US20060047331A1 - Method and apparatus for controlled contraction of soft tissue - Google Patents

Method and apparatus for controlled contraction of soft tissue Download PDF

Info

Publication number
US20060047331A1
US20060047331A1 US11/058,845 US5884505A US2006047331A1 US 20060047331 A1 US20060047331 A1 US 20060047331A1 US 5884505 A US5884505 A US 5884505A US 2006047331 A1 US2006047331 A1 US 2006047331A1
Authority
US
United States
Prior art keywords
electrode
energy
target tissue
tissue
energy source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/058,845
Inventor
Ronald Lax
Gary Fanton
Stuart Edwards
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US08/637,095 priority Critical patent/US6482204B1/en
Application filed by Individual filed Critical Individual
Priority to US11/058,845 priority patent/US20060047331A1/en
Publication of US20060047331A1 publication Critical patent/US20060047331A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/148Probes or electrodes therefor having a short, rigid shaft for accessing the inner body transcutaneously, e.g. for neurosurgery or arthroscopy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/40Applying electric fields by inductive or capacitive coupling ; Applying radio-frequency signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00005Cooling or heating of the probe or tissue immediately surrounding the probe
    • A61B2018/00011Cooling or heating of the probe or tissue immediately surrounding the probe with fluids
    • A61B2018/00023Cooling or heating of the probe or tissue immediately surrounding the probe with fluids closed, i.e. without wound contact by the fluid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • A61B2018/00059Material properties
    • A61B2018/00071Electrical conductivity
    • A61B2018/00083Electrical conductivity low, i.e. electrically insulating
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00452Skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00696Controlled or regulated parameters
    • A61B2018/00702Power or energy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00791Temperature
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B2018/1405Electrodes having a specific shape
    • A61B2018/1425Needle
    • A61B2018/143Needle multiple needles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B2018/1472Probes or electrodes therefor for use with liquid electrolyte, e.g. virtual electrodes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B2018/1497Electrodes covering only part of the probe circumference
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/1815Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves
    • A61B2018/1861Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves with an instrument inserted into a body lumen or cavity, e.g. a catheter

Definitions

  • This invention relates generally to the contraction of soft tissue, and more particularly, to the compaction of soft collagen tissue with minimal dissociation of collagen tissue.
  • Diarthrodial joints of musculoskeletal system have varying degrees of intrinsic stability based on joint geometry and ligament and soft tissue investment.
  • Diarthrodial joints are comprised of the articulation of the ends of bones and their covering of hyaline cartilage surrounded by a soft tissue joint capsule that maintains the constant contact of the cartilage surfaces. This joint capsule also maintains within the joint the synovial fluid that provides nutrition and lubrication of the joint surfaces.
  • Ligaments are soft tissue condensations in or around the joint capsule that reinforce and hold the joint together while also controlling and restricting various movements of the joints.
  • the ligaments, joint capsule, and connective tissue are largely comprised of collagen.
  • Instability of the shoulder can occur congenitally, developmentally, or traumatically and often becomes recurrent, necessitating surgical repair. In fact subluxations and dislocations are a common occurrence and cause for a large number of orthopedic procedures each year. Symptoms include pain, instability, weakness, and limitation of function. If the instability is severe and recurrent, functional incapacity and arthritis may result. Surgical attempts are directed toward tightening the soft tissue restraints that have become pathologically loose. These procedures are typically performed through open surgical approaches that often require hospitalization and prolonged rehabilitation programs.
  • Endoscopic techniques have the advantage of being performed through smaller incisions and therefore are usually less painful, performed on an outpatient basis, are associated with less blood loss and lower risk of infection and have a more cosmetically acceptable scar.
  • Recovery is often faster postoperatively than using open techniques.
  • it is often more technically demanding to advance and tighten capsule or ligamentous tissue arthroscopically because of the difficult access to pathologically loose tissue and because it is very hard to determine how much tightening or advancement of the lax tissue is clinically necessary.
  • fixation of advanced or tightened soft tissue is more difficult arthroscopically than through open surgical methods.
  • Collagen connective tissue is ubiquitous in the human body and demonstrates several unique characteristics not found in other tissues. It provides the cohesiveness of the musculoskeletal system, the structural integrity of the viscera as well as the elasticity of integument. These are basically five types of collagen molecules with Type I being most common in bone, tendon, skin and other connective tissues, and Type III is common in muscular and elastic tissues.
  • Intermolecular cross links provide collagen connective tissue with unique physical properties of high tensile strength and substantial elasticity.
  • a previously recognized property of collagen is hydrothermal shrinkage of collagen fibers when elevated in temperature. This unique molecular response to temperature elevation is the result of rupture of the collagen stabilizing cross links and immediate contraction of the collagen fibers to about one-third of their original lineal distention. Additionally, the caliber of the individual fibers increases greatly, over four fold, without changing the structural integrity of the connection tissue.
  • Radiofrequency (RF) electrical current has been used to reshape the cornea.
  • RF Radiofrequency
  • the capsule of the shoulder consists of a synovial lining and three well defined layers of collagen.
  • the fibers of the inner and outer layers extend in a coronal access from the glenoid to the humerus.
  • the middle layer of the collagen extends in a sagittal direction, crossing the fibers of the other two layers.
  • the relative thickness and degree of intermingling of collagen fibers of the three layers vary with different portions of the capsule.
  • the ligamentous components of the capsule are represented by abrupt thickenings of the inner layer with a significant increase in well organized coarse collagen bundles in the coronal plane.
  • the capsule functions as a hammock-like sling to support the humeral head.
  • this capsule or pouch becomes attenuated and the capsule capacity increases secondary to capsule redundance.
  • an altered ratio of type I to type III collagen fibers may be noted.
  • these shoulder capsules a higher ratio of more elastic type III collagen has been described.
  • Another object of the present invention is to use RF heating in a fluid environment to control thermal spread to a tissue that includes collagen soft tissue, and a desired contraction of collagen fibers is obtained while minimizing dissociation and breakdown of the collagen fibers.
  • Yet another object of the present invention is to provide a device directed to collagen connective tissue shrinkage by the use of RF heating to a temperature profile of 43 to 90 degrees centigrade.
  • Another object of the present invention is to provide a device directed to collagen connective tissue shrinkage by the use of RF heating to a temperature profile of 43 to 75 degrees centigrade.
  • Still a further object of the present invention is to provide a device directed to collagen connective tissue shrinkage by the use of the RF heating to a temperature profile of 45 to 60 degrees centigrade.
  • Another object of the present invention is to provide an apparatus which delivers RF energy through an endoscopically guided handpiece in a fluid environment to obtain maximum contraction of collagen soft tissue while minimizing dissociation and breakdown of the collagen tissue.
  • Yet another object of the present invention is to provide an apparatus that provides for the maximum amount of collagen contraction without dissociation of the collagen structure.
  • Another object of the present invention is to provide an apparatus to deliver a controlled amount of RF energy to the collagen soft tissue of a joint in order to contract and restrict the soft tissue elasticity and improve joint stability.
  • a further object of the present invention to provide an apparatus and method that reduces redundancy of the shoulder capsule and improves stability to the joint.
  • the apparatus include a handpiece, and an electrode with an electrode proximal end that is associated with the handpiece.
  • a distal end of the electrode has a geometry that delivers a controlled amount of energy to the tissue in order to achieve a desired contraction of the collagen fibers. This is achieved while dissociation and breakdown of the collagen fibers is minimized.
  • the handpiece, with electrode is adapted to be introduced through an operating cannula in percutaneous applications. Additionally, it may be desirable to include as part of the apparatus an operating cannula.
  • the operating cannula has a proximal end that attaches to the handpiece, and a distal end that is adapted to be introduced into a body structure.
  • the electrode is positioned within the operating cannula, and extendable beyond the distal end of the cannula when thermal energy is delivered to the tissue.
  • the delivery of the thermal energy to the tissue should be delivered in such a way that none of the tissue is ablated. Additionally, the delivery is achieved without dissociating or breaking down the collagen structure. This can be accomplished in different ways, but it has been discovered that an electrode with radiused edges at its distal end is suitable to obtain this result.
  • the present invention is applicable to a number of different anatomical sites. Depending on the anatomy, it may be necessary to deflect the distal end of the electrode to reach the desired site. Additionally, one side of the electrode may include an insulating layer so that thermal energy is only delivered to the intended tissue, and not a tissue in an adjacent relationship to the area of treatment.
  • an adjustable insulator that is capable of movement along the longitudinal axis of the electrode, provides a way of adjusting the length of electrode conductive surface.
  • Memory metals can be used for the electrode construction.
  • An advantage of memory metals is that with the application of heat to the metal, it can be caused to be deflected. This is particularly useful for deflecting the distal end of the electrode.
  • the electrode can include a central lumen that receives an electrolytic solution from an electrolytic source.
  • a plurality of apertures are formed in the distal end of the electrode and deliver the flowing electrolytic fluid to the tissue.
  • an electrolytic gel can also be introduced through the electrode.
  • the electrode is partially surrounded by an insulating housing in order to position the electrode in an adjacent but spaced relationship to the tissue.
  • a portion of the insulating housing rides on the tissue, and creates the equivalent of a partial dam for electrolytic solution introduced through the electrode and towards the tissue.
  • a cuff is disposed about the insulating housing. The cuff and insulating housing together create a return electrolytic solution channel for the removal of solution flowing out of the dam and away from the tissue site.
  • the handpiece of the invention can be connected, with a cable, to an RF energy source.
  • a closed loop feedback system can be included and coupled to a temperature sensor on the electrode and the RF energy source. Temperature at the electrode can be monitored, and the power of the RF energy source adjusted to control the amount of energy that is delivered to the tissue.
  • the present invention has wide spread application to many different anatomical locations. It can be utilized for controlled contraction of collagen soft tissue of a joint capsule, particularly the gleno-humoral joint capsule of the shoulder, to treat herniated discs, the meniscus of the knee, for dermatology, to name just a few.
  • RF heating in a fluid or saline environment is used to control thermal spread to soft collagen tissue.
  • the RF energy can be delivered through an endoscopically guided handpiece under arthroscopic visualization by the surgeon.
  • maximum collagen contraction is achieved.
  • Additional temperature ranges are 43 to 75 degrees C., and 45 to 60 degrees C.
  • Lower temperatures do not provide maximum thermal induced contracture of the collagen fibrils. Greater temperatures create excessive destruction and disintegration of the collagen fibrillar pattern.
  • the present invention is a method and apparatus which accurately controls the application of heat within a desired thermal range. This heat is delivered the collagen soft tissue, thereby contracting and restricting the soft tissue elasticity and improving stability.
  • FIG. 1 is a perspective plan view of an apparatus for control contraction of tissue that includes collagen fibers, including a handpiece and an electrode, according to the invention.
  • FIG. 2 is a perspective plan view of a distal end of the electrode with all edges radiused according to the invention.
  • FIG. 3 is a side view of the distal end of the electrode of FIG. 2 .
  • FIG. 4 is a sectional view of the deflected electrode with a resistive heating element positioned in an interior lumen of the electrode according to the invention.
  • FIG. 5 is a perspective plan view of the apparatus for control contraction of tissue with collagen fibers with a handpiece, electrode and an operating cannula according to the present invention.
  • FIG. 6 is a close up perspective plan view of the distal end of the electrode of the apparatus of FIG. 5 according to the invention.
  • FIG. 7 is a perspective plan view of an electrode with a steering wire positioned on the exterior of the electrode according to the invention.
  • FIG. 8 is a sectional view of an electrode with a lumen and a plug that is attached to the electrode distal end according to the invention.
  • FIG. 9 is a cross sectional view of an electrode with fluid flowing through an interior lumen of the electrode according to the invention.
  • FIG. 10 is a cross sectional view of an RF electrode structure with an insulating housing surrounding a portion of an electrode, and a cuff surrounding the insulating housing according to the invention.
  • FIG. 11 is a block diagram of a fluid control system useful with the electrode structure of FIG. 10 according to the invention.
  • FIG. 12 is a perspective plan view of a handpiece, an electrode and a sleeve that slides across the surface of the electrode to vary the amount of electrode conductive surface according to the invention.
  • FIG. 13 is a sectional view of an electrode with an oval cross section and the heating zone in the tissue according to the invention.
  • FIG. 14 is a sectional view of a handle, electrode, operating cannula and a viewing scope, with the viewing scope and electrode positioned in the operating cannula according to the invention.
  • FIG. 15 is a cross sectional view of the device of FIG. 14 , taken along the lines 15 - 15 according to the invention.
  • FIG. 16 is a perspective plan view of an electrode distal end with temperature sensors positioned in the distal end according to the invention.
  • FIG. 17 is a block diagram of a closed loop feedback system according to the invention.
  • FIG. 18 is a perspective plan view of a roller element mounted at an electrode distal end according to the invention.
  • FIG. 19 is a drawing of the right glenohumeral capsuloligamentous complex.
  • FIG. 20 is a drawing of a loose joint capsule.
  • FIG. 21 is a schematic drawing of the apparatus of the invention with an electrode supplying thermal energy to a joint structure.
  • FIG. 22 is a sectional view of a disc positioned between two vertebrae.
  • FIG. 23 is a schematic drawing of the apparatus of the invention with an electrode supplying thermal energy to a herniated disc.
  • Apparatus 10 includes a handpiece 12 that is preferably made of an insulating material. Types of such insulating materials are well known in those skilled in the art.
  • An electrode 14 is associated with handle 12 at a proximal end 16 of electrode 14 , and may even be attached thereto.
  • a distal end 18 of electrode 14 has a geometry that delivers a controlled amount of energy to the tissue in order to achieve a desired level of contraction of the collagen fibers. Contraction is achieved while dissociation and breakdown of the collagen fibers is minimized.
  • Electrode 14 can have be a flat elongated structure that is easily painted across a tissue without “hanging up” on any section of the tissue. In one geometry of electrode 14 , all edges 20 of distal end 18 are radiused, as illustrated in FIGS. 2 and 3 . Distal end 18 can have a variety of geometric configurations. One such geometry is a disc shaped geometry without square edges. Electrode 14 can be made of a number of different materials including but not limited to stainless steel, platinum, other noble metals and the like. Electrode 14 can be made of a memory metal, such as nickel titanium, commercially available from Raychem Corporation, Menlo Park, Calif. In FIG. 4 , a resistive heating element 22 can be positioned in an interior lumen of electrode 14 .
  • Resistive heating element can be made of a suitable metal that transfers heat to electrode 14 , causing electrode distal end 18 to become deflected when the temperature of electrode 14 reaches a level that the memory metal is caused to deflect, as is well known in the art. Not all of electrode 14 need be made of the memory metal. It is possible that only electrode distal end 18 be made of the memory metal in order to effect the desired deflection. There are other methods of deflecting electrode 18 , as will be more fully discussed and described in a later section of this specification.
  • Apparatus 10 comprising handpiece 12 and electrode 14 , is adapted to be introduced through an operating cannula for percutaneous applications. It will be appreciated that apparatus 10 may be used in non-percutaneous applications and that an operating cannula is not necessary in the broad application of the invention.
  • apparatus 10 can also include, as an integral member, an operating cannula 24 which can be in the form of a hyperdermic trocar with dimensions of about 3 to 6 mm outside diameter, with tubular geometries such as those of standard commercially available operating cannulas.
  • Operating cannula 24 can be made of a variety of biocompatible materials including but not limited to stainless steel, and the like.
  • Operating cannula 24 has a proximal end that attaches to handpiece 12 and it can have a sharp or piercing distal end 26 that pierces a body structure in order to introduce electrode 14 to a desired site. Electrode 14 is positioned within an interior lumen of operating cannula 24 and is extendable beyond distal end 26 in order to reach the desired tissue site. Electrode 14 can be advanced and retracted in and out of operating cannula 24 by activating a deployment button 28 which is located on the exterior of handle 12 . Deployment button 28 is preferably activated by the operator merely by sliding it, which causes electrode 14 to advance in a direction away from distal end 26 of operating cannula 24 .
  • Deployment button 28 can be pulled back, causing a retraction of electrode 14 towards distal end 26 . In many instances, electrode 14 will be retracted to be positioned entirely within operating cannula 14 . Electrode 14 can also deployed with fluid hydraulics, pneumatics, servo motors, linear actuators, and the like.
  • An electrical and/or fluid flow cable 28 attaches to handle 12 and provides the necessary connection of apparatus 10 to a suitable energy source and/or a source of fluid, which may be an electrolytic solution or an electrolytic gel.
  • a suitable energy source and/or a source of fluid which may be an electrolytic solution or an electrolytic gel.
  • An electrolytic solution for purposes of this invention, is one that increases the transfer of thermal energy from electrode 14 to a tissue.
  • Suitable electrolytic solutions include but are not limited to saline solution and the like.
  • a variety of energy sources can be used with the present invention to transfer thermal energy to the tissue that includes collagen fibers.
  • Such energy sources include but are not limited to RF, microwave, ultrasonic, coherent light and thermal transfer.
  • RF energy source When an RF energy source is used, the physician can activate the energy source by the use of a foot switch 30 that is associated with handle 12 and electrode 14 . Significantly, a controlled amount of RF energy is delivered so that there is an effective transfer of thermal energy to the tissue site so that the thermal energy spreads widely through the tissue but does not cause a dissociation or breakdown of the collagen fibers.
  • electrode distal end 18 it is necessary to have electrode distal end 18 to become deflected ( FIG. 6 ). This can be achieved with the use of memory metals, or it can be accomplished mechanically.
  • a steering wire, or other mechanical structure is attached to either the exterior or interior of electrode 14 .
  • a deflection button 32 located on handle 12 , is activated by the physician, causing steering wire 34 ( FIG. 7 ) to tighten, and impart an retraction of electrode 14 , resulting in a deflection of electrode distal end 18 .
  • steering wire 34 FIG. 7
  • Other mechanical mechanisms can be used in place of steering wire 34 .
  • the deflection may be desirable for tissue sites that have difficult access, and it is necessary to move about a non-linear tissue.
  • steering wire 34 attaches to a flat formed on the exterior of electrode 14 .
  • Wire EDM technology can be used to form the flat on electrode 14 .
  • a “T” bar configuration is illustrated in FIG. 7 .
  • Chemical etching may be used to create the “T” bar.
  • Steering wire 34 need not be an actual wire. It can also be a high tensile strength cord such as Kevlar.
  • Steering wire 34 can be made of stainless steel flat wire, sheet material, and the like.
  • Electrode 14 can be tubular in nature with a central lumen. Electrode distal end 18 can include a conductive plug that is sealed to electrode distal end 18 by welding, e-beam, laser, and the like.
  • Electrode 14 can include an electrical insulation layer 38 formed on a back side of electrode 14 which is intended to minimize damage to tissue areas that are not treated. For example; when electrode 14 is introduced into a tight area, and only one surface of the tight area is to be treated, then it desirable to avoid delivering thermal energy to other tissue site areas. The inclusion of insulation layer 38 accomplishes this result. Suitable insulation materials include but are not limited to polyimide, epoxy varnish, PVC and the like. Electrode 14 includes a conductive surface 40 which does not include insulation layer 38 .
  • a plurality of apertures 42 are formed in electrode 14 to introduce a flowing fluid 44 through an interior lumen of electrode 14 and to the tissue site.
  • the flowing fluid can be an electrolytic solution or gel, including but not limited to saline.
  • the electrolyte furnishes an efficient electrical path and contact between electrode 14 and the tissue to be heated.
  • electrode 14 includes a central lumen for receiving an electrolytic solution 44 from an electrolytic source. Electrolytic solution 44 flows from electrode 14 through a plurality of apertures 42 formed in conductive surface 40 .
  • An insulating housing 46 surrounds electrode 14 , leaving only conductive surface 40 exposed. Insulating housing 46 can be formed of a variety of non-electrically conducting materials including but not limited to thermoplastics, thermosetting plastic resins, ceramics, and the like. Insulating housing 46 rides along the surface of the tissue to be treated and positions conductive surface 40 in an adjacent but spaced relationship with the tissue. In this manner, there isn't direct contact of conductive surface 40 with the tissue, and the chance of dissociation or break down of the collagen fibers is reduced.
  • Insulating housing 46 creates a partial dam 48 of electrolytic solution adjacent to the tissue. Electrical energy is transferred from electrode 14 to electrolytic solution 44 , and from electrolytic solution 44 in dam 48 to the tissue.
  • a cuff 50 surrounds insulating housing 46 .
  • Cuff 50 may be made of a variety of materials including but not limited to thermoplastic, thermosetting plastic resins, ceramics and the like. The respective dimensions of insulating housing 46 and cuff can vary according to the specific application. For example, in percutaneous applications, the dimensions will be smaller than for those used in topical applications such as dermatology.
  • Cuff 50 and insulating housing 46 are closely positioned to each other, but they are spaced in a manner to create a return electrolytic solution channel 52 .
  • the used electrolyte solution may either be released within a confined body area, such as the joint, or not be returned to the tissue, but instead is removed.
  • Electrolytic solution 44 may be cooled in the range of about 30 to 55 degrees C.
  • electrolytic solution 44 is in a holding container 54 and transferred through a fluid conduit 56 to a temperature controller 58 which can cool and heat electrolytic solution 44 to a desired temperature.
  • a pump 60 is associated with fluid conduit 56 to transfer fluid throughout the system and delivers electrolytic solution 44 through handpiece 12 to electrode 14 .
  • Returning electrolytic fluid 44 passes through return electrolytic solution channel 52 , and is delivered to a waste container 62 .
  • the flow rate of electrolytic solution can be in the range of less than about 1 cc/min. to greater than 5 cc/second.
  • the area of electrode 14 that serves as conductive surface 44 can be adjusted by the inclusion of an insulating sleeve 64 ( FIG. 12 ) that is positioned around electrode 14 .
  • Sleeve 64 is advanced and retracted along the surface of electrode 14 in order to provide increase or decrease the surface area of conductive surface 44 that is directed to the tissue.
  • Sleeve 64 can be made of a variety of materials including but not limited to nylon, polyimides, other thermoplastics and the like.
  • the amount of available conductive surface 44 available to deliver thermal energy can be achieved with devices other than sleeve 64 , including but not limited to printed circuitry with multiple circuits that can be individually activated, and the like.
  • Electrode 14 can have a variety of different geometric configurations.
  • electrode 14 has an oval cross section ( FIG. 13 ).
  • the oval cross section provides a greater conductive surface 44 area that is in contact with the tissue. A larger zone of heating to the tissue is provided. The thermal gradient within the tissue is more even and the possible dissociation or breakdown of the collagen fibers is reduced.
  • operating cannula 24 includes a viewing scope 66 which may be positioned above electrode 14 ( FIG. 15 ).
  • Viewing scope 66 provides a field of view 68 , permitting the surgeon to view while delivering energy to the tissue site and contracting the tissue.
  • Viewing scope 66 can include a bundle light transmitting fibers and optical viewing elements. Alternatively, the surgeon can view the procedure under arthroscopic visualization.
  • Temperature sensor 70 can be a thermocouple, a thermistor or phosphor coated optical fibers. Temperature sensor 70 can be utilized to determine the temperature of electrode 14 , particularly at conductive surface 40 , or temperature sensor 70 may be employed to determine the temperature of the tissue site.
  • the apparatus of the present invention can be an RF energy delivery device to effect contraction of collagen soft tissue while minimizing dissociation or breakdown of the collagen fibers.
  • the apparatus for control contraction of collagen soft tissue can include handpiece 12 , electrode 14 , operating cannula 24 , a cable 28 and an RF power source 72 .
  • Suitable RF power sources are commercially available and well known to those skilled in the art.
  • RF power source 72 has a single channel, delivering approximately 30 watts of RF energy and possess continued flow capability.
  • a closed loop feedback system, coupling temperature sensor 70 to RF energy source 72 can be included. The temperature of the tissue, or of electrode 14 is monitored, and the power of RF generator 72 adjusted accordingly.
  • a microprocessor 74 can be included and incorporated into the closed loop system switch power on and off, as well as modulate the power.
  • a suitable microprocessor is commercially available and well known to those skilled in the art of closed loop feedback systems.
  • the closed loop system utilizes microprocessor 74 to serve as a controller, watch the temperature, adjust the RF power, look at the result, refed the result, and then modulates the power.
  • Conductive roller element is rotatably mounted on electrode distal end 18 and can include a plurality of projections 78 . Roller element 76 is moved across the tissue site, along with projections 78 , to deliver the thermal energy.
  • the present invention provides a method of contracting collagen soft tissue.
  • the collagen soft tissue is contracted to a desired shrinkage level without dissociation and breakdown of the collagen structure. It can be used in the shoulder, spine, cosmetic applications, and the like. It will be appreciated to those skilled in the art that the present invention has a variety of different applications, not merely those specifically mentioned in this specification. Some specific applications include joint capsules, specifically the gleno-humoral joint capsule of the shoulder, herniated discs, the meniscus of the knee, in the bowel, for hiatal hernias, abdominal hernias, bladder suspensions, tissue welding, DRS, and the like.
  • RF energy thermal energy
  • the thermal energy penetrates more than 1 mm through the collagen soft tissue. The penetration can be as much as about 3 mm.
  • Electrode 14 is painted across the collagen soft tissue sequentially until the maximum shrinkage occurs.
  • the collagen soft tissue is contracted in an amount of about two-thirds of its resting weight.
  • a temperature range of about 43 to 90 degrees C. is preferred. More preferred, the temperature range is about 43 to 75 degrees C. Still more preferred is a temperature range of 45 to 60 degrees C.
  • joint capsules are treated to eliminate capsular redundance. More specifically, the invention is utilized to contract soft collagen tissue in the gleno-humoral joint capsule of the shoulder.
  • the basic anatomy of the gleno-humoral joint capsule of the shoulder is illustrated in FIG. 19 .
  • the apparatus of the present invention provides RF heating in a fluid or saline environment to control thermal spread.
  • RF heating is applied to collagen connective tissue shrinkage in temperature ranges of about 43 to 90 degrees C., 43 to 75 degrees C. and 45 to 60 degrees C.
  • the RF energy is delivered through endoscopically guided handpiece 12 in a fluid or saline environment within the joint. It can be under arthroscopic visualization by the surgeon, or the apparatus can include a viewing device.
  • the invention accurately controls the application of heat within a specific thermal range, and delivers thermal energy to collagen soft tissue of the joint, thereby contracting and restricting the soft tissue elasticity and improving joint stability.
  • capsular shrinkage of the gleno-humoral joint capsule of the shoulder When applied to the shoulder, there is capsular shrinkage of the gleno-humoral joint capsule of the shoulder and a consequent contracture of the volume, the interior circumference, of the shoulder capsule to correct for recurrent instability symptoms.
  • the degree of capsular shrinkage is determined by the operating surgeon, based on severity of preoperative symptoms and condition of the capsule at the time of arthroscopic inspection.
  • the maximum amount of collagen contraction achieved is approximately two-thirds of its original structure.
  • FIG. 20 a loose capsule is illustrated.
  • the apparatus for control contraction of tissue of the present invention is applied to a joint capsule ( FIG. 21 ).
  • Electrode distal end 18 is painted across the surface of the collagen soft tissue.
  • FIGS. 23 and 24 illustrate the application of the invention to a herniated disc.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Surgery (AREA)
  • Medical Informatics (AREA)
  • Neurology (AREA)
  • Otolaryngology (AREA)
  • Molecular Biology (AREA)
  • Plasma & Fusion (AREA)
  • Physics & Mathematics (AREA)
  • Neurosurgery (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Radiology & Medical Imaging (AREA)
  • Surgical Instruments (AREA)
  • Prostheses (AREA)
  • Electrotherapy Devices (AREA)
  • Recrystallisation Techniques (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)
  • Biological Depolymerization Polymers (AREA)
  • Laser Surgery Devices (AREA)

Abstract

An apparatus and method are provided for control contraction of tissue that includes collagen fibers. The apparatus includes a handpiece, and an electrode with an electrode proximal end associated with the handpiece. A distal end of the electrode has a geometry that delivers a controlled amount of energy to the tissue for a desired contraction of the collagen fibers. This is achieved while dissociation and breakdown of the collagen fibers is minimized. The handpiece, with electrode, is adapted to be introduced through an operating cannula in percutaneous applications. Additionally, an operating cannula may be included in the apparatus and be attached to the handpiece. The apparatus and method provides for a desired level of contraction of collagen soft tissue without dissociation or breakdown of collagen fibers.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation of U.S. application Ser. No. 09/664,473, filed Sep. 18, 2000, which is a continuation of U.S. application Ser. No. 08/696,051, filed Aug. 13, 1996, which is a continuation-in-part of U.S. application Ser. No. 08/637,095, filed Apr. 24, 1996, now U.S. Pat. No. 6,482,204, which is a continuation of U.S. application Ser. No. 08/389,924, filed Feb. 16, 1995, now U.S. Pat. No. 5,569,242, which is a continuation of Ser. No. 08/238,862, filed May 6, 1994, now U.S. Pat. No. 5,458,596.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • This invention relates generally to the contraction of soft tissue, and more particularly, to the compaction of soft collagen tissue with minimal dissociation of collagen tissue.
  • 2. Description of the Related Art
  • Instability of peripheral joints has long been recognized as a significant cause of disability and functional limitation in patients who are active in their daily activities, work or sports. Diarthrodial joints of musculoskeletal system have varying degrees of intrinsic stability based on joint geometry and ligament and soft tissue investment. Diarthrodial joints are comprised of the articulation of the ends of bones and their covering of hyaline cartilage surrounded by a soft tissue joint capsule that maintains the constant contact of the cartilage surfaces. This joint capsule also maintains within the joint the synovial fluid that provides nutrition and lubrication of the joint surfaces. Ligaments are soft tissue condensations in or around the joint capsule that reinforce and hold the joint together while also controlling and restricting various movements of the joints. The ligaments, joint capsule, and connective tissue are largely comprised of collagen.
  • When a joint becomes unstable, its soft tissue or bony structures allow for excessive motion of the joint surfaces relative to each other and in directions not normally permitted by the ligaments or capsule. When one surface of a joint slides out of position relative to the other surface, but some contact remains, subluxation occurs. When one surface of the joint completely disengages and loses contact with the opposing surface, a dislocation occurs. Typically, the more motion a joint normally demonstrates, the more inherently loose the soft tissue investment is surrounding the joint. This makes some joints more prone to instability than others. The shoulder, (glenohumeral) joint, for example, has the greatest range of motion of all peripheral joints. It has long been recognized as having the highest subluxation and dislocation rate because of its inherent laxity relative to more constrained “ball and socket” joints such as the hip.
  • Instability of the shoulder can occur congenitally, developmentally, or traumatically and often becomes recurrent, necessitating surgical repair. In fact subluxations and dislocations are a common occurrence and cause for a large number of orthopedic procedures each year. Symptoms include pain, instability, weakness, and limitation of function. If the instability is severe and recurrent, functional incapacity and arthritis may result. Surgical attempts are directed toward tightening the soft tissue restraints that have become pathologically loose. These procedures are typically performed through open surgical approaches that often require hospitalization and prolonged rehabilitation programs.
  • More recently, endoscopic (arthroscopic) techniques for achieving these same goals have been explored with variable success. Endoscopic techniques have the advantage of being performed through smaller incisions and therefore are usually less painful, performed on an outpatient basis, are associated with less blood loss and lower risk of infection and have a more cosmetically acceptable scar. Recovery is often faster postoperatively than using open techniques. However, it is often more technically demanding to advance and tighten capsule or ligamentous tissue arthroscopically because of the difficult access to pathologically loose tissue and because it is very hard to determine how much tightening or advancement of the lax tissue is clinically necessary. In addition, fixation of advanced or tightened soft tissue is more difficult arthroscopically than through open surgical methods.
  • Collagen connective tissue is ubiquitous in the human body and demonstrates several unique characteristics not found in other tissues. It provides the cohesiveness of the musculoskeletal system, the structural integrity of the viscera as well as the elasticity of integument. These are basically five types of collagen molecules with Type I being most common in bone, tendon, skin and other connective tissues, and Type III is common in muscular and elastic tissues.
  • Intermolecular cross links provide collagen connective tissue with unique physical properties of high tensile strength and substantial elasticity. A previously recognized property of collagen is hydrothermal shrinkage of collagen fibers when elevated in temperature. This unique molecular response to temperature elevation is the result of rupture of the collagen stabilizing cross links and immediate contraction of the collagen fibers to about one-third of their original lineal distention. Additionally, the caliber of the individual fibers increases greatly, over four fold, without changing the structural integrity of the connection tissue.
  • There has been discussion in the existing literature regarding alteration of collagen connective tissue in different parts of the body. One known technique for effective use of this knowledge of the properties of collagen is through the use of infrared laser energy to effect tissue heating. The use of infrared laser energy as a corneal collagen shrinking tool of the eye has been described and relates to laser keratoplasty, as set forth in U.S. Pat. No. 4,976,709. The importance controlling the localization, timing and intensity of laser energy delivery is recognized as paramount in providing the desired soft tissue shrinkage effects without creating excessive damage to the surrounding non-target tissues.
  • Radiofrequency (RF) electrical current has been used to reshape the cornea. Such shaping has been reported by Doss in U.S. Pat. Nos. 4,326,529; and 4,381,007. However, Doss was not concerned with dissociating collagen tissue in his reshaping of the cornea.
  • Shrinkage of collagen tissue is important in many applications. One such application is the shoulder capsule. The capsule of the shoulder consists of a synovial lining and three well defined layers of collagen. The fibers of the inner and outer layers extend in a coronal access from the glenoid to the humerus. The middle layer of the collagen extends in a sagittal direction, crossing the fibers of the other two layers. The relative thickness and degree of intermingling of collagen fibers of the three layers vary with different portions of the capsule. The ligamentous components of the capsule are represented by abrupt thickenings of the inner layer with a significant increase in well organized coarse collagen bundles in the coronal plane.
  • The capsule functions as a hammock-like sling to support the humeral head. In pathologic states of recurrent traumatic or developmental instability this capsule or pouch becomes attenuated and the capsule capacity increases secondary to capsule redundance. In cases of congenital or developmental multi-directional laxity, an altered ratio of type I to type III collagen fibers may be noted. In these shoulder capsules a higher ratio of more elastic type III collagen has been described.
  • There is a need for a method and apparatus to effect controlled lineal contraction or shrinkage of collagen fibers to provide a multitude of non-destructive and beneficial structural changes and corrections within the body. More particularly with regard to the shoulder capsule, current surgical techniques involve cutting or advancing the shoulder capsule to eliminate capsular redundance or to otherwise tighten the ligamous complex. Accordingly, there is a need to control shrinkage of the capsule by utilizing the knowledge of the properties of collagen in response to a specific level of thermal application.
  • SUMMARY OF THE INVENTION
  • It is an object of the present invention to provide a method and apparatus to control the duration and application of thermal energy to a tissue site made that includes collagen soft tissue, a desired level of contraction of collagen fibers is obtained while dissociation and breakdown of the collagen fibers is minimized.
  • Another object of the present invention is to use RF heating in a fluid environment to control thermal spread to a tissue that includes collagen soft tissue, and a desired contraction of collagen fibers is obtained while minimizing dissociation and breakdown of the collagen fibers.
  • Yet another object of the present invention is to provide a device directed to collagen connective tissue shrinkage by the use of RF heating to a temperature profile of 43 to 90 degrees centigrade.
  • Another object of the present invention is to provide a device directed to collagen connective tissue shrinkage by the use of RF heating to a temperature profile of 43 to 75 degrees centigrade.
  • Still a further object of the present invention is to provide a device directed to collagen connective tissue shrinkage by the use of the RF heating to a temperature profile of 45 to 60 degrees centigrade.
  • Another object of the present invention is to provide an apparatus which delivers RF energy through an endoscopically guided handpiece in a fluid environment to obtain maximum contraction of collagen soft tissue while minimizing dissociation and breakdown of the collagen tissue.
  • Yet another object of the present invention is to provide an apparatus that provides for the maximum amount of collagen contraction without dissociation of the collagen structure.
  • Another object of the present invention is to provide an apparatus to deliver a controlled amount of RF energy to the collagen soft tissue of a joint in order to contract and restrict the soft tissue elasticity and improve joint stability.
  • A further object of the present invention to provide an apparatus and method that reduces redundancy of the shoulder capsule and improves stability to the joint.
  • These and other objects of the invention are obtained with an apparatus for control contraction of tissue that includes collagen fibers. The apparatus include a handpiece, and an electrode with an electrode proximal end that is associated with the handpiece. A distal end of the electrode has a geometry that delivers a controlled amount of energy to the tissue in order to achieve a desired contraction of the collagen fibers. This is achieved while dissociation and breakdown of the collagen fibers is minimized.
  • The handpiece, with electrode, is adapted to be introduced through an operating cannula in percutaneous applications. Additionally, it may be desirable to include as part of the apparatus an operating cannula. In this instance, the operating cannula has a proximal end that attaches to the handpiece, and a distal end that is adapted to be introduced into a body structure. The electrode is positioned within the operating cannula, and extendable beyond the distal end of the cannula when thermal energy is delivered to the tissue.
  • It is recognized that the delivery of the thermal energy to the tissue should be delivered in such a way that none of the tissue is ablated. Additionally, the delivery is achieved without dissociating or breaking down the collagen structure. This can be accomplished in different ways, but it has been discovered that an electrode with radiused edges at its distal end is suitable to obtain this result. The present invention is applicable to a number of different anatomical sites. Depending on the anatomy, it may be necessary to deflect the distal end of the electrode to reach the desired site. Additionally, one side of the electrode may include an insulating layer so that thermal energy is only delivered to the intended tissue, and not a tissue in an adjacent relationship to the area of treatment.
  • In certain instances it is desirable to be able to vary the length of the electrode conductive surface which delivers the thermal energy to the tissue. For this purpose, an adjustable insulator, that is capable of movement along the longitudinal axis of the electrode, provides a way of adjusting the length of electrode conductive surface.
  • Memory metals can be used for the electrode construction. An advantage of memory metals is that with the application of heat to the metal, it can be caused to be deflected. This is particularly useful for deflecting the distal end of the electrode.
  • The electrode can include a central lumen that receives an electrolytic solution from an electrolytic source. A plurality of apertures are formed in the distal end of the electrode and deliver the flowing electrolytic fluid to the tissue. Instead of an electrolytic solution, an electrolytic gel can also be introduced through the electrode.
  • In one embodiment of the invention, the electrode is partially surrounded by an insulating housing in order to position the electrode in an adjacent but spaced relationship to the tissue. A portion of the insulating housing rides on the tissue, and creates the equivalent of a partial dam for electrolytic solution introduced through the electrode and towards the tissue. A cuff is disposed about the insulating housing. The cuff and insulating housing together create a return electrolytic solution channel for the removal of solution flowing out of the dam and away from the tissue site.
  • The handpiece of the invention can be connected, with a cable, to an RF energy source. A closed loop feedback system can be included and coupled to a temperature sensor on the electrode and the RF energy source. Temperature at the electrode can be monitored, and the power of the RF energy source adjusted to control the amount of energy that is delivered to the tissue.
  • The present invention has wide spread application to many different anatomical locations. It can be utilized for controlled contraction of collagen soft tissue of a joint capsule, particularly the gleno-humoral joint capsule of the shoulder, to treat herniated discs, the meniscus of the knee, for dermatology, to name just a few.
  • In one embodiment of the invention, RF heating in a fluid or saline environment is used to control thermal spread to soft collagen tissue. The RF energy can be delivered through an endoscopically guided handpiece under arthroscopic visualization by the surgeon. In the temperature range of 43 to 90 degrees C., maximum collagen contraction is achieved. Additional temperature ranges are 43 to 75 degrees C., and 45 to 60 degrees C. Lower temperatures do not provide maximum thermal induced contracture of the collagen fibrils. Greater temperatures create excessive destruction and disintegration of the collagen fibrillar pattern. Thus, the present invention is a method and apparatus which accurately controls the application of heat within a desired thermal range. This heat is delivered the collagen soft tissue, thereby contracting and restricting the soft tissue elasticity and improving stability.
  • DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a perspective plan view of an apparatus for control contraction of tissue that includes collagen fibers, including a handpiece and an electrode, according to the invention.
  • FIG. 2 is a perspective plan view of a distal end of the electrode with all edges radiused according to the invention.
  • FIG. 3 is a side view of the distal end of the electrode of FIG. 2.
  • FIG. 4 is a sectional view of the deflected electrode with a resistive heating element positioned in an interior lumen of the electrode according to the invention.
  • FIG. 5 is a perspective plan view of the apparatus for control contraction of tissue with collagen fibers with a handpiece, electrode and an operating cannula according to the present invention.
  • FIG. 6 is a close up perspective plan view of the distal end of the electrode of the apparatus of FIG. 5 according to the invention.
  • FIG. 7 is a perspective plan view of an electrode with a steering wire positioned on the exterior of the electrode according to the invention.
  • FIG. 8 is a sectional view of an electrode with a lumen and a plug that is attached to the electrode distal end according to the invention.
  • FIG. 9 is a cross sectional view of an electrode with fluid flowing through an interior lumen of the electrode according to the invention.
  • FIG. 10 is a cross sectional view of an RF electrode structure with an insulating housing surrounding a portion of an electrode, and a cuff surrounding the insulating housing according to the invention.
  • FIG. 11 is a block diagram of a fluid control system useful with the electrode structure of FIG. 10 according to the invention.
  • FIG. 12 is a perspective plan view of a handpiece, an electrode and a sleeve that slides across the surface of the electrode to vary the amount of electrode conductive surface according to the invention.
  • FIG. 13 is a sectional view of an electrode with an oval cross section and the heating zone in the tissue according to the invention.
  • FIG. 14 is a sectional view of a handle, electrode, operating cannula and a viewing scope, with the viewing scope and electrode positioned in the operating cannula according to the invention.
  • FIG. 15 is a cross sectional view of the device of FIG. 14, taken along the lines 15-15 according to the invention.
  • FIG. 16 is a perspective plan view of an electrode distal end with temperature sensors positioned in the distal end according to the invention.
  • FIG. 17 is a block diagram of a closed loop feedback system according to the invention.
  • FIG. 18 is a perspective plan view of a roller element mounted at an electrode distal end according to the invention.
  • FIG. 19 is a drawing of the right glenohumeral capsuloligamentous complex.
  • FIG. 20 is a drawing of a loose joint capsule.
  • FIG. 21 is a schematic drawing of the apparatus of the invention with an electrode supplying thermal energy to a joint structure.
  • FIG. 22 is a sectional view of a disc positioned between two vertebrae.
  • FIG. 23 is a schematic drawing of the apparatus of the invention with an electrode supplying thermal energy to a herniated disc.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • Referring now generally to FIG. 1, an apparatus for control contraction of tissue that includes collagen fibers is generally denoted as 10. Apparatus 10 includes a handpiece 12 that is preferably made of an insulating material. Types of such insulating materials are well known in those skilled in the art. An electrode 14 is associated with handle 12 at a proximal end 16 of electrode 14, and may even be attached thereto. A distal end 18 of electrode 14 has a geometry that delivers a controlled amount of energy to the tissue in order to achieve a desired level of contraction of the collagen fibers. Contraction is achieved while dissociation and breakdown of the collagen fibers is minimized.
  • Electrode 14 can have be a flat elongated structure that is easily painted across a tissue without “hanging up” on any section of the tissue. In one geometry of electrode 14, all edges 20 of distal end 18 are radiused, as illustrated in FIGS. 2 and 3. Distal end 18 can have a variety of geometric configurations. One such geometry is a disc shaped geometry without square edges. Electrode 14 can be made of a number of different materials including but not limited to stainless steel, platinum, other noble metals and the like. Electrode 14 can be made of a memory metal, such as nickel titanium, commercially available from Raychem Corporation, Menlo Park, Calif. In FIG. 4, a resistive heating element 22 can be positioned in an interior lumen of electrode 14. Resistive heating element can be made of a suitable metal that transfers heat to electrode 14, causing electrode distal end 18 to become deflected when the temperature of electrode 14 reaches a level that the memory metal is caused to deflect, as is well known in the art. Not all of electrode 14 need be made of the memory metal. It is possible that only electrode distal end 18 be made of the memory metal in order to effect the desired deflection. There are other methods of deflecting electrode 18, as will be more fully discussed and described in a later section of this specification.
  • Apparatus 10, comprising handpiece 12 and electrode 14, is adapted to be introduced through an operating cannula for percutaneous applications. It will be appreciated that apparatus 10 may be used in non-percutaneous applications and that an operating cannula is not necessary in the broad application of the invention.
  • As illustrated in FIGS. 5 and 6, apparatus 10 can also include, as an integral member, an operating cannula 24 which can be in the form of a hyperdermic trocar with dimensions of about 3 to 6 mm outside diameter, with tubular geometries such as those of standard commercially available operating cannulas. Operating cannula 24 can be made of a variety of biocompatible materials including but not limited to stainless steel, and the like.
  • Operating cannula 24 has a proximal end that attaches to handpiece 12 and it can have a sharp or piercing distal end 26 that pierces a body structure in order to introduce electrode 14 to a desired site. Electrode 14 is positioned within an interior lumen of operating cannula 24 and is extendable beyond distal end 26 in order to reach the desired tissue site. Electrode 14 can be advanced and retracted in and out of operating cannula 24 by activating a deployment button 28 which is located on the exterior of handle 12. Deployment button 28 is preferably activated by the operator merely by sliding it, which causes electrode 14 to advance in a direction away from distal end 26 of operating cannula 24. Deployment button 28 can be pulled back, causing a retraction of electrode 14 towards distal end 26. In many instances, electrode 14 will be retracted to be positioned entirely within operating cannula 14. Electrode 14 can also deployed with fluid hydraulics, pneumatics, servo motors, linear actuators, and the like.
  • An electrical and/or fluid flow cable 28 attaches to handle 12 and provides the necessary connection of apparatus 10 to a suitable energy source and/or a source of fluid, which may be an electrolytic solution or an electrolytic gel. An electrolytic solution, for purposes of this invention, is one that increases the transfer of thermal energy from electrode 14 to a tissue. Suitable electrolytic solutions include but are not limited to saline solution and the like.
  • A variety of energy sources can be used with the present invention to transfer thermal energy to the tissue that includes collagen fibers. Such energy sources include but are not limited to RF, microwave, ultrasonic, coherent light and thermal transfer.
  • When an RF energy source is used, the physician can activate the energy source by the use of a foot switch 30 that is associated with handle 12 and electrode 14. Significantly, a controlled amount of RF energy is delivered so that there is an effective transfer of thermal energy to the tissue site so that the thermal energy spreads widely through the tissue but does not cause a dissociation or breakdown of the collagen fibers.
  • For many applications, it is necessary to have electrode distal end 18 to become deflected (FIG. 6). This can be achieved with the use of memory metals, or it can be accomplished mechanically. A steering wire, or other mechanical structure, is attached to either the exterior or interior of electrode 14. A deflection button 32, located on handle 12, is activated by the physician, causing steering wire 34 (FIG. 7) to tighten, and impart an retraction of electrode 14, resulting in a deflection of electrode distal end 18. It will be appreciated that other mechanical mechanisms can be used in place of steering wire 34. The deflection may be desirable for tissue sites that have difficult access, and it is necessary to move about a non-linear tissue. By deflecting electrode distal end 18, the opportunity to provide more even thermal energy to a tissue site is achieved, and the possibility of ablating or dissociation of collagen material is greatly reduced.
  • As shown in FIG. 7, steering wire 34 attaches to a flat formed on the exterior of electrode 14. Wire EDM technology can be used to form the flat on electrode 14. A “T” bar configuration is illustrated in FIG. 7. Chemical etching may be used to create the “T” bar. Steering wire 34 need not be an actual wire. It can also be a high tensile strength cord such as Kevlar. Steering wire 34 can be made of stainless steel flat wire, sheet material, and the like.
  • Electrode 14 can be tubular in nature with a central lumen. Electrode distal end 18 can include a conductive plug that is sealed to electrode distal end 18 by welding, e-beam, laser, and the like.
  • In FIG. 9, Electrode 14 can include an electrical insulation layer 38 formed on a back side of electrode 14 which is intended to minimize damage to tissue areas that are not treated. For example; when electrode 14 is introduced into a tight area, and only one surface of the tight area is to be treated, then it desirable to avoid delivering thermal energy to other tissue site areas. The inclusion of insulation layer 38 accomplishes this result. Suitable insulation materials include but are not limited to polyimide, epoxy varnish, PVC and the like. Electrode 14 includes a conductive surface 40 which does not include insulation layer 38.
  • A plurality of apertures 42 are formed in electrode 14 to introduce a flowing fluid 44 through an interior lumen of electrode 14 and to the tissue site. The flowing fluid can be an electrolytic solution or gel, including but not limited to saline. The electrolyte furnishes an efficient electrical path and contact between electrode 14 and the tissue to be heated.
  • Referring now to FIG. 10, electrode 14 includes a central lumen for receiving an electrolytic solution 44 from an electrolytic source. Electrolytic solution 44 flows from electrode 14 through a plurality of apertures 42 formed in conductive surface 40. An insulating housing 46 surrounds electrode 14, leaving only conductive surface 40 exposed. Insulating housing 46 can be formed of a variety of non-electrically conducting materials including but not limited to thermoplastics, thermosetting plastic resins, ceramics, and the like. Insulating housing 46 rides along the surface of the tissue to be treated and positions conductive surface 40 in an adjacent but spaced relationship with the tissue. In this manner, there isn't direct contact of conductive surface 40 with the tissue, and the chance of dissociation or break down of the collagen fibers is reduced. Insulating housing 46 creates a partial dam 48 of electrolytic solution adjacent to the tissue. Electrical energy is transferred from electrode 14 to electrolytic solution 44, and from electrolytic solution 44 in dam 48 to the tissue. A cuff 50 surrounds insulating housing 46. Cuff 50 may be made of a variety of materials including but not limited to thermoplastic, thermosetting plastic resins, ceramics and the like. The respective dimensions of insulating housing 46 and cuff can vary according to the specific application. For example, in percutaneous applications, the dimensions will be smaller than for those used in topical applications such as dermatology.
  • Cuff 50 and insulating housing 46 are closely positioned to each other, but they are spaced in a manner to create a return electrolytic solution channel 52. The used electrolyte solution may either be released within a confined body area, such as the joint, or not be returned to the tissue, but instead is removed.
  • Use of a cooled solution to deliver the thermal energy to the tissue, instead of direct contact with conductive surface 40, provides a more even thermal gradient in the tissue. Avoidance of surface overheating can be accomplished. There is a more uniform level of thermal energy applied to the tissue. Electrolytic solution 44 may be cooled in the range of about 30 to 55 degrees C.
  • Referring now to FIG. 1, electrolytic solution 44 is in a holding container 54 and transferred through a fluid conduit 56 to a temperature controller 58 which can cool and heat electrolytic solution 44 to a desired temperature. A pump 60 is associated with fluid conduit 56 to transfer fluid throughout the system and delivers electrolytic solution 44 through handpiece 12 to electrode 14. Returning electrolytic fluid 44 passes through return electrolytic solution channel 52, and is delivered to a waste container 62. The flow rate of electrolytic solution can be in the range of less than about 1 cc/min. to greater than 5 cc/second.
  • The area of electrode 14 that serves as conductive surface 44 can be adjusted by the inclusion of an insulating sleeve 64 (FIG. 12) that is positioned around electrode 14. Sleeve 64 is advanced and retracted along the surface of electrode 14 in order to provide increase or decrease the surface area of conductive surface 44 that is directed to the tissue. Sleeve 64 can be made of a variety of materials including but not limited to nylon, polyimides, other thermoplastics and the like. The amount of available conductive surface 44 available to deliver thermal energy can be achieved with devices other than sleeve 64, including but not limited to printed circuitry with multiple circuits that can be individually activated, and the like.
  • Electrode 14 can have a variety of different geometric configurations. In one embodiment, electrode 14 has an oval cross section (FIG. 13). The oval cross section provides a greater conductive surface 44 area that is in contact with the tissue. A larger zone of heating to the tissue is provided. The thermal gradient within the tissue is more even and the possible dissociation or breakdown of the collagen fibers is reduced.
  • As illustrated in FIG. 14, operating cannula 24 includes a viewing scope 66 which may be positioned above electrode 14 (FIG. 15). Viewing scope 66 provides a field of view 68, permitting the surgeon to view while delivering energy to the tissue site and contracting the tissue. Viewing scope 66 can include a bundle light transmitting fibers and optical viewing elements. Alternatively, the surgeon can view the procedure under arthroscopic visualization.
  • Referring now to FIG. 16, one or more temperature sensors 70 can be positioned in electrode 14, particularly at electrode distal end 18. Temperature sensor 70 can be a thermocouple, a thermistor or phosphor coated optical fibers. Temperature sensor 70 can be utilized to determine the temperature of electrode 14, particularly at conductive surface 40, or temperature sensor 70 may be employed to determine the temperature of the tissue site.
  • Additionally, the apparatus of the present invention can be an RF energy delivery device to effect contraction of collagen soft tissue while minimizing dissociation or breakdown of the collagen fibers. As shown in FIG. 17 the apparatus for control contraction of collagen soft tissue can include handpiece 12, electrode 14, operating cannula 24, a cable 28 and an RF power source 72. Suitable RF power sources are commercially available and well known to those skilled in the art. In one embodiment of the invention RF power source 72 has a single channel, delivering approximately 30 watts of RF energy and possess continued flow capability. A closed loop feedback system, coupling temperature sensor 70 to RF energy source 72 can be included. The temperature of the tissue, or of electrode 14 is monitored, and the power of RF generator 72 adjusted accordingly. The physician can, if desired, override the closed loop system. A microprocessor 74 can be included and incorporated into the closed loop system switch power on and off, as well as modulate the power. A suitable microprocessor is commercially available and well known to those skilled in the art of closed loop feedback systems. The closed loop system utilizes microprocessor 74 to serve as a controller, watch the temperature, adjust the RF power, look at the result, refed the result, and then modulates the power.
  • Optionally positioned on electrode distal end 18 is a conductive roller element 76 (FIG. 18). Conductive roller element is rotatably mounted on electrode distal end 18 and can include a plurality of projections 78. Roller element 76 is moved across the tissue site, along with projections 78, to deliver the thermal energy.
  • The present invention provides a method of contracting collagen soft tissue. The collagen soft tissue is contracted to a desired shrinkage level without dissociation and breakdown of the collagen structure. It can be used in the shoulder, spine, cosmetic applications, and the like. It will be appreciated to those skilled in the art that the present invention has a variety of different applications, not merely those specifically mentioned in this specification. Some specific applications include joint capsules, specifically the gleno-humoral joint capsule of the shoulder, herniated discs, the meniscus of the knee, in the bowel, for hiatal hernias, abdominal hernias, bladder suspensions, tissue welding, DRS, and the like.
  • RF energy, thermal energy, is delivered to collagen soft tissue. The thermal energy penetrates more than 1 mm through the collagen soft tissue. The penetration can be as much as about 3 mm. Electrode 14 is painted across the collagen soft tissue sequentially until the maximum shrinkage occurs. In one embodiment, the collagen soft tissue is contracted in an amount of about two-thirds of its resting weight. A temperature range of about 43 to 90 degrees C. is preferred. More preferred, the temperature range is about 43 to 75 degrees C. Still more preferred is a temperature range of 45 to 60 degrees C.
  • In one specific embodiment of the invention, joint capsules are treated to eliminate capsular redundance. More specifically, the invention is utilized to contract soft collagen tissue in the gleno-humoral joint capsule of the shoulder. The basic anatomy of the gleno-humoral joint capsule of the shoulder is illustrated in FIG. 19.
  • The apparatus of the present invention provides RF heating in a fluid or saline environment to control thermal spread. RF heating is applied to collagen connective tissue shrinkage in temperature ranges of about 43 to 90 degrees C., 43 to 75 degrees C. and 45 to 60 degrees C. The RF energy is delivered through endoscopically guided handpiece 12 in a fluid or saline environment within the joint. It can be under arthroscopic visualization by the surgeon, or the apparatus can include a viewing device. The invention accurately controls the application of heat within a specific thermal range, and delivers thermal energy to collagen soft tissue of the joint, thereby contracting and restricting the soft tissue elasticity and improving joint stability. When applied to the shoulder, there is capsular shrinkage of the gleno-humoral joint capsule of the shoulder and a consequent contracture of the volume, the interior circumference, of the shoulder capsule to correct for recurrent instability symptoms. The degree of capsular shrinkage is determined by the operating surgeon, based on severity of preoperative symptoms and condition of the capsule at the time of arthroscopic inspection. The maximum amount of collagen contraction achieved is approximately two-thirds of its original structure.
  • In FIG. 20, a loose capsule is illustrated. The apparatus for control contraction of tissue of the present invention is applied to a joint capsule (FIG. 21). Electrode distal end 18 is painted across the surface of the collagen soft tissue. FIGS. 23 and 24 illustrate the application of the invention to a herniated disc.
  • While embodiments and applications of this invention have been shown and described, it will be apparent to those skilled in the art that many more modifications than mentioned above are possible without departing from the invention concepts herein. The invention, therefore, is not to be restricted except in the spirit of the appended claims.

Claims (23)

1. A method utilizing RF energy for a dermatological application, said method comprising:
providing an apparatus comprising an RF energy source, a treatment device and at least one electrode coupled to the treatment device, said electrode having an electrode surface for delivering RF energy from the RF energy source;
positioning the electrode surface on a skin surface;
applying RF energy to a target tissue;
heating the target tissue with RF energy while avoiding ablation of the target tissue; and
contracting collagen fibers in the target tissue.
2. The method of claim 1 further comprising delivering a fluid to the skin surface such that the electrode surface is in contact with the fluid.
3. The method of claim 2 wherein the fluid is a gel.
4. The method of claim 2 wherein the fluid is a cooling fluid so as to minimize thermal damage to the skin surface.
5. The method of claim 1 wherein said applying RF energy comprises applying RF energy to a target tissue more than 1 mm below the skin surface.
6. The method of claim 1 wherein the RF energy source is coupled to the treatment device.
7. A method utilizing RF energy, said method comprising:
providing an apparatus comprising an RF energy source, a treatment device and at least one electrode coupled to the treatment device, said electrode having an electrode surface for delivering RF energy from the RF energy source;
positioning the electrode surface on a skin surface;
applying RF energy to a target tissue;
heating without significantly ablating the target tissue with RF energy such that the temperature of the target tissue does not exceed about 75° C.; and
contracting collagen fibers in the target tissue to achieve a cosmetic effect.
8. A treatment method utilizing RF energy, said treatment method comprising:
providing an apparatus comprising an RF energy source, a treatment device and at least one electrode coupled to the treatment device, said electrode having an electrode surface for delivering RF energy from the RP energy source;
positioning the electrode surface on a tissue surface;
applying RF energy to a target tissue below the tissue surface;
heating the target tissue with RF energy while avoiding ablation of the target tissue; and
contracting collagen fibers in the target tissue.
9. The treatment method of claim 8 wherein said heating the target tissue comprises heating the target tissue while completely avoiding ablation of the target tissue.
10. A method utilizing RF energy for a cosmetic application, said method comprising:
providing an apparatus comprising an RF energy source, a treatment device and at least one electrode coupled to the treatment device, said electrode having an electrode surface for delivering RF energy from the RF energy source;
delivering a fluid to a skin surface;
positioning the electrode surface such that it is in contact with the fluid;
delivering RF energy from the electrode surface to a target tissue below the skin surface; and
heating the target tissue with RF energy to achieve at least one effect, said effect comprising contracted collagen fibers in the target tissue.
11. The method of claim 10 wherein said heating the target tissue comprises heating the target tissue with RF energy such that the temperature of the target tissue does not exceed about 90° C.
12. The method of claim 10 wherein the fluid is a gel.
13. The method of claim 10 wherein the fluid is a cooling fluid so as to minimize thermal damage to the skin surface.
14. A treatment method for applying RF energy to a target tissue without significantly ablating the target tissue, said treatment method comprising:
providing a system having an RF energy source, a microprocessor, at least one electrode for delivering RF energy and a temperature sensor associated with the electrode;
measuring the temperature of the electrode with the temperature sensor;
providing the temperature of the electrode to the microprocessor; and
determining whether to deliver RF energy from the electrode depending on the provided temperature.
15. A system for applying RF energy to treat tissue, said system comprising:
an RF energy source; and
a treatment device associated with the RF energy source, said treatment device comprising an electrically conductive material and a non-electrically conductive material,
wherein the non-electrically conductive material is configured to extend along a surface of the tissue to be treated and to maintain the electrically conductive material from directly contacting the tissue.
16. The system of claim 15 wherein the non-electrically conductive material comprises at least one polymer.
17. The system of claim 16 wherein the at least one polymer is polyimide.
18. A system for contracting collagen fibers in a target tissue with RF energy from an RF energy source, said system comprising:
an electrically conductive material for transmitting RF energy from the RF energy source; and
a non-electrically conductive material wherein the non-electrically conductive material is configured between the electrically conductive material and the target tissue so as to maintain the electrically conductive material from directly contacting the target tissue.
19. A system for applying RF energy to a target tissue, said system comprising:
an RF energy source; and
a treatment device comprising an electrically conductive surface area for delivering RF energy from the RF energy source to the target tissue so as to contract collagen fibers in the target issue, wherein said treatment device is configurable to provide a plurality of surface areas.
20. A system for controllably contracting collagen fibers in a target tissue with RF energy to achieve a cosmetic effect, said system comprising:
an RF energy source;
a treatment device;
at least one cable for connecting the RF energy source to the treatment device; and
at least one electrode coupled to the treatment device, said electrode having an electrode surface configured to be positioned on a skin surface so as to deliver RF energy from the RF energy source to the target tissue while avoiding ablation of the target tissue.
21. The system of claim 20 further comprising a device for providing a cooling fluid so as to minimize thermal damage to the skin surface.
22. The system of claim 20 wherein the electrode surface is substantially planar.
23. A system for applying RF energy to a target tissue without significantly ablating the target tissue, said system comprising:
an RF energy source;
a handpiece;
at least one cable for connecting the RF energy source to the handpiece;
at least one electrode for delivering RF energy, said electrode coupled to the handpiece;
a temperature sensor associated with the electrode, said temperature sensor configured to measure the temperature of the electrode; and
a microprocessor configured to receive the temperature of the electrode from the temperature sensor and to determine whether to deliver RF energy from the electrode depending on the received temperature.
US11/058,845 1994-05-06 2005-02-15 Method and apparatus for controlled contraction of soft tissue Abandoned US20060047331A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US08/637,095 US6482204B1 (en) 1994-05-06 1996-04-24 Method and apparatus for controlled contraction of soft tissue
US11/058,845 US20060047331A1 (en) 1994-05-06 2005-02-15 Method and apparatus for controlled contraction of soft tissue

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US08/238,862 US5458596A (en) 1994-05-06 1994-05-06 Method and apparatus for controlled contraction of soft tissue
US08/389,924 US5569242A (en) 1994-05-06 1995-02-16 Method and apparatus for controlled contraction of soft tissue
US08/637,095 US6482204B1 (en) 1994-05-06 1996-04-24 Method and apparatus for controlled contraction of soft tissue
US69605196A 1996-08-13 1996-08-13
US66447300A 2000-09-18 2000-09-18
US11/058,845 US20060047331A1 (en) 1994-05-06 2005-02-15 Method and apparatus for controlled contraction of soft tissue

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US66447300A Continuation 1994-05-06 2000-09-18

Publications (1)

Publication Number Publication Date
US20060047331A1 true US20060047331A1 (en) 2006-03-02

Family

ID=22899634

Family Applications (4)

Application Number Title Priority Date Filing Date
US08/238,862 Expired - Lifetime US5458596A (en) 1994-05-06 1994-05-06 Method and apparatus for controlled contraction of soft tissue
US08/389,924 Expired - Lifetime US5569242A (en) 1994-05-06 1995-02-16 Method and apparatus for controlled contraction of soft tissue
US08/637,095 Expired - Fee Related US6482204B1 (en) 1994-05-06 1996-04-24 Method and apparatus for controlled contraction of soft tissue
US11/058,845 Abandoned US20060047331A1 (en) 1994-05-06 2005-02-15 Method and apparatus for controlled contraction of soft tissue

Family Applications Before (3)

Application Number Title Priority Date Filing Date
US08/238,862 Expired - Lifetime US5458596A (en) 1994-05-06 1994-05-06 Method and apparatus for controlled contraction of soft tissue
US08/389,924 Expired - Lifetime US5569242A (en) 1994-05-06 1995-02-16 Method and apparatus for controlled contraction of soft tissue
US08/637,095 Expired - Fee Related US6482204B1 (en) 1994-05-06 1996-04-24 Method and apparatus for controlled contraction of soft tissue

Country Status (8)

Country Link
US (4) US5458596A (en)
EP (1) EP0760626B1 (en)
JP (2) JP3741725B2 (en)
AT (1) ATE206029T1 (en)
AU (1) AU715173B2 (en)
CA (1) CA2188668C (en)
DE (1) DE69522939T2 (en)
WO (1) WO1995030373A1 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070233191A1 (en) * 2006-02-07 2007-10-04 Parmer Jonathan B Vaginal remodeling device and methods
WO2009022614A1 (en) * 2007-08-14 2009-02-19 Olympus Medical Systems Corp. Treatment device for living tissue
US7645277B2 (en) 2000-09-22 2010-01-12 Salient Surgical Technologies, Inc. Fluid-assisted medical device
US7727232B1 (en) 2004-02-04 2010-06-01 Salient Surgical Technologies, Inc. Fluid-assisted medical devices and methods
US7811282B2 (en) 2000-03-06 2010-10-12 Salient Surgical Technologies, Inc. Fluid-assisted electrosurgical devices, electrosurgical unit with pump and methods of use thereof
US7815634B2 (en) 2000-03-06 2010-10-19 Salient Surgical Technologies, Inc. Fluid delivery system and controller for electrosurgical devices
US7951148B2 (en) 2001-03-08 2011-05-31 Salient Surgical Technologies, Inc. Electrosurgical device having a tissue reduction sensor
US20110178584A1 (en) * 2009-09-18 2011-07-21 Parmer Jonathan B Vaginal remodeling device and methods
US7998140B2 (en) 2002-02-12 2011-08-16 Salient Surgical Technologies, Inc. Fluid-assisted medical devices, systems and methods
US8475455B2 (en) 2002-10-29 2013-07-02 Medtronic Advanced Energy Llc Fluid-assisted electrosurgical scissors and methods
US9415235B2 (en) 2012-03-16 2016-08-16 Viveve, Inc. Vaginal remodeling device and method
US20170086872A1 (en) * 2015-09-28 2017-03-30 Olympus Corporation Treatment method
US20170156737A1 (en) * 2015-09-28 2017-06-08 Olympus Corporation Treatment method
US20170165507A1 (en) * 2015-09-28 2017-06-15 Olympus Corporation Treatment method
US20180185054A1 (en) * 2015-08-28 2018-07-05 Olympus Corporation Ultrasonic surgical system
US20180185053A1 (en) * 2015-08-28 2018-07-05 Olympus Corporation Surgical system
US10682155B2 (en) * 2016-03-31 2020-06-16 Olympus Corporation Ultrasonic treatment system for joint
US11511110B2 (en) 2018-06-27 2022-11-29 Viveve, Inc. Methods for treating urinary stress incontinence
US11896823B2 (en) 2017-04-04 2024-02-13 Btl Healthcare Technologies A.S. Method and device for pelvic floor tissue treatment

Families Citing this family (683)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5697909A (en) 1992-01-07 1997-12-16 Arthrocare Corporation Methods and apparatus for surgical cutting
US5697281A (en) * 1991-10-09 1997-12-16 Arthrocare Corporation System and method for electrosurgical cutting and ablation
US6179824B1 (en) * 1993-05-10 2001-01-30 Arthrocare Corporation System and methods for electrosurgical restenosis of body lumens
US6142992A (en) 1993-05-10 2000-11-07 Arthrocare Corporation Power supply for limiting power in electrosurgery
US6063079A (en) 1995-06-07 2000-05-16 Arthrocare Corporation Methods for electrosurgical treatment of turbinates
US6086585A (en) * 1995-06-07 2000-07-11 Arthrocare Corporation System and methods for electrosurgical treatment of sleep obstructive disorders
US7297145B2 (en) 1997-10-23 2007-11-20 Arthrocare Corporation Bipolar electrosurgical clamp for removing and modifying tissue
US6500173B2 (en) 1992-01-07 2002-12-31 Ronald A. Underwood Methods for electrosurgical spine surgery
US5697882A (en) 1992-01-07 1997-12-16 Arthrocare Corporation System and method for electrosurgical cutting and ablation
US6183469B1 (en) 1997-08-27 2001-02-06 Arthrocare Corporation Electrosurgical systems and methods for the removal of pacemaker leads
US6053172A (en) * 1995-06-07 2000-04-25 Arthrocare Corporation Systems and methods for electrosurgical sinus surgery
US6102046A (en) 1995-11-22 2000-08-15 Arthrocare Corporation Systems and methods for electrosurgical tissue revascularization
US6159194A (en) * 1992-01-07 2000-12-12 Arthrocare Corporation System and method for electrosurgical tissue contraction
US6210402B1 (en) 1995-11-22 2001-04-03 Arthrocare Corporation Methods for electrosurgical dermatological treatment
US6770071B2 (en) 1995-06-07 2004-08-03 Arthrocare Corporation Bladed electrosurgical probe
US6109268A (en) * 1995-06-07 2000-08-29 Arthrocare Corporation Systems and methods for electrosurgical endoscopic sinus surgery
US5681282A (en) * 1992-01-07 1997-10-28 Arthrocare Corporation Methods and apparatus for ablation of luminal tissues
US5843019A (en) * 1992-01-07 1998-12-01 Arthrocare Corporation Shaped electrodes and methods for electrosurgical cutting and ablation
US5683366A (en) 1992-01-07 1997-11-04 Arthrocare Corporation System and method for electrosurgical tissue canalization
US6024733A (en) 1995-06-07 2000-02-15 Arthrocare Corporation System and method for epidermal tissue ablation
US6190381B1 (en) 1995-06-07 2001-02-20 Arthrocare Corporation Methods for tissue resection, ablation and aspiration
US5902272A (en) * 1992-01-07 1999-05-11 Arthrocare Corporation Planar ablation probe and method for electrosurgical cutting and ablation
US6355032B1 (en) 1995-06-07 2002-03-12 Arthrocare Corporation Systems and methods for selective electrosurgical treatment of body structures
US5514131A (en) * 1992-08-12 1996-05-07 Stuart D. Edwards Method for the ablation treatment of the uvula
US6391025B1 (en) 1993-05-10 2002-05-21 Arthrocare Corporation Electrosurgical scalpel and methods for tissue cutting
US6117109A (en) 1995-11-22 2000-09-12 Arthrocare Corporation Systems and methods for electrosurgical incisions on external skin surfaces
US6254600B1 (en) 1993-05-10 2001-07-03 Arthrocare Corporation Systems for tissue ablation and aspiration
US6235020B1 (en) 1993-05-10 2001-05-22 Arthrocare Corporation Power supply and methods for fluid delivery in electrosurgery
US5766153A (en) * 1993-05-10 1998-06-16 Arthrocare Corporation Methods and apparatus for surgical cutting
US6832996B2 (en) 1995-06-07 2004-12-21 Arthrocare Corporation Electrosurgical systems and methods for treating tissue
US6749604B1 (en) 1993-05-10 2004-06-15 Arthrocare Corporation Electrosurgical instrument with axially-spaced electrodes
US6896674B1 (en) 1993-05-10 2005-05-24 Arthrocare Corporation Electrosurgical apparatus having digestion electrode and methods related thereto
US20020042612A1 (en) * 1997-10-27 2002-04-11 Hood Larry L. Method and apparatus for modifications of visual acuity by thermal means
US6071280A (en) 1993-11-08 2000-06-06 Rita Medical Systems, Inc. Multiple electrode ablation apparatus
US5728143A (en) * 1995-08-15 1998-03-17 Rita Medical Systems, Inc. Multiple antenna ablation apparatus and method
US5928229A (en) 1993-11-08 1999-07-27 Rita Medical Systems, Inc. Tumor ablation apparatus
US5683384A (en) 1993-11-08 1997-11-04 Zomed Multiple antenna ablation apparatus
US5458596A (en) * 1994-05-06 1995-10-17 Dorsal Orthopedic Corporation Method and apparatus for controlled contraction of soft tissue
US6277116B1 (en) * 1994-05-06 2001-08-21 Vidaderm Systems and methods for shrinking collagen in the dermis
US5730719A (en) * 1994-05-09 1998-03-24 Somnus Medical Technologies, Inc. Method and apparatus for cosmetically remodeling a body structure
US5728094A (en) * 1996-02-23 1998-03-17 Somnus Medical Technologies, Inc. Method and apparatus for treatment of air way obstructions
US5707349A (en) * 1994-05-09 1998-01-13 Somnus Medical Technologies, Inc. Method for treatment of air way obstructions
US5817049A (en) * 1994-05-09 1998-10-06 Somnus Medical Technologies, Inc. Method for treatment of airway obstructions
US6152143A (en) * 1994-05-09 2000-11-28 Somnus Medical Technologies, Inc. Method for treatment of air way obstructions
US5843021A (en) 1994-05-09 1998-12-01 Somnus Medical Technologies, Inc. Cell necrosis apparatus
US5743870A (en) * 1994-05-09 1998-04-28 Somnus Medical Technologies, Inc. Ablation apparatus and system for removal of soft palate tissue
US6056744A (en) 1994-06-24 2000-05-02 Conway Stuart Medical, Inc. Sphincter treatment apparatus
US6009877A (en) 1994-06-24 2000-01-04 Edwards; Stuart D. Method for treating a sphincter
US5823197A (en) * 1994-06-24 1998-10-20 Somnus Medical Technologies, Inc. Method for internal ablation of turbinates
US6405732B1 (en) 1994-06-24 2002-06-18 Curon Medical, Inc. Method to treat gastric reflux via the detection and ablation of gastro-esophageal nerves and receptors
US5746224A (en) * 1994-06-24 1998-05-05 Somnus Medical Technologies, Inc. Method for ablating turbinates
US5827277A (en) * 1994-06-24 1998-10-27 Somnus Medical Technologies, Inc. Minimally invasive apparatus for internal ablation of turbinates
US6092528A (en) * 1994-06-24 2000-07-25 Edwards; Stuart D. Method to treat esophageal sphincters
US6044846A (en) * 1994-06-24 2000-04-04 Edwards; Stuart D. Method to treat esophageal sphincters
US6142994A (en) 1994-10-07 2000-11-07 Ep Technologies, Inc. Surgical method and apparatus for positioning a diagnostic a therapeutic element within the body
US6152920A (en) * 1997-10-10 2000-11-28 Ep Technologies, Inc. Surgical method and apparatus for positioning a diagnostic or therapeutic element within the body
US5514130A (en) * 1994-10-11 1996-05-07 Dorsal Med International RF apparatus for controlled depth ablation of soft tissue
US5785705A (en) * 1994-10-11 1998-07-28 Oratec Interventions, Inc. RF method for controlled depth ablation of soft tissue
US6461353B1 (en) * 1995-02-17 2002-10-08 Oratec Interventions, Inc. Orthopedic apparatus for controlled contraction of collagen tissue
US6063081A (en) * 1995-02-22 2000-05-16 Medtronic, Inc. Fluid-assisted electrocautery device
US5897553A (en) * 1995-11-02 1999-04-27 Medtronic, Inc. Ball point fluid-assisted electrocautery device
US6159208A (en) * 1995-06-07 2000-12-12 Arthocare Corporation System and methods for electrosurgical treatment of obstructive sleep disorders
US6264650B1 (en) 1995-06-07 2001-07-24 Arthrocare Corporation Methods for electrosurgical treatment of intervertebral discs
US6203542B1 (en) 1995-06-07 2001-03-20 Arthrocare Corporation Method for electrosurgical treatment of submucosal tissue
US5755753A (en) 1995-05-05 1998-05-26 Thermage, Inc. Method for controlled contraction of collagen tissue
US5660836A (en) * 1995-05-05 1997-08-26 Knowlton; Edward W. Method and apparatus for controlled contraction of collagen tissue
US6430446B1 (en) 1995-05-05 2002-08-06 Thermage, Inc. Apparatus for tissue remodeling
US6425912B1 (en) 1995-05-05 2002-07-30 Thermage, Inc. Method and apparatus for modifying skin surface and soft tissue structure
US6241753B1 (en) * 1995-05-05 2001-06-05 Thermage, Inc. Method for scar collagen formation and contraction
US6772012B2 (en) * 1995-06-07 2004-08-03 Arthrocare Corporation Methods for electrosurgical treatment of spinal tissue
US7090672B2 (en) 1995-06-07 2006-08-15 Arthrocare Corporation Method for treating obstructive sleep disorder includes removing tissue from the base of tongue
US20050004634A1 (en) * 1995-06-07 2005-01-06 Arthrocare Corporation Methods for electrosurgical treatment of spinal tissue
US6632193B1 (en) 1995-06-07 2003-10-14 Arthrocare Corporation Systems and methods for electrosurgical tissue treatment
US6363937B1 (en) 1995-06-07 2002-04-02 Arthrocare Corporation System and methods for electrosurgical treatment of the digestive system
US6293943B1 (en) * 1995-06-07 2001-09-25 Ep Technologies, Inc. Tissue heating and ablation systems and methods which predict maximum tissue temperature
US6238391B1 (en) 1995-06-07 2001-05-29 Arthrocare Corporation Systems for tissue resection, ablation and aspiration
US6149620A (en) 1995-11-22 2000-11-21 Arthrocare Corporation System and methods for electrosurgical tissue treatment in the presence of electrically conductive fluid
US6293942B1 (en) 1995-06-23 2001-09-25 Gyrus Medical Limited Electrosurgical generator method
US6015406A (en) 1996-01-09 2000-01-18 Gyrus Medical Limited Electrosurgical instrument
US6780180B1 (en) * 1995-06-23 2004-08-24 Gyrus Medical Limited Electrosurgical instrument
DE69611912T3 (en) 1995-06-23 2005-06-09 Gyrus Medical Ltd. ELECTRO-SURGICAL INSTRUMENT
IL122713A (en) 1995-06-23 2001-04-30 Gyrus Medical Ltd Electrosurgical instrument
US5743905A (en) * 1995-07-07 1998-04-28 Target Therapeutics, Inc. Partially insulated occlusion device
US6019757A (en) * 1995-07-07 2000-02-01 Target Therapeutics, Inc. Endoluminal electro-occlusion detection apparatus and method
US6689127B1 (en) 1995-08-15 2004-02-10 Rita Medical Systems Multiple antenna ablation apparatus and method with multiple sensor feedback
US5980517A (en) 1995-08-15 1999-11-09 Rita Medical Systems, Inc. Cell necrosis apparatus
US5913855A (en) 1995-08-15 1999-06-22 Rita Medical Systems, Inc. Multiple antenna ablation apparatus and method
US5863290A (en) * 1995-08-15 1999-01-26 Rita Medical Systems Multiple antenna ablation apparatus and method
US5672173A (en) * 1995-08-15 1997-09-30 Rita Medical Systems, Inc. Multiple antenna ablation apparatus and method
US5951547A (en) 1995-08-15 1999-09-14 Rita Medical Systems, Inc. Multiple antenna ablation apparatus and method
US5672174A (en) * 1995-08-15 1997-09-30 Rita Medical Systems, Inc. Multiple antenna ablation apparatus and method
US5925042A (en) 1995-08-15 1999-07-20 Rita Medical Systems, Inc. Multiple antenna ablation apparatus and method
US6080150A (en) 1995-08-15 2000-06-27 Rita Medical Systems, Inc. Cell necrosis apparatus
US6059780A (en) 1995-08-15 2000-05-09 Rita Medical Systems, Inc. Multiple antenna ablation apparatus and method with cooling element
US5782827A (en) * 1995-08-15 1998-07-21 Rita Medical Systems, Inc. Multiple antenna ablation apparatus and method with multiple sensor feedback
US5810804A (en) * 1995-08-15 1998-09-22 Rita Medical Systems Multiple antenna ablation apparatus and method with cooling element
US6090105A (en) 1995-08-15 2000-07-18 Rita Medical Systems, Inc. Multiple electrode ablation apparatus and method
US5735847A (en) * 1995-08-15 1998-04-07 Zomed International, Inc. Multiple antenna ablation apparatus and method with cooling element
US6132425A (en) 1995-08-15 2000-10-17 Gough; Edward J. Cell necrosis apparatus
US6007570A (en) * 1996-08-13 1999-12-28 Oratec Interventions, Inc. Apparatus with functional element for performing function upon intervertebral discs
US6095149A (en) * 1996-08-13 2000-08-01 Oratec Interventions, Inc. Method for treating intervertebral disc degeneration
US6283960B1 (en) 1995-10-24 2001-09-04 Oratec Interventions, Inc. Apparatus for delivery of energy to a surgical site
US6805130B2 (en) * 1995-11-22 2004-10-19 Arthrocare Corporation Methods for electrosurgical tendon vascularization
US6228082B1 (en) 1995-11-22 2001-05-08 Arthrocare Corporation Systems and methods for electrosurgical treatment of vascular disorders
US7186234B2 (en) 1995-11-22 2007-03-06 Arthrocare Corporation Electrosurgical apparatus and methods for treatment and removal of tissue
US6461350B1 (en) 1995-11-22 2002-10-08 Arthrocare Corporation Systems and methods for electrosurgical-assisted lipectomy
US7758537B1 (en) 1995-11-22 2010-07-20 Arthrocare Corporation Systems and methods for electrosurgical removal of the stratum corneum
US6228078B1 (en) 1995-11-22 2001-05-08 Arthrocare Corporation Methods for electrosurgical dermatological treatment
US7006874B2 (en) 1996-01-05 2006-02-28 Thermage, Inc. Treatment apparatus with electromagnetic energy delivery device and non-volatile memory
US6350276B1 (en) 1996-01-05 2002-02-26 Thermage, Inc. Tissue remodeling apparatus containing cooling fluid
US7141049B2 (en) 1999-03-09 2006-11-28 Thermage, Inc. Handpiece for treatment of tissue
US20030212393A1 (en) * 1996-01-05 2003-11-13 Knowlton Edward W. Handpiece with RF electrode and non-volatile memory
US7267675B2 (en) 1996-01-05 2007-09-11 Thermage, Inc. RF device with thermo-electric cooler
US7189230B2 (en) * 1996-01-05 2007-03-13 Thermage, Inc. Method for treating skin and underlying tissue
US7115123B2 (en) 1996-01-05 2006-10-03 Thermage, Inc. Handpiece with electrode and non-volatile memory
US7022121B2 (en) 1999-03-09 2006-04-04 Thermage, Inc. Handpiece for treatment of tissue
US7229436B2 (en) * 1996-01-05 2007-06-12 Thermage, Inc. Method and kit for treatment of tissue
US6090106A (en) 1996-01-09 2000-07-18 Gyrus Medical Limited Electrosurgical instrument
US6013076A (en) 1996-01-09 2000-01-11 Gyrus Medical Limited Electrosurgical instrument
US5879349A (en) * 1996-02-23 1999-03-09 Somnus Medical Technologies, Inc. Apparatus for treatment of air way obstructions
US5820580A (en) * 1996-02-23 1998-10-13 Somnus Medical Technologies, Inc. Method for ablating interior sections of the tongue
US5738114A (en) * 1996-02-23 1998-04-14 Somnus Medical Technologies, Inc. Method and apparatus for treatment of air way obstructions
US5800379A (en) * 1996-02-23 1998-09-01 Sommus Medical Technologies, Inc. Method for ablating interior sections of the tongue
US6126657A (en) * 1996-02-23 2000-10-03 Somnus Medical Technologies, Inc. Apparatus for treatment of air way obstructions
US6033398A (en) * 1996-03-05 2000-03-07 Vnus Medical Technologies, Inc. Method and apparatus for treating venous insufficiency using directionally applied energy
US6152899A (en) * 1996-03-05 2000-11-28 Vnus Medical Technologies, Inc. Expandable catheter having improved electrode design, and method for applying energy
US6036687A (en) * 1996-03-05 2000-03-14 Vnus Medical Technologies, Inc. Method and apparatus for treating venous insufficiency
US6033397A (en) * 1996-03-05 2000-03-07 Vnus Medical Technologies, Inc. Method and apparatus for treating esophageal varices
US6139527A (en) * 1996-03-05 2000-10-31 Vnus Medical Technologies, Inc. Method and apparatus for treating hemorrhoids
US5820627A (en) * 1996-03-28 1998-10-13 Physical Sciences, Inc. Real-time optical feedback control of laser lithotripsy
US5778894A (en) * 1996-04-18 1998-07-14 Elizabeth Arden Co. Method for reducing human body cellulite by treatment with pulsed electromagnetic energy
US7022105B1 (en) 1996-05-06 2006-04-04 Novasys Medical Inc. Treatment of tissue in sphincters, sinuses and orifices
US5743904A (en) * 1996-05-06 1998-04-28 Somnus Medical Technologies, Inc. Precision placement of ablation apparatus
US5921954A (en) * 1996-07-10 1999-07-13 Mohr, Jr.; Lawrence G. Treating aneurysms by applying hardening/softening agents to hardenable/softenable substances
US6565561B1 (en) 1996-06-20 2003-05-20 Cyrus Medical Limited Electrosurgical instrument
GB9612993D0 (en) 1996-06-20 1996-08-21 Gyrus Medical Ltd Electrosurgical instrument
GB2314274A (en) 1996-06-20 1997-12-24 Gyrus Medical Ltd Electrode construction for an electrosurgical instrument
US6246912B1 (en) 1996-06-27 2001-06-12 Sherwood Services Ag Modulated high frequency tissue modification
US5983141A (en) 1996-06-27 1999-11-09 Radionics, Inc. Method and apparatus for altering neural tissue function
US6726684B1 (en) 1996-07-16 2004-04-27 Arthrocare Corporation Methods for electrosurgical spine surgery
US6620155B2 (en) 1996-07-16 2003-09-16 Arthrocare Corp. System and methods for electrosurgical tissue contraction within the spine
US6468274B1 (en) * 1996-07-16 2002-10-22 Arthrocare Corporation Systems and methods for treating spinal pain
WO1998005380A1 (en) * 1996-08-06 1998-02-12 Knowlton Edward W Method for tightening skin
US6135999A (en) 1997-02-12 2000-10-24 Oratec Internationals, Inc. Concave probe for arthroscopic surgery
US6126682A (en) 1996-08-13 2000-10-03 Oratec Interventions, Inc. Method for treating annular fissures in intervertebral discs
US6645203B2 (en) 1997-02-12 2003-11-11 Oratec Interventions, Inc. Surgical instrument with off-axis electrode
US6832997B2 (en) 2001-06-06 2004-12-21 Oratec Interventions, Inc. Electromagnetic energy delivery intervertebral disc treatment devices
US6461357B1 (en) 1997-02-12 2002-10-08 Oratec Interventions, Inc. Electrode for electrosurgical ablation of tissue
US6733496B2 (en) 2001-06-06 2004-05-11 Oratec Interventions, Inc. Intervertebral disc device employing flexible probe
US6726685B2 (en) 2001-06-06 2004-04-27 Oratec Interventions, Inc. Intervertebral disc device employing looped probe
US6544260B1 (en) * 1996-08-20 2003-04-08 Oratec Interventions, Inc. Method for treating tissue in arthroscopic environment using precooling and apparatus for same
US6068628A (en) * 1996-08-20 2000-05-30 Oratec Interventions, Inc. Apparatus for treating chondromalacia
AU4583297A (en) * 1996-09-17 1998-04-14 Oratec Interventions, Inc. Method and apparatus for controlled contraction of soft tissue
US8353908B2 (en) 1996-09-20 2013-01-15 Novasys Medical, Inc. Treatment of tissue in sphincters, sinuses, and orifices
US6464697B1 (en) 1998-02-19 2002-10-15 Curon Medical, Inc. Stomach and adjoining tissue regions in the esophagus
US5827268A (en) * 1996-10-30 1998-10-27 Hearten Medical, Inc. Device for the treatment of patent ductus arteriosus and method of using the device
US6292700B1 (en) * 1999-09-10 2001-09-18 Surx, Inc. Endopelvic fascia treatment for incontinence
US6091995A (en) 1996-11-08 2000-07-18 Surx, Inc. Devices, methods, and systems for shrinking tissues
US7317949B2 (en) * 1996-11-08 2008-01-08 Ams Research Corporation Energy induced bulking and buttressing of tissues for incontinence
US6081749A (en) * 1997-08-13 2000-06-27 Surx, Inc. Noninvasive devices, methods, and systems for shrinking of tissues
US6480746B1 (en) 1997-08-13 2002-11-12 Surx, Inc. Noninvasive devices, methods, and systems for shrinking of tissues
US6035238A (en) * 1997-08-13 2000-03-07 Surx, Inc. Noninvasive devices, methods, and systems for shrinking of tissues
US6073052A (en) 1996-11-15 2000-06-06 Zelickson; Brian D. Device and method for treatment of gastroesophageal reflux disease
US6071303A (en) * 1996-12-08 2000-06-06 Hearten Medical, Inc. Device for the treatment of infarcted tissue and method of treating infarcted tissue
GB9626512D0 (en) 1996-12-20 1997-02-05 Gyrus Medical Ltd An improved electrosurgical generator and system
US5928224A (en) * 1997-01-24 1999-07-27 Hearten Medical, Inc. Device for the treatment of damaged heart valve leaflets and methods of using the device
US6152139A (en) * 1997-01-24 2000-11-28 Heartenmedical, Inc. Device and method for preparing veins
US5810801A (en) * 1997-02-05 1998-09-22 Candela Corporation Method and apparatus for treating wrinkles in skin using radiation
US6338726B1 (en) 1997-02-06 2002-01-15 Vidacare, Inc. Treating urinary and other body strictures
JP2001511048A (en) 1997-02-12 2001-08-07 オーレイテック インターヴェンションズ インコーポレイテッド Electrode for electrosurgical removal of tissue and method of manufacturing the same
US6246913B1 (en) 1997-02-14 2001-06-12 Oractec Interventions, Inc. Method and apparatus for the treatment of strabismus
US5989284A (en) * 1997-02-18 1999-11-23 Hearten Medical, Inc. Method and device for soft tissue modification
US5954716A (en) * 1997-02-19 1999-09-21 Oratec Interventions, Inc Method for modifying the length of a ligament
DE69836801D1 (en) 1997-03-04 2007-02-15 Vnus Med Tech Inc DEVICE FOR TREATING VENOUS INSUFFICIENCY BY MEANS OF DIRECTIVE ENERGY
US7027869B2 (en) 1998-01-07 2006-04-11 Asthmatx, Inc. Method for treating an asthma attack
US7425212B1 (en) 1998-06-10 2008-09-16 Asthmatx, Inc. Devices for modification of airways by transfer of energy
US7992572B2 (en) 1998-06-10 2011-08-09 Asthmatx, Inc. Methods of evaluating individuals having reversible obstructive pulmonary disease
US5972026A (en) 1997-04-07 1999-10-26 Broncus Technologies, Inc. Bronchial stenter having diametrically adjustable electrodes
US6634363B1 (en) 1997-04-07 2003-10-21 Broncus Technologies, Inc. Methods of treating lungs having reversible obstructive pulmonary disease
US6273907B1 (en) * 1997-04-07 2001-08-14 Broncus Technologies, Inc. Bronchial stenter
US6283988B1 (en) 1997-04-07 2001-09-04 Broncus Technologies, Inc. Bronchial stenter having expandable electrodes
US6411852B1 (en) 1997-04-07 2002-06-25 Broncus Technologies, Inc. Modification of airways by application of energy
US6488673B1 (en) 1997-04-07 2002-12-03 Broncus Technologies, Inc. Method of increasing gas exchange of a lung
US6312426B1 (en) 1997-05-30 2001-11-06 Sherwood Services Ag Method and system for performing plate type radiofrequency ablation
US6231507B1 (en) 1997-06-02 2001-05-15 Vnus Medical Technologies, Inc. Pressure tourniquet with ultrasound window and method of use
US5954715A (en) 1997-06-05 1999-09-21 Adiana, Inc. Method and apparatus for tubal occlusion
US6582423B1 (en) 1997-06-13 2003-06-24 Arthrocare Corporation Electrosurgical systems and methods for recanalization of occluded body lumens
ES2129364B1 (en) * 1997-06-20 2000-01-16 Medicina En Forma S L A TEAM FOR THE TREATMENT OF CAPSULAR CONTRACTS IN BREAST FACILITIES AND ITS APPLICATION PROCEDURE.
USRE40279E1 (en) 1997-06-26 2008-04-29 Sherwood Services Ag Method and system for neural tissue modification
US5843078A (en) * 1997-07-01 1998-12-01 Sharkey; Hugh R. Radio frequency device for resurfacing skin and method
US6096037A (en) 1997-07-29 2000-08-01 Medtronic, Inc. Tissue sealing electrosurgery device and methods of sealing tissue
US9023031B2 (en) 1997-08-13 2015-05-05 Verathon Inc. Noninvasive devices, methods, and systems for modifying tissues
AU732188B2 (en) 1997-08-13 2001-04-12 Surx, Inc. Noninvasive devices, methods, and systems for shrinking of tissues
US6179832B1 (en) * 1997-09-11 2001-01-30 Vnus Medical Technologies, Inc. Expandable catheter having two sets of electrodes
US6258084B1 (en) 1997-09-11 2001-07-10 Vnus Medical Technologies, Inc. Method for applying energy to biological tissue including the use of tumescent tissue compression
US6200312B1 (en) 1997-09-11 2001-03-13 Vnus Medical Technologies, Inc. Expandable vein ligator catheter having multiple electrode leads
US6401719B1 (en) 1997-09-11 2002-06-11 Vnus Medical Technologies, Inc. Method of ligating hollow anatomical structures
US6214001B1 (en) 1997-09-19 2001-04-10 Oratec Interventions, Inc. Electrocauterizing tool for orthopedic shave devices
US6004320A (en) * 1997-09-19 1999-12-21 Oratec Interventions, Inc. Clip on electrocauterizing sheath for orthopedic shave devices
US6007533A (en) * 1997-09-19 1999-12-28 Oratec Interventions, Inc. Electrocauterizing tip for orthopedic shave devices
US6231569B1 (en) 1997-10-06 2001-05-15 Somnus Medical Technologies, Inc. Dual processor architecture for electro generator
US6416505B1 (en) 1998-05-05 2002-07-09 Scimed Life Systems, Inc. Surgical method and apparatus for positioning a diagnostic or therapeutic element within the body and pressure application probe for use with same
US6120496A (en) * 1998-05-05 2000-09-19 Scimed Life Systems, Inc. Surgical method and apparatus for positioning a diagnostic or therapeutic element within the body and coupling device for use with same
US6071281A (en) * 1998-05-05 2000-06-06 Ep Technologies, Inc. Surgical method and apparatus for positioning a diagnostic or therapeutic element within the body and remote power control unit for use with same
US6579288B1 (en) 1997-10-10 2003-06-17 Scimed Life Systems, Inc. Fluid cooled apparatus for supporting diagnostic and therapeutic elements in contact with tissue
US6267760B1 (en) 1998-05-05 2001-07-31 Scimed Life Systems, Inc. Surgical method and apparatus for positioning a diagnostic or therapeutic element within the body and forming an incision in tissue with minimal blood loss
US6645200B1 (en) 1997-10-10 2003-11-11 Scimed Life Systems, Inc. Method and apparatus for positioning a diagnostic or therapeutic element within the body and tip electrode for use with same
US6468272B1 (en) 1997-10-10 2002-10-22 Scimed Life Systems, Inc. Surgical probe for supporting diagnostic and therapeutic elements in contact with tissue in or around body orifices
US6050943A (en) 1997-10-14 2000-04-18 Guided Therapy Systems, Inc. Imaging, therapy, and temperature monitoring ultrasonic system
US6176857B1 (en) 1997-10-22 2001-01-23 Oratec Interventions, Inc. Method and apparatus for applying thermal energy to tissue asymmetrically
US6014589A (en) 1997-11-12 2000-01-11 Vnus Medical Technologies, Inc. Catheter having expandable electrodes and adjustable stent
US5938658A (en) * 1997-12-02 1999-08-17 Tu; Hosheng Device and methods for treating canker sores by RF ablation
US20060184071A1 (en) * 1997-12-29 2006-08-17 Julia Therapeutics, Llc Treatment of skin with acoustic energy
US20080027328A1 (en) * 1997-12-29 2008-01-31 Julia Therapeutics, Llc Multi-focal treatment of skin with acoustic energy
US6325769B1 (en) 1998-12-29 2001-12-04 Collapeutics, Llc Method and apparatus for therapeutic treatment of skin
US6113559A (en) * 1997-12-29 2000-09-05 Klopotek; Peter J. Method and apparatus for therapeutic treatment of skin with ultrasound
US7921855B2 (en) 1998-01-07 2011-04-12 Asthmatx, Inc. Method for treating an asthma attack
US6146380A (en) * 1998-01-09 2000-11-14 Radionics, Inc. Bent tip electrical surgical probe
US6440128B1 (en) 1998-01-14 2002-08-27 Curon Medical, Inc. Actively cooled electrode assemblies for forming lesions to treat dysfunction in sphincters and adjoining tissue regions
DE69941252D1 (en) 1998-01-14 2009-09-24 Ams Res Corp RIBBED ELECTRODES
US5976127A (en) * 1998-01-14 1999-11-02 Lax; Ronald Soft tissue fixation devices
WO1999035987A1 (en) 1998-01-14 1999-07-22 Conway-Stuart Medical, Inc. Gerd treatment apparatus and method
AU2224499A (en) 1998-01-14 1999-08-02 Curon Medical, Inc. Electrosurgical apparatus for treating gastroesophageal reflux disease (gerd) and method
AU2114299A (en) 1998-01-14 1999-08-02 Conway-Stuart Medical, Inc. Electrosurgical device for sphincter treatment
WO1999040969A1 (en) * 1998-02-12 1999-08-19 Oratec Interventions, Inc. Method for modifying the length of a ligament
EP1056403B1 (en) 1998-02-19 2005-01-19 Curon Medical, Inc. Electrosurgical sphincter treatment apparatus
US6423058B1 (en) 1998-02-19 2002-07-23 Curon Medical, Inc. Assemblies to visualize and treat sphincters and adjoining tissue regions
US7165551B2 (en) 1998-02-19 2007-01-23 Curon Medical, Inc. Apparatus to detect and treat aberrant myoelectric activity
US6258087B1 (en) 1998-02-19 2001-07-10 Curon Medical, Inc. Expandable electrode assemblies for forming lesions to treat dysfunction in sphincters and adjoining tissue regions
US6402744B2 (en) 1998-02-19 2002-06-11 Curon Medical, Inc. Systems and methods for forming composite lesions to treat dysfunction in sphincters and adjoining tissue regions
US6358245B1 (en) 1998-02-19 2002-03-19 Curon Medical, Inc. Graphical user interface for association with an electrode structure deployed in contact with a tissue region
US6325798B1 (en) 1998-02-19 2001-12-04 Curon Medical, Inc. Vacuum-assisted systems and methods for treating sphincters and adjoining tissue regions
US6273886B1 (en) 1998-02-19 2001-08-14 Curon Medical, Inc. Integrated tissue heating and cooling apparatus
US8906010B2 (en) 1998-02-19 2014-12-09 Mederi Therapeutics, Inc. Graphical user interface for association with an electrode structure deployed in contact with a tissue region
US6790207B2 (en) 1998-06-04 2004-09-14 Curon Medical, Inc. Systems and methods for applying a selected treatment agent into contact with tissue to treat disorders of the gastrointestinal tract
US6355031B1 (en) 1998-02-19 2002-03-12 Curon Medical, Inc. Control systems for multiple electrode arrays to create lesions in tissue regions at or near a sphincter
US6045532A (en) * 1998-02-20 2000-04-04 Arthrocare Corporation Systems and methods for electrosurgical treatment of tissue in the brain and spinal cord
WO1999043263A1 (en) 1998-02-27 1999-09-02 Conway-Stuart Medical, Inc. Apparatus to electrosurgically treat esophageal sphincters
US6169926B1 (en) * 1998-02-27 2001-01-02 James A. Baker RF electrode array for low-rate collagen shrinkage in capsular shift procedures and methods of use
US20030135206A1 (en) 1998-02-27 2003-07-17 Curon Medical, Inc. Method for treating a sphincter
EP1059887A1 (en) 1998-03-06 2000-12-20 Curon Medical, Inc. Apparatus to electrosurgically treat esophageal sphincters
AU3104999A (en) 1998-03-19 1999-10-11 Oratec Interventions, Inc. Catheter for delivery of energy to a surgical site
GB9807303D0 (en) 1998-04-03 1998-06-03 Gyrus Medical Ltd An electrode assembly for an electrosurgical instrument
US6047700A (en) * 1998-03-30 2000-04-11 Arthrocare Corporation Systems and methods for electrosurgical removal of calcified deposits
US6131579A (en) 1998-04-21 2000-10-17 Somnus Medical Technologies, Inc. Wire based temperature sensing electrode
US20020065542A1 (en) * 1998-04-22 2002-05-30 Ronald G. Lax Method and apparatus for treating an aneurysm
AU3672299A (en) 1998-04-30 1999-11-16 Stuart D Edwards Electrosurgical sphincter treatment apparatus
US6327505B1 (en) * 1998-05-07 2001-12-04 Medtronic, Inc. Method and apparatus for rf intraluminal reduction and occlusion
US6763836B2 (en) 1998-06-02 2004-07-20 Arthrocare Corporation Methods for electrosurgical tendon vascularization
US6802841B2 (en) 1998-06-04 2004-10-12 Curon Medical, Inc. Systems and methods for applying a selected treatment agent into contact with tissue to treat sphincter dysfunction
US7198635B2 (en) 2000-10-17 2007-04-03 Asthmatx, Inc. Modification of airways by application of energy
US8181656B2 (en) 1998-06-10 2012-05-22 Asthmatx, Inc. Methods for treating airways
US6044847A (en) 1998-06-23 2000-04-04 Surx, Inc. Tuck and fold fascia shortening for incontinence
WO2000000098A1 (en) * 1998-06-30 2000-01-06 Arthrocare Corporation Systems and methods for electrosurgical ablation of viable body structures
US6322559B1 (en) 1998-07-06 2001-11-27 Vnus Medical Technologies, Inc. Electrode catheter having coil structure
US6706039B2 (en) 1998-07-07 2004-03-16 Medtronic, Inc. Method and apparatus for creating a bi-polar virtual electrode used for the ablation of tissue
US6139569A (en) * 1998-07-31 2000-10-31 Surx, Inc. Interspersed heating/cooling to shrink tissues for incontinence
US6156060A (en) * 1998-07-31 2000-12-05 Surx, Inc. Static devices and methods to shrink tissues for incontinence
US6236891B1 (en) 1998-07-31 2001-05-22 Surx, Inc. Limited heat transfer devices and methods to shrink tissues
US6572639B1 (en) * 1998-07-31 2003-06-03 Surx, Inc. Interspersed heating/cooling to shrink tissues for incontinence
US6322584B2 (en) 1998-07-31 2001-11-27 Surx, Inc. Temperature sensing devices and methods to shrink tissues
AU5221699A (en) * 1998-07-31 2000-02-21 Surx, Inc. Limited heat transfer devices and methods to shrink tissues
US7276063B2 (en) 1998-08-11 2007-10-02 Arthrocare Corporation Instrument for electrosurgical tissue treatment
US6292701B1 (en) * 1998-08-12 2001-09-18 Medtronic Xomed, Inc. Bipolar electrical stimulus probe with planar electrodes
US6024742A (en) * 1998-08-22 2000-02-15 Tu; Lily Chen Ablation apparatus for treating hemorrhoids
US6086584A (en) * 1998-09-10 2000-07-11 Ethicon, Inc. Cellular sublimation probe and methods
US6355030B1 (en) 1998-09-25 2002-03-12 Cardiothoracic Systems, Inc. Instruments and methods employing thermal energy for the repair and replacement of cardiac valves
US7901400B2 (en) 1998-10-23 2011-03-08 Covidien Ag Method and system for controlling output of RF medical generator
US7364577B2 (en) 2002-02-11 2008-04-29 Sherwood Services Ag Vessel sealing system
US7137980B2 (en) 1998-10-23 2006-11-21 Sherwood Services Ag Method and system for controlling output of RF medical generator
US6254601B1 (en) * 1998-12-08 2001-07-03 Hysterx, Inc. Methods for occlusion of the uterine arteries
US6309384B1 (en) 1999-02-01 2001-10-30 Adiana, Inc. Method and apparatus for tubal occlusion
US8702727B1 (en) 1999-02-01 2014-04-22 Hologic, Inc. Delivery catheter with implant ejection mechanism
US7041094B2 (en) 1999-03-15 2006-05-09 Cutera, Inc. Tissue treatment device and method
US6375672B1 (en) 1999-03-22 2002-04-23 Board Of Trustees Of Michigan State University Method for controlling the chemical and heat induced responses of collagenous materials
US6358273B1 (en) 1999-04-09 2002-03-19 Oratec Inventions, Inc. Soft tissue heating apparatus with independent, cooperative heating sources
US6577902B1 (en) * 1999-04-16 2003-06-10 Tony R. Brown Device for shaping infarcted heart tissue and method of using the device
US8285393B2 (en) * 1999-04-16 2012-10-09 Laufer Michael D Device for shaping infarcted heart tissue and method of using the device
US6939346B2 (en) 1999-04-21 2005-09-06 Oratec Interventions, Inc. Method and apparatus for controlling a temperature-controlled probe
US6162217A (en) * 1999-04-21 2000-12-19 Oratec Interventions, Inc. Method and apparatus for controlling a temperature-controlled probe
AU4696100A (en) 1999-05-04 2000-11-17 Curon Medical, Inc. Electrodes for creating lesions in tissue regions at or near a sphincter
AU5142900A (en) * 1999-05-21 2000-12-12 Arthrocare Corporation Systems and methods for electrosurgical treatment of intervertebral discs
US6139554A (en) * 1999-06-10 2000-10-31 Karkar; Maurice N. Multipurpose tissue resurfacing handpiece
US20020087155A1 (en) 1999-08-30 2002-07-04 Underwood Ronald A. Systems and methods for intradermal collagen stimulation
WO2001018616A2 (en) 1999-09-08 2001-03-15 Curon Medical, Inc. System for controlling use of medical devices
WO2001017453A2 (en) 1999-09-08 2001-03-15 Curon Medical, Inc. Systems and methods for monitoring and controlling use of medical devices
WO2001017452A1 (en) 1999-09-08 2001-03-15 Curon Medical, Inc. System for controlling a family of treatment devices
US6379350B1 (en) 1999-10-05 2002-04-30 Oratec Interventions, Inc. Surgical instrument for ablation and aspiration
US6592625B2 (en) 1999-10-20 2003-07-15 Anulex Technologies, Inc. Spinal disc annulus reconstruction method and spinal disc annulus stent
US7004970B2 (en) 1999-10-20 2006-02-28 Anulex Technologies, Inc. Methods and devices for spinal disc annulus reconstruction and repair
US8632590B2 (en) 1999-10-20 2014-01-21 Anulex Technologies, Inc. Apparatus and methods for the treatment of the intervertebral disc
US7052516B2 (en) 1999-10-20 2006-05-30 Anulex Technologies, Inc. Spinal disc annulus reconstruction method and deformable spinal disc annulus stent
US7935147B2 (en) 1999-10-20 2011-05-03 Anulex Technologies, Inc. Method and apparatus for enhanced delivery of treatment device to the intervertebral disc annulus
US8128698B2 (en) 1999-10-20 2012-03-06 Anulex Technologies, Inc. Method and apparatus for the treatment of the intervertebral disc annulus
US7615076B2 (en) 1999-10-20 2009-11-10 Anulex Technologies, Inc. Method and apparatus for the treatment of the intervertebral disc annulus
US7951201B2 (en) 1999-10-20 2011-05-31 Anulex Technologies, Inc. Method and apparatus for the treatment of the intervertebral disc annulus
US20040215235A1 (en) 1999-11-16 2004-10-28 Barrx, Inc. Methods and systems for determining physiologic characteristics for treatment of the esophagus
US20060095032A1 (en) 1999-11-16 2006-05-04 Jerome Jackson Methods and systems for determining physiologic characteristics for treatment of the esophagus
CA2825425C (en) 1999-11-16 2016-03-22 Covidien Lp System and method of treating abnormal tissue in the human esophagus
US6547776B1 (en) 2000-01-03 2003-04-15 Curon Medical, Inc. Systems and methods for treating tissue in the crura
US6589235B2 (en) * 2000-01-21 2003-07-08 The Regents Of The University Of California Method and apparatus for cartilage reshaping by radiofrequency heating
US7862564B2 (en) * 2000-02-22 2011-01-04 Plasmogen Inc. Method of remodelling stretch marks
US6953461B2 (en) * 2002-05-16 2005-10-11 Tissuelink Medical, Inc. Fluid-assisted medical devices, systems and methods
US6607522B1 (en) * 2000-03-16 2003-08-19 General Hospital Corporation Methods for tissue welding using laser-activated protein solders
US8251070B2 (en) 2000-03-27 2012-08-28 Asthmatx, Inc. Methods for treating airways
US6805695B2 (en) 2000-04-04 2004-10-19 Spinalabs, Llc Devices and methods for annular repair of intervertebral discs
US20030120306A1 (en) * 2000-04-21 2003-06-26 Vascular Control System Method and apparatus for the detection and occlusion of blood vessels
US7223279B2 (en) 2000-04-21 2007-05-29 Vascular Control Systems, Inc. Methods for minimally-invasive, non-permanent occlusion of a uterine artery
US6550482B1 (en) 2000-04-21 2003-04-22 Vascular Control Systems, Inc. Methods for non-permanent occlusion of a uterine artery
US6488680B1 (en) * 2000-04-27 2002-12-03 Medtronic, Inc. Variable length electrodes for delivery of irrigated ablation
US8845632B2 (en) 2000-05-18 2014-09-30 Mederi Therapeutics, Inc. Graphical user interface for monitoring and controlling use of medical devices
US6520982B1 (en) * 2000-06-08 2003-02-18 Kci Licensing, Inc. Localized liquid therapy and thermotherapy device
US6503269B2 (en) 2000-06-12 2003-01-07 Scott A. Nield Method of treating intervertebral discs using optical energy and optical temperature feedback
US7678106B2 (en) 2000-08-09 2010-03-16 Halt Medical, Inc. Gynecological ablation procedure and system
US7070596B1 (en) * 2000-08-09 2006-07-04 Arthrocare Corporation Electrosurgical apparatus having a curved distal section
US7819861B2 (en) * 2001-05-26 2010-10-26 Nuortho Surgical, Inc. Methods for electrosurgical electrolysis
US6547794B2 (en) 2000-08-18 2003-04-15 Auge', Ii Wayne K. Method for fusing bone during endoscopy procedures
US6902564B2 (en) * 2001-08-15 2005-06-07 Roy E. Morgan Methods and devices for electrosurgery
US7771422B2 (en) 2002-06-06 2010-08-10 Nuortho Surgical, Inc. Methods and devices for electrosurgery
US7445619B2 (en) 2000-08-18 2008-11-04 Map Technologies Llc Devices for electrosurgery
US20040167244A1 (en) * 2000-08-18 2004-08-26 Auge Wayne K. Methods and compositions for fusing bone during endoscopy procedures
US6942661B2 (en) 2000-08-30 2005-09-13 Boston Scientific Scimed, Inc. Fluid cooled apparatus for supporting diagnostic and therapeutic elements in contact with tissue
US7291129B2 (en) * 2000-10-02 2007-11-06 Novasys Medical Inc. Apparatus and methods for treating female urinary incontinence
US7306591B2 (en) * 2000-10-02 2007-12-11 Novasys Medical, Inc. Apparatus and methods for treating female urinary incontinence
US6470219B1 (en) 2000-10-02 2002-10-22 Novasys Medical, Inc. Apparatus and method for treating female urinary incontinence
US6673063B2 (en) 2000-10-06 2004-01-06 Expanding Concepts, Llc. Epidural thermal posterior annuloplasty
US20040006379A1 (en) * 2000-10-06 2004-01-08 Expanding Concepts, L.L.C. Epidural thermal posterior annuloplasty
EP1459694A3 (en) 2000-10-06 2005-01-05 Expanding Concepts, L.L.C. Epidural thermal posterior annuloplasty
US7104987B2 (en) 2000-10-17 2006-09-12 Asthmatx, Inc. Control system and process for application of energy to airway walls and other mediums
US6547783B1 (en) 2000-10-24 2003-04-15 Enduratec Systems Corp. Thermo-electric grip for holding soft tissue
US6635065B2 (en) 2000-11-16 2003-10-21 Vascular Control Systems, Inc. Doppler directed suture ligation device and method
US6638286B1 (en) 2000-11-16 2003-10-28 Vascular Control Systems, Inc. Doppler directed suture ligation device and method
US7914453B2 (en) * 2000-12-28 2011-03-29 Ardent Sound, Inc. Visual imaging system for ultrasonic probe
US6695839B2 (en) 2001-02-08 2004-02-24 Oratec Interventions, Inc. Method and apparatus for treatment of disrupted articular cartilage
US7354444B2 (en) * 2001-03-28 2008-04-08 Vascular Control Systems, Inc. Occlusion device with deployable paddles for detection and occlusion of blood vessels
EP1377223A2 (en) * 2001-03-28 2004-01-07 Vascular Control Systems, Inc. Method and apparatus for the detection and ligation of uterine arteries
US7066932B1 (en) 2001-05-26 2006-06-27 Map Technologies Llc Biologically enhanced irrigants
US6638276B2 (en) 2001-06-06 2003-10-28 Oratec Interventions, Inc. Intervertebral disc device employing prebent sheath
US8734441B2 (en) 2001-08-15 2014-05-27 Nuortho Surgical, Inc. Interfacing media manipulation with non-ablation radiofrequency energy system and method
US8235979B2 (en) 2001-08-15 2012-08-07 Nuortho Surgical, Inc. Interfacing media manipulation with non-ablation radiofrequency energy system and method
US8591508B2 (en) * 2001-08-15 2013-11-26 Nuortho Surgical, Inc. Electrosurgical plenum
AU2002362310A1 (en) * 2001-09-14 2003-04-01 Arthrocare Corporation Methods and apparatus for treating intervertebral discs
US6652518B2 (en) * 2001-09-28 2003-11-25 Ethicon, Inc. Transmural ablation tool and method
EP1437977B1 (en) 2001-10-02 2014-05-21 ArthroCare Corporation Apparatus for electrosurgical removal and digestion of tissue
US6939350B2 (en) 2001-10-22 2005-09-06 Boston Scientific Scimed, Inc. Apparatus for supporting diagnostic and therapeutic elements in contact with tissue including electrode cooling device
US7311708B2 (en) 2001-12-12 2007-12-25 Tissuelink Medical, Inc. Fluid-assisted medical devices, systems and methods
US6840954B2 (en) 2001-12-20 2005-01-11 Solarant Medical, Inc. Systems and methods using vasoconstriction for improved thermal treatment of tissues
US6827715B2 (en) * 2002-01-25 2004-12-07 Medtronic, Inc. System and method of performing an electrosurgical procedure
US7967816B2 (en) 2002-01-25 2011-06-28 Medtronic, Inc. Fluid-assisted electrosurgical instrument with shapeable electrode
US6757565B2 (en) 2002-02-08 2004-06-29 Oratec Interventions, Inc. Electrosurgical instrument having a predetermined heat profile
WO2003068055A2 (en) 2002-02-11 2003-08-21 Arthrocare Corporation Electrosurgical apparatus and methods for laparoscopy
DE60312821T2 (en) 2002-02-12 2007-12-13 Oratec Interventions, Inc., Memphis RADIO FREQUENCY ABLATION DEVICE FOR ARTHROSCOPY
US8882755B2 (en) 2002-03-05 2014-11-11 Kimberly-Clark Inc. Electrosurgical device for treatment of tissue
US6896675B2 (en) 2002-03-05 2005-05-24 Baylis Medical Company Inc. Intradiscal lesioning device
US8518036B2 (en) 2002-03-05 2013-08-27 Kimberly-Clark Inc. Electrosurgical tissue treatment method
US8043287B2 (en) 2002-03-05 2011-10-25 Kimberly-Clark Inc. Method of treating biological tissue
US6882885B2 (en) * 2002-03-19 2005-04-19 Solarant Medical, Inc. Heating method for tissue contraction
US6736835B2 (en) 2002-03-21 2004-05-18 Depuy Acromed, Inc. Early intervention spinal treatment methods and devices for use therein
JP4253256B2 (en) * 2002-03-27 2009-04-08 日本シグマックス株式会社 Treatment device
US7207996B2 (en) * 2002-04-04 2007-04-24 Vascular Control Systems, Inc. Doppler directed suturing and compression device and method
US7163533B2 (en) * 2002-04-04 2007-01-16 Angiodynamics, Inc. Vascular treatment device and method
US6780178B2 (en) 2002-05-03 2004-08-24 The Board Of Trustees Of The Leland Stanford Junior University Method and apparatus for plasma-mediated thermo-electrical ablation
US8043286B2 (en) 2002-05-03 2011-10-25 The Board Of Trustees Of The Leland Stanford Junior University Method and apparatus for plasma-mediated thermo-electrical ablation
JP4490807B2 (en) 2002-05-06 2010-06-30 コヴィディエン アクチェンゲゼルシャフト System for electrically detecting blood and controlling the generator during electrosurgical procedures
US8808284B2 (en) 2008-09-26 2014-08-19 Relievant Medsystems, Inc. Systems for navigating an instrument through bone
US6907884B2 (en) 2002-09-30 2005-06-21 Depay Acromed, Inc. Method of straddling an intraosseous nerve
US8613744B2 (en) 2002-09-30 2013-12-24 Relievant Medsystems, Inc. Systems and methods for navigating an instrument through bone
US7258690B2 (en) 2003-03-28 2007-08-21 Relievant Medsystems, Inc. Windowed thermal ablation probe
US8361067B2 (en) 2002-09-30 2013-01-29 Relievant Medsystems, Inc. Methods of therapeutically heating a vertebral body to treat back pain
US7172603B2 (en) * 2002-11-19 2007-02-06 Vascular Control Systems, Inc. Deployable constrictor for uterine artery occlusion
US20040097961A1 (en) * 2002-11-19 2004-05-20 Vascular Control System Tenaculum for use with occlusion devices
EP1575435B1 (en) * 2002-12-09 2010-03-10 The Trustees of Dartmouth College Electrically-induced thermokeratoplasty system
US8348936B2 (en) * 2002-12-09 2013-01-08 The Trustees Of Dartmouth College Thermal treatment systems with acoustic monitoring, and associated methods
US7377917B2 (en) * 2002-12-09 2008-05-27 The Trustees Of Dartmouth College Feedback control of thermokeratoplasty treatments
US7044948B2 (en) 2002-12-10 2006-05-16 Sherwood Services Ag Circuit for controlling arc energy from an electrosurgical generator
US7404821B2 (en) * 2003-01-30 2008-07-29 Vascular Control Systems, Inc. Treatment for post partum hemorrhage
US8066700B2 (en) 2003-01-31 2011-11-29 Smith & Nephew, Inc. Cartilage treatment probe
ATE387891T1 (en) 2003-01-31 2008-03-15 Smith & Nephew Inc CARTILAGE TREATMENT PROBE
US7651511B2 (en) 2003-02-05 2010-01-26 Vascular Control Systems, Inc. Vascular clamp for caesarian section
US7357802B2 (en) * 2003-02-14 2008-04-15 The Board Of Trustees Of The Leland Stanford Junior University Electrosurgical system with uniformly enhanced electric field and minimal collateral damage
US7736361B2 (en) 2003-02-14 2010-06-15 The Board Of Trustees Of The Leland Stamford Junior University Electrosurgical system with uniformly enhanced electric field and minimal collateral damage
US7333844B2 (en) 2003-03-28 2008-02-19 Vascular Control Systems, Inc. Uterine tissue monitoring device and method
US20040206365A1 (en) * 2003-03-31 2004-10-21 Knowlton Edward Wells Method for treatment of tissue
US20040202694A1 (en) * 2003-04-11 2004-10-14 Vascular Control Systems, Inc. Embolic occlusion of uterine arteries
US7722601B2 (en) 2003-05-01 2010-05-25 Covidien Ag Method and system for programming and controlling an electrosurgical generator system
US20040226556A1 (en) 2003-05-13 2004-11-18 Deem Mark E. Apparatus for treating asthma using neurotoxin
US7794456B2 (en) 2003-05-13 2010-09-14 Arthrocare Corporation Systems and methods for electrosurgical intervertebral disc replacement
CA2528056C (en) * 2003-06-10 2014-07-29 Neomedix Corporation Electrosurgical devices and methods for selective cutting of tissue
WO2004110501A2 (en) 2003-06-10 2004-12-23 Neomedix Corporation Tubular cutting device for cutting and removing tissue
ES2420684T3 (en) 2003-06-10 2013-08-26 Neomedix Corporation Device for the treatment of glaucoma and other surgical procedures and method for its manufacture
AU2004249284A1 (en) * 2003-06-18 2004-12-29 The Board Of Trustees Of The Leland Stanford Junior University Electro-adhesive tissue manipulator
US7081113B2 (en) * 2003-06-26 2006-07-25 Depuy Acromed, Inc. Helical probe
US8012153B2 (en) 2003-07-16 2011-09-06 Arthrocare Corporation Rotary electrosurgical apparatus and methods thereof
US7291140B2 (en) 2003-07-18 2007-11-06 Cutera, Inc. System and method for low average power dermatologic light treatment device
US8870856B2 (en) 2003-08-25 2014-10-28 Cutera, Inc. Method for heating skin using light to provide tissue treatment
US8915906B2 (en) 2003-08-25 2014-12-23 Cutera, Inc. Method for treatment of post-partum abdominal skin redundancy or laxity
US7722600B2 (en) 2003-08-25 2010-05-25 Cutera, Inc. System and method for heating skin using light to provide tissue treatment
US20050209588A1 (en) * 2003-09-04 2005-09-22 Crum, Kaminski & Larson, Llc HIFU resculpturing and remodeling of heart valves
WO2005039390A2 (en) 2003-10-20 2005-05-06 Arthrocare Corporation Electrosurgical method and apparatus for removing tissue within a bone body
AU2003284929B2 (en) 2003-10-23 2010-07-22 Covidien Ag Redundant temperature monitoring in electrosurgical systems for safety mitigation
WO2005050151A1 (en) 2003-10-23 2005-06-02 Sherwood Services Ag Thermocouple measurement circuit
US7396336B2 (en) 2003-10-30 2008-07-08 Sherwood Services Ag Switched resonant ultrasonic power amplifier system
US7325546B2 (en) * 2003-11-20 2008-02-05 Vascular Control Systems, Inc. Uterine artery occlusion device with cervical receptacle
US7131860B2 (en) 2003-11-20 2006-11-07 Sherwood Services Ag Connector systems for electrosurgical generator
US7686817B2 (en) * 2003-11-25 2010-03-30 Vascular Control Systems, Inc. Occlusion device for asymmetrical uterine artery anatomy
US8052676B2 (en) 2003-12-02 2011-11-08 Boston Scientific Scimed, Inc. Surgical methods and apparatus for stimulating tissue
US7608072B2 (en) 2003-12-02 2009-10-27 Boston Scientific Scimed, Inc. Surgical methods and apparatus for maintaining contact between tissue and electrophysiology elements and confirming whether a therapeutic lesion has been formed
US7613523B2 (en) * 2003-12-11 2009-11-03 Apsara Medical Corporation Aesthetic thermal sculpting of skin
US7326199B2 (en) 2003-12-22 2008-02-05 Cutera, Inc. System and method for flexible architecture for dermatologic treatments utilizing multiple light sources
US7150745B2 (en) 2004-01-09 2006-12-19 Barrx Medical, Inc. Devices and methods for treatment of luminal tissue
US7251531B2 (en) * 2004-01-30 2007-07-31 Ams Research Corporation Heating method for tissue contraction
US7766905B2 (en) 2004-02-12 2010-08-03 Covidien Ag Method and system for continuity testing of medical electrodes
US7371233B2 (en) 2004-02-19 2008-05-13 Boston Scientific Scimed, Inc. Cooled probes and apparatus for maintaining contact between cooled probes and tissue
US7780662B2 (en) 2004-03-02 2010-08-24 Covidien Ag Vessel sealing system using capacitive RF dielectric heating
US7976539B2 (en) * 2004-03-05 2011-07-12 Hansen Medical, Inc. System and method for denaturing and fixing collagenous tissue
CA2579145C (en) * 2004-04-01 2023-06-27 The General Hospital Corporation Method and apparatus for dermatological treatment and tissue reshaping
AU2005231470B2 (en) * 2004-04-01 2011-10-06 The General Hospital Corporation Method and apparatus for dermatological treatment
US20080082090A1 (en) * 2004-04-01 2008-04-03 The General Hospital Corporation Method and apparatus for dermatological treatment and tissue reshaping
US7704249B2 (en) 2004-05-07 2010-04-27 Arthrocare Corporation Apparatus and methods for electrosurgical ablation and resection of target tissue
US8235909B2 (en) 2004-05-12 2012-08-07 Guided Therapy Systems, L.L.C. Method and system for controlled scanning, imaging and/or therapy
US20050273093A1 (en) * 2004-06-04 2005-12-08 Scimed Life Systems, Inc. Method of treating herniated intervertebral discs using cooled ablation
US7892230B2 (en) 2004-06-24 2011-02-22 Arthrocare Corporation Electrosurgical device having planar vertical electrode and related methods
US7824408B2 (en) 2004-08-05 2010-11-02 Tyco Healthcare Group, Lp Methods and apparatus for coagulating and/or constricting hollow anatomical structures
US20060047281A1 (en) * 2004-09-01 2006-03-02 Syneron Medical Ltd. Method and system for invasive skin treatment
US7393325B2 (en) 2004-09-16 2008-07-01 Guided Therapy Systems, L.L.C. Method and system for ultrasound treatment with a multi-directional transducer
US9011336B2 (en) 2004-09-16 2015-04-21 Guided Therapy Systems, Llc Method and system for combined energy therapy profile
US7824348B2 (en) 2004-09-16 2010-11-02 Guided Therapy Systems, L.L.C. System and method for variable depth ultrasound treatment
US8535228B2 (en) 2004-10-06 2013-09-17 Guided Therapy Systems, Llc Method and system for noninvasive face lifts and deep tissue tightening
US7530958B2 (en) * 2004-09-24 2009-05-12 Guided Therapy Systems, Inc. Method and system for combined ultrasound treatment
US20120165668A1 (en) 2010-08-02 2012-06-28 Guided Therapy Systems, Llc Systems and methods for treating acute and/or chronic injuries in soft tissue
US20080071255A1 (en) * 2006-09-19 2008-03-20 Barthe Peter G Method and system for treating muscle, tendon, ligament and cartilage tissue
US10864385B2 (en) 2004-09-24 2020-12-15 Guided Therapy Systems, Llc Rejuvenating skin by heating tissue for cosmetic treatment of the face and body
US8444562B2 (en) 2004-10-06 2013-05-21 Guided Therapy Systems, Llc System and method for treating muscle, tendon, ligament and cartilage tissue
US7530356B2 (en) * 2004-10-06 2009-05-12 Guided Therapy Systems, Inc. Method and system for noninvasive mastopexy
PL2409728T3 (en) * 2004-10-06 2018-01-31 Guided Therapy Systems Llc System for ultrasound tissue treatment
US11235179B2 (en) 2004-10-06 2022-02-01 Guided Therapy Systems, Llc Energy based skin gland treatment
US8690778B2 (en) 2004-10-06 2014-04-08 Guided Therapy Systems, Llc Energy-based tissue tightening
WO2006042168A1 (en) * 2004-10-06 2006-04-20 Guided Therapy Systems, L.L.C. Method and system for controlled thermal treatment of human superficial tissue
US8133180B2 (en) 2004-10-06 2012-03-13 Guided Therapy Systems, L.L.C. Method and system for treating cellulite
US11883688B2 (en) 2004-10-06 2024-01-30 Guided Therapy Systems, Llc Energy based fat reduction
US9827449B2 (en) 2004-10-06 2017-11-28 Guided Therapy Systems, L.L.C. Systems for treating skin laxity
US20060111744A1 (en) 2004-10-13 2006-05-25 Guided Therapy Systems, L.L.C. Method and system for treatment of sweat glands
US9694212B2 (en) 2004-10-06 2017-07-04 Guided Therapy Systems, Llc Method and system for ultrasound treatment of skin
JP2008522642A (en) 2004-10-06 2008-07-03 ガイデッド セラピー システムズ, エル.エル.シー. Method and system for beauty enhancement
US7758524B2 (en) * 2004-10-06 2010-07-20 Guided Therapy Systems, L.L.C. Method and system for ultra-high frequency ultrasound treatment
US20060079868A1 (en) * 2004-10-07 2006-04-13 Guided Therapy Systems, L.L.C. Method and system for treatment of blood vessel disorders
US11724133B2 (en) 2004-10-07 2023-08-15 Guided Therapy Systems, Llc Ultrasound probe for treatment of skin
US11207548B2 (en) 2004-10-07 2021-12-28 Guided Therapy Systems, L.L.C. Ultrasound probe for treating skin laxity
US7628786B2 (en) 2004-10-13 2009-12-08 Covidien Ag Universal foot switch contact port
US7729780B2 (en) * 2004-10-21 2010-06-01 Vardiman Arnold B Various apparatus and methods for deep brain stimulating electrodes
US7875036B2 (en) * 2004-10-27 2011-01-25 Vascular Control Systems, Inc. Short term treatment for uterine disorder
KR101202369B1 (en) * 2004-10-29 2012-11-16 가부시키가이샤 가네카 메딕스 Medical wire
US7949407B2 (en) 2004-11-05 2011-05-24 Asthmatx, Inc. Energy delivery devices and methods
WO2006052940A2 (en) 2004-11-05 2006-05-18 Asthmatx, Inc. Medical device with procedure improvement features
US20070093802A1 (en) 2005-10-21 2007-04-26 Danek Christopher J Energy delivery devices and methods
US8277495B2 (en) 2005-01-13 2012-10-02 Candela Corporation Method and apparatus for treating a diseased nail
US20070156210A1 (en) * 2005-01-14 2007-07-05 Co-Repair, Inc., A California Corporation Method for the treatment of heart tissue
US7455670B2 (en) * 2005-01-14 2008-11-25 Co-Repair, Inc. System and method for the treatment of heart tissue
US9215788B2 (en) * 2005-01-18 2015-12-15 Alma Lasers Ltd. System and method for treating biological tissue with a plasma gas discharge
JP4979019B2 (en) * 2005-01-18 2012-07-18 アルマ レーザーズ エルティディ. Improved system and method for biological tissue heating using RF energy
US7536225B2 (en) 2005-01-21 2009-05-19 Ams Research Corporation Endo-pelvic fascia penetrating heating systems and methods for incontinence treatment
US9474564B2 (en) 2005-03-31 2016-10-25 Covidien Ag Method and system for compensating for external impedance of an energy carrying component when controlling an electrosurgical generator
US7571336B2 (en) * 2005-04-25 2009-08-04 Guided Therapy Systems, L.L.C. Method and system for enhancing safety with medical peripheral device by monitoring if host computer is AC powered
US20060254599A1 (en) * 2005-05-10 2006-11-16 Levin Bruce H Intervention techniques for post-laminectomy syndrome and other spinal disorders
US7217265B2 (en) * 2005-05-18 2007-05-15 Cooltouch Incorporated Treatment of cellulite with mid-infrared radiation
US20060264832A1 (en) * 2005-05-20 2006-11-23 Medtronic, Inc. User interface for a portable therapy delivery device
US8016822B2 (en) 2005-05-28 2011-09-13 Boston Scientific Scimed, Inc. Fluid injecting devices and methods and apparatus for maintaining contact between fluid injecting devices and tissue
US7655003B2 (en) 2005-06-22 2010-02-02 Smith & Nephew, Inc. Electrosurgical power control
US8080009B2 (en) 2005-07-01 2011-12-20 Halt Medical Inc. Radio frequency ablation device for the destruction of tissue masses
US8512333B2 (en) * 2005-07-01 2013-08-20 Halt Medical Inc. Anchored RF ablation device for the destruction of tissue masses
US8128618B2 (en) * 2005-08-03 2012-03-06 Massachusetts Eye & Ear Infirmary Targeted muscle ablation for reducing signs of aging
US9486274B2 (en) * 2005-09-07 2016-11-08 Ulthera, Inc. Dissection handpiece and method for reducing the appearance of cellulite
US9358033B2 (en) 2005-09-07 2016-06-07 Ulthera, Inc. Fluid-jet dissection system and method for reducing the appearance of cellulite
US10548659B2 (en) 2006-01-17 2020-02-04 Ulthera, Inc. High pressure pre-burst for improved fluid delivery
US7967763B2 (en) * 2005-09-07 2011-06-28 Cabochon Aesthetics, Inc. Method for treating subcutaneous tissues
US9011473B2 (en) 2005-09-07 2015-04-21 Ulthera, Inc. Dissection handpiece and method for reducing the appearance of cellulite
US8518069B2 (en) 2005-09-07 2013-08-27 Cabochon Aesthetics, Inc. Dissection handpiece and method for reducing the appearance of cellulite
AU2006287633A1 (en) * 2005-09-07 2007-03-15 The Foundry, Inc. Apparatus and method for disrupting subcutaneous structures
US8852184B2 (en) * 2005-09-15 2014-10-07 Cannuflow, Inc. Arthroscopic surgical temperature control system
EP1928549B1 (en) 2005-09-28 2014-06-11 Candela Corporation Apparatus for treating cellulite
US8550743B2 (en) * 2005-09-30 2013-10-08 Medtronic, Inc. Sliding lock device
US8734438B2 (en) 2005-10-21 2014-05-27 Covidien Ag Circuit and method for reducing stored energy in an electrosurgical generator
US7997278B2 (en) 2005-11-23 2011-08-16 Barrx Medical, Inc. Precision ablating method
US8702694B2 (en) 2005-11-23 2014-04-22 Covidien Lp Auto-aligning ablating device and method of use
US7959627B2 (en) 2005-11-23 2011-06-14 Barrx Medical, Inc. Precision ablating device
US20080014627A1 (en) * 2005-12-02 2008-01-17 Cabochon Aesthetics, Inc. Devices and methods for selectively lysing cells
US7885793B2 (en) 2007-05-22 2011-02-08 International Business Machines Corporation Method and system for developing a conceptual model to facilitate generating a business-aligned information technology solution
US20080200864A1 (en) * 2005-12-02 2008-08-21 Cabochon Aesthetics, Inc. Devices and methods for selectively lysing cells
US20080200863A1 (en) * 2005-12-02 2008-08-21 Cabochon Aesthetics, Inc. Devices and methods for selectively lysing cells
US20080197517A1 (en) * 2005-12-02 2008-08-21 Cabochon Aesthetics, Inc. Devices and methods for selectively lysing cells
US20080195036A1 (en) * 2005-12-02 2008-08-14 Cabochon Aesthetics, Inc. Devices and methods for selectively lysing cells
US9248317B2 (en) * 2005-12-02 2016-02-02 Ulthera, Inc. Devices and methods for selectively lysing cells
US20080146970A1 (en) * 2005-12-06 2008-06-19 Julia Therapeutics, Llc Gel dispensers for treatment of skin with acoustic energy
US7920926B2 (en) * 2005-12-09 2011-04-05 Apsara Medical Corporation Method and apparatus for carrying out the controlled heating of tissue in the region of dermis
US7947039B2 (en) 2005-12-12 2011-05-24 Covidien Ag Laparoscopic apparatus for performing electrosurgical procedures
US7891362B2 (en) 2005-12-23 2011-02-22 Candela Corporation Methods for treating pigmentary and vascular abnormalities in a dermal region
US7691101B2 (en) 2006-01-06 2010-04-06 Arthrocare Corporation Electrosurgical method and system for treating foot ulcer
US8876746B2 (en) 2006-01-06 2014-11-04 Arthrocare Corporation Electrosurgical system and method for treating chronic wound tissue
US9186200B2 (en) 2006-01-24 2015-11-17 Covidien Ag System and method for tissue sealing
CA2575392C (en) 2006-01-24 2015-07-07 Sherwood Services Ag System and method for tissue sealing
CA2574934C (en) 2006-01-24 2015-12-29 Sherwood Services Ag System and method for closed loop monitoring of monopolar electrosurgical apparatus
US7513896B2 (en) 2006-01-24 2009-04-07 Covidien Ag Dual synchro-resonant electrosurgical apparatus with bi-directional magnetic coupling
US8685016B2 (en) 2006-01-24 2014-04-01 Covidien Ag System and method for tissue sealing
CA2574935A1 (en) 2006-01-24 2007-07-24 Sherwood Services Ag A method and system for controlling an output of a radio-frequency medical generator having an impedance based control algorithm
US8147485B2 (en) 2006-01-24 2012-04-03 Covidien Ag System and method for tissue sealing
US8216223B2 (en) 2006-01-24 2012-07-10 Covidien Ag System and method for tissue sealing
US7879034B2 (en) 2006-03-02 2011-02-01 Arthrocare Corporation Internally located return electrode electrosurgical apparatus, system and method
US7651493B2 (en) 2006-03-03 2010-01-26 Covidien Ag System and method for controlling electrosurgical snares
US20080031833A1 (en) * 2006-03-13 2008-02-07 Oblong John E Combined energy and topical composition application for regulating the condition of mammalian skin
US7648499B2 (en) 2006-03-21 2010-01-19 Covidien Ag System and method for generating radio frequency energy
US7651492B2 (en) 2006-04-24 2010-01-26 Covidien Ag Arc based adaptive control system for an electrosurgical unit
WO2007131124A2 (en) * 2006-05-03 2007-11-15 Schmid Peter M Instrument and method for directly applying energy to a tissue beneath stratum corneum tissue in a patient
US8753334B2 (en) 2006-05-10 2014-06-17 Covidien Ag System and method for reducing leakage current in an electrosurgical generator
US8114071B2 (en) 2006-05-30 2012-02-14 Arthrocare Corporation Hard tissue ablation system
US8246611B2 (en) 2006-06-14 2012-08-21 Candela Corporation Treatment of skin by spatial modulation of thermal heating
US7731717B2 (en) 2006-08-08 2010-06-08 Covidien Ag System and method for controlling RF output during tissue sealing
US8034049B2 (en) 2006-08-08 2011-10-11 Covidien Ag System and method for measuring initial tissue impedance
US20080183252A1 (en) * 2006-09-05 2008-07-31 Roee Khen Apparatus and method for treating cellulite
JP4201037B2 (en) * 2006-09-14 2008-12-24 ソニー株式会社 Lens barrel rotation imaging device
US9566454B2 (en) 2006-09-18 2017-02-14 Guided Therapy Systems, Llc Method and sysem for non-ablative acne treatment and prevention
US7794457B2 (en) 2006-09-28 2010-09-14 Covidien Ag Transformer for RF voltage sensing
US8048069B2 (en) 2006-09-29 2011-11-01 Medtronic, Inc. User interface for ablation therapy
US9241683B2 (en) * 2006-10-04 2016-01-26 Ardent Sound Inc. Ultrasound system and method for imaging and/or measuring displacement of moving tissue and fluid
US8007493B2 (en) 2006-10-16 2011-08-30 Syneron Medical Ltd. Methods and devices for treating tissue
US8142426B2 (en) 2006-10-16 2012-03-27 Syneron Medical Ltd. Methods and devices for treating tissue
US8133216B2 (en) 2006-10-16 2012-03-13 Syneron Medical Ltd. Methods and devices for treating tissue
US8273080B2 (en) 2006-10-16 2012-09-25 Syneron Medical Ltd. Methods and devices for treating tissue
US20080097557A1 (en) * 2006-10-19 2008-04-24 Apsara Medical Corporation Method and apparatus for carrying out the controlled heating of tissue in the region of dermis
US7931647B2 (en) 2006-10-20 2011-04-26 Asthmatx, Inc. Method of delivering energy to a lung airway using markers
WO2008057410A2 (en) 2006-11-02 2008-05-15 Peak Surgical, Inc. Electric plasma-mediated cutting and coagulation of tissue and surgical apparatus
GB2452103B (en) 2007-01-05 2011-08-31 Arthrocare Corp Electrosurgical system with suction control apparatus and system
US7862560B2 (en) 2007-03-23 2011-01-04 Arthrocare Corporation Ablation apparatus having reduced nerve stimulation and related methods
US20080269735A1 (en) * 2007-04-26 2008-10-30 Agustina Vila Echague Optical array for treating biological tissue
EP2150194B1 (en) 2007-04-27 2012-09-12 Tyco Healthcare Group LP System for treating hollow anatomical structures
WO2008137757A1 (en) 2007-05-04 2008-11-13 Barrx Medical, Inc. Method and apparatus for gastrointestinal tract ablation for treatment of obesity
JP2010526589A (en) 2007-05-07 2010-08-05 ガイデッド セラピー システムズ, エル.エル.シー. Method and system for modulating a mediant using acoustic energy
WO2008137944A1 (en) * 2007-05-07 2008-11-13 Guided Therapy Systems, Llc. Methods and systems for coupling and focusing acoustic energy using a coupler member
US20150174388A1 (en) 2007-05-07 2015-06-25 Guided Therapy Systems, Llc Methods and Systems for Ultrasound Assisted Delivery of a Medicant to Tissue
US8777941B2 (en) 2007-05-10 2014-07-15 Covidien Lp Adjustable impedance electrosurgical electrodes
US8202269B2 (en) * 2007-05-25 2012-06-19 The Regents Of The Universtiy Of Michigan Electrical cautery device
US8845630B2 (en) 2007-06-15 2014-09-30 Syneron Medical Ltd Devices and methods for percutaneous energy delivery
US8784338B2 (en) 2007-06-22 2014-07-22 Covidien Lp Electrical means to normalize ablational energy transmission to a luminal tissue surface of varying size
CN102688092B (en) 2007-07-06 2015-04-22 柯惠有限合伙公司 Ablation in the gastrointestinal tract to achieve hemostasis and eradicate lesions with a propensity for bleeding
WO2009009443A1 (en) 2007-07-06 2009-01-15 Barrx Medical, Inc. Method and apparatus for gastrointestinal tract ablation to achieve loss of persistent and/or recurrent excess body weight following a weight-loss operation
US8235983B2 (en) 2007-07-12 2012-08-07 Asthmatx, Inc. Systems and methods for delivering energy to passageways in a patient
US8103355B2 (en) * 2007-07-16 2012-01-24 Invasix Ltd Method and device for minimally invasive skin and fat treatment
US7834484B2 (en) 2007-07-16 2010-11-16 Tyco Healthcare Group Lp Connection cable and method for activating a voltage-controlled generator
US8646460B2 (en) 2007-07-30 2014-02-11 Covidien Lp Cleaning device and methods
US8273012B2 (en) 2007-07-30 2012-09-25 Tyco Healthcare Group, Lp Cleaning device and methods
US8216220B2 (en) 2007-09-07 2012-07-10 Tyco Healthcare Group Lp System and method for transmission of combined data stream
US8512332B2 (en) 2007-09-21 2013-08-20 Covidien Lp Real-time arc control in electrosurgical generators
US8439940B2 (en) 2010-12-22 2013-05-14 Cabochon Aesthetics, Inc. Dissection handpiece with aspiration means for reducing the appearance of cellulite
US9008793B1 (en) 2007-10-15 2015-04-14 Chenes Llc Multiple electrode radiofrequency generator
WO2009059186A1 (en) 2007-10-31 2009-05-07 Primaeva Medical, Inc. Cartridge electrode device
US20090112205A1 (en) * 2007-10-31 2009-04-30 Primaeva Medical, Inc. Cartridge electrode device
US8241276B2 (en) 2007-11-14 2012-08-14 Halt Medical Inc. RF ablation device with jam-preventing electrical coupling member
US8251991B2 (en) 2007-11-14 2012-08-28 Halt Medical Inc. Anchored RF ablation device for the destruction of tissue masses
US8292880B2 (en) 2007-11-27 2012-10-23 Vivant Medical, Inc. Targeted cooling of deployable microwave antenna
US20090156958A1 (en) 2007-12-12 2009-06-18 Mehta Bankim H Devices and methods for percutaneous energy delivery
US8998892B2 (en) 2007-12-21 2015-04-07 Atricure, Inc. Ablation device with cooled electrodes and methods of use
US8353907B2 (en) 2007-12-21 2013-01-15 Atricure, Inc. Ablation device with internally cooled electrodes
US8366603B2 (en) * 2007-12-21 2013-02-05 Boston Scientific Scimed, Inc. Endoscope including a multifunction conductor
EP2561819B1 (en) 2008-01-17 2015-01-07 Syneron Medical Ltd. Hair removal apparatus for personal use
CN101951851B (en) 2008-01-24 2013-02-06 赛诺龙医疗公司 A device and apparatus of adipose tissue treatment
US8353902B2 (en) * 2008-01-31 2013-01-15 Vivant Medical, Inc. Articulating ablation device and method
US9358063B2 (en) 2008-02-14 2016-06-07 Arthrocare Corporation Ablation performance indicator for electrosurgical devices
US8483831B1 (en) 2008-02-15 2013-07-09 Holaira, Inc. System and method for bronchial dilation
EP2662116B1 (en) 2008-05-09 2022-09-21 Nuvaira, Inc. Systems and assemblies for treating a bronchial tree
US8849395B2 (en) 2008-05-30 2014-09-30 Boston Scientific Scimed, Inc. Guide catheter having vasomodulating electrodes
US9770297B2 (en) 2008-06-04 2017-09-26 Covidien Lp Energy devices and methods for treating hollow anatomical structures
PT3058875T (en) 2008-06-06 2022-09-20 Ulthera Inc A system and method for cosmetic treatment and imaging
US12102473B2 (en) 2008-06-06 2024-10-01 Ulthera, Inc. Systems for ultrasound treatment
US8226639B2 (en) 2008-06-10 2012-07-24 Tyco Healthcare Group Lp System and method for output control of electrosurgical generator
US8795264B2 (en) * 2008-07-01 2014-08-05 Ralph Zipper Method for decreasing the size and/or changing the shape of pelvic tissues
WO2010009150A1 (en) 2008-07-14 2010-01-21 Primaeva Medical, Inc. Devices and methods for percutaneous energy delivery
US9314293B2 (en) 2008-07-16 2016-04-19 Syneron Medical Ltd RF electrode for aesthetic and body shaping devices and method of using same
US20100017750A1 (en) 2008-07-16 2010-01-21 Avner Rosenberg User interface
US8747400B2 (en) 2008-08-13 2014-06-10 Arthrocare Corporation Systems and methods for screen electrode securement
EP2334249B1 (en) 2008-09-21 2013-03-13 Syneron Medical Ltd. A method and apparatus for personal skin treatment
JP5688022B2 (en) 2008-09-26 2015-03-25 リリーバント メドシステムズ、インコーポレイテッド System and method for guiding an instrument through the interior of a bone
US10028753B2 (en) 2008-09-26 2018-07-24 Relievant Medsystems, Inc. Spine treatment kits
US8163022B2 (en) 2008-10-14 2012-04-24 Anulex Technologies, Inc. Method and apparatus for the treatment of the intervertebral disc annulus
US8355799B2 (en) 2008-12-12 2013-01-15 Arthrocare Corporation Systems and methods for limiting joint temperature
CA2748362A1 (en) 2008-12-24 2010-07-01 Michael H. Slayton Methods and systems for fat reduction and/or cellulite treatment
US8137345B2 (en) 2009-01-05 2012-03-20 Peak Surgical, Inc. Electrosurgical devices for tonsillectomy and adenoidectomy
US8262652B2 (en) 2009-01-12 2012-09-11 Tyco Healthcare Group Lp Imaginary impedance process monitoring and intelligent shut-off
KR20120090007A (en) 2009-02-25 2012-08-16 프리마바 메디컬, 아이엔씨. Devices and methods for percutaneous energy delivery
US9278230B2 (en) 2009-02-25 2016-03-08 Syneron Medical Ltd Electrical skin rejuvenation
US8574187B2 (en) 2009-03-09 2013-11-05 Arthrocare Corporation System and method of an electrosurgical controller with output RF energy control
US9532827B2 (en) 2009-06-17 2017-01-03 Nuortho Surgical Inc. Connection of a bipolar electrosurgical hand piece to a monopolar output of an electrosurgical generator
US8257350B2 (en) 2009-06-17 2012-09-04 Arthrocare Corporation Method and system of an electrosurgical controller with wave-shaping
US11096708B2 (en) 2009-08-07 2021-08-24 Ulthera, Inc. Devices and methods for performing subcutaneous surgery
US9358064B2 (en) 2009-08-07 2016-06-07 Ulthera, Inc. Handpiece and methods for performing subcutaneous surgery
US9474565B2 (en) 2009-09-22 2016-10-25 Mederi Therapeutics, Inc. Systems and methods for treating tissue with radiofrequency energy
EP2480152B1 (en) 2009-09-22 2018-08-29 Mederi Therapeutics Inc. Systems for controlling use and operation of a family of different treatment devices
US9750563B2 (en) 2009-09-22 2017-09-05 Mederi Therapeutics, Inc. Systems and methods for treating tissue with radiofrequency energy
US9775664B2 (en) 2009-09-22 2017-10-03 Mederi Therapeutics, Inc. Systems and methods for treating tissue with radiofrequency energy
US10386990B2 (en) 2009-09-22 2019-08-20 Mederi Rf, Llc Systems and methods for treating tissue with radiofrequency energy
US8323279B2 (en) 2009-09-25 2012-12-04 Arthocare Corporation System, method and apparatus for electrosurgical instrument with movable fluid delivery sheath
US8317786B2 (en) 2009-09-25 2012-11-27 AthroCare Corporation System, method and apparatus for electrosurgical instrument with movable suction sheath
CN112089394A (en) 2009-10-27 2020-12-18 努瓦拉公司 Delivery device with coolable energy emitting assembly
WO2011060200A1 (en) 2009-11-11 2011-05-19 Innovative Pulmonary Solutions, Inc. Systems, apparatuses, and methods for treating tissue and controlling stenosis
US8911439B2 (en) 2009-11-11 2014-12-16 Holaira, Inc. Non-invasive and minimally invasive denervation methods and systems for performing the same
US8715186B2 (en) 2009-11-24 2014-05-06 Guided Therapy Systems, Llc Methods and systems for generating thermal bubbles for improved ultrasound imaging and therapy
US8372067B2 (en) 2009-12-09 2013-02-12 Arthrocare Corporation Electrosurgery irrigation primer systems and methods
US8936631B2 (en) 2010-01-04 2015-01-20 Covidien Lp Apparatus and methods for treating hollow anatomical structures
US8652153B2 (en) 2010-01-11 2014-02-18 Anulex Technologies, Inc. Intervertebral disc annulus repair system and bone anchor delivery tool
US8231619B2 (en) 2010-01-22 2012-07-31 Cytyc Corporation Sterilization device and method
US8747399B2 (en) 2010-04-06 2014-06-10 Arthrocare Corporation Method and system of reduction of low frequency muscle stimulation during electrosurgical procedures
CA2795671A1 (en) 2010-04-19 2011-10-27 The Procter & Gamble Company Genetic signatures and gene chips associated with administration of electrically conducted radio frequency current to skin and methods and treatments relating thereto
WO2011133539A2 (en) 2010-04-19 2011-10-27 The Procter & Gamble Company Combined energy and topical composition application for regulating the condition of mammalian skin
US8696659B2 (en) 2010-04-30 2014-04-15 Arthrocare Corporation Electrosurgical system and method having enhanced temperature measurement
US8550086B2 (en) 2010-05-04 2013-10-08 Hologic, Inc. Radiopaque implant
US8979838B2 (en) 2010-05-24 2015-03-17 Arthrocare Corporation Symmetric switching electrode method and related system
US9504446B2 (en) 2010-08-02 2016-11-29 Guided Therapy Systems, Llc Systems and methods for coupling an ultrasound source to tissue
US8685018B2 (en) 2010-10-15 2014-04-01 Arthrocare Corporation Electrosurgical wand and related method and system
USD658760S1 (en) 2010-10-15 2012-05-01 Arthrocare Corporation Wound care electrosurgical wand
US8568405B2 (en) 2010-10-15 2013-10-29 Arthrocare Corporation Electrosurgical wand and related method and system
US10448992B2 (en) 2010-10-22 2019-10-22 Arthrocare Corporation Electrosurgical system with device specific operational parameters
US8857438B2 (en) 2010-11-08 2014-10-14 Ulthera, Inc. Devices and methods for acoustic shielding
US9486275B2 (en) 2010-12-30 2016-11-08 Avent, Inc. Electrosurgical apparatus having a sensor
US8747401B2 (en) 2011-01-20 2014-06-10 Arthrocare Corporation Systems and methods for turbinate reduction
US9131597B2 (en) 2011-02-02 2015-09-08 Arthrocare Corporation Electrosurgical system and method for treating hard body tissue
US9271784B2 (en) 2011-02-09 2016-03-01 Arthrocare Corporation Fine dissection electrosurgical device
US9168082B2 (en) 2011-02-09 2015-10-27 Arthrocare Corporation Fine dissection electrosurgical device
US9408658B2 (en) 2011-02-24 2016-08-09 Nuortho Surgical, Inc. System and method for a physiochemical scalpel to eliminate biologic tissue over-resection and induce tissue healing
US9011428B2 (en) 2011-03-02 2015-04-21 Arthrocare Corporation Electrosurgical device with internal digestor electrode
US10278774B2 (en) 2011-03-18 2019-05-07 Covidien Lp Selectively expandable operative element support structure and methods of use
US20120271219A1 (en) * 2011-04-19 2012-10-25 David John Weisgerber Combined Energy and Topical Composition Application For Regulating the Condition of Mammalian Skin
US10639101B2 (en) 2011-06-06 2020-05-05 Cosman Instruments, Llc Cool RF electrode
US10959775B2 (en) 2011-06-06 2021-03-30 Cosman Instruments, Llc Cool RF electrode
US8979842B2 (en) 2011-06-10 2015-03-17 Medtronic Advanced Energy Llc Wire electrode devices for tonsillectomy and adenoidectomy
WO2013009784A2 (en) 2011-07-10 2013-01-17 Guided Therapy Systems, Llc Systems and method for accelerating healing of implanted material and/or native tissue
KR20190080967A (en) 2011-07-11 2019-07-08 가이디드 테라피 시스템스, 엘.엘.씨. Systems and methods for coupling an ultrasound source to tissue
US9788882B2 (en) 2011-09-08 2017-10-17 Arthrocare Corporation Plasma bipolar forceps
AU2012362524B2 (en) 2011-12-30 2018-12-13 Relievant Medsystems, Inc. Systems and methods for treating back pain
US10398508B2 (en) * 2012-02-07 2019-09-03 Joe Denton Brown Protective sheath and method of using same for laser surgery
US9277958B2 (en) 2012-02-22 2016-03-08 Candela Corporation Reduction of RF electrode edge effect
US9889297B2 (en) 2012-02-22 2018-02-13 Candela Corporation Reduction of RF electrode edge effect
US8403927B1 (en) 2012-04-05 2013-03-26 William Bruce Shingleton Vasectomy devices and methods
US9263663B2 (en) 2012-04-13 2016-02-16 Ardent Sound, Inc. Method of making thick film transducer arrays
US8792993B2 (en) * 2012-06-01 2014-07-29 Boston Scientific, Neuromodulation Corporation Leads with tip electrode for electrical stimulation systems and methods of making and using
WO2013184319A1 (en) 2012-06-04 2013-12-12 Boston Scientific Scimed, Inc. Systems and methods for treating tissue of a passageway within a body
WO2014018153A1 (en) 2012-07-24 2014-01-30 Boston Scientific Scimed, Inc. Electrodes for tissue treatment
US10588691B2 (en) 2012-09-12 2020-03-17 Relievant Medsystems, Inc. Radiofrequency ablation of tissue within a vertebral body
US9510802B2 (en) 2012-09-21 2016-12-06 Guided Therapy Systems, Llc Reflective ultrasound technology for dermatological treatments
US9272132B2 (en) 2012-11-02 2016-03-01 Boston Scientific Scimed, Inc. Medical device for treating airways and related methods of use
WO2014071161A1 (en) 2012-11-05 2014-05-08 Relievant Medsystems, Inc. System and methods for creating curved paths through bone and modulating nerves within the bone
WO2014071372A1 (en) 2012-11-05 2014-05-08 Boston Scientific Scimed, Inc. Devices for delivering energy to body lumens
US9579142B1 (en) 2012-12-13 2017-02-28 Nuortho Surgical Inc. Multi-function RF-probe with dual electrode positioning
US9398933B2 (en) 2012-12-27 2016-07-26 Holaira, Inc. Methods for improving drug efficacy including a combination of drug administration and nerve modulation
US9254166B2 (en) 2013-01-17 2016-02-09 Arthrocare Corporation Systems and methods for turbinate reduction
US9737294B2 (en) 2013-01-28 2017-08-22 Cartiva, Inc. Method and system for orthopedic repair
WO2014117107A1 (en) 2013-01-28 2014-07-31 Cartiva, Inc. Systems and methods for orthopedic repair
US9713489B2 (en) 2013-03-07 2017-07-25 Arthrocare Corporation Electrosurgical methods and systems
US9693818B2 (en) 2013-03-07 2017-07-04 Arthrocare Corporation Methods and systems related to electrosurgical wands
CN104027893B (en) 2013-03-08 2021-08-31 奥赛拉公司 Apparatus and method for multi-focal ultrasound therapy
US9801678B2 (en) 2013-03-13 2017-10-31 Arthrocare Corporation Method and system of controlling conductive fluid flow during an electrosurgical procedure
US10561862B2 (en) 2013-03-15 2020-02-18 Guided Therapy Systems, Llc Ultrasound treatment device and methods of use
EP2996765B1 (en) 2013-05-15 2019-06-26 Boston Scientific Neuromodulation Corporation Tip electrodes for leads of electrical stimulation systems
US9814618B2 (en) 2013-06-06 2017-11-14 Boston Scientific Scimed, Inc. Devices for delivering energy and related methods of use
US9872719B2 (en) 2013-07-24 2018-01-23 Covidien Lp Systems and methods for generating electrosurgical energy using a multistage power converter
US9655670B2 (en) 2013-07-29 2017-05-23 Covidien Lp Systems and methods for measuring tissue impedance through an electrosurgical cable
US9724151B2 (en) 2013-08-08 2017-08-08 Relievant Medsystems, Inc. Modulating nerves within bone using bone fasteners
EP3708104A1 (en) 2013-08-09 2020-09-16 Boston Scientific Scimed, Inc. Expandable catheter and related methods of manufacture and use
RU2016129258A (en) 2013-12-20 2018-01-25 Артрокер Корпорейшн RECOVERY OF FABRIC WITH SURFACE MATERIAL FULLY WITHOUT NODES
US10420607B2 (en) 2014-02-14 2019-09-24 Arthrocare Corporation Methods and systems related to an electrosurgical controller
US9526556B2 (en) 2014-02-28 2016-12-27 Arthrocare Corporation Systems and methods systems related to electrosurgical wands with screen electrodes
AU2015247951A1 (en) 2014-04-18 2016-11-17 Ulthera, Inc. Band transducer ultrasound therapy
US10136943B1 (en) 2014-10-21 2018-11-27 Cosman Instruments, Llc Electrosurgical system
US9717552B2 (en) 2014-05-06 2017-08-01 Cosman Intruments, Llc Electrosurgical generator
US9649148B2 (en) 2014-07-24 2017-05-16 Arthrocare Corporation Electrosurgical system and method having enhanced arc prevention
US9597142B2 (en) 2014-07-24 2017-03-21 Arthrocare Corporation Method and system related to electrosurgical procedures
CN104258503B (en) * 2014-08-15 2016-01-20 任沙力 A kind of multi-functional physical resource cancer therapeutic
US10194971B2 (en) 2014-09-26 2019-02-05 Cosman Medical, Inc. Electrosurgical generator
DK3405294T3 (en) 2016-01-18 2023-03-13 Ulthera Inc COMPACT ULTRASOUND DEVICE WITH RING-SHAPED ULTRASOUND MATRIX WITH PERIPHERAL ELECTRICAL CONNECTION FOR FLEXIBLE PRINT BOARD
KR102593310B1 (en) 2016-08-16 2023-10-25 얼테라, 인크 Ultrasound imaging system configured to reduce imaging misalignment, ultrasound imaging module, and method for reducing imaging misalignment
JP2020507409A (en) 2017-02-16 2020-03-12 ネオメディックス コーポレイションNeomedix Corporation Devices, systems and methods for minimally invasive glaucoma surgery
TW202327520A (en) 2018-01-26 2023-07-16 美商奧賽拉公司 Systems and methods for simultaneous multi-focus ultrasound therapy in multiple dimensions
US11944849B2 (en) 2018-02-20 2024-04-02 Ulthera, Inc. Systems and methods for combined cosmetic treatment of cellulite with ultrasound
AU2020346827A1 (en) 2019-09-12 2022-03-31 Relievant Medsystems, Inc. Systems and methods for tissue modulation
US12082876B1 (en) 2020-09-28 2024-09-10 Relievant Medsystems, Inc. Introducer drill
JP2024505335A (en) 2020-12-22 2024-02-06 リリーバント メドシステムズ、インコーポレイテッド Prediction of spinal neuromodulation candidates

Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4326529A (en) * 1978-05-26 1982-04-27 The United States Of America As Represented By The United States Department Of Energy Corneal-shaping electrode
US4375220A (en) * 1980-05-09 1983-03-01 Matvias Fredrick M Microwave applicator with cooling mechanism for intracavitary treatment of cancer
US4381007A (en) * 1981-04-30 1983-04-26 The United States Of America As Represented By The United States Department Of Energy Multipolar corneal-shaping electrode with flexible removable skirt
US4397314A (en) * 1981-08-03 1983-08-09 Clini-Therm Corporation Method and apparatus for controlling and optimizing the heating pattern for a hyperthermia system
US4517975A (en) * 1983-06-06 1985-05-21 Garito Jon C Electrosurgical electrode for matrisectomy
US4593691A (en) * 1983-07-13 1986-06-10 Concept, Inc. Electrosurgery electrode
US4907589A (en) * 1988-04-29 1990-03-13 Cosman Eric R Automatic over-temperature control apparatus for a therapeutic heating device
US4976709A (en) * 1988-12-15 1990-12-11 Sand Bruce J Method for collagen treatment
US5103804A (en) * 1990-07-03 1992-04-14 Boston Scientific Corporation Expandable tip hemostatic probes and the like
US5191883A (en) * 1988-10-28 1993-03-09 Prutech Research And Development Partnership Ii Device for heating tissue in a patient's body
US5213097A (en) * 1989-10-24 1993-05-25 Zewa Ag Apparatus for the treatment of diseases of the walls of opening or cavities of the body
US5230334A (en) * 1992-01-22 1993-07-27 Summit Technology, Inc. Method and apparatus for generating localized hyperthermia
US5261906A (en) * 1991-12-09 1993-11-16 Ralph Pennino Electro-surgical dissecting and cauterizing instrument
US5323778A (en) * 1991-11-05 1994-06-28 Brigham & Women's Hospital Method and apparatus for magnetic resonance imaging and heating tissues
US5334193A (en) * 1992-11-13 1994-08-02 American Cardiac Ablation Co., Inc. Fluid cooled ablation catheter
US5348554A (en) * 1992-12-01 1994-09-20 Cardiac Pathways Corporation Catheter for RF ablation with cooled electrode
US5458596A (en) * 1994-05-06 1995-10-17 Dorsal Orthopedic Corporation Method and apparatus for controlled contraction of soft tissue
US5514130A (en) * 1994-10-11 1996-05-07 Dorsal Med International RF apparatus for controlled depth ablation of soft tissue
US5571216A (en) * 1994-01-19 1996-11-05 The General Hospital Corporation Methods and apparatus for joining collagen-containing materials
US5785705A (en) * 1994-10-11 1998-07-28 Oratec Interventions, Inc. RF method for controlled depth ablation of soft tissue
US5843078A (en) * 1997-07-01 1998-12-01 Sharkey; Hugh R. Radio frequency device for resurfacing skin and method

Family Cites Families (123)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2090923A (en) 1937-08-24 Electrodic endoscopic instrtjment
FR1122634A (en) 1955-02-25 1956-09-11 Improvements to joint prostheses
US3178728A (en) 1962-10-22 1965-04-20 Robert W Christensen Surgical prosthesis for the temporomandibular joint
US3579643A (en) 1968-12-12 1971-05-25 Douglas H Morgan Artificial articular eminence for the mandibular joint
US3938198A (en) 1970-08-04 1976-02-17 Cutter Laboratories, Inc. Hip joint prosthesis
CA992255A (en) 1971-01-25 1976-07-06 Cutter Laboratories Prosthesis for spinal repair
US3886600A (en) 1971-07-15 1975-06-03 Cutter Lab Joint prosthesis
US3803641A (en) 1971-12-30 1974-04-16 V Golyakhovsky Endoprosthesis of shoulder joint
US3856015A (en) 1972-01-21 1974-12-24 J Iglesias Stabilized cutting loop for resectoscope
US3879767A (en) 1972-01-26 1975-04-29 Cutter Lab Prosthesis for articulating body structures
US3945375A (en) 1972-04-04 1976-03-23 Surgical Design Corporation Rotatable surgical instrument
US3776230A (en) * 1973-04-18 1973-12-04 C Neefe Method of rapidly reshaping the cornea to eliminate refractive errors
DE2340546A1 (en) 1973-08-10 1975-02-27 Pfaudler Werke Ag METALLIC IMPLANT AND PROCEDURE FOR ITS MANUFACTURING
US3992725A (en) 1973-11-16 1976-11-23 Homsy Charles A Implantable material and appliances and method of stabilizing body implants
US4043342A (en) 1974-08-28 1977-08-23 Valleylab, Inc. Electrosurgical devices having sesquipolar electrode structures incorporated therein
US4129470A (en) 1974-10-17 1978-12-12 Homsy Charles A Method of preparing a porous implantable material from polytetrafluoroethylene and carbon fibers
US4085466A (en) 1974-11-18 1978-04-25 National Research Development Corporation Prosthetic joint device
US4074718A (en) 1976-03-17 1978-02-21 Valleylab, Inc. Electrosurgical instrument
SU637118A1 (en) 1977-02-07 1978-12-15 Предприятие П/Я В-2481 Endoprosthesis of bones of the wrist
US4140130A (en) * 1977-05-31 1979-02-20 Storm Iii Frederick K Electrode structure for radio frequency localized heating of tumor bearing tissue
US4224697A (en) 1978-09-08 1980-09-30 Hexcel Corporation Constrained prosthetic knee
US4224696A (en) 1978-09-08 1980-09-30 Hexcel Corporation Prosthetic knee
US4315510A (en) 1979-05-16 1982-02-16 Cooper Medical Devices Corporation Method of performing male sterilization
GB2053691B (en) 1979-07-24 1983-04-27 Wolf Gmbh Richard Endoscopes
US4344193A (en) 1980-11-28 1982-08-17 Kenny Charles H Meniscus prosthesis
US4476862A (en) 1980-12-08 1984-10-16 Pao David S C Method of scleral marking
US4483338A (en) 1981-06-12 1984-11-20 Raychem Corporation Bi-Polar electrocautery needle
US5370675A (en) 1992-08-12 1994-12-06 Vidamed, Inc. Medical probe device and method
US5085657A (en) 1983-03-14 1992-02-04 Ben Simhon Haim Electrosurgical instrument
US5451223B1 (en) 1983-03-14 1998-11-03 Ben Simhon Haim Electrosurgical instrument
US4590934A (en) 1983-05-18 1986-05-27 Jerry L. Malis Bipolar cutter/coagulator
US4894063A (en) 1983-05-24 1990-01-16 Baxter International Inc. Barrier layer for implantable tendons and ligaments
US4517965A (en) 1983-06-27 1985-05-21 Ellison Arthur E Tissue retractor
US4601705A (en) 1983-10-31 1986-07-22 Mccoy William C Steerable and aimable catheter
US5114402A (en) 1983-10-31 1992-05-19 Catheter Research, Inc. Spring-biased tip assembly
US4944727A (en) 1986-06-05 1990-07-31 Catheter Research, Inc. Variable shape guide apparatus
US4873976A (en) 1984-02-28 1989-10-17 Schreiber Saul N Surgical fasteners and method
US4727874A (en) 1984-09-10 1988-03-01 C. R. Bard, Inc. Electrosurgical generator with high-frequency pulse width modulated feedback power control
US4651734A (en) 1985-02-08 1987-03-24 The United States Of America As Represented By The United States Department Of Energy Electrosurgical device for both mechanical cutting and coagulation of bleeding
US4811733A (en) 1985-03-14 1989-03-14 Baxter Travenol Laboratories, Inc. Electrosurgical device
DE3511107A1 (en) 1985-03-27 1986-10-02 Fischer MET GmbH, 7800 Freiburg DEVICE FOR BIPOLAR HIGH-FREQUENCY COAGULATION OF BIOLOGICAL TISSUE
US4716887A (en) 1985-04-11 1988-01-05 Telectronics N.V. Apparatus and method for adjusting heart/pacer rate relative to cardiac pCO2 to obtain a required cardiac output
US5304169A (en) * 1985-09-27 1994-04-19 Laser Biotech, Inc. Method for collagen shrinkage
US5484432A (en) 1985-09-27 1996-01-16 Laser Biotech, Inc. Collagen treatment apparatus
US4895148A (en) 1986-05-20 1990-01-23 Concept, Inc. Method of joining torn parts of bodily tissue in vivo with a biodegradable tack member
US4924865A (en) 1986-05-20 1990-05-15 Concept, Inc. Repair tack for bodily tissue
DE3632197A1 (en) 1986-09-23 1988-03-31 Rainer Dr Hofmann Punching or cutting biopsy cannula
DE3643362A1 (en) 1986-12-18 1988-06-23 Frimberger Erintrud PROBE FOR INTRODUCTION IN HUMAN OR ANIMAL BODIES, IN PARTICULAR PAPILLOTOM
US4815462A (en) 1987-04-06 1989-03-28 Clark Vickie J Lipectomy device
US4838859A (en) 1987-05-19 1989-06-13 Steve Strassmann Steerable catheter
ATE134887T1 (en) 1987-05-26 1996-03-15 Sumitomo Pharma DEVICE FOR ADMINISTRATION OF SOLID PREPARATIONS
US4907585A (en) 1987-12-03 1990-03-13 Schachar Ronald A Method for improving farsightedness
US4955882A (en) 1988-03-30 1990-09-11 Hakky Said I Laser resectoscope with mechanical and laser cutting means
US5201731A (en) 1988-03-30 1993-04-13 Hakky Said I Laser resectoscope with ultransonic imaging means
US5178620A (en) * 1988-06-10 1993-01-12 Advanced Angioplasty Products, Inc. Thermal dilatation catheter and method
US4998933A (en) 1988-06-10 1991-03-12 Advanced Angioplasty Products, Inc. Thermal angioplasty catheter and method
US5112330A (en) 1988-09-16 1992-05-12 Olympus Optical Co., Ltd. Resectoscope apparatus
US4966597A (en) 1988-11-04 1990-10-30 Cosman Eric R Thermometric cardiac tissue ablation electrode with ultra-sensitive temperature detection
US5192267A (en) 1989-01-23 1993-03-09 Nadiv Shapira Vortex smoke remover for electrosurgical devices
FR2645008A1 (en) 1989-03-28 1990-10-05 Technomed Int Sa Apparatus for resection of soft or hard tissues, which can be used in particular for the resection of the prostate, having a rotating loop, and resection means
US5009656A (en) 1989-08-17 1991-04-23 Mentor O&O Inc. Bipolar electrosurgical instrument
US5284479A (en) 1989-08-30 1994-02-08 N.V. Nederlandsche Apparatenfabriek Nedap Implanter
US5007908A (en) 1989-09-29 1991-04-16 Everest Medical Corporation Electrosurgical instrument having needle cutting electrode and spot-coag electrode
US5201730A (en) * 1989-10-24 1993-04-13 Surgical Technologies, Inc. Tissue manipulator for use in vitreous surgery combining a fiber optic endoilluminator with an infusion/aspiration system
US5242439A (en) 1990-01-12 1993-09-07 Laserscope Means for inserting instrumentation for a percutaneous diskectomy using a laser
US5201729A (en) 1990-01-12 1993-04-13 Laserscope Method for performing percutaneous diskectomy using a laser
US5599356A (en) 1990-03-14 1997-02-04 Jgc Corporation Process for producing an aqueous high concentration coal slurry
US5098430A (en) 1990-03-16 1992-03-24 Beacon Laboratories, Inc. Dual mode electrosurgical pencil
US5186181A (en) 1990-07-27 1993-02-16 Cafiero Franconi Radio frequency thermotherapy
US5100402A (en) * 1990-10-05 1992-03-31 Megadyne Medical Products, Inc. Electrosurgical laparoscopic cauterization electrode
US5085659A (en) 1990-11-21 1992-02-04 Everest Medical Corporation Biopsy device with bipolar coagulation capability
US5320115A (en) 1991-01-16 1994-06-14 Applied Biological Concepts Method and apparatus for arthroscopic knee surgery
AU660444B2 (en) 1991-02-15 1995-06-29 Ingemar H. Lundquist Torquable catheter and method
US5152748A (en) 1991-03-04 1992-10-06 Philippe Chastagner Medical catheters thermally manipulated by fiber optic bundles
DE4123418C2 (en) * 1991-07-15 1998-02-19 Alfred Dipl Ing Boeckmann Hyperthermia device, in particular for the treatment of prostate disorders
US5697909A (en) 1992-01-07 1997-12-16 Arthrocare Corporation Methods and apparatus for surgical cutting
US5630839A (en) 1991-10-22 1997-05-20 Pi Medical Corporation Multi-electrode cochlear implant and method of manufacturing the same
US5524338A (en) 1991-10-22 1996-06-11 Pi Medical Corporation Method of making implantable microelectrode
US5197964A (en) 1991-11-12 1993-03-30 Everest Medical Corporation Bipolar instrument utilizing one stationary electrode and one movable electrode
US5275151A (en) 1991-12-11 1994-01-04 Clarus Medical Systems, Inc. Handle for deflectable catheter
US5683366A (en) * 1992-01-07 1997-11-04 Arthrocare Corporation System and method for electrosurgical tissue canalization
US5366443A (en) * 1992-01-07 1994-11-22 Thapliyal And Eggers Partners Method and apparatus for advancing catheters through occluded body lumens
US5681282A (en) 1992-01-07 1997-10-28 Arthrocare Corporation Methods and apparatus for ablation of luminal tissues
US5484435A (en) 1992-01-15 1996-01-16 Conmed Corporation Bipolar electrosurgical instrument for use in minimally invasive internal surgical procedures
US5267994A (en) 1992-02-10 1993-12-07 Conmed Corporation Electrosurgical probe
US5242441A (en) 1992-02-24 1993-09-07 Boaz Avitall Deflectable catheter with rotatable tip electrode
US5257990A (en) * 1992-02-24 1993-11-02 Kensey Nash Corporation Electrosurgical catheter instrument with impacting working head and method of use
DE69309750T2 (en) 1992-02-25 1997-07-31 Japan Crescent Inc Heated balloon catheter
US5279559A (en) 1992-03-06 1994-01-18 Aai Corporation Remote steering system for medical catheter
FR2689768B1 (en) 1992-04-08 1997-06-27 Inst Nat Sante Rech Med APPLICATOR DEVICE FOR MICROWAVE HYPERTHERMIA IN A CERTAIN BODY.
US5318525A (en) 1992-04-10 1994-06-07 Medtronic Cardiorhythm Steerable electrode catheter
WO1993020878A1 (en) 1992-04-10 1993-10-28 Cardiorhythm Shapable handle for steerable electrode catheter
US5352868A (en) 1992-05-01 1994-10-04 Hemostatic Surgery Corporation Resistance feedback controlled power supply
US5308311A (en) 1992-05-01 1994-05-03 Robert F. Shaw Electrically heated surgical blade and methods of making
CA2094220A1 (en) 1992-05-21 1993-11-22 Mark A. Rydell Surgical scissors with bipolar coagulation feature
US5311858A (en) 1992-06-15 1994-05-17 Adair Edwin Lloyd Imaging tissue or stone removal basket
US5465737A (en) * 1992-07-15 1995-11-14 Schachar; Ronald A. Treatment of presbyopia and other eye disorders
WO1994002077A2 (en) 1992-07-15 1994-02-03 Angelase, Inc. Ablation catheter system
US5354331A (en) 1992-07-15 1994-10-11 Schachar Ronald A Treatment of presbyopia and other eye disorders
US5514131A (en) 1992-08-12 1996-05-07 Stuart D. Edwards Method for the ablation treatment of the uvula
US5401272A (en) 1992-09-25 1995-03-28 Envision Surgical Systems, Inc. Multimodality probe with extendable bipolar electrodes
US5342357A (en) 1992-11-13 1994-08-30 American Cardiac Ablation Co., Inc. Fluid cooled electrosurgical cauterization system
US5507812A (en) 1992-12-28 1996-04-16 Moore; David E. Modular prosthetic ligament
WO1994026189A1 (en) * 1993-05-14 1994-11-24 Boston Scientific Corporation Catheter for diverse in situ tissue therapy
US5364395A (en) 1993-05-14 1994-11-15 West Jr Hugh S Arthroscopic surgical instrument with cauterizing capability
US5487757A (en) 1993-07-20 1996-01-30 Medtronic Cardiorhythm Multicurve deflectable catheter
US5688270A (en) 1993-07-22 1997-11-18 Ethicon Endo-Surgery,Inc. Electrosurgical hemostatic device with recessed and/or offset electrodes
US5415633A (en) 1993-07-28 1995-05-16 Active Control Experts, Inc. Remotely steered catheterization device
US5431649A (en) * 1993-08-27 1995-07-11 Medtronic, Inc. Method and apparatus for R-F ablation
US5423806A (en) 1993-10-01 1995-06-13 Medtronic, Inc. Laser extractor for an implanted object
US5456689A (en) 1993-10-13 1995-10-10 Arnold J. Kresch Method and device for tissue resection
US5433739A (en) 1993-11-02 1995-07-18 Sluijter; Menno E. Method and apparatus for heating an intervertebral disc for relief of back pain
US5382247A (en) 1994-01-21 1995-01-17 Valleylab Inc. Technique for electrosurgical tips and method of manufacture and use
US5464023A (en) 1994-01-31 1995-11-07 Cordis Corporation Magnetic exchange device for catheters
US5437661A (en) 1994-03-23 1995-08-01 Rieser; Bernhard Method for removal of prolapsed nucleus pulposus material on an intervertebral disc using a laser
US5484403A (en) 1994-04-05 1996-01-16 Avid Marketing, Inc. Hypodermic syringe for implanting solid objects
DE4417637A1 (en) 1994-05-19 1995-11-23 Rudolf Dr Med Bertagnoli Instrument for the percutaneous treatment of tissue parts
US5542920A (en) 1994-09-12 1996-08-06 Delab Needle-less parenteral introduction device
US5498258A (en) 1994-09-13 1996-03-12 Hakky; Said I. Laser resectoscope with laser induced mechanical cutting means
EP0729730A1 (en) 1995-03-01 1996-09-04 Gilbert M. Dr. Aust Surgical instrument
US5782795A (en) 1995-06-30 1998-07-21 Xomed Surgical Products, Inc. Surgical suction cutting instrument with internal irrigation
FR2743498B1 (en) 1996-01-12 1998-03-06 Sadis Bruker Spectrospin PROBE, IN PARTICULAR URETHRAL PROBE, FOR THE HEATING OF TISSUES BY MICROWAVES AND FOR THE MEASUREMENT OF TEMPERATURE BY RADIOMETRY
US5810809A (en) 1997-01-13 1998-09-22 Enhanced Orthopaedic Technologies, Inc. Arthroscopic shaver incorporating electrocautery

Patent Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4326529A (en) * 1978-05-26 1982-04-27 The United States Of America As Represented By The United States Department Of Energy Corneal-shaping electrode
US4375220A (en) * 1980-05-09 1983-03-01 Matvias Fredrick M Microwave applicator with cooling mechanism for intracavitary treatment of cancer
US4381007A (en) * 1981-04-30 1983-04-26 The United States Of America As Represented By The United States Department Of Energy Multipolar corneal-shaping electrode with flexible removable skirt
US4397314A (en) * 1981-08-03 1983-08-09 Clini-Therm Corporation Method and apparatus for controlling and optimizing the heating pattern for a hyperthermia system
US4517975A (en) * 1983-06-06 1985-05-21 Garito Jon C Electrosurgical electrode for matrisectomy
US4593691A (en) * 1983-07-13 1986-06-10 Concept, Inc. Electrosurgery electrode
US4907589A (en) * 1988-04-29 1990-03-13 Cosman Eric R Automatic over-temperature control apparatus for a therapeutic heating device
US5191883A (en) * 1988-10-28 1993-03-09 Prutech Research And Development Partnership Ii Device for heating tissue in a patient's body
US4976709A (en) * 1988-12-15 1990-12-11 Sand Bruce J Method for collagen treatment
US5213097A (en) * 1989-10-24 1993-05-25 Zewa Ag Apparatus for the treatment of diseases of the walls of opening or cavities of the body
US5103804A (en) * 1990-07-03 1992-04-14 Boston Scientific Corporation Expandable tip hemostatic probes and the like
US5323778A (en) * 1991-11-05 1994-06-28 Brigham & Women's Hospital Method and apparatus for magnetic resonance imaging and heating tissues
US5261906A (en) * 1991-12-09 1993-11-16 Ralph Pennino Electro-surgical dissecting and cauterizing instrument
US5230334A (en) * 1992-01-22 1993-07-27 Summit Technology, Inc. Method and apparatus for generating localized hyperthermia
US5334193A (en) * 1992-11-13 1994-08-02 American Cardiac Ablation Co., Inc. Fluid cooled ablation catheter
US5348554A (en) * 1992-12-01 1994-09-20 Cardiac Pathways Corporation Catheter for RF ablation with cooled electrode
US5571216A (en) * 1994-01-19 1996-11-05 The General Hospital Corporation Methods and apparatus for joining collagen-containing materials
US5569242A (en) * 1994-05-06 1996-10-29 Lax; Ronald G. Method and apparatus for controlled contraction of soft tissue
US5458596A (en) * 1994-05-06 1995-10-17 Dorsal Orthopedic Corporation Method and apparatus for controlled contraction of soft tissue
US6482204B1 (en) * 1994-05-06 2002-11-19 Oratec Interventions, Inc Method and apparatus for controlled contraction of soft tissue
US5514130A (en) * 1994-10-11 1996-05-07 Dorsal Med International RF apparatus for controlled depth ablation of soft tissue
US5785705A (en) * 1994-10-11 1998-07-28 Oratec Interventions, Inc. RF method for controlled depth ablation of soft tissue
US5843078A (en) * 1997-07-01 1998-12-01 Sharkey; Hugh R. Radio frequency device for resurfacing skin and method

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8048070B2 (en) 2000-03-06 2011-11-01 Salient Surgical Technologies, Inc. Fluid-assisted medical devices, systems and methods
US8361068B2 (en) 2000-03-06 2013-01-29 Medtronic Advanced Energy Llc Fluid-assisted electrosurgical devices, electrosurgical unit with pump and methods of use thereof
US7811282B2 (en) 2000-03-06 2010-10-12 Salient Surgical Technologies, Inc. Fluid-assisted electrosurgical devices, electrosurgical unit with pump and methods of use thereof
US7815634B2 (en) 2000-03-06 2010-10-19 Salient Surgical Technologies, Inc. Fluid delivery system and controller for electrosurgical devices
US8038670B2 (en) 2000-03-06 2011-10-18 Salient Surgical Technologies, Inc. Fluid-assisted medical devices, systems and methods
US7645277B2 (en) 2000-09-22 2010-01-12 Salient Surgical Technologies, Inc. Fluid-assisted medical device
US7651494B2 (en) 2000-09-22 2010-01-26 Salient Surgical Technologies, Inc. Fluid-assisted medical device
US7951148B2 (en) 2001-03-08 2011-05-31 Salient Surgical Technologies, Inc. Electrosurgical device having a tissue reduction sensor
US7998140B2 (en) 2002-02-12 2011-08-16 Salient Surgical Technologies, Inc. Fluid-assisted medical devices, systems and methods
US8475455B2 (en) 2002-10-29 2013-07-02 Medtronic Advanced Energy Llc Fluid-assisted electrosurgical scissors and methods
US7727232B1 (en) 2004-02-04 2010-06-01 Salient Surgical Technologies, Inc. Fluid-assisted medical devices and methods
US8075557B2 (en) 2004-02-04 2011-12-13 Salient Surgical Technologies, Inc. Fluid-assisted medical devices and methods
US8961511B2 (en) 2006-02-07 2015-02-24 Viveve, Inc. Vaginal remodeling device and methods
US20070233191A1 (en) * 2006-02-07 2007-10-04 Parmer Jonathan B Vaginal remodeling device and methods
US10980596B2 (en) 2006-02-07 2021-04-20 Viveve, Inc. Vaginal remodeling device and methods
US10376307B2 (en) 2006-02-07 2019-08-13 Viveve, Inc. Vaginal remodeling device and methods
US10166042B2 (en) * 2006-03-31 2019-01-01 Olympus Corporation Surgical system
US20090048589A1 (en) * 2007-08-14 2009-02-19 Tomoyuki Takashino Treatment device and treatment method for living tissue
WO2009022614A1 (en) * 2007-08-14 2009-02-19 Olympus Medical Systems Corp. Treatment device for living tissue
US9271785B2 (en) 2009-09-18 2016-03-01 Viveve, Inc. Vaginal remodeling device and methods
US20110178584A1 (en) * 2009-09-18 2011-07-21 Parmer Jonathan B Vaginal remodeling device and methods
US11154349B2 (en) 2009-09-18 2021-10-26 Viveve, Inc. Vaginal remodeling device and methods
US9415235B2 (en) 2012-03-16 2016-08-16 Viveve, Inc. Vaginal remodeling device and method
US20180185053A1 (en) * 2015-08-28 2018-07-05 Olympus Corporation Surgical system
US20180185054A1 (en) * 2015-08-28 2018-07-05 Olympus Corporation Ultrasonic surgical system
US10687841B2 (en) * 2015-08-28 2020-06-23 Olympus Corporation Ultrasonic surgical system
US10194932B2 (en) * 2015-09-28 2019-02-05 Olympus Corporation Treatment method
US10201366B2 (en) * 2015-09-28 2019-02-12 Olympus Corporation Treatment method
US10265549B2 (en) * 2015-09-28 2019-04-23 Olympus Corporation Treatment method
US20170165507A1 (en) * 2015-09-28 2017-06-15 Olympus Corporation Treatment method
US20170156737A1 (en) * 2015-09-28 2017-06-08 Olympus Corporation Treatment method
US20170086872A1 (en) * 2015-09-28 2017-03-30 Olympus Corporation Treatment method
US10682155B2 (en) * 2016-03-31 2020-06-16 Olympus Corporation Ultrasonic treatment system for joint
US11896823B2 (en) 2017-04-04 2024-02-13 Btl Healthcare Technologies A.S. Method and device for pelvic floor tissue treatment
US11511110B2 (en) 2018-06-27 2022-11-29 Viveve, Inc. Methods for treating urinary stress incontinence

Also Published As

Publication number Publication date
US5458596A (en) 1995-10-17
ATE206029T1 (en) 2001-10-15
CA2188668A1 (en) 1995-11-16
US5569242A (en) 1996-10-29
EP0760626A1 (en) 1997-03-12
US6482204B1 (en) 2002-11-19
DE69522939T2 (en) 2002-04-04
JP2005334663A (en) 2005-12-08
AU715173B2 (en) 2000-01-20
JPH10504732A (en) 1998-05-12
JP3741725B2 (en) 2006-02-01
EP0760626B1 (en) 2001-09-26
AU2432195A (en) 1995-11-29
WO1995030373A1 (en) 1995-11-16
DE69522939D1 (en) 2001-10-31
CA2188668C (en) 1999-01-19

Similar Documents

Publication Publication Date Title
US5458596A (en) Method and apparatus for controlled contraction of soft tissue
US5785705A (en) RF method for controlled depth ablation of soft tissue
US5514130A (en) RF apparatus for controlled depth ablation of soft tissue
US20050187599A1 (en) Method and apparatus for controlled contraction of soft tissue
US5954716A (en) Method for modifying the length of a ligament
US6623454B1 (en) System and method for electrosurgical tissue contraction
US6283960B1 (en) Apparatus for delivery of energy to a surgical site
WO1997015238A9 (en) Rf method and apparatus for controlled depth ablation of soft tissue, such as collagen
US7585297B2 (en) RF electrode array for low-rate collagen shrinkage in capsular shift procedures and methods of use
US6544260B1 (en) Method for treating tissue in arthroscopic environment using precooling and apparatus for same
US7094215B2 (en) Systems and methods for electrosurgical tissue contraction
Fanton Arthroscopic electrothermal surgeryof the shoulder
Luciano et al. Essential principles of electrosurgery in operative laparoscopy
US6461353B1 (en) Orthopedic apparatus for controlled contraction of collagen tissue
WO1998011944A1 (en) Method and apparatus for controlled contraction of soft tissue
WO1999040969A1 (en) Method for modifying the length of a ligament
WO2000056229A1 (en) Systems and methods for electrosurgical tissue contraction

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION