US20050272969A1 - Device and method for modifying the shape of a body organ - Google Patents

Device and method for modifying the shape of a body organ Download PDF

Info

Publication number
US20050272969A1
US20050272969A1 US11/198,044 US19804405A US2005272969A1 US 20050272969 A1 US20050272969 A1 US 20050272969A1 US 19804405 A US19804405 A US 19804405A US 2005272969 A1 US2005272969 A1 US 2005272969A1
Authority
US
United States
Prior art keywords
anchor
support
proximal
wire
distal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/198,044
Inventor
Clifton Alferness
John Adams
Mark Mathis
David Reuter
Cruz Beeson
Leonard Kowalsky
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cardiac Dimensions Inc
Original Assignee
Cardiac Dimensions Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/011,867 external-priority patent/US6908478B2/en
Priority claimed from US10/066,426 external-priority patent/US6976995B2/en
Priority claimed from US10/142,637 external-priority patent/US6824562B2/en
Priority claimed from US10/331,143 external-priority patent/US6793673B2/en
Priority claimed from US10/429,171 external-priority patent/US7179282B2/en
Application filed by Cardiac Dimensions Inc filed Critical Cardiac Dimensions Inc
Priority to US11/198,044 priority Critical patent/US20050272969A1/en
Publication of US20050272969A1 publication Critical patent/US20050272969A1/en
Assigned to CARDIAC DIMENSIONS, INC. reassignment CARDIAC DIMENSIONS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KOWALSKY, LEONARD, ADAMS, JOHN M., ALFERNESS, CLIFTON A., BEESON, CRUZ, MATHIS, MARK L., REUTER, DAVID G.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2442Annuloplasty rings or inserts for correcting the valve shape; Implants for improving the function of a native heart valve
    • A61F2/2451Inserts in the coronary sinus for correcting the valve shape
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0004Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof adjustable
    • A61F2250/001Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof adjustable for adjusting a diameter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0058Additional features; Implant or prostheses properties not otherwise provided for
    • A61F2250/0059Additional features; Implant or prostheses properties not otherwise provided for temporary

Definitions

  • the present invention relates to medical devices in general, and in particular to devices for supporting internal body organs.
  • the mitral valve is a portion of the heart that is located between the chambers of the left atrium and the left ventricle. When the left ventricle contracts to pump blood throughout the body, the mitral valve closes to prevent the blood being pumped back into the left atrium. In some patients, whether due to genetic malformation, disease or injury, the mitral valve fails to close properly causing a condition known as regurgitation, whereby blood is pumped into the atrium upon each contraction of the heart muscle. Regurgitation is a serious, often rapidly deteriorating, condition that reduces circulatory efficiency and must be corrected.
  • Two of the more common techniques for restoring the function of a damaged mitral valve are to surgically replace the valve with a mechanical valve or to suture a flexible ring around the valve to support it.
  • Each of these procedures is highly invasive because access to the heart is obtained through an opening in the patient's chest.
  • Patients with mitral valve regurgitation are often relatively frail thereby increasing the risks associated with such an operation.
  • One less invasive approach for aiding the closure of the mitral valve involves the placement of a support structure in the cardiac sinus and vessel that passes adjacent the mitral valve.
  • the support structure is designed to push the vessel and surrounding tissue against the valve to aid its closure.
  • This technique has the advantage over other methods of mitral valve repair because it can be performed percutaneously without opening the chest wall. While this technique appears promising, some proposed supports appear to limit the amount of blood that can flow through the coronary sinus and may contribute to the formation of thrombosis in the vessel. Therefore, there is a need for a tissue support structure that does not inhibit the flow of blood in the vessel in which it is placed and reduces the likelihood of thrombosis formation.
  • the device should be flexible and securely anchored such that it moves with the body and can adapt to changes in the shape of the vessel over time.
  • the present invention is an intravascular support that is designed to change the shape of a body organ that is adjacent to a vessel in which the support is placed.
  • the support is designed to aid the closure of a mitral valve.
  • the support is placed in a coronary sinus and vessel that are located adjacent the mitral valve and urges the vessel wall against the valve to aid its closure.
  • the intravascular support of the present invention includes a proximal and distal anchor and a support wire or reshaper disposed therebetween.
  • the proximal and distal anchors circumferentially engage a vessel in which the support is placed.
  • a support wire is urged against the vessel by the proximal and distal anchors to support the tissue adjacent the vessel.
  • the proximal and distal supports are made from a wire hoop that presents a low metal coverage area to blood flowing within the vessel.
  • the wire hoops may allow tissue to grow over the anchors to reduce the chance of thrombosis formation.
  • the wire hoops have a figure eight configuration and can expand to maintain contact with the vessel walls if no vessel expands or changes shape.
  • the proximal and distal anchors of the intravascular support are rotationally offset from each other. Locks on the support wire allow a physician to ensure that the anchors have been successfully deployed and prevent the support wire from collapsing within a vessel.
  • FIG. 1 illustrates an intravascular support for changing the shape of an internal body organ in accordance with one embodiment of the present invention
  • FIG. 2 illustrates one method of deploying an intravascular support in accordance with the present invention
  • FIG. 3 illustrates one embodiment of the intravascular support in accordance with the present invention
  • FIG. 4 illustrates a distal anchor of the embodiment shown in FIG. 3 ;
  • FIG. 5 illustrates a proximal anchor of the embodiment shown in FIG. 3 ;
  • FIGS. 6A-6C are cross-sectional views of crimp tubes for use with one embodiment of the present invention.
  • FIG. 8 illustrates how the embodiment of the intravascular support shown in FIG. 3 is deployed from a catheter
  • FIG. 9 illustrates an intravascular support in accordance with another embodiment of the present invention.
  • FIG. 10 illustrates a distal anchor of the intravascular support shown in FIG. 9 ;
  • FIG. 11 illustrates a proximal anchor of the intravascular support shown in FIG. 9 ;
  • FIG. 12 illustrates yet another embodiment of an intravascular support in accordance with the present invention.
  • FIG. 13 illustrates a distal anchor of the intravascular support shown in FIG. 12 ;
  • FIG. 14 illustrates a proximal anchor of the intravascular support shown in FIG. 12 ;
  • FIG. 15 illustrates an anchor and strut according to another embodiment of the invention.
  • FIG. 16 illustrates a double loop anchor according to another embodiment of the invention.
  • FIG. 17 illustrates a double loop anchor with a cross strut according to another embodiment of the invention.
  • FIG. 18 illustrates an anchor with torsional springs according to another embodiment of the invention.
  • the present invention is a medical device that supports or changes the shape of tissue that is adjacent a vessel in which the device is placed.
  • the present invention can be used in any location in the body where the tissue needing support is located near a vessel in which the device can be deployed.
  • the present invention is particularly useful in supporting a mitral valve in an area adjacent a coronary sinus and vessel. Therefore, although the embodiments of the invention described are designed to support a mitral valve, those skilled in the art will appreciate that the invention is not limited to use in supporting a mitral valve.
  • FIG. 1 illustrates a mitral valve 20 having a number of flaps 22 , 24 , and 26 that should overlap and close when the ventricle of the heart contracts.
  • some hearts may have a mitral valve that fails to close properly thereby creating one or more gaps 28 that allow blood to be pumped back into the left atrium each time the heart contracts.
  • an intravascular support 50 is placed in a coronary sinus and vessel 60 that passes adjacent one side of the mitral valve 20 .
  • the intravascular support 50 has a proximal anchor 52 , a distal anchor 54 , and a support wire 56 or reshaper extending between the proximal and distal anchors.
  • the support wire 56 exerts a force through the coronary sinus wall on the postero-lateral mitral valve 20 thereby closing the one or more gaps 28 formed between the valve flaps.
  • the function of the mitral valve is improved.
  • each of the proximal and distal anchors 52 , 54 preferably circumferentially engages the wall of the vessel 60 in which it is placed.
  • the support wire 56 is secured to a peripheral edge of the proximal and distal anchors such that the support wire is urged by the anchors against the vessel wall. Therefore, the support wire 56 and anchors 52 , 54 present a minimal obstruction to blood flowing within the vessel.
  • FIG. 2 shows one possible method of delivering the intravascular support of the present invention to a desired location in a patient's body.
  • An incision 80 is made in the patient's skin to access a blood vessel.
  • a guide catheter 82 is advanced through the patient's vasculature until its distal end is positioned adjacent the desired location of the intravascular support.
  • a delivery catheter and advancing mechanism 84 are inserted through the guide catheter 82 to deploy the intravascular support at the desired location in the patient's body. Further detail regarding one suitable advancing mechanism 84 is described in commonly assigned U.S. patent application Ser. No. 10/313,914, filed Dec. 5, 2002, the disclosure of which is hereby incorporated by reference.
  • FIG. 3 illustrates one embodiment of an intravascular support in accordance with the present invention.
  • the intravascular support 100 includes a support wire 102 having a proximal end 104 and a distal end 106 .
  • the support wire 102 is made of a biocompatible material such as stainless steel or a shape memory material such as nitinol wire.
  • Proximal to the proximal end of the crimp tube 108 is a distal lock 110 that is formed by the support wire bending away from the longitudinal axis of the support 102 and then being bent parallel to the longitudinal axis of the support before being bent again towards the longitudinal axis of the support. Therefore, the bends in the support wire form a half 110 a of the distal lock that is used to secure the distal anchor in the manner described below. From the distal lock 110 , the wire continues proximally through a proximal crimp tube 112 . On exiting the proximal end of the proximal crimp tube 112 , the wire is bent to form an arrowhead-shaped proximal lock 114 .
  • the wire of the support 102 then returns distally through the proximal crimp tube 112 to a position just proximal to the proximal end of the distal crimp tube 108 wherein the wire is bent to form a second half 110 b of the distal lock 110 .
  • Support wire 102 has a length that is selected based on its intended destination within a patient's vessel.
  • the support wire is preferably between one and six inches long and has a curved bend between its proximal end 104 and distal end 106 with a radius of curvature between 1 and 3 inches and most preferably with a radius of curvature of 1.8 inches.
  • the wire used to form the support wire 102 is flexible enough to move with each heartbeat (thereby changing the force applied to the mitral valve annulus during the heartbeat) and stiff enough to support the mitral valve.
  • the wire used to form the support wire 102 is made of nitinol having a modulus of elasticity of 5-20 ⁇ 10 6 psi and a diameter of between 0.0110′′ and 0.0150′′ and most preferably 0.0140′′.
  • Other shape memory materials may be used for support wire as well.
  • a distal anchor 120 that is formed of a flexible wire such as nitinol or some other shape memory material.
  • the wire forming the distal anchor has one end positioned within the distal crimp tube 108 .
  • the wire After exiting the distal end of the crimp tube 108 , the wire forms a figure eight configuration whereby it bends upward and radially outward from the longitudinal axis of the crimp tube 108 . The wire then bends back proximally and crosses the longitudinal axis of the crimp tube 108 to form one leg of the figure eight.
  • the wire is then bent to form a double loop eyelet or loop 122 around the longitudinal axis of the support wire 102 before extending radially outwards and distally back over the longitudinal axis of the crimp tube 108 to form the other leg of the figure eight. Finally, the wire is bent proximally into the distal end of the crimp tube 108 to complete the distal anchor 120 .
  • the distal anchor is expanded by sliding the double eyelet 122 of the distal anchor from a position that is proximal to the distal lock 110 on the support wire to a position that is distal to the distal lock 110 .
  • the bent-out portions 110 a and 110 b of support wire 110 are spaced wider than the width of double eyelet 122 and provide camming surfaces for the locking action. Distal movement of eyelet 122 pushes these camming surfaces inward to permit eyelet 122 to pass distally of the lock 110 , then return to their original spacing to keep eyelet 122 in the locked position.
  • the dimensions of the distal anchor are selected so that the diameter of the distal anchor in a plane perpendicular to the axis of the lumen in which the anchor is deployed is preferably between 100% and 300%, most preferably between 130% and 200%, of the diameter of the lumen prior to deployment.
  • the diameter of the coronary sinus may expand over time after deployment.
  • the distal anchor Upon expansion, the distal anchor circumferentially engages the vessel wall with a radially outwardly directed force that is distributed unequally around the circumference of the anchor by distending the vessel wall in variable amounts along the axial length of the anchor.
  • the unequal distribution of force helps the anchor contact the lumen wall securely by creating bumps and ridges that are not parallel to the central axis of the lumen.
  • the distal anchor's diameter is at least 50%-500% and most preferably 100%-300% of the anchor's diameter in the unexpanded configuration.
  • the open cross-sectional area of the lumen through the anchor is at least 50%, and most preferably 80%-100% of the lumen cross-sectional area prior to redeployment of the anchor.
  • the metal coverage of the anchor is between 5% and 30% and most preferably 10%.
  • the wire used to form the distal anchor 120 is preferably nitinol having a diameter of between 0.0110′′ and 0.0150′′ and most preferably 0.0140 inches. Other shape memory materials may be used as well.
  • a physician can tactilely feel when the eyelet 122 has been slid over the distal lock 110 in order to determine when the distal anchor has been set within a vessel lumen.
  • the anchor can be collapsed by pulling the eyelet 122 proximally over the distal lock 110 and repositioning the anchor in the unexpanded configuration.
  • the force required to capture the distal anchor is preferably less than 20 lbs. and more preferably less than 10 lbs.
  • FIG. 4 also illustrates how the crimp tube 108 is held in place between the distal lock 110 on the proximal side and the stop loop 121 at the distal end of the support wire 102 .
  • the wires of the distal anchor 120 exit the distal end of the crimp tube 108 at an angle of approximately 45 degrees before looping back over the length of the distal crimp tube 108 . Therefore, the distal end of the anchor is relatively atraumatic to avoid damage to a vessel during placement.
  • a proximal anchor 140 that is preferably formed of a biocompatible, elastic wire such as stainless steel or a shape memory material such as nitinol.
  • the proximal anchor 140 in one embodiment is made of a single length of wire having a first end positioned within a proximal crimp tube 112 .
  • the wire extends distally from the crimp tube 112 and bends radially outward and away from the longitudinal axis of the crimp tube 112 before being bent proximally and crossing the longitudinal axis of the crimp tube 112 in order to form a first leg of a figure eight configuration.
  • the wire then is bent to form a double eyelet or loop 142 around the longitudinal axis of the support wire 102 wherein the eyelet 142 has a diameter that allows it to be forced over the proximal lock 114 .
  • the wire After forming the eyelet 142 , the wire extends outwardly and away from the longitudinal axis of the crimp tube 112 before being bent distally over and across the longitudinal axis of the crimp tube 112 to form the second leg of a figure eight. Finally, the wire is bent proximally and extends into the distal end of the crimp tube 112 .
  • the proximal anchor is expanded and locked by sliding the double eyelet 142 of the proximal anchor from a position that is proximal to the proximal lock 114 on the support wire to a position that is distal to the proximal lock 114 .
  • the proximal lock 114 has an “arrowhead” shape whereby the proximal end of the lock is bent away from the longitudinal axis of the support wire at an angle that is less steep than the distal end of the proximal lock.
  • the less steep section makes it easier to advance the eyelet 142 over the lock in the distal direction than to retrieve the eyelet 142 over the proximal lock 114 in the proximal direction.
  • Distal movement of eyelet 142 cams the less steep proximal surfaces inward to permit eyelet 142 to pass distally of the lock 114 , then return to their original spacing to keep eyelet 142 in the locked position.
  • the proximal anchor 140 has a larger radius of curvature because it is designed to fit within a larger diameter portion of the coronary sinus.
  • the dimensions of the proximal anchor are selected so that the diameter of the proximal anchor in a plane perpendicular to the axis of the lumen in which the anchor is deployed is preferably between 100% and 300%, most preferably between 130% and 200%, of the diameter of the lumen prior to deployment.
  • oversizing the proximal anchor combined with the inherent deformability and recoverability properties of the anchor material (particularly nitinol or some other shape memory material) enables the anchor to continue to expand from its initial deployment size as the lumen distends and expands over time.
  • the proximal anchor Upon expansion, the proximal anchor circumferentially engages the vessel wall with a radially outwardly directed a force that is distributed unequally around the circumference of the anchor by distending the vessel wall in variable amounts along the axial length of the anchor. As with the distal anchor, the unequal distribution of force helps the proximal anchor contact the lumen wall securely by creating bumps and ridges that are not parallel to the central axis of the lumen.
  • the proximal anchor's diameter is at least 50%-500% and most preferably 100%-300% of the anchor's diameter in the unexpanded configuration.
  • the open cross-sectional area of the lumen through the anchor is at least 50% and most preferably 80%-100% of the lumen cross sectional area prior to redeployment of the anchor.
  • the proximal and distal anchors are oriented such that the planes of the anchors are offset with respect to each other by an angle of approximately 30 degrees.
  • the offset helps the intravascular support 100 seat itself in the coronary sinus and vessel surrounding the mitral valve in certain mammals.
  • the proximal and distal anchors may be offset by more or less depending upon the anatomy of the intended destination.
  • FIGS. 6A-6C illustrate cross-sectional views of the crimp tubes in which the wires that form the support wire 102 and proximal and distal anchors 120 , 140 are threaded.
  • the crimp tubes comprise a biocompatible material such as titanium having a number of holes extending longitudinally through the tube through which the wires are threaded.
  • a tube 150 has four holes 152 , 154 , 156 , 158 positioned in approximately a square configuration within the circumference of the tube 150 .
  • a tube 160 includes four holes 162 , 164 , 166 , 168 therein that are positioned in a diamond configuration.
  • FIG. 6C shows another tube 170 having four holes 172 , 174 , 176 , 178 .
  • the holes 172 , 174 lie in a first plane and the second pair of holes 176 , 178 lie in a second plane that is offset from the plane of the holes 172 , 174 .
  • the proximal anchor may be formed with a crimp tube such as that shown in FIG. 6A or FIG. 6B while the proximal anchor may be formed in a crimp tube such as that shown in FIG.
  • the crimp tubes at the proximal and distal ends of the support wire 102 are the same and the angular offset between the proximal and distal anchor is achieved by bending the wires at the desired angle.
  • the crimp tubes shown use one hole for each wire passing through the crimp tube, it will be appreciated that other configurations may be provided such as slots or other passages for the wires to pass through.
  • the distal and proximal anchors are attached to the support wire by a wire, such as nitinol wire or other shape memory material.
  • the attaching wire may be spiral wrapped around the base of each anchor and around the support wire.
  • each anchor may be attached to the support wire by wrapping the anchor wire around the support wire.
  • the two anchors and the support wire may be made from a single wire, such as nitinol wire or other shape memory material.
  • FIG. 8 illustrates one method for delivering an intravascular support 100 in accordance with the present invention to a desired location in the body.
  • intravascular support 100 is preferably loaded into and routed to a desired location within a catheter 200 with the proximal and distal anchors in a collapsed or deformed condition. That is, the eyelet 122 of the distal anchor 120 is positioned proximally of the distal lock 110 and the eyelet 142 of the proximal anchor 140 is positioned proximal to the proximal lock 114 .
  • the physician ejects the distal end of the intravascular support from the catheter 200 into the lumen by advancing the intravascular support or retracting the catheter or a combination thereof.
  • a pusher (not shown) provides distal movement of the intravascular support with respect to catheter 200
  • a tether 201 provides proximal movement of the intravascular support with respect to catheter 200 .
  • the distal anchor begins to expand as soon as it is outside the catheter. Once the intravascular support is properly positioned, the eyelet 122 of the distal anchor is pushed distally over the distal lock 110 so that the distal anchor 120 further expands and locks in place to securely engage the lumen wall and remains in the expanded condition.
  • the proximal end of the support wire 102 is tensioned by applying a proximally-directed force on the support wire and distal anchor to apply sufficient pressure on the tissue adjacent the support wire to modify the shape of that tissue.
  • fluoroscopy, ultrasound or other imaging technology may be used to see when the support wire supplies sufficient pressure on the mitral valve to aid in its complete closure with each ventricular contraction without otherwise adversely affecting the patient.
  • a preferred method of assessing efficacy and safety during a mitral valve procedure is disclosed in copending U.S. patent application Ser. No. 10/366,585, filed Feb. 12, 2003, and titled “Method of Implanting a Mitral Valve Therapy Device,” the disclosure of which is incorporated herein by reference.
  • the proximal anchor is deployed from the catheter and allowed to begin its expansion.
  • the eyelet 142 of the proximal anchor 140 is advanced distally over the proximal lock 114 to expand and lock the proximal anchor, thereby securely engaging the lumen wall and maintaining the pressure of the support wire against the lumen wall.
  • the mechanism for securing the proximal end of the intravascular support can be released.
  • the securement is made with a braided loop 202 at the end of tether 201 and a hitch pin 204 .
  • the hitch pin 204 is withdrawn thereby releasing the loop 202 so it can be pulled through the proximal lock 114 at the proximal end of the intravascular support 100 .
  • the device In many contexts, it is important for the device to occupy as little of the lumen as possible.
  • the device when using the device and method of this invention to treat mitral valve regurgitation, the device should be as open as possible to blood flow in the coronary sinus (and to the introduction of other medical devices, such as pacing leads) while still providing the support necessary to reshape the mitral valve annulus through the coronary sinus wall.
  • the combination of the device's open design and the use of nitinol or some other shape memory material enables the invention to meet these goals.
  • the device When deployed in the coronary sinus or other lumen, the device preferably occupies between about 1.5% and about 5.5% of the overall volume of the section of lumen in which it is deployed.
  • the use of a shape memory material such as nitinol is particularly important.
  • the percentage of shape memory material by volume in the device is preferably between about 30% and 100%, most preferably between about 40% and 60%.
  • an intravascular support after deployment by recapturing the device into a catheter.
  • the distal anchor Prior to deployment of the proximal anchor, the distal anchor may be recaptured into the delivery catheter by simultaneously holding the device in place with tether 201 while advancing catheter distally over distal anchor 120 so that the entire device is once again inside catheter 200 . The distally directed force of the catheter collapses distal anchor 120 into a size small enough to fit into catheter 200 again.
  • the intravascular support may be.
  • proximal anchor 140 includes a recapture guidance and compression element.
  • the slope of the two proximal arms 143 and 144 of proximal anchor 140 is small in proximal portions 145 and 146 of the arms, then increases in more distal portions 147 and 148 of the arms. This shape guides the catheter to move distally over the anchor more easily and to help compress the anchor to a collapsed shape as the catheter advances during recapture.
  • the two proximal arms 123 and 124 of distal anchor 120 have a shallower slope in their proximal portions 145 and 146 and an increased slope in more distal portions 147 and 148 . While recapture of the distal anchor is somewhat easier due to its smaller size compared to the proximal anchor, this recapture guidance and compression feature enhances the ease with which recapture is performed.
  • FIG. 9 illustrates an alternative embodiment of the intravascular support of the present invention.
  • an intravascular support 250 has a support wire 252 and a distal anchor 254 and a proximal anchor 256 .
  • the distal anchor 254 is made from the same wire used to form the support wire 252 .
  • the wire used to form the support wire 252 extends distally through a distal crimp tube 260 before looping radially outward and returning proximally and across the longitudinal axis of the crimp tube 260 to form one leg of a figure eight. The wire then winds around the axis of the suspension wire 252 to form an eyelet 262 .
  • the wire then continues radially outward and distally across the longitudinal axis of the crimp tube 260 to form the second leg of a figure eight. After forming the figure eight, the wire enters the distal end of the crimp tube 260 in the proximal direction to form the other half of the support wire 252 .
  • a distal lock 264 is formed proximal to the distal crimp tube 260 by outwardly extending bends in the wires that form the support wire 252 . The distal lock 264 prevents the double eyelet 262 from sliding proximally and collapsing the distal anchor 254 when positioned in a vessel.
  • a distal anchor 256 is constructed in a fashion similar to the proximal anchor 140 shown in FIG. 3 . That is, the proximal anchor 256 is formed of a separate wire than the wire used to form the support wire 252 and distal anchor 254 .
  • the wire of the proximal anchor has one end within a proximal crimp tube 270 . The wire extends distally out of the end of the crimp tube and bends radially outward before returning back and across the longitudinal axis of the crimp tube 270 .
  • the wire of the proximal anchor forms a double eyelet 272 around the longitudinal axis of the support wire 252 .
  • the wire then continues radially outward and distally over the longitudinal axis of the crimp tube 270 to form the second leg of the figure eight whereupon it is bent proximally into the distal end of the crimp tube 270 .
  • FIG. 12 shows yet another embodiment of an intravascular support in accordance with the present invention.
  • an intravascular support 300 comprises a support wire 302 , a distal anchor 304 and a proximal anchor 306 .
  • the distal anchor 304 and the support wire 302 are formed of the same wire.
  • the wire extends distally through a distal crimp tube 310 and exits out the distal end before extending radially outward and bending back and across the longitudinal axis of the crimp tube 310 to form one leg of a figure eight.
  • the loop then forms an eyelet 312 around the longitudinal axis of the support wire 302 before bending radially outward and distally across the longitudinal axis of the crimp tube 310 to form a second leg of the figure eight.
  • the wire then enters the distal end of the crimp tube 310 in the proximal direction.
  • the support wire 302 may have one or two outwardly extending sections that form a distal stop 314 to maintain the position of the eyelet 312 once the distal anchor is set in the expanded configuration.
  • the proximal anchor 306 is formed from a separate wire as shown in FIG. 14 .
  • the wire has one end positioned within the proximal crimp tube 320 that extends distally outward and radially away from the longitudinal axis of the crimp tube 320 before being bent proximally and across the longitudinal axis of the crimp tube 320 to form one leg of the figure eight.
  • the wire then winds around the longitudinal axis of the support wire to form an eyelet 322 before being bent distally and across the longitudinal axis of the crimp tube 320 to enter the distal end of the crimp tube 320 in the proximal direction.
  • the proximal crimp tube 320 of the embodiment shown in FIG. 12 holds four wires wherein the distal crimp tube 310 need only hold two wires.
  • FIGS. 15-18 show other embodiments of the invention.
  • the intravascular support has an anchor 400 formed as a loop 404 emerging from a window 406 in a crimp tube 408 .
  • Extending from one end 411 of crimp tube 408 is a support strut 410 which connects with loop 404 .
  • Also extending from the crimp tube 408 is a support wire 412 .
  • Loop 404 and support 410 may be formed from nitinol, stainless steel, or any other appropriate material.
  • the intravascular support includes another anchor.
  • the intravascular support of this embodiment may be delivered and deployed in the manner discussed above with respect to the embodiment described above.
  • FIG. 16 shows another embodiment of an anchor 450 for an intravascular support.
  • Anchor 450 is formed from two loops 452 and 454 emerging from a window 456 and an end 457 of a crimp tube 458 .
  • a support wire 462 also extends from the crimp tube.
  • Loops 452 and 454 may be formed from nitinol, stainless steel, or any other appropriate material.
  • the intravascular support includes another anchor. The intravascular support of this embodiment may be delivered and deployed in the manner discussed above with respect to the embodiment described above.
  • FIG. 17 shows yet another embodiment of an anchor 500 for an intravascular support according to this invention.
  • Anchor 500 is formed from two loops 502 and 504 emerging from a window 506 and an end 507 of a crimp tube 508 .
  • a cross strut 505 connects the loops.
  • a support wire 512 also extends from the crimp tube.
  • Loops 502 and 504 and strut 505 may be formed from nitinol, stainless steel, or any other appropriate material.
  • the intravascular support includes another anchor.
  • the intravascular support of this embodiment may be delivered and deployed in the manner discussed above with respect to the embodiment described above.
  • FIG. 18 is a modification of the embodiment shown in FIGS. 3-7 .
  • torsional springs 558 of proximal anchor 550 have been formed as single loops or eyelets in the anchor's wire 552 . These springs make the anchor 550 more compliant by absorbing some of the force applied to the anchor during locking. While.
  • FIG. 18 shows a proximal anchor with two springs 558 , any number of springs could be used on either the proximal or the distal anchor.

Landscapes

  • Health & Medical Sciences (AREA)
  • Cardiology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Prostheses (AREA)
  • Surgical Instruments (AREA)

Abstract

An intravascular support device includes a support or reshaper wire, a proximal anchor and a distal anchor. The support wire engages a vessel wall to change the shape of tissue adjacent the vessel in which the intravascular support is placed. The anchors and support wire are designed such that the vessel in which the support is placed remains open and can be accessed by other devices if necessary. The device provides a minimal metal surface area to blood flowing within the vessel to limit the creation of thrombosis. The anchors can be locked in place to secure the support within the vessel.

Description

    CROSS-REFERENCES TO RELATED APPLICATIONS
  • The present application is a continuation of U.S. application Ser. No. 10/429,171, filed May 2, 2003, which is a continuation-in-part of U.S. application Ser. No. 10/331,343, filed Dec. 26, 2002; U.S. application Ser. No. 10/142,637, filed May 8, 2002; U.S. application Ser. No. 10/066,426, filed Jan. 30, 2002; and U.S. application Ser. No. 10/011,867, filed Dec. 5, 2001, the benefit of the filing dates being claimed under 35 U.S.C. § 120, and the disclosures of which are incorporated by reference.
  • FIELD OF THE INVENTION
  • The present invention relates to medical devices in general, and in particular to devices for supporting internal body organs.
  • BACKGROUND OF THE INVENTION
  • The mitral valve is a portion of the heart that is located between the chambers of the left atrium and the left ventricle. When the left ventricle contracts to pump blood throughout the body, the mitral valve closes to prevent the blood being pumped back into the left atrium. In some patients, whether due to genetic malformation, disease or injury, the mitral valve fails to close properly causing a condition known as regurgitation, whereby blood is pumped into the atrium upon each contraction of the heart muscle. Regurgitation is a serious, often rapidly deteriorating, condition that reduces circulatory efficiency and must be corrected.
  • Two of the more common techniques for restoring the function of a damaged mitral valve are to surgically replace the valve with a mechanical valve or to suture a flexible ring around the valve to support it. Each of these procedures is highly invasive because access to the heart is obtained through an opening in the patient's chest. Patients with mitral valve regurgitation are often relatively frail thereby increasing the risks associated with such an operation.
  • One less invasive approach for aiding the closure of the mitral valve involves the placement of a support structure in the cardiac sinus and vessel that passes adjacent the mitral valve. The support structure is designed to push the vessel and surrounding tissue against the valve to aid its closure. This technique has the advantage over other methods of mitral valve repair because it can be performed percutaneously without opening the chest wall. While this technique appears promising, some proposed supports appear to limit the amount of blood that can flow through the coronary sinus and may contribute to the formation of thrombosis in the vessel. Therefore, there is a need for a tissue support structure that does not inhibit the flow of blood in the vessel in which it is placed and reduces the likelihood of thrombosis formation. Furthermore, the device should be flexible and securely anchored such that it moves with the body and can adapt to changes in the shape of the vessel over time.
  • SUMMARY OF THE INVENTION
  • The present invention is an intravascular support that is designed to change the shape of a body organ that is adjacent to a vessel in which the support is placed. In one embodiment of the invention, the support is designed to aid the closure of a mitral valve. The support is placed in a coronary sinus and vessel that are located adjacent the mitral valve and urges the vessel wall against the valve to aid its closure.
  • The intravascular support of the present invention includes a proximal and distal anchor and a support wire or reshaper disposed therebetween. The proximal and distal anchors circumferentially engage a vessel in which the support is placed. A support wire is urged against the vessel by the proximal and distal anchors to support the tissue adjacent the vessel.
  • In one embodiment of the invention, the proximal and distal supports are made from a wire hoop that presents a low metal coverage area to blood flowing within the vessel. The wire hoops may allow tissue to grow over the anchors to reduce the chance of thrombosis formation. The wire hoops have a figure eight configuration and can expand to maintain contact with the vessel walls if no vessel expands or changes shape.
  • In another embodiment of the invention, the proximal and distal anchors of the intravascular support are rotationally offset from each other. Locks on the support wire allow a physician to ensure that the anchors have been successfully deployed and prevent the support wire from collapsing within a vessel.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The foregoing aspects and many of the attendant advantages of this invention will become more readily appreciated as the same become better understood by reference to the following detailed description, when taken in conjunction with the accompanying drawings, wherein:
  • FIG. 1 illustrates an intravascular support for changing the shape of an internal body organ in accordance with one embodiment of the present invention;
  • FIG. 2 illustrates one method of deploying an intravascular support in accordance with the present invention;
  • FIG. 3 illustrates one embodiment of the intravascular support in accordance with the present invention;
  • FIG. 4 illustrates a distal anchor of the embodiment shown in FIG. 3;
  • FIG. 5 illustrates a proximal anchor of the embodiment shown in FIG. 3;
  • FIGS. 6A-6C are cross-sectional views of crimp tubes for use with one embodiment of the present invention;
  • FIG. 7 illustrates a proximal lock at the proximal end of the intravascular support as shown in FIG. 3;
  • FIG. 8 illustrates how the embodiment of the intravascular support shown in FIG. 3 is deployed from a catheter;
  • FIG. 9 illustrates an intravascular support in accordance with another embodiment of the present invention;
  • FIG. 10 illustrates a distal anchor of the intravascular support shown in FIG. 9;
  • FIG. 11 illustrates a proximal anchor of the intravascular support shown in FIG. 9;
  • FIG. 12 illustrates yet another embodiment of an intravascular support in accordance with the present invention;
  • FIG. 13 illustrates a distal anchor of the intravascular support shown in FIG. 12;
  • FIG. 14 illustrates a proximal anchor of the intravascular support shown in FIG. 12;
  • FIG. 15 illustrates an anchor and strut according to another embodiment of the invention;
  • FIG. 16 illustrates a double loop anchor according to another embodiment of the invention;
  • FIG. 17 illustrates a double loop anchor with a cross strut according to another embodiment of the invention; and
  • FIG. 18 illustrates an anchor with torsional springs according to another embodiment of the invention.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
  • As indicated above, the present invention is a medical device that supports or changes the shape of tissue that is adjacent a vessel in which the device is placed. The present invention can be used in any location in the body where the tissue needing support is located near a vessel in which the device can be deployed. The present invention is particularly useful in supporting a mitral valve in an area adjacent a coronary sinus and vessel. Therefore, although the embodiments of the invention described are designed to support a mitral valve, those skilled in the art will appreciate that the invention is not limited to use in supporting a mitral valve.
  • FIG. 1 illustrates a mitral valve 20 having a number of flaps 22, 24, and 26 that should overlap and close when the ventricle of the heart contracts. As indicated above, some hearts may have a mitral valve that fails to close properly thereby creating one or more gaps 28 that allow blood to be pumped back into the left atrium each time the heart contracts. To add support to the mitral valve such that the valve completely closes, an intravascular support 50 is placed in a coronary sinus and vessel 60 that passes adjacent one side of the mitral valve 20. The intravascular support 50 has a proximal anchor 52, a distal anchor 54, and a support wire 56 or reshaper extending between the proximal and distal anchors. With the anchors 52 and 54 in place, the support wire 56 exerts a force through the coronary sinus wall on the postero-lateral mitral valve 20 thereby closing the one or more gaps 28 formed between the valve flaps. With the intravascular support 50 in place, the function of the mitral valve is improved.
  • As will be explained in further detail below, each of the proximal and distal anchors 52, 54 preferably circumferentially engages the wall of the vessel 60 in which it is placed. The support wire 56 is secured to a peripheral edge of the proximal and distal anchors such that the support wire is urged by the anchors against the vessel wall. Therefore, the support wire 56 and anchors 52, 54 present a minimal obstruction to blood flowing within the vessel.
  • FIG. 2 shows one possible method of delivering the intravascular support of the present invention to a desired location in a patient's body. An incision 80 is made in the patient's skin to access a blood vessel. A guide catheter 82 is advanced through the patient's vasculature until its distal end is positioned adjacent the desired location of the intravascular support. After positioning the guide catheter 82, a delivery catheter and advancing mechanism 84 are inserted through the guide catheter 82 to deploy the intravascular support at the desired location in the patient's body. Further detail regarding one suitable advancing mechanism 84 is described in commonly assigned U.S. patent application Ser. No. 10/313,914, filed Dec. 5, 2002, the disclosure of which is hereby incorporated by reference.
  • FIG. 3 illustrates one embodiment of an intravascular support in accordance with the present invention. The intravascular support 100 includes a support wire 102 having a proximal end 104 and a distal end 106. The support wire 102 is made of a biocompatible material such as stainless steel or a shape memory material such as nitinol wire.
  • In one embodiment of the invention, the support wire 102 comprises a double length of nitinol wire that has both ends positioned within a distal crimp tube 108. To form the support wire 102, the wire extends distally from the crimp tube 108 where it is bent to form a distal stop loop (see 121 in FIG. 4) having a diameter that is larger than the lumens within the distal crimp tube 108. After forming the distal stop loop, the wire returns proximally through the crimp tube 108 towards the proximal end of the support 100. Proximal to the proximal end of the crimp tube 108, is a distal lock 110 that is formed by the support wire bending away from the longitudinal axis of the support 102 and then being bent parallel to the longitudinal axis of the support before being bent again towards the longitudinal axis of the support. Therefore, the bends in the support wire form a half 110 a of the distal lock that is used to secure the distal anchor in the manner described below. From the distal lock 110, the wire continues proximally through a proximal crimp tube 112. On exiting the proximal end of the proximal crimp tube 112, the wire is bent to form an arrowhead-shaped proximal lock 114. The wire of the support 102 then returns distally through the proximal crimp tube 112 to a position just proximal to the proximal end of the distal crimp tube 108 wherein the wire is bent to form a second half 110 b of the distal lock 110.
  • Support wire 102 has a length that is selected based on its intended destination within a patient's vessel. For use in supporting a mitral valve, the support wire is preferably between one and six inches long and has a curved bend between its proximal end 104 and distal end 106 with a radius of curvature between 1 and 3 inches and most preferably with a radius of curvature of 1.8 inches. In addition, the wire used to form the support wire 102 is flexible enough to move with each heartbeat (thereby changing the force applied to the mitral valve annulus during the heartbeat) and stiff enough to support the mitral valve. In one embodiment, the wire used to form the support wire 102 is made of nitinol having a modulus of elasticity of 5-20×106 psi and a diameter of between 0.0110″ and 0.0150″ and most preferably 0.0140″. Other shape memory materials may be used for support wire as well.
  • At the distal end of the support wire 102 is a distal anchor 120 that is formed of a flexible wire such as nitinol or some other shape memory material. As is best shown in FIGS. 3 and 4, the wire forming the distal anchor has one end positioned within the distal crimp tube 108. After exiting the distal end of the crimp tube 108, the wire forms a figure eight configuration whereby it bends upward and radially outward from the longitudinal axis of the crimp tube 108. The wire then bends back proximally and crosses the longitudinal axis of the crimp tube 108 to form one leg of the figure eight. The wire is then bent to form a double loop eyelet or loop 122 around the longitudinal axis of the support wire 102 before extending radially outwards and distally back over the longitudinal axis of the crimp tube 108 to form the other leg of the figure eight. Finally, the wire is bent proximally into the distal end of the crimp tube 108 to complete the distal anchor 120.
  • The distal anchor is expanded by sliding the double eyelet 122 of the distal anchor from a position that is proximal to the distal lock 110 on the support wire to a position that is distal to the distal lock 110. The bent-out portions 110 a and 110 b of support wire 110 are spaced wider than the width of double eyelet 122 and provide camming surfaces for the locking action. Distal movement of eyelet 122 pushes these camming surfaces inward to permit eyelet 122 to pass distally of the lock 110, then return to their original spacing to keep eyelet 122 in the locked position.
  • The dimensions of the distal anchor are selected so that the diameter of the distal anchor in a plane perpendicular to the axis of the lumen in which the anchor is deployed is preferably between 100% and 300%, most preferably between 130% and 200%, of the diameter of the lumen prior to deployment. When treating mitral valve regurgitation by placement of the device in the coronary sinus, the diameter of the coronary sinus may expand over time after deployment. Oversizing the anchor combined with the inherent deformability and recoverability properties of the anchor material (particularly nitinol or some other shape memory material) enables the anchor to continue to expand from its initial deployment size as the lumen distends and expands over time.
  • Upon expansion, the distal anchor circumferentially engages the vessel wall with a radially outwardly directed force that is distributed unequally around the circumference of the anchor by distending the vessel wall in variable amounts along the axial length of the anchor. The unequal distribution of force helps the anchor contact the lumen wall securely by creating bumps and ridges that are not parallel to the central axis of the lumen. In its expanded configuration, the distal anchor's diameter is at least 50%-500% and most preferably 100%-300% of the anchor's diameter in the unexpanded configuration. The open cross-sectional area of the lumen through the anchor is at least 50%, and most preferably 80%-100% of the lumen cross-sectional area prior to redeployment of the anchor.
  • In addition, the metal coverage of the anchor, as defined by the percentage of the lumen surface area through which the anchor extends that is exposed to a metal surface, is between 5% and 30% and most preferably 10%. The wire used to form the distal anchor 120 is preferably nitinol having a diameter of between 0.0110″ and 0.0150″ and most preferably 0.0140 inches. Other shape memory materials may be used as well.
  • During insertion, a physician can tactilely feel when the eyelet 122 has been slid over the distal lock 110 in order to determine when the distal anchor has been set within a vessel lumen. In addition, if the anchor is misplaced, it can be collapsed by pulling the eyelet 122 proximally over the distal lock 110 and repositioning the anchor in the unexpanded configuration. The force required to capture the distal anchor is preferably less than 20 lbs. and more preferably less than 10 lbs.
  • FIG. 4 also illustrates how the crimp tube 108 is held in place between the distal lock 110 on the proximal side and the stop loop 121 at the distal end of the support wire 102. The wires of the distal anchor 120 exit the distal end of the crimp tube 108 at an angle of approximately 45 degrees before looping back over the length of the distal crimp tube 108. Therefore, the distal end of the anchor is relatively atraumatic to avoid damage to a vessel during placement.
  • At the proximal end of the intravascular support is a proximal anchor 140 that is preferably formed of a biocompatible, elastic wire such as stainless steel or a shape memory material such as nitinol. As is best shown in FIGS. 3 and 5, the proximal anchor 140 in one embodiment is made of a single length of wire having a first end positioned within a proximal crimp tube 112. The wire extends distally from the crimp tube 112 and bends radially outward and away from the longitudinal axis of the crimp tube 112 before being bent proximally and crossing the longitudinal axis of the crimp tube 112 in order to form a first leg of a figure eight configuration. The wire then is bent to form a double eyelet or loop 142 around the longitudinal axis of the support wire 102 wherein the eyelet 142 has a diameter that allows it to be forced over the proximal lock 114. After forming the eyelet 142, the wire extends outwardly and away from the longitudinal axis of the crimp tube 112 before being bent distally over and across the longitudinal axis of the crimp tube 112 to form the second leg of a figure eight. Finally, the wire is bent proximally and extends into the distal end of the crimp tube 112.
  • Like the distal anchor, the proximal anchor is expanded and locked by sliding the double eyelet 142 of the proximal anchor from a position that is proximal to the proximal lock 114 on the support wire to a position that is distal to the proximal lock 114. As can be seen in FIG. 7, the proximal lock 114 has an “arrowhead” shape whereby the proximal end of the lock is bent away from the longitudinal axis of the support wire at an angle that is less steep than the distal end of the proximal lock. The less steep section makes it easier to advance the eyelet 142 over the lock in the distal direction than to retrieve the eyelet 142 over the proximal lock 114 in the proximal direction. Distal movement of eyelet 142 cams the less steep proximal surfaces inward to permit eyelet 142 to pass distally of the lock 114, then return to their original spacing to keep eyelet 142 in the locked position.
  • As can be seen by comparing the proximal anchor 140 with the distal anchor 120 in FIG. 3, the proximal anchor has a larger radius of curvature because it is designed to fit within a larger diameter portion of the coronary sinus. The dimensions of the proximal anchor are selected so that the diameter of the proximal anchor in a plane perpendicular to the axis of the lumen in which the anchor is deployed is preferably between 100% and 300%, most preferably between 130% and 200%, of the diameter of the lumen prior to deployment. As with the distal anchor, oversizing the proximal anchor combined with the inherent deformability and recoverability properties of the anchor material (particularly nitinol or some other shape memory material) enables the anchor to continue to expand from its initial deployment size as the lumen distends and expands over time.
  • Upon expansion, the proximal anchor circumferentially engages the vessel wall with a radially outwardly directed a force that is distributed unequally around the circumference of the anchor by distending the vessel wall in variable amounts along the axial length of the anchor. As with the distal anchor, the unequal distribution of force helps the proximal anchor contact the lumen wall securely by creating bumps and ridges that are not parallel to the central axis of the lumen. In its expanded configuration, the proximal anchor's diameter is at least 50%-500% and most preferably 100%-300% of the anchor's diameter in the unexpanded configuration. The open cross-sectional area of the lumen through the anchor is at least 50% and most preferably 80%-100% of the lumen cross sectional area prior to redeployment of the anchor.
  • In one embodiment of the invention, the proximal and distal anchors are oriented such that the planes of the anchors are offset with respect to each other by an angle of approximately 30 degrees. The offset helps the intravascular support 100 seat itself in the coronary sinus and vessel surrounding the mitral valve in certain mammals. However, it will be appreciated that if the support is designed for other uses, the proximal and distal anchors may be offset by more or less depending upon the anatomy of the intended destination.
  • FIGS. 6A-6C illustrate cross-sectional views of the crimp tubes in which the wires that form the support wire 102 and proximal and distal anchors 120, 140 are threaded. In one embodiment, the crimp tubes comprise a biocompatible material such as titanium having a number of holes extending longitudinally through the tube through which the wires are threaded. In FIG. 6A, a tube 150 has four holes 152, 154, 156, 158 positioned in approximately a square configuration within the circumference of the tube 150. As shown in FIG. 6B, a tube 160 includes four holes 162, 164, 166, 168 therein that are positioned in a diamond configuration. FIG. 6C shows another tube 170 having four holes 172, 174, 176, 178. Here the holes 172, 174 lie in a first plane and the second pair of holes 176, 178 lie in a second plane that is offset from the plane of the holes 172, 174. By changing the orientation of the holes 176, 178 with respect to the holes 172, 174, the relative plane of wires passing through the holes can be adjusted. Thus in the example shown in FIG. 3, the proximal anchor may be formed with a crimp tube such as that shown in FIG. 6A or FIG. 6B while the proximal anchor may be formed in a crimp tube such as that shown in FIG. 6C in order to adjust the angular orientation between the proximal anchor and the distal anchor. In an alternative embodiment, the crimp tubes at the proximal and distal ends of the support wire 102 are the same and the angular offset between the proximal and distal anchor is achieved by bending the wires at the desired angle. Although the crimp tubes shown use one hole for each wire passing through the crimp tube, it will be appreciated that other configurations may be provided such as slots or other passages for the wires to pass through.
  • In another embodiment, the distal and proximal anchors are attached to the support wire by a wire, such as nitinol wire or other shape memory material. The attaching wire may be spiral wrapped around the base of each anchor and around the support wire. In another embodiment, each anchor may be attached to the support wire by wrapping the anchor wire around the support wire. In yet another embodiment, the two anchors and the support wire may be made from a single wire, such as nitinol wire or other shape memory material.
  • FIG. 8 illustrates one method for delivering an intravascular support 100 in accordance with the present invention to a desired location in the body. As indicated above, intravascular support 100 is preferably loaded into and routed to a desired location within a catheter 200 with the proximal and distal anchors in a collapsed or deformed condition. That is, the eyelet 122 of the distal anchor 120 is positioned proximally of the distal lock 110 and the eyelet 142 of the proximal anchor 140 is positioned proximal to the proximal lock 114. The physician ejects the distal end of the intravascular support from the catheter 200 into the lumen by advancing the intravascular support or retracting the catheter or a combination thereof. A pusher (not shown) provides distal movement of the intravascular support with respect to catheter 200, and a tether 201 provides proximal movement of the intravascular support with respect to catheter 200. Because of the inherent recoverability of the material from which it is formed, the distal anchor begins to expand as soon as it is outside the catheter. Once the intravascular support is properly positioned, the eyelet 122 of the distal anchor is pushed distally over the distal lock 110 so that the distal anchor 120 further expands and locks in place to securely engage the lumen wall and remains in the expanded condition. Next, the proximal end of the support wire 102 is tensioned by applying a proximally-directed force on the support wire and distal anchor to apply sufficient pressure on the tissue adjacent the support wire to modify the shape of that tissue. In the case of the mitral valve, fluoroscopy, ultrasound or other imaging technology may be used to see when the support wire supplies sufficient pressure on the mitral valve to aid in its complete closure with each ventricular contraction without otherwise adversely affecting the patient. A preferred method of assessing efficacy and safety during a mitral valve procedure is disclosed in copending U.S. patent application Ser. No. 10/366,585, filed Feb. 12, 2003, and titled “Method of Implanting a Mitral Valve Therapy Device,” the disclosure of which is incorporated herein by reference. Once the proper pressure of the support wire has been determined, the proximal anchor is deployed from the catheter and allowed to begin its expansion. The eyelet 142 of the proximal anchor 140 is advanced distally over the proximal lock 114 to expand and lock the proximal anchor, thereby securely engaging the lumen wall and maintaining the pressure of the support wire against the lumen wall. Finally, the mechanism for securing the proximal end of the intravascular support can be released. In one embodiment, the securement is made with a braided loop 202 at the end of tether 201 and a hitch pin 204. The hitch pin 204 is withdrawn thereby releasing the loop 202 so it can be pulled through the proximal lock 114 at the proximal end of the intravascular support 100.
  • In many contexts, it is important for the device to occupy as little of the lumen as possible. For example, when using the device and method of this invention to treat mitral valve regurgitation, the device should be as open as possible to blood flow in the coronary sinus (and to the introduction of other medical devices, such as pacing leads) while still providing the support necessary to reshape the mitral valve annulus through the coronary sinus wall. The combination of the device's open design and the use of nitinol or some other shape memory material enables the invention to meet these goals. When deployed in the coronary sinus or other lumen, the device preferably occupies between about 1.5% and about 5.5% of the overall volume of the section of lumen in which it is deployed.
  • In many embodiments of the invention, the use of a shape memory material such as nitinol is particularly important. The percentage of shape memory material by volume in the device is preferably between about 30% and 100%, most preferably between about 40% and 60%.
  • In some instances, it may be necessary to move or remove an intravascular support after deployment by recapturing the device into a catheter. Prior to deployment of the proximal anchor, the distal anchor may be recaptured into the delivery catheter by simultaneously holding the device in place with tether 201 while advancing catheter distally over distal anchor 120 so that the entire device is once again inside catheter 200. The distally directed force of the catheter collapses distal anchor 120 into a size small enough to fit into catheter 200 again. Likewise, after deployment of both anchors but prior to releasing the securement mechanism as described above, the intravascular support may be. recaptured into the delivery catheter by simultaneously holding the device in place with tether 201 while advancing catheter distally first over proximal anchor 140, over support wire 102, and finally over distal anchor 120. The distally directed forced of catheter 200 collapses anchors 120 and 140 into a size, small enough to fit into catheter 200 again. If the securement mechanism has been detached from the device prior to recapture, the device still may be recaptured into the delivery catheter or another catheter by grasping the proximal end of the device with a grasper or tether and by advancing the catheter distally over the device.
  • In one embodiment of the invention, proximal anchor 140 includes a recapture guidance and compression element. In the embodiment shown in FIG. 5, the slope of the two proximal arms 143 and 144 of proximal anchor 140 is small in proximal portions 145 and 146 of the arms, then increases in more distal portions 147 and 148 of the arms. This shape guides the catheter to move distally over the anchor more easily and to help compress the anchor to a collapsed shape as the catheter advances during recapture.
  • Likewise, the two proximal arms 123 and 124 of distal anchor 120 have a shallower slope in their proximal portions 145 and 146 and an increased slope in more distal portions 147 and 148. While recapture of the distal anchor is somewhat easier due to its smaller size compared to the proximal anchor, this recapture guidance and compression feature enhances the ease with which recapture is performed.
  • FIG. 9 illustrates an alternative embodiment of the intravascular support of the present invention. In this embodiment, an intravascular support 250 has a support wire 252 and a distal anchor 254 and a proximal anchor 256. In the embodiment shown in FIG. 9, the distal anchor 254 is made from the same wire used to form the support wire 252. As best shown in FIG. 10, the wire used to form the support wire 252 extends distally through a distal crimp tube 260 before looping radially outward and returning proximally and across the longitudinal axis of the crimp tube 260 to form one leg of a figure eight. The wire then winds around the axis of the suspension wire 252 to form an eyelet 262. The wire then continues radially outward and distally across the longitudinal axis of the crimp tube 260 to form the second leg of a figure eight. After forming the figure eight, the wire enters the distal end of the crimp tube 260 in the proximal direction to form the other half of the support wire 252. A distal lock 264 is formed proximal to the distal crimp tube 260 by outwardly extending bends in the wires that form the support wire 252. The distal lock 264 prevents the double eyelet 262 from sliding proximally and collapsing the distal anchor 254 when positioned in a vessel.
  • As shown in FIG. 11, a distal anchor 256 is constructed in a fashion similar to the proximal anchor 140 shown in FIG. 3. That is, the proximal anchor 256 is formed of a separate wire than the wire used to form the support wire 252 and distal anchor 254. The wire of the proximal anchor has one end within a proximal crimp tube 270. The wire extends distally out of the end of the crimp tube and bends radially outward before returning back and across the longitudinal axis of the crimp tube 270. At the proximal end of the crimp tube 270, the wire of the proximal anchor forms a double eyelet 272 around the longitudinal axis of the support wire 252. The wire then continues radially outward and distally over the longitudinal axis of the crimp tube 270 to form the second leg of the figure eight whereupon it is bent proximally into the distal end of the crimp tube 270.
  • FIG. 12 shows yet another embodiment of an intravascular support in accordance with the present invention. Here, an intravascular support 300 comprises a support wire 302, a distal anchor 304 and a proximal anchor 306. As in the embodiment shown in FIG. 9, the distal anchor 304 and the support wire 302 are formed of the same wire. To form the distal anchor, the wire extends distally through a distal crimp tube 310 and exits out the distal end before extending radially outward and bending back and across the longitudinal axis of the crimp tube 310 to form one leg of a figure eight. The loop then forms an eyelet 312 around the longitudinal axis of the support wire 302 before bending radially outward and distally across the longitudinal axis of the crimp tube 310 to form a second leg of the figure eight. The wire then enters the distal end of the crimp tube 310 in the proximal direction. The support wire 302 may have one or two outwardly extending sections that form a distal stop 314 to maintain the position of the eyelet 312 once the distal anchor is set in the expanded configuration.
  • The proximal anchor 306 is formed from a separate wire as shown in FIG. 14. The wire has one end positioned within the proximal crimp tube 320 that extends distally outward and radially away from the longitudinal axis of the crimp tube 320 before being bent proximally and across the longitudinal axis of the crimp tube 320 to form one leg of the figure eight. The wire then winds around the longitudinal axis of the support wire to form an eyelet 322 before being bent distally and across the longitudinal axis of the crimp tube 320 to enter the distal end of the crimp tube 320 in the proximal direction. As will be appreciated, the proximal crimp tube 320 of the embodiment shown in FIG. 12 holds four wires wherein the distal crimp tube 310 need only hold two wires.
  • FIGS. 15-18 show other embodiments of the invention. In the embodiment shown in FIG. 15, the intravascular support has an anchor 400 formed as a loop 404 emerging from a window 406 in a crimp tube 408. Extending from one end 411 of crimp tube 408 is a support strut 410 which connects with loop 404. Also extending from the crimp tube 408 is a support wire 412. Loop 404 and support 410 may be formed from nitinol, stainless steel, or any other appropriate material. The intravascular support includes another anchor. The intravascular support of this embodiment may be delivered and deployed in the manner discussed above with respect to the embodiment described above.
  • FIG. 16 shows another embodiment of an anchor 450 for an intravascular support. Anchor 450 is formed from two loops 452 and 454 emerging from a window 456 and an end 457 of a crimp tube 458. A support wire 462 also extends from the crimp tube. Loops 452 and 454 may be formed from nitinol, stainless steel, or any other appropriate material. The intravascular support includes another anchor. The intravascular support of this embodiment may be delivered and deployed in the manner discussed above with respect to the embodiment described above.
  • FIG. 17 shows yet another embodiment of an anchor 500 for an intravascular support according to this invention. Anchor 500 is formed from two loops 502 and 504 emerging from a window 506 and an end 507 of a crimp tube 508. A cross strut 505 connects the loops. A support wire 512 also extends from the crimp tube. Loops 502 and 504 and strut 505 may be formed from nitinol, stainless steel, or any other appropriate material. The intravascular support includes another anchor. The intravascular support of this embodiment may be delivered and deployed in the manner discussed above with respect to the embodiment described above.
  • FIG. 18 is a modification of the embodiment shown in FIGS. 3-7. In this embodiment, torsional springs 558 of proximal anchor 550 have been formed as single loops or eyelets in the anchor's wire 552. These springs make the anchor 550 more compliant by absorbing some of the force applied to the anchor during locking. While. FIG. 18 shows a proximal anchor with two springs 558, any number of springs could be used on either the proximal or the distal anchor.
  • While the preferred embodiment of the invention has been illustrated and described, it will be appreciated that various changes can be made therein without departing from the spirit and scope of the invention.

Claims (11)

1-8. (canceled)
9. A method of manipulating the mitral valve, comprising the steps of: providing a catheter, having a prosthesis thereon, the prosthesis having a first tissue anchor and a second tissue anchor; inserting the catheter into the venous system; transluminally advancing the prosthesis into the coronary sinus; attaching the first and second tissue anchors to the wall of the coronary sinus; and manipulating the prosthesis to exert a lateral force on the wall of the coronary sinus in between the first and second tissue anchors.
10. A method as in claim 9, further comprising the step of percutaneously accessing the venous system prior to the transluminally advancing step.
11. A method as in claim 10, wherein the accessing step is accomplished by accessing one of the internal jugular, subclavian and femoral veins.
12. A method as in claim 9, further comprising the step of measuring hemodynamic function following the manipulating step.
13. A method of performing annuloplasty of the mitral valve comprising positioning a prosthesis in a curved portion of the coronary sinus; engaging a proximal tissue anchor and a distal tissue anchor on the device into tissue on an inside radius of the curve; manipulating a first portion of the device with respect to a second portion of the device to provide a compressive force on the inside radius of the curve in between the first and second anchors; and securing the device to maintain the compressive force within the coronary sinus.
14. A method as in claim 13, further comprising the step of percutaneously accessing the venous system prior to the positioning step.
15. A method as in claim 14, wherein the accessing step is accomplished by accessing one of the internal jugular, subclavian and femoral veins.
16. A method as in claim 13, wherein the securing step comprises providing an interference fit.
17. A method as in claim 13, wherein the securing step comprises providing a compression fit.
18. A method as in claim 13, further comprising the step of measuring hemodynamic function following the manipulating step.
US11/198,044 2001-12-05 2005-08-04 Device and method for modifying the shape of a body organ Abandoned US20050272969A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/198,044 US20050272969A1 (en) 2001-12-05 2005-08-04 Device and method for modifying the shape of a body organ

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US10/011,867 US6908478B2 (en) 2001-12-05 2001-12-05 Anchor and pull mitral valve device and method
US10/066,426 US6976995B2 (en) 2002-01-30 2002-01-30 Fixed length anchor and pull mitral valve device and method
US10/142,637 US6824562B2 (en) 2002-05-08 2002-05-08 Body lumen device anchor, device and assembly
US10/331,143 US6793673B2 (en) 2002-12-26 2002-12-26 System and method to effect mitral valve annulus of a heart
US10/429,171 US7179282B2 (en) 2001-12-05 2003-05-02 Device and method for modifying the shape of a body organ
US11/198,044 US20050272969A1 (en) 2001-12-05 2005-08-04 Device and method for modifying the shape of a body organ

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/429,171 Continuation US7179282B2 (en) 2001-12-05 2003-05-02 Device and method for modifying the shape of a body organ

Publications (1)

Publication Number Publication Date
US20050272969A1 true US20050272969A1 (en) 2005-12-08

Family

ID=29423050

Family Applications (3)

Application Number Title Priority Date Filing Date
US10/429,225 Expired - Fee Related US7857846B2 (en) 2001-12-05 2003-05-02 Device and method for modifying the shape of a body organ
US11/198,044 Abandoned US20050272969A1 (en) 2001-12-05 2005-08-04 Device and method for modifying the shape of a body organ
US11/963,417 Expired - Fee Related US7828841B2 (en) 2002-05-08 2007-12-21 Device and method for modifying the shape of a body organ

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/429,225 Expired - Fee Related US7857846B2 (en) 2001-12-05 2003-05-02 Device and method for modifying the shape of a body organ

Family Applications After (1)

Application Number Title Priority Date Filing Date
US11/963,417 Expired - Fee Related US7828841B2 (en) 2002-05-08 2007-12-21 Device and method for modifying the shape of a body organ

Country Status (9)

Country Link
US (3) US7857846B2 (en)
EP (3) EP1513474B1 (en)
JP (2) JP4351151B2 (en)
AT (1) ATE417573T1 (en)
AU (2) AU2003228865B2 (en)
CA (4) CA2483024C (en)
DE (1) DE60325356D1 (en)
ES (1) ES2318130T3 (en)
WO (1) WO2003094801A1 (en)

Cited By (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040220657A1 (en) * 2003-05-02 2004-11-04 Cardiac Dimensions, Inc., A Washington Corporation Tissue shaping device with conformable anchors
US20080021266A1 (en) * 2006-04-19 2008-01-24 Laham Roger J Pericardial reinforcement device
US7666224B2 (en) 2002-11-12 2010-02-23 Edwards Lifesciences Llc Devices and methods for heart valve treatment
US7670368B2 (en) 2005-02-07 2010-03-02 Boston Scientific Scimed, Inc. Venous valve apparatus, system, and method
US7674287B2 (en) 2001-12-05 2010-03-09 Cardiac Dimensions, Inc. Device and method for modifying the shape of a body organ
US7678145B2 (en) 2002-01-09 2010-03-16 Edwards Lifesciences Llc Devices and methods for heart valve treatment
US7682385B2 (en) 2002-04-03 2010-03-23 Boston Scientific Corporation Artificial valve
US7722666B2 (en) 2005-04-15 2010-05-25 Boston Scientific Scimed, Inc. Valve apparatus, system and method
US7758639B2 (en) 2003-02-03 2010-07-20 Cardiac Dimensions, Inc. Mitral valve device using conditioned shape memory alloy
US7766812B2 (en) 2000-10-06 2010-08-03 Edwards Lifesciences Llc Methods and devices for improving mitral valve function
US7776053B2 (en) 2000-10-26 2010-08-17 Boston Scientific Scimed, Inc. Implantable valve system
US7780722B2 (en) 2005-02-07 2010-08-24 Boston Scientific Scimed, Inc. Venous valve apparatus, system, and method
US7780627B2 (en) 2002-12-30 2010-08-24 Boston Scientific Scimed, Inc. Valve treatment catheter and methods
US7794496B2 (en) 2003-12-19 2010-09-14 Cardiac Dimensions, Inc. Tissue shaping device with integral connector and crimp
US7799038B2 (en) 2006-01-20 2010-09-21 Boston Scientific Scimed, Inc. Translumenal apparatus, system, and method
US7828841B2 (en) 2002-05-08 2010-11-09 Cardiac Dimensions, Inc. Device and method for modifying the shape of a body organ
US7828842B2 (en) 2002-01-30 2010-11-09 Cardiac Dimensions, Inc. Tissue shaping device
US7828843B2 (en) 2001-05-14 2010-11-09 Cardiac Dimensions, Inc. Mitral valve therapy device, system and method
US7837729B2 (en) 2002-12-05 2010-11-23 Cardiac Dimensions, Inc. Percutaneous mitral valve annuloplasty delivery system
US7837728B2 (en) 2003-12-19 2010-11-23 Cardiac Dimensions, Inc. Reduced length tissue shaping device
US7854755B2 (en) 2005-02-01 2010-12-21 Boston Scientific Scimed, Inc. Vascular catheter, system, and method
US7854761B2 (en) 2003-12-19 2010-12-21 Boston Scientific Scimed, Inc. Methods for venous valve replacement with a catheter
US7867274B2 (en) 2005-02-23 2011-01-11 Boston Scientific Scimed, Inc. Valve apparatus, system and method
US7883539B2 (en) 1997-01-02 2011-02-08 Edwards Lifesciences Llc Heart wall tension reduction apparatus and method
US7887582B2 (en) 2003-06-05 2011-02-15 Cardiac Dimensions, Inc. Device and method for modifying the shape of a body organ
US7892276B2 (en) 2007-12-21 2011-02-22 Boston Scientific Scimed, Inc. Valve with delayed leaflet deployment
US7951189B2 (en) 2005-09-21 2011-05-31 Boston Scientific Scimed, Inc. Venous valve, system, and method with sinus pocket
US7967853B2 (en) 2007-02-05 2011-06-28 Boston Scientific Scimed, Inc. Percutaneous valve, system and method
US8002824B2 (en) 2004-09-02 2011-08-23 Boston Scientific Scimed, Inc. Cardiac valve, system, and method
US8006594B2 (en) 2008-08-11 2011-08-30 Cardiac Dimensions, Inc. Catheter cutting tool
US8012198B2 (en) 2005-06-10 2011-09-06 Boston Scientific Scimed, Inc. Venous valve, system, and method
US8062358B2 (en) 2002-05-08 2011-11-22 Cardiac Dimensions, Inc. Body lumen device anchor, device and assembly
US8075608B2 (en) 2002-12-05 2011-12-13 Cardiac Dimensions, Inc. Medical device delivery system
US8128681B2 (en) 2003-12-19 2012-03-06 Boston Scientific Scimed, Inc. Venous valve apparatus, system, and method
US8133270B2 (en) 2007-01-08 2012-03-13 California Institute Of Technology In-situ formation of a valve
US8226711B2 (en) 1997-12-17 2012-07-24 Edwards Lifesciences, Llc Valve to myocardium tension members device and method
US8439971B2 (en) 2001-11-01 2013-05-14 Cardiac Dimensions, Inc. Adjustable height focal tissue deflector
US8828079B2 (en) 2007-07-26 2014-09-09 Boston Scientific Scimed, Inc. Circulatory valve, system and method
US9526616B2 (en) 2003-12-19 2016-12-27 Cardiac Dimensions Pty. Ltd. Mitral valve annuloplasty device with twisted anchor
US9622859B2 (en) 2005-02-01 2017-04-18 Boston Scientific Scimed, Inc. Filter system and method
US9668859B2 (en) 2011-08-05 2017-06-06 California Institute Of Technology Percutaneous heart valve delivery systems
US9744037B2 (en) 2013-03-15 2017-08-29 California Institute Of Technology Handle mechanism and functionality for repositioning and retrieval of transcatheter heart valves
CN108348759A (en) * 2015-11-20 2018-07-31 心脏起搏器股份公司 Delivery apparatus and method for leadless cardiac device
US10390953B2 (en) 2017-03-08 2019-08-27 Cardiac Dimensions Pty. Ltd. Methods and devices for reducing paravalvular leakage
US11033257B2 (en) 2005-01-20 2021-06-15 Cardiac Dimensions Pty. Ltd. Tissue shaping device
US11181980B2 (en) 2013-05-20 2021-11-23 Intel Corporation Natural human-computer interaction for virtual personal assistant systems
CN114222545A (en) * 2019-07-12 2022-03-22 Tau-Pnu医疗有限公司 Cerclage operation device with position fixing device
US11285005B2 (en) 2006-07-17 2022-03-29 Cardiac Dimensions Pty. Ltd. Mitral valve annuloplasty device with twisted anchor
US11311380B2 (en) 2003-05-02 2022-04-26 Cardiac Dimensions Pty. Ltd. Device and method for modifying the shape of a body organ
US11596771B2 (en) 2020-12-14 2023-03-07 Cardiac Dimensions Pty. Ltd. Modular pre-loaded medical implants and delivery systems

Families Citing this family (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050209690A1 (en) * 2002-01-30 2005-09-22 Mathis Mark L Body lumen shaping device with cardiac leads
US6797001B2 (en) * 2002-03-11 2004-09-28 Cardiac Dimensions, Inc. Device, assembly and method for mitral valve repair
US20040158321A1 (en) * 2003-02-12 2004-08-12 Cardiac Dimensions, Inc. Method of implanting a mitral valve therapy device
US20060161169A1 (en) * 2003-05-02 2006-07-20 Cardiac Dimensions, Inc., A Delaware Corporation Device and method for modifying the shape of a body organ
US7351259B2 (en) * 2003-06-05 2008-04-01 Cardiac Dimensions, Inc. Device, system and method to affect the mitral valve annulus of a heart
US20050137450A1 (en) * 2003-12-19 2005-06-23 Cardiac Dimensions, Inc., A Washington Corporation Tapered connector for tissue shaping device
EP1708649B1 (en) * 2003-12-19 2016-04-06 Cardiac Dimensions Pty. Ltd. Device for modifying the shape of a body organ
JP2008521501A (en) * 2004-11-24 2008-06-26 ビアカー・インコーポレーテッド Method and apparatus for improving mitral valve function
US20060247672A1 (en) * 2005-04-27 2006-11-02 Vidlund Robert M Devices and methods for pericardial access
US7503932B2 (en) * 2006-04-11 2009-03-17 Cardiac Dimensions, Inc. Mitral valve annuloplasty device with vena cava anchor
US7854849B2 (en) * 2006-10-10 2010-12-21 Multiphase Systems Integration Compact multiphase inline bulk water separation method and system for hydrocarbon production
US10058323B2 (en) 2010-01-22 2018-08-28 4 Tech Inc. Tricuspid valve repair using tension
US8475525B2 (en) 2010-01-22 2013-07-02 4Tech Inc. Tricuspid valve repair using tension
US9307980B2 (en) 2010-01-22 2016-04-12 4Tech Inc. Tricuspid valve repair using tension
US8579964B2 (en) 2010-05-05 2013-11-12 Neovasc Inc. Transcatheter mitral valve prosthesis
GB201100137D0 (en) 2011-01-06 2011-02-23 Davies Helen C S Apparatus and method of assessing a narrowing in a fluid tube
US9554897B2 (en) 2011-04-28 2017-01-31 Neovasc Tiara Inc. Methods and apparatus for engaging a valve prosthesis with tissue
US9308087B2 (en) 2011-04-28 2016-04-12 Neovasc Tiara Inc. Sequentially deployed transcatheter mitral valve prosthesis
JP6133864B2 (en) 2011-08-20 2017-05-24 ボルケーノ コーポレイション Apparatus, system and method for visually depicting vessels and assessing treatment options
US9339348B2 (en) 2011-08-20 2016-05-17 Imperial Colege of Science, Technology and Medicine Devices, systems, and methods for assessing a vessel
US9345573B2 (en) 2012-05-30 2016-05-24 Neovasc Tiara Inc. Methods and apparatus for loading a prosthesis onto a delivery system
US8961594B2 (en) 2012-05-31 2015-02-24 4Tech Inc. Heart valve repair system
US9788948B2 (en) 2013-01-09 2017-10-17 4 Tech Inc. Soft tissue anchors and implantation techniques
US9907681B2 (en) 2013-03-14 2018-03-06 4Tech Inc. Stent with tether interface
US9572665B2 (en) 2013-04-04 2017-02-21 Neovasc Tiara Inc. Methods and apparatus for delivering a prosthetic valve to a beating heart
EP2805695A1 (en) * 2013-05-21 2014-11-26 Medtentia International Ltd Oy Medical system for annuloplasty
EP3062709A2 (en) 2013-10-30 2016-09-07 4Tech Inc. Multiple anchoring-point tension system
US10052095B2 (en) 2013-10-30 2018-08-21 4Tech Inc. Multiple anchoring-point tension system
EP2907479A1 (en) 2014-02-18 2015-08-19 Medtentia International Ltd Oy A system and a method for delivery of an annuloplasty implant
US10390943B2 (en) 2014-03-17 2019-08-27 Evalve, Inc. Double orifice device for transcatheter mitral valve replacement
JP6559161B2 (en) 2014-06-19 2019-08-14 4テック インコーポレイテッド Tightening heart tissue
US9907547B2 (en) 2014-12-02 2018-03-06 4Tech Inc. Off-center tissue anchors
JP7002451B2 (en) 2015-12-15 2022-01-20 ニオバスク ティアラ インコーポレイテッド Transseptal delivery system
WO2017127939A1 (en) 2016-01-29 2017-08-03 Neovasc Tiara Inc. Prosthetic valve for avoiding obstruction of outflow
US10363138B2 (en) 2016-11-09 2019-07-30 Evalve, Inc. Devices for adjusting the curvature of cardiac valve structures
US10426616B2 (en) 2016-11-17 2019-10-01 Evalve, Inc. Cardiac implant delivery system
CN113893064A (en) 2016-11-21 2022-01-07 内奥瓦斯克迪亚拉公司 Methods and systems for rapid retrieval of transcatheter heart valve delivery systems
US10856984B2 (en) 2017-08-25 2020-12-08 Neovasc Tiara Inc. Sequentially deployed transcatheter mitral valve prosthesis
WO2019051587A1 (en) 2017-09-12 2019-03-21 Cheema Asim Apparatus and system for changing mitral valve annulus geometry
US11026791B2 (en) 2018-03-20 2021-06-08 Medtronic Vascular, Inc. Flexible canopy valve repair systems and methods of use
US11285003B2 (en) 2018-03-20 2022-03-29 Medtronic Vascular, Inc. Prolapse prevention device and methods of use thereof
JP7509695B2 (en) * 2018-05-15 2024-07-02 マフィン・インコーポレイテッド Apparatus for positioning and fastening a loop-forming belt
CN113271890B (en) 2018-11-08 2024-08-30 内奥瓦斯克迪亚拉公司 Ventricular deployment of transcatheter mitral valve prosthesis
AU2020233892A1 (en) 2019-03-08 2021-11-04 Neovasc Tiara Inc. Retrievable prosthesis delivery system
WO2020206012A1 (en) 2019-04-01 2020-10-08 Neovasc Tiara Inc. Controllably deployable prosthetic valve
WO2020210652A1 (en) 2019-04-10 2020-10-15 Neovasc Tiara Inc. Prosthetic valve with natural blood flow
CN114025813B (en) 2019-05-20 2024-05-14 内奥瓦斯克迪亚拉公司 Introducer with hemostatic mechanism
WO2020257643A1 (en) 2019-06-20 2020-12-24 Neovasc Tiara Inc. Low profile prosthetic mitral valve

Citations (86)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3974526A (en) * 1973-07-06 1976-08-17 Dardik Irving I Vascular prostheses and process for producing the same
US4164046A (en) * 1977-05-16 1979-08-14 Cooley Denton Valve prosthesis
US4588395A (en) * 1978-03-10 1986-05-13 Lemelson Jerome H Catheter and method
US4830023A (en) * 1987-11-27 1989-05-16 Medi-Tech, Incorporated Medical guidewire
US5099838A (en) * 1988-12-15 1992-03-31 Medtronic, Inc. Endocardial defibrillation electrode system
US5104404A (en) * 1989-10-02 1992-04-14 Medtronic, Inc. Articulated stent
US5433727A (en) * 1994-08-16 1995-07-18 Sideris; Eleftherios B. Centering buttoned device for the occlusion of large defects for occluding
US5441515A (en) * 1993-04-23 1995-08-15 Advanced Cardiovascular Systems, Inc. Ratcheting stent
US5507295A (en) * 1992-07-01 1996-04-16 British Technology Group Limited Medical devices
US5507802A (en) * 1993-06-02 1996-04-16 Cardiac Pathways Corporation Method of mapping and/or ablation using a catheter having a tip with fixation means
US5514161A (en) * 1994-04-05 1996-05-07 Ela Medical S.A. Methods and apparatus for controlling atrial stimulation in a double atrial triple chamber cardiac pacemaker
US5601600A (en) * 1995-09-08 1997-02-11 Conceptus, Inc. Endoluminal coil delivery system having a mechanical release mechanism
US5733325A (en) * 1993-11-04 1998-03-31 C. R. Bard, Inc. Non-migrating vascular prosthesis and minimally invasive placement system
US5741297A (en) * 1996-08-28 1998-04-21 Simon; Morris Daisy occluder and method for septal defect repair
US5752969A (en) * 1993-06-17 1998-05-19 Sofamor S.N.C. Instrument for the surgical treatment of an intervertebral disc by the anterior route
US5871501A (en) * 1994-01-18 1999-02-16 Datascope Investment Corp. Guide wire with releasable barb anchor
US5895391A (en) * 1996-09-27 1999-04-20 Target Therapeutics, Inc. Ball lock joint and introducer for vaso-occlusive member
US5899882A (en) * 1994-10-27 1999-05-04 Novoste Corporation Catheter apparatus for radiation treatment of a desired area in the vascular system of a patient
US5908404A (en) * 1996-05-13 1999-06-01 Elliott; James B. Methods for inserting an implant
US5928258A (en) * 1997-09-26 1999-07-27 Corvita Corporation Method and apparatus for loading a stent or stent-graft into a delivery sheath
US6015402A (en) * 1997-03-07 2000-01-18 Sahota; Harvinder Wire perfusion catheter
US6022371A (en) * 1996-10-22 2000-02-08 Scimed Life Systems, Inc. Locking stent
US6027517A (en) * 1994-02-24 2000-02-22 Radiance Medical Systems, Inc. Fixed focal balloon for interactive angioplasty and stent implantation catheter with focalized balloon
US6053900A (en) * 1996-02-16 2000-04-25 Brown; Joe E. Apparatus and method for delivering diagnostic and therapeutic agents intravascularly
US6056775A (en) * 1996-05-31 2000-05-02 Ave Galway Limited Bifurcated endovascular stents and method and apparatus for their placement
US6080182A (en) * 1996-12-20 2000-06-27 Gore Enterprise Holdings, Inc. Self-expanding defect closure device and method of making and using
US6086611A (en) * 1997-09-25 2000-07-11 Ave Connaught Bifurcated stent
US6183512B1 (en) * 1999-04-16 2001-02-06 Edwards Lifesciences Corporation Flexible annuloplasty system
US6200336B1 (en) * 1998-06-02 2001-03-13 Cook Incorporated Multiple-sided intraluminal medical device
US6210432B1 (en) * 1999-06-29 2001-04-03 Jan Otto Solem Device and method for treatment of mitral insufficiency
US6228098B1 (en) * 1998-07-10 2001-05-08 General Surgical Innovations, Inc. Apparatus and method for surgical fastening
US6241757B1 (en) * 1997-02-04 2001-06-05 Solco Surgical Instrument Co., Ltd. Stent for expanding body's lumen
US6254628B1 (en) * 1996-12-09 2001-07-03 Micro Therapeutics, Inc. Intracranial stent
US6267783B1 (en) * 1998-11-09 2001-07-31 Cordis Corporation Stent which is easily recaptured and repositioned within the body
US6334864B1 (en) * 2000-05-17 2002-01-01 Aga Medical Corp. Alignment member for delivering a non-symmetric device with a predefined orientation
US6345198B1 (en) * 1998-01-23 2002-02-05 Pacesetter, Inc. Implantable stimulation system for providing dual bipolar sensing using an electrode positioned in proximity to the tricuspid valve and programmable polarity
US20020016628A1 (en) * 2000-01-31 2002-02-07 Langberg Jonathan J. Percutaneous mitral annuloplasty with hemodynamic monitoring
US20020042651A1 (en) * 2000-06-30 2002-04-11 Liddicoat John R. Method and apparatus for performing a procedure on a cardiac valve
US20020042621A1 (en) * 2000-06-23 2002-04-11 Liddicoat John R. Automated annular plication for mitral valve repair
US20020049468A1 (en) * 2000-06-30 2002-04-25 Streeter Richard B. Intravascular filter with debris entrapment mechanism
US20020055774A1 (en) * 2000-09-07 2002-05-09 Liddicoat John R. Fixation band for affixing a prosthetic heart valve to tissue
US20020065554A1 (en) * 2000-10-25 2002-05-30 Streeter Richard B. Mitral shield
US20020087173A1 (en) * 2000-12-28 2002-07-04 Alferness Clifton A. Mitral valve constricting device, system and method
US20020095167A1 (en) * 2000-10-23 2002-07-18 Liddicoat John R. Automated annular plication for mitral valve repair
US20030018358A1 (en) * 1999-06-25 2003-01-23 Vahid Saadat Apparatus and methods for treating tissue
US20030040771A1 (en) * 1999-02-01 2003-02-27 Hideki Hyodoh Methods for creating woven devices
US20030069636A1 (en) * 1999-06-30 2003-04-10 Solem Jan Otto Method for treatment of mitral insufficiency
US20030078654A1 (en) * 2001-08-14 2003-04-24 Taylor Daniel C. Method and apparatus for improving mitral valve function
US20030078465A1 (en) * 2001-10-16 2003-04-24 Suresh Pai Systems for heart treatment
US20030083538A1 (en) * 2001-11-01 2003-05-01 Cardiac Dimensions, Inc. Focused compression mitral valve device and method
US20030083613A1 (en) * 1999-05-11 2003-05-01 Schaer Alan K. Catheter positioning system
US20030088305A1 (en) * 2001-10-26 2003-05-08 Cook Incorporated Prostheses for curved lumens
US6562067B2 (en) * 2001-06-08 2003-05-13 Cordis Corporation Stent with interlocking elements
US20030130730A1 (en) * 2001-10-26 2003-07-10 Cohn William E. Method and apparatus for reducing mitral regurgitation
US20040010305A1 (en) * 2001-12-05 2004-01-15 Cardiac Dimensions, Inc. Device and method for modifying the shape of a body organ
US6689164B1 (en) * 1999-10-12 2004-02-10 Jacques Seguin Annuloplasty device for use in minimally invasive procedure
US6709425B2 (en) * 1998-09-30 2004-03-23 C. R. Bard, Inc. Vascular inducing implants
US6721598B1 (en) * 2001-08-31 2004-04-13 Pacesetter, Inc. Coronary sinus cardiac lead for stimulating and sensing in the right and left heart and system
US6733521B2 (en) * 2001-04-11 2004-05-11 Trivascular, Inc. Delivery system and method for endovascular graft
US6743219B1 (en) * 2000-08-02 2004-06-01 Cordis Corporation Delivery apparatus for a self-expanding stent
US20040111095A1 (en) * 2002-12-05 2004-06-10 Cardiac Dimensions, Inc. Medical device delivery system
US20040133240A1 (en) * 2003-01-07 2004-07-08 Cardiac Dimensions, Inc. Electrotherapy system, device, and method for treatment of cardiac valve dysfunction
US20050004667A1 (en) * 2003-06-05 2005-01-06 Cardiac Dimensions, Inc. A Delaware Corporation Device, system and method to affect the mitral valve annulus of a heart
US20050010240A1 (en) * 2003-06-05 2005-01-13 Cardiac Dimensions Inc., A Washington Corporation Device and method for modifying the shape of a body organ
US20050021121A1 (en) * 2001-11-01 2005-01-27 Cardiac Dimensions, Inc., A Delaware Corporation Adjustable height focal tissue deflector
US20050027351A1 (en) * 2001-05-14 2005-02-03 Cardiac Dimensions, Inc. A Washington Corporation Mitral valve regurgitation treatment device and method
US20050060030A1 (en) * 2000-01-31 2005-03-17 Lashinski Randall T. Remotely activated mitral annuloplasty system and methods
US20050065598A1 (en) * 2002-03-11 2005-03-24 Mathis Mark L. Device, assembly and method for mitral valve repair
US6881220B2 (en) * 1998-09-30 2005-04-19 Bard Peripheral Vascular, Inc. Method of recapturing a stent
US20050096740A1 (en) * 2001-01-30 2005-05-05 Edwards Lifesciences Ag Transluminal mitral annuloplasty
US20050096666A1 (en) * 2002-12-05 2005-05-05 Gordon Lucas S. Percutaneous mitral valve annuloplasty delivery system
US6899734B2 (en) * 2001-03-23 2005-05-31 Howmedica Osteonics Corp. Modular implant for fusing adjacent bone structure
US6908478B2 (en) * 2001-12-05 2005-06-21 Cardiac Dimensions, Inc. Anchor and pull mitral valve device and method
US20050137450A1 (en) * 2003-12-19 2005-06-23 Cardiac Dimensions, Inc., A Washington Corporation Tapered connector for tissue shaping device
US20050137685A1 (en) * 2003-12-19 2005-06-23 Cardiac Dimensions, Inc., A Washington Corporation Reduced length tissue shaping device
US20050137449A1 (en) * 2003-12-19 2005-06-23 Cardiac Dimensions, Inc. Tissue shaping device with self-expanding anchors
US20050137451A1 (en) * 2003-12-19 2005-06-23 Cardiac Dimensions, Inc. A Washington Corporation Tissue shaping device with integral connector and crimp
US20050149179A1 (en) * 2002-05-08 2005-07-07 Mathis Mark L. Body lumen device anchor, device and assembly
US20060020335A1 (en) * 2002-12-26 2006-01-26 Leonard Kowalsky System and method to effect the mitral valve annulus of a heart
US20060030882A1 (en) * 2002-03-06 2006-02-09 Adams John M Transvenous staples, assembly and method for mitral valve repair
US20060041305A1 (en) * 1996-06-20 2006-02-23 Karl-Lutz Lauterjung Prosthetic repair of body passages
US20060142854A1 (en) * 2001-12-05 2006-06-29 Cardiac Dimensions, Inc. Device and method for modifying the shape of a body organ
US20060161169A1 (en) * 2003-05-02 2006-07-20 Cardiac Dimensions, Inc., A Delaware Corporation Device and method for modifying the shape of a body organ
US20060167544A1 (en) * 2005-01-20 2006-07-27 Cardiac Dimensions, Inc. Tissue Shaping Device
US7175653B2 (en) * 2000-05-17 2007-02-13 Xtent Medical Inc. Selectively expandable and releasable stent
US20070066879A1 (en) * 2002-01-30 2007-03-22 Mathis Mark L Body lumen shaping device with cardiac leads

Family Cites Families (125)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US183835A (en) 1876-10-31 Improvement in seed-planters
US626899A (en) * 1899-06-13 Device for moistening and sealing envelops
US18611A (en) 1857-11-10 Winbow-sash
US16628A (en) 1857-02-10 Edwin p
US151961A (en) 1874-06-16 Improvement in looms
US103533A (en) 1870-05-24 Improvement in cutters for cutting the bodies of fruit-baskets
US44568A (en) 1864-10-04 Improvement in
US3995623A (en) 1974-12-23 1976-12-07 American Hospital Supply Corporation Multipurpose flow-directed catheter
FR2306671A1 (en) 1975-04-11 1976-11-05 Rhone Poulenc Ind VALVULAR IMPLANT
US4485816A (en) 1981-06-25 1984-12-04 Alchemia Shape-memory surgical staple apparatus and method for use in surgical suturing
US4550870A (en) 1983-10-13 1985-11-05 Alchemia Ltd. Partnership Stapling device
US5190546A (en) 1983-10-14 1993-03-02 Raychem Corporation Medical devices incorporating SIM alloy elements
CA1303298C (en) 1986-08-06 1992-06-16 Alain Carpentier Flexible cardiac valvular support prosthesis
JP2754067B2 (en) 1989-01-17 1998-05-20 日本ゼオン株式会社 Medical body wall hole plugging jig
US5350420A (en) 1989-07-31 1994-09-27 Baxter International Inc. Flexible annuloplasty ring and holder
US5454365A (en) 1990-11-05 1995-10-03 Bonutti; Peter M. Mechanically expandable arthroscopic retractors
US5261916A (en) 1991-12-12 1993-11-16 Target Therapeutics Detachable pusher-vasoocclusive coil assembly with interlocking ball and keyway coupling
US5265601A (en) 1992-05-01 1993-11-30 Medtronic, Inc. Dual chamber cardiac pacing from a single electrode
US5250071A (en) 1992-09-22 1993-10-05 Target Therapeutics, Inc. Detachable embolic coil assembly using interlocking clasps and method of use
US5458615A (en) 1993-07-06 1995-10-17 Advanced Cardiovascular Systems, Inc. Stent delivery system
FR2710254B1 (en) 1993-09-21 1995-10-27 Mai Christian Multi-branch osteosynthesis clip with self-retaining dynamic compression.
US5417708A (en) 1994-03-09 1995-05-23 Cook Incorporated Intravascular treatment system and percutaneous release mechanism therefor
US5449373A (en) 1994-03-17 1995-09-12 Medinol Ltd. Articulated stent
FR2718035B1 (en) 1994-04-05 1996-08-30 Ela Medical Sa Method for controlling a double atrial pacemaker of the triple chamber type programmable in fallback mode.
WO1995029646A1 (en) 1994-04-29 1995-11-09 Boston Scientific Corporation Medical prosthetic stent and method of manufacture
US5575818A (en) 1995-02-14 1996-11-19 Corvita Corporation Endovascular stent with locking ring
US5554177A (en) 1995-03-27 1996-09-10 Medtronic, Inc. Method and apparatus to optimize pacing based on intensity of acoustic signal
US5676671A (en) 1995-04-12 1997-10-14 Inoue; Kanji Device for introducing an appliance to be implanted into a catheter
JP3199383B2 (en) 1995-04-14 2001-08-20 シュナイダー(ユーエスエー)インク Rolling membrane type stent supply device
EP0866677A4 (en) * 1995-12-14 1999-10-27 Prograft Medical Inc Stent-graft deployment apparatus and method
US5853422A (en) 1996-03-22 1998-12-29 Scimed Life Systems, Inc. Apparatus and method for closing a septal defect
US6077295A (en) * 1996-07-15 2000-06-20 Advanced Cardiovascular Systems, Inc. Self-expanding stent delivery system
US5655548A (en) 1996-09-16 1997-08-12 Circulation, Inc. Method for treatment of ischemic heart disease by providing transvenous myocardial perfusion
US6805128B1 (en) 1996-10-22 2004-10-19 Epicor Medical, Inc. Apparatus and method for ablating tissue
US6395017B1 (en) * 1996-11-15 2002-05-28 C. R. Bard, Inc. Endoprosthesis delivery catheter with sequential stage control
US6352561B1 (en) * 1996-12-23 2002-03-05 W. L. Gore & Associates Implant deployment apparatus
IL119911A (en) * 1996-12-25 2001-03-19 Niti Alloys Tech Ltd Surgical clip
US5961545A (en) * 1997-01-17 1999-10-05 Meadox Medicals, Inc. EPTFE graft-stent composite device
US6275730B1 (en) 1997-03-14 2001-08-14 Uab Research Foundation Method and apparatus for treating cardiac arrythmia
EP1007152A4 (en) 1997-03-14 2004-12-01 Univ Alabama Res Found Method and apparatus for treating cardiac arrhythmia
US5836882A (en) 1997-03-17 1998-11-17 Frazin; Leon J. Method and apparatus of localizing an insertion end of a probe within a biotic structure
US5954761A (en) 1997-03-25 1999-09-21 Intermedics Inc. Implantable endocardial lead assembly having a stent
JP2002503991A (en) 1997-06-13 2002-02-05 マイクロ・テラピューティクス・インコーポレーテッド Syringe and luer hub having novel shape and method of forming embolus
FR2766374B1 (en) 1997-07-24 2000-01-28 Medex Sa DEVICE FOR INJECTING A LIQUID FOR MEDICAL SYRINGE ASSOCIATED WITH THE DEVICE AND METHOD FOR PLACING THE SYRINGE
US6007519A (en) 1997-07-30 1999-12-28 Rosselli; Matteo Central access cannulation device
US5984944A (en) 1997-09-12 1999-11-16 B. Braun Medical, Inc. Introducer for an expandable vascular occlusion device
US6096064A (en) 1997-09-19 2000-08-01 Intermedics Inc. Four chamber pacer for dilated cardiomyopthy
JP4292710B2 (en) 1997-09-24 2009-07-08 エム イー ディ インスチィチュート インク Radially expandable stent
US6099552A (en) 1997-11-12 2000-08-08 Boston Scientific Corporation Gastrointestinal copression clips
US6503271B2 (en) * 1998-01-09 2003-01-07 Cordis Corporation Intravascular device with improved radiopacity
US6129755A (en) 1998-01-09 2000-10-10 Nitinol Development Corporation Intravascular stent having an improved strut configuration
US6190406B1 (en) * 1998-01-09 2001-02-20 Nitinal Development Corporation Intravascular stent having tapered struts
US6342067B1 (en) * 1998-01-09 2002-01-29 Nitinol Development Corporation Intravascular stent having curved bridges for connecting adjacent hoops
US6623521B2 (en) 1998-02-17 2003-09-23 Md3, Inc. Expandable stent with sliding and locking radial elements
CA2323623C (en) 1998-03-27 2009-09-29 Cook Urological Inc. Minimally-invasive medical retrieval device
US6890330B2 (en) 2000-10-27 2005-05-10 Viacor, Inc. Intracardiovascular access (ICVATM) system
US6250308B1 (en) 1998-06-16 2001-06-26 Cardiac Concepts, Inc. Mitral valve annuloplasty ring and method of implanting
NL1009551C2 (en) 1998-07-03 2000-01-07 Cordis Europ Vena cava filter with improvements for controlled ejection.
US7044134B2 (en) 1999-11-08 2006-05-16 Ev3 Sunnyvale, Inc Method of implanting a device in the left atrial appendage
CA2317661C (en) 1998-11-20 2008-04-15 Medical Industries Corp. Hemostatic material insertion device
DK1154738T3 (en) 1999-01-27 2010-07-26 Medtronic Inc Cardiac arrest devices
DE19910233A1 (en) 1999-03-09 2000-09-21 Jostra Medizintechnik Ag Anuloplasty prosthesis
WO2000060995A2 (en) 1999-04-09 2000-10-19 Evalve, Inc. Methods and apparatus for cardiac valve repair
US6317615B1 (en) 1999-04-19 2001-11-13 Cardiac Pacemakers, Inc. Method and system for reducing arterial restenosis in the presence of an intravascular stent
US6299613B1 (en) 1999-04-23 2001-10-09 Sdgi Holdings, Inc. Method for the correction of spinal deformities through vertebral body tethering without fusion
US6602289B1 (en) 1999-06-08 2003-08-05 S&A Rings, Llc Annuloplasty rings of particular use in surgery for the mitral valve
US6997951B2 (en) * 1999-06-30 2006-02-14 Edwards Lifesciences Ag Method and device for treatment of mitral insufficiency
US6391038B2 (en) 1999-07-28 2002-05-21 Cardica, Inc. Anastomosis system and method for controlling a tissue site
US6613075B1 (en) 1999-10-27 2003-09-02 Cordis Corporation Rapid exchange self-expanding stent delivery catheter system
US6368284B1 (en) 1999-11-16 2002-04-09 Cardiac Intelligence Corporation Automated collection and analysis patient care system and method for diagnosing and monitoring myocardial ischemia and outcomes thereof
WO2001050985A1 (en) 2000-01-14 2001-07-19 Viacor Incorporated Tissue annuloplasty band and apparatus and method for fashioning, sizing and implanting the same
US7507252B2 (en) 2000-01-31 2009-03-24 Edwards Lifesciences Ag Adjustable transluminal annuloplasty system
US6989028B2 (en) 2000-01-31 2006-01-24 Edwards Lifesciences Ag Medical system and method for remodeling an extravascular tissue structure
US6821297B2 (en) 2000-02-02 2004-11-23 Robert V. Snyders Artificial heart valve, implantation instrument and method therefor
US6358195B1 (en) * 2000-03-09 2002-03-19 Neoseed Technology Llc Method and apparatus for loading radioactive seeds into brachytherapy needles
US6569198B1 (en) * 2000-03-31 2003-05-27 Richard A. Wilson Mitral or tricuspid valve annuloplasty prosthetic device
US6442427B1 (en) 2000-04-27 2002-08-27 Medtronic, Inc. Method and system for stimulating a mammalian heart
US6589208B2 (en) 2000-06-20 2003-07-08 Applied Medical Resources Corporation Self-deploying catheter assembly
US6419696B1 (en) 2000-07-06 2002-07-16 Paul A. Spence Annuloplasty devices and related heart valve repair methods
WO2004030569A2 (en) 2002-10-01 2004-04-15 Ample Medical, Inc. Devices, systems, and methods for reshaping a heart valve annulus
US6602288B1 (en) 2000-10-05 2003-08-05 Edwards Lifesciences Corporation Minimally-invasive annuloplasty repair segment delivery template, system and method of use
US6723038B1 (en) * 2000-10-06 2004-04-20 Myocor, Inc. Methods and devices for improving mitral valve function
AU2002236640A1 (en) 2000-12-15 2002-06-24 Viacor, Inc. Apparatus and method for replacing aortic valve
US6810882B2 (en) 2001-01-30 2004-11-02 Ev3 Santa Rosa, Inc. Transluminal mitral annuloplasty
WO2002060352A1 (en) 2001-01-30 2002-08-08 Ev3 Santa Rosa, Inc. Medical system and method for remodeling an extravascular tissue structure
WO2002062263A2 (en) 2001-02-05 2002-08-15 Viacor, Inc. Apparatus and method for reducing mitral regurgitation
AU2002240288B2 (en) 2001-02-05 2006-05-18 Viacor, Inc. Method and apparatus for improving mitral valve function
US6643546B2 (en) 2001-02-13 2003-11-04 Quetzal Biomedical, Inc. Multi-electrode apparatus and method for treatment of congestive heart failure
WO2002096275A2 (en) 2001-03-05 2002-12-05 Viacor, Incorporated Apparatus and method for reducing mitral regurgitation
US6955689B2 (en) 2001-03-15 2005-10-18 Medtronic, Inc. Annuloplasty band and method
WO2002076284A2 (en) * 2001-03-23 2002-10-03 Viacor, Inc. Method and apparatus for reducing mitral regurgitation
US7186264B2 (en) 2001-03-29 2007-03-06 Viacor, Inc. Method and apparatus for improving mitral valve function
WO2002078576A2 (en) 2001-03-29 2002-10-10 Viacor, Inc. Method and apparatus for improving mitral valve function
US6619291B2 (en) 2001-04-24 2003-09-16 Edwin J. Hlavka Method and apparatus for catheter-based annuloplasty
US6837901B2 (en) 2001-04-27 2005-01-04 Intek Technology L.L.C. Methods for delivering, repositioning and/or retrieving self-expanding stents
US20020188170A1 (en) 2001-04-27 2002-12-12 Santamore William P. Prevention of myocardial infarction induced ventricular expansion and remodeling
US6676702B2 (en) 2001-05-14 2004-01-13 Cardiac Dimensions, Inc. Mitral valve therapy assembly and method
US6629994B2 (en) 2001-06-11 2003-10-07 Advanced Cardiovascular Systems, Inc. Intravascular stent
US6908482B2 (en) 2001-08-28 2005-06-21 Edwards Lifesciences Corporation Three-dimensional annuloplasty ring and template
US6776784B2 (en) 2001-09-06 2004-08-17 Core Medical, Inc. Clip apparatus for closing septal defects and methods of use
EP1423066B1 (en) * 2001-09-07 2008-07-16 Mardil, Inc. Method and apparatus for external heart stabilization
US7311729B2 (en) 2002-01-30 2007-12-25 Cardiac Dimensions, Inc. Device and method for modifying the shape of a body organ
US6976995B2 (en) 2002-01-30 2005-12-20 Cardiac Dimensions, Inc. Fixed length anchor and pull mitral valve device and method
DE10161543B4 (en) 2001-12-11 2004-02-19 REITAN, Öyvind Implant for the treatment of heart valve insufficiency
SE524709C2 (en) 2002-01-11 2004-09-21 Edwards Lifesciences Ag Device for delayed reshaping of a heart vessel and a heart valve
EP2181668A1 (en) * 2001-12-28 2010-05-05 Edwards Lifesciences AG Device for treating mitral annulus dilatation comprising a balloon catheter and a stent
US6764510B2 (en) 2002-01-09 2004-07-20 Myocor, Inc. Devices and methods for heart valve treatment
WO2003105670A2 (en) * 2002-01-10 2003-12-24 Guided Delivery Systems, Inc. Devices and methods for heart valve repair
US6960229B2 (en) 2002-01-30 2005-11-01 Cardiac Dimensions, Inc. Device and method for modifying the shape of a body organ
US7125420B2 (en) * 2002-02-05 2006-10-24 Viacor, Inc. Method and apparatus for improving mitral valve function
US8287555B2 (en) 2003-02-06 2012-10-16 Guided Delivery Systems, Inc. Devices and methods for heart valve repair
US20040243227A1 (en) 2002-06-13 2004-12-02 Guided Delivery Systems, Inc. Delivery devices and methods for heart valve repair
ATE464028T1 (en) 2002-08-29 2010-04-15 St Jude Medical Cardiology Div IMPLANTABLE DEVICES FOR CONTROLLING THE INNER DIAMETER OF AN OPENING IN THE BODY
US7247134B2 (en) 2002-11-12 2007-07-24 Myocor, Inc. Devices and methods for heart valve treatment
US7112219B2 (en) 2002-11-12 2006-09-26 Myocor, Inc. Devices and methods for heart valve treatment
US7485143B2 (en) 2002-11-15 2009-02-03 Abbott Cardiovascular Systems Inc. Apparatuses and methods for heart valve repair
US20040098116A1 (en) * 2002-11-15 2004-05-20 Callas Peter L. Valve annulus constriction apparatus and method
US7314485B2 (en) 2003-02-03 2008-01-01 Cardiac Dimensions, Inc. Mitral valve device using conditioned shape memory alloy
US20040158321A1 (en) 2003-02-12 2004-08-12 Cardiac Dimensions, Inc. Method of implanting a mitral valve therapy device
US20040220654A1 (en) 2003-05-02 2004-11-04 Cardiac Dimensions, Inc. Device and method for modifying the shape of a body organ
US20040220657A1 (en) 2003-05-02 2004-11-04 Cardiac Dimensions, Inc., A Washington Corporation Tissue shaping device with conformable anchors
US9526616B2 (en) 2003-12-19 2016-12-27 Cardiac Dimensions Pty. Ltd. Mitral valve annuloplasty device with twisted anchor
US20060271174A1 (en) 2003-12-19 2006-11-30 Gregory Nieminen Mitral Valve Annuloplasty Device with Wide Anchor
KR101112544B1 (en) * 2004-12-03 2012-03-13 삼성전자주식회사 Thin film transistor array panel and method for manufacturing the same
US7503932B2 (en) 2006-04-11 2009-03-17 Cardiac Dimensions, Inc. Mitral valve annuloplasty device with vena cava anchor

Patent Citations (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3974526A (en) * 1973-07-06 1976-08-17 Dardik Irving I Vascular prostheses and process for producing the same
US4164046A (en) * 1977-05-16 1979-08-14 Cooley Denton Valve prosthesis
US4588395A (en) * 1978-03-10 1986-05-13 Lemelson Jerome H Catheter and method
US4830023A (en) * 1987-11-27 1989-05-16 Medi-Tech, Incorporated Medical guidewire
US5099838A (en) * 1988-12-15 1992-03-31 Medtronic, Inc. Endocardial defibrillation electrode system
US5104404A (en) * 1989-10-02 1992-04-14 Medtronic, Inc. Articulated stent
US5507295A (en) * 1992-07-01 1996-04-16 British Technology Group Limited Medical devices
US5441515A (en) * 1993-04-23 1995-08-15 Advanced Cardiovascular Systems, Inc. Ratcheting stent
US5507802A (en) * 1993-06-02 1996-04-16 Cardiac Pathways Corporation Method of mapping and/or ablation using a catheter having a tip with fixation means
US5752969A (en) * 1993-06-17 1998-05-19 Sofamor S.N.C. Instrument for the surgical treatment of an intervertebral disc by the anterior route
US5891193A (en) * 1993-11-04 1999-04-06 C.R. Bard, Inc. Non-migrating vascular prosthesis and minimally invasive placement system therefor
US5733325A (en) * 1993-11-04 1998-03-31 C. R. Bard, Inc. Non-migrating vascular prosthesis and minimally invasive placement system
US5935161A (en) * 1993-11-04 1999-08-10 C. R. Bard, Inc. Non-migrating vascular prosthesis and minimally invasive placement system therefor
US5871501A (en) * 1994-01-18 1999-02-16 Datascope Investment Corp. Guide wire with releasable barb anchor
US6027517A (en) * 1994-02-24 2000-02-22 Radiance Medical Systems, Inc. Fixed focal balloon for interactive angioplasty and stent implantation catheter with focalized balloon
US5514161A (en) * 1994-04-05 1996-05-07 Ela Medical S.A. Methods and apparatus for controlling atrial stimulation in a double atrial triple chamber cardiac pacemaker
US5433727A (en) * 1994-08-16 1995-07-18 Sideris; Eleftherios B. Centering buttoned device for the occlusion of large defects for occluding
US5899882A (en) * 1994-10-27 1999-05-04 Novoste Corporation Catheter apparatus for radiation treatment of a desired area in the vascular system of a patient
US5601600A (en) * 1995-09-08 1997-02-11 Conceptus, Inc. Endoluminal coil delivery system having a mechanical release mechanism
US6053900A (en) * 1996-02-16 2000-04-25 Brown; Joe E. Apparatus and method for delivering diagnostic and therapeutic agents intravascularly
US5908404A (en) * 1996-05-13 1999-06-01 Elliott; James B. Methods for inserting an implant
US6056775A (en) * 1996-05-31 2000-05-02 Ave Galway Limited Bifurcated endovascular stents and method and apparatus for their placement
US20060041305A1 (en) * 1996-06-20 2006-02-23 Karl-Lutz Lauterjung Prosthetic repair of body passages
US5741297A (en) * 1996-08-28 1998-04-21 Simon; Morris Daisy occluder and method for septal defect repair
US5895391A (en) * 1996-09-27 1999-04-20 Target Therapeutics, Inc. Ball lock joint and introducer for vaso-occlusive member
US6022371A (en) * 1996-10-22 2000-02-08 Scimed Life Systems, Inc. Locking stent
US6254628B1 (en) * 1996-12-09 2001-07-03 Micro Therapeutics, Inc. Intracranial stent
US6080182A (en) * 1996-12-20 2000-06-27 Gore Enterprise Holdings, Inc. Self-expanding defect closure device and method of making and using
US6241757B1 (en) * 1997-02-04 2001-06-05 Solco Surgical Instrument Co., Ltd. Stent for expanding body's lumen
US6015402A (en) * 1997-03-07 2000-01-18 Sahota; Harvinder Wire perfusion catheter
US6086611A (en) * 1997-09-25 2000-07-11 Ave Connaught Bifurcated stent
US5928258A (en) * 1997-09-26 1999-07-27 Corvita Corporation Method and apparatus for loading a stent or stent-graft into a delivery sheath
US6345198B1 (en) * 1998-01-23 2002-02-05 Pacesetter, Inc. Implantable stimulation system for providing dual bipolar sensing using an electrode positioned in proximity to the tricuspid valve and programmable polarity
US6200336B1 (en) * 1998-06-02 2001-03-13 Cook Incorporated Multiple-sided intraluminal medical device
US6228098B1 (en) * 1998-07-10 2001-05-08 General Surgical Innovations, Inc. Apparatus and method for surgical fastening
US6881220B2 (en) * 1998-09-30 2005-04-19 Bard Peripheral Vascular, Inc. Method of recapturing a stent
US6709425B2 (en) * 1998-09-30 2004-03-23 C. R. Bard, Inc. Vascular inducing implants
US6267783B1 (en) * 1998-11-09 2001-07-31 Cordis Corporation Stent which is easily recaptured and repositioned within the body
US20030040771A1 (en) * 1999-02-01 2003-02-27 Hideki Hyodoh Methods for creating woven devices
US6183512B1 (en) * 1999-04-16 2001-02-06 Edwards Lifesciences Corporation Flexible annuloplasty system
US20030083613A1 (en) * 1999-05-11 2003-05-01 Schaer Alan K. Catheter positioning system
US20030018358A1 (en) * 1999-06-25 2003-01-23 Vahid Saadat Apparatus and methods for treating tissue
US6210432B1 (en) * 1999-06-29 2001-04-03 Jan Otto Solem Device and method for treatment of mitral insufficiency
US20030069636A1 (en) * 1999-06-30 2003-04-10 Solem Jan Otto Method for treatment of mitral insufficiency
US20040102840A1 (en) * 1999-06-30 2004-05-27 Solem Jan Otto Method and device for treatment of mitral insufficiency
US6689164B1 (en) * 1999-10-12 2004-02-10 Jacques Seguin Annuloplasty device for use in minimally invasive procedure
US20050060030A1 (en) * 2000-01-31 2005-03-17 Lashinski Randall T. Remotely activated mitral annuloplasty system and methods
US20020016628A1 (en) * 2000-01-31 2002-02-07 Langberg Jonathan J. Percutaneous mitral annuloplasty with hemodynamic monitoring
US6537314B2 (en) * 2000-01-31 2003-03-25 Ev3 Santa Rosa, Inc. Percutaneous mitral annuloplasty and cardiac reinforcement
US7175653B2 (en) * 2000-05-17 2007-02-13 Xtent Medical Inc. Selectively expandable and releasable stent
US6334864B1 (en) * 2000-05-17 2002-01-01 Aga Medical Corp. Alignment member for delivering a non-symmetric device with a predefined orientation
US20020042621A1 (en) * 2000-06-23 2002-04-11 Liddicoat John R. Automated annular plication for mitral valve repair
US20020049468A1 (en) * 2000-06-30 2002-04-25 Streeter Richard B. Intravascular filter with debris entrapment mechanism
US20020042651A1 (en) * 2000-06-30 2002-04-11 Liddicoat John R. Method and apparatus for performing a procedure on a cardiac valve
US6743219B1 (en) * 2000-08-02 2004-06-01 Cordis Corporation Delivery apparatus for a self-expanding stent
US20020055774A1 (en) * 2000-09-07 2002-05-09 Liddicoat John R. Fixation band for affixing a prosthetic heart valve to tissue
US20020095167A1 (en) * 2000-10-23 2002-07-18 Liddicoat John R. Automated annular plication for mitral valve repair
US20020065554A1 (en) * 2000-10-25 2002-05-30 Streeter Richard B. Mitral shield
US20020087173A1 (en) * 2000-12-28 2002-07-04 Alferness Clifton A. Mitral valve constricting device, system and method
US20050096740A1 (en) * 2001-01-30 2005-05-05 Edwards Lifesciences Ag Transluminal mitral annuloplasty
US6899734B2 (en) * 2001-03-23 2005-05-31 Howmedica Osteonics Corp. Modular implant for fusing adjacent bone structure
US6733521B2 (en) * 2001-04-11 2004-05-11 Trivascular, Inc. Delivery system and method for endovascular graft
US20050027353A1 (en) * 2001-05-14 2005-02-03 Alferness Clifton A. Mitral valve therapy device, system and method
US20050038507A1 (en) * 2001-05-14 2005-02-17 Alferness Clifton A. Mitral valve therapy device, system and method
US20050033419A1 (en) * 2001-05-14 2005-02-10 Alferness Clifton A. Mitral valve therapy device, system and method
US20050027351A1 (en) * 2001-05-14 2005-02-03 Cardiac Dimensions, Inc. A Washington Corporation Mitral valve regurgitation treatment device and method
US6599314B2 (en) * 2001-06-08 2003-07-29 Cordis Corporation Apparatus and method for stenting a vessel using balloon-actuated stent with interlocking elements
US6562067B2 (en) * 2001-06-08 2003-05-13 Cordis Corporation Stent with interlocking elements
US20030078654A1 (en) * 2001-08-14 2003-04-24 Taylor Daniel C. Method and apparatus for improving mitral valve function
US6721598B1 (en) * 2001-08-31 2004-04-13 Pacesetter, Inc. Coronary sinus cardiac lead for stimulating and sensing in the right and left heart and system
US20030078465A1 (en) * 2001-10-16 2003-04-24 Suresh Pai Systems for heart treatment
US20030130730A1 (en) * 2001-10-26 2003-07-10 Cohn William E. Method and apparatus for reducing mitral regurgitation
US20030088305A1 (en) * 2001-10-26 2003-05-08 Cook Incorporated Prostheses for curved lumens
US20030083538A1 (en) * 2001-11-01 2003-05-01 Cardiac Dimensions, Inc. Focused compression mitral valve device and method
US20050021121A1 (en) * 2001-11-01 2005-01-27 Cardiac Dimensions, Inc., A Delaware Corporation Adjustable height focal tissue deflector
US6908478B2 (en) * 2001-12-05 2005-06-21 Cardiac Dimensions, Inc. Anchor and pull mitral valve device and method
US20060142854A1 (en) * 2001-12-05 2006-06-29 Cardiac Dimensions, Inc. Device and method for modifying the shape of a body organ
US20070055293A1 (en) * 2001-12-05 2007-03-08 Alferness Clifton A Device and method for modifying the shape of a body organ
US20040010305A1 (en) * 2001-12-05 2004-01-15 Cardiac Dimensions, Inc. Device and method for modifying the shape of a body organ
US20050149182A1 (en) * 2001-12-05 2005-07-07 Alferness Clifton A. Anchor and pull mitral valve device and method
US20070066879A1 (en) * 2002-01-30 2007-03-22 Mathis Mark L Body lumen shaping device with cardiac leads
US20060030882A1 (en) * 2002-03-06 2006-02-09 Adams John M Transvenous staples, assembly and method for mitral valve repair
US20050065598A1 (en) * 2002-03-11 2005-03-24 Mathis Mark L. Device, assembly and method for mitral valve repair
US20050149180A1 (en) * 2002-05-08 2005-07-07 Mathis Mark L. Body lumen device anchor, device and assembly
US20050149179A1 (en) * 2002-05-08 2005-07-07 Mathis Mark L. Body lumen device anchor, device and assembly
US20050096666A1 (en) * 2002-12-05 2005-05-05 Gordon Lucas S. Percutaneous mitral valve annuloplasty delivery system
US20050119673A1 (en) * 2002-12-05 2005-06-02 Gordon Lucas S. Percutaneous mitral valve annuloplasty device delivery method
US20040111095A1 (en) * 2002-12-05 2004-06-10 Cardiac Dimensions, Inc. Medical device delivery system
US20060020335A1 (en) * 2002-12-26 2006-01-26 Leonard Kowalsky System and method to effect the mitral valve annulus of a heart
US20040133240A1 (en) * 2003-01-07 2004-07-08 Cardiac Dimensions, Inc. Electrotherapy system, device, and method for treatment of cardiac valve dysfunction
US20060161169A1 (en) * 2003-05-02 2006-07-20 Cardiac Dimensions, Inc., A Delaware Corporation Device and method for modifying the shape of a body organ
US20060116758A1 (en) * 2003-06-05 2006-06-01 Gary Swinford Device, System and Method to Affect the Mitral Valve Annulus of a Heart
US20050004667A1 (en) * 2003-06-05 2005-01-06 Cardiac Dimensions, Inc. A Delaware Corporation Device, system and method to affect the mitral valve annulus of a heart
US20050010240A1 (en) * 2003-06-05 2005-01-13 Cardiac Dimensions Inc., A Washington Corporation Device and method for modifying the shape of a body organ
US20050137451A1 (en) * 2003-12-19 2005-06-23 Cardiac Dimensions, Inc. A Washington Corporation Tissue shaping device with integral connector and crimp
US20050137450A1 (en) * 2003-12-19 2005-06-23 Cardiac Dimensions, Inc., A Washington Corporation Tapered connector for tissue shaping device
US20050137685A1 (en) * 2003-12-19 2005-06-23 Cardiac Dimensions, Inc., A Washington Corporation Reduced length tissue shaping device
US20050137449A1 (en) * 2003-12-19 2005-06-23 Cardiac Dimensions, Inc. Tissue shaping device with self-expanding anchors
US20060167544A1 (en) * 2005-01-20 2006-07-27 Cardiac Dimensions, Inc. Tissue Shaping Device

Cited By (107)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8460173B2 (en) 1997-01-02 2013-06-11 Edwards Lifesciences, Llc Heart wall tension reduction apparatus and method
US8267852B2 (en) 1997-01-02 2012-09-18 Edwards Lifesciences, Llc Heart wall tension reduction apparatus and method
US7883539B2 (en) 1997-01-02 2011-02-08 Edwards Lifesciences Llc Heart wall tension reduction apparatus and method
US8226711B2 (en) 1997-12-17 2012-07-24 Edwards Lifesciences, Llc Valve to myocardium tension members device and method
US7766812B2 (en) 2000-10-06 2010-08-03 Edwards Lifesciences Llc Methods and devices for improving mitral valve function
US9198757B2 (en) 2000-10-06 2015-12-01 Edwards Lifesciences, Llc Methods and devices for improving mitral valve function
US7776053B2 (en) 2000-10-26 2010-08-17 Boston Scientific Scimed, Inc. Implantable valve system
US7828843B2 (en) 2001-05-14 2010-11-09 Cardiac Dimensions, Inc. Mitral valve therapy device, system and method
US8439971B2 (en) 2001-11-01 2013-05-14 Cardiac Dimensions, Inc. Adjustable height focal tissue deflector
US7674287B2 (en) 2001-12-05 2010-03-09 Cardiac Dimensions, Inc. Device and method for modifying the shape of a body organ
US8172898B2 (en) 2001-12-05 2012-05-08 Cardiac Dimensions, Inc. Device and method for modifying the shape of a body organ
US7857846B2 (en) 2001-12-05 2010-12-28 Cardiac Dimensions, Inc. Device and method for modifying the shape of a body organ
US7678145B2 (en) 2002-01-09 2010-03-16 Edwards Lifesciences Llc Devices and methods for heart valve treatment
US8506624B2 (en) 2002-01-09 2013-08-13 Edwards Lifesciences, Llc Devices and methods for heart valve treatment
US8070805B2 (en) 2002-01-09 2011-12-06 Edwards Lifesciences Llc Devices and methods for heart valve treatment
US9956076B2 (en) 2002-01-30 2018-05-01 Cardiac Dimensions Pty. Ltd. Tissue shaping device
US9597186B2 (en) 2002-01-30 2017-03-21 Cardiac Dimensions Pty. Ltd. Tissue shaping device
US7828842B2 (en) 2002-01-30 2010-11-09 Cardiac Dimensions, Inc. Tissue shaping device
US10052205B2 (en) 2002-01-30 2018-08-21 Cardiac Dimensions Pty. Ltd. Fixed anchor and pull mitral valve device and method
US8974525B2 (en) 2002-01-30 2015-03-10 Cardiac Dimensions Pty. Ltd. Tissue shaping device
US10206778B2 (en) 2002-01-30 2019-02-19 Cardiac Dimensions Pty. Ltd. Tissue shaping device
US9320600B2 (en) 2002-01-30 2016-04-26 Cardiac Dimensions Pty. Ltd. Tissue shaping device
US9827098B2 (en) 2002-01-30 2017-11-28 Cardiac Dimensions Pty. Ltd. Fixed anchor and pull mitral valve device and method
US10327900B2 (en) 2002-01-30 2019-06-25 Cardiac Dimensions Pty. Ltd. Tissue shaping device
US9827099B2 (en) 2002-01-30 2017-11-28 Cardiac Dimensions Pty. Ltd. Tissue shaping device
US9408695B2 (en) 2002-01-30 2016-08-09 Cardiac Dimensions Pty. Ltd. Fixed anchor and pull mitral valve device and method
US9827100B2 (en) 2002-01-30 2017-11-28 Cardiac Dimensions Pty. Ltd. Tissue shaping device
US7682385B2 (en) 2002-04-03 2010-03-23 Boston Scientific Corporation Artificial valve
US7828841B2 (en) 2002-05-08 2010-11-09 Cardiac Dimensions, Inc. Device and method for modifying the shape of a body organ
US9474608B2 (en) 2002-05-08 2016-10-25 Cardiac Dimensions Pty. Ltd. Body lumen device anchor, device and assembly
US10456258B2 (en) 2002-05-08 2019-10-29 Cardiac Dimensions Pty. Ltd. Tissue shaping device
US8062358B2 (en) 2002-05-08 2011-11-22 Cardiac Dimensions, Inc. Body lumen device anchor, device and assembly
US10456257B2 (en) 2002-05-08 2019-10-29 Cardiac Dimensions Pty. Ltd. Tissue shaping device
US7666224B2 (en) 2002-11-12 2010-02-23 Edwards Lifesciences Llc Devices and methods for heart valve treatment
US8182529B2 (en) 2002-12-05 2012-05-22 Cardiac Dimensions, Inc. Percutaneous mitral valve annuloplasty device delivery method
US8075608B2 (en) 2002-12-05 2011-12-13 Cardiac Dimensions, Inc. Medical device delivery system
US7837729B2 (en) 2002-12-05 2010-11-23 Cardiac Dimensions, Inc. Percutaneous mitral valve annuloplasty delivery system
US7780627B2 (en) 2002-12-30 2010-08-24 Boston Scientific Scimed, Inc. Valve treatment catheter and methods
US7758639B2 (en) 2003-02-03 2010-07-20 Cardiac Dimensions, Inc. Mitral valve device using conditioned shape memory alloy
US20040220657A1 (en) * 2003-05-02 2004-11-04 Cardiac Dimensions, Inc., A Washington Corporation Tissue shaping device with conformable anchors
US11311380B2 (en) 2003-05-02 2022-04-26 Cardiac Dimensions Pty. Ltd. Device and method for modifying the shape of a body organ
US11452603B2 (en) 2003-05-02 2022-09-27 Cardiac Dimensions Pty. Ltd. Device and method for modifying the shape of a body organ
US7887582B2 (en) 2003-06-05 2011-02-15 Cardiac Dimensions, Inc. Device and method for modifying the shape of a body organ
US9956077B2 (en) 2003-12-19 2018-05-01 Cardiac Dimensions Pty. Ltd. Mitral valve annuloplasty device with twisted anchor
US8128681B2 (en) 2003-12-19 2012-03-06 Boston Scientific Scimed, Inc. Venous valve apparatus, system, and method
US9526616B2 (en) 2003-12-19 2016-12-27 Cardiac Dimensions Pty. Ltd. Mitral valve annuloplasty device with twisted anchor
US11318016B2 (en) 2003-12-19 2022-05-03 Cardiac Dimensions Pty. Ltd. Mitral valve annuloplasty device with twisted anchor
US7854761B2 (en) 2003-12-19 2010-12-21 Boston Scientific Scimed, Inc. Methods for venous valve replacement with a catheter
US11109971B2 (en) 2003-12-19 2021-09-07 Cardiac Dimensions Pty. Ltd. Mitral valve annuloplasty device with twisted anchor
US9301843B2 (en) 2003-12-19 2016-04-05 Boston Scientific Scimed, Inc. Venous valve apparatus, system, and method
US10869764B2 (en) 2003-12-19 2020-12-22 Boston Scientific Scimed, Inc. Venous valve apparatus, system, and method
US7837728B2 (en) 2003-12-19 2010-11-23 Cardiac Dimensions, Inc. Reduced length tissue shaping device
US10449048B2 (en) 2003-12-19 2019-10-22 Cardiac Dimensions Pty. Ltd. Mitral valve annuloplasty device with twisted anchor
US8721717B2 (en) 2003-12-19 2014-05-13 Boston Scientific Scimed, Inc. Venous valve apparatus, system, and method
US7794496B2 (en) 2003-12-19 2010-09-14 Cardiac Dimensions, Inc. Tissue shaping device with integral connector and crimp
US7814635B2 (en) 2003-12-19 2010-10-19 Cardiac Dimensions, Inc. Method of making a tissue shaping device
US10166102B2 (en) 2003-12-19 2019-01-01 Cardiac Dimensions Pty. Ltd. Mitral valve annuloplasty device with twisted anchor
US8932349B2 (en) 2004-09-02 2015-01-13 Boston Scientific Scimed, Inc. Cardiac valve, system, and method
US8002824B2 (en) 2004-09-02 2011-08-23 Boston Scientific Scimed, Inc. Cardiac valve, system, and method
US9918834B2 (en) 2004-09-02 2018-03-20 Boston Scientific Scimed, Inc. Cardiac valve, system and method
US11033257B2 (en) 2005-01-20 2021-06-15 Cardiac Dimensions Pty. Ltd. Tissue shaping device
US12016538B2 (en) 2005-01-20 2024-06-25 Cardiac Dimensions Pty. Ltd. Tissue shaping device
US9622859B2 (en) 2005-02-01 2017-04-18 Boston Scientific Scimed, Inc. Filter system and method
US7854755B2 (en) 2005-02-01 2010-12-21 Boston Scientific Scimed, Inc. Vascular catheter, system, and method
US7780722B2 (en) 2005-02-07 2010-08-24 Boston Scientific Scimed, Inc. Venous valve apparatus, system, and method
US7670368B2 (en) 2005-02-07 2010-03-02 Boston Scientific Scimed, Inc. Venous valve apparatus, system, and method
US9370419B2 (en) 2005-02-23 2016-06-21 Boston Scientific Scimed, Inc. Valve apparatus, system and method
US7867274B2 (en) 2005-02-23 2011-01-11 Boston Scientific Scimed, Inc. Valve apparatus, system and method
US9808341B2 (en) 2005-02-23 2017-11-07 Boston Scientific Scimed Inc. Valve apparatus, system and method
US7722666B2 (en) 2005-04-15 2010-05-25 Boston Scientific Scimed, Inc. Valve apparatus, system and method
US9861473B2 (en) 2005-04-15 2018-01-09 Boston Scientific Scimed Inc. Valve apparatus, system and method
US8512399B2 (en) 2005-04-15 2013-08-20 Boston Scientific Scimed, Inc. Valve apparatus, system and method
US8012198B2 (en) 2005-06-10 2011-09-06 Boston Scientific Scimed, Inc. Venous valve, system, and method
US11337812B2 (en) 2005-06-10 2022-05-24 Boston Scientific Scimed, Inc. Venous valve, system and method
US9028542B2 (en) 2005-06-10 2015-05-12 Boston Scientific Scimed, Inc. Venous valve, system, and method
US7951189B2 (en) 2005-09-21 2011-05-31 Boston Scientific Scimed, Inc. Venous valve, system, and method with sinus pocket
US8460365B2 (en) 2005-09-21 2013-06-11 Boston Scientific Scimed, Inc. Venous valve, system, and method with sinus pocket
US9474609B2 (en) 2005-09-21 2016-10-25 Boston Scientific Scimed, Inc. Venous valve, system, and method with sinus pocket
US10548734B2 (en) 2005-09-21 2020-02-04 Boston Scientific Scimed, Inc. Venous valve, system, and method with sinus pocket
US8672997B2 (en) 2005-09-21 2014-03-18 Boston Scientific Scimed, Inc. Valve with sinus
US7799038B2 (en) 2006-01-20 2010-09-21 Boston Scientific Scimed, Inc. Translumenal apparatus, system, and method
US9259318B2 (en) 2006-04-19 2016-02-16 Beth Israel Deaconess Medical Center Pericardial reinforcement device
US20080021266A1 (en) * 2006-04-19 2008-01-24 Laham Roger J Pericardial reinforcement device
US11285005B2 (en) 2006-07-17 2022-03-29 Cardiac Dimensions Pty. Ltd. Mitral valve annuloplasty device with twisted anchor
US8348999B2 (en) 2007-01-08 2013-01-08 California Institute Of Technology In-situ formation of a valve
US8133270B2 (en) 2007-01-08 2012-03-13 California Institute Of Technology In-situ formation of a valve
US11504239B2 (en) 2007-02-05 2022-11-22 Boston Scientific Scimed, Inc. Percutaneous valve, system and method
US9421083B2 (en) 2007-02-05 2016-08-23 Boston Scientific Scimed Inc. Percutaneous valve, system and method
US7967853B2 (en) 2007-02-05 2011-06-28 Boston Scientific Scimed, Inc. Percutaneous valve, system and method
US8470023B2 (en) 2007-02-05 2013-06-25 Boston Scientific Scimed, Inc. Percutaneous valve, system, and method
US10226344B2 (en) 2007-02-05 2019-03-12 Boston Scientific Scimed, Inc. Percutaneous valve, system and method
US8828079B2 (en) 2007-07-26 2014-09-09 Boston Scientific Scimed, Inc. Circulatory valve, system and method
US8414641B2 (en) 2007-12-21 2013-04-09 Boston Scientific Scimed, Inc. Valve with delayed leaflet deployment
US7892276B2 (en) 2007-12-21 2011-02-22 Boston Scientific Scimed, Inc. Valve with delayed leaflet deployment
US8137394B2 (en) 2007-12-21 2012-03-20 Boston Scientific Scimed, Inc. Valve with delayed leaflet deployment
US8006594B2 (en) 2008-08-11 2011-08-30 Cardiac Dimensions, Inc. Catheter cutting tool
US8250960B2 (en) 2008-08-11 2012-08-28 Cardiac Dimensions, Inc. Catheter cutting tool
US9668859B2 (en) 2011-08-05 2017-06-06 California Institute Of Technology Percutaneous heart valve delivery systems
US9744037B2 (en) 2013-03-15 2017-08-29 California Institute Of Technology Handle mechanism and functionality for repositioning and retrieval of transcatheter heart valves
US11181980B2 (en) 2013-05-20 2021-11-23 Intel Corporation Natural human-computer interaction for virtual personal assistant systems
US11609631B2 (en) 2013-05-20 2023-03-21 Intel Corporation Natural human-computer interaction for virtual personal assistant systems
US12099651B2 (en) 2013-05-20 2024-09-24 Intel Corporation Natural human-computer interaction for virtual personal assistant systems
CN108348759A (en) * 2015-11-20 2018-07-31 心脏起搏器股份公司 Delivery apparatus and method for leadless cardiac device
US11399939B2 (en) 2017-03-08 2022-08-02 Cardiac Dimensions Pty. Ltd. Methods and devices for reducing paravalvular leakage
US10390953B2 (en) 2017-03-08 2019-08-27 Cardiac Dimensions Pty. Ltd. Methods and devices for reducing paravalvular leakage
CN114222545A (en) * 2019-07-12 2022-03-22 Tau-Pnu医疗有限公司 Cerclage operation device with position fixing device
US11596771B2 (en) 2020-12-14 2023-03-07 Cardiac Dimensions Pty. Ltd. Modular pre-loaded medical implants and delivery systems

Also Published As

Publication number Publication date
AU2009201343B2 (en) 2011-01-27
US7828841B2 (en) 2010-11-09
ES2318130T3 (en) 2009-05-01
EP2289467A1 (en) 2011-03-02
JP2006502749A (en) 2006-01-26
AU2003228865A1 (en) 2003-11-11
DE60325356D1 (en) 2009-01-29
US7857846B2 (en) 2010-12-28
ATE417573T1 (en) 2009-01-15
CA2950492A1 (en) 2003-11-20
AU2003228865B2 (en) 2009-01-15
WO2003094801A1 (en) 2003-11-20
CA2483024A1 (en) 2003-11-20
JP2009219883A (en) 2009-10-01
CA2483024C (en) 2011-09-13
US20080097594A1 (en) 2008-04-24
JP5038352B2 (en) 2012-10-03
EP1513474B1 (en) 2008-12-17
CA2877641C (en) 2017-01-17
EP1513474A1 (en) 2005-03-16
CA2877641A1 (en) 2003-11-20
AU2009201343A1 (en) 2009-04-30
CA2744868C (en) 2015-12-29
US20060142854A1 (en) 2006-06-29
EP2039325A1 (en) 2009-03-25
JP4351151B2 (en) 2009-10-28
CA2744868A1 (en) 2003-11-20
CA2950492C (en) 2018-12-04

Similar Documents

Publication Publication Date Title
US11452603B2 (en) Device and method for modifying the shape of a body organ
US7828841B2 (en) Device and method for modifying the shape of a body organ
US8172898B2 (en) Device and method for modifying the shape of a body organ
US7311729B2 (en) Device and method for modifying the shape of a body organ
US6960229B2 (en) Device and method for modifying the shape of a body organ
US11109971B2 (en) Mitral valve annuloplasty device with twisted anchor
US7887582B2 (en) Device and method for modifying the shape of a body organ
US20070239270A1 (en) Mitral Valve Annuloplasty Device with Vena Cava Anchor

Legal Events

Date Code Title Description
AS Assignment

Owner name: CARDIAC DIMENSIONS, INC., WASHINGTON

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ALFERNESS, CLIFTON A.;ADAMS, JOHN M.;MATHIS, MARK L.;AND OTHERS;REEL/FRAME:022289/0664;SIGNING DATES FROM 20030811 TO 20040727

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION