If desired, an additional layer of wavelength converting material may be deposited over the optical element 506 in FIGS. 5 and 6, as discussed above.
  • [0056]
    In another implementation, the coating of wavelength converting material may be located over the LED die or dice remotely, e.g., on an envelope of glass, plastic, epoxy, or silicone with a hollow space between the envelope and the LED die or dice. If desired, the hollow space may be filled with a material such as silicone or epoxy.
  • [0057]
    Related U.S. patent application having Ser. No. application Ser. No. 10/987,241, filed Nov. 12, 2004, entitled “Bonding an Optical Element to a Light Emitting Device”, by Michael D. Camras et al, which has the same assignee as the present disclosure, and is incorporated herein by reference.
  • [0058]
    FIG. 7 illustrates an array 600 of LEDs 602, which are mounted on a board 604. The board 604 includes electrical traces 606 that are used to provide electrical contact to the LEDs 602. The LEDs 602 may be phosphor converted devices manufactured, e.g., as described above. The LEDs 602 may each produce white light with different CCTs. By mixing the white light with different CCTs in array 600, a light with a desired CCT may be produced. If desired, the LEDs 602 may be covered with a transparent element 608 of e.g., glass, plastic, epoxy, or silicone. The transparent element 608 may be filled, e.g., with epoxy or silicone, which assists the extracting and mixing of the light and to protect the LEDs 602. It should be understood that array 600 may include any number of LEDs 602 and that if desired, one or more of the LEDs may produce non-white light. Moreover, if desired, a plurality of the LEDs 602 may be bonded to a single optical element 603, or one or more of the LEDs 602 may not include optical element 603.
  • [0059]
    As illustrated in FIG. 7, individual or groups of LEDs 602 may be independently controlled, e.g., by controller 610, which is electrically connected to the traces 606 on the board 604. By independently controlling LEDs 602 or groups of LEDs 602, a high color rendering, e.g., over 85, with a constant brightness may be achieved. Further, the white points produced by the array 600 may be tuneable over a large range of CCT, e.g., between 3000K and 6000K. By way of example, a number of phosphor-converted (PC) blue LEDs that produce white light may be used in combination with LEDs with different colors, such as blue, cyan, amber and red to produce a light with a desired CCT. As shown in the graph of FIG. 8, the phosphor converted blue LEDs generates light with a broad spectrum 702 in the green area in combination with a peak in the blue region. The thickness of the phosphor may be tuned to produce approximately equal peak values for both the green and blue parts of the spectrum. FIG. 9 shows a CIE chromaticity diagram for the spectrum shown in FIG. 8, which illustrates the x and y color coordinates 752 above the black bodyline 754. Of course, PC LEDs that produce spectra having peaks in other area may be used if desired. Alternatively, if desired, PC LEDs that produce different spectra, i.e., white light having different CCTs may be used together.
  • [0060]
    A majority of the LEDs 602 in the array 600 of FIG. 7 may be PC LEDs that generate the spectrum shown in FIG. 8. The remaining LEDs 602 shown in FIG. 7 may be color LEDs, e.g., LEDs that produce blue, cyan, amber and red. The brightness of the color LEDs may be adjusted by controller 610. The combination of fully powered PC LEDs with colored LEDs generates an approximately continuous spectrum, as illustrated in FIG. 10. FIG. 10 shows a graph with the spectrum 702 from the PC LEDs along with spectra 704, 706, 708 and 710 from the blue, cyan, amber and red colored LEDs combined to form spectrum 720. As illustrated in the portion of the CIE chromaticity diagram shown in FIG. 11, by varying the brightness of the colored LEDs, an area that covers part of the black body line 764 can be obtained. By way of example, one embodiment that included 29 PC LEDs and 12 color LEDs, e.g., 3 blue, 3 cyan, 3 amber, and 3 red, is capable of producing a brightness of 800 lumen with a color rendering between 85 and 95 and a CCT between 3200K and 5800K. FIG. 12 illustrates a portion of the CIE chromaticity diagram that illustrates variable CCT values for an array of 29 PC LEDs and 12 color LEDs. Of course, any number of PC LEDs and color LEDs may be used.
  • [0061]
    Although the present invention is illustrated in connection with specific embodiments for instructional purposes, the present invention is not limited thereto. Various adaptations and modifications may be made without departing from the scope of the invention. Therefore, the spirit and scope of the appended claims should not be limited to the foregoing description.

Claims (25)

1. An apparatus comprising:
at least one phosphor converted light emitting device that produces light with a broad spectrum;
a plurality of color light emitting devices that produce light with a narrow spectrum; and
a controller for controlling the brightness of the light produced by the color light emitting devices, wherein the combination of the broad spectrum light produced by the at least one phosphor converted light emitting device and the narrow spectra light from the brightness controlled plurality of color light emitting devices produces a resulting spectrum that is more continuous than the broad spectrum produced by the at least one phosphor converted light emitting devices.
2. The apparatus of claim 1, further comprising a board, the at least one phosphor converted light emitting device and the plurality of color light emitting devices are mounted on the board.
3. The apparatus of claim 1, wherein there is a greater number of phosphor converted light emitting devices than color light emitting devices.
4. The apparatus of claim 3, wherein there is over twice as many phosphor converted light emitting devices as color light emitting devices.
5. The apparatus of claim 1, wherein the color light emitting devices produce blue, cyan, amber and red light.
6. The apparatus of claim 1, wherein the controller individually controls the brightness of the color light emitting devices to vary the correlated color temperature of the resulting spectrum.
7. A method comprising:
providing at least one phosphor converted light emitting device that produces light with a broad spectrum;
providing a plurality of color light emitting devices, each of which produces light with a narrow spectrum;
mixing the light produced by the at least one phosphor converted light emitting device and the plurality of color light emitting devices to produce light with a resulting spectrum that is more continuous than the broad spectrum produced by the at least one phosphor converted light emitting devices;
controlling the brightness of the light produced by the plurality of color light emitting devices to vary the correlated color temperature of the resulting spectrum.
8. The method of claim 7, further providing a board and mounting the at least one phosphor converted light emitting device and the plurality of color light emitting devices on the board.
9. The method of claim 7, wherein a greater number of phosphor converted light emitting devices are provided than color light emitting devices.
10. The method of claim 9, wherein over twice as many phosphor converted light emitting devices as color light emitting devices are provided.
11. The method of claim 7, wherein the color light emitting devices produce blue, cyan, amber and red light.
12. The method of claim 7, wherein the brightness of the light produced by each color light emitting device is controlled separately to vary the correlated color temperature.
13. The method of claim 7, wherein the brightness of each different colored light produced by the color light emitting devices is controlled separately to vary the correlated color temperature.
14. A method comprising:
providing a plurality of phosphor converted light emitting devices that produce light with a broad spectrum, the phosphor converted light emitting devices producing light with different correlated color temperature;
arranging the plurality of phosphor converted light emitting devices in an array; and
covering the array of phosphor converted light emitting devices with an optical element that assists mixing of the light with different correlated color temperatures to produce light with a desired correlated color temperature.
15. The method of claim 14, wherein the optical element is bonded to the phosphor converted light emitting devices.
16. The method of claim 14, wherein the optical element is a dome mounted over the phosphor converted light emitting devices and filled with an encapsulant.
17. The method of claim 14, wherein arranging the plurality of phosphor converted light emitting devices comprises mounting the plurality of phosphor converted light emitting devices to a board.
18. The method of claim 14, the method further comprising:
providing a plurality of color light emitting devices, each of which produces light with a narrow spectrum;
arranging the plurality of color light emitting devices in the array with the plurality of phosphor converted light emitting devices.
19. The method of claim 18, further comprising controlling the brightness of the light produced by the plurality of color light emitting devices to vary the correlated color temperature of the resulting spectrum.
20. An apparatus that produces broadband light with a desired correlated color temperature, the apparatus comprising:
an array of a plurality of phosphor converted light emitting devices that produce light with a broad spectrum with different correlated color temperatures; and
an optical element disposed over the array of the plurality of phosphor converted light emitting devices, the optical element mixing the light with different correlated color temperatures to produce light with the desired correlated color temperature.
21. The apparatus of claim 20, wherein the optical element is bonded to the phosphor converted light emitting devices.
22. The apparatus of claim 20, wherein the optical element is a dome mounted over the phosphor converted light emitting devices and filled with an encapsulant.
23. The apparatus of claim 20, further comprising a board to which the array of the plurality of phosphor converted light emitting devices is mounted.
24. The apparatus of claim 20, wherein the array further comprises a plurality of color light emitting devices.
25. The apparatus of claim 24, the apparatus further comprising a controller for controlling the brightness of the light produced by the plurality of color light emitting devices to vary the correlated color temperature to the desired correlated color temperature.
US11297287 2004-11-12 2005-12-07 Array of light emitting devices to produce a white light source Abandoned US20060105482A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10987241 US7419839B2 (en) 2004-11-12 2004-11-12 Bonding an optical element to a light emitting device
US11297287 US20060105482A1 (en) 2004-11-12 2005-12-07 Array of light emitting devices to produce a white light source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11297287 US20060105482A1 (en) 2004-11-12 2005-12-07 Array of light emitting devices to produce a white light source

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10987241 Continuation US7419839B2 (en) 2004-11-12 2004-11-12 Bonding an optical element to a light emitting device

Publications (1)

Publication Number Publication Date
US20060105482A1 true true US20060105482A1 (en) 2006-05-18

Family

ID=35709278

Family Applications (6)

Application Number Title Priority Date Filing Date
US10987241 Active 2025-07-04 US7419839B2 (en) 2004-11-12 2004-11-12 Bonding an optical element to a light emitting device
US11297287 Abandoned US20060105482A1 (en) 2004-11-12 2005-12-07 Array of light emitting devices to produce a white light source
US12099021 Abandoned US20080186702A1 (en) 2004-11-12 2008-04-07 Array of Light Emitting Devices to Produce a White Light Source
US12686209 Active US8067254B2 (en) 2004-11-12 2010-01-12 Common optical element for an array of phosphor converted light emitting devices
US13288291 Active US8748912B2 (en) 2004-11-12 2011-11-03 Common optical element for an array of phosphor converted light emitting devices
US13936850 Active US8846423B2 (en) 2004-11-12 2013-07-08 Bonding an optical element to a light emitting device

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10987241 Active 2025-07-04 US7419839B2 (en) 2004-11-12 2004-11-12 Bonding an optical element to a light emitting device

Family Applications After (4)

Application Number Title Priority Date Filing Date
US12099021 Abandoned US20080186702A1 (en) 2004-11-12 2008-04-07 Array of Light Emitting Devices to Produce a White Light Source
US12686209 Active US8067254B2 (en) 2004-11-12 2010-01-12 Common optical element for an array of phosphor converted light emitting devices
US13288291 Active US8748912B2 (en) 2004-11-12 2011-11-03 Common optical element for an array of phosphor converted light emitting devices
US13936850 Active US8846423B2 (en) 2004-11-12 2013-07-08 Bonding an optical element to a light emitting device

Country Status (3)

Country Link
US (6) US7419839B2 (en)
JP (5) JP2006352061A (en)
EP (1) EP1657757B1 (en)

Cited By (104)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040227149A1 (en) * 2003-04-30 2004-11-18 Cree, Inc. High powered light emitter packages with compact optics
US20060001056A1 (en) * 2004-07-02 2006-01-05 Cree, Inc. LED with substrate modifications for enhanced light extraction and method of making same
US20060138435A1 (en) * 2003-05-01 2006-06-29 Cree, Inc. Multiple component solid state white light
US7213940B1 (en) 2005-12-21 2007-05-08 Led Lighting Fixtures, Inc. Lighting device and lighting method
US20070115228A1 (en) * 2005-11-18 2007-05-24 Roberts John K Systems and methods for calibrating solid state lighting panels
US20070115671A1 (en) * 2005-11-18 2007-05-24 Roberts John K Solid state lighting units and methods of forming solid state lighting units
US20070139920A1 (en) * 2005-12-21 2007-06-21 Led Lighting Fixtures, Inc. Lighting device and lighting method
US20070170447A1 (en) * 2006-01-20 2007-07-26 Led Lighting Fixtures, Inc. Shifting spectral content in solid state light emitters by spatially separating lumiphor films
US20070223219A1 (en) * 2005-01-10 2007-09-27 Cree, Inc. Multi-chip light emitting device lamps for providing high-cri warm white light and light fixtures including the same
US20070236911A1 (en) * 2005-12-22 2007-10-11 Led Lighting Fixtures, Inc. Lighting device
US20070267983A1 (en) * 2006-04-18 2007-11-22 Led Lighting Fixtures, Inc. Lighting device and lighting method
US20070278934A1 (en) * 2006-04-18 2007-12-06 Led Lighting Fixtures, Inc. Lighting device and lighting method
US20070278974A1 (en) * 2006-05-31 2007-12-06 Led Lighting Fixtures, Inc. Lighting device with color control, and method of lighting
US20080080196A1 (en) * 2006-09-30 2008-04-03 Ruud Lighting, Inc. LED Floodlight Fixture
US20080078524A1 (en) * 2006-09-30 2008-04-03 Ruud Lighting, Inc. Modular LED Units
US20080084685A1 (en) * 2006-08-23 2008-04-10 Led Lighting Fixtures, Inc. Lighting device and lighting method
US20080106895A1 (en) * 2006-11-07 2008-05-08 Led Lighting Fixtures, Inc. Lighting device and lighting method
US20080130265A1 (en) * 2006-11-30 2008-06-05 Led Lighting Fixtures, Inc. Lighting device and lighting method
US20080130285A1 (en) * 2006-12-01 2008-06-05 Led Lighting Fixtures, Inc. Lighting device and lighting method
US20080136313A1 (en) * 2006-12-07 2008-06-12 Led Lighting Fixtures, Inc. Lighting device and lighting method
US20080191643A1 (en) * 2007-02-14 2008-08-14 Cree, Inc. Systems and Methods for Split Processor Control in a Solid State Lighting Panel
US20080239722A1 (en) * 2007-04-02 2008-10-02 Ruud Lighting, Inc. Light-Directing LED Apparatus
US20080259589A1 (en) * 2007-02-22 2008-10-23 Led Lighting Fixtures, Inc. Lighting devices, methods of lighting, light filters and methods of filtering light
US20080278928A1 (en) * 2007-05-08 2008-11-13 Cree Led Lighting Solutions, Inc. Lighting device and lighting method
US20080278940A1 (en) * 2007-05-08 2008-11-13 Cree Led Lighting Solutions, Inc. Lighting device and lighting method
US20080291669A1 (en) * 2007-05-21 2008-11-27 Cree, Inc. Solid state lighting panels with limited color gamut and methods of limiting color gamut in solid state lighting panels
US20080304261A1 (en) * 2007-05-08 2008-12-11 Cree Led Lighting Solutions, Inc. Lighting device and lighting method
US20080304260A1 (en) * 2007-05-08 2008-12-11 Cree Led Lighting Solutions, Inc. Lighting device and lighting method
US20080310154A1 (en) * 2007-05-08 2008-12-18 Cree Led Lighting Solutions, Inc. Lighting device and lighting method
US20090021139A1 (en) * 2006-09-13 2009-01-22 Led Lighting Fixtures, Inc. Lighting device
US20090033612A1 (en) * 2007-07-31 2009-02-05 Roberts John K Correction of temperature induced color drift in solid state lighting displays
US20090039365A1 (en) * 2007-08-07 2009-02-12 Andrews Peter S Semiconductor light emitting devices with applied wavelength conversion materials and methods of forming the same
US20090040674A1 (en) * 2007-08-10 2009-02-12 Cree, Inc. Systems and methods for protecting display components from adverse operating conditions
US20090121241A1 (en) * 2007-11-14 2009-05-14 Cree, Inc. Wire bond free wafer level LED
US20090152573A1 (en) * 2007-12-14 2009-06-18 Cree, Inc. Textured encapsulant surface in LED packages
US20090160363A1 (en) * 2007-11-28 2009-06-25 Cree Led Lighting Solutions, Inc. Solid state lighting devices and methods of manufacturing the same
US20090184662A1 (en) * 2008-01-23 2009-07-23 Cree Led Lighting Solutions, Inc. Dimming signal generation and methods of generating dimming signals
US20090184616A1 (en) * 2007-10-10 2009-07-23 Cree Led Lighting Solutions, Inc. Lighting device and method of making
US20090236619A1 (en) * 2008-03-19 2009-09-24 Arpan Chakroborty Light Emitting Diodes with Light Filters
US20090246895A1 (en) * 2008-03-28 2009-10-01 Cree, Inc. Apparatus and methods for combining light emitters
US20090290360A1 (en) * 2008-05-23 2009-11-26 Ruud Lighting, Inc. Lens with tir for off-axial light distribution
US20090296384A1 (en) * 2006-12-01 2009-12-03 Cree Led Lighting Solutions, Inc. Lighting device and lighting method
US20100079059A1 (en) * 2006-04-18 2010-04-01 John Roberts Solid State Lighting Devices Including Light Mixtures
US7821194B2 (en) 2006-04-18 2010-10-26 Cree, Inc. Solid state lighting devices including light mixtures
US7841750B2 (en) 2008-08-01 2010-11-30 Ruud Lighting, Inc. Light-directing lensing member with improved angled light distribution
US20100302786A1 (en) * 2008-05-23 2010-12-02 Ruud Lighting, Inc. Lens with controlled backlight management
US20110031894A1 (en) * 2009-08-04 2011-02-10 Cree Led Lighting Solutions, Inc. Lighting device having first, second and third groups of solid state light emitters, and lighting arrangement
US20110037080A1 (en) * 2009-02-19 2011-02-17 David Todd Emerson Methods for combining light emitting devices in a package and packages including combined light emitting devices
US20110037409A1 (en) * 2009-08-14 2011-02-17 Cree Led Lighting Solutions, Inc. High efficiency lighting device including one or more saturated light emitters, and method of lighting
US7926300B2 (en) 2005-11-18 2011-04-19 Cree, Inc. Adaptive adjustment of light output of solid state lighting panels
US7967652B2 (en) 2009-02-19 2011-06-28 Cree, Inc. Methods for combining light emitting devices in a package and packages including combined light emitting devices
US7997745B2 (en) 2006-04-20 2011-08-16 Cree, Inc. Lighting device and lighting method
US8008676B2 (en) 2006-05-26 2011-08-30 Cree, Inc. Solid state light emitting device and method of making same
US20110227469A1 (en) * 2010-03-03 2011-09-22 Cree, Inc. Led lamp with remote phosphor and diffuser configuration utilizing red emitters
US20110246886A1 (en) * 2008-11-28 2011-10-06 Creative Technology Ltd Apparatus and method for controlling a sound reproduction apparatus
US8120240B2 (en) 2005-01-10 2012-02-21 Cree, Inc. Light emission device and method utilizing multiple emitters
US8240875B2 (en) 2008-06-25 2012-08-14 Cree, Inc. Solid state linear array modules for general illumination
US8329482B2 (en) 2010-04-30 2012-12-11 Cree, Inc. White-emitting LED chips and method for making same
US8337030B2 (en) 2009-05-13 2012-12-25 Cree, Inc. Solid state lighting devices having remote luminescent material-containing element, and lighting methods
US8337071B2 (en) 2005-12-21 2012-12-25 Cree, Inc. Lighting device
US20130126921A1 (en) * 2011-11-18 2013-05-23 Invensas Corporation Inverted optical device
US8466611B2 (en) 2009-12-14 2013-06-18 Cree, Inc. Lighting device with shaped remote phosphor
US8508116B2 (en) 2010-01-27 2013-08-13 Cree, Inc. Lighting device with multi-chip light emitters, solid state light emitter support members and lighting elements
US8514210B2 (en) 2005-11-18 2013-08-20 Cree, Inc. Systems and methods for calibrating solid state lighting panels using combined light output measurements
US8556469B2 (en) 2010-12-06 2013-10-15 Cree, Inc. High efficiency total internal reflection optic for solid state lighting luminaires
US8562161B2 (en) 2010-03-03 2013-10-22 Cree, Inc. LED based pedestal-type lighting structure
US8596819B2 (en) 2006-05-31 2013-12-03 Cree, Inc. Lighting device and method of lighting
USD697664S1 (en) 2012-05-07 2014-01-14 Cree, Inc. LED lens
US8684559B2 (en) 2010-06-04 2014-04-01 Cree, Inc. Solid state light source emitting warm light with high CRI
US20140091348A1 (en) * 2012-10-03 2014-04-03 Nitto Denko Corporation Encapsulating sheet-covered semiconductor element, producing method thereof, semiconductor device, and producing method thereof
US8823630B2 (en) 2007-12-18 2014-09-02 Cree, Inc. Systems and methods for providing color management control in a lighting panel
US8882284B2 (en) 2010-03-03 2014-11-11 Cree, Inc. LED lamp or bulb with remote phosphor and diffuser configuration with enhanced scattering properties
US8896197B2 (en) 2010-05-13 2014-11-25 Cree, Inc. Lighting device and method of making
USD718490S1 (en) 2013-03-15 2014-11-25 Cree, Inc. LED lens
US8901845B2 (en) 2009-09-24 2014-12-02 Cree, Inc. Temperature responsive control for lighting apparatus including light emitting devices providing different chromaticities and related methods
US8921876B2 (en) 2009-06-02 2014-12-30 Cree, Inc. Lighting devices with discrete lumiphor-bearing regions within or on a surface of remote elements
US8931933B2 (en) 2010-03-03 2015-01-13 Cree, Inc. LED lamp with active cooling element
US8967821B2 (en) 2009-09-25 2015-03-03 Cree, Inc. Lighting device with low glare and high light level uniformity
US9028087B2 (en) 2006-09-30 2015-05-12 Cree, Inc. LED light fixture
US9057511B2 (en) 2010-03-03 2015-06-16 Cree, Inc. High efficiency solid state lamp and bulb
US9062830B2 (en) 2010-03-03 2015-06-23 Cree, Inc. High efficiency solid state lamp and bulb
US9068701B2 (en) 2012-01-26 2015-06-30 Cree, Inc. Lamp structure with remote LED light source
US9217553B2 (en) 2007-02-21 2015-12-22 Cree, Inc. LED lighting systems including luminescent layers on remote reflectors
US9234655B2 (en) 2011-02-07 2016-01-12 Cree, Inc. Lamp with remote LED light source and heat dissipating elements
US9243794B2 (en) 2006-09-30 2016-01-26 Cree, Inc. LED light fixture with fluid flow to and from the heat sink
US9255686B2 (en) 2009-05-29 2016-02-09 Cree, Inc. Multi-lens LED-array optic system
WO2016022612A1 (en) * 2014-08-04 2016-02-11 Innosys, Inc. Lighting systems
US9275979B2 (en) 2010-03-03 2016-03-01 Cree, Inc. Enhanced color rendering index emitter through phosphor separation
US9310030B2 (en) 2010-03-03 2016-04-12 Cree, Inc. Non-uniform diffuser to scatter light into uniform emission pattern
US9316361B2 (en) 2010-03-03 2016-04-19 Cree, Inc. LED lamp with remote phosphor and diffuser configuration
US9353917B2 (en) 2012-09-14 2016-05-31 Cree, Inc. High efficiency lighting device including one or more solid state light emitters, and method of lighting
US9412926B2 (en) 2005-06-10 2016-08-09 Cree, Inc. High power solid-state lamp
US9423096B2 (en) 2008-05-23 2016-08-23 Cree, Inc. LED lighting apparatus
US9435493B2 (en) 2009-10-27 2016-09-06 Cree, Inc. Hybrid reflector system for lighting device
US9488359B2 (en) 2012-03-26 2016-11-08 Cree, Inc. Passive phase change radiators for LED lamps and fixtures
US9500325B2 (en) 2010-03-03 2016-11-22 Cree, Inc. LED lamp incorporating remote phosphor with heat dissipation features
US9523479B2 (en) 2014-01-03 2016-12-20 Cree, Inc. LED lens
US9541258B2 (en) 2012-02-29 2017-01-10 Cree, Inc. Lens for wide lateral-angle distribution
US9541246B2 (en) 2006-09-30 2017-01-10 Cree, Inc. Aerodynamic LED light fixture
US9541257B2 (en) 2012-02-29 2017-01-10 Cree, Inc. Lens for primarily-elongate light distribution
US9553230B2 (en) 2013-01-31 2017-01-24 Panasonic Intellectual Property Management Co., Ltd. Method and apparatus for fabricating light emitting apparatus
US9648673B2 (en) 2010-11-05 2017-05-09 Cree, Inc. Lighting device with spatially segregated primary and secondary emitters
US9788387B2 (en) 2015-09-15 2017-10-10 Biological Innovation & Optimization Systems, LLC Systems and methods for controlling the spectral content of LED lighting devices
US9844116B2 (en) 2015-09-15 2017-12-12 Biological Innovation & Optimization Systems, LLC Systems and methods for controlling the spectral content of LED lighting devices

Families Citing this family (91)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006519500A (en) 2003-02-26 2006-08-24 クリー インコーポレイテッドCree Inc. Synthesis white light source and a method of manufacturing the same
US7419839B2 (en) * 2004-11-12 2008-09-02 Philips Lumileds Lighting Company, Llc Bonding an optical element to a light emitting device
US7462502B2 (en) * 2004-11-12 2008-12-09 Philips Lumileds Lighting Company, Llc Color control by alteration of wavelength converting element
US9793247B2 (en) * 2005-01-10 2017-10-17 Cree, Inc. Solid state lighting component
US7821023B2 (en) 2005-01-10 2010-10-26 Cree, Inc. Solid state lighting component
US7341878B2 (en) * 2005-03-14 2008-03-11 Philips Lumileds Lighting Company, Llc Wavelength-converted semiconductor light emitting device
US8748923B2 (en) * 2005-03-14 2014-06-10 Philips Lumileds Lighting Company Llc Wavelength-converted semiconductor light emitting device
KR20060115453A (en) * 2005-05-06 2006-11-09 삼성전자주식회사 Heat dissipating structure and light emitting device having the same
US8669572B2 (en) 2005-06-10 2014-03-11 Cree, Inc. Power lamp package
DE102005061798A1 (en) * 2005-09-30 2007-04-05 Osram Opto Semiconductors Gmbh Lighting arrangement has radiation-emitting diode with two beam-shaping optical elements that deviate part of the light from the optical axis
KR100752713B1 (en) * 2005-10-10 2007-08-29 삼성전기주식회사 Wafer level chip scale package of image sensor and manufacturing method thereof
CN101385145B (en) 2006-01-05 2011-06-08 伊鲁米特克斯公司 Separate optical device for directing light from an LED
US20090014733A1 (en) * 2006-03-06 2009-01-15 Koninklijke Philips Electronics N.V. Light-emitting diode module
US7675145B2 (en) * 2006-03-28 2010-03-09 Cree Hong Kong Limited Apparatus, system and method for use in mounting electronic elements
US9335006B2 (en) * 2006-04-18 2016-05-10 Cree, Inc. Saturated yellow phosphor converted LED and blue converted red LED
US8748915B2 (en) 2006-04-24 2014-06-10 Cree Hong Kong Limited Emitter package with angled or vertical LED
WO2007127029A3 (en) 2006-04-24 2008-01-17 Cree Inc Side-view surface mount white led
US7635915B2 (en) 2006-04-26 2009-12-22 Cree Hong Kong Limited Apparatus and method for use in mounting electronic elements
US20070269586A1 (en) * 2006-05-17 2007-11-22 3M Innovative Properties Company Method of making light emitting device with silicon-containing composition
WO2007144809A1 (en) * 2006-06-14 2007-12-21 Philips Intellectual Property & Standards Gmbh Lighting device
US8735920B2 (en) 2006-07-31 2014-05-27 Cree, Inc. Light emitting diode package with optical element
US8367945B2 (en) 2006-08-16 2013-02-05 Cree Huizhou Opto Limited Apparatus, system and method for use in mounting electronic elements
US8092735B2 (en) 2006-08-17 2012-01-10 3M Innovative Properties Company Method of making a light emitting device having a molded encapsulant
US7789531B2 (en) 2006-10-02 2010-09-07 Illumitex, Inc. LED system and method
KR20080049947A (en) * 2006-12-01 2008-06-05 엘지전자 주식회사 Broadcasting system and interfacing method, and data structure
US7902560B2 (en) * 2006-12-15 2011-03-08 Koninklijke Philips Electronics N.V. Tunable white point light source using a wavelength converting element
US9711703B2 (en) * 2007-02-12 2017-07-18 Cree Huizhou Opto Limited Apparatus, system and method for use in mounting electronic elements
US20080197369A1 (en) * 2007-02-20 2008-08-21 Cree, Inc. Double flip semiconductor device and method for fabrication
KR100850780B1 (en) * 2007-05-22 2008-08-06 삼성전기주식회사 Method for forming the nitride semiconductor light emitting device
US20090075843A1 (en) * 2007-09-14 2009-03-19 Iii-N Technology, Inc. Biological Sensor System
CN101388161A (en) * 2007-09-14 2009-03-18 科锐香港有限公司 LED surface mounting device and LED display with the device
US20090085051A1 (en) * 2007-10-01 2009-04-02 Chung-Chuan Hsieh Light emitting diode device
US9070850B2 (en) * 2007-10-31 2015-06-30 Cree, Inc. Light emitting diode package and method for fabricating same
US8866169B2 (en) * 2007-10-31 2014-10-21 Cree, Inc. LED package with increased feature sizes
US20120187862A1 (en) * 2007-10-31 2012-07-26 Jeffrey Carl Britt Light emitting die (led) packages and related methods
CN101878540B (en) * 2007-11-29 2013-11-06 日亚化学工业株式会社 Light-emitting device and its manufacturing method
USD633631S1 (en) 2007-12-14 2011-03-01 Cree Hong Kong Limited Light source of light emitting diode
USD634863S1 (en) 2008-01-10 2011-03-22 Cree Hong Kong Limited Light source of light emitting diode
KR20100122485A (en) 2008-02-08 2010-11-22 일루미텍스, 인크. System and method for emitter layer shaping
US8049230B2 (en) * 2008-05-16 2011-11-01 Cree Huizhou Opto Limited Apparatus and system for miniature surface mount devices
US20100019260A1 (en) * 2008-07-24 2010-01-28 Koninklijke Philips Electronics N.V. Semiconductor light emitting device including a window layer and a light-directing structure
EP2326868A1 (en) * 2008-09-16 2011-06-01 Koninklijke Philips Electronics N.V. Colour mixing method for consistent colour quality
JP5227135B2 (en) * 2008-10-10 2013-07-03 スタンレー電気株式会社 The semiconductor light emitting device and manufacturing method thereof
US9425172B2 (en) * 2008-10-24 2016-08-23 Cree, Inc. Light emitter array
US8791471B2 (en) * 2008-11-07 2014-07-29 Cree Hong Kong Limited Multi-chip light emitting diode modules
US20100127289A1 (en) * 2008-11-26 2010-05-27 Bridgelux, Inc. Method and Apparatus for Providing LED Package with Controlled Color Temperature
US8115217B2 (en) 2008-12-11 2012-02-14 Illumitex, Inc. Systems and methods for packaging light-emitting diode devices
US20110037083A1 (en) * 2009-01-14 2011-02-17 Alex Chi Keung Chan Led package with contrasting face
US8368112B2 (en) 2009-01-14 2013-02-05 Cree Huizhou Opto Limited Aligned multiple emitter package
CN101800219A (en) * 2009-02-09 2010-08-11 晶元光电股份有限公司 Luminescent element
JP2010212508A (en) * 2009-03-11 2010-09-24 Sony Corp Light emitting element mounting package, light emitting device, backlight, and liquid crystal display
JP5689225B2 (en) * 2009-03-31 2015-03-25 日亜化学工業株式会社 The light-emitting device
KR20120027320A (en) 2009-05-08 2012-03-21 오스람 실바니아 인코포레이티드 Led light engine and method of manufacture thereof
US9786811B2 (en) 2011-02-04 2017-10-10 Cree, Inc. Tilted emission LED array
US8415692B2 (en) 2009-07-06 2013-04-09 Cree, Inc. LED packages with scattering particle regions
US8598809B2 (en) * 2009-08-19 2013-12-03 Cree, Inc. White light color changing solid state lighting and methods
US8585253B2 (en) 2009-08-20 2013-11-19 Illumitex, Inc. System and method for color mixing lens array
US8449128B2 (en) 2009-08-20 2013-05-28 Illumitex, Inc. System and method for a lens and phosphor layer
US20110062469A1 (en) * 2009-09-17 2011-03-17 Koninklijke Philips Electronics N.V. Molded lens incorporating a window element
US8236687B2 (en) 2009-11-27 2012-08-07 Industrial Technology Research Institute Die-bonding method of LED chip and LED manufactured by the same
US8511851B2 (en) * 2009-12-21 2013-08-20 Cree, Inc. High CRI adjustable color temperature lighting devices
RU2012140460A (en) * 2010-02-23 2014-03-27 Юниверсити Оф Флорида Рисерч Фаундейшн, Инк. Mikropolostnye OLEDs for lighting
KR101192181B1 (en) * 2010-03-31 2012-10-17 (주)포인트엔지니어링 Optical Element Device and Fabricating Method Thereof
DE102010023343A1 (en) 2010-06-10 2011-12-15 Osram Opto Semiconductors Gmbh Radiation-emitting semiconductor body, method for manufacturing a radiation-emitting semiconductor body and radiation-emitting semiconductor component
DE102010023342A1 (en) * 2010-06-10 2011-12-15 Osram Opto Semiconductors Gmbh LED array and light source in particular with such a light emitting diode array
US20120014091A1 (en) * 2010-07-14 2012-01-19 Shenzhen China Star Optoelectronics Technology Co Ltd. Led package assembly and backlight module
US9732930B2 (en) * 2010-07-20 2017-08-15 Panasonic Intellectual Property Management Co., Ltd. Light bulb shaped lamp
KR20120054484A (en) * 2010-11-19 2012-05-30 엘지이노텍 주식회사 Light emitting device package and method of fabricating the same
DE102010055265A1 (en) * 2010-12-20 2012-06-21 Osram Opto Semiconductors Gmbh The optoelectronic semiconductor component
USD700584S1 (en) 2011-07-06 2014-03-04 Cree, Inc. LED component
KR101500027B1 (en) 2011-07-27 2015-03-18 엘지이노텍 주식회사 Semiconductor light emitting device
US20130075769A1 (en) * 2011-09-22 2013-03-28 Ledengin, Inc. Selection of phosphors and leds in a multi-chip emitter for a single white color bin
DE102011114641A1 (en) * 2011-09-30 2013-04-04 Osram Opto Semiconductors Gmbh An optoelectronic semiconductor device and method for producing an optoelectronic semiconductor component,
US8564004B2 (en) 2011-11-29 2013-10-22 Cree, Inc. Complex primary optics with intermediate elements
US20130170174A1 (en) * 2011-12-29 2013-07-04 Intematix Technology Center Corp. Multi-cavities light emitting device
US20130265759A1 (en) * 2012-04-09 2013-10-10 Delta Electronics, Inc. Light emitting module
US9198251B2 (en) 2012-07-18 2015-11-24 Koninklijke Philips N.V. Tunable correlated color temperature LED-based white light source with mixing chamber and remote phosphor exit window
US9177884B2 (en) 2012-10-09 2015-11-03 Avago Technologies General Ip (Singapore) Pte. Ltd. Two-sided-access extended wafer-level ball grid array (eWLB) package, assembly and method
DE102012112307A1 (en) * 2012-12-14 2014-06-18 Osram Opto Semiconductors Gmbh An optoelectronic semiconductor device and method for producing an optoelectronic semiconductor component,
US8845380B2 (en) * 2012-12-17 2014-09-30 Xicato, Inc. Automated color tuning of an LED based illumination device
US8870617B2 (en) 2013-01-03 2014-10-28 Xicato, Inc. Color tuning of a multi-color LED based illumination device
JP6241192B2 (en) * 2013-10-18 2017-12-06 株式会社リコー Image processing apparatus, an image processing system, image processing method, program and recording medium
US9142746B2 (en) * 2013-11-11 2015-09-22 Avago Technologies General Ip (Singapore) Pte. Ltd. Light-emitting diodes on a wafer-level package
US9305908B2 (en) 2014-03-14 2016-04-05 Avago Technologies General Ip (Singapore) Pte. Ltd. Methods for performing extended wafer-level packaging (eWLP) and eWLP devices made by the methods
US9443835B2 (en) 2014-03-14 2016-09-13 Avago Technologies General Ip (Singapore) Pte. Ltd. Methods for performing embedded wafer-level packaging (eWLP) and eWLP devices, packages and assemblies made by the methods
US9541503B2 (en) 2014-03-14 2017-01-10 Avago Technologies General Ip (Singapore) Pte. Ltd. Compact systems, compact devices, and methods for sensing luminescent activity
US9601670B2 (en) 2014-07-11 2017-03-21 Cree, Inc. Method to form primary optic with variable shapes and/or geometries without a substrate
WO2016080769A1 (en) * 2014-11-18 2016-05-26 서울반도체 주식회사 Light emitting device
US9541717B2 (en) 2015-01-30 2017-01-10 Avago Technologies General IP (Singapore) Pta. Ltd. Optoelectronic assembly incorporating an optical fiber alignment structure
JP2015164234A (en) * 2015-06-17 2015-09-10 シチズン電子株式会社 Led emitting device and manufacturing method thereof
JP2016119494A (en) * 2016-03-28 2016-06-30 日亜化学工業株式会社 Light-emitting device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5376580A (en) * 1993-03-19 1994-12-27 Hewlett-Packard Company Wafer bonding of light emitting diode layers
US20020030194A1 (en) * 2000-09-12 2002-03-14 Camras Michael D. Light emitting diodes with improved light extraction efficiency
US20020141006A1 (en) * 2001-03-30 2002-10-03 Pocius Douglas W. Forming an optical element on the surface of a light emitting device for improved light extraction
US20050023545A1 (en) * 2003-07-31 2005-02-03 Lumileds Lighting U.S., Llc Light emitting devices with improved light extraction efficiency
US20050247944A1 (en) * 2004-05-05 2005-11-10 Haque Ashim S Semiconductor light emitting device with flexible substrate
US7252787B2 (en) * 2003-10-29 2007-08-07 General Electric Company Garnet phosphor materials having enhanced spectral characteristics
US7258816B2 (en) * 2002-03-22 2007-08-21 Nichia Corporation Nitride phosphor and method for preparation thereof, and light emitting device

Family Cites Families (126)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1416993A (en) * 1963-12-12 1965-11-05 Gen Electric Improvements in light sources semiconductor couducteurs
FR1419663A (en) 1964-08-12 1965-12-03 Kestner App Evaporateurs Evaporation device or concentrating solutions encrusting
US3769536A (en) * 1972-01-28 1973-10-30 Varian Associates Iii-v photocathode bonded to a foreign transparent substrate
US4391683A (en) * 1982-09-10 1983-07-05 Bell Telephone Laboratories, Incorporated Mask structures for photoetching procedures
US4675058A (en) * 1983-12-14 1987-06-23 Honeywell Inc. Method of manufacturing a high-bandwidth, high radiance, surface emitting LED
JPH0510863B2 (en) * 1984-03-12 1993-02-10 Hitachi Ltd
JPS62111482A (en) 1985-11-08 1987-05-22 Mitsubishi Electric Corp Light emitting diode
US4815084A (en) * 1987-05-20 1989-03-21 Spectra Diode Laboratories, Inc. Semiconductor laser with integrated optical elements
GB8728342D0 (en) * 1987-12-03 1988-01-06 Bt & D Technologies Ltd Light sources
JP2708183B2 (en) * 1988-07-21 1998-02-04 シャープ株式会社 Compound semiconductor light-emitting device
US4945071A (en) 1989-04-19 1990-07-31 National Starch And Chemical Investment Holding Company Low softening point metallic oxide glasses suitable for use in electronic applications
EP0400176B1 (en) * 1989-05-31 2000-07-26 Osram Opto Semiconductors GmbH & Co. oHG Method to mount a surface-mountable optical element
US5130531A (en) * 1989-06-09 1992-07-14 Omron Corporation Reflective photosensor and semiconductor light emitting apparatus each using micro Fresnel lens
US5055892A (en) * 1989-08-29 1991-10-08 Hewlett-Packard Company High efficiency lamp or light accepter
US5216263A (en) * 1990-11-29 1993-06-01 Xerox Corporation High density, independently addressable, surface emitting semiconductor laser-light emitting diode arrays
US5132430A (en) * 1991-06-26 1992-07-21 Polaroid Corporation High refractive index polymers
US5255171A (en) * 1991-11-27 1993-10-19 Clark L Douglas Colored light source providing intensification of initial source illumination
JP3025109B2 (en) * 1992-03-11 2000-03-27 シャープ株式会社 Light source and the light source apparatus
US5663109A (en) 1992-10-19 1997-09-02 Quantum Materials, Inc. Low temperature glass paste with high metal to glass ratio
JP3230638B2 (en) * 1993-02-10 2001-11-19 シャープ株式会社 Method of manufacturing a light emitting diode
JPH06338630A (en) * 1993-05-28 1994-12-06 Omron Corp Semiconductor light-emitting element, and optical detector, optical information processor, optical coupler and light-emitting device using the light-emitting element
US5336644A (en) 1993-07-09 1994-08-09 Johnson Matthey Inc. Sealing glass compositions
JPH07115244A (en) * 1993-10-19 1995-05-02 Toyota Motor Corp Semiconductor laser and its fabrication
EP0660467B1 (en) * 1993-12-22 1997-03-19 Siemens Aktiengesellschaft Optoelectronical element and method of making the same
DE69433951T2 (en) * 1994-01-18 2005-09-08 LumiLeds Lighting, U.S., LLC, San Jose Connected semiconductor device
JP3537881B2 (en) 1994-03-29 2004-06-14 株式会社リコー Led array head
EP0680163A3 (en) * 1994-04-25 1996-07-03 At & T Corp Integrated detector/photoemitter with non-imaging director.
US5959787A (en) * 1995-06-06 1999-09-28 The Boeing Company Concentrating coverglass for photovoltaic cells
US5925898A (en) * 1996-07-18 1999-07-20 Siemens Aktiengesellschaft Optoelectronic transducer and production methods
DE19629920B4 (en) * 1995-08-10 2006-02-02 LumiLeds Lighting, U.S., LLC, San Jose Light-emitting diode having a non-absorbing distributed Bragg reflector
US6015719A (en) * 1997-10-24 2000-01-18 Hewlett-Packard Company Transparent substrate light emitting diodes with directed light output
US5592578A (en) 1995-11-01 1997-01-07 Hewlett-Packard Company Peripheral optical element for redirecting light from an LED
US5724376A (en) * 1995-11-30 1998-03-03 Hewlett-Packard Company Transparent substrate vertical cavity surface emitting lasers fabricated by semiconductor wafer bonding
JPH09153645A (en) 1995-11-30 1997-06-10 Isamu Akasaki Group-iii nitride semiconductor light-emitting device
DE19603444C2 (en) * 1996-01-31 2003-04-24 Siemens Ag LED device having at least two LEDs
US5779924A (en) * 1996-03-22 1998-07-14 Hewlett-Packard Company Ordered interface texturing for a light emitting device
DK0918984T3 (en) * 1996-08-16 2001-10-22 Zeptosens Ag optical detection device
US6473554B1 (en) * 1996-12-12 2002-10-29 Teledyne Lighting And Display Products, Inc. Lighting apparatus having low profile
US5898185A (en) * 1997-01-24 1999-04-27 International Business Machines Corporation Hybrid organic-inorganic semiconductor light emitting diodes
JP3378465B2 (en) * 1997-05-16 2003-02-17 株式会社東芝 The light-emitting device
US6784463B2 (en) * 1997-06-03 2004-08-31 Lumileds Lighting U.S., Llc III-Phospide and III-Arsenide flip chip light-emitting devices
US5917201A (en) * 1997-08-07 1999-06-29 Epistar Co. Light emitting diode with asymmetrical energy band structure
US7358929B2 (en) * 2001-09-17 2008-04-15 Philips Solid-State Lighting Solutions, Inc. Tile lighting methods and systems
DE59813644D1 (en) * 1997-09-05 2006-08-31 Osram Opto Semiconductors Gmbh Immersion System
US5966399A (en) * 1997-10-02 1999-10-12 Motorola, Inc. Vertical cavity surface emitting laser with integrated diffractive lens and method of fabrication
US6793339B1 (en) * 1997-10-21 2004-09-21 Sola-International Holdings, Ltd. Coated sunglass lens
DE69839300T2 (en) 1997-12-15 2009-04-16 Philips Lumileds Lighting Company, LLC, San Jose Light emitting device
US6412971B1 (en) * 1998-01-02 2002-07-02 General Electric Company Light source including an array of light emitting semiconductor devices and control method
US6233267B1 (en) * 1998-01-21 2001-05-15 Brown University Research Foundation Blue/ultraviolet/green vertical cavity surface emitting laser employing lateral edge overgrowth (LEO) technique
EP1073937A4 (en) * 1998-04-24 2002-08-14 Digital Optics Corp Diffusing imager and associated methods
JP3486345B2 (en) * 1998-07-14 2004-01-13 東芝電子エンジニアリング株式会社 Semiconductor light-emitting device
JP2000114603A (en) * 1998-09-30 2000-04-21 Canon Inc Light emitting device and image reading device using the same
JP2000164931A (en) * 1998-11-27 2000-06-16 Sumitomo Electric Ind Ltd White color light source
JP3469484B2 (en) * 1998-12-24 2003-11-25 株式会社東芝 The semiconductor light emitting device and a manufacturing method thereof
RU2142661C1 (en) 1998-12-29 1999-12-10 Швейкин Василий Иванович Injection non-coherent light source
US6155699A (en) * 1999-03-15 2000-12-05 Agilent Technologies, Inc. Efficient phosphor-conversion led structure
US6258699B1 (en) * 1999-05-10 2001-07-10 Visual Photonics Epitaxy Co., Ltd. Light emitting diode with a permanent subtrate of transparent glass or quartz and the method for manufacturing the same
DE19922176C2 (en) 1999-05-12 2001-11-15 Osram Opto Semiconductors Gmbh A surface mount LED-array and its use in a lighting device
DE19922361C2 (en) 1999-05-14 2003-05-28 Osram Opto Semiconductors Gmbh LED module for display devices
US6214733B1 (en) * 1999-11-17 2001-04-10 Elo Technologies, Inc. Process for lift off and handling of thin film materials
US7014336B1 (en) 1999-11-18 2006-03-21 Color Kinetics Incorporated Systems and methods for generating and modulating illumination conditions
US6410942B1 (en) 1999-12-03 2002-06-25 Cree Lighting Company Enhanced light extraction through the use of micro-LED arrays
EP2270883A3 (en) 1999-12-03 2015-09-30 Cree, Inc. Enhanced light extraction in LEDs through the use of internal and external optical elements
US6165911A (en) * 1999-12-29 2000-12-26 Calveley; Peter Braden Method of patterning a metal layer
US6661029B1 (en) 2000-03-31 2003-12-09 General Electric Company Color tunable organic electroluminescent light source
US6483196B1 (en) * 2000-04-03 2002-11-19 General Electric Company Flip chip led apparatus
DE10019665A1 (en) 2000-04-19 2001-10-31 Osram Opto Semiconductors Gmbh LED chip and process for its preparation
JP2002141556A (en) 2000-09-12 2002-05-17 Lumileds Lighting Us Llc Light emitting diode with improved light extraction efficiency
US7053419B1 (en) * 2000-09-12 2006-05-30 Lumileds Lighting U.S., Llc Light emitting diodes with improved light extraction efficiency
DE10054966A1 (en) 2000-11-06 2002-05-16 Osram Opto Semiconductors Gmbh Component for optoelectronics
ES2437131T3 (en) * 2000-12-28 2014-01-09 Leuchtstoffwerk Breitungen Gmbh Light source to generate white light
DE10101554A1 (en) * 2001-01-15 2002-08-01 Osram Opto Semiconductors Gmbh emitting diode
US6395564B1 (en) 2001-02-12 2002-05-28 Arima Optoelectronics Corp. Method for fabricating a light-emitting device with uniform color temperature
US6598998B2 (en) * 2001-05-04 2003-07-29 Lumileds Lighting, U.S., Llc Side emitting light emitting device
JP2002344029A (en) 2001-05-17 2002-11-29 Rohm Co Ltd Method of adjusting color tone of light-emitting diode
US6576488B2 (en) * 2001-06-11 2003-06-10 Lumileds Lighting U.S., Llc Using electrophoresis to produce a conformally coated phosphor-converted light emitting semiconductor
US6984934B2 (en) * 2001-07-10 2006-01-10 The Trustees Of Princeton University Micro-lens arrays for display intensity enhancement
WO2003019072A9 (en) * 2001-08-23 2003-11-20 Yukiyasu Okumura Color temperature-regulable led light
US20030127176A1 (en) * 2001-09-12 2003-07-10 Shin-Etsu Chemical Co., Ltd. Optical device, optical isolator and method for producing the same
JP2003089236A (en) 2001-09-17 2003-03-25 Suzuka Fuji Xerox Co Ltd Led printer head and method for producing lens array for led printer head
JP4447806B2 (en) * 2001-09-26 2010-04-07 スタンレー電気株式会社 The light-emitting device
US7858403B2 (en) 2001-10-31 2010-12-28 Cree, Inc. Methods and systems for fabricating broad spectrum light emitting devices
WO2003055636A1 (en) 2001-12-21 2003-07-10 Ifire Technology Inc. Method of laser ablation for patterning thin film layers for electroluminescent displays
US7196981B2 (en) * 2002-03-20 2007-03-27 Matsushita Electric Industrial Co., Ltd. Optical disc apparatus
US6943379B2 (en) 2002-04-04 2005-09-13 Toyoda Gosei Co., Ltd. Light emitting diode
US6950243B2 (en) * 2002-04-19 2005-09-27 Lockheed Martin Corporation Refractive multispectral objective lens system and methods of selecting optical materials therefor
JP4046118B2 (en) 2002-05-28 2008-02-13 松下電工株式会社 Emitting element, the light emitting device and a surface-emitting lighting apparatus using the same
US6870311B2 (en) * 2002-06-07 2005-03-22 Lumileds Lighting U.S., Llc Light-emitting devices utilizing nanoparticles
US7224000B2 (en) 2002-08-30 2007-05-29 Lumination, Llc Light emitting diode component
WO2004021461A3 (en) * 2002-08-30 2004-09-30 Gelcore Llc Phosphor-coated led with improved efficiency
US7041529B2 (en) * 2002-10-23 2006-05-09 Shin-Etsu Handotai Co., Ltd. Light-emitting device and method of fabricating the same
US6730940B1 (en) * 2002-10-29 2004-05-04 Lumileds Lighting U.S., Llc Enhanced brightness light emitting device spot emitter
JP4072632B2 (en) * 2002-11-29 2008-04-09 独立行政法人物質・材料研究機構 Emitting device and a light-emitting METHOD
JP3972889B2 (en) * 2002-12-09 2007-09-05 日亜化学工業株式会社 A light-emitting device and a planar light source using the same
US7170151B2 (en) * 2003-01-16 2007-01-30 Philips Lumileds Lighting Company, Llc Accurate alignment of an LED assembly
JP4369668B2 (en) 2003-02-13 2009-11-25 株式会社小糸製作所 A vehicle headlamp
JP4083593B2 (en) * 2003-02-13 2008-04-30 株式会社小糸製作所 A vehicle headlamp
US20040223315A1 (en) * 2003-03-03 2004-11-11 Toyoda Gosei Co., Ltd. Light emitting apparatus and method of making same
KR100693969B1 (en) 2003-03-10 2007-03-12 가부시키가이샤 스미타코가쿠가라스 Solid element device and method for manufacture thereof
US20040218387A1 (en) 2003-03-18 2004-11-04 Robert Gerlach LED lighting arrays, fixtures and systems and method for determining human color perception
US20040183081A1 (en) * 2003-03-20 2004-09-23 Alexander Shishov Light emitting diode package with self dosing feature and methods of forming same
US20040188696A1 (en) * 2003-03-28 2004-09-30 Gelcore, Llc LED power package
US7450311B2 (en) 2003-12-12 2008-11-11 Luminus Devices, Inc. Optical display systems and methods
US20040206970A1 (en) * 2003-04-16 2004-10-21 Martin Paul S. Alternating current light emitting device
US7005679B2 (en) 2003-05-01 2006-02-28 Cree, Inc. Multiple component solid state white light
US7371607B2 (en) * 2003-05-02 2008-05-13 Seiko Epson Corporation Method of manufacturing semiconductor device and method of manufacturing electronic device
US7075225B2 (en) * 2003-06-27 2006-07-11 Tajul Arosh Baroky White light emitting device
DE102004034166B4 (en) * 2003-07-17 2015-08-20 Toyoda Gosei Co., Ltd. The light emitting device
JP4263051B2 (en) * 2003-07-31 2009-05-13 雅英 ▲高▼橋 Light emitting diode
US6933535B2 (en) * 2003-10-31 2005-08-23 Lumileds Lighting U.S., Llc Light emitting devices with enhanced luminous efficiency
US7229573B2 (en) 2004-04-20 2007-06-12 Gelcore, Llc Ce3+ and Eu2+ doped phosphors for light generation
US7361938B2 (en) 2004-06-03 2008-04-22 Philips Lumileds Lighting Company Llc Luminescent ceramic for a light emitting device
US7553683B2 (en) * 2004-06-09 2009-06-30 Philips Lumiled Lighting Co., Llc Method of forming pre-fabricated wavelength converting elements for semiconductor light emitting devices
US7471040B2 (en) * 2004-08-13 2008-12-30 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Mixed-color light emitting diode apparatus, and method for making same
US7232224B2 (en) * 2004-08-26 2007-06-19 Texas Instruments Incorporated Simultaneous color illumination
JP4543250B2 (en) 2004-08-27 2010-09-15 Dowaエレクトロニクス株式会社 Phosphor mixture and the light emitting device
US7173383B2 (en) * 2004-09-08 2007-02-06 Emteq, Inc. Lighting apparatus having a plurality of independently controlled sources of different colors of light
US7256057B2 (en) * 2004-09-11 2007-08-14 3M Innovative Properties Company Methods for producing phosphor based light sources
US7205575B2 (en) * 2004-09-22 2007-04-17 Unity Opto Technology Co., Ltd. High brightness light emitting diode
US7265488B2 (en) 2004-09-30 2007-09-04 Avago Technologies General Ip Pte. Ltd Light source with wavelength converting material
US20060078031A1 (en) * 2004-10-08 2006-04-13 Govorkov Sergei V InGaN LED pumped II-VI semiconductor laser
US7329982B2 (en) * 2004-10-29 2008-02-12 3M Innovative Properties Company LED package with non-bonded optical element
US7419839B2 (en) * 2004-11-12 2008-09-02 Philips Lumileds Lighting Company, Llc Bonding an optical element to a light emitting device
US7192795B2 (en) * 2004-11-18 2007-03-20 3M Innovative Properties Company Method of making light emitting device with silicon-containing encapsulant
CA2597697C (en) * 2005-06-23 2014-12-02 Rensselaer Polytechnic Institute Package design for producing white light with short-wavelength leds and down-conversion materials
US7687816B2 (en) * 2007-03-20 2010-03-30 International Business Machines Corporation Light emitting diode

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5376580A (en) * 1993-03-19 1994-12-27 Hewlett-Packard Company Wafer bonding of light emitting diode layers
US5502316A (en) * 1993-03-19 1996-03-26 Hewlett-Packard Company Wafer bonding of light emitting diode layers
US20020030194A1 (en) * 2000-09-12 2002-03-14 Camras Michael D. Light emitting diodes with improved light extraction efficiency
US20020141006A1 (en) * 2001-03-30 2002-10-03 Pocius Douglas W. Forming an optical element on the surface of a light emitting device for improved light extraction
US7258816B2 (en) * 2002-03-22 2007-08-21 Nichia Corporation Nitride phosphor and method for preparation thereof, and light emitting device
US20050023545A1 (en) * 2003-07-31 2005-02-03 Lumileds Lighting U.S., Llc Light emitting devices with improved light extraction efficiency
US7252787B2 (en) * 2003-10-29 2007-08-07 General Electric Company Garnet phosphor materials having enhanced spectral characteristics
US20050247944A1 (en) * 2004-05-05 2005-11-10 Haque Ashim S Semiconductor light emitting device with flexible substrate

Cited By (197)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040227149A1 (en) * 2003-04-30 2004-11-18 Cree, Inc. High powered light emitter packages with compact optics
US9666772B2 (en) 2003-04-30 2017-05-30 Cree, Inc. High powered light emitter packages with compact optics
US20060138435A1 (en) * 2003-05-01 2006-06-29 Cree, Inc. Multiple component solid state white light
US7791092B2 (en) 2003-05-01 2010-09-07 Cree, Inc. Multiple component solid state white light
US20100290221A1 (en) * 2003-05-01 2010-11-18 Cree, Inc. Multiple component solid state white light
US8901585B2 (en) 2003-05-01 2014-12-02 Cree, Inc. Multiple component solid state white light
US8034647B2 (en) 2004-07-02 2011-10-11 Cree, Inc. LED with substrate modifications for enhanced light extraction and method of making same
US8617909B2 (en) 2004-07-02 2013-12-31 Cree, Inc. LED with substrate modifications for enhanced light extraction and method of making same
US20090233394A1 (en) * 2004-07-02 2009-09-17 Cree, Inc. Led with substrate modifications for enhanced light extraction and method of making same
US7759682B2 (en) 2004-07-02 2010-07-20 Cree, Inc. LED with substrate modifications for enhanced light extraction and method of making same
US20060001056A1 (en) * 2004-07-02 2006-01-05 Cree, Inc. LED with substrate modifications for enhanced light extraction and method of making same
US8410680B2 (en) 2005-01-10 2013-04-02 Cree, Inc. Multi-chip light emitting device lamps for providing high-CRI warm white light and light fixtures including the same
US8125137B2 (en) 2005-01-10 2012-02-28 Cree, Inc. Multi-chip light emitting device lamps for providing high-CRI warm white light and light fixtures including the same
US8513873B2 (en) 2005-01-10 2013-08-20 Cree, Inc. Light emission device
US8120240B2 (en) 2005-01-10 2012-02-21 Cree, Inc. Light emission device and method utilizing multiple emitters
US20070223219A1 (en) * 2005-01-10 2007-09-27 Cree, Inc. Multi-chip light emitting device lamps for providing high-cri warm white light and light fixtures including the same
US8847478B2 (en) 2005-01-10 2014-09-30 Cree, Inc. Multi-chip light emitting device lamps for providing high-CRI warm white light and light fixtures including the same
US9412926B2 (en) 2005-06-10 2016-08-09 Cree, Inc. High power solid-state lamp
US20070115228A1 (en) * 2005-11-18 2007-05-24 Roberts John K Systems and methods for calibrating solid state lighting panels
US8123375B2 (en) 2005-11-18 2012-02-28 Cree, Inc. Tile for solid state lighting
US20070115671A1 (en) * 2005-11-18 2007-05-24 Roberts John K Solid state lighting units and methods of forming solid state lighting units
US7993021B2 (en) 2005-11-18 2011-08-09 Cree, Inc. Multiple color lighting element cluster tiles for solid state lighting panels
US8556464B2 (en) 2005-11-18 2013-10-15 Cree, Inc. Solid state lighting units and methods of forming solid state lighting units
US8514210B2 (en) 2005-11-18 2013-08-20 Cree, Inc. Systems and methods for calibrating solid state lighting panels using combined light output measurements
US7959325B2 (en) 2005-11-18 2011-06-14 Cree, Inc. Solid state lighting units and methods of forming solid state lighting units
US8278846B2 (en) 2005-11-18 2012-10-02 Cree, Inc. Systems and methods for calibrating solid state lighting panels
US20070115670A1 (en) * 2005-11-18 2007-05-24 Roberts John K Tiles for solid state lighting panels
US7926300B2 (en) 2005-11-18 2011-04-19 Cree, Inc. Adaptive adjustment of light output of solid state lighting panels
US20090219714A1 (en) * 2005-11-18 2009-09-03 Negley Gerald H Tile for Solid State Lighting
US20100254130A1 (en) * 2005-12-21 2010-10-07 Cree Led Lighting Solutions, Inc. Lighting device and lighting method
US20070139920A1 (en) * 2005-12-21 2007-06-21 Led Lighting Fixtures, Inc. Lighting device and lighting method
US7213940B1 (en) 2005-12-21 2007-05-08 Led Lighting Fixtures, Inc. Lighting device and lighting method
US8337071B2 (en) 2005-12-21 2012-12-25 Cree, Inc. Lighting device
US7768192B2 (en) 2005-12-21 2010-08-03 Cree Led Lighting Solutions, Inc. Lighting device and lighting method
US8878429B2 (en) 2005-12-21 2014-11-04 Cree, Inc. Lighting device and lighting method
US8328376B2 (en) 2005-12-22 2012-12-11 Cree, Inc. Lighting device
US20070236911A1 (en) * 2005-12-22 2007-10-11 Led Lighting Fixtures, Inc. Lighting device
US8858004B2 (en) 2005-12-22 2014-10-14 Cree, Inc. Lighting device
US8264138B2 (en) 2006-01-20 2012-09-11 Cree, Inc. Shifting spectral content in solid state light emitters by spatially separating lumiphor films
US20070170447A1 (en) * 2006-01-20 2007-07-26 Led Lighting Fixtures, Inc. Shifting spectral content in solid state light emitters by spatially separating lumiphor films
US8733968B2 (en) 2006-04-18 2014-05-27 Cree, Inc. Lighting device and lighting method
US20100079059A1 (en) * 2006-04-18 2010-04-01 John Roberts Solid State Lighting Devices Including Light Mixtures
US8123376B2 (en) 2006-04-18 2012-02-28 Cree, Inc. Lighting device and lighting method
US8212466B2 (en) 2006-04-18 2012-07-03 Cree, Inc. Solid state lighting devices including light mixtures
US8998444B2 (en) 2006-04-18 2015-04-07 Cree, Inc. Solid state lighting devices including light mixtures
US20110037413A1 (en) * 2006-04-18 2011-02-17 Negley Gerald H Solid State Lighting Devices Including Light Mixtures
US20110019399A1 (en) * 2006-04-18 2011-01-27 Cree, Inc. Lighting device and lighting method
US8513875B2 (en) 2006-04-18 2013-08-20 Cree, Inc. Lighting device and lighting method
US9297503B2 (en) 2006-04-18 2016-03-29 Cree, Inc. Lighting device and lighting method
US7828460B2 (en) 2006-04-18 2010-11-09 Cree, Inc. Lighting device and lighting method
US9417478B2 (en) 2006-04-18 2016-08-16 Cree, Inc. Lighting device and lighting method
US20070278934A1 (en) * 2006-04-18 2007-12-06 Led Lighting Fixtures, Inc. Lighting device and lighting method
US20070267983A1 (en) * 2006-04-18 2007-11-22 Led Lighting Fixtures, Inc. Lighting device and lighting method
US7821194B2 (en) 2006-04-18 2010-10-26 Cree, Inc. Solid state lighting devices including light mixtures
US7997745B2 (en) 2006-04-20 2011-08-16 Cree, Inc. Lighting device and lighting method
US8008676B2 (en) 2006-05-26 2011-08-30 Cree, Inc. Solid state light emitting device and method of making same
US8628214B2 (en) 2006-05-31 2014-01-14 Cree, Inc. Lighting device and lighting method
US20070278974A1 (en) * 2006-05-31 2007-12-06 Led Lighting Fixtures, Inc. Lighting device with color control, and method of lighting
US7969097B2 (en) 2006-05-31 2011-06-28 Cree, Inc. Lighting device with color control, and method of lighting
US8596819B2 (en) 2006-05-31 2013-12-03 Cree, Inc. Lighting device and method of lighting
US8310143B2 (en) 2006-08-23 2012-11-13 Cree, Inc. Lighting device and lighting method
US20080084685A1 (en) * 2006-08-23 2008-04-10 Led Lighting Fixtures, Inc. Lighting device and lighting method
US20090021139A1 (en) * 2006-09-13 2009-01-22 Led Lighting Fixtures, Inc. Lighting device
US9028087B2 (en) 2006-09-30 2015-05-12 Cree, Inc. LED light fixture
US9534775B2 (en) 2006-09-30 2017-01-03 Cree, Inc. LED light fixture
US9261270B2 (en) 2006-09-30 2016-02-16 Cree, Inc. LED lighting fixture
US7952262B2 (en) 2006-09-30 2011-05-31 Ruud Lighting, Inc. Modular LED unit incorporating interconnected heat sinks configured to mount and hold adjacent LED modules
US9541246B2 (en) 2006-09-30 2017-01-10 Cree, Inc. Aerodynamic LED light fixture
US9039223B2 (en) 2006-09-30 2015-05-26 Cree, Inc. LED lighting fixture
US7686469B2 (en) 2006-09-30 2010-03-30 Ruud Lighting, Inc. LED lighting fixture
US20080080196A1 (en) * 2006-09-30 2008-04-03 Ruud Lighting, Inc. LED Floodlight Fixture
US8425071B2 (en) 2006-09-30 2013-04-23 Cree, Inc. LED lighting fixture
US9243794B2 (en) 2006-09-30 2016-01-26 Cree, Inc. LED light fixture with fluid flow to and from the heat sink
US20080078524A1 (en) * 2006-09-30 2008-04-03 Ruud Lighting, Inc. Modular LED Units
US8070306B2 (en) 2006-09-30 2011-12-06 Ruud Lighting, Inc. LED lighting fixture
US8029155B2 (en) 2006-11-07 2011-10-04 Cree, Inc. Lighting device and lighting method
US8382318B2 (en) 2006-11-07 2013-02-26 Cree, Inc. Lighting device and lighting method
US20080106895A1 (en) * 2006-11-07 2008-05-08 Led Lighting Fixtures, Inc. Lighting device and lighting method
US20080130265A1 (en) * 2006-11-30 2008-06-05 Led Lighting Fixtures, Inc. Lighting device and lighting method
US7901111B2 (en) 2006-11-30 2011-03-08 Cree, Inc. Lighting device and lighting method
US9441793B2 (en) 2006-12-01 2016-09-13 Cree, Inc. High efficiency lighting device including one or more solid state light emitters, and method of lighting
US9084328B2 (en) 2006-12-01 2015-07-14 Cree, Inc. Lighting device and lighting method
US20080130285A1 (en) * 2006-12-01 2008-06-05 Led Lighting Fixtures, Inc. Lighting device and lighting method
US20090296384A1 (en) * 2006-12-01 2009-12-03 Cree Led Lighting Solutions, Inc. Lighting device and lighting method
US20080136313A1 (en) * 2006-12-07 2008-06-12 Led Lighting Fixtures, Inc. Lighting device and lighting method
US7918581B2 (en) 2006-12-07 2011-04-05 Cree, Inc. Lighting device and lighting method
US20080191643A1 (en) * 2007-02-14 2008-08-14 Cree, Inc. Systems and Methods for Split Processor Control in a Solid State Lighting Panel
US8456388B2 (en) 2007-02-14 2013-06-04 Cree, Inc. Systems and methods for split processor control in a solid state lighting panel
US9217553B2 (en) 2007-02-21 2015-12-22 Cree, Inc. LED lighting systems including luminescent layers on remote reflectors
US8506114B2 (en) 2007-02-22 2013-08-13 Cree, Inc. Lighting devices, methods of lighting, light filters and methods of filtering light
US20080259589A1 (en) * 2007-02-22 2008-10-23 Led Lighting Fixtures, Inc. Lighting devices, methods of lighting, light filters and methods of filtering light
US20080239722A1 (en) * 2007-04-02 2008-10-02 Ruud Lighting, Inc. Light-Directing LED Apparatus
US20080304260A1 (en) * 2007-05-08 2008-12-11 Cree Led Lighting Solutions, Inc. Lighting device and lighting method
US7901107B2 (en) 2007-05-08 2011-03-08 Cree, Inc. Lighting device and lighting method
US20080278928A1 (en) * 2007-05-08 2008-11-13 Cree Led Lighting Solutions, Inc. Lighting device and lighting method
US8079729B2 (en) 2007-05-08 2011-12-20 Cree, Inc. Lighting device and lighting method
US20080304261A1 (en) * 2007-05-08 2008-12-11 Cree Led Lighting Solutions, Inc. Lighting device and lighting method
US7744243B2 (en) 2007-05-08 2010-06-29 Cree Led Lighting Solutions, Inc. Lighting device and lighting method
US20080310154A1 (en) * 2007-05-08 2008-12-18 Cree Led Lighting Solutions, Inc. Lighting device and lighting method
US8038317B2 (en) 2007-05-08 2011-10-18 Cree, Inc. Lighting device and lighting method
US20080278940A1 (en) * 2007-05-08 2008-11-13 Cree Led Lighting Solutions, Inc. Lighting device and lighting method
US20080291669A1 (en) * 2007-05-21 2008-11-27 Cree, Inc. Solid state lighting panels with limited color gamut and methods of limiting color gamut in solid state lighting panels
US7712917B2 (en) 2007-05-21 2010-05-11 Cree, Inc. Solid state lighting panels with limited color gamut and methods of limiting color gamut in solid state lighting panels
US8449130B2 (en) 2007-05-21 2013-05-28 Cree, Inc. Solid state lighting panels with limited color gamut and methods of limiting color gamut in solid state lighting panels
US20090033612A1 (en) * 2007-07-31 2009-02-05 Roberts John K Correction of temperature induced color drift in solid state lighting displays
US20090039365A1 (en) * 2007-08-07 2009-02-12 Andrews Peter S Semiconductor light emitting devices with applied wavelength conversion materials and methods of forming the same
US7863635B2 (en) 2007-08-07 2011-01-04 Cree, Inc. Semiconductor light emitting devices with applied wavelength conversion materials
US9054282B2 (en) 2007-08-07 2015-06-09 Cree, Inc. Semiconductor light emitting devices with applied wavelength conversion materials and methods for forming the same
US8829820B2 (en) 2007-08-10 2014-09-09 Cree, Inc. Systems and methods for protecting display components from adverse operating conditions
US20090040674A1 (en) * 2007-08-10 2009-02-12 Cree, Inc. Systems and methods for protecting display components from adverse operating conditions
US8018135B2 (en) 2007-10-10 2011-09-13 Cree, Inc. Lighting device and method of making
US20090184616A1 (en) * 2007-10-10 2009-07-23 Cree Led Lighting Solutions, Inc. Lighting device and method of making
US9634191B2 (en) 2007-11-14 2017-04-25 Cree, Inc. Wire bond free wafer level LED
US20090121241A1 (en) * 2007-11-14 2009-05-14 Cree, Inc. Wire bond free wafer level LED
US9491828B2 (en) 2007-11-28 2016-11-08 Cree, Inc. Solid state lighting devices and methods of manufacturing the same
US8866410B2 (en) 2007-11-28 2014-10-21 Cree, Inc. Solid state lighting devices and methods of manufacturing the same
US20090160363A1 (en) * 2007-11-28 2009-06-25 Cree Led Lighting Solutions, Inc. Solid state lighting devices and methods of manufacturing the same
US9431589B2 (en) 2007-12-14 2016-08-30 Cree, Inc. Textured encapsulant surface in LED packages
US20090152573A1 (en) * 2007-12-14 2009-06-18 Cree, Inc. Textured encapsulant surface in LED packages
US8823630B2 (en) 2007-12-18 2014-09-02 Cree, Inc. Systems and methods for providing color management control in a lighting panel
US20090184666A1 (en) * 2008-01-23 2009-07-23 Cree Led Lighting Solutions, Inc. Frequency converted dimming signal generation
US8040070B2 (en) 2008-01-23 2011-10-18 Cree, Inc. Frequency converted dimming signal generation
US8421372B2 (en) 2008-01-23 2013-04-16 Cree, Inc. Frequency converted dimming signal generation
US20090184662A1 (en) * 2008-01-23 2009-07-23 Cree Led Lighting Solutions, Inc. Dimming signal generation and methods of generating dimming signals
US8115419B2 (en) 2008-01-23 2012-02-14 Cree, Inc. Lighting control device for controlling dimming, lighting device including a control device, and method of controlling lighting
US8916890B2 (en) 2008-03-19 2014-12-23 Cree, Inc. Light emitting diodes with light filters
US20090236619A1 (en) * 2008-03-19 2009-09-24 Arpan Chakroborty Light Emitting Diodes with Light Filters
US20090246895A1 (en) * 2008-03-28 2009-10-01 Cree, Inc. Apparatus and methods for combining light emitters
US8350461B2 (en) 2008-03-28 2013-01-08 Cree, Inc. Apparatus and methods for combining light emitters
US8513871B2 (en) 2008-03-28 2013-08-20 Cree, Inc. Apparatus and methods for combining light emitters
US20100302786A1 (en) * 2008-05-23 2010-12-02 Ruud Lighting, Inc. Lens with controlled backlight management
US8348475B2 (en) 2008-05-23 2013-01-08 Ruud Lighting, Inc. Lens with controlled backlight management
US9423096B2 (en) 2008-05-23 2016-08-23 Cree, Inc. LED lighting apparatus
US8388193B2 (en) 2008-05-23 2013-03-05 Ruud Lighting, Inc. Lens with TIR for off-axial light distribution
US20090290360A1 (en) * 2008-05-23 2009-11-26 Ruud Lighting, Inc. Lens with tir for off-axial light distribution
US9657918B2 (en) 2008-05-23 2017-05-23 Cree, Inc. Light fixture with wide-angle light distribution
US9476570B2 (en) 2008-05-23 2016-10-25 Cree, Inc. Lens with controlled backlight management
US8240875B2 (en) 2008-06-25 2012-08-14 Cree, Inc. Solid state linear array modules for general illumination
US8764226B2 (en) 2008-06-25 2014-07-01 Cree, Inc. Solid state array modules for general illumination
US7841750B2 (en) 2008-08-01 2010-11-30 Ruud Lighting, Inc. Light-directing lensing member with improved angled light distribution
US20110246886A1 (en) * 2008-11-28 2011-10-06 Creative Technology Ltd Apparatus and method for controlling a sound reproduction apparatus
US8566719B2 (en) * 2008-11-28 2013-10-22 Creative Technology Ltd Apparatus and method for controlling a sound reproduction apparatus
US7967652B2 (en) 2009-02-19 2011-06-28 Cree, Inc. Methods for combining light emitting devices in a package and packages including combined light emitting devices
US8333631B2 (en) 2009-02-19 2012-12-18 Cree, Inc. Methods for combining light emitting devices in a package and packages including combined light emitting devices
US20110037080A1 (en) * 2009-02-19 2011-02-17 David Todd Emerson Methods for combining light emitting devices in a package and packages including combined light emitting devices
US9493107B2 (en) 2009-05-13 2016-11-15 Cree, Inc. Solid state lighting devices having remote luminescent material-containing element, and lighting methods
US8337030B2 (en) 2009-05-13 2012-12-25 Cree, Inc. Solid state lighting devices having remote luminescent material-containing element, and lighting methods
US9689552B2 (en) 2009-05-29 2017-06-27 Cree, Inc. Multi-lens LED-array optic system
US9255686B2 (en) 2009-05-29 2016-02-09 Cree, Inc. Multi-lens LED-array optic system
US8921876B2 (en) 2009-06-02 2014-12-30 Cree, Inc. Lighting devices with discrete lumiphor-bearing regions within or on a surface of remote elements
US20110031894A1 (en) * 2009-08-04 2011-02-10 Cree Led Lighting Solutions, Inc. Lighting device having first, second and third groups of solid state light emitters, and lighting arrangement
US8716952B2 (en) 2009-08-04 2014-05-06 Cree, Inc. Lighting device having first, second and third groups of solid state light emitters, and lighting arrangement
US9605808B2 (en) 2009-08-04 2017-03-28 Cree, Inc. Lighting device having groups of solid state light emitters, and lighting arrangement
US20110037409A1 (en) * 2009-08-14 2011-02-17 Cree Led Lighting Solutions, Inc. High efficiency lighting device including one or more saturated light emitters, and method of lighting
US8648546B2 (en) 2009-08-14 2014-02-11 Cree, Inc. High efficiency lighting device including one or more saturated light emitters, and method of lighting
US8901845B2 (en) 2009-09-24 2014-12-02 Cree, Inc. Temperature responsive control for lighting apparatus including light emitting devices providing different chromaticities and related methods
US8967821B2 (en) 2009-09-25 2015-03-03 Cree, Inc. Lighting device with low glare and high light level uniformity
US9435493B2 (en) 2009-10-27 2016-09-06 Cree, Inc. Hybrid reflector system for lighting device
US8466611B2 (en) 2009-12-14 2013-06-18 Cree, Inc. Lighting device with shaped remote phosphor
US8508116B2 (en) 2010-01-27 2013-08-13 Cree, Inc. Lighting device with multi-chip light emitters, solid state light emitter support members and lighting elements
US8562161B2 (en) 2010-03-03 2013-10-22 Cree, Inc. LED based pedestal-type lighting structure
US9217544B2 (en) 2010-03-03 2015-12-22 Cree, Inc. LED based pedestal-type lighting structure
US9057511B2 (en) 2010-03-03 2015-06-16 Cree, Inc. High efficiency solid state lamp and bulb
US9062830B2 (en) 2010-03-03 2015-06-23 Cree, Inc. High efficiency solid state lamp and bulb
US8931933B2 (en) 2010-03-03 2015-01-13 Cree, Inc. LED lamp with active cooling element
US9275979B2 (en) 2010-03-03 2016-03-01 Cree, Inc. Enhanced color rendering index emitter through phosphor separation
US20110227469A1 (en) * 2010-03-03 2011-09-22 Cree, Inc. Led lamp with remote phosphor and diffuser configuration utilizing red emitters
US9024517B2 (en) * 2010-03-03 2015-05-05 Cree, Inc. LED lamp with remote phosphor and diffuser configuration utilizing red emitters
US9310030B2 (en) 2010-03-03 2016-04-12 Cree, Inc. Non-uniform diffuser to scatter light into uniform emission pattern
US9316361B2 (en) 2010-03-03 2016-04-19 Cree, Inc. LED lamp with remote phosphor and diffuser configuration
US8882284B2 (en) 2010-03-03 2014-11-11 Cree, Inc. LED lamp or bulb with remote phosphor and diffuser configuration with enhanced scattering properties
US9500325B2 (en) 2010-03-03 2016-11-22 Cree, Inc. LED lamp incorporating remote phosphor with heat dissipation features
US8329482B2 (en) 2010-04-30 2012-12-11 Cree, Inc. White-emitting LED chips and method for making same
US8896197B2 (en) 2010-05-13 2014-11-25 Cree, Inc. Lighting device and method of making
US9599291B2 (en) 2010-06-04 2017-03-21 Cree, Inc. Solid state light source emitting warm light with high CRI
US8684559B2 (en) 2010-06-04 2014-04-01 Cree, Inc. Solid state light source emitting warm light with high CRI
US9648673B2 (en) 2010-11-05 2017-05-09 Cree, Inc. Lighting device with spatially segregated primary and secondary emitters
US8556469B2 (en) 2010-12-06 2013-10-15 Cree, Inc. High efficiency total internal reflection optic for solid state lighting luminaires
US9234655B2 (en) 2011-02-07 2016-01-12 Cree, Inc. Lamp with remote LED light source and heat dissipating elements
US9293641B2 (en) * 2011-11-18 2016-03-22 Invensas Corporation Inverted optical device
US20130126921A1 (en) * 2011-11-18 2013-05-23 Invensas Corporation Inverted optical device
US9068701B2 (en) 2012-01-26 2015-06-30 Cree, Inc. Lamp structure with remote LED light source
US9541257B2 (en) 2012-02-29 2017-01-10 Cree, Inc. Lens for primarily-elongate light distribution
US9541258B2 (en) 2012-02-29 2017-01-10 Cree, Inc. Lens for wide lateral-angle distribution
US9488359B2 (en) 2012-03-26 2016-11-08 Cree, Inc. Passive phase change radiators for LED lamps and fixtures
USD697664S1 (en) 2012-05-07 2014-01-14 Cree, Inc. LED lens
USD708387S1 (en) 2012-05-07 2014-07-01 Cree, Inc. LED lens
US9353917B2 (en) 2012-09-14 2016-05-31 Cree, Inc. High efficiency lighting device including one or more solid state light emitters, and method of lighting
CN103715336A (en) * 2012-10-03 2014-04-09 日东电工株式会社 Encapsulating sheet-covered semiconductor element and producing method thereof, and semiconductor device and producing method thereof
US9024353B2 (en) * 2012-10-03 2015-05-05 Nitto Denko Corporation Encapsulating sheet-covered semiconductor element and semiconductor device
US20140091348A1 (en) * 2012-10-03 2014-04-03 Nitto Denko Corporation Encapsulating sheet-covered semiconductor element, producing method thereof, semiconductor device, and producing method thereof
US9553230B2 (en) 2013-01-31 2017-01-24 Panasonic Intellectual Property Management Co., Ltd. Method and apparatus for fabricating light emitting apparatus
USD718490S1 (en) 2013-03-15 2014-11-25 Cree, Inc. LED lens
US9523479B2 (en) 2014-01-03 2016-12-20 Cree, Inc. LED lens
WO2016022612A1 (en) * 2014-08-04 2016-02-11 Innosys, Inc. Lighting systems
US9844116B2 (en) 2015-09-15 2017-12-12 Biological Innovation & Optimization Systems, LLC Systems and methods for controlling the spectral content of LED lighting devices
US9788387B2 (en) 2015-09-15 2017-10-10 Biological Innovation & Optimization Systems, LLC Systems and methods for controlling the spectral content of LED lighting devices

Also Published As

Publication number Publication date Type
US7419839B2 (en) 2008-09-02 grant
US20120043564A1 (en) 2012-02-23 application
US20060105478A1 (en) 2006-05-18 application
US20130293145A1 (en) 2013-11-07 application
US8846423B2 (en) 2014-09-30 grant
US8748912B2 (en) 2014-06-10 grant
EP1657757A2 (en) 2006-05-17 application
US8067254B2 (en) 2011-11-29 grant
EP1657757B1 (en) 2017-05-10 grant
EP1657757A3 (en) 2010-03-24 application
JP2017199932A (en) 2017-11-02 application
JP2006352061A (en) 2006-12-28 application
US20080186702A1 (en) 2008-08-07 application
JP2014195120A (en) 2014-10-09 application
US20100109568A1 (en) 2010-05-06 application
JP2016029736A (en) 2016-03-03 application
JP2012238871A (en) 2012-12-06 application

Similar Documents

Publication Publication Date Title
US6445011B1 (en) Light-emitting diode
US6876008B2 (en) Mount for semiconductor light emitting device
US7553683B2 (en) Method of forming pre-fabricated wavelength converting elements for semiconductor light emitting devices
US20020163302A1 (en) Light emitting device
US20060006404A1 (en) Chip-scale methods for packaging light emitting devices and chip-scale packaged light emitting devices
US5557115A (en) Light emitting semiconductor device with sub-mount
US20100006870A1 (en) Light emitting device
US20070034890A1 (en) Multiple die LED and lens optical system
US6744196B1 (en) Thin film LED
US20020053872A1 (en) Light emitting diode and method of making the same
US20090256163A1 (en) LEDs using single crystalline phosphor and methods of fabricating same
US7341878B2 (en) Wavelength-converted semiconductor light emitting device
US20060214173A1 (en) Light emitting diodes and methods of fabrication
US6787435B2 (en) GaN LED with solderable backside metal
US20110260184A1 (en) Semiconductor light emitting device and method for manufacturing same
JP3511970B2 (en) The nitride semiconductor light emitting device
US20110049546A1 (en) high reflectivity mirrors and method for making same
US20090121241A1 (en) Wire bond free wafer level LED
US20110121331A1 (en) Wavelength converted semiconductor light emitting device
US6746889B1 (en) Optoelectronic device with improved light extraction
US20120007102A1 (en) High Voltage Device and Method for Optical Devices
US20110018013A1 (en) Thin-film flip-chip series connected leds
US7213942B2 (en) Light emitting diodes for high AC voltage operation and general lighting
US20110136271A1 (en) Method of Producing Semiconductor Components
US20090179207A1 (en) Flip-chip phosphor coating method and devices fabricated utilizing method

Legal Events

Date Code Title Description
AS Assignment

Owner name: LUMILEDS LIGHTING U.S., LLC, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ALFERINK, ROBERTUS G.;KRAMES, MICHAEL R.;REEL/FRAME:017341/0077

Effective date: 20051207

AS Assignment

Owner name: PHILIPS LUMILEDS LIGHTING COMPANY LLC, CALIFORNIA

Free format text: CHANGE OF NAME;ASSIGNORS:LUMILEDS LIGHTING U.S., LLC;LUMILEDS LIGHTING, U.S., LLC;LUMILEDS LIGHTING, U.S. LLC;AND OTHERS;REEL/FRAME:025850/0770

Effective date: 20110211