US20050027351A1 - Mitral valve regurgitation treatment device and method - Google Patents

Mitral valve regurgitation treatment device and method Download PDF

Info

Publication number
US20050027351A1
US20050027351A1 US10/742,747 US74274703A US2005027351A1 US 20050027351 A1 US20050027351 A1 US 20050027351A1 US 74274703 A US74274703 A US 74274703A US 2005027351 A1 US2005027351 A1 US 2005027351A1
Authority
US
United States
Prior art keywords
anchor
tissue shaping
proximal
distal
shaping device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/742,747
Inventor
David Reuter
Gregory Nieminen
Nathan Aronson
Lucas Gordon
Garrett Beget
Clif Alferness
Mark Mathis
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cardiac Dimensions Inc
Original Assignee
Cardiac Dimensions Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cardiac Dimensions Inc filed Critical Cardiac Dimensions Inc
Priority to US10/742,747 priority Critical patent/US20050027351A1/en
Assigned to CARDIAC DIMENSIONS, INC. reassignment CARDIAC DIMENSIONS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BEGET, GARRETT, REUTER, DAVID, MATHIS, MARK L., ALFERNESS, CLIF, ARONSON, NATHAN, GORDON, LUCAS, NIEMINEN, GREGORY
Priority to ES04814956.1T priority patent/ES2581321T3/en
Priority to CA2775628A priority patent/CA2775628C/en
Priority to CA2546523A priority patent/CA2546523C/en
Priority to EP04814956.1A priority patent/EP1708649B1/en
Priority to AU2004308348A priority patent/AU2004308348B2/en
Priority to ES18153725T priority patent/ES2804730T3/en
Priority to PCT/US2004/042824 priority patent/WO2005062837A2/en
Priority to JP2006545560A priority patent/JP4794460B2/en
Priority to EP16155644.4A priority patent/EP3037065B1/en
Priority to EP18153725.9A priority patent/EP3332744B1/en
Priority to ES16155644.4T priority patent/ES2663219T3/en
Publication of US20050027351A1 publication Critical patent/US20050027351A1/en
Assigned to CARDIAC DIMENSIONS, INC. reassignment CARDIAC DIMENSIONS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MATHIS, MARK L., ALFERNESS, CLIFTON A., ARONSON, NATHAN, BEGET, GARRETT, GORDON, LUCAS, NIEMINEN, GREGORY, REUTER, DAVID
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2442Annuloplasty rings or inserts for correcting the valve shape; Implants for improving the function of a native heart valve
    • A61F2/2451Inserts in the coronary sinus for correcting the valve shape
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S623/00Prosthesis, i.e. artificial body members, parts thereof, or aids and accessories therefor
    • Y10S623/902Method of implanting
    • Y10S623/904Heart

Definitions

  • This invention relates generally to devices and methods for shaping tissue by deploying one or more devices in body lumens adjacent to the tissue.
  • One particular application of the invention relates to a treatment for mitral valve regurgitation through deployment of a tissue shaping device in the patient's coronary sinus or great cardiac vein.
  • the mitral valve is a portion of the heart that is located between the chambers of the left atrium and the left ventricle. When the left ventricle contracts to pump blood throughout the body, the mitral valve closes to prevent the blood being pumped back into the left atrium. In some patients, whether due to genetic malformation, disease or injury, the mitral valve fails to close properly causing a condition known as regurgitation, whereby blood is pumped into the atrium upon each contraction of the heart muscle. Regurgitation is a serious, often rapidly deteriorating, condition that reduces circulatory efficiency and must be corrected.
  • Two of the more common techniques for restoring the function of a damaged mitral valve are to surgically replace the valve with a mechanical valve or to suture a flexible ring around the valve to support it.
  • Each of these procedures is highly invasive because access to the heart is obtained through an opening in the patient's chest.
  • Patients with mitral valve regurgitation are often relatively frail thereby increasing the risks associated with such an operation.
  • tissue shaping device in the cardiac sinus and vessel that passes adjacent the mitral valve.
  • the tissue shaping device is designed to push the vessel and surrounding tissue against the valve to aid its closure.
  • This technique has the advantage over other methods of mitral valve repair because it can be performed percutaneously without opening the chest wall. Examples of such devices are shown in U.S. patent appl. Ser. No. 10/142,637, “Body Lumen Device Anchor, Device and Assembly” filed May 8, 2002; U.S. patent appl. Ser. No. 10/331,143, “System and Method to Effect the Mitral Valve Annulus of a Heart” filed Dec. 26, 2002; and U.S. patent appl. Ser. No. 10/429,172, “Device and Method for Modifying the Shape of a Body Organ,” filed May 2, 2003. The disclosures of these patent applications are incorporated herein by reference.
  • a tissue shaping device When deploying a tissue shaping device in a vein or artery to modify adjacent tissue, care must be taken to avoid constricting nearby arteries.
  • a tissue shaping device may be deployed in the coronary sinus to modify the shape of the adjacent mitral valve annulus.
  • Coronary arteries such as the circumflex artery may cross between the coronary sinus and the heart, however, raising the danger that deployment of the support may limit perfusion to a portion of the heart by constricting one of those arteries. See, e.g., the following applications, the disclosures of which are incorporated herein by reference: U.S. patent appl. Ser. No. 09/855,945, “Mitral Valve Therapy Device, System and Method,” filed May 14, 2001 and published Nov.
  • the anatomy of the heart and its surrounding vessels varies from patient to patient.
  • the location of the circumflex artery and other key arteries with respect to the coronary sinus can vary.
  • the distance along the coronary sinus from the ostium to the crossing point with the circumflex artery can vary from patient to patient.
  • the diameter and length of the coronary sinus can vary from patient to patient.
  • tissue shaping devices, sets of tissue shaping devices and methods that maximize the therapeutic effect (i.e., reduction of mitral valve regurgitation) while minimizing adverse effects, such as an unacceptable constriction of the circumflex artery or other coronary arteries.
  • the tissue shaping devices, sets of devices and methods of this invention enable the user to adapt the therapy to the patient's anatomy.
  • the invention is a method of treating regurgitation of a mitral valve in a patient's heart, the method including the steps of delivering a tissue shaping device to the coronary sinus, such as in a catheter having an outer diameter no more than nine or ten french; and deploying the tissue shaping device to reduce mitral valve regurgitation, with the deploying step including the step of applying a force through the coronary sinus wall toward the mitral valve solely proximal to a crossover point where a coronary artery passes between a coronary sinus and the mitral valve.
  • the device is deployed with its distal end proximal to the crossover point, and in some embodiments the distal end is deployed distal to the crossover point.
  • the method may also include the step of determining the crossover point.
  • the tissue shaping device includes a distal anchor
  • the deploying step may include the step of anchoring the distal anchor proximal to the crossover point, such as by expanding the distal anchor through self-expansion or through the application of an actuation force.
  • the anchoring force may be one-two pounds.
  • the deploying step further includes the step of applying a proximally directed force on the distal anchor—in some embodiments from outside the patient—such as by moving the proximal anchor proximally.
  • the tissue shaping device may further include a proximal anchor and a connector disposed between the distal anchor and the proximal anchor, with the deploying step further including the step of anchoring the proximal anchor (e.g., in the coronary sinus or at least partially outside the coronary sinus), such as by expanding the proximal anchor through self-expansion or through the application of an actuation force.
  • the step of anchoring the proximal anchor may be performed before or after the step of applying a proximally directed force on the distal anchor.
  • the deploying step of the method may include the step of deploying a distal anchor of the device from a distal end of a catheter.
  • the method may also include the step of recapturing the distal anchor into a catheter and optionally redeploying the distal anchor.
  • the deploying step of the method may also include the step of deploying a proximal anchor of the device from a distal end of a catheter, and the may include the step of recapturing the proximal anchor into a catheter and optionally redeploying the distal anchor.
  • the entire device may also be recaptured by a catheter and redeployed from the catheter.
  • the method may also include the step of selecting the tissue shaping device from a set of tissue shaping devices that includes tissue shaping devices of a plurality of lengths and/or tissue shaping devices of a plurality of anchor sizes prior to the delivering step.
  • the invention is also a set of devices for use in treating mitral valve regurgitation, with the set including a plurality of tissue shaping devices having different lengths, each of the tissue shaping devices being configured to be deliverable to a coronary sinus of a patient within a catheter having an outer diameter no greater than nine or ten french.
  • the tissue shaping devices each include an anchor (such as a distal anchor or a proximal anchor) having an expanded configuration and an unexpanded configuration for delivery via catheter.
  • at least one tissue shaping device in the set has a length 60 mm or less and at least one tissue shaping device in the set has a length more than 60 mm.
  • the distal anchor of each tissue shaping device in the set in its expanded configuration has a diameter equal to or greater than a coronary sinus diameter at a distal anchor location (e.g., about 7 mm. to about 16 mm.), and the proximal anchor of each tissue shaping device in the set in its expanded configuration has a diameter equal to or greater than a coronary sinus diameter at a proximal anchor location (e.g., about 9 mm. to about 20 mm.)
  • the anchors are self-expanding, in other sets the anchors are actuatable, while still other sets have at least one device with a self-expanding anchor and one with an actuatable anchor.
  • the set may also include a catheter having an outer diameter no greater than nine to ten french.
  • Another aspect of the invention is a set of devices for use in treating mitral valve regurgitation, with the set including a plurality of tissue shaping devices each with an anchor having an unexpanded configuration and an expanded configuration, the anchors having different diameters when in their expanded configurations, and each of the tissue shaping devices being configured to be deliverable to a coronary sinus of a patient within a catheter having an outer diameter no greater than nine to ten french.
  • the anchor is a distal anchor (such as a self-expanding anchor or an actuatable anchor), and the devices further include a proximal anchor (such as a self-expanding anchor or an actuatable anchor) having an unexpanded configuration and an expanded configuration, the proximal anchors having different diameters when in their expanded configurations.
  • the diameters of the distal anchors of the tissue shaping devices in the set in their expanded configurations range from about 7 mm. to about 16 mm.
  • the diameters of the proximal anchors of the tissue shaping devices in the set in their expanded configurations range from about 9 mm. to about 20 mm.
  • the set may also include a catheter having an outer diameter no greater than nine to ten french.
  • FIG. 1 is a schematic view of a tissue shaping device according to a preferred embodiment as deployed within a coronary sinus.
  • FIG. 2 is a schematic view of a tissue shaping device according to an alternative embodiment as deployed within a coronary sinus.
  • FIG. 3 is a schematic view of a tissue shaping device being delivered to a coronary sinus within a catheter.
  • FIG. 4 is a schematic view of a partially deployed tissue shaping device within a coronary sinus.
  • FIG. 5 is a schematic view of a partially deployed and cinched tissue shaping device within a coronary sinus.
  • FIG. 6 is an elevational view of yet another embodiment of a tissue shaping device according to this invention.
  • FIG. 7 is a schematic drawing showing a method of determining the crossover point between a circumflex artery and a coronary sinus.
  • FIG. 8 is a perspective drawing of a tissue shaping device according to one embodiment of this invention.
  • FIG. 9 is a partial sectional view of the tissue shaping device of FIG. 8 in an unexpanded configuration within a catheter.
  • FIG. 10 is a perspective view of an anchor for use with a tissue shaping device according to this invention.
  • FIG. 11 is a perspective view of another anchor for use with a tissue shaping device according to this invention.
  • FIG. 12 is a perspective view of yet another anchor for use with a tissue shaping device according to this invention.
  • FIG. 13 is a perspective view of still another anchor for use with a tissue shaping device according to this invention.
  • FIG. 14 is a perspective view of another anchor for use with a tissue shaping device according to this invention.
  • FIG. 15 is a perspective view of yet another anchor for use with a tissue shaping device according to this invention.
  • FIG. 16 is a perspective view of part of an anchor for use with a tissue shaping device according to this invention.
  • FIG. 17 is a perspective view of still another anchor for use with a tissue shaping device according to this invention.
  • FIG. 18 is a perspective view of another anchor for use with a tissue shaping device according to this invention.
  • FIG. 19 is a perspective view of yet another anchor for use with a tissue shaping. device according to this invention.
  • FIG. 20 is a perspective view of still another anchor for use with a tissue shaping device according to this invention.
  • FIG. 21 is a perspective view of a tandem anchor for use with a tissue shaping device according to this invention.
  • FIG. 22 is a perspective view of a connector with integral anchor crimps for us in a tissue shaping device according to this invention.
  • FIG. 23 is a perspective view of a tissue shaping device employing the connector of FIG. 22 .
  • FIG. 24 is a perspective view of another connector for use with a tissue shaping device according to this invention.
  • FIG. 25 is a perspective view of yet another connector for use with a tissue shaping device according to this invention.
  • FIG. 26 is a side view of a connector for use with a tissue shaping device according to this invention.
  • FIG. 27 is a side view of another connector for use with a tissue shaping device according to this invention.
  • FIG. 28 is a perspective view of yet another tissue shaping device according to this invention.
  • FIG. 29 is a side view of the tissue shaping device shown in FIG. 28 .
  • FIG. 30 is a schematic view of another embodiment demonstrating the method of this invention.
  • FIG. 31 is a schematic view of yet another embodiment demonstrating the method of this invention.
  • FIG. 1 shows a partial view of a human heart 10 and some surrounding anatomical structures.
  • the main coronary venous vessel is the coronary sinus 12 , defined as starting at the ostium 14 or opening to the right atrium and extending through the great cardiac vein to the anterior interventricular (“AIV”) sulcus or groove 16 .
  • AIV anterior interventricular
  • FIG. 1 shows a partial view of a human heart 10 and some surrounding anatomical structures.
  • the main coronary venous vessel is the coronary sinus 12 , defined as starting at the ostium 14 or opening to the right atrium and extending through the great cardiac vein to the anterior interventricular (“AIV”) sulcus or groove 16 .
  • AIV anterior interventricular
  • the mitral valve 20 surrounded by the mitral valve annulus 22 and adjacent to at least a portion of the coronary sinus 12 .
  • the circumflex artery 24 shown in FIG. 1 passes between the coronary sinus 12 and the heart. The relative size and location of each of these structures vary from person to person
  • tissue shaping device 30 Disposed within the coronary sinus 12 is a tissue shaping device 30 . As shown in FIG. 1 , the distal end 32 of device 30 is disposed proximal to circumflex artery 24 to reshape the adjacent mitral valve annulus 22 and thereby reduce mitral valve regurgitation. As shown in FIG. 1 , device 30 has a distal anchor 34 , a proximal anchor 36 and a connector 38 .
  • proximal anchor 36 is deployed completely within the coronary sinus. In the alternative embodiment shown in FIG. 2 , proximal anchor is deployed at least partially outside the coronary sinus.
  • FIGS. 3-6 show a method according to this invention.
  • a catheter 50 is maneuvered in a manner known in the art through the ostium 14 into coronary sinus 12 .
  • catheter 50 preferably has an outer diameter no greater than ten french, most preferably with an outer diameter no more than nine french.
  • device 30 Disposed within catheter 50 is device 30 in an unexpanded configuration, and extending back through catheter 50 from device 30 to the exterior of the patient is a tether or control wire 52 .
  • control wire 52 may include multiple tether and control wire elements, such as those described in U.S. patent application Ser. No. 10/331,143.
  • the device is deployed as far distally as possible without applying substantial compressive force on the circumflex or other major coronary artery.
  • the distal end of catheter 50 is disposed at a distal anchor location proximal of the crossover point between the circumflex artery 24 and the coronary sinus 12 as shown in FIG. 3 .
  • catheter 50 is withdrawn proximally while device 30 is held stationary by control wire 52 to uncover distal anchor 34 at the distal anchor location within coronary sinus 12 .
  • the catheter may be held stationary while device 30 is advanced distally to uncover the distal anchor.
  • Distal anchor 34 is either a self-expanding anchor or an actuatable anchor or a combination self-expanding and actuatable anchor. Once uncovered, distal anchor 34 self-expands, or is expanded through the application of an actuation force (such as a force transmitted through control wire 52 ), to engage the inner wall of coronary sinus 12 , as shown in FIG. 4 .
  • the distal anchor's anchoring force i.e., the force with which the distal anchor resists moving in response to a proximally-directed force, must be sufficient not only to maintain the device's position within the coronary sinus but also to enable the device to be used to reshape adjacent tissue in a manner such as that described below.
  • distal anchor 34 engages the coronary sinus wall to provide an anchoring force of at least one pound, most preferably an anchoring force of at least two pounds.
  • the anchor's expansion energy to supply the anchoring force comes from strain energy stored in the anchor due to its compression for catheter delivery, from an actuation force, or a combination of both, depending on anchor design.
  • catheter 50 While device 30 is held in place by the anchoring force of distal anchor 34 , catheter 50 is withdrawn further proximally to a point just distal of proximal anchor 36 , as shown in FIG. 5 .
  • a proximally directed force is then exerted on distal anchor 34 by control wire 52 through connector 38 .
  • the distance between the distal and proximal anchors along the connector is fixed, so the proximally directed force moves proximal anchor 36 proximally with respect to the coronary sinus while distal anchor 34 remains stationary with respect to the coronary sinus.
  • the proximal anchor is moved proximally about 1-6 cm., most preferably at least 2 cm., in response to the proximally directed force.
  • the proximal anchor may stay substantially stationary with respect to the coronary sinus despite the application of a proximally directed force on the distal anchor.
  • the proximal anchor is deployed.
  • Other patient vital signs such as cardiac perfusion, may also be monitored during this procedure as described in U.S. patent application Ser. No. 10/366,585.
  • the proximal anchor's anchoring force i.e., the force with which the proximal anchor resists moving in response to a distally-directed force, must be sufficient not only to maintain the device's position within the coronary sinus but also to enable the device to maintain the adjacent tissue's cinched shape.
  • the proximal anchor engages the coronary sinus wall to provide an anchoring force of at least one pound, most preferably an anchoring force of at least two pounds.
  • the proximal anchor's expansion energy to supply the anchoring force comes from strain energy stored in the anchor due to its compression for catheter delivery, from an actuation force, or a combination of both, depending on anchor design.
  • the proximal anchor is deployed by withdrawing catheter 50 proximally to uncover proximal anchor 36 , then either permitting proximal anchor 36 to self-expand, applying an actuation force to expand the anchor, or a combination of both.
  • the control wire 52 is then detached, and catheter 50 is removed from the patient.
  • the device location and configuration as deployed according to this method is as shown in FIG. 1 .
  • proximal anchor 36 may be deployed at least partially outside of the coronary sinus after cinching to modify the shape of the mitral valve tissue, as shown in FIG. 2 .
  • distal anchor 34 is disposed proximal to the crossover point between coronary sinus 12 and circumflex artery 24 , all of the anchoring and tissue reshaping force applied to the coronary sinus by device 30 is solely proximal to the crossover point.
  • the proximal anchor may be deployed prior to the application of the proximally directed force to cinch the device to reshape the mitral valve tissue.
  • FIG. 6 One example of a device according to this embodiment is shown in FIG. 6 .
  • Device 60 includes a self-expanding distal anchor 62 , a self-expanding proximal anchor 64 and a connector 66 .
  • the design of distal anchor 62 enables it to maintain its anchoring force when a proximally directed force is applied on it to cinch, while the design of proximal anchor 64 permits it to be moved proximally after deployment while resisting distal movement after cinching. Cinching after proximal anchor deployment is described in more detail in U.S.
  • distal anchor 62 is disposed proximal to the crossover point between coronary sinus 12 and circumflex artery 24 so that all of anchoring and tissue reshaping force applied to the coronary sinus by device 30 is solely proximal to the crossover point.
  • the device or one of its anchors may be recaptured.
  • catheter 50 may be moved distally to place proximal anchor 36 back inside catheter 50 , e.g., to the configuration shown in FIG. 5 . From this position, the cinching force along connector 38 may be increased or decreased, and proximal anchor 36 may then be redeployed.
  • catheter 50 may be advanced distally to recapture both proximal anchor 36 and distal anchor 34 , e.g., to the configuration shown in FIG. 3 . From this position, distal anchor 34 may be redeployed, a cinching force applied, and proximal anchor 36 deployed as discussed above. Also from this position, device 30 may be removed from the patient entirely by simply withdrawing the catheter from the patient.
  • Fluoroscopy e.g., angiograms and venograms
  • Fluoroscopy may be used to determine the relative positions of the coronary sinus and the coronary arteries such as the circumflex artery, including the crossover point between the vessels and whether or not the artery is between the coronary sinus and the heart.
  • Radiopaque dye may be injected into the coronary sinus and into the arteries in a known manner while the heart is viewed on a fluoroscope.
  • FIG. 7 An alternative method of determining the relative positions of the vessels is shown in FIG. 7 .
  • guide wires 70 and 72 are inserted into the coronary sinus 12 and into the circumflex artery 24 or other coronary artery, and the relative positions of the guide wires are viewed on a fluoroscope to identify the crossover point 74 .
  • FIG. 8 illustrates one embodiment of a tissue shaping device in accordance with the present invention.
  • the tissue shaping device 100 includes a connector or support wire 102 having a proximal end 104 and a distal end 106 .
  • the support wire 102 is made of a biocompatible material such as stainless steel or a shape memory material such as nitinol wire.
  • connector 102 comprises a double length of nitinol wire that has both ends positioned within a distal crimp tube 108 .
  • Proximal to the proximal end of the crimp tube 108 is a distal lock bump 110 that is formed by the support wire bending away from the longitudinal axis of the support 102 and then being bent parallel to the longitudinal axis of the support before being bent again towards the longitudinal axis of the support to form one half 110 a of distal lock bump 110 .
  • the wire continues proximally through a proximal crimp tube 112 .
  • the wire On exiting the proximal end of the proximal crimp tube 112 , the wire is bent to form an arrowhead-shaped proximal lock bump 114 .
  • the wire of the support 102 then returns distally through the proximal crimp tube 112 to a position just proximal to the proximal end of the distal crimp tube 108 wherein the wire is bent to form a second half 110 b of the distal lock 110 .
  • an actuatable distal anchor 120 that is formed of a flexible wire such as nitinol or some other shape memory material.
  • the wire forming the distal anchor has one end positioned within the distal crimp tube 108 .
  • the wire After exiting the distal end of the crimp tube 108 , the wire forms a figure eight configuration whereby it bends upward and radially outward from the longitudinal axis of the crimp tube 108 . The wire then bends back proximally and crosses the longitudinal axis of the crimp tube 108 to form one leg of the figure eight.
  • the wire is then bent to form a double loop eyelet or loop 122 around the longitudinal axis of the support wire 102 before extending radially outwards and distally back over the longitudinal axis of the crimp tube 108 to form the other leg of the figure eight. Finally, the wire is bent proximally into the distal end of the crimp tube 108 to complete the distal anchor 120 .
  • the distal anchor is expanded by using a catheter or locking tool to exert an actuation force sliding eyelet 122 of the distal anchor from a position that is proximal to distal lock bump 110 on the connector to a position that is distal to distal lock bump 110 .
  • the bent-out portions 110 a and 110 b of connector 110 are spaced wider than the width of eyelet 122 and provide camming surfaces for the locking action. Distal movement of eyelet 122 pushes these camming surfaces inward to permit eyelet 122 to pass distally of the lock bump 110 , then return to their original spacing to keep eyelet 122 in the locked position.
  • Actuatable proximal anchor 140 is formed and actuated in a similar manner by moving eyelet 142 over lock bump 114 . Both the distal and the proximal anchor provide anchoring forces of at least one pound, and most preferably two pounds.
  • FIG. 9 illustrates one method for delivering a tissue shaping device 100 in accordance with the present invention to a desired location in the body, such as the coronary sinus to treat mitral valve regurgitation.
  • device 100 is preferably loaded into and routed to a desired location within a catheter 200 with the proximal and distal anchors in an unexpanded or deformed condition. That is, eyelet 122 of distal anchor 120 is positioned proximal to the distal lock bump 110 and the eyelet 142 of the proximal anchor 140 is positioned proximal to the proximal lock bump 114 .
  • the physician ejects the distal end of the device from the catheter 200 into the coronary sinus by advancing the device or retracting the catheter or a combination thereof.
  • a pusher (not shown) provides distal movement of the device with respect to catheter 200
  • a tether 201 provides proximal movement of the device with respect to catheter 200 .
  • the distal anchor begins to expand as soon as it is outside the catheter.
  • catheter 200 is advanced to place an actuation force on distal anchor eyelet 122 to push it distally over the distal lock bump 110 so that the distal anchor 120 further expands and locks in place to securely engage the wall of the coronary sinus.
  • a proximally-directed force is applied to connector 102 and distal anchor 120 via a tether or control wire 201 extending through catheter outside the patient to apply sufficient pressure on the tissue adjacent the connector to modify the shape of that tissue.
  • fluoroscopy, ultrasound or other imaging technology may be used to see when the device supplies sufficient pressure on the mitral valve to aid in its complete closure with each ventricular contraction without otherwise adversely affecting the patient.
  • proximal anchor 140 moves proximally.
  • proximal anchor 140 can be moved about 1-6 cm., most preferably at least 2 cm., proximally to reshape the mitral valve tissue.
  • the proximal anchor 140 is then deployed from the catheter and allowed to begin its expansion.
  • the locking tool applies an actuation force on proximal anchor eyelet 142 to advance it distally over the proximal lock bump 114 to expand and lock the proximal anchor, thereby securely engaging the coronary sinus wall to maintain the proximal anchor's position and to maintain the reshaping pressure of the connector against the coronary sinus wall.
  • catheter 200 may be advanced to lock proximal anchor 140 .
  • the mechanism for securing the proximal end of the device can be released.
  • the securement is made with a braided loop 202 at the end of tether 201 and a lock wire 204 .
  • the lock wire 204 is withdrawn thereby releasing the loop 202 so it can be pulled through the proximal lock bump 114 at the proximal end of device 100 .
  • Reduction in mitral valve regurgitation using devices of this invention can be maximized by deploying the distal anchor as far distally in the coronary sinus as possible.
  • anchor 120 in its unexpanded configuration extends proximally along connector 102 within catheter 200 .
  • a preferred catheter diameter is ten french or less (most preferably nine french), and the tissue shaping device in its unexpanded configuration must fit within the catheter.
  • FIGS. 10-23 show embodiments of the device of this invention having flexible and expandable wire anchors which permit the delivery of tissue shaping devices 60 mm or less in length by a ten french (or less) catheter.
  • one or both of the anchors are provided with bending points about which the anchors deform when placed in their unexpanded configuration for delivery by a catheter or recapture into a catheter. These bending points enable the anchors to deform into configurations that minimize overlap with other elements of the device.
  • the distal anchor is self-expanding, thereby avoiding the need for a proximally-extending eyelet in the anchor's unexpanded configuration that might overlap with the unexpanded proximal anchor within the delivery and/or recapture catheter.
  • FIG. 10 shows an actuatable anchor design suitable for a shorter tissue shaping device similar to the device shown in FIGS. 8 and 9 .
  • distal anchor 300 is disposed distal to a connector 302 .
  • anchor 300 is formed in a figure eight configuration from flexible wire such as nitinol held by a crimp tube 304 .
  • An eyelet 306 is formed around the longitudinal axis of connector 302 . A distally directed actuation force on eyelet 306 moves it over a lock bump 308 formed in connector 302 to actuate and lock anchor 300 .
  • FIG. 10 shows anchor 300 in an expanded configuration.
  • eyelet 306 is disposed proximal to lock bump 308 , and the figure eight loops of anchor 300 are compressed against crimp 304 .
  • eyelet 306 In order to limit the proximal distance eyelet 306 must be moved along the connector to compress anchor 300 into an unexpanded configuration, bending points 310 are formed in the distal struts of anchor 300 . Bending points 310 are essentially kinks, i.e., points of increased curvature, formed in the wire.
  • bending points 310 deform such that the upper arms 312 of the distal struts bend around bending points 310 and move toward the lower arms 314 of the distal struts, thereby limiting the distance eyelet 306 and the anchor's proximal struts must be moved proximally along the connector to compress the anchor.
  • anchor 300 would deform about bending points 310 to limit the cross-sectional profile of the anchor within the catheter, even if eyelet 306 were not moved proximally over lock bump 308 during the recapture procedure. Bending points may also be provided on the proximal anchor in a similar fashion.
  • distal anchor 300 may be part of a tissue shaping device (such as that shown in FIGS. 8 and 9 ) having a proximal anchor and a connector disposed between the anchors.
  • tissue shaping device such as that shown in FIGS. 8 and 9
  • distal anchor 300 may be deployed from a catheter and expanded with an actuation force to anchor against the coronary sinus wall to provide an anchoring force of at least one pound, preferably at least two pounds, and to lock anchor 300 in an expanded configuration.
  • a proximally directed force is applied to distal anchor 300 through connector 302 , such as by moving the proximal anchor proximally about 1-6 cm., more preferably at least 2 cm., by pulling on a tether or control wire operated from outside the patient.
  • the proximal anchor may then be deployed to maintain the reshaping force of the device.
  • anchor 300 is its ability to conform and adapt to a variety of vessel sizes. For example, when anchor 300 is expanded inside a vessel such as the coronary sinus, the anchor's wire arms may contact the coronary sinus wall before the eyelet 306 has been advanced distally over lock bump 308 to lock the anchor in place. While continued distal advancement of eyelet 306 will create some outward force on the coronary sinus wall, much of the energy put into the anchor by the anchor actuation force will be absorbed by the deformation of the distal struts about bending points 310 , which serve as expansion energy absorption elements and thereby limit the radially outward force on the coronary sinus wall. This feature enables the anchor to be used in a wider range of vessel sizes while reducing the risk of over-expanding the vessel.
  • FIG. 11 shows another anchor design suitable for a shorter tissue shaping device similar to the device shown in FIGS. 8 and 9 .
  • distal anchor 320 is disposed distal to a connector 322 .
  • anchor 320 is formed in a figure eight configuration from flexible wire such as nitinol held by a crimp tube 324 .
  • anchor 320 is self-expanding and is not actuatable.
  • Eyelet 326 is held in place by a second crimp 325 to limit or eliminate movement of the anchor's proximal connection point proximally or distally, e.g., along connector 322 .
  • FIG. 11 shows anchor 320 in an expanded configuration.
  • an unexpanded configuration such as a configuration suitable for loading anchor 320 and the rest of the tissue shaping device into a catheter for initial deployment to treat mitral valve regurgitation
  • the figure eight loops of anchor 320 are compressed.
  • Bending points 330 are formed in the distal struts of anchor 320 .
  • bending points 330 deform such that the upper arms 332 of the distal struts bend around bending points 330 and move toward the lower arms 334 of the distal struts.
  • very little or none of the wire portion of anchor 320 is disposed proximally along crimp 325 or connector 322 when anchor 320 is in its unexpanded configuration.
  • anchor 320 would deform about bending points 330 to limit the cross-sectional profile of the anchor within the catheter. Bending points may also be provided on the proximal anchor in a similar fashion.
  • Distal anchor 320 may be part of a tissue shaping device (such as that shown in FIGS. 8 and 9 ) having a proximal anchor and a connector disposed between the anchors. Due to the superelastic properties of its shape memory material, distal anchor 320 may be deployed from a catheter to self-expand to anchor against the coronary sinus wall to provide an anchoring force of at least one pound, preferably at least two pounds. A proximally directed force may then be applied to distal anchor 320 through connector 322 , such as by moving the proximal anchor proximally about 1-6 cm., more preferably at least 2 cm., by pulling on a tether or control wire operated from outside the patient. The proximal anchor may then be deployed to maintain the reshaping force of the device.
  • FIG. 12 shows another embodiment of an anchor suitable for use in a shorter tissue shaping device.
  • distal anchor 340 is disposed distal to a connector 342 .
  • anchor 340 is formed in a figure eight configuration from flexible wire such as nitinol held by a crimp tube 344 .
  • anchor 340 is self-expanding and is not actuatable.
  • the loop of anchor 340 forming the anchor's proximal struts passes through a loop 346 extending distally from a second crimp 345 to limit or eliminate movement of the anchor's proximal struts proximally or distally, e.g., along connector 342 .
  • FIG. 12 shows anchor 340 in an expanded configuration.
  • an unexpanded configuration such as a configuration suitable for loading anchor 340 and the rest of the tissue shaping device into a catheter for initial deployment to treat mitral valve regurgitation
  • the figure eight loops of anchor 340 are compressed.
  • bending points 350 are formed in the proximal struts of anchor 340 .
  • anchor 340 is compressed into an unexpanded configuration
  • bending points 350 deform such that the upper arms 352 of the distal struts bend around bending points 350 and move toward the lower arms 354 of the distal struts.
  • the amount of the wire portion of anchor 340 extending proximally along crimp 345 and connector 342 in its unexpanded configuration depends on the location of bending points 350 .
  • the bending points are formed at the tallest and widest part of the proximal struts.
  • Distal anchor 340 may be part of a tissue shaping device (such as that shown in FIGS. 8 and 9 ) having a proximal anchor and a connector disposed between the anchors. Due to the superelastic properties of its shape memory material, distal anchor 340 may be deployed from a catheter to self-expand to anchor against the coronary sinus wall to provide an anchoring force of at least one pound, preferably at least two pounds. A proximally directed force may then be applied to distal anchor 340 through connector 342 , such as by moving the proximal anchor proximally about 1-6 cm., more preferably at least 2 cm., by pulling on a tether or control wire operated from outside the patient. The proximal anchor may then be deployed to maintain the reshaping force of the device.
  • Bending points 350 also add to the anchoring force of distal anchor 340 , e.g., by causing the anchor height to increase as the proximal struts become more perpendicular to the connector in response to a proximally directed force, thereby increasing the anchoring force.
  • bending points may be added to the distal struts of a proximal anchor to increase the proximal anchor's anchoring force in response to a distally directed force.
  • FIG. 13 shows yet another embodiment of an anchor suitable for use in a shorter tissue shaping device.
  • distal anchor 360 is disposed distal to a connector 362 .
  • anchor 360 is formed in a figure eight configuration from flexible wire such as nitinol held by a crimp tube 364 .
  • anchor 360 is self-expanding and is not actuatable.
  • the loop of anchor 360 forming the anchor's proximal struts passes through a loop 366 extending distally from a second crimp 365 to limit or eliminate movement of the anchor's proximal struts proximally or distally, e.g., along connector 362 .
  • FIG. 13 shows anchor 360 in an expanded configuration.
  • an unexpanded configuration such as a configuration suitable for loading anchor 360 and the rest of the tissue shaping device into a catheter for initial deployment to treat mitral valve regurgitation
  • the figure eight loops of anchor 360 are compressed.
  • bending points 370 are formed in both the proximal struts and the distal struts of anchor 360 .
  • Anchor 360 may be used as part of a tissue shaping device like the embodiments discussed above.
  • FIG. 14 shows an actuatable anchor design-suitable for a shorter tissue shaping device similar to the device shown in FIGS. 8 and 9 .
  • distal anchor 380 is disposed distal to a connector 382 .
  • anchor 380 is formed in a figure eight configuration from flexible wire such as nitinol held by a crimp tube 384 .
  • eyelets 386 and 387 are formed in each of the anchor's proximal struts around the longitudinal axis of connector 382 . This arrangement reduces the radially outward force of the anchor.
  • a distally directed actuation force on eyelets 386 and 387 move them over a lock bump 388 formed in connector 382 to actuate and lock anchor 380 .
  • FIG. 14 shows anchor 380 in an expanded configuration.
  • an unexpanded configuration such as a configuration suitable for loading anchor 380 and the rest of the tissue shaping device into a catheter for initial deployment to treat mitral valve regurgitation
  • eyelets 386 and 387 are disposed proximal to lock bump 388 and the figure eight loops of anchor 380 are compressed against crimp 384 .
  • bending points 390 are formed in the distal struts of anchor 380 .
  • bending points 390 deform such that the upper arms 392 of the distal struts bend around bending points 390 and move toward the lower arms 394 of the distal struts, thereby limiting the distance eyelets 386 and 387 and the anchor's proximal struts must be moved proximally along the connector to compress the anchor.
  • anchor 380 would deform about bending points 390 to limit the cross-sectional profile of the anchor within the catheter, even if eyelets 386 and 387 were not moved proximally over lock bump 388 during the recapture procedure. Bending points may also be provided on the proximal anchor in a similar fashion.
  • distal anchor 380 may be part of a tissue shaping device (such as that shown in FIGS. 8 and 9 ) having a proximal anchor and a connector disposed between the anchors.
  • tissue shaping device such as that shown in FIGS. 8 and 9
  • distal anchor 380 may be deployed from a catheter and expanded with an actuation force to anchor against the coronary sinus wall to provide an anchoring force of at least one pound, preferably at least two pounds, and to lock anchor 380 in an expanded configuration.
  • a proximally directed force is applied to distal anchor 380 through connector 382 , such as by moving the proximal anchor proximally about 1-6 cm., more preferably at least 2 cm., by pulling on a tether or control wire operated from outside the patient.
  • the proximal anchor may then be deployed to maintain the reshaping force of the device.
  • one aspect of anchor 380 is its ability to conform and adapt to a variety of vessel sizes.
  • the anchor's wire arms may contact the coronary sinus wall before the eyelets 386 and 387 have been advance distally over lock bump 388 to lock the anchor in place. While continued distal advancement of eyelet 386 will create some outward force on the coronary sinus wall, much of the energy put into the anchor by the anchor actuation force will be absorbed by the deformation of the distal struts about bending points 390 .
  • FIG. 15 shows yet another embodiment of an actuatable anchor for use in a shorter tissue shaping device.
  • Proximal anchor 400 is disposed proximal to a connector 402 .
  • anchor 400 is formed in a figure eight configuration from flexible wire such as nitinol held by a crimp tube 404 .
  • An eyelet 406 is formed around a lock bump 408 extending proximally from crimp 404 . A distally directed actuation force on eyelet 406 moves it over lock bump 408 to actuate and lock anchor 400 .
  • FIG. 15 shows anchor 400 in an expanded configuration.
  • bending points 410 formed as loops in the anchor wire deform such that the upper arms 412 of the distal struts bend around bending points 410 and move toward the lower arms 414 of the distal struts.
  • proximal anchor 400 may be part of a tissue shaping device (such as that shown in FIGS. 8 and 9 ) having a distal anchor and a connector disposed between the anchors.
  • one aspect of anchor 400 is its ability to conform and adapt to a variety of vessel sizes.
  • the anchor's wire arms may contact the coronary sinus wall before the eyelet 406 has been advanced distally over lock bump 408 to lock the anchor in place. While continued distal advancement of eyelet 406 will create some outward force on the coronary sinus wall, much of the energy put into the anchor by the anchor actuation force will be absorbed by the deformation of the distal struts about bending points 410 , which serve as expansion energy absorption elements and thereby limit the radially outward force on the coronary sinus wall.
  • the looped bending points of the FIG. 15 embodiment may be formed on the anchor's proximal struts in addition to or instead of on the distal struts.
  • the looped bending point embodiment may also be used in a distal anchor, as shown in FIG. 16 (without the crimp or connector). Note that in the embodiment of FIG. 16 the proximal and distal struts of anchor 420 as well as the eyelet 422 and bending points 424 are formed from a single wire.
  • FIG. 17 shows an embodiment of a distal anchor 440 similar to that of FIG. 10 suitable for use in a shorter tissue shaping device.
  • extra twists 442 are added at the apex of the anchor's figure eight pattern.
  • bending points 444 are formed in the anchor's distal struts.
  • anchor 440 is actuatable by moving eyelet 446 distally over a lock bump 448 formed in connector 450 .
  • Anchor 440 may also be made as a self-expanding anchor by limiting or eliminating movement of the proximal struts of anchor 440 along connector 450 , as in the embodiment shown in FIG. 11 .
  • the bending points help anchor 440 adapt and conform to different vessel sizes.
  • the extra twists 442 also help the anchor adapt to different vessel diameters by keeping the anchor's apex together.
  • anchor 440 is preferably formed from nitinol wire.
  • Anchor 440 may be used as part of a tissue shaping device in a manner similar to the anchor of FIG. 10 (for the actuatable anchor embodiment) or the anchor of FIG. 11 (for the self-expanding anchor embodiment).
  • Anchor 440 may also be used as a proximal anchor.
  • FIG. 18 shows an embodiment of a distal anchor 460 similar to that of FIG. 17 .
  • the bending points 462 are formed in the anchor's proximal struts, as in the self-expanding anchor shown in FIG. 12 .
  • extra twists 464 are added at the apex of the anchor's figure eight pattern.
  • anchor 460 is actuatable by moving eyelet 466 distally over a lock bump 468 formed in connector 470 .
  • Anchor 460 may also be made as a self-expanding anchor by limiting or eliminating movement of the proximal connection point of anchor 460 along connector 470 , as in the embodiment shown in FIG. 11 .
  • the bending points help anchor 460 adapt and conform to different vessel sizes.
  • the extra twists 464 also help the anchor adapt to different vessel diameters by keeping the anchor's apex together.
  • anchor 460 is preferably formed from nitinol wire.
  • Anchor 460 may be used as part of a tissue shaping device in a manner similar to the anchor of FIG. 10 (for the actuatable anchor embodiment) or the anchor of FIG. 11 (for the self-expanding anchor embodiment).
  • Anchor 460 may also be used as a proximal anchor.
  • FIG. 19 shows an embodiment of a self-expanding distal anchor 480 suitable for use in a shorter tissue shaping device.
  • anchor 480 is formed in a figure eight configuration from flexible wire such as nitinol held by a crimp tube 482 .
  • the base of the figure eight pattern is narrower in this embodiment, however, with the anchor's proximal struts 484 passing through crimp 482 .
  • Distal anchor 480 may be part of a tissue shaping device (such as that shown in FIGS. 8 and 9 ) having a proximal anchor and a connector disposed between the anchors.
  • tissue shaping device such as that shown in FIGS. 8 and 9
  • distal anchor 480 may be deployed from a catheter and allowed to self-expand to anchor against the coronary sinus wall to provide an anchoring force of at least one pound, preferably at least two pounds.
  • a proximally directed force is applied to distal anchor 480 through connector 486 , such as by moving the proximal anchor proximally about 1-6 cm., more preferably at least 2 cm., by pulling on a tether or control wire operated from outside the patient.
  • the proximal anchor may then be deployed to maintain the reshaping force of the device.
  • FIG. 20 shows an embodiment of a distal anchor suitable for use in a shorter tissue shaping device and similar to that of FIG. 10 .
  • distal anchor 500 is disposed distal to a connector 502 .
  • anchor 500 is formed in a figure eight configuration from flexible wire such as nitinol held by a crimp tube 504 .
  • An eyelet 506 is formed around the longitudinal axis of connector 502 .
  • a distally directed actuation force on eyelet 506 moves it over a lock bump 508 formed in connector 502 to actuate and lock anchor 500 .
  • proximal struts 501 and the angle of distal struts 503 are wider than corresponding angles in the FIG. 10 embodiment, however, causing anchor 500 to distend more in width than in height when expanded, as shown.
  • eyelet 506 is disposed proximal to lock bump 508 and the figure eight loops of anchor 500 are compressed against crimp 504 .
  • bending points 510 are formed in the distal struts 503 , as in the FIG. 10 embodiment, to limit the width of the device in its unexpanded configuration within a catheter.
  • Distal anchor 500 may be part of a tissue shaping device (such as that shown in FIGS. 8 and 9 ) having a proximal anchor and a connector disposed between the anchors.
  • tissue shaping device such as that shown in FIGS. 8 and 9
  • distal anchor 500 may be deployed from a catheter and expanded with an actuation force to anchor against the coronary sinus wall to provide an anchoring force of at least one pound, preferably at least two pounds, and to lock anchor 500 in an expanded configuration.
  • a proximally directed force is applied to distal anchor 500 through connector 502 , such as by moving the proximal anchor proximally about 1-6 cm., more preferably at least 2 cm., by pulling on a tether or control wire operated from outside the patient.
  • the proximal anchor may then be deployed to maintain the reshaping force of the device.
  • the anchor shown in FIG. 20 may be used as a proximal anchor. This anchor may also be formed as a self-expanding anchor.
  • FIG. 21 shows a tandem distal anchor according to another embodiment of this invention.
  • Self-expanding anchor 520 is formed in a figure eight configuration from flexible wire such as nitinol held by a crimp tube 522 .
  • Eyelet 524 is held in place by the distal end of actuatable anchor 540 to limit or eliminate proximal and distal movement of the proximal struts of anchor 520 .
  • bending points 530 are formed in the distal struts of anchor 520 . Depending upon the exact location of bending points 530 , very little or none of the wire portion of anchor 520 is disposed proximal to the distal end of anchor 540 when anchor 520 is in its unexpanded configuration.
  • anchor 520 would deform about bending points 530 to limit the cross-sectional profile of the anchor within the catheter. Bending points may also be provided on the proximal anchor in a similar fashion.
  • Anchor 540 is similar to anchor 120 shown in FIG. 8 .
  • Anchor 540 is formed in a figure eight configuration from flexible wire such as nitinol held by a crimp tube 544 .
  • An eyelet 546 is formed around the longitudinal axis of connector 542 .
  • a distally directed actuation force on eyelet 546 moves it over a lock bump 548 formed in connector 542 to actuate and lock anchor 540 .
  • Tandem anchors 520 and 540 may be part of a tissue shaping device (such as that shown in FIGS. 8 and 9 ) having a proximal anchor and a connector disposed between the anchors.
  • Anchors 520 and 540 may be made from a single wire or from separate pieces of wire.
  • distal anchors 520 and 540 may be deployed from a catheter.
  • Self-expanding anchor 520 will then self-expand, and actuatable anchor 540 may be expanded and locked with an actuation force, to anchor both anchors against the coronary sinus wall to provide an anchoring force of at least one pound, preferably at least two pounds.
  • a proximally directed force is applied to anchors 520 and 540 through connector 542 , such as by moving the proximal anchor proximally about 1-6 cm., more preferably at least 2 cm., by pulling on a tether or control wire operated from outside the patient.
  • the proximal anchor may then be deployed to maintain the reshaping force of the device.
  • FIGS. 22 and 23 show an alternative embodiment in which the device's connector 560 is made integral with the distal and proximal crimp tubes 562 and 564 .
  • connector 560 is formed by cutting away a section of a blank such as a nitinol (or other suitable material such as stainless steel) cylinder or tube, leaving crimp tube portions 562 and 564 intact.
  • the radius of the semi-circular cross-section connector is therefore the same as the radii of the two anchor crimp tubes.
  • the device may be formed from a blank shaped as a flat ribbon or sheet by removing rectangular edge sections from a central section, creating an I-shaped sheet (e.g., nitinol or stainless steel) having greater widths at the ends and a narrower width in the center connector portion. The ends can then be rolled to form the crimp tubes, leaving the connector substantially flat.
  • the connector can be made integral with just one of the anchors.
  • a distal anchor 566 is formed in a figure eight configuration from flexible wire such as nitinol.
  • Distal anchor 566 is self-expanding, and its proximal struts 568 are held in place by crimp tube 562 .
  • Optional bending points may be formed in the proximal struts 568 or distal struts 570 of anchor 566 .
  • a proximal anchor 572 is also formed in a figure eight configuration from flexible wire such as nitinol with an eyelet 574 on its proximal end.
  • a distally directed actuation force on eyelet 574 moves it over a lock bump 576 extending proximally from crimp tube 564 to actuate and lock anchor 572 .
  • Lock bump 576 also serves as the connection point for a tether or control wire to deploy and actuate device in the manner described above with respect to FIGS. 8 and 9 .
  • Optional bending points may be formed in the proximal or distal struts of anchor 572 .
  • FIG. 24 shows an alternative connector for use with the tissue shaping devices of this invention that distributes over more of the device any strain caused by the beat to beat bending and tensile loading.
  • Connector 600 has a proximal anchor area 602 , a distal anchor area 604 and a central area 606 .
  • the distal anchor area may be longer than the distal anchor attached to it, and the proximal anchor area may be longer than the proximal anchor attached to it.
  • An optional lock bump 608 may be formed at the proximal end of connector 600 for use with an actuatable proximal anchor and for connecting to a tether or control wire, as described above.
  • An optional bulb 610 may be formed at the distal end of connector 600 to prevent accidental distal slippage of a distal anchor.
  • connector 600 In order to reduce material fatigue caused by the heartbeat to heartbeat loading and unloading of the tissue shaping device, the moment of inertia of connector 600 varies along its length, particularly in the portion of connector disposed between the two anchors.
  • connector 600 is formed as a ribbon or sheet and is preferably formed from nitinol having a rectangular cross-sectional area.
  • the thickness of connector 600 is preferably constant in the proximal anchor area 602 and the distal anchor area 604 to facilitate attachment of crimps and other components of the anchors.
  • the central area 606 has a decreasing thickness (and therefore a decreasing moment of inertia) from the border between, central area 606 and proximal anchor area 602 to a point about at the center of central area 606 , and an increasing thickness (and increasing moment of inertia) from that point to the border between central area 606 and distal anchor area 604 .
  • the varying thickness and varying cross-sectional shape of connector 600 change its moment of inertia along its length, thereby helping distribute over a wider area any strain from the heartbeat to heartbeat loading and unloading of the device and reducing the chance of fatigue failure of the connector material.
  • FIG. 25 shows another embodiment of the connector.
  • connector 620 has a proximal anchor area 622 , a distal anchor area 624 and a central area 626 .
  • Proximal anchor area 622 has an optional two-tined prong 628 formed at its proximal end to facilitate attachment of a crimp and other anchor elements.
  • Bent prong portions 629 may be formed at the proximal end of the prong to prevent accidental slippage of a proximal anchor.
  • An optional bulb 630 may be formed at the distal end of connector 620 to prevent accidental distal slippage of a distal anchor.
  • connector 620 is formed as a ribbon or sheet and is preferably formed from nitinol having a rectangular cross-sectional area.
  • the thickness of connector 620 is preferably constant in the proximal anchor area 622 and the distal anchor area 624 to facilitate attachment of crimps and other components of the anchors.
  • the central area 626 has a decreasing thickness (decreasing moment of inertia) from the border between central area 626 and proximal anchor area 622 to a point about at the center of central area 626 , and an increasing thickness (increasing moment of inertia) from that point to the border between central area 626 and distal anchor area 624 .
  • the varying thickness and varying cross-sectional shape of connector 620 change its moment of inertia along its length, thereby helping distribute over a wider area any strain from the heartbeat to heartbeat loading and unloading of the device and reducing the chance of fatigue failure of the connector material.
  • FIG. 26 shows a connector 640 in profile.
  • Connector 640 may be formed like the connectors 600 and 620 or FIGS. 24 and 25 , respectively, or may have some other configuration.
  • Connector 640 has a proximal anchor area 642 , a distal anchor area 644 and a central area 646 .
  • Connector 640 is preferably formed as a ribbon or sheet and is preferably formed from nitinol having a rectangular cross-sectional area.
  • the thicknesses of proximal anchor area 642 and distal anchor area 644 are constant.
  • the thickness of central area 646 decreases from the border between central area 646 and proximal anchor area 642 to a point distal of that border and increases from a point proximal to the border between distal anchor area 644 and central area 646 to that border.
  • the points in the central area where the thickness decrease ends and the thickness increase begins may be coincident or may be separated to form an area of uniform thickness within central area 646 .
  • the thickness of the central area changes as a function of the square root of the distance from the borders between the central area and the proximal and distal anchor areas.
  • FIG. 27 shows yet another embodiment of the connector.
  • connector 650 may be formed like the connectors 600 and 620 or FIGS. 24 and 25 , respectively, or may have some other configuration.
  • Connector 650 has a proximal anchor area 652 , a distal anchor area 654 and a central area 656 .
  • Connector 650 is preferably formed as a ribbon or sheet and is preferably formed from nitinol having a rectangular cross-sectional area.
  • proximal anchor area 652 and distal anchor area 654 are constant.
  • the thickness of a proximal portion 658 of central area 656 decreases linearly from the border between central area 656 and proximal anchor area 652 to a constant thickness center portion 662 of central area 656
  • the thickness of a distal portion 660 of central area 656 increases linearly from center portion 662 to the border between distal anchor area 654 and central area 656 .
  • the thickness of the connector may vary in other ways.
  • the cross-sectional shape of the connector may be other than rectangular and may change over the length of the connector.
  • FIGS. 28 and 29 show yet another embodiment of the invention.
  • Tissue shaping device 700 has a connector 706 disposed between a proximal anchor 702 and a distal anchor 704 .
  • Connector 706 may be formed as a ribbon or sheet, such as the tapered connectors shown in FIGS. 24-27 .
  • Actuatable proximal anchor 702 is formed in a figure eight configuration from flexible wire such as nitinol and is fastened to connector 706 with a crimp tube 708 .
  • self-expanding distal anchor 704 is formed in a figure eight configuration from flexible wire such as nitinol and is fastened to connector 706 with a crimp tube 710 .
  • a proximal lock bump 716 extends proximally from proximal anchor 702 for use in actuating and locking proximal anchor 702 and for connecting to a tether or control wire, as described above.
  • Bending points 712 are formed in the loops of proximal anchor 702
  • bending points 714 are formed in the loops of distal anchor 704 .
  • the wire portions of anchors 702 and 704 bend about bending points 712 and 714 , respectively, to limit the cross-sectional profile of the anchors within the catheter.
  • the bending points also affect the anchor strength of the anchors and the adaptability of the anchors to different vessel diameters, as discussed above.
  • the diameter of the coronary sinus at the distal and proximal anchor points can vary from patient to patient.
  • the anchors described above may be made in a variety of heights and combined with connectors of varying lengths to accommodate this patient to patient variation.
  • tissue shaping devices deployed in the coronary sinus to treat mitral valve regurgitation can have distal anchor heights ranging from about 7 mm. to about 16 mm. and proximal anchor heights ranging from about 9 mm. to about 20 mm.
  • tissue shaping device When treating a patient for mitral valve regurgitation, estimates can be made of the appropriate length for a tissue shaping device as well as appropriate anchor heights for the distal and proximal anchors. The clinician can then select a tissue shaping device having the appropriate length and anchor sizes from a set or sets of devices with different lengths and different anchor sizes, made, e.g., according to the embodiments described above. These device sets may be aggregated into sets or kits or may simply be a collection or inventory of different tissue shaping devices.
  • One way of estimating the appropriate length and anchor sizes of a tissue shaping device for mitral valve regurgitation is to view a fluoroscopic image of a coronary sinus into which a catheter with fluoroscopically viewable markings has been inserted.
  • the crossover point between the coronary sinus and the circumflex artery can be determined as described above, and the screen size of the coronary sinus length proximal to that point and the coronary sinus diameter at the intended anchor locations can be measured.
  • the length and diameter measures can be scaled to actual size.
  • a tissue shaping device with the appropriate length and anchor sizes can be selected from a set or inventory of devices for deployment in the patient to treat mitral valve regurgitation.
  • FIG. 30 shows yet another embodiment of the method of this invention.
  • a tissue shaping device 800 formed from a substantially straight rigid member 802 is disposed in the coronary sinus 804 to treat mitral valve regurgitation.
  • the central portion of rigid member 802 exerts a remodeling force anteriorly through the coronary sinus wall toward the mitral valve 806 , while the proximal and distal ends 808 and 810 , respectively, of rigid member 802 exert posteriorly-directed forces on the coronary sinus wall.
  • device 800 is disposed in relation to the circumflex artery 812 so that all of the anteriorly-directed forces from rigid member 802 are posterior to the crossover point between artery 812 and coronary sinus 804 , despite the fact that distal end 810 of device 800 and a guidewire portion 814 are distal to the crossover point.
  • the device of FIG. 30 may also include a less rigid portion at the distal end 810 of member 802 to further eliminate any force directed toward the mitral valve distal to the crossover point. Further details of the device (apart from the method of this invention) may be found in U.S. patent application Ser. No. 10/112,354, published as U.S. patent appl. Publ. No. 2002/0183838, the disclosure of which is incorporated herein by reference.
  • FIG. 31 shows another embodiment of the method of this invention.
  • Device 900 has a substantially straight rigid portion 902 disposed between a proximal angled portion 904 and a distal angled portion 906 within coronary sinus 908 .
  • proximal angled portion 904 extends through the coronary sinus ostium 910 within a catheter (not shown).
  • Distal angled portion 906 extends distally to a hooked portion 912 that is preferably disposed in the AIV.
  • the device's straight portion 902 reshapes the coronary sinus and adjacent tissue to apply an anteriorally directed force through the coronary sinus wall toward the mitral valve 914 . Due to the device's design, this reshaping force is applied solely proximal to the crossover point between coronary sinus 908 and the patient's circumflex artery 916 , despite the fact at least a part of the device's distal portion 906 and hooked portion 912 are disposed distal to the crossover point.

Abstract

A method of treating regurgitation of a mitral valve in a patient's heart. The method includes the steps of: delivering a tissue shaping device to the coronary sinus; and deploying the tissue shaping device to reduce mitral valve regurgitation, the deploying step comprising applying a force through the coronary sinus wall toward the mitral valve solely proximal to a crossover point where a coronary artery passes between a coronary sinus and the mitral valve. The invention is also a set of devices for use in treating mitral valve regurgitation. The set includes a plurality of tissue shaping devices having different lengths, each of the tissue shaping devices being configured to be deliverable to a coronary sinus of a patient within a catheter having an outer diameter no greater than ten french.

Description

    CROSS-REFERENCE TO RELATED CASES
  • This application is a continuation-in-part of U.S. patent appl. Ser. No. 09/855,945, filed May 14, 2001, the disclosure of which is incorporated herein by reference.
  • BACKGROUND OF THE INVENTION
  • This invention relates generally to devices and methods for shaping tissue by deploying one or more devices in body lumens adjacent to the tissue. One particular application of the invention relates to a treatment for mitral valve regurgitation through deployment of a tissue shaping device in the patient's coronary sinus or great cardiac vein.
  • The mitral valve is a portion of the heart that is located between the chambers of the left atrium and the left ventricle. When the left ventricle contracts to pump blood throughout the body, the mitral valve closes to prevent the blood being pumped back into the left atrium. In some patients, whether due to genetic malformation, disease or injury, the mitral valve fails to close properly causing a condition known as regurgitation, whereby blood is pumped into the atrium upon each contraction of the heart muscle. Regurgitation is a serious, often rapidly deteriorating, condition that reduces circulatory efficiency and must be corrected.
  • Two of the more common techniques for restoring the function of a damaged mitral valve are to surgically replace the valve with a mechanical valve or to suture a flexible ring around the valve to support it. Each of these procedures is highly invasive because access to the heart is obtained through an opening in the patient's chest. Patients with mitral valve regurgitation are often relatively frail thereby increasing the risks associated with such an operation.
  • One less invasive approach for aiding the closure of the mitral valve involves the placement of a tissue shaping device in the cardiac sinus and vessel that passes adjacent the mitral valve. The tissue shaping device is designed to push the vessel and surrounding tissue against the valve to aid its closure. This technique has the advantage over other methods of mitral valve repair because it can be performed percutaneously without opening the chest wall. Examples of such devices are shown in U.S. patent appl. Ser. No. 10/142,637, “Body Lumen Device Anchor, Device and Assembly” filed May 8, 2002; U.S. patent appl. Ser. No. 10/331,143, “System and Method to Effect the Mitral Valve Annulus of a Heart” filed Dec. 26, 2002; and U.S. patent appl. Ser. No. 10/429,172, “Device and Method for Modifying the Shape of a Body Organ,” filed May 2, 2003. The disclosures of these patent applications are incorporated herein by reference.
  • When deploying a tissue shaping device in a vein or artery to modify adjacent tissue, care must be taken to avoid constricting nearby arteries. For example, when treating mitral valve regurgitation, a tissue shaping device may be deployed in the coronary sinus to modify the shape of the adjacent mitral valve annulus. Coronary arteries such as the circumflex artery may cross between the coronary sinus and the heart, however, raising the danger that deployment of the support may limit perfusion to a portion of the heart by constricting one of those arteries. See, e.g., the following applications, the disclosures of which are incorporated herein by reference: U.S. patent appl. Ser. No. 09/855,945, “Mitral Valve Therapy Device, System and Method,” filed May 14, 2001 and published Nov. 14, 2002, as US 2002/0169504 A1; U.S. patent appl. Ser. No. 09/855,946, “Mitral Valve Therapy Assembly and Method,” filed May 14, 2001 and published Nov. 14, 2002, as US 2002/0169502 A1; and U.S. patent appl. Ser. No. 10/003,910, “Focused Compression Mitral Valve Device and Method” filed Nov. 1, 2001. It is therefore advisable to monitor cardiac perfusion during and after such mitral valve regurgitation therapy. See, e.g., U.S. patent appl. Ser. No. 10/366,585, “Method of Implanting a Mitral Valve Therapy Device,” filed Feb. 12, 2003, the disclosure of which is incorporated herein by reference.
  • BRIEF SUMMARY OF THE INVENTION
  • The anatomy of the heart and its surrounding vessels varies from patient to patient. For example, the location of the circumflex artery and other key arteries with respect to the coronary sinus can vary. Specifically, the distance along the coronary sinus from the ostium to the crossing point with the circumflex artery can vary from patient to patient. In addition, the diameter and length of the coronary sinus can vary from patient to patient.
  • We have invented tissue shaping devices, sets of tissue shaping devices and methods that maximize the therapeutic effect (i.e., reduction of mitral valve regurgitation) while minimizing adverse effects, such as an unacceptable constriction of the circumflex artery or other coronary arteries. The tissue shaping devices, sets of devices and methods of this invention enable the user to adapt the therapy to the patient's anatomy.
  • In one embodiment, the invention is a method of treating regurgitation of a mitral valve in a patient's heart, the method including the steps of delivering a tissue shaping device to the coronary sinus, such as in a catheter having an outer diameter no more than nine or ten french; and deploying the tissue shaping device to reduce mitral valve regurgitation, with the deploying step including the step of applying a force through the coronary sinus wall toward the mitral valve solely proximal to a crossover point where a coronary artery passes between a coronary sinus and the mitral valve. In some embodiments, the device is deployed with its distal end proximal to the crossover point, and in some embodiments the distal end is deployed distal to the crossover point. The method may also include the step of determining the crossover point.
  • In some embodiments the tissue shaping device includes a distal anchor, in which case the deploying step may include the step of anchoring the distal anchor proximal to the crossover point, such as by expanding the distal anchor through self-expansion or through the application of an actuation force. The anchoring force may be one-two pounds.
  • In some embodiments, the deploying step further includes the step of applying a proximally directed force on the distal anchor—in some embodiments from outside the patient—such as by moving the proximal anchor proximally. The tissue shaping device may further include a proximal anchor and a connector disposed between the distal anchor and the proximal anchor, with the deploying step further including the step of anchoring the proximal anchor (e.g., in the coronary sinus or at least partially outside the coronary sinus), such as by expanding the proximal anchor through self-expansion or through the application of an actuation force. The step of anchoring the proximal anchor may be performed before or after the step of applying a proximally directed force on the distal anchor.
  • The deploying step of the method may include the step of deploying a distal anchor of the device from a distal end of a catheter. The method may also include the step of recapturing the distal anchor into a catheter and optionally redeploying the distal anchor. The deploying step of the method may also include the step of deploying a proximal anchor of the device from a distal end of a catheter, and the may include the step of recapturing the proximal anchor into a catheter and optionally redeploying the distal anchor. The entire device may also be recaptured by a catheter and redeployed from the catheter.
  • The method may also include the step of selecting the tissue shaping device from a set of tissue shaping devices that includes tissue shaping devices of a plurality of lengths and/or tissue shaping devices of a plurality of anchor sizes prior to the delivering step.
  • The invention is also a set of devices for use in treating mitral valve regurgitation, with the set including a plurality of tissue shaping devices having different lengths, each of the tissue shaping devices being configured to be deliverable to a coronary sinus of a patient within a catheter having an outer diameter no greater than nine or ten french. In some embodiments the tissue shaping devices each include an anchor (such as a distal anchor or a proximal anchor) having an expanded configuration and an unexpanded configuration for delivery via catheter. In some embodiments, at least one tissue shaping device in the set has a length 60 mm or less and at least one tissue shaping device in the set has a length more than 60 mm. In some embodiments the distal anchor of each tissue shaping device in the set in its expanded configuration has a diameter equal to or greater than a coronary sinus diameter at a distal anchor location (e.g., about 7 mm. to about 16 mm.), and the proximal anchor of each tissue shaping device in the set in its expanded configuration has a diameter equal to or greater than a coronary sinus diameter at a proximal anchor location (e.g., about 9 mm. to about 20 mm.) In some sets, the anchors are self-expanding, in other sets the anchors are actuatable, while still other sets have at least one device with a self-expanding anchor and one with an actuatable anchor. The set may also include a catheter having an outer diameter no greater than nine to ten french.
  • Another aspect of the invention is a set of devices for use in treating mitral valve regurgitation, with the set including a plurality of tissue shaping devices each with an anchor having an unexpanded configuration and an expanded configuration, the anchors having different diameters when in their expanded configurations, and each of the tissue shaping devices being configured to be deliverable to a coronary sinus of a patient within a catheter having an outer diameter no greater than nine to ten french. In some embodiments the anchor is a distal anchor (such as a self-expanding anchor or an actuatable anchor), and the devices further include a proximal anchor (such as a self-expanding anchor or an actuatable anchor) having an unexpanded configuration and an expanded configuration, the proximal anchors having different diameters when in their expanded configurations. In some embodiments the diameters of the distal anchors of the tissue shaping devices in the set in their expanded configurations range from about 7 mm. to about 16 mm., and in some embodiments the diameters of the proximal anchors of the tissue shaping devices in the set in their expanded configurations range from about 9 mm. to about 20 mm. The set may also include a catheter having an outer diameter no greater than nine to ten french.
  • The invention will be described in more detail below with reference to the drawings.
  • BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 is a schematic view of a tissue shaping device according to a preferred embodiment as deployed within a coronary sinus.
  • FIG. 2 is a schematic view of a tissue shaping device according to an alternative embodiment as deployed within a coronary sinus.
  • FIG. 3 is a schematic view of a tissue shaping device being delivered to a coronary sinus within a catheter.
  • FIG. 4 is a schematic view of a partially deployed tissue shaping device within a coronary sinus.
  • FIG. 5 is a schematic view of a partially deployed and cinched tissue shaping device within a coronary sinus.
  • FIG. 6 is an elevational view of yet another embodiment of a tissue shaping device according to this invention.
  • FIG. 7 is a schematic drawing showing a method of determining the crossover point between a circumflex artery and a coronary sinus.
  • FIG. 8 is a perspective drawing of a tissue shaping device according to one embodiment of this invention.
  • FIG. 9 is a partial sectional view of the tissue shaping device of FIG. 8 in an unexpanded configuration within a catheter.
  • FIG. 10 is a perspective view of an anchor for use with a tissue shaping device according to this invention.
  • FIG. 11 is a perspective view of another anchor for use with a tissue shaping device according to this invention.
  • FIG. 12 is a perspective view of yet another anchor for use with a tissue shaping device according to this invention.
  • FIG. 13 is a perspective view of still another anchor for use with a tissue shaping device according to this invention.
  • FIG. 14 is a perspective view of another anchor for use with a tissue shaping device according to this invention.
  • FIG. 15 is a perspective view of yet another anchor for use with a tissue shaping device according to this invention.
  • FIG. 16 is a perspective view of part of an anchor for use with a tissue shaping device according to this invention.
  • FIG. 17 is a perspective view of still another anchor for use with a tissue shaping device according to this invention.
  • FIG. 18 is a perspective view of another anchor for use with a tissue shaping device according to this invention.
  • FIG. 19 is a perspective view of yet another anchor for use with a tissue shaping. device according to this invention.
  • FIG. 20 is a perspective view of still another anchor for use with a tissue shaping device according to this invention.
  • FIG. 21 is a perspective view of a tandem anchor for use with a tissue shaping device according to this invention.
  • FIG. 22 is a perspective view of a connector with integral anchor crimps for us in a tissue shaping device according to this invention.
  • FIG. 23 is a perspective view of a tissue shaping device employing the connector of FIG. 22.
  • FIG. 24 is a perspective view of another connector for use with a tissue shaping device according to this invention.
  • FIG. 25 is a perspective view of yet another connector for use with a tissue shaping device according to this invention.
  • FIG. 26 is a side view of a connector for use with a tissue shaping device according to this invention.
  • FIG. 27 is a side view of another connector for use with a tissue shaping device according to this invention.
  • FIG. 28 is a perspective view of yet another tissue shaping device according to this invention.
  • FIG. 29 is a side view of the tissue shaping device shown in FIG. 28.
  • FIG. 30 is a schematic view of another embodiment demonstrating the method of this invention.
  • FIG. 31 is a schematic view of yet another embodiment demonstrating the method of this invention.
  • DETAILED DESCRIPTION OF THE INVENTION
  • FIG. 1 shows a partial view of a human heart 10 and some surrounding anatomical structures. The main coronary venous vessel is the coronary sinus 12, defined as starting at the ostium 14 or opening to the right atrium and extending through the great cardiac vein to the anterior interventricular (“AIV”) sulcus or groove 16. Also shown is the mitral valve 20 surrounded by the mitral valve annulus 22 and adjacent to at least a portion of the coronary sinus 12. The circumflex artery 24 shown in FIG. 1 passes between the coronary sinus 12 and the heart. The relative size and location of each of these structures vary from person to person.
  • Disposed within the coronary sinus 12 is a tissue shaping device 30. As shown in FIG. 1, the distal end 32 of device 30 is disposed proximal to circumflex artery 24 to reshape the adjacent mitral valve annulus 22 and thereby reduce mitral valve regurgitation. As shown in FIG. 1, device 30 has a distal anchor 34, a proximal anchor 36 and a connector 38.
  • In the embodiment of FIG. 1, proximal anchor 36 is deployed completely within the coronary sinus. In the alternative embodiment shown in FIG. 2, proximal anchor is deployed at least partially outside the coronary sinus.
  • FIGS. 3-6 show a method according to this invention. As shown in FIG. 3, a catheter 50 is maneuvered in a manner known in the art through the ostium 14 into coronary sinus 12. In order to be navigable through the patient's venous system, catheter 50 preferably has an outer diameter no greater than ten french, most preferably with an outer diameter no more than nine french. Disposed within catheter 50 is device 30 in an unexpanded configuration, and extending back through catheter 50 from device 30 to the exterior of the patient is a tether or control wire 52. In some embodiments, control wire 52 may include multiple tether and control wire elements, such as those described in U.S. patent application Ser. No. 10/331,143.
  • According to one preferred embodiment, the device is deployed as far distally as possible without applying substantial compressive force on the circumflex or other major coronary artery. Thus, the distal end of catheter 50 is disposed at a distal anchor location proximal of the crossover point between the circumflex artery 24 and the coronary sinus 12 as shown in FIG. 3. At this point, catheter 50 is withdrawn proximally while device 30 is held stationary by control wire 52 to uncover distal anchor 34 at the distal anchor location within coronary sinus 12. Alternatively, the catheter may be held stationary while device 30 is advanced distally to uncover the distal anchor.
  • Distal anchor 34 is either a self-expanding anchor or an actuatable anchor or a combination self-expanding and actuatable anchor. Once uncovered, distal anchor 34 self-expands, or is expanded through the application of an actuation force (such as a force transmitted through control wire 52), to engage the inner wall of coronary sinus 12, as shown in FIG. 4. The distal anchor's anchoring force, i.e., the force with which the distal anchor resists moving in response to a proximally-directed force, must be sufficient not only to maintain the device's position within the coronary sinus but also to enable the device to be used to reshape adjacent tissue in a manner such as that described below. In a preferred embodiment, distal anchor 34 engages the coronary sinus wall to provide an anchoring force of at least one pound, most preferably an anchoring force of at least two pounds. The anchor's expansion energy to supply the anchoring force comes from strain energy stored in the anchor due to its compression for catheter delivery, from an actuation force, or a combination of both, depending on anchor design.
  • While device 30 is held in place by the anchoring force of distal anchor 34, catheter 50 is withdrawn further proximally to a point just distal of proximal anchor 36, as shown in FIG. 5. A proximally directed force is then exerted on distal anchor 34 by control wire 52 through connector 38. In this embodiment, the distance between the distal and proximal anchors along the connector is fixed, so the proximally directed force moves proximal anchor 36 proximally with respect to the coronary sinus while distal anchor 34 remains stationary with respect to the coronary sinus. This cinching action straightens that section of coronary sinus 12, thereby modifying its shape and the shape of the adjacent mitral valve 20, moving the mitral valve leaflets into greater coaptation and reducing mitral valve regurgitation. In some embodiments of the invention, the proximal anchor is moved proximally about 1-6 cm., most preferably at least 2 cm., in response to the proximally directed force. In other embodiments, such as embodiments in which the distance between the distal and proximal anchors is not fixed (e.g., where the connector length is variable), the proximal anchor may stay substantially stationary with respect to the coronary sinus despite the application of a proximally directed force on the distal anchor.
  • After the appropriate amount of reduction in mitral valve regurgitation has been achieved (as determined, e.g., by viewing doppler-enhanced echocardiograms), the proximal anchor is deployed. Other patient vital signs, such as cardiac perfusion, may also be monitored during this procedure as described in U.S. patent application Ser. No. 10/366,585.
  • In preferred embodiments, the proximal anchor's anchoring force, i.e., the force with which the proximal anchor resists moving in response to a distally-directed force, must be sufficient not only to maintain the device's position within the coronary sinus but also to enable the device to maintain the adjacent tissue's cinched shape. In a preferred embodiment, the proximal anchor engages the coronary sinus wall to provide an anchoring force of at least one pound, most preferably an anchoring force of at least two pounds. As with the distal anchor, the proximal anchor's expansion energy to supply the anchoring force comes from strain energy stored in the anchor due to its compression for catheter delivery, from an actuation force, or a combination of both, depending on anchor design.
  • In a preferred embodiment, the proximal anchor is deployed by withdrawing catheter 50 proximally to uncover proximal anchor 36, then either permitting proximal anchor 36 to self-expand, applying an actuation force to expand the anchor, or a combination of both. The control wire 52 is then detached, and catheter 50 is removed from the patient. The device location and configuration as deployed according to this method is as shown in FIG. 1.
  • Alternatively, proximal anchor 36 may be deployed at least partially outside of the coronary sinus after cinching to modify the shape of the mitral valve tissue, as shown in FIG. 2. In both embodiments, because distal anchor 34 is disposed proximal to the crossover point between coronary sinus 12 and circumflex artery 24, all of the anchoring and tissue reshaping force applied to the coronary sinus by device 30 is solely proximal to the crossover point.
  • In alternative embodiments, the proximal anchor may be deployed prior to the application of the proximally directed force to cinch the device to reshape the mitral valve tissue. One example of a device according to this embodiment is shown in FIG. 6. Device 60 includes a self-expanding distal anchor 62, a self-expanding proximal anchor 64 and a connector 66. The design of distal anchor 62 enables it to maintain its anchoring force when a proximally directed force is applied on it to cinch, while the design of proximal anchor 64 permits it to be moved proximally after deployment while resisting distal movement after cinching. Cinching after proximal anchor deployment is described in more detail in U.S. patent application Ser. No. 10/066,426, filed Jan. 30, 2002, the disclosure of which is incorporated herein by reference. In this embodiment as well, distal anchor 62 is disposed proximal to the crossover point between coronary sinus 12 and circumflex artery 24 so that all of anchoring and tissue reshaping force applied to the coronary sinus by device 30 is solely proximal to the crossover point.
  • It may be desirable to move and/or remove the tissue shaping device after deployment or to re-cinch after initial cinching. According to certain embodiments of the invention, therefore, the device or one of its anchors may be recaptured. For example, in the embodiment of FIG. 1, after deployment of proximal anchor 36 but prior to disengagement of control wire 52, catheter 50 may be moved distally to place proximal anchor 36 back inside catheter 50, e.g., to the configuration shown in FIG. 5. From this position, the cinching force along connector 38 may be increased or decreased, and proximal anchor 36 may then be redeployed.
  • Alternatively, catheter 50 may be advanced distally to recapture both proximal anchor 36 and distal anchor 34, e.g., to the configuration shown in FIG. 3. From this position, distal anchor 34 may be redeployed, a cinching force applied, and proximal anchor 36 deployed as discussed above. Also from this position, device 30 may be removed from the patient entirely by simply withdrawing the catheter from the patient.
  • Fluoroscopy (e.g., angiograms and venograms) may be used to determine the relative positions of the coronary sinus and the coronary arteries such as the circumflex artery, including the crossover point between the vessels and whether or not the artery is between the coronary sinus and the heart. Radiopaque dye may be injected into the coronary sinus and into the arteries in a known manner while the heart is viewed on a fluoroscope.
  • An alternative method of determining the relative positions of the vessels is shown in FIG. 7. In this method, guide wires 70 and 72 are inserted into the coronary sinus 12 and into the circumflex artery 24 or other coronary artery, and the relative positions of the guide wires are viewed on a fluoroscope to identify the crossover point 74.
  • FIG. 8 illustrates one embodiment of a tissue shaping device in accordance with the present invention. The tissue shaping device 100 includes a connector or support wire 102 having a proximal end 104 and a distal end 106. The support wire 102 is made of a biocompatible material such as stainless steel or a shape memory material such as nitinol wire.
  • In one embodiment of the invention, connector 102 comprises a double length of nitinol wire that has both ends positioned within a distal crimp tube 108. Proximal to the proximal end of the crimp tube 108 is a distal lock bump 110 that is formed by the support wire bending away from the longitudinal axis of the support 102 and then being bent parallel to the longitudinal axis of the support before being bent again towards the longitudinal axis of the support to form one half 110 a of distal lock bump 110. From distal lock bump 110, the wire continues proximally through a proximal crimp tube 112. On exiting the proximal end of the proximal crimp tube 112, the wire is bent to form an arrowhead-shaped proximal lock bump 114. The wire of the support 102 then returns distally through the proximal crimp tube 112 to a position just proximal to the proximal end of the distal crimp tube 108 wherein the wire is bent to form a second half 110 b of the distal lock 110.
  • At the distal end of connector 102 is an actuatable distal anchor 120 that is formed of a flexible wire such as nitinol or some other shape memory material. As shown in FIG. 8, the wire forming the distal anchor has one end positioned within the distal crimp tube 108. After exiting the distal end of the crimp tube 108, the wire forms a figure eight configuration whereby it bends upward and radially outward from the longitudinal axis of the crimp tube 108. The wire then bends back proximally and crosses the longitudinal axis of the crimp tube 108 to form one leg of the figure eight. The wire is then bent to form a double loop eyelet or loop 122 around the longitudinal axis of the support wire 102 before extending radially outwards and distally back over the longitudinal axis of the crimp tube 108 to form the other leg of the figure eight. Finally, the wire is bent proximally into the distal end of the crimp tube 108 to complete the distal anchor 120.
  • The distal anchor is expanded by using a catheter or locking tool to exert an actuation force sliding eyelet 122 of the distal anchor from a position that is proximal to distal lock bump 110 on the connector to a position that is distal to distal lock bump 110. The bent-out portions 110 a and 110 b of connector 110 are spaced wider than the width of eyelet 122 and provide camming surfaces for the locking action. Distal movement of eyelet 122 pushes these camming surfaces inward to permit eyelet 122 to pass distally of the lock bump 110, then return to their original spacing to keep eyelet 122 in the locked position.
  • Actuatable proximal anchor 140 is formed and actuated in a similar manner by moving eyelet 142 over lock bump 114. Both the distal and the proximal anchor provide anchoring forces of at least one pound, and most preferably two pounds.
  • FIG. 9 illustrates one method for delivering a tissue shaping device 100 in accordance with the present invention to a desired location in the body, such as the coronary sinus to treat mitral valve regurgitation. As indicated above, device 100 is preferably loaded into and routed to a desired location within a catheter 200 with the proximal and distal anchors in an unexpanded or deformed condition. That is, eyelet 122 of distal anchor 120 is positioned proximal to the distal lock bump 110 and the eyelet 142 of the proximal anchor 140 is positioned proximal to the proximal lock bump 114. The physician ejects the distal end of the device from the catheter 200 into the coronary sinus by advancing the device or retracting the catheter or a combination thereof. A pusher (not shown) provides distal movement of the device with respect to catheter 200, and a tether 201 provides proximal movement of the device with respect to catheter 200.
  • Because of the inherent elasticity of the material from which it is formed, the distal anchor begins to expand as soon as it is outside the catheter. Once the device is properly positioned, catheter 200 is advanced to place an actuation force on distal anchor eyelet 122 to push it distally over the distal lock bump 110 so that the distal anchor 120 further expands and locks in place to securely engage the wall of the coronary sinus. Next, a proximally-directed force is applied to connector 102 and distal anchor 120 via a tether or control wire 201 extending through catheter outside the patient to apply sufficient pressure on the tissue adjacent the connector to modify the shape of that tissue. In the case of the mitral valve, fluoroscopy, ultrasound or other imaging technology may be used to see when the device supplies sufficient pressure on the mitral valve to aid in its complete closure with each ventricular contraction without otherwise adversely affecting the patient.
  • The proximally directed reshaping force causes the proximal anchor 140 to move proximally. In one embodiment, for example, proximal anchor 140 can be moved about 1-6 cm., most preferably at least 2 cm., proximally to reshape the mitral valve tissue. The proximal anchor 140 is then deployed from the catheter and allowed to begin its expansion. The locking tool applies an actuation force on proximal anchor eyelet 142 to advance it distally over the proximal lock bump 114 to expand and lock the proximal anchor, thereby securely engaging the coronary sinus wall to maintain the proximal anchor's position and to maintain the reshaping pressure of the connector against the coronary sinus wall. Alternatively, catheter 200 may be advanced to lock proximal anchor 140.
  • Finally, the mechanism for securing the proximal end of the device can be released. In one embodiment, the securement is made with a braided loop 202 at the end of tether 201 and a lock wire 204. The lock wire 204 is withdrawn thereby releasing the loop 202 so it can be pulled through the proximal lock bump 114 at the proximal end of device 100.
  • Reduction in mitral valve regurgitation using devices of this invention can be maximized by deploying the distal anchor as far distally in the coronary sinus as possible. In some instances it may be desirable to implant a shorter tissue shaping device, such as situations where the patient's circumflex artery crosses the coronary sinus relatively closer to the ostium or situations in which the coronary sinus itself is shorter than normal. As can be seen from FIG. 9, anchor 120 in its unexpanded configuration extends proximally along connector 102 within catheter 200. Making the device shorter by simply shortening the connector, however, may cause the eyelet 122 and proximal portion of the distal anchor 120 to overlap with portions of the proximal anchor when the device is loaded into a catheter, thereby requiring the catheter diameter to be larger than is needed for longer versions of the device. For mitral valve regurgitation applications, a preferred catheter diameter is ten french or less (most preferably nine french), and the tissue shaping device in its unexpanded configuration must fit within the catheter.
  • FIGS. 10-23 show embodiments of the device of this invention having flexible and expandable wire anchors which permit the delivery of tissue shaping devices 60 mm or less in length by a ten french (or less) catheter. In some embodiments, one or both of the anchors are provided with bending points about which the anchors deform when placed in their unexpanded configuration for delivery by a catheter or recapture into a catheter. These bending points enable the anchors to deform into configurations that minimize overlap with other elements of the device. In other embodiments, the distal anchor is self-expanding, thereby avoiding the need for a proximally-extending eyelet in the anchor's unexpanded configuration that might overlap with the unexpanded proximal anchor within the delivery and/or recapture catheter.
  • FIG. 10 shows an actuatable anchor design suitable for a shorter tissue shaping device similar to the device shown in FIGS. 8 and 9. In this embodiment, distal anchor 300 is disposed distal to a connector 302. As in the embodiment of FIG. 8, anchor 300 is formed in a figure eight configuration from flexible wire such as nitinol held by a crimp tube 304. An eyelet 306 is formed around the longitudinal axis of connector 302. A distally directed actuation force on eyelet 306 moves it over a lock bump 308 formed in connector 302 to actuate and lock anchor 300.
  • FIG. 10 shows anchor 300 in an expanded configuration. In an unexpanded configuration, such as a configuration suitable for loading anchor 300 and the rest of the tissue shaping device into a catheter for initial deployment to treat mitral valve regurgitation, eyelet 306 is disposed proximal to lock bump 308, and the figure eight loops of anchor 300 are compressed against crimp 304. In order to limit the proximal distance eyelet 306 must be moved along the connector to compress anchor 300 into an unexpanded configuration, bending points 310 are formed in the distal struts of anchor 300. Bending points 310 are essentially kinks, i.e., points of increased curvature, formed in the wire. When anchor 300 is compressed into an unexpanded configuration, bending points 310 deform such that the upper arms 312 of the distal struts bend around bending points 310 and move toward the lower arms 314 of the distal struts, thereby limiting the distance eyelet 306 and the anchor's proximal struts must be moved proximally along the connector to compress the anchor.
  • Likewise, if distal anchor were to be recaptured into a catheter for redeployment or removal from the patient, anchor 300 would deform about bending points 310 to limit the cross-sectional profile of the anchor within the catheter, even if eyelet 306 were not moved proximally over lock bump 308 during the recapture procedure. Bending points may also be provided on the proximal anchor in a similar fashion.
  • As stated above, distal anchor 300 may be part of a tissue shaping device (such as that shown in FIGS. 8 and 9) having a proximal anchor and a connector disposed between the anchors. To treat mitral valve regurgitation, distal anchor 300 may be deployed from a catheter and expanded with an actuation force to anchor against the coronary sinus wall to provide an anchoring force of at least one pound, preferably at least two pounds, and to lock anchor 300 in an expanded configuration. A proximally directed force is applied to distal anchor 300 through connector 302, such as by moving the proximal anchor proximally about 1-6 cm., more preferably at least 2 cm., by pulling on a tether or control wire operated from outside the patient. The proximal anchor may then be deployed to maintain the reshaping force of the device.
  • One aspect of anchor 300 is its ability to conform and adapt to a variety of vessel sizes. For example, when anchor 300 is expanded inside a vessel such as the coronary sinus, the anchor's wire arms may contact the coronary sinus wall before the eyelet 306 has been advanced distally over lock bump 308 to lock the anchor in place. While continued distal advancement of eyelet 306 will create some outward force on the coronary sinus wall, much of the energy put into the anchor by the anchor actuation force will be absorbed by the deformation of the distal struts about bending points 310, which serve as expansion energy absorption elements and thereby limit the radially outward force on the coronary sinus wall. This feature enables the anchor to be used in a wider range of vessel sizes while reducing the risk of over-expanding the vessel.
  • FIG. 11 shows another anchor design suitable for a shorter tissue shaping device similar to the device shown in FIGS. 8 and 9. In this embodiment, distal anchor 320 is disposed distal to a connector 322. As in the embodiment of FIG. 8, anchor 320 is formed in a figure eight configuration from flexible wire such as nitinol held by a crimp tube 324. Unlike the embodiment of FIG. 10, however, anchor 320 is self-expanding and is not actuatable. Eyelet 326 is held in place by a second crimp 325 to limit or eliminate movement of the anchor's proximal connection point proximally or distally, e.g., along connector 322.
  • FIG. 11 shows anchor 320 in an expanded configuration. In an unexpanded configuration, such as a configuration suitable for loading anchor 320 and the rest of the tissue shaping device into a catheter for initial deployment to treat mitral valve regurgitation, the figure eight loops of anchor 320 are compressed. Bending points 330 are formed in the distal struts of anchor 320. When anchor 320 is compressed into an unexpanded configuration, bending points 330 deform such that the upper arms 332 of the distal struts bend around bending points 330 and move toward the lower arms 334 of the distal struts. Depending upon the exact location of bending points 330, very little or none of the wire portion of anchor 320 is disposed proximally along crimp 325 or connector 322 when anchor 320 is in its unexpanded configuration.
  • Likewise, if distal anchor were to be recaptured into a catheter for redeployment or removal from the patient, anchor 320 would deform about bending points 330 to limit the cross-sectional profile of the anchor within the catheter. Bending points may also be provided on the proximal anchor in a similar fashion.
  • Distal anchor 320 may be part of a tissue shaping device (such as that shown in FIGS. 8 and 9) having a proximal anchor and a connector disposed between the anchors. Due to the superelastic properties of its shape memory material, distal anchor 320 may be deployed from a catheter to self-expand to anchor against the coronary sinus wall to provide an anchoring force of at least one pound, preferably at least two pounds. A proximally directed force may then be applied to distal anchor 320 through connector 322, such as by moving the proximal anchor proximally about 1-6 cm., more preferably at least 2 cm., by pulling on a tether or control wire operated from outside the patient. The proximal anchor may then be deployed to maintain the reshaping force of the device.
  • FIG. 12 shows another embodiment of an anchor suitable for use in a shorter tissue shaping device. In this embodiment, distal anchor 340 is disposed distal to a connector 342. As in the embodiment of FIG. 11, anchor 340 is formed in a figure eight configuration from flexible wire such as nitinol held by a crimp tube 344. Also like that embodiment, anchor 340 is self-expanding and is not actuatable. The loop of anchor 340 forming the anchor's proximal struts passes through a loop 346 extending distally from a second crimp 345 to limit or eliminate movement of the anchor's proximal struts proximally or distally, e.g., along connector 342.
  • FIG. 12 shows anchor 340 in an expanded configuration. Like the device of FIG. 11, in an unexpanded configuration, such as a configuration suitable for loading anchor 340 and the rest of the tissue shaping device into a catheter for initial deployment to treat mitral valve regurgitation, the figure eight loops of anchor 340 are compressed. Unlike the FIG. 11 embodiment, however, bending points 350 are formed in the proximal struts of anchor 340. When anchor 340 is compressed into an unexpanded configuration, bending points 350 deform such that the upper arms 352 of the distal struts bend around bending points 350 and move toward the lower arms 354 of the distal struts. The amount of the wire portion of anchor 340 extending proximally along crimp 345 and connector 342 in its unexpanded configuration depends on the location of bending points 350. In one embodiment, the bending points are formed at the tallest and widest part of the proximal struts.
  • Distal anchor 340 may be part of a tissue shaping device (such as that shown in FIGS. 8 and 9) having a proximal anchor and a connector disposed between the anchors. Due to the superelastic properties of its shape memory material, distal anchor 340 may be deployed from a catheter to self-expand to anchor against the coronary sinus wall to provide an anchoring force of at least one pound, preferably at least two pounds. A proximally directed force may then be applied to distal anchor 340 through connector 342, such as by moving the proximal anchor proximally about 1-6 cm., more preferably at least 2 cm., by pulling on a tether or control wire operated from outside the patient. The proximal anchor may then be deployed to maintain the reshaping force of the device.
  • Bending points 350 also add to the anchoring force of distal anchor 340, e.g., by causing the anchor height to increase as the proximal struts become more perpendicular to the connector in response to a proximally directed force, thereby increasing the anchoring force. In the same manner, bending points may be added to the distal struts of a proximal anchor to increase the proximal anchor's anchoring force in response to a distally directed force.
  • FIG. 13 shows yet another embodiment of an anchor suitable for use in a shorter tissue shaping device. In this embodiment, distal anchor 360 is disposed distal to a connector 362. As in the embodiment of FIG. 12, anchor 360 is formed in a figure eight configuration from flexible wire such as nitinol held by a crimp tube 364. Also like that embodiment, anchor 360 is self-expanding and is not actuatable. The loop of anchor 360 forming the anchor's proximal struts passes through a loop 366 extending distally from a second crimp 365 to limit or eliminate movement of the anchor's proximal struts proximally or distally, e.g., along connector 362.
  • FIG. 13 shows anchor 360 in an expanded configuration. Like the device of FIG. 12, in an unexpanded configuration, such as a configuration suitable for loading anchor 360 and the rest of the tissue shaping device into a catheter for initial deployment to treat mitral valve regurgitation, the figure eight loops of anchor 360 are compressed. Unlike the FIG. 12 embodiment, however, bending points 370 are formed in both the proximal struts and the distal struts of anchor 360.
  • Anchor 360 may be used as part of a tissue shaping device like the embodiments discussed above.
  • FIG. 14 shows an actuatable anchor design-suitable for a shorter tissue shaping device similar to the device shown in FIGS. 8 and 9. In this embodiment, distal anchor 380 is disposed distal to a connector 382. As in the other embodiments, anchor 380 is formed in a figure eight configuration from flexible wire such as nitinol held by a crimp tube 384. In contrast to the embodiment of FIG. 10, eyelets 386 and 387 are formed in each of the anchor's proximal struts around the longitudinal axis of connector 382. This arrangement reduces the radially outward force of the anchor. A distally directed actuation force on eyelets 386 and 387 move them over a lock bump 388 formed in connector 382 to actuate and lock anchor 380.
  • FIG. 14 shows anchor 380 in an expanded configuration. In an unexpanded configuration, such as a configuration suitable for loading anchor 380 and the rest of the tissue shaping device into a catheter for initial deployment to treat mitral valve regurgitation, eyelets 386 and 387 are disposed proximal to lock bump 388 and the figure eight loops of anchor 380 are compressed against crimp 384. In order to limit the proximal distance eyelets 386 and 387 must be moved to compress anchor 380 into an unexpanded configuration, bending points 390 are formed in the distal struts of anchor 380. When anchor 380 is compressed into an unexpanded configuration, bending points 390 deform such that the upper arms 392 of the distal struts bend around bending points 390 and move toward the lower arms 394 of the distal struts, thereby limiting the distance eyelets 386 and 387 and the anchor's proximal struts must be moved proximally along the connector to compress the anchor.
  • If distal anchor were to be recaptured into a catheter for redeployment or removal from the patient, anchor 380 would deform about bending points 390 to limit the cross-sectional profile of the anchor within the catheter, even if eyelets 386 and 387 were not moved proximally over lock bump 388 during the recapture procedure. Bending points may also be provided on the proximal anchor in a similar fashion.
  • As with the other embodiments above, distal anchor 380 may be part of a tissue shaping device (such as that shown in FIGS. 8 and 9) having a proximal anchor and a connector disposed between the anchors. To treat mitral valve regurgitation, distal anchor 380 may be deployed from a catheter and expanded with an actuation force to anchor against the coronary sinus wall to provide an anchoring force of at least one pound, preferably at least two pounds, and to lock anchor 380 in an expanded configuration. A proximally directed force is applied to distal anchor 380 through connector 382, such as by moving the proximal anchor proximally about 1-6 cm., more preferably at least 2 cm., by pulling on a tether or control wire operated from outside the patient. The proximal anchor may then be deployed to maintain the reshaping force of the device.
  • As with other embodiments, one aspect of anchor 380 is its ability to conform and adapt to a variety of vessel sizes. For example, when anchor 380 is expanded inside a vessel such as the coronary sinus, the anchor's wire arms may contact the coronary sinus wall before the eyelets 386 and 387 have been advance distally over lock bump 388 to lock the anchor in place. While continued distal advancement of eyelet 386 will create some outward force on the coronary sinus wall, much of the energy put into the anchor by the anchor actuation force will be absorbed by the deformation of the distal struts about bending points 390.
  • FIG. 15 shows yet another embodiment of an actuatable anchor for use in a shorter tissue shaping device. Proximal anchor 400 is disposed proximal to a connector 402. As in other embodiments, anchor 400 is formed in a figure eight configuration from flexible wire such as nitinol held by a crimp tube 404. An eyelet 406 is formed around a lock bump 408 extending proximally from crimp 404. A distally directed actuation force on eyelet 406 moves it over lock bump 408 to actuate and lock anchor 400.
  • FIG. 15 shows anchor 400 in an expanded configuration. When anchor 400 is compressed into an unexpanded configuration, bending points 410 formed as loops in the anchor wire deform such that the upper arms 412 of the distal struts bend around bending points 410 and move toward the lower arms 414 of the distal struts. As with the other embodiments, proximal anchor 400 may be part of a tissue shaping device (such as that shown in FIGS. 8 and 9) having a distal anchor and a connector disposed between the anchors.
  • Like other embodiments, one aspect of anchor 400 is its ability to conform and adapt to a variety of vessel sizes. For example, when anchor 400 is expanded inside a vessel such as the coronary sinus, the anchor's wire arms may contact the coronary sinus wall before the eyelet 406 has been advanced distally over lock bump 408 to lock the anchor in place. While continued distal advancement of eyelet 406 will create some outward force on the coronary sinus wall, much of the energy put into the anchor by the anchor actuation force will be absorbed by the deformation of the distal struts about bending points 410, which serve as expansion energy absorption elements and thereby limit the radially outward force on the coronary sinus wall.
  • In other embodiments, the looped bending points of the FIG. 15 embodiment may be formed on the anchor's proximal struts in addition to or instead of on the distal struts. The looped bending point embodiment may also be used in a distal anchor, as shown in FIG. 16 (without the crimp or connector). Note that in the embodiment of FIG. 16 the proximal and distal struts of anchor 420 as well as the eyelet 422 and bending points 424 are formed from a single wire.
  • FIG. 17 shows an embodiment of a distal anchor 440 similar to that of FIG. 10 suitable for use in a shorter tissue shaping device. In this embodiment, however, extra twists 442 are added at the apex of the anchor's figure eight pattern. As in the FIG. 10 embodiment, bending points 444 are formed in the anchor's distal struts. As shown, anchor 440 is actuatable by moving eyelet 446 distally over a lock bump 448 formed in connector 450. Anchor 440 may also be made as a self-expanding anchor by limiting or eliminating movement of the proximal struts of anchor 440 along connector 450, as in the embodiment shown in FIG. 11. As with other embodiments, the bending points help anchor 440 adapt and conform to different vessel sizes. In addition, the extra twists 442 also help the anchor adapt to different vessel diameters by keeping the anchor's apex together.
  • As in the other embodiments, anchor 440 is preferably formed from nitinol wire. Anchor 440 may be used as part of a tissue shaping device in a manner similar to the anchor of FIG. 10 (for the actuatable anchor embodiment) or the anchor of FIG. 11 (for the self-expanding anchor embodiment). Anchor 440 may also be used as a proximal anchor.
  • FIG. 18 shows an embodiment of a distal anchor 460 similar to that of FIG. 17. In this embodiment, however, the bending points 462 are formed in the anchor's proximal struts, as in the self-expanding anchor shown in FIG. 12. As in the FIG. 17 embodiment, extra twists 464 are added at the apex of the anchor's figure eight pattern. As shown, anchor 460 is actuatable by moving eyelet 466 distally over a lock bump 468 formed in connector 470. Anchor 460 may also be made as a self-expanding anchor by limiting or eliminating movement of the proximal connection point of anchor 460 along connector 470, as in the embodiment shown in FIG. 11. As with the embodiment of FIG. 17, the bending points help anchor 460 adapt and conform to different vessel sizes. In addition, the extra twists 464 also help the anchor adapt to different vessel diameters by keeping the anchor's apex together.
  • As in the other embodiments, anchor 460 is preferably formed from nitinol wire. Anchor 460 may be used as part of a tissue shaping device in a manner similar to the anchor of FIG. 10 (for the actuatable anchor embodiment) or the anchor of FIG. 11 (for the self-expanding anchor embodiment). Anchor 460 may also be used as a proximal anchor.
  • FIG. 19 shows an embodiment of a self-expanding distal anchor 480 suitable for use in a shorter tissue shaping device. As in the other embodiments, anchor 480 is formed in a figure eight configuration from flexible wire such as nitinol held by a crimp tube 482. The base of the figure eight pattern is narrower in this embodiment, however, with the anchor's proximal struts 484 passing through crimp 482.
  • Distal anchor 480 may be part of a tissue shaping device (such as that shown in FIGS. 8 and 9) having a proximal anchor and a connector disposed between the anchors. To treat mitral valve regurgitation, distal anchor 480 may be deployed from a catheter and allowed to self-expand to anchor against the coronary sinus wall to provide an anchoring force of at least one pound, preferably at least two pounds. A proximally directed force is applied to distal anchor 480 through connector 486, such as by moving the proximal anchor proximally about 1-6 cm., more preferably at least 2 cm., by pulling on a tether or control wire operated from outside the patient. The proximal anchor may then be deployed to maintain the reshaping force of the device.
  • FIG. 20 shows an embodiment of a distal anchor suitable for use in a shorter tissue shaping device and similar to that of FIG. 10. In this embodiment, distal anchor 500 is disposed distal to a connector 502. As in other embodiments, anchor 500 is formed in a figure eight configuration from flexible wire such as nitinol held by a crimp tube 504. An eyelet 506 is formed around the longitudinal axis of connector 502. A distally directed actuation force on eyelet 506 moves it over a lock bump 508 formed in connector 502 to actuate and lock anchor 500.
  • The angle of proximal struts 501 and the angle of distal struts 503 are wider than corresponding angles in the FIG. 10 embodiment, however, causing anchor 500 to distend more in width than in height when expanded, as shown. In an unexpanded configuration, such as a configuration suitable for loading anchor 500 and the rest of the tissue shaping device into a catheter for initial deployment to treat mitral valve regurgitation, eyelet 506 is disposed proximal to lock bump 508 and the figure eight loops of anchor 500 are compressed against crimp 504. In order to limit the proximal distance eyelet 506 must be moved along the connector to compress anchor 500 into an unexpanded configuration, bending points 510 are formed in the distal struts 503, as in the FIG. 10 embodiment, to limit the width of the device in its unexpanded configuration within a catheter.
  • Distal anchor 500 may be part of a tissue shaping device (such as that shown in FIGS. 8 and 9) having a proximal anchor and a connector disposed between the anchors. To treat mitral valve regurgitation, distal anchor 500 may be deployed from a catheter and expanded with an actuation force to anchor against the coronary sinus wall to provide an anchoring force of at least one pound, preferably at least two pounds, and to lock anchor 500 in an expanded configuration. A proximally directed force is applied to distal anchor 500 through connector 502, such as by moving the proximal anchor proximally about 1-6 cm., more preferably at least 2 cm., by pulling on a tether or control wire operated from outside the patient. The proximal anchor may then be deployed to maintain the reshaping force of the device.
  • The anchor shown in FIG. 20 may be used as a proximal anchor. This anchor may also be formed as a self-expanding anchor.
  • FIG. 21 shows a tandem distal anchor according to another embodiment of this invention. Self-expanding anchor 520 is formed in a figure eight configuration from flexible wire such as nitinol held by a crimp tube 522. Eyelet 524 is held in place by the distal end of actuatable anchor 540 to limit or eliminate proximal and distal movement of the proximal struts of anchor 520. As in the anchor shown in FIG. 11, bending points 530 are formed in the distal struts of anchor 520. Depending upon the exact location of bending points 530, very little or none of the wire portion of anchor 520 is disposed proximal to the distal end of anchor 540 when anchor 520 is in its unexpanded configuration.
  • Likewise, if distal anchor were to be recaptured into a catheter for redeployment or removal from the patient, anchor 520 would deform about bending points 530 to limit the cross-sectional profile of the anchor within the catheter. Bending points may also be provided on the proximal anchor in a similar fashion.
  • Anchor 540 is similar to anchor 120 shown in FIG. 8. Anchor 540 is formed in a figure eight configuration from flexible wire such as nitinol held by a crimp tube 544. An eyelet 546 is formed around the longitudinal axis of connector 542. A distally directed actuation force on eyelet 546 moves it over a lock bump 548 formed in connector 542 to actuate and lock anchor 540.
  • Tandem anchors 520 and 540 may be part of a tissue shaping device (such as that shown in FIGS. 8 and 9) having a proximal anchor and a connector disposed between the anchors. Anchors 520 and 540 may be made from a single wire or from separate pieces of wire. To treat mitral valve regurgitation, distal anchors 520 and 540 may be deployed from a catheter. Self-expanding anchor 520 will then self-expand, and actuatable anchor 540 may be expanded and locked with an actuation force, to anchor both anchors against the coronary sinus wall to provide an anchoring force of at least one pound, preferably at least two pounds. A proximally directed force is applied to anchors 520 and 540 through connector 542, such as by moving the proximal anchor proximally about 1-6 cm., more preferably at least 2 cm., by pulling on a tether or control wire operated from outside the patient. The proximal anchor may then be deployed to maintain the reshaping force of the device.
  • While the anchor designs above were described as part of shorter tissue shaping devices, these anchors may be used in tissue shaping devices of any length.
  • FIGS. 22 and 23 show an alternative embodiment in which the device's connector 560 is made integral with the distal and proximal crimp tubes 562 and 564. In this embodiment, connector 560 is formed by cutting away a section of a blank such as a nitinol (or other suitable material such as stainless steel) cylinder or tube, leaving crimp tube portions 562 and 564 intact. The radius of the semi-circular cross-section connector is therefore the same as the radii of the two anchor crimp tubes.
  • Other connector shapes are possible for an integral connector and crimp design, of course. For example, the device may be formed from a blank shaped as a flat ribbon or sheet by removing rectangular edge sections from a central section, creating an I-shaped sheet (e.g., nitinol or stainless steel) having greater widths at the ends and a narrower width in the center connector portion. The ends can then be rolled to form the crimp tubes, leaving the connector substantially flat. In addition, in alternative embodiments, the connector can be made integral with just one of the anchors.
  • As shown in FIG. 23, a distal anchor 566 is formed in a figure eight configuration from flexible wire such as nitinol. Distal anchor 566 is self-expanding, and its proximal struts 568 are held in place by crimp tube 562. Optional bending points may be formed in the proximal struts 568 or distal struts 570 of anchor 566.
  • A proximal anchor 572 is also formed in a figure eight configuration from flexible wire such as nitinol with an eyelet 574 on its proximal end. A distally directed actuation force on eyelet 574 moves it over a lock bump 576 extending proximally from crimp tube 564 to actuate and lock anchor 572. Lock bump 576 also serves as the connection point for a tether or control wire to deploy and actuate device in the manner described above with respect to FIGS. 8 and 9. Optional bending points may be formed in the proximal or distal struts of anchor 572.
  • When deployed in the coronary sinus to treat mitral valve regurgitation, the tissue shaping devices of this invention are subjected to cyclic bending and tensile loading as the patient's heart beats. FIG. 24 shows an alternative connector for use with the tissue shaping devices of this invention that distributes over more of the device any strain caused by the beat to beat bending and tensile loading.
  • Connector 600 has a proximal anchor area 602, a distal anchor area 604 and a central area 606. The distal anchor area may be longer than the distal anchor attached to it, and the proximal anchor area may be longer than the proximal anchor attached to it. An optional lock bump 608 may be formed at the proximal end of connector 600 for use with an actuatable proximal anchor and for connecting to a tether or control wire, as described above. An optional bulb 610 may be formed at the distal end of connector 600 to prevent accidental distal slippage of a distal anchor.
  • In order to reduce material fatigue caused by the heartbeat to heartbeat loading and unloading of the tissue shaping device, the moment of inertia of connector 600 varies along its length, particularly in the portion of connector disposed between the two anchors. In this embodiment, for example, connector 600 is formed as a ribbon or sheet and is preferably formed from nitinol having a rectangular cross-sectional area. The thickness of connector 600 is preferably constant in the proximal anchor area 602 and the distal anchor area 604 to facilitate attachment of crimps and other components of the anchors. The central area 606 has a decreasing thickness (and therefore a decreasing moment of inertia) from the border between, central area 606 and proximal anchor area 602 to a point about at the center of central area 606, and an increasing thickness (and increasing moment of inertia) from that point to the border between central area 606 and distal anchor area 604. The varying thickness and varying cross-sectional shape of connector 600 change its moment of inertia along its length, thereby helping distribute over a wider area any strain from the heartbeat to heartbeat loading and unloading of the device and reducing the chance of fatigue failure of the connector material.
  • FIG. 25 shows another embodiment of the connector. Like the previous embodiment, connector 620 has a proximal anchor area 622, a distal anchor area 624 and a central area 626. Proximal anchor area 622 has an optional two-tined prong 628 formed at its proximal end to facilitate attachment of a crimp and other anchor elements. Bent prong portions 629 may be formed at the proximal end of the prong to prevent accidental slippage of a proximal anchor. An optional bulb 630 may be formed at the distal end of connector 620 to prevent accidental distal slippage of a distal anchor.
  • Like the FIG. 24 embodiment, connector 620 is formed as a ribbon or sheet and is preferably formed from nitinol having a rectangular cross-sectional area. The thickness of connector 620 is preferably constant in the proximal anchor area 622 and the distal anchor area 624 to facilitate attachment of crimps and other components of the anchors. The central area 626 has a decreasing thickness (decreasing moment of inertia) from the border between central area 626 and proximal anchor area 622 to a point about at the center of central area 626, and an increasing thickness (increasing moment of inertia) from that point to the border between central area 626 and distal anchor area 624. The varying thickness and varying cross-sectional shape of connector 620 change its moment of inertia along its length, thereby helping distribute over a wider area any strain from the heartbeat to heartbeat loading and unloading of the device and reducing the chance of fatigue failure of the connector material.
  • FIG. 26 shows a connector 640 in profile. Connector 640 may be formed like the connectors 600 and 620 or FIGS. 24 and 25, respectively, or may have some other configuration. Connector 640 has a proximal anchor area 642, a distal anchor area 644 and a central area 646. Connector 640 is preferably formed as a ribbon or sheet and is preferably formed from nitinol having a rectangular cross-sectional area.
  • In the embodiment shown in FIG. 26, the thicknesses of proximal anchor area 642 and distal anchor area 644 are constant. The thickness of central area 646 decreases from the border between central area 646 and proximal anchor area 642 to a point distal of that border and increases from a point proximal to the border between distal anchor area 644 and central area 646 to that border. The points in the central area where the thickness decrease ends and the thickness increase begins may be coincident or may be separated to form an area of uniform thickness within central area 646. In this embodiment, the thickness of the central area changes as a function of the square root of the distance from the borders between the central area and the proximal and distal anchor areas.
  • FIG. 27 shows yet another embodiment of the connector. As in the embodiment of FIG. 26, connector 650 may be formed like the connectors 600 and 620 or FIGS. 24 and 25, respectively, or may have some other configuration. Connector 650 has a proximal anchor area 652, a distal anchor area 654 and a central area 656. Connector 650 is preferably formed as a ribbon or sheet and is preferably formed from nitinol having a rectangular cross-sectional area.
  • In the embodiment shown in FIG. 27, the thicknesses of proximal anchor area 652 and distal anchor area 654 are constant. The thickness of a proximal portion 658 of central area 656 decreases linearly from the border between central area 656 and proximal anchor area 652 to a constant thickness center portion 662 of central area 656, and the thickness of a distal portion 660 of central area 656 increases linearly from center portion 662 to the border between distal anchor area 654 and central area 656.
  • In other embodiments, the thickness of the connector may vary in other ways. In addition, the cross-sectional shape of the connector may be other than rectangular and may change over the length of the connector.
  • FIGS. 28 and 29 show yet another embodiment of the invention. Tissue shaping device 700 has a connector 706 disposed between a proximal anchor 702 and a distal anchor 704. Connector 706 may be formed as a ribbon or sheet, such as the tapered connectors shown in FIGS. 24-27. Actuatable proximal anchor 702 is formed in a figure eight configuration from flexible wire such as nitinol and is fastened to connector 706 with a crimp tube 708. Likewise, self-expanding distal anchor 704 is formed in a figure eight configuration from flexible wire such as nitinol and is fastened to connector 706 with a crimp tube 710. A proximal lock bump 716 extends proximally from proximal anchor 702 for use in actuating and locking proximal anchor 702 and for connecting to a tether or control wire, as described above.
  • Bending points 712 are formed in the loops of proximal anchor 702, and bending points 714 are formed in the loops of distal anchor 704. When compressed into their unexpanded configurations for catheter-based delivery and deployment or for recapture into a catheter for redeployment or removal, the wire portions of anchors 702 and 704 bend about bending points 712 and 714, respectively, to limit the cross-sectional profile of the anchors within the catheter. The bending points also affect the anchor strength of the anchors and the adaptability of the anchors to different vessel diameters, as discussed above.
  • In addition to different coronary sinus lengths and varying distances from the ostium to the crossover point between the coronary sinus and the circumflex artery, the diameter of the coronary sinus at the distal and proximal anchor points can vary from patient to patient. The anchors described above may be made in a variety of heights and combined with connectors of varying lengths to accommodate this patient to patient variation. For example, tissue shaping devices deployed in the coronary sinus to treat mitral valve regurgitation can have distal anchor heights ranging from about 7 mm. to about 16 mm. and proximal anchor heights ranging from about 9 mm. to about 20 mm.
  • When treating a patient for mitral valve regurgitation, estimates can be made of the appropriate length for a tissue shaping device as well as appropriate anchor heights for the distal and proximal anchors. The clinician can then select a tissue shaping device having the appropriate length and anchor sizes from a set or sets of devices with different lengths and different anchor sizes, made, e.g., according to the embodiments described above. These device sets may be aggregated into sets or kits or may simply be a collection or inventory of different tissue shaping devices.
  • One way of estimating the appropriate length and anchor sizes of a tissue shaping device for mitral valve regurgitation is to view a fluoroscopic image of a coronary sinus into which a catheter with fluoroscopically viewable markings has been inserted. The crossover point between the coronary sinus and the circumflex artery can be determined as described above, and the screen size of the coronary sinus length proximal to that point and the coronary sinus diameter at the intended anchor locations can be measured. By also measuring the screen distance of the catheter markings and comparing them to the actual distance between the catheter marking, the length and diameter measures can be scaled to actual size. A tissue shaping device with the appropriate length and anchor sizes can be selected from a set or inventory of devices for deployment in the patient to treat mitral valve regurgitation.
  • FIG. 30 shows yet another embodiment of the method of this invention. In this embodiment, a tissue shaping device 800 formed from a substantially straight rigid member 802 is disposed in the coronary sinus 804 to treat mitral valve regurgitation. When deployed as shown, the central portion of rigid member 802 exerts a remodeling force anteriorly through the coronary sinus wall toward the mitral valve 806, while the proximal and distal ends 808 and 810, respectively, of rigid member 802 exert posteriorly-directed forces on the coronary sinus wall. According to this invention, device 800 is disposed in relation to the circumflex artery 812 so that all of the anteriorly-directed forces from rigid member 802 are posterior to the crossover point between artery 812 and coronary sinus 804, despite the fact that distal end 810 of device 800 and a guidewire portion 814 are distal to the crossover point.
  • The device of FIG. 30 may also include a less rigid portion at the distal end 810 of member 802 to further eliminate any force directed toward the mitral valve distal to the crossover point. Further details of the device (apart from the method of this invention) may be found in U.S. patent application Ser. No. 10/112,354, published as U.S. patent appl. Publ. No. 2002/0183838, the disclosure of which is incorporated herein by reference.
  • FIG. 31 shows another embodiment of the method of this invention. Device 900 has a substantially straight rigid portion 902 disposed between a proximal angled portion 904 and a distal angled portion 906 within coronary sinus 908. As shown, proximal angled portion 904 extends through the coronary sinus ostium 910 within a catheter (not shown). Distal angled portion 906 extends distally to a hooked portion 912 that is preferably disposed in the AIV.
  • To treat mitral valve regurgitation, the device's straight portion 902 reshapes the coronary sinus and adjacent tissue to apply an anteriorally directed force through the coronary sinus wall toward the mitral valve 914. Due to the device's design, this reshaping force is applied solely proximal to the crossover point between coronary sinus 908 and the patient's circumflex artery 916, despite the fact at least a part of the device's distal portion 906 and hooked portion 912 are disposed distal to the crossover point.
  • Other modifications to the inventions claimed below will be apparent to those skilled in the art and are intended to be encompassed by the claims.

Claims (60)

1. A method of treating regurgitation of a mitral valve in a patient's heart, the method comprising:
delivering a tissue shaping device to the coronary sinus; and
deploying the tissue shaping device to reduce mitral valve regurgitation, the deploying step comprising applying a force through the coronary sinus wall toward the mitral valve solely proximal to a crossover point where a coronary artery passes between a coronary sinus and the mitral valve.
2. The method of claim 1 further comprising determining the crossover point.
3. The method of claim 1 wherein the delivering step comprises delivering the tissue shaping device to the coronary sinus in a catheter having an outer diameter no more than ten french.
4. The method of claim 3 wherein the delivering step comprises delivering the tissue shaping device to the coronary sinus in a catheter having an outer diameter no more than nine french.
5. The method of claim 1 wherein the deploying step comprises placing a distal end of the tissue shaping device proximal to the crossover point.
6. The method of claim 1 wherein the deploying step comprises placing a distal end of the tissue shaping device distal to the crossover point.
7. The method of claim 1 wherein the tissue shaping device comprises a distal anchor, the deploying step comprising anchoring the distal anchor proximal to the crossover point.
8. The method of claim 7 wherein the anchoring step comprises expanding the distal anchor.
9. The method of claim 8 wherein the anchoring step comprises permitting the distal anchor to self-expand.
10. The method of claim 8 wherein the anchoring step comprises applying an actuation force to the distal anchor.
11. The method of claim 7 wherein the anchoring step comprises anchoring the distal anchor with an anchoring force of at least one pound.
12. The method of claim 11 wherein the anchoring step comprises anchoring the distal anchor with an anchoring force of at least two pounds.
13. The method of claim 7 wherein the deploying step further comprises applying a proximally directed force on the distal anchor.
14. The method of claim 13 wherein the step of applying a proximally directed force comprises applying a proximally directed force on the distal anchor from outside the patient.
15. The method of claim 13 wherein the tissue shaping device further comprises a proximal anchor and a connector disposed between the distal anchor and the proximal anchor, the deploying step further comprising anchoring the proximal anchor.
16. The method of claim 15 wherein the step of anchoring the proximal anchor comprises anchoring the proximal anchor in the coronary sinus.
17. The method of claim 15 wherein the step of anchoring the proximal anchor comprises anchoring the proximal anchor at least partially outside the coronary sinus.
18. The method of claim 15 wherein the step of anchoring the proximal anchor is performed after the step of applying a proximally directed force on the distal anchor.
19. The method of claim 15 wherein the applying step comprises moving the proximal anchor proximally after the step of anchoring the distal anchor.
20. The method of claim 19 wherein the step of anchoring the proximal anchor is performed after the moving step.
21. The method of claim 15 wherein the step of anchoring the proximal anchor comprises expanding the proximal anchor.
22. The method of claim 21 wherein the anchoring step comprises permitting the proximal anchor to self-expand.
23. The method of claim 21 wherein the anchoring step comprises applying an actuating force to the proximal anchor.
24. The method of claim 1 wherein the tissue shaping device comprises a distal anchor, the deploying step further comprising deploying the distal anchor from a distal end of a catheter.
25. The method of claim 24 further comprising recapturing the distal anchor into a catheter.
26. The method of claim 25 further comprising anchoring the distal anchor after recapturing the distal anchor.
27. The method of claim 1 wherein the tissue shaping device comprises a proximal anchor, the deploying step further comprising deploying the proximal anchor from a distal end of a catheter.
28. The method of claim 27 further comprising recapturing the proximal anchor into a catheter.
29. The method of claim 28 further comprising anchoring the proximal anchor after recapturing the proximal anchor.
30. The method of claim 1 wherein the delivering step comprises delivering the tissue shaping device to the coronary sinus in a catheter, the deploying step further comprising deploying the tissue shaping device from a distal end of the catheter, the method further comprising recapturing the tissue shaping device into a catheter.
31. The method of claim 1 further comprising selecting the tissue shaping device from a set of tissue shaping devices comprising tissue shaping devices of a plurality of lengths prior to the delivering step.
32. The method of claim 1 wherein the tissue shaping device comprises an anchor, the method further comprising selecting the tissue shaping device from a set of tissue shaping devices comprising tissue shaping devices of a plurality of anchor sizes prior to the delivering step.
33. A set of devices for use in treating mitral valve regurgitation, the set comprising:
a plurality of tissue shaping devices having different lengths, each of the tissue shaping devices being configured to be deliverable to a coronary sinus of a patient within a catheter having an outer diameter no greater than ten french.
34. The set of claim 33 further comprising a catheter having an outer diameter no greater than nine french.
35. The set of claim 33 wherein the tissue shaping devices each comprise an anchor having an unexpanded configuration and an expanded configuration, each tissue shaping device being further configured to be deliverable to a coronary sinus of a patient within a catheter having an outer diameter no greater than ten french when its distal anchor is in its unexpanded configuration.
36. The set of claim 33 wherein the tissue shaping devices in the set each comprise:
a proximal anchor having an unexpanded configuration and an expanded configuration;
a distal anchor having an unexpanded configuration and an expanded configuration; and
a connector disposed between the proximal anchor and the distal anchor,
each tissue shaping device being further configured to be deliverable to a coronary sinus of a patient within a catheter having an outer diameter no greater than ten french when its proximal anchor and distal anchor are in their unexpanded configurations.
37. The set of claim 36 wherein at least one tissue shaping device in the set has a length 60 mm or less and at least one tissue shaping device in the set has a length more than 60 mm.
38. The set of claim 36 wherein the distal anchor of each tissue shaping device in the set has a diameter in its expanded configuration equal to or greater than a coronary sinus diameter at a distal anchor location.
39. The set of claim 38 wherein the diameters of the distal anchors of the tissue shaping devices in the set in their expanded configurations range from about 7 mm. to about 16 mm.
40. The set of claim 36 wherein the proximal anchor of each tissue shaping device in the set has a diameter in its expanded configuration equal to or greater than a coronary sinus diameter at a proximal anchor location.
41. The set of claim 40 wherein the diameters of the proximal anchors of the tissue shaping devices in the set in their expanded configurations range from about 9 mm. to about 20 mm.
42. The set of claim 36 wherein the distal anchor of each tissue shaping device in the set comprises a self-expanding anchor.
43. The set of claim 36 wherein the proximal anchor of each tissue shaping device in the set comprises a self-expanding anchor.
44. The set of claim 36 wherein the distal anchor of each tissue shaping device in the set comprises an actuatable anchor.
45. The set of claim 36 wherein the proximal anchor of each tissue shaping device in the set comprises an actuatable anchor.
46. The set of claim 36 wherein the distal anchor of at least one tissue shaping device in the set comprises a self-expanding anchor and the distal anchor of at least one tissue shaping device in the set comprises an actuatable anchor.
47. The set of claim 36 wherein the proximal anchor of at least one tissue shaping device in the set comprises a self-expanding anchor and the proximal anchor of at least one tissue shaping device in the set comprises an actuatable anchor.
48. The set of claim 33 wherein each of the tissue shaping devices is configured to be deliverable to a coronary sinus of a patient within a catheter having an outer diameter no greater than nine french.
49. A set of devices for use in treating mitral valve regurgitation, the set comprising:
a plurality of tissue shaping devices each comprising an anchor having an unexpanded configuration and an expanded configuration, the anchors having different diameters when in their expanded configurations, each of the tissue shaping devices being configured to be deliverable to a coronary sinus of a patient within a catheter having an outer diameter no greater than ten french.
50. The set of claim 49 wherein the anchor of each device is a distal anchor, the devices each further comprising a proximal anchor having an unexpanded configuration and an expanded configuration, the proximal anchors having different diameters when in their expanded configurations.
51. The set of claim 50 wherein the diameters of the distal anchors of the tissue shaping devices in the set in their expanded configurations range from about 7 mm. to about 16 mm.
52. The set of claim 50 wherein the diameters of the proximal anchors of the tissue shaping devices in the set in their expanded configurations range from about 9 mm. to about 20 mm.
53. The set of claim 52 wherein the distal anchor of each tissue shaping device in the set comprises a self-expanding anchor.
54. The set of claim 52 wherein the proximal anchor of each tissue shaping device in the set comprises a self-expanding anchor.
55. The set of claim 52 wherein the distal anchor of each tissue shaping device in the set comprises an actuatable anchor.
56. The set of claim 52 wherein the proximal anchor of each tissue shaping device in the set comprises an actuatable anchor.
57. The set of claim 52 wherein the distal anchor of at least one tissue shaping device in the set comprises a self-expanding anchor and the distal anchor of at least one tissue shaping device in the set comprises an actuatable anchor.
58. The set of claim 52 wherein the proximal anchor of at least one tissue shaping device in the set comprises a self-expanding anchor and the proximal anchor of at least one tissue shaping device in the set comprises an actuatable anchor.
59. The set of claim 49 further comprising a catheter having an outer diameter no greater than ten french.
60. The set of claim 49 wherein each of the tissue shaping devices is configured to be deliverable to a coronary sinus of a patient within a catheter having an outer diameter no greater than nine french.
US10/742,747 2001-05-14 2003-12-19 Mitral valve regurgitation treatment device and method Abandoned US20050027351A1 (en)

Priority Applications (12)

Application Number Priority Date Filing Date Title
US10/742,747 US20050027351A1 (en) 2001-05-14 2003-12-19 Mitral valve regurgitation treatment device and method
ES16155644.4T ES2663219T3 (en) 2003-12-19 2004-12-17 Device to modify the shape of an organ of the body
ES18153725T ES2804730T3 (en) 2003-12-19 2004-12-17 Device to modify the shape of an organ of the body
JP2006545560A JP4794460B2 (en) 2003-12-19 2004-12-17 Device for changing the shape of a body organ
CA2546523A CA2546523C (en) 2003-12-19 2004-12-17 Device for modifying the shape of a body organ
EP04814956.1A EP1708649B1 (en) 2003-12-19 2004-12-17 Device for modifying the shape of a body organ
AU2004308348A AU2004308348B2 (en) 2003-12-19 2004-12-17 Device for modifying the shape of a body organ
ES04814956.1T ES2581321T3 (en) 2003-12-19 2004-12-17 Device to modify the shape of an organ of the body
PCT/US2004/042824 WO2005062837A2 (en) 2003-12-19 2004-12-17 Device for modifying the shape of a body organ
CA2775628A CA2775628C (en) 2003-12-19 2004-12-17 Device for modifying the shape of a body organ
EP16155644.4A EP3037065B1 (en) 2003-12-19 2004-12-17 Device for modifying the shape of a body organ
EP18153725.9A EP3332744B1 (en) 2003-12-19 2004-12-17 Device for modifying the shape of a body organ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/855,945 US6800090B2 (en) 2001-05-14 2001-05-14 Mitral valve therapy device, system and method
US10/742,747 US20050027351A1 (en) 2001-05-14 2003-12-19 Mitral valve regurgitation treatment device and method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/855,945 Continuation-In-Part US6800090B2 (en) 2001-05-14 2001-05-14 Mitral valve therapy device, system and method

Publications (1)

Publication Number Publication Date
US20050027351A1 true US20050027351A1 (en) 2005-02-03

Family

ID=25322493

Family Applications (5)

Application Number Title Priority Date Filing Date
US09/855,945 Expired - Lifetime US6800090B2 (en) 2001-05-14 2001-05-14 Mitral valve therapy device, system and method
US10/742,747 Abandoned US20050027351A1 (en) 2001-05-14 2003-12-19 Mitral valve regurgitation treatment device and method
US10/925,714 Abandoned US20050033419A1 (en) 2001-05-14 2004-08-24 Mitral valve therapy device, system and method
US10/925,571 Active 2025-10-13 US7828843B2 (en) 2001-05-14 2004-08-24 Mitral valve therapy device, system and method
US10/925,570 Expired - Lifetime US7270676B2 (en) 2001-05-14 2004-08-24 Mitral valve therapy device, system and method

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/855,945 Expired - Lifetime US6800090B2 (en) 2001-05-14 2001-05-14 Mitral valve therapy device, system and method

Family Applications After (3)

Application Number Title Priority Date Filing Date
US10/925,714 Abandoned US20050033419A1 (en) 2001-05-14 2004-08-24 Mitral valve therapy device, system and method
US10/925,571 Active 2025-10-13 US7828843B2 (en) 2001-05-14 2004-08-24 Mitral valve therapy device, system and method
US10/925,570 Expired - Lifetime US7270676B2 (en) 2001-05-14 2004-08-24 Mitral valve therapy device, system and method

Country Status (8)

Country Link
US (5) US6800090B2 (en)
EP (1) EP1395202B1 (en)
JP (1) JP4255374B2 (en)
AT (1) ATE400235T1 (en)
CA (1) CA2447689C (en)
DE (1) DE60227514D1 (en)
ES (1) ES2310210T3 (en)
WO (1) WO2002100240A2 (en)

Cited By (88)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020161275A1 (en) * 1997-01-02 2002-10-31 Schweich Cyril J. Heart wall tension reduction apparatus and method
US20030181928A1 (en) * 2000-10-06 2003-09-25 Myocor, Inc. Endovascular splinting devices and methods
US20030191479A1 (en) * 2002-04-03 2003-10-09 Thornton Sally C. Body lumen closure
US20030233022A1 (en) * 2002-06-12 2003-12-18 Vidlund Robert M. Devices and methods for heart valve treatment
US20040111095A1 (en) * 2002-12-05 2004-06-10 Cardiac Dimensions, Inc. Medical device delivery system
US20040133220A1 (en) * 2000-01-31 2004-07-08 Randall Lashinski Adjustable transluminal annuloplasty system
US20040148020A1 (en) * 2002-11-12 2004-07-29 Vidlund Robert M. Devices and methods for heart valve treatment
US20040148019A1 (en) * 2002-11-12 2004-07-29 Vidlund Robert M. Devices and methods for heart valve treatment
US20040158321A1 (en) * 2003-02-12 2004-08-12 Cardiac Dimensions, Inc. Method of implanting a mitral valve therapy device
US20040193260A1 (en) * 2001-12-05 2004-09-30 Alferness Clifton A. Anchor and pull mitral valve device and method
US20040215339A1 (en) * 2002-10-24 2004-10-28 Drasler William J. Venous valve apparatus and method
US20040230297A1 (en) * 2002-04-03 2004-11-18 Boston Scientific Corporation Artificial valve
US20040254600A1 (en) * 2003-02-26 2004-12-16 David Zarbatany Methods and devices for endovascular mitral valve correction from the left coronary sinus
US20050010240A1 (en) * 2003-06-05 2005-01-13 Cardiac Dimensions Inc., A Washington Corporation Device and method for modifying the shape of a body organ
US20050027353A1 (en) * 2001-05-14 2005-02-03 Alferness Clifton A. Mitral valve therapy device, system and method
US20050065598A1 (en) * 2002-03-11 2005-03-24 Mathis Mark L. Device, assembly and method for mitral valve repair
US20050065594A1 (en) * 1999-10-21 2005-03-24 Scimed Life Systems, Inc. Implantable prosthetic valve
US20050075723A1 (en) * 2000-10-06 2005-04-07 Myocor, Inc. Methods and devices for improving mitral valve function
US20050096740A1 (en) * 2001-01-30 2005-05-05 Edwards Lifesciences Ag Transluminal mitral annuloplasty
US20050137681A1 (en) * 2003-12-19 2005-06-23 Scimed Life Systems, Inc. Venous valve apparatus, system, and method
US20050137676A1 (en) * 2003-12-19 2005-06-23 Scimed Life Systems, Inc. Venous valve apparatus, system, and method
US20050137450A1 (en) * 2003-12-19 2005-06-23 Cardiac Dimensions, Inc., A Washington Corporation Tapered connector for tissue shaping device
US20050137451A1 (en) * 2003-12-19 2005-06-23 Cardiac Dimensions, Inc. A Washington Corporation Tissue shaping device with integral connector and crimp
US20050137449A1 (en) * 2003-12-19 2005-06-23 Cardiac Dimensions, Inc. Tissue shaping device with self-expanding anchors
US20050137685A1 (en) * 2003-12-19 2005-06-23 Cardiac Dimensions, Inc., A Washington Corporation Reduced length tissue shaping device
US20050149179A1 (en) * 2002-05-08 2005-07-07 Mathis Mark L. Body lumen device anchor, device and assembly
US20050209580A1 (en) * 2002-12-30 2005-09-22 Scimed Life Systems, Inc. Valve treatment catheter and methods
US20050216077A1 (en) * 2002-01-30 2005-09-29 Mathis Mark L Fixed length anchor and pull mitral valve device and method
US20050222678A1 (en) * 2004-04-05 2005-10-06 Lashinski Randall T Remotely adjustable coronary sinus implant
US20050272969A1 (en) * 2001-12-05 2005-12-08 Alferness Clifton A Device and method for modifying the shape of a body organ
US20060041306A1 (en) * 2002-01-09 2006-02-23 Myocor, Inc. Devices and methods for heart valve treatment
US20060047338A1 (en) * 2004-09-02 2006-03-02 Scimed Life Systems, Inc. Cardiac valve, system, and method
US20060052868A1 (en) * 1997-12-17 2006-03-09 Myocor, Inc. Valve to myocardium tension members device and method
US20060116758A1 (en) * 2003-06-05 2006-06-01 Gary Swinford Device, System and Method to Affect the Mitral Valve Annulus of a Heart
US20060129051A1 (en) * 2004-12-09 2006-06-15 Rowe Stanton J Diagnostic kit to assist with heart valve annulus adjustment
US20060149123A1 (en) * 2000-03-21 2006-07-06 Myocor, Inc. Splint assembly for improving cardiac function in hearts, and method for implanting the splint assembly
US20060161040A1 (en) * 1997-01-02 2006-07-20 Myocor, Inc. Methods and devices for improving cardiac function in hearts
US20060161169A1 (en) * 2003-05-02 2006-07-20 Cardiac Dimensions, Inc., A Delaware Corporation Device and method for modifying the shape of a body organ
US20060167544A1 (en) * 2005-01-20 2006-07-27 Cardiac Dimensions, Inc. Tissue Shaping Device
US20060173475A1 (en) * 2005-02-01 2006-08-03 Boston Scientific Scimed, Inc. Vascular catheter, system, and method
US20060173490A1 (en) * 2005-02-01 2006-08-03 Boston Scientific Scimed, Inc. Filter system and method
US20060178730A1 (en) * 2005-02-07 2006-08-10 Boston Scientific Scimed, Inc. Venous valve apparatus, system, and method
US20060190074A1 (en) * 2005-02-23 2006-08-24 Boston Scientific Scimed, Inc. Valve apparatus, system and method
US20060235509A1 (en) * 2005-04-15 2006-10-19 Boston Scientific Scimed, Inc. Valve apparatus, system and method
US20060241747A1 (en) * 2005-04-21 2006-10-26 Emanuel Shaoulian Dynamically adjustable implants and methods for reshaping tissue
US20060247491A1 (en) * 2005-04-27 2006-11-02 Vidlund Robert M Devices and methods for heart valve treatment
US20060276891A1 (en) * 2003-12-19 2006-12-07 Gregory Nieminen Mitral Valve Annuloplasty Device with Twisted Anchor
US20060282157A1 (en) * 2005-06-10 2006-12-14 Hill Jason P Venous valve, system, and method
US20070055293A1 (en) * 2001-12-05 2007-03-08 Alferness Clifton A Device and method for modifying the shape of a body organ
US20070066879A1 (en) * 2002-01-30 2007-03-22 Mathis Mark L Body lumen shaping device with cardiac leads
US20070129788A1 (en) * 2005-09-21 2007-06-07 Boston Scientific Scimed, Inc. Venous valve with sinus
US20070135912A1 (en) * 2003-02-03 2007-06-14 Mathis Mark L Mitral valve device using conditioned shape memory alloy
US20070168476A1 (en) * 2003-04-23 2007-07-19 Dot Hill Systems Corporation Network storage appliance with integrated redundant servers and storage controllers
US20070173930A1 (en) * 2006-01-20 2007-07-26 Boston Scientific Scimed, Inc. Translumenal apparatus, system, and method
US20070239270A1 (en) * 2006-04-11 2007-10-11 Mathis Mark L Mitral Valve Annuloplasty Device with Vena Cava Anchor
US20080015407A1 (en) * 2003-05-02 2008-01-17 Mathis Mark L Device and Method for Modifying the Shape of a Body Organ
WO2008011386A2 (en) * 2006-07-17 2008-01-24 Cardiac Dimensions, Inc. Mitral valve annuloplasty device with twisted anchor
US20080087608A1 (en) * 2006-10-10 2008-04-17 Multiphase Systems Integration Compact multiphase inline bulk water separation method and system for hydrocarbon production
US20080269877A1 (en) * 2007-02-05 2008-10-30 Jenson Mark L Systems and methods for valve delivery
US20080300678A1 (en) * 2007-02-05 2008-12-04 Eidenschink Tracee E J Percutaneous valve, system and method
US20090030512A1 (en) * 2007-07-26 2009-01-29 Thielen Joseph M Circulatory valve, system and method
US20090164029A1 (en) * 2007-12-21 2009-06-25 Boston Scientific Scimed, Inc. Valve with delayed leaflet deployment
US20090171456A1 (en) * 2007-12-28 2009-07-02 Kveen Graig L Percutaneous heart valve, system, and method
US20100031793A1 (en) * 2008-08-11 2010-02-11 Hayner Louis R Catheter Cutting Tool
US7695512B2 (en) 2000-01-31 2010-04-13 Edwards Lifesciences Ag Remotely activated mitral annuloplasty system and methods
US20100100175A1 (en) * 2001-11-01 2010-04-22 David Reuter Adjustable Height Focal Tissue Deflector
US7776053B2 (en) 2000-10-26 2010-08-17 Boston Scientific Scimed, Inc. Implantable valve system
US7780722B2 (en) 2005-02-07 2010-08-24 Boston Scientific Scimed, Inc. Venous valve apparatus, system, and method
US7837729B2 (en) 2002-12-05 2010-11-23 Cardiac Dimensions, Inc. Percutaneous mitral valve annuloplasty delivery system
US7878966B2 (en) 2005-02-04 2011-02-01 Boston Scientific Scimed, Inc. Ventricular assist and support device
US8133270B2 (en) 2007-01-08 2012-03-13 California Institute Of Technology In-situ formation of a valve
US8211171B2 (en) 2006-11-14 2012-07-03 The United States Of America, As Represented By The Secretary Of The Department Of Health And Human Services Transcatheter coronary sinus mitral valve annuloplasty procedure and coronary artery and myocardial protection device
US9011531B2 (en) 2012-02-13 2015-04-21 Mitraspan, Inc. Method and apparatus for repairing a mitral valve
US9668859B2 (en) 2011-08-05 2017-06-06 California Institute Of Technology Percutaneous heart valve delivery systems
US9744037B2 (en) 2013-03-15 2017-08-29 California Institute Of Technology Handle mechanism and functionality for repositioning and retrieval of transcatheter heart valves
US9943409B2 (en) 2006-11-14 2018-04-17 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Transcatheter coronary sinus mitral valve annuloplasty procedure and coronary artery and myocardial protection device
US10076414B2 (en) 2012-02-13 2018-09-18 Mitraspan, Inc. Method and apparatus for repairing a mitral valve
US10390953B2 (en) 2017-03-08 2019-08-27 Cardiac Dimensions Pty. Ltd. Methods and devices for reducing paravalvular leakage
US10433962B2 (en) 2016-05-06 2019-10-08 Transmural Systems Llc Annuloplasty procedures, related devices and methods
CN110996852A (en) * 2017-07-31 2020-04-10 TauPNU医疗有限公司 Tricuspid valve regurgitation surgical instrument for pulmonary artery insertion
US11007059B2 (en) 2016-05-06 2021-05-18 Transmural Systems Llc Annuloplasty procedures, related devices and methods
US11026791B2 (en) 2018-03-20 2021-06-08 Medtronic Vascular, Inc. Flexible canopy valve repair systems and methods of use
US11039923B2 (en) 2016-05-06 2021-06-22 Transmural Systems Llc Annuloplasty procedures, related devices and methods
US11259926B2 (en) 2017-08-26 2022-03-01 Transmural Systems Llc Cardiac annuloplasty and pacing procedures, related devices and methods
US11285003B2 (en) 2018-03-20 2022-03-29 Medtronic Vascular, Inc. Prolapse prevention device and methods of use thereof
US11285005B2 (en) 2006-07-17 2022-03-29 Cardiac Dimensions Pty. Ltd. Mitral valve annuloplasty device with twisted anchor
US11564796B2 (en) 2019-01-21 2023-01-31 Tau-Pnu Medical., Ltd. Assembly-type device for treatment of tricuspid regurgitation
US11596771B2 (en) 2020-12-14 2023-03-07 Cardiac Dimensions Pty. Ltd. Modular pre-loaded medical implants and delivery systems

Families Citing this family (182)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3032422B2 (en) * 1994-04-28 2000-04-17 シャープ株式会社 Solar cell and method of manufacturing the same
US6050936A (en) 1997-01-02 2000-04-18 Myocor, Inc. Heart wall tension reduction apparatus
US6260552B1 (en) 1998-07-29 2001-07-17 Myocor, Inc. Transventricular implant tools and devices
US6736845B2 (en) * 1999-01-26 2004-05-18 Edwards Lifesciences Corporation Holder for flexible heart valve
US8160922B2 (en) * 1999-06-23 2012-04-17 Signature Systems, LLC. Method and system for making donations to charitable entities
SE514718C2 (en) * 1999-06-29 2001-04-09 Jan Otto Solem Apparatus for treating defective closure of the mitral valve apparatus
US6997951B2 (en) * 1999-06-30 2006-02-14 Edwards Lifesciences Ag Method and device for treatment of mitral insufficiency
US6402781B1 (en) 2000-01-31 2002-06-11 Mitralife Percutaneous mitral annuloplasty and cardiac reinforcement
US6989028B2 (en) * 2000-01-31 2006-01-24 Edwards Lifesciences Ag Medical system and method for remodeling an extravascular tissue structure
US7253745B2 (en) 2000-07-19 2007-08-07 Intelliserv, Inc. Corrosion-resistant downhole transmission system
US6602288B1 (en) * 2000-10-05 2003-08-05 Edwards Lifesciences Corporation Minimally-invasive annuloplasty repair segment delivery template, system and method of use
US7591826B2 (en) * 2000-12-28 2009-09-22 Cardiac Dimensions, Inc. Device implantable in the coronary sinus to provide mitral valve therapy
JP4184794B2 (en) 2001-02-05 2008-11-19 ビアカー・インコーポレーテッド Method and apparatus for improving mitral valve function
US6790231B2 (en) 2001-02-05 2004-09-14 Viacor, Inc. Apparatus and method for reducing mitral regurgitation
US6890353B2 (en) * 2001-03-23 2005-05-10 Viacor, Inc. Method and apparatus for reducing mitral regurgitation
US7186264B2 (en) * 2001-03-29 2007-03-06 Viacor, Inc. Method and apparatus for improving mitral valve function
US7037334B1 (en) 2001-04-24 2006-05-02 Mitralign, Inc. Method and apparatus for catheter-based annuloplasty using local plications
US8202315B2 (en) 2001-04-24 2012-06-19 Mitralign, Inc. Catheter-based annuloplasty using ventricularly positioned catheter
US6676702B2 (en) * 2001-05-14 2004-01-13 Cardiac Dimensions, Inc. Mitral valve therapy assembly and method
ITMI20011012A1 (en) 2001-05-17 2002-11-17 Ottavio Alfieri ANNULAR PROSTHESIS FOR MITRAL VALVE
US7935145B2 (en) * 2001-05-17 2011-05-03 Edwards Lifesciences Corporation Annuloplasty ring for ischemic mitral valve insuffuciency
US7367991B2 (en) * 2001-08-28 2008-05-06 Edwards Lifesciences Corporation Conformal tricuspid annuloplasty ring and template
US6908482B2 (en) 2001-08-28 2005-06-21 Edwards Lifesciences Corporation Three-dimensional annuloplasty ring and template
US7144363B2 (en) * 2001-10-16 2006-12-05 Extensia Medical, Inc. Systems for heart treatment
US7052487B2 (en) 2001-10-26 2006-05-30 Cohn William E Method and apparatus for reducing mitral regurgitation
US7311729B2 (en) * 2002-01-30 2007-12-25 Cardiac Dimensions, Inc. Device and method for modifying the shape of a body organ
US6949122B2 (en) * 2001-11-01 2005-09-27 Cardiac Dimensions, Inc. Focused compression mitral valve device and method
US6805710B2 (en) * 2001-11-13 2004-10-19 Edwards Lifesciences Corporation Mitral valve annuloplasty ring for molding left ventricle geometry
US6793673B2 (en) * 2002-12-26 2004-09-21 Cardiac Dimensions, Inc. System and method to effect mitral valve annulus of a heart
SE524709C2 (en) 2002-01-11 2004-09-21 Edwards Lifesciences Ag Device for delayed reshaping of a heart vessel and a heart valve
ATE462378T1 (en) 2001-12-28 2010-04-15 Edwards Lifesciences Ag DELAYED MEMORY DEVICE
US6960229B2 (en) 2002-01-30 2005-11-01 Cardiac Dimensions, Inc. Device and method for modifying the shape of a body organ
US7125420B2 (en) 2002-02-05 2006-10-24 Viacor, Inc. Method and apparatus for improving mitral valve function
US7004958B2 (en) * 2002-03-06 2006-02-28 Cardiac Dimensions, Inc. Transvenous staples, assembly and method for mitral valve repair
US7608103B2 (en) * 2002-07-08 2009-10-27 Edwards Lifesciences Corporation Mitral valve annuloplasty ring having a posterior bow
US8758372B2 (en) * 2002-08-29 2014-06-24 St. Jude Medical, Cardiology Division, Inc. Implantable devices for controlling the size and shape of an anatomical structure or lumen
US7297150B2 (en) * 2002-08-29 2007-11-20 Mitralsolutions, Inc. Implantable devices for controlling the internal circumference of an anatomic orifice or lumen
US20040133062A1 (en) * 2002-10-11 2004-07-08 Suresh Pai Minimally invasive cardiac force transfer structures
US7087064B1 (en) 2002-10-15 2006-08-08 Advanced Cardiovascular Systems, Inc. Apparatuses and methods for heart valve repair
NZ539136A (en) 2002-10-21 2008-04-30 Mitralign Inc Method and apparatus for performing catheter-based annuloplasty using local plications
US20050119735A1 (en) 2002-10-21 2005-06-02 Spence Paul A. Tissue fastening systems and methods utilizing magnetic guidance
US9149602B2 (en) 2005-04-22 2015-10-06 Advanced Cardiovascular Systems, Inc. Dual needle delivery system
US7485143B2 (en) 2002-11-15 2009-02-03 Abbott Cardiovascular Systems Inc. Apparatuses and methods for heart valve repair
US7335213B1 (en) 2002-11-15 2008-02-26 Abbott Cardiovascular Systems Inc. Apparatus and methods for heart valve repair
US7404824B1 (en) 2002-11-15 2008-07-29 Advanced Cardiovascular Systems, Inc. Valve aptation assist device
US8187324B2 (en) 2002-11-15 2012-05-29 Advanced Cardiovascular Systems, Inc. Telescoping apparatus for delivering and adjusting a medical device in a vessel
US7981152B1 (en) 2004-12-10 2011-07-19 Advanced Cardiovascular Systems, Inc. Vascular delivery system for accessing and delivering devices into coronary sinus and other vascular sites
WO2004082538A2 (en) * 2003-03-18 2004-09-30 St. Jude Medical, Inc. Body tissue remodeling apparatus
US20040220657A1 (en) * 2003-05-02 2004-11-04 Cardiac Dimensions, Inc., A Washington Corporation Tissue shaping device with conformable anchors
US20060136053A1 (en) * 2003-05-27 2006-06-22 Rourke Jonathan M Method and apparatus for improving mitral valve function
CA2533556A1 (en) * 2003-07-23 2005-02-03 Viacor, Inc. Method and apparatus for improving mitral valve function
US7998112B2 (en) 2003-09-30 2011-08-16 Abbott Cardiovascular Systems Inc. Deflectable catheter assembly and method of making same
US7004176B2 (en) * 2003-10-17 2006-02-28 Edwards Lifesciences Ag Heart valve leaflet locator
US20060184242A1 (en) * 2003-10-20 2006-08-17 Samuel Lichtenstein Method and apparatus for percutaneous reduction of anterior-posterior diameter of mitral valve
US20050177228A1 (en) * 2003-12-16 2005-08-11 Solem Jan O. Device for changing the shape of the mitral annulus
WO2005062837A2 (en) 2003-12-19 2005-07-14 Cardiac Dimensions, Inc. Device for modifying the shape of a body organ
US8864822B2 (en) 2003-12-23 2014-10-21 Mitralign, Inc. Devices and methods for introducing elements into tissue
US7166127B2 (en) 2003-12-23 2007-01-23 Mitralign, Inc. Tissue fastening systems and methods utilizing magnetic guidance
US7942927B2 (en) * 2004-03-15 2011-05-17 Baker Medical Research Institute Treating valve failure
US7951196B2 (en) 2004-04-29 2011-05-31 Edwards Lifesciences Corporation Annuloplasty ring for mitral valve prolapse
US7294148B2 (en) 2004-04-29 2007-11-13 Edwards Lifesciences Corporation Annuloplasty ring for mitral valve prolapse
EP1781179A1 (en) * 2004-07-06 2007-05-09 Baker Medical Research Institute Treating valvular insufficiency
BRPI0404380C1 (en) * 2004-10-14 2008-07-15 Malavazi Vedacoes Ind Ltda housed mechanical seal enhancements for progressive cavity pumps
US7548068B2 (en) * 2004-11-30 2009-06-16 Intelliserv International Holding, Ltd. System for testing properties of a network
US7842085B2 (en) * 2005-03-23 2010-11-30 Vaso Adzich Annuloplasty ring and holder combination
US7575595B2 (en) 2005-03-23 2009-08-18 Edwards Lifesciences Corporation Annuloplasty ring and holder combination
US8864823B2 (en) 2005-03-25 2014-10-21 StJude Medical, Cardiology Division, Inc. Methods and apparatus for controlling the internal circumference of an anatomic orifice or lumen
EP1861045B1 (en) 2005-03-25 2015-03-04 St. Jude Medical, Cardiology Division, Inc. Apparatus for controlling the internal circumference of an anatomic orifice or lumen
US20060256718A1 (en) * 2005-05-16 2006-11-16 Hall David R Apparatus for Regulating Bandwidth
US7500989B2 (en) * 2005-06-03 2009-03-10 Edwards Lifesciences Corp. Devices and methods for percutaneous repair of the mitral valve via the coronary sinus
US8685083B2 (en) 2005-06-27 2014-04-01 Edwards Lifesciences Corporation Apparatus, system, and method for treatment of posterior leaflet prolapse
US8951285B2 (en) 2005-07-05 2015-02-10 Mitralign, Inc. Tissue anchor, anchoring system and methods of using the same
CN100445488C (en) 2005-08-01 2008-12-24 邱则有 Hollow member for cast-in-situ concrete moulding
WO2007021893A1 (en) * 2005-08-12 2007-02-22 Edwards Lifesciences Corporation Medical implant with reinforcement mechanism
US20080221673A1 (en) * 2005-08-12 2008-09-11 Donald Bobo Medical implant with reinforcement mechanism
US9492277B2 (en) 2005-08-30 2016-11-15 Mayo Foundation For Medical Education And Research Soft body tissue remodeling methods and apparatus
US20070073391A1 (en) * 2005-09-28 2007-03-29 Henry Bourang System and method for delivering a mitral valve repair device
US20070144534A1 (en) * 2005-11-30 2007-06-28 Carlos Mery System to prevent airway obstruction
US20070173926A1 (en) * 2005-12-09 2007-07-26 Bobo Donald E Jr Anchoring system for medical implant
CA2669195C (en) 2005-12-15 2013-06-25 Georgia Tech Research Corporation Systems and methods to control the dimension of a heart valve
WO2007100410A2 (en) 2005-12-15 2007-09-07 Georgia Tech Research Corporation Systems and methods for enabling heart valve replacement
WO2007100408A2 (en) 2005-12-15 2007-09-07 Georgia Tech Research Corporation Papillary muscle position control devices, systems & methods
US7637946B2 (en) 2006-02-09 2009-12-29 Edwards Lifesciences Corporation Coiled implant for mitral valve repair
US7749249B2 (en) 2006-02-21 2010-07-06 Kardium Inc. Method and device for closing holes in tissue
US20070288000A1 (en) * 2006-04-19 2007-12-13 Medtronic Vascular, Inc. Method for Aiding Valve Annuloplasty
WO2007136532A2 (en) * 2006-05-03 2007-11-29 St. Jude Medical, Inc. Soft body tissue remodeling methods and apparatus
DE602007012691D1 (en) 2006-05-15 2011-04-07 Edwards Lifesciences Ag SYSTEM FOR CHANGING THE GEOMETRY OF THE HEART
US20070270688A1 (en) 2006-05-19 2007-11-22 Daniel Gelbart Automatic atherectomy system
US9119633B2 (en) 2006-06-28 2015-09-01 Kardium Inc. Apparatus and method for intra-cardiac mapping and ablation
US8449605B2 (en) 2006-06-28 2013-05-28 Kardium Inc. Method for anchoring a mitral valve
US8920411B2 (en) 2006-06-28 2014-12-30 Kardium Inc. Apparatus and method for intra-cardiac mapping and ablation
US11389232B2 (en) 2006-06-28 2022-07-19 Kardium Inc. Apparatus and method for intra-cardiac mapping and ablation
US10028783B2 (en) 2006-06-28 2018-07-24 Kardium Inc. Apparatus and method for intra-cardiac mapping and ablation
US7837610B2 (en) 2006-08-02 2010-11-23 Kardium Inc. System for improving diastolic dysfunction
US20080058924A1 (en) * 2006-09-01 2008-03-06 Aaron Ingle Saddle-shaped annuloplasty ring
US20080065205A1 (en) * 2006-09-11 2008-03-13 Duy Nguyen Retrievable implant and method for treatment of mitral regurgitation
US7879087B2 (en) * 2006-10-06 2011-02-01 Edwards Lifesciences Corporation Mitral and tricuspid annuloplasty rings
MX2009007289A (en) 2007-01-03 2009-09-09 Mitralsolutions Inc Implantable devices for controlling the size and shape of an anatomical structure or lumen.
CN101605511B (en) 2007-02-09 2013-03-13 爱德华兹生命科学公司 Progressively sized annuloplasty rings
US8911461B2 (en) 2007-03-13 2014-12-16 Mitralign, Inc. Suture cutter and method of cutting suture
US8845723B2 (en) 2007-03-13 2014-09-30 Mitralign, Inc. Systems and methods for introducing elements into tissue
US11660190B2 (en) 2007-03-13 2023-05-30 Edwards Lifesciences Corporation Tissue anchors, systems and methods, and devices
US20080255447A1 (en) * 2007-04-16 2008-10-16 Henry Bourang Diagnostic catheter
US8529620B2 (en) 2007-05-01 2013-09-10 Ottavio Alfieri Inwardly-bowed tricuspid annuloplasty ring
US7934570B2 (en) * 2007-06-12 2011-05-03 Schlumberger Technology Corporation Data and/or PowerSwivel
US8100820B2 (en) 2007-08-22 2012-01-24 Edwards Lifesciences Corporation Implantable device for treatment of ventricular dilation
US8377117B2 (en) 2007-09-07 2013-02-19 Edwards Lifesciences Corporation Active holder for annuloplasty ring delivery
US8906011B2 (en) 2007-11-16 2014-12-09 Kardium Inc. Medical device for use in bodily lumens, for example an atrium
US8489172B2 (en) 2008-01-25 2013-07-16 Kardium Inc. Liposuction system
US8152844B2 (en) 2008-05-09 2012-04-10 Edwards Lifesciences Corporation Quick-release annuloplasty ring holder
US20090287303A1 (en) 2008-05-13 2009-11-19 Edwards Lifesciences Corporation Physiologically harmonized tricuspid annuloplasty ring
US20090287304A1 (en) 2008-05-13 2009-11-19 Kardium Inc. Medical Device for Constricting Tissue or a Bodily Orifice, for example a mitral valve
US8287591B2 (en) * 2008-09-19 2012-10-16 Edwards Lifesciences Corporation Transformable annuloplasty ring configured to receive a percutaneous prosthetic heart valve implantation
US9314335B2 (en) 2008-09-19 2016-04-19 Edwards Lifesciences Corporation Prosthetic heart valve configured to receive a percutaneous prosthetic heart valve implantation
EP2389121B1 (en) * 2009-01-22 2020-10-07 St. Jude Medical, Cardiology Division, Inc. Post-operative adjustment tool, minimally invasive attachment apparatus, and adjustable tricuspid ring
KR101116867B1 (en) 2009-08-28 2012-03-06 김준홍 The device for delivering optimal tension safaely and effectively in cerclage annuloplasty procedure
EP2482749B1 (en) 2009-10-01 2017-08-30 Kardium Inc. Kit for constricting tissue or a bodily orifice, for example, a mitral valve
US20110160849A1 (en) * 2009-12-22 2011-06-30 Edwards Lifesciences Corporation Bimodal tricuspid annuloplasty ring
US8449608B2 (en) * 2010-01-22 2013-05-28 Edwards Lifesciences Corporation Tricuspid ring
US9107749B2 (en) * 2010-02-03 2015-08-18 Edwards Lifesciences Corporation Methods for treating a heart
US8579964B2 (en) 2010-05-05 2013-11-12 Neovasc Inc. Transcatheter mitral valve prosthesis
US9050066B2 (en) 2010-06-07 2015-06-09 Kardium Inc. Closing openings in anatomical tissue
CN103179920B (en) 2010-08-24 2015-11-25 爱德华兹生命科学公司 There is the flexible valve forming ring selecting control point
BR122019025550B1 (en) 2010-08-31 2020-09-29 Edwards Lifesciences Corporation PROSTHETIC TRICUSPID ANULOPLASTY RING
JP5592016B2 (en) * 2010-09-29 2014-09-17 タウピーエヌユーメディカル シーオー.,エルティーディー. Tissue protector for coronary sinus and tricuspid valve
US8940002B2 (en) 2010-09-30 2015-01-27 Kardium Inc. Tissue anchor system
US8932350B2 (en) 2010-11-30 2015-01-13 Edwards Lifesciences Corporation Reduced dehiscence annuloplasty ring
GB201100137D0 (en) 2011-01-06 2011-02-23 Davies Helen C S Apparatus and method of assessing a narrowing in a fluid tube
US11259867B2 (en) 2011-01-21 2022-03-01 Kardium Inc. High-density electrode-based medical device system
US9452016B2 (en) 2011-01-21 2016-09-27 Kardium Inc. Catheter system
CA2764494A1 (en) 2011-01-21 2012-07-21 Kardium Inc. Enhanced medical device for use in bodily cavities, for example an atrium
US9480525B2 (en) 2011-01-21 2016-11-01 Kardium, Inc. High-density electrode-based medical device system
US8845717B2 (en) 2011-01-28 2014-09-30 Middle Park Medical, Inc. Coaptation enhancement implant, system, and method
US8888843B2 (en) 2011-01-28 2014-11-18 Middle Peak Medical, Inc. Device, system, and method for transcatheter treatment of valve regurgitation
US9072511B2 (en) 2011-03-25 2015-07-07 Kardium Inc. Medical kit for constricting tissue or a bodily orifice, for example, a mitral valve
US9308087B2 (en) 2011-04-28 2016-04-12 Neovasc Tiara Inc. Sequentially deployed transcatheter mitral valve prosthesis
US9554897B2 (en) 2011-04-28 2017-01-31 Neovasc Tiara Inc. Methods and apparatus for engaging a valve prosthesis with tissue
US9339348B2 (en) 2011-08-20 2016-05-17 Imperial Colege of Science, Technology and Medicine Devices, systems, and methods for assessing a vessel
JP6133864B2 (en) 2011-08-20 2017-05-24 ボルケーノ コーポレイション Apparatus, system and method for visually depicting vessels and assessing treatment options
USD777926S1 (en) 2012-01-20 2017-01-31 Kardium Inc. Intra-cardiac procedure device
USD777925S1 (en) 2012-01-20 2017-01-31 Kardium Inc. Intra-cardiac procedure device
US10827977B2 (en) 2012-05-21 2020-11-10 Kardium Inc. Systems and methods for activating transducers
US9198592B2 (en) 2012-05-21 2015-12-01 Kardium Inc. Systems and methods for activating transducers
US9017320B2 (en) 2012-05-21 2015-04-28 Kardium, Inc. Systems and methods for activating transducers
US9345573B2 (en) 2012-05-30 2016-05-24 Neovasc Tiara Inc. Methods and apparatus for loading a prosthesis onto a delivery system
EP3375411A1 (en) 2012-12-31 2018-09-19 Edwards Lifesciences Corporation Surgical heart valves adapted for post-implant expansion
US10543085B2 (en) 2012-12-31 2020-01-28 Edwards Lifesciences Corporation One-piece heart valve stents adapted for post-implant expansion
US9687346B2 (en) 2013-03-14 2017-06-27 Edwards Lifesciences Corporation Multi-stranded heat set annuloplasty rings
US9572665B2 (en) 2013-04-04 2017-02-21 Neovasc Tiara Inc. Methods and apparatus for delivering a prosthetic valve to a beating heart
KR101467373B1 (en) * 2013-05-23 2014-12-10 부산대학교 산학협력단 Stopper for myocardial protection and cerclage annuloplasty procedure apparatus with the same
US10070857B2 (en) 2013-08-31 2018-09-11 Mitralign, Inc. Devices and methods for locating and implanting tissue anchors at mitral valve commissure
US10166098B2 (en) 2013-10-25 2019-01-01 Middle Peak Medical, Inc. Systems and methods for transcatheter treatment of valve regurgitation
KR101574768B1 (en) 2014-02-17 2015-12-04 동국대학교 산학협력단 Wire locking device for medical procedure
KR101581021B1 (en) * 2014-05-28 2015-12-29 (주) 타우피엔유메디칼 Tissue protective device for the cerclage annuloplasty procedure in use of the coil spring, and tissue protective device making method
CA2958061A1 (en) 2014-06-18 2015-12-23 Middle Peak Medical, Inc. Mitral valve implants for the treatment of valvular regurgitation
EP3160396B1 (en) 2014-06-24 2022-03-23 Polares Medical Inc. Systems for anchoring an implant
US10368936B2 (en) 2014-11-17 2019-08-06 Kardium Inc. Systems and methods for selecting, activating, or selecting and activating transducers
US10722184B2 (en) 2014-11-17 2020-07-28 Kardium Inc. Systems and methods for selecting, activating, or selecting and activating transducers
US10314707B2 (en) 2015-06-09 2019-06-11 Edwards Lifesciences, Llc Asymmetric mitral annuloplasty band
CR20170597A (en) 2015-07-02 2018-04-20 Edwards Lifesciences Corp INTEGRATED HYBRID HEART VALVES
WO2017004369A1 (en) 2015-07-02 2017-01-05 Edwards Lifesciences Corporation Hybrid heart valves adapted for post-implant expansion
US9592121B1 (en) 2015-11-06 2017-03-14 Middle Peak Medical, Inc. Device, system, and method for transcatheter treatment of valvular regurgitation
US10433952B2 (en) 2016-01-29 2019-10-08 Neovasc Tiara Inc. Prosthetic valve for avoiding obstruction of outflow
WO2017151292A1 (en) * 2016-02-29 2017-09-08 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Transcatheter coronary sinus mitral valve annuloplasty procedure and coronary artery and myocardial protection device
US10722356B2 (en) 2016-11-03 2020-07-28 Edwards Lifesciences Corporation Prosthetic mitral valve holders
AU2017361296B2 (en) 2016-11-21 2022-09-29 Neovasc Tiara Inc. Methods and systems for rapid retraction of a transcatheter heart valve delivery system
US10478303B2 (en) 2017-03-13 2019-11-19 Polares Medical Inc. Device, system, and method for transcatheter treatment of valvular regurgitation
US10653524B2 (en) 2017-03-13 2020-05-19 Polares Medical Inc. Device, system, and method for transcatheter treatment of valvular regurgitation
CN110913801B (en) 2017-03-13 2022-04-15 宝来瑞斯医疗有限公司 Coaptation assistance element for treating an adverse coaptation of a heart valve of a heart and system for delivering the same
US11666444B2 (en) 2017-08-03 2023-06-06 The Regents Of The University Of California Atrial cage for placement, securing and anchoring of atrioventricular valves
US10856984B2 (en) 2017-08-25 2020-12-08 Neovasc Tiara Inc. Sequentially deployed transcatheter mitral valve prosthesis
US10856985B2 (en) 2017-11-21 2020-12-08 Abbott Cardiovascular Systems Inc. System and method for annuloplasty
USD944398S1 (en) 2018-06-13 2022-02-22 Edwards Lifesciences Corporation Expanded heart valve stent
EP3829490A1 (en) 2018-07-30 2021-06-09 Edwards Lifesciences Corporation Minimally-invasive low strain annuloplasty ring
CA3118599A1 (en) 2018-11-08 2020-05-14 Neovasc Tiara Inc. Ventricular deployment of a transcatheter mitral valve prosthesis
US11602429B2 (en) 2019-04-01 2023-03-14 Neovasc Tiara Inc. Controllably deployable prosthetic valve
AU2020271896B2 (en) 2019-04-10 2022-10-13 Neovasc Tiara Inc. Prosthetic valve with natural blood flow
EP3972673A4 (en) 2019-05-20 2023-06-07 Neovasc Tiara Inc. Introducer with hemostasis mechanism
WO2020257643A1 (en) 2019-06-20 2020-12-24 Neovasc Tiara Inc. Low profile prosthetic mitral valve
WO2021126778A1 (en) 2019-12-16 2021-06-24 Edwards Lifesciences Corporation Valve holder assembly with suture looping protection
US11464634B2 (en) 2020-12-16 2022-10-11 Polares Medical Inc. Device, system, and method for transcatheter treatment of valvular regurgitation with secondary anchors
US11759321B2 (en) 2021-06-25 2023-09-19 Polares Medical Inc. Device, system, and method for transcatheter treatment of valvular regurgitation

Citations (86)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4830023A (en) * 1987-11-27 1989-05-16 Medi-Tech, Incorporated Medical guidewire
US5099838A (en) * 1988-12-15 1992-03-31 Medtronic, Inc. Endocardial defibrillation electrode system
US5433727A (en) * 1994-08-16 1995-07-18 Sideris; Eleftherios B. Centering buttoned device for the occlusion of large defects for occluding
US5507295A (en) * 1992-07-01 1996-04-16 British Technology Group Limited Medical devices
US5507802A (en) * 1993-06-02 1996-04-16 Cardiac Pathways Corporation Method of mapping and/or ablation using a catheter having a tip with fixation means
US5514161A (en) * 1994-04-05 1996-05-07 Ela Medical S.A. Methods and apparatus for controlling atrial stimulation in a double atrial triple chamber cardiac pacemaker
US5601600A (en) * 1995-09-08 1997-02-11 Conceptus, Inc. Endoluminal coil delivery system having a mechanical release mechanism
US5733325A (en) * 1993-11-04 1998-03-31 C. R. Bard, Inc. Non-migrating vascular prosthesis and minimally invasive placement system
US5741297A (en) * 1996-08-28 1998-04-21 Simon; Morris Daisy occluder and method for septal defect repair
US5752969A (en) * 1993-06-17 1998-05-19 Sofamor S.N.C. Instrument for the surgical treatment of an intervertebral disc by the anterior route
US5871501A (en) * 1994-01-18 1999-02-16 Datascope Investment Corp. Guide wire with releasable barb anchor
US5895391A (en) * 1996-09-27 1999-04-20 Target Therapeutics, Inc. Ball lock joint and introducer for vaso-occlusive member
US5899882A (en) * 1994-10-27 1999-05-04 Novoste Corporation Catheter apparatus for radiation treatment of a desired area in the vascular system of a patient
US5908404A (en) * 1996-05-13 1999-06-01 Elliott; James B. Methods for inserting an implant
US5928258A (en) * 1997-09-26 1999-07-27 Corvita Corporation Method and apparatus for loading a stent or stent-graft into a delivery sheath
US6015402A (en) * 1997-03-07 2000-01-18 Sahota; Harvinder Wire perfusion catheter
US6022371A (en) * 1996-10-22 2000-02-08 Scimed Life Systems, Inc. Locking stent
US6027517A (en) * 1994-02-24 2000-02-22 Radiance Medical Systems, Inc. Fixed focal balloon for interactive angioplasty and stent implantation catheter with focalized balloon
US6043900A (en) * 1998-03-31 2000-03-28 Xerox Corporation Method and system for automatically detecting a background type of a scanned document utilizing a leadedge histogram thereof
US6077295A (en) * 1996-07-15 2000-06-20 Advanced Cardiovascular Systems, Inc. Self-expanding stent delivery system
US6080182A (en) * 1996-12-20 2000-06-27 Gore Enterprise Holdings, Inc. Self-expanding defect closure device and method of making and using
US6183512B1 (en) * 1999-04-16 2001-02-06 Edwards Lifesciences Corporation Flexible annuloplasty system
US6190406B1 (en) * 1998-01-09 2001-02-20 Nitinal Development Corporation Intravascular stent having tapered struts
US6200336B1 (en) * 1998-06-02 2001-03-13 Cook Incorporated Multiple-sided intraluminal medical device
US6210432B1 (en) * 1999-06-29 2001-04-03 Jan Otto Solem Device and method for treatment of mitral insufficiency
US6228098B1 (en) * 1998-07-10 2001-05-08 General Surgical Innovations, Inc. Apparatus and method for surgical fastening
US6241757B1 (en) * 1997-02-04 2001-06-05 Solco Surgical Instrument Co., Ltd. Stent for expanding body's lumen
US6267783B1 (en) * 1998-11-09 2001-07-31 Cordis Corporation Stent which is easily recaptured and repositioned within the body
US6334864B1 (en) * 2000-05-17 2002-01-01 Aga Medical Corp. Alignment member for delivering a non-symmetric device with a predefined orientation
US6342067B1 (en) * 1998-01-09 2002-01-29 Nitinol Development Corporation Intravascular stent having curved bridges for connecting adjacent hoops
US20020016628A1 (en) * 2000-01-31 2002-02-07 Langberg Jonathan J. Percutaneous mitral annuloplasty with hemodynamic monitoring
US6352553B1 (en) * 1995-12-14 2002-03-05 Gore Enterprise Holdings, Inc. Stent-graft deployment apparatus and method
US6352561B1 (en) * 1996-12-23 2002-03-05 W. L. Gore & Associates Implant deployment apparatus
US20020035361A1 (en) * 1999-06-25 2002-03-21 Houser Russell A. Apparatus and methods for treating tissue
US20020042621A1 (en) * 2000-06-23 2002-04-11 Liddicoat John R. Automated annular plication for mitral valve repair
US20020042651A1 (en) * 2000-06-30 2002-04-11 Liddicoat John R. Method and apparatus for performing a procedure on a cardiac valve
US20020049468A1 (en) * 2000-06-30 2002-04-25 Streeter Richard B. Intravascular filter with debris entrapment mechanism
US20020055774A1 (en) * 2000-09-07 2002-05-09 Liddicoat John R. Fixation band for affixing a prosthetic heart valve to tissue
US6395017B1 (en) * 1996-11-15 2002-05-28 C. R. Bard, Inc. Endoprosthesis delivery catheter with sequential stage control
US20020065554A1 (en) * 2000-10-25 2002-05-30 Streeter Richard B. Mitral shield
US20020087173A1 (en) * 2000-12-28 2002-07-04 Alferness Clifton A. Mitral valve constricting device, system and method
US6419696B1 (en) * 2000-07-06 2002-07-16 Paul A. Spence Annuloplasty devices and related heart valve repair methods
US20020095167A1 (en) * 2000-10-23 2002-07-18 Liddicoat John R. Automated annular plication for mitral valve repair
US6503271B2 (en) * 1998-01-09 2003-01-07 Cordis Corporation Intravascular device with improved radiopacity
US20030069636A1 (en) * 1999-06-30 2003-04-10 Solem Jan Otto Method for treatment of mitral insufficiency
US20030078465A1 (en) * 2001-10-16 2003-04-24 Suresh Pai Systems for heart treatment
US20030078654A1 (en) * 2001-08-14 2003-04-24 Taylor Daniel C. Method and apparatus for improving mitral valve function
US20030083613A1 (en) * 1999-05-11 2003-05-01 Schaer Alan K. Catheter positioning system
US20030083538A1 (en) * 2001-11-01 2003-05-01 Cardiac Dimensions, Inc. Focused compression mitral valve device and method
US20030088305A1 (en) * 2001-10-26 2003-05-08 Cook Incorporated Prostheses for curved lumens
US6562067B2 (en) * 2001-06-08 2003-05-13 Cordis Corporation Stent with interlocking elements
US6569198B1 (en) * 2000-03-31 2003-05-27 Richard A. Wilson Mitral or tricuspid valve annuloplasty prosthetic device
US20030105520A1 (en) * 2001-12-05 2003-06-05 Cardiac Dimensions, Inc. Anchor and pull mitral valve device and method
US6589208B2 (en) * 2000-06-20 2003-07-08 Applied Medical Resources Corporation Self-deploying catheter assembly
US20030130730A1 (en) * 2001-10-26 2003-07-10 Cohn William E. Method and apparatus for reducing mitral regurgitation
US20030130731A1 (en) * 2002-01-09 2003-07-10 Myocor, Inc. Devices and methods for heart valve treatment
US20030135267A1 (en) * 2002-01-11 2003-07-17 Solem Jan Otto Delayed memory device
US20030144697A1 (en) * 2002-01-30 2003-07-31 Cardiac Dimensions, Inc. Fixed length anchor and pull mitral valve device and method
US20040039443A1 (en) * 1999-06-30 2004-02-26 Solem Jan Otto Method and device for treatment of mitral insufficiency
US6709425B2 (en) * 1998-09-30 2004-03-23 C. R. Bard, Inc. Vascular inducing implants
US6716158B2 (en) * 2001-09-07 2004-04-06 Mardil, Inc. Method and apparatus for external stabilization of the heart
US6718985B2 (en) * 2001-04-24 2004-04-13 Edwin J. Hlavka Method and apparatus for catheter-based annuloplasty using local plications
US6721598B1 (en) * 2001-08-31 2004-04-13 Pacesetter, Inc. Coronary sinus cardiac lead for stimulating and sensing in the right and left heart and system
US20040073302A1 (en) * 2002-02-05 2004-04-15 Jonathan Rourke Method and apparatus for improving mitral valve function
US6723038B1 (en) * 2000-10-06 2004-04-20 Myocor, Inc. Methods and devices for improving mitral valve function
US6733521B2 (en) * 2001-04-11 2004-05-11 Trivascular, Inc. Delivery system and method for endovascular graft
US20040098116A1 (en) * 2002-11-15 2004-05-20 Callas Peter L. Valve annulus constriction apparatus and method
US6743219B1 (en) * 2000-08-02 2004-06-01 Cordis Corporation Delivery apparatus for a self-expanding stent
US20040111095A1 (en) * 2002-12-05 2004-06-10 Cardiac Dimensions, Inc. Medical device delivery system
US20050004667A1 (en) * 2003-06-05 2005-01-06 Cardiac Dimensions, Inc. A Delaware Corporation Device, system and method to affect the mitral valve annulus of a heart
US20050010240A1 (en) * 2003-06-05 2005-01-13 Cardiac Dimensions Inc., A Washington Corporation Device and method for modifying the shape of a body organ
US20050021121A1 (en) * 2001-11-01 2005-01-27 Cardiac Dimensions, Inc., A Delaware Corporation Adjustable height focal tissue deflector
US20050027353A1 (en) * 2001-05-14 2005-02-03 Alferness Clifton A. Mitral valve therapy device, system and method
US20050060030A1 (en) * 2000-01-31 2005-03-17 Lashinski Randall T. Remotely activated mitral annuloplasty system and methods
US20050065598A1 (en) * 2002-03-11 2005-03-24 Mathis Mark L. Device, assembly and method for mitral valve repair
US6881220B2 (en) * 1998-09-30 2005-04-19 Bard Peripheral Vascular, Inc. Method of recapturing a stent
US20050096740A1 (en) * 2001-01-30 2005-05-05 Edwards Lifesciences Ag Transluminal mitral annuloplasty
US20050096666A1 (en) * 2002-12-05 2005-05-05 Gordon Lucas S. Percutaneous mitral valve annuloplasty delivery system
US20050107810A1 (en) * 2002-06-13 2005-05-19 Guided Delivery Systems, Inc. Devices and methods for heart valve repair
US6899734B2 (en) * 2001-03-23 2005-05-31 Howmedica Osteonics Corp. Modular implant for fusing adjacent bone structure
US6908482B2 (en) * 2001-08-28 2005-06-21 Edwards Lifesciences Corporation Three-dimensional annuloplasty ring and template
US20060020335A1 (en) * 2002-12-26 2006-01-26 Leonard Kowalsky System and method to effect the mitral valve annulus of a heart
US20060030882A1 (en) * 2002-03-06 2006-02-09 Adams John M Transvenous staples, assembly and method for mitral valve repair
US20060041305A1 (en) * 1996-06-20 2006-02-23 Karl-Lutz Lauterjung Prosthetic repair of body passages
US20060142854A1 (en) * 2001-12-05 2006-06-29 Cardiac Dimensions, Inc. Device and method for modifying the shape of a body organ
US20070066879A1 (en) * 2002-01-30 2007-03-22 Mathis Mark L Body lumen shaping device with cardiac leads

Family Cites Families (157)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US183841A (en) * 1876-10-31 Improvement in ore-crushers
US69636A (en) * 1867-10-08 Improvement in tanning
US193191A (en) * 1877-07-17 Improvement in leather-crimping machines
US83538A (en) * 1868-10-27 Improved eotfe-and-fork holder
US130730A (en) * 1872-08-20 Improvement in churns
US88305A (en) * 1869-03-30 Jam e s m
US73302A (en) * 1868-01-14 ce and all
US171776A (en) * 1876-01-04 Improvement in spring bed-bottoms
US220654A (en) * 1879-10-14 Improvement in tobacco-presses
US138744A (en) * 1873-05-13 Improvement in rotary engines
US183836A (en) * 1876-10-31 Improvement in sewing-machines
US16628A (en) * 1857-02-10 Edwin p
US127982A (en) * 1872-06-18 Improvement in spool-cases for sewing-machines
US19377A (en) * 1858-02-16 Improvement in harvesters
US148021A (en) * 1874-03-03 Improvement in washing-machines
US42651A (en) * 1864-05-10 Hame-fastening
US111095A (en) * 1871-01-17 Improvement in lubricators for axles
US171806A (en) * 1876-01-04 Improvement in padlocks
US133220A (en) * 1872-11-19 Improvement in pruning-shears
US133240A (en) * 1872-11-19 Improvement in smut-mills
US78654A (en) * 1868-06-09 Improvement in harvester-rakes
US135267A (en) * 1873-01-28 Improvement in bottle-stoppers
US183835A (en) * 1876-10-31 Improvement in seed-planters
US148019A (en) * 1874-03-03 Improvement in portable cameras
US102839A (en) * 1870-05-10 Improvement in platforms for harvesters
US49468A (en) * 1865-08-15 Improvement in padlocks
US78465A (en) * 1868-06-02 Improved gas-machine
US183637A (en) * 1876-10-24 Improvement in sash-holders
US42621A (en) * 1864-05-03 Improvement in nipple-guards for fire-arms
US183558A (en) * 1876-10-24 Improvement in devices for strengthening the legs of heavy pieces of furniture
US35361A (en) * 1862-05-27 Improvement in broilers
US4572A (en) * 1846-06-13 Corw-sheller
US105520A (en) * 1870-07-19 Improved centrifugal sugar draining and molding machine
US183838A (en) * 1876-10-31 Improvement in machines for shaping plow-handles
US44568A (en) * 1864-10-04 Improvement in
US18611A (en) * 1857-11-10 Winbow-sash
US39443A (en) * 1863-08-04 Improvement in sewing-machines
US49558A (en) * 1865-08-22 Improvement in erasers and burnishers
US193260A (en) * 1877-07-17 Improvement in burglar-alarms
US14820A (en) * 1856-05-06 Improvement in repeating fire-arms
US1330731A (en) * 1919-04-10 1920-02-10 Walters Bonnie Detachable shoe-heel pad and fastening device therefor
US1776840A (en) * 1924-06-18 1930-09-30 Metropolitan Eng Co Heat-conducting tube
US3974526A (en) 1973-07-06 1976-08-17 Dardik Irving I Vascular prostheses and process for producing the same
US3995623A (en) 1974-12-23 1976-12-07 American Hospital Supply Corporation Multipurpose flow-directed catheter
FR2306671A1 (en) 1975-04-11 1976-11-05 Rhone Poulenc Ind VALVULAR IMPLANT
US4164046A (en) 1977-05-16 1979-08-14 Cooley Denton Valve prosthesis
US4588395A (en) * 1978-03-10 1986-05-13 Lemelson Jerome H Catheter and method
US4485816A (en) 1981-06-25 1984-12-04 Alchemia Shape-memory surgical staple apparatus and method for use in surgical suturing
US4550870A (en) 1983-10-13 1985-11-05 Alchemia Ltd. Partnership Stapling device
CA1303298C (en) 1986-08-06 1992-06-16 Alain Carpentier Flexible cardiac valvular support prosthesis
JP2754067B2 (en) 1989-01-17 1998-05-20 日本ゼオン株式会社 Medical body wall hole plugging jig
US5350420A (en) 1989-07-31 1994-09-27 Baxter International Inc. Flexible annuloplasty ring and holder
CA2026604A1 (en) * 1989-10-02 1991-04-03 Rodney G. Wolff Articulated stent
US5454365A (en) 1990-11-05 1995-10-03 Bonutti; Peter M. Mechanically expandable arthroscopic retractors
US5261916A (en) 1991-12-12 1993-11-16 Target Therapeutics Detachable pusher-vasoocclusive coil assembly with interlocking ball and keyway coupling
US5265601A (en) 1992-05-01 1993-11-30 Medtronic, Inc. Dual chamber cardiac pacing from a single electrode
US5250071A (en) 1992-09-22 1993-10-05 Target Therapeutics, Inc. Detachable embolic coil assembly using interlocking clasps and method of use
US5441515A (en) 1993-04-23 1995-08-15 Advanced Cardiovascular Systems, Inc. Ratcheting stent
US5458615A (en) 1993-07-06 1995-10-17 Advanced Cardiovascular Systems, Inc. Stent delivery system
FR2710254B1 (en) 1993-09-21 1995-10-27 Mai Christian Multi-branch osteosynthesis clip with self-retaining dynamic compression.
US5417708A (en) 1994-03-09 1995-05-23 Cook Incorporated Intravascular treatment system and percutaneous release mechanism therefor
US5449373A (en) 1994-03-17 1995-09-12 Medinol Ltd. Articulated stent
FR2718035B1 (en) 1994-04-05 1996-08-30 Ela Medical Sa Method for controlling a double atrial pacemaker of the triple chamber type programmable in fallback mode.
CA2189006A1 (en) 1994-04-29 1995-11-09 David L. Sandock Medical prosthetic stent and method of manufacture
US5575818A (en) 1995-02-14 1996-11-19 Corvita Corporation Endovascular stent with locking ring
US5554177A (en) 1995-03-27 1996-09-10 Medtronic, Inc. Method and apparatus to optimize pacing based on intensity of acoustic signal
US5693089A (en) * 1995-04-12 1997-12-02 Inoue; Kanji Method of collapsing an implantable appliance
JP3199383B2 (en) 1995-04-14 2001-08-20 シュナイダー(ユーエスエー)インク Rolling membrane type stent supply device
IL113425A (en) * 1995-04-19 1999-12-22 Guidex Ltd Stabilizing apparatus
US6053900A (en) * 1996-02-16 2000-04-25 Brown; Joe E. Apparatus and method for delivering diagnostic and therapeutic agents intravascularly
US5853422A (en) 1996-03-22 1998-12-29 Scimed Life Systems, Inc. Apparatus and method for closing a septal defect
CA2227446A1 (en) * 1996-05-31 1997-12-04 Bard Galway Limited Bifurcated endovascular stents and method and apparatus for their placement
US5655548A (en) 1996-09-16 1997-08-12 Circulation, Inc. Method for treatment of ischemic heart disease by providing transvenous myocardial perfusion
US6254628B1 (en) 1996-12-09 2001-07-03 Micro Therapeutics, Inc. Intracranial stent
US6805128B1 (en) 1996-10-22 2004-10-19 Epicor Medical, Inc. Apparatus and method for ablating tissue
IL119911A (en) * 1996-12-25 2001-03-19 Niti Alloys Tech Ltd Surgical clip
US5961545A (en) 1997-01-17 1999-10-05 Meadox Medicals, Inc. EPTFE graft-stent composite device
US5978705A (en) 1997-03-14 1999-11-02 Uab Research Foundation Method and apparatus for treating cardiac arrhythmia using auxiliary pulse
US6275730B1 (en) 1997-03-14 2001-08-14 Uab Research Foundation Method and apparatus for treating cardiac arrythmia
US5836882A (en) 1997-03-17 1998-11-17 Frazin; Leon J. Method and apparatus of localizing an insertion end of a probe within a biotic structure
US5954761A (en) 1997-03-25 1999-09-21 Intermedics Inc. Implantable endocardial lead assembly having a stent
EP0989870A4 (en) 1997-06-13 2000-08-30 Micro Therapeutics Inc Contoured syringe and novel luer hub and methods for embolizing blood vessels
FR2766374B1 (en) 1997-07-24 2000-01-28 Medex Sa DEVICE FOR INJECTING A LIQUID FOR MEDICAL SYRINGE ASSOCIATED WITH THE DEVICE AND METHOD FOR PLACING THE SYRINGE
US6007519A (en) * 1997-07-30 1999-12-28 Rosselli; Matteo Central access cannulation device
US5984944A (en) 1997-09-12 1999-11-16 B. Braun Medical, Inc. Introducer for an expandable vascular occlusion device
US6096064A (en) 1997-09-19 2000-08-01 Intermedics Inc. Four chamber pacer for dilated cardiomyopthy
DE69838256T2 (en) 1997-09-24 2008-05-15 Med Institute, Inc., West Lafayette RADIAL EXPANDABLE STENT
US6086611A (en) 1997-09-25 2000-07-11 Ave Connaught Bifurcated stent
US6099552A (en) 1997-11-12 2000-08-08 Boston Scientific Corporation Gastrointestinal copression clips
US6129755A (en) 1998-01-09 2000-10-10 Nitinol Development Corporation Intravascular stent having an improved strut configuration
US6345198B1 (en) * 1998-01-23 2002-02-05 Pacesetter, Inc. Implantable stimulation system for providing dual bipolar sensing using an electrode positioned in proximity to the tricuspid valve and programmable polarity
US6623521B2 (en) 1998-02-17 2003-09-23 Md3, Inc. Expandable stent with sliding and locking radial elements
ATE324835T1 (en) 1998-03-27 2006-06-15 Cook Urological Inc MINIMAL-INVASIVE DEVICE FOR CATCHING OBJECTS IN HOLLOW ORGANS
US6022297A (en) * 1998-05-28 2000-02-08 Dejesus; Carlos Portable device or exercising front thighs
US6250308B1 (en) 1998-06-16 2001-06-26 Cardiac Concepts, Inc. Mitral valve annuloplasty ring and method of implanting
NL1009551C2 (en) 1998-07-03 2000-01-07 Cordis Europ Vena cava filter with improvements for controlled ejection.
US7044134B2 (en) 1999-11-08 2006-05-16 Ev3 Sunnyvale, Inc Method of implanting a device in the left atrial appendage
CA2317661C (en) 1998-11-20 2008-04-15 Medical Industries Corp. Hemostatic material insertion device
CA2361670C (en) 1999-01-27 2010-03-30 Viacor Incorporated Cardiac valve procedure methods and devices
US7018401B1 (en) * 1999-02-01 2006-03-28 Board Of Regents, The University Of Texas System Woven intravascular devices and methods for making the same and apparatus for delivery of the same
DE19910233A1 (en) 1999-03-09 2000-09-21 Jostra Medizintechnik Ag Anuloplasty prosthesis
CA2620783C (en) 1999-04-09 2011-04-05 Evalve, Inc. Methods and apparatus for cardiac valve repair
US6317615B1 (en) 1999-04-19 2001-11-13 Cardiac Pacemakers, Inc. Method and system for reducing arterial restenosis in the presence of an intravascular stent
US6602289B1 (en) 1999-06-08 2003-08-05 S&A Rings, Llc Annuloplasty rings of particular use in surgery for the mitral valve
US6391038B2 (en) 1999-07-28 2002-05-21 Cardica, Inc. Anastomosis system and method for controlling a tissue site
FR2799364B1 (en) * 1999-10-12 2001-11-23 Jacques Seguin MINIMALLY INVASIVE CANCELING DEVICE
US6613075B1 (en) 1999-10-27 2003-09-02 Cordis Corporation Rapid exchange self-expanding stent delivery catheter system
KR100436494B1 (en) 1999-12-14 2004-06-24 삼성아토피나주식회사 A preparing method of supported catalyst for polymerization of ethylene homopolymer and ethylene/alpha-olefin copolymer
WO2001050985A1 (en) 2000-01-14 2001-07-19 Viacor Incorporated Tissue annuloplasty band and apparatus and method for fashioning, sizing and implanting the same
US7507252B2 (en) * 2000-01-31 2009-03-24 Edwards Lifesciences Ag Adjustable transluminal annuloplasty system
US6989028B2 (en) 2000-01-31 2006-01-24 Edwards Lifesciences Ag Medical system and method for remodeling an extravascular tissue structure
US6821297B2 (en) 2000-02-02 2004-11-23 Robert V. Snyders Artificial heart valve, implantation instrument and method therefor
US6358195B1 (en) * 2000-03-09 2002-03-19 Neoseed Technology Llc Method and apparatus for loading radioactive seeds into brachytherapy needles
US6442427B1 (en) 2000-04-27 2002-08-27 Medtronic, Inc. Method and system for stimulating a mammalian heart
IL136213A0 (en) * 2000-05-17 2001-05-20 Xtent Medical Inc Selectively expandable and releasable stent
US7072353B2 (en) * 2000-06-15 2006-07-04 At&T Corp. Flexible bandwidth allocation in high-capacity grooming switches
US6602288B1 (en) 2000-10-05 2003-08-05 Edwards Lifesciences Corporation Minimally-invasive annuloplasty repair segment delivery template, system and method of use
WO2002034118A2 (en) 2000-10-27 2002-05-02 Viacor, Inc. Intracardiovascular access (icvatm) system
AU2002236640A1 (en) 2000-12-15 2002-06-24 Viacor, Inc. Apparatus and method for replacing aortic valve
US6810882B2 (en) 2001-01-30 2004-11-02 Ev3 Santa Rosa, Inc. Transluminal mitral annuloplasty
JP4195612B2 (en) 2001-01-30 2008-12-10 エドワーズ ライフサイエンシーズ アーゲー Medical system and method for improving extracorporeal tissue structure
US6790231B2 (en) 2001-02-05 2004-09-14 Viacor, Inc. Apparatus and method for reducing mitral regurgitation
JP4184794B2 (en) * 2001-02-05 2008-11-19 ビアカー・インコーポレーテッド Method and apparatus for improving mitral valve function
WO2002064205A2 (en) 2001-02-13 2002-08-22 Quetzal Biomedical, Inc. Multi-electrode apparatus and method for treatment of congestive heart failure
US7090698B2 (en) * 2001-03-02 2006-08-15 Facet Solutions Method and apparatus for spine joint replacement
CA2668308A1 (en) 2001-03-05 2002-12-05 Viacor, Incorporated Apparatus and method for reducing mitral regurgitation
US6890353B2 (en) * 2001-03-23 2005-05-10 Viacor, Inc. Method and apparatus for reducing mitral regurgitation
US7186264B2 (en) * 2001-03-29 2007-03-06 Viacor, Inc. Method and apparatus for improving mitral valve function
EP1383448B1 (en) 2001-03-29 2008-06-04 Viacor, Inc. Apparatus for improving mitral valve function
US20020188170A1 (en) 2001-04-27 2002-12-12 Santamore William P. Prevention of myocardial infarction induced ventricular expansion and remodeling
US6837901B2 (en) 2001-04-27 2005-01-04 Intek Technology L.L.C. Methods for delivering, repositioning and/or retrieving self-expanding stents
US6676702B2 (en) * 2001-05-14 2004-01-13 Cardiac Dimensions, Inc. Mitral valve therapy assembly and method
US6629994B2 (en) 2001-06-11 2003-10-07 Advanced Cardiovascular Systems, Inc. Intravascular stent
US7311729B2 (en) 2002-01-30 2007-12-25 Cardiac Dimensions, Inc. Device and method for modifying the shape of a body organ
US6824562B2 (en) 2002-05-08 2004-11-30 Cardiac Dimensions, Inc. Body lumen device anchor, device and assembly
US7179282B2 (en) * 2001-12-05 2007-02-20 Cardiac Dimensions, Inc. Device and method for modifying the shape of a body organ
DE10161543B4 (en) 2001-12-11 2004-02-19 REITAN, Öyvind Implant for the treatment of heart valve insufficiency
US6960229B2 (en) 2002-01-30 2005-11-01 Cardiac Dimensions, Inc. Device and method for modifying the shape of a body organ
US8287555B2 (en) * 2003-02-06 2012-10-16 Guided Delivery Systems, Inc. Devices and methods for heart valve repair
US20040243227A1 (en) 2002-06-13 2004-12-02 Guided Delivery Systems, Inc. Delivery devices and methods for heart valve repair
US7297150B2 (en) * 2002-08-29 2007-11-20 Mitralsolutions, Inc. Implantable devices for controlling the internal circumference of an anatomic orifice or lumen
AU2003277116A1 (en) 2002-10-01 2004-04-23 Ample Medical, Inc. Devices, systems, and methods for reshaping a heart valve annulus
US7247134B2 (en) * 2002-11-12 2007-07-24 Myocor, Inc. Devices and methods for heart valve treatment
US7112219B2 (en) * 2002-11-12 2006-09-26 Myocor, Inc. Devices and methods for heart valve treatment
US7485143B2 (en) * 2002-11-15 2009-02-03 Abbott Cardiovascular Systems Inc. Apparatuses and methods for heart valve repair
US20040133240A1 (en) * 2003-01-07 2004-07-08 Cardiac Dimensions, Inc. Electrotherapy system, device, and method for treatment of cardiac valve dysfunction
US7314485B2 (en) * 2003-02-03 2008-01-01 Cardiac Dimensions, Inc. Mitral valve device using conditioned shape memory alloy
US20040158321A1 (en) * 2003-02-12 2004-08-12 Cardiac Dimensions, Inc. Method of implanting a mitral valve therapy device
US20040193620A1 (en) * 2003-03-31 2004-09-30 International Business Machines Corporation Association caching
US20040220654A1 (en) 2003-05-02 2004-11-04 Cardiac Dimensions, Inc. Device and method for modifying the shape of a body organ
US20040220657A1 (en) 2003-05-02 2004-11-04 Cardiac Dimensions, Inc., A Washington Corporation Tissue shaping device with conformable anchors
US20060161169A1 (en) 2003-05-02 2006-07-20 Cardiac Dimensions, Inc., A Delaware Corporation Device and method for modifying the shape of a body organ
US20050137449A1 (en) * 2003-12-19 2005-06-23 Cardiac Dimensions, Inc. Tissue shaping device with self-expanding anchors
US20050137450A1 (en) * 2003-12-19 2005-06-23 Cardiac Dimensions, Inc., A Washington Corporation Tapered connector for tissue shaping device
US7794496B2 (en) * 2003-12-19 2010-09-14 Cardiac Dimensions, Inc. Tissue shaping device with integral connector and crimp
US7837728B2 (en) * 2003-12-19 2010-11-23 Cardiac Dimensions, Inc. Reduced length tissue shaping device
CA2595580A1 (en) 2005-01-20 2006-07-27 Cardiac Dimensions, Inc. Tissue shaping device

Patent Citations (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4830023A (en) * 1987-11-27 1989-05-16 Medi-Tech, Incorporated Medical guidewire
US5099838A (en) * 1988-12-15 1992-03-31 Medtronic, Inc. Endocardial defibrillation electrode system
US5507295A (en) * 1992-07-01 1996-04-16 British Technology Group Limited Medical devices
US5507802A (en) * 1993-06-02 1996-04-16 Cardiac Pathways Corporation Method of mapping and/or ablation using a catheter having a tip with fixation means
US5752969A (en) * 1993-06-17 1998-05-19 Sofamor S.N.C. Instrument for the surgical treatment of an intervertebral disc by the anterior route
US6077297A (en) * 1993-11-04 2000-06-20 C. R. Bard, Inc. Non-migrating vascular prosthesis and minimally invasive placement system therefor
US5891193A (en) * 1993-11-04 1999-04-06 C.R. Bard, Inc. Non-migrating vascular prosthesis and minimally invasive placement system therefor
US5733325A (en) * 1993-11-04 1998-03-31 C. R. Bard, Inc. Non-migrating vascular prosthesis and minimally invasive placement system
US5871501A (en) * 1994-01-18 1999-02-16 Datascope Investment Corp. Guide wire with releasable barb anchor
US6027517A (en) * 1994-02-24 2000-02-22 Radiance Medical Systems, Inc. Fixed focal balloon for interactive angioplasty and stent implantation catheter with focalized balloon
US5514161A (en) * 1994-04-05 1996-05-07 Ela Medical S.A. Methods and apparatus for controlling atrial stimulation in a double atrial triple chamber cardiac pacemaker
US5433727A (en) * 1994-08-16 1995-07-18 Sideris; Eleftherios B. Centering buttoned device for the occlusion of large defects for occluding
US5899882A (en) * 1994-10-27 1999-05-04 Novoste Corporation Catheter apparatus for radiation treatment of a desired area in the vascular system of a patient
US5601600A (en) * 1995-09-08 1997-02-11 Conceptus, Inc. Endoluminal coil delivery system having a mechanical release mechanism
US6352553B1 (en) * 1995-12-14 2002-03-05 Gore Enterprise Holdings, Inc. Stent-graft deployment apparatus and method
US5908404A (en) * 1996-05-13 1999-06-01 Elliott; James B. Methods for inserting an implant
US20060041305A1 (en) * 1996-06-20 2006-02-23 Karl-Lutz Lauterjung Prosthetic repair of body passages
US6077295A (en) * 1996-07-15 2000-06-20 Advanced Cardiovascular Systems, Inc. Self-expanding stent delivery system
US5741297A (en) * 1996-08-28 1998-04-21 Simon; Morris Daisy occluder and method for septal defect repair
US5895391A (en) * 1996-09-27 1999-04-20 Target Therapeutics, Inc. Ball lock joint and introducer for vaso-occlusive member
US6022371A (en) * 1996-10-22 2000-02-08 Scimed Life Systems, Inc. Locking stent
US6395017B1 (en) * 1996-11-15 2002-05-28 C. R. Bard, Inc. Endoprosthesis delivery catheter with sequential stage control
US6080182A (en) * 1996-12-20 2000-06-27 Gore Enterprise Holdings, Inc. Self-expanding defect closure device and method of making and using
US6352561B1 (en) * 1996-12-23 2002-03-05 W. L. Gore & Associates Implant deployment apparatus
US6241757B1 (en) * 1997-02-04 2001-06-05 Solco Surgical Instrument Co., Ltd. Stent for expanding body's lumen
US6015402A (en) * 1997-03-07 2000-01-18 Sahota; Harvinder Wire perfusion catheter
US5928258A (en) * 1997-09-26 1999-07-27 Corvita Corporation Method and apparatus for loading a stent or stent-graft into a delivery sheath
US6190406B1 (en) * 1998-01-09 2001-02-20 Nitinal Development Corporation Intravascular stent having tapered struts
US6503271B2 (en) * 1998-01-09 2003-01-07 Cordis Corporation Intravascular device with improved radiopacity
US6342067B1 (en) * 1998-01-09 2002-01-29 Nitinol Development Corporation Intravascular stent having curved bridges for connecting adjacent hoops
US6043900A (en) * 1998-03-31 2000-03-28 Xerox Corporation Method and system for automatically detecting a background type of a scanned document utilizing a leadedge histogram thereof
US6200336B1 (en) * 1998-06-02 2001-03-13 Cook Incorporated Multiple-sided intraluminal medical device
US6228098B1 (en) * 1998-07-10 2001-05-08 General Surgical Innovations, Inc. Apparatus and method for surgical fastening
US6709425B2 (en) * 1998-09-30 2004-03-23 C. R. Bard, Inc. Vascular inducing implants
US6881220B2 (en) * 1998-09-30 2005-04-19 Bard Peripheral Vascular, Inc. Method of recapturing a stent
US6267783B1 (en) * 1998-11-09 2001-07-31 Cordis Corporation Stent which is easily recaptured and repositioned within the body
US6183512B1 (en) * 1999-04-16 2001-02-06 Edwards Lifesciences Corporation Flexible annuloplasty system
US20030083613A1 (en) * 1999-05-11 2003-05-01 Schaer Alan K. Catheter positioning system
US20020035361A1 (en) * 1999-06-25 2002-03-21 Houser Russell A. Apparatus and methods for treating tissue
US20030018358A1 (en) * 1999-06-25 2003-01-23 Vahid Saadat Apparatus and methods for treating tissue
US6210432B1 (en) * 1999-06-29 2001-04-03 Jan Otto Solem Device and method for treatment of mitral insufficiency
US20030069636A1 (en) * 1999-06-30 2003-04-10 Solem Jan Otto Method for treatment of mitral insufficiency
US20040102840A1 (en) * 1999-06-30 2004-05-27 Solem Jan Otto Method and device for treatment of mitral insufficiency
US20040039443A1 (en) * 1999-06-30 2004-02-26 Solem Jan Otto Method and device for treatment of mitral insufficiency
US20020016628A1 (en) * 2000-01-31 2002-02-07 Langberg Jonathan J. Percutaneous mitral annuloplasty with hemodynamic monitoring
US6402781B1 (en) * 2000-01-31 2002-06-11 Mitralife Percutaneous mitral annuloplasty and cardiac reinforcement
US20050060030A1 (en) * 2000-01-31 2005-03-17 Lashinski Randall T. Remotely activated mitral annuloplasty system and methods
US6537314B2 (en) * 2000-01-31 2003-03-25 Ev3 Santa Rosa, Inc. Percutaneous mitral annuloplasty and cardiac reinforcement
US6569198B1 (en) * 2000-03-31 2003-05-27 Richard A. Wilson Mitral or tricuspid valve annuloplasty prosthetic device
US6334864B1 (en) * 2000-05-17 2002-01-01 Aga Medical Corp. Alignment member for delivering a non-symmetric device with a predefined orientation
US6589208B2 (en) * 2000-06-20 2003-07-08 Applied Medical Resources Corporation Self-deploying catheter assembly
US20020042621A1 (en) * 2000-06-23 2002-04-11 Liddicoat John R. Automated annular plication for mitral valve repair
US20020042651A1 (en) * 2000-06-30 2002-04-11 Liddicoat John R. Method and apparatus for performing a procedure on a cardiac valve
US20020049468A1 (en) * 2000-06-30 2002-04-25 Streeter Richard B. Intravascular filter with debris entrapment mechanism
US6419696B1 (en) * 2000-07-06 2002-07-16 Paul A. Spence Annuloplasty devices and related heart valve repair methods
US6743219B1 (en) * 2000-08-02 2004-06-01 Cordis Corporation Delivery apparatus for a self-expanding stent
US20020055774A1 (en) * 2000-09-07 2002-05-09 Liddicoat John R. Fixation band for affixing a prosthetic heart valve to tissue
US6723038B1 (en) * 2000-10-06 2004-04-20 Myocor, Inc. Methods and devices for improving mitral valve function
US20020095167A1 (en) * 2000-10-23 2002-07-18 Liddicoat John R. Automated annular plication for mitral valve repair
US20020065554A1 (en) * 2000-10-25 2002-05-30 Streeter Richard B. Mitral shield
US20020087173A1 (en) * 2000-12-28 2002-07-04 Alferness Clifton A. Mitral valve constricting device, system and method
US20050096740A1 (en) * 2001-01-30 2005-05-05 Edwards Lifesciences Ag Transluminal mitral annuloplasty
US6899734B2 (en) * 2001-03-23 2005-05-31 Howmedica Osteonics Corp. Modular implant for fusing adjacent bone structure
US6733521B2 (en) * 2001-04-11 2004-05-11 Trivascular, Inc. Delivery system and method for endovascular graft
US6718985B2 (en) * 2001-04-24 2004-04-13 Edwin J. Hlavka Method and apparatus for catheter-based annuloplasty using local plications
US20050027353A1 (en) * 2001-05-14 2005-02-03 Alferness Clifton A. Mitral valve therapy device, system and method
US20050033419A1 (en) * 2001-05-14 2005-02-10 Alferness Clifton A. Mitral valve therapy device, system and method
US20050038507A1 (en) * 2001-05-14 2005-02-17 Alferness Clifton A. Mitral valve therapy device, system and method
US6562067B2 (en) * 2001-06-08 2003-05-13 Cordis Corporation Stent with interlocking elements
US6599314B2 (en) * 2001-06-08 2003-07-29 Cordis Corporation Apparatus and method for stenting a vessel using balloon-actuated stent with interlocking elements
US20030078654A1 (en) * 2001-08-14 2003-04-24 Taylor Daniel C. Method and apparatus for improving mitral valve function
US6908482B2 (en) * 2001-08-28 2005-06-21 Edwards Lifesciences Corporation Three-dimensional annuloplasty ring and template
US6721598B1 (en) * 2001-08-31 2004-04-13 Pacesetter, Inc. Coronary sinus cardiac lead for stimulating and sensing in the right and left heart and system
US6716158B2 (en) * 2001-09-07 2004-04-06 Mardil, Inc. Method and apparatus for external stabilization of the heart
US20030078465A1 (en) * 2001-10-16 2003-04-24 Suresh Pai Systems for heart treatment
US20030130730A1 (en) * 2001-10-26 2003-07-10 Cohn William E. Method and apparatus for reducing mitral regurgitation
US20030088305A1 (en) * 2001-10-26 2003-05-08 Cook Incorporated Prostheses for curved lumens
US20030083538A1 (en) * 2001-11-01 2003-05-01 Cardiac Dimensions, Inc. Focused compression mitral valve device and method
US20050021121A1 (en) * 2001-11-01 2005-01-27 Cardiac Dimensions, Inc., A Delaware Corporation Adjustable height focal tissue deflector
US20060142854A1 (en) * 2001-12-05 2006-06-29 Cardiac Dimensions, Inc. Device and method for modifying the shape of a body organ
US20030105520A1 (en) * 2001-12-05 2003-06-05 Cardiac Dimensions, Inc. Anchor and pull mitral valve device and method
US20030130731A1 (en) * 2002-01-09 2003-07-10 Myocor, Inc. Devices and methods for heart valve treatment
US20030135267A1 (en) * 2002-01-11 2003-07-17 Solem Jan Otto Delayed memory device
US20040019377A1 (en) * 2002-01-14 2004-01-29 Taylor Daniel C. Method and apparatus for reducing mitral regurgitation
US20030144697A1 (en) * 2002-01-30 2003-07-31 Cardiac Dimensions, Inc. Fixed length anchor and pull mitral valve device and method
US20070066879A1 (en) * 2002-01-30 2007-03-22 Mathis Mark L Body lumen shaping device with cardiac leads
US20040073302A1 (en) * 2002-02-05 2004-04-15 Jonathan Rourke Method and apparatus for improving mitral valve function
US20060030882A1 (en) * 2002-03-06 2006-02-09 Adams John M Transvenous staples, assembly and method for mitral valve repair
US20050065598A1 (en) * 2002-03-11 2005-03-24 Mathis Mark L. Device, assembly and method for mitral valve repair
US20050107810A1 (en) * 2002-06-13 2005-05-19 Guided Delivery Systems, Inc. Devices and methods for heart valve repair
US20040102839A1 (en) * 2002-06-26 2004-05-27 Cohn William E. Method and apparatus for improving mitral valve function
US20040098116A1 (en) * 2002-11-15 2004-05-20 Callas Peter L. Valve annulus constriction apparatus and method
US20050096666A1 (en) * 2002-12-05 2005-05-05 Gordon Lucas S. Percutaneous mitral valve annuloplasty delivery system
US20050119673A1 (en) * 2002-12-05 2005-06-02 Gordon Lucas S. Percutaneous mitral valve annuloplasty device delivery method
US20040111095A1 (en) * 2002-12-05 2004-06-10 Cardiac Dimensions, Inc. Medical device delivery system
US20060020335A1 (en) * 2002-12-26 2006-01-26 Leonard Kowalsky System and method to effect the mitral valve annulus of a heart
US20050010240A1 (en) * 2003-06-05 2005-01-13 Cardiac Dimensions Inc., A Washington Corporation Device and method for modifying the shape of a body organ
US20060116758A1 (en) * 2003-06-05 2006-06-01 Gary Swinford Device, System and Method to Affect the Mitral Valve Annulus of a Heart
US20050004667A1 (en) * 2003-06-05 2005-01-06 Cardiac Dimensions, Inc. A Delaware Corporation Device, system and method to affect the mitral valve annulus of a heart

Cited By (218)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060161040A1 (en) * 1997-01-02 2006-07-20 Myocor, Inc. Methods and devices for improving cardiac function in hearts
US8460173B2 (en) 1997-01-02 2013-06-11 Edwards Lifesciences, Llc Heart wall tension reduction apparatus and method
US20020161275A1 (en) * 1997-01-02 2002-10-31 Schweich Cyril J. Heart wall tension reduction apparatus and method
US8267852B2 (en) 1997-01-02 2012-09-18 Edwards Lifesciences, Llc Heart wall tension reduction apparatus and method
US7883539B2 (en) 1997-01-02 2011-02-08 Edwards Lifesciences Llc Heart wall tension reduction apparatus and method
US20100274076A1 (en) * 1997-01-02 2010-10-28 Edwards Lifesciences Llc Heart Wall Tension Reduction Apparatus and Method
US20060052868A1 (en) * 1997-12-17 2006-03-09 Myocor, Inc. Valve to myocardium tension members device and method
US20060195012A1 (en) * 1997-12-17 2006-08-31 Myocor, Inc. Valve to myocardium tension members device and method
US8226711B2 (en) 1997-12-17 2012-07-24 Edwards Lifesciences, Llc Valve to myocardium tension members device and method
US20050065594A1 (en) * 1999-10-21 2005-03-24 Scimed Life Systems, Inc. Implantable prosthetic valve
US7695512B2 (en) 2000-01-31 2010-04-13 Edwards Lifesciences Ag Remotely activated mitral annuloplasty system and methods
US20040153146A1 (en) * 2000-01-31 2004-08-05 Randall Lashinski Methods and apparatus for remodeling an extravascular tissue structure
US20040138744A1 (en) * 2000-01-31 2004-07-15 Randall Lashinski Transluminal mitral annuloplasty with active anchoring
US20040133220A1 (en) * 2000-01-31 2004-07-08 Randall Lashinski Adjustable transluminal annuloplasty system
US20060116757A1 (en) * 2000-01-31 2006-06-01 Randall Lashinski Methods and apparatus for remodeling an extravascular tissue structure
US20060149123A1 (en) * 2000-03-21 2006-07-06 Myocor, Inc. Splint assembly for improving cardiac function in hearts, and method for implanting the splint assembly
US9198757B2 (en) 2000-10-06 2015-12-01 Edwards Lifesciences, Llc Methods and devices for improving mitral valve function
US20050075723A1 (en) * 2000-10-06 2005-04-07 Myocor, Inc. Methods and devices for improving mitral valve function
US20060241340A1 (en) * 2000-10-06 2006-10-26 Myocor, Inc. Methods and devices for improving mitral valve function
US20090270980A1 (en) * 2000-10-06 2009-10-29 Edwards Lifesciences Llc Methods and Devices for Improving Mitral Valve Function
US7766812B2 (en) 2000-10-06 2010-08-03 Edwards Lifesciences Llc Methods and devices for improving mitral valve function
US20030181928A1 (en) * 2000-10-06 2003-09-25 Myocor, Inc. Endovascular splinting devices and methods
US7776053B2 (en) 2000-10-26 2010-08-17 Boston Scientific Scimed, Inc. Implantable valve system
US20050096740A1 (en) * 2001-01-30 2005-05-05 Edwards Lifesciences Ag Transluminal mitral annuloplasty
US20050038507A1 (en) * 2001-05-14 2005-02-17 Alferness Clifton A. Mitral valve therapy device, system and method
US20050027353A1 (en) * 2001-05-14 2005-02-03 Alferness Clifton A. Mitral valve therapy device, system and method
US7828843B2 (en) 2001-05-14 2010-11-09 Cardiac Dimensions, Inc. Mitral valve therapy device, system and method
US8439971B2 (en) 2001-11-01 2013-05-14 Cardiac Dimensions, Inc. Adjustable height focal tissue deflector
US20100100175A1 (en) * 2001-11-01 2010-04-22 David Reuter Adjustable Height Focal Tissue Deflector
US20050149182A1 (en) * 2001-12-05 2005-07-07 Alferness Clifton A. Anchor and pull mitral valve device and method
US8172898B2 (en) 2001-12-05 2012-05-08 Cardiac Dimensions, Inc. Device and method for modifying the shape of a body organ
US20070055293A1 (en) * 2001-12-05 2007-03-08 Alferness Clifton A Device and method for modifying the shape of a body organ
US20040193260A1 (en) * 2001-12-05 2004-09-30 Alferness Clifton A. Anchor and pull mitral valve device and method
US20050272969A1 (en) * 2001-12-05 2005-12-08 Alferness Clifton A Device and method for modifying the shape of a body organ
US7857846B2 (en) 2001-12-05 2010-12-28 Cardiac Dimensions, Inc. Device and method for modifying the shape of a body organ
US7674287B2 (en) 2001-12-05 2010-03-09 Cardiac Dimensions, Inc. Device and method for modifying the shape of a body organ
US20060142854A1 (en) * 2001-12-05 2006-06-29 Cardiac Dimensions, Inc. Device and method for modifying the shape of a body organ
US8506624B2 (en) 2002-01-09 2013-08-13 Edwards Lifesciences, Llc Devices and methods for heart valve treatment
US20100185276A1 (en) * 2002-01-09 2010-07-22 Edwards Lifesciences Llc Devices and Methods for Heart Valve Treatment
US8070805B2 (en) 2002-01-09 2011-12-06 Edwards Lifesciences Llc Devices and methods for heart valve treatment
US20060041306A1 (en) * 2002-01-09 2006-02-23 Myocor, Inc. Devices and methods for heart valve treatment
US7678145B2 (en) 2002-01-09 2010-03-16 Edwards Lifesciences Llc Devices and methods for heart valve treatment
US7828842B2 (en) 2002-01-30 2010-11-09 Cardiac Dimensions, Inc. Tissue shaping device
US9408695B2 (en) 2002-01-30 2016-08-09 Cardiac Dimensions Pty. Ltd. Fixed anchor and pull mitral valve device and method
US10206778B2 (en) 2002-01-30 2019-02-19 Cardiac Dimensions Pty. Ltd. Tissue shaping device
US10327900B2 (en) 2002-01-30 2019-06-25 Cardiac Dimensions Pty. Ltd. Tissue shaping device
US20080319542A1 (en) * 2002-01-30 2008-12-25 Gregory Nieminen Tissue Shaping Device
US20070066879A1 (en) * 2002-01-30 2007-03-22 Mathis Mark L Body lumen shaping device with cardiac leads
US9827099B2 (en) 2002-01-30 2017-11-28 Cardiac Dimensions Pty. Ltd. Tissue shaping device
US9827100B2 (en) 2002-01-30 2017-11-28 Cardiac Dimensions Pty. Ltd. Tissue shaping device
US20080140191A1 (en) * 2002-01-30 2008-06-12 Cardiac Dimensions, Inc. Fixed Anchor and Pull Mitral Valve Device and Method
US9597186B2 (en) 2002-01-30 2017-03-21 Cardiac Dimensions Pty. Ltd. Tissue shaping device
US9956076B2 (en) 2002-01-30 2018-05-01 Cardiac Dimensions Pty. Ltd. Tissue shaping device
US9827098B2 (en) 2002-01-30 2017-11-28 Cardiac Dimensions Pty. Ltd. Fixed anchor and pull mitral valve device and method
US8974525B2 (en) 2002-01-30 2015-03-10 Cardiac Dimensions Pty. Ltd. Tissue shaping device
US20050216077A1 (en) * 2002-01-30 2005-09-29 Mathis Mark L Fixed length anchor and pull mitral valve device and method
US9320600B2 (en) 2002-01-30 2016-04-26 Cardiac Dimensions Pty. Ltd. Tissue shaping device
US10052205B2 (en) 2002-01-30 2018-08-21 Cardiac Dimensions Pty. Ltd. Fixed anchor and pull mitral valve device and method
US20050065598A1 (en) * 2002-03-11 2005-03-24 Mathis Mark L. Device, assembly and method for mitral valve repair
US20040230297A1 (en) * 2002-04-03 2004-11-18 Boston Scientific Corporation Artificial valve
US7682385B2 (en) 2002-04-03 2010-03-23 Boston Scientific Corporation Artificial valve
US20030191479A1 (en) * 2002-04-03 2003-10-09 Thornton Sally C. Body lumen closure
US20060085066A1 (en) * 2002-04-03 2006-04-20 Boston Scientific Corporation Body lumen closure
US10456257B2 (en) 2002-05-08 2019-10-29 Cardiac Dimensions Pty. Ltd. Tissue shaping device
US9474608B2 (en) 2002-05-08 2016-10-25 Cardiac Dimensions Pty. Ltd. Body lumen device anchor, device and assembly
US20060173536A1 (en) * 2002-05-08 2006-08-03 Mathis Mark L Body lumen device anchor, device and assembly
US20050187619A1 (en) * 2002-05-08 2005-08-25 Mathis Mark L. Body lumen device anchor, device and assembly
US20050149179A1 (en) * 2002-05-08 2005-07-07 Mathis Mark L. Body lumen device anchor, device and assembly
US20080097594A1 (en) * 2002-05-08 2008-04-24 Cardiac Dimensions, Inc. Device and Method for Modifying the Shape of a Body Organ
US10456258B2 (en) 2002-05-08 2019-10-29 Cardiac Dimensions Pty. Ltd. Tissue shaping device
US8062358B2 (en) 2002-05-08 2011-11-22 Cardiac Dimensions, Inc. Body lumen device anchor, device and assembly
US7828841B2 (en) 2002-05-08 2010-11-09 Cardiac Dimensions, Inc. Device and method for modifying the shape of a body organ
US20050149180A1 (en) * 2002-05-08 2005-07-07 Mathis Mark L. Body lumen device anchor, device and assembly
US20030233022A1 (en) * 2002-06-12 2003-12-18 Vidlund Robert M. Devices and methods for heart valve treatment
US20040215339A1 (en) * 2002-10-24 2004-10-28 Drasler William J. Venous valve apparatus and method
US20060036317A1 (en) * 2002-11-12 2006-02-16 Myocor, Inc. Decives and methods for heart valve treatment
US20040148019A1 (en) * 2002-11-12 2004-07-29 Vidlund Robert M. Devices and methods for heart valve treatment
US20040148020A1 (en) * 2002-11-12 2004-07-29 Vidlund Robert M. Devices and methods for heart valve treatment
US7666224B2 (en) 2002-11-12 2010-02-23 Edwards Lifesciences Llc Devices and methods for heart valve treatment
US8182529B2 (en) 2002-12-05 2012-05-22 Cardiac Dimensions, Inc. Percutaneous mitral valve annuloplasty device delivery method
US20110066234A1 (en) * 2002-12-05 2011-03-17 Gordon Lucas S Percutaneous Mitral Valve Annuloplasty Delivery System
US20080109059A1 (en) * 2002-12-05 2008-05-08 Cardiac Dimensions, Inc. Medical Device Delivery System
US8075608B2 (en) 2002-12-05 2011-12-13 Cardiac Dimensions, Inc. Medical device delivery system
US20040111095A1 (en) * 2002-12-05 2004-06-10 Cardiac Dimensions, Inc. Medical device delivery system
US7837729B2 (en) 2002-12-05 2010-11-23 Cardiac Dimensions, Inc. Percutaneous mitral valve annuloplasty delivery system
US20080021382A1 (en) * 2002-12-30 2008-01-24 Boston Scientific Scimed, Inc. Valve treatment catheter and methods
US7780627B2 (en) 2002-12-30 2010-08-24 Boston Scientific Scimed, Inc. Valve treatment catheter and methods
US20050209580A1 (en) * 2002-12-30 2005-09-22 Scimed Life Systems, Inc. Valve treatment catheter and methods
US20070135912A1 (en) * 2003-02-03 2007-06-14 Mathis Mark L Mitral valve device using conditioned shape memory alloy
US7758639B2 (en) 2003-02-03 2010-07-20 Cardiac Dimensions, Inc. Mitral valve device using conditioned shape memory alloy
US20100280602A1 (en) * 2003-02-03 2010-11-04 Cardiac Dimensions, Inc. Mitral Valve Device Using Conditioned Shape Memory Alloy
US20040158321A1 (en) * 2003-02-12 2004-08-12 Cardiac Dimensions, Inc. Method of implanting a mitral valve therapy device
US20040254600A1 (en) * 2003-02-26 2004-12-16 David Zarbatany Methods and devices for endovascular mitral valve correction from the left coronary sinus
US20070168476A1 (en) * 2003-04-23 2007-07-19 Dot Hill Systems Corporation Network storage appliance with integrated redundant servers and storage controllers
US20080015407A1 (en) * 2003-05-02 2008-01-17 Mathis Mark L Device and Method for Modifying the Shape of a Body Organ
US11452603B2 (en) 2003-05-02 2022-09-27 Cardiac Dimensions Pty. Ltd. Device and method for modifying the shape of a body organ
US11311380B2 (en) 2003-05-02 2022-04-26 Cardiac Dimensions Pty. Ltd. Device and method for modifying the shape of a body organ
US20060161169A1 (en) * 2003-05-02 2006-07-20 Cardiac Dimensions, Inc., A Delaware Corporation Device and method for modifying the shape of a body organ
US20050010240A1 (en) * 2003-06-05 2005-01-13 Cardiac Dimensions Inc., A Washington Corporation Device and method for modifying the shape of a body organ
US20060116758A1 (en) * 2003-06-05 2006-06-01 Gary Swinford Device, System and Method to Affect the Mitral Valve Annulus of a Heart
US7887582B2 (en) 2003-06-05 2011-02-15 Cardiac Dimensions, Inc. Device and method for modifying the shape of a body organ
US20060191121A1 (en) * 2003-12-19 2006-08-31 Lucas Gordon Tissue Shaping Device with Integral Connector and Crimp
US10869764B2 (en) 2003-12-19 2020-12-22 Boston Scientific Scimed, Inc. Venous valve apparatus, system, and method
US7794496B2 (en) 2003-12-19 2010-09-14 Cardiac Dimensions, Inc. Tissue shaping device with integral connector and crimp
US20050137681A1 (en) * 2003-12-19 2005-06-23 Scimed Life Systems, Inc. Venous valve apparatus, system, and method
US8721717B2 (en) 2003-12-19 2014-05-13 Boston Scientific Scimed, Inc. Venous valve apparatus, system, and method
US7814635B2 (en) 2003-12-19 2010-10-19 Cardiac Dimensions, Inc. Method of making a tissue shaping device
US20060276891A1 (en) * 2003-12-19 2006-12-07 Gregory Nieminen Mitral Valve Annuloplasty Device with Twisted Anchor
US9526616B2 (en) 2003-12-19 2016-12-27 Cardiac Dimensions Pty. Ltd. Mitral valve annuloplasty device with twisted anchor
US9956077B2 (en) 2003-12-19 2018-05-01 Cardiac Dimensions Pty. Ltd. Mitral valve annuloplasty device with twisted anchor
US8128681B2 (en) 2003-12-19 2012-03-06 Boston Scientific Scimed, Inc. Venous valve apparatus, system, and method
US11318016B2 (en) 2003-12-19 2022-05-03 Cardiac Dimensions Pty. Ltd. Mitral valve annuloplasty device with twisted anchor
US20050137676A1 (en) * 2003-12-19 2005-06-23 Scimed Life Systems, Inc. Venous valve apparatus, system, and method
US7837728B2 (en) 2003-12-19 2010-11-23 Cardiac Dimensions, Inc. Reduced length tissue shaping device
US10449048B2 (en) 2003-12-19 2019-10-22 Cardiac Dimensions Pty. Ltd. Mitral valve annuloplasty device with twisted anchor
US7854761B2 (en) 2003-12-19 2010-12-21 Boston Scientific Scimed, Inc. Methods for venous valve replacement with a catheter
US11109971B2 (en) 2003-12-19 2021-09-07 Cardiac Dimensions Pty. Ltd. Mitral valve annuloplasty device with twisted anchor
US10166102B2 (en) 2003-12-19 2019-01-01 Cardiac Dimensions Pty. Ltd. Mitral valve annuloplasty device with twisted anchor
US9301843B2 (en) 2003-12-19 2016-04-05 Boston Scientific Scimed, Inc. Venous valve apparatus, system, and method
US20050137685A1 (en) * 2003-12-19 2005-06-23 Cardiac Dimensions, Inc., A Washington Corporation Reduced length tissue shaping device
US20050137449A1 (en) * 2003-12-19 2005-06-23 Cardiac Dimensions, Inc. Tissue shaping device with self-expanding anchors
US20050137450A1 (en) * 2003-12-19 2005-06-23 Cardiac Dimensions, Inc., A Washington Corporation Tapered connector for tissue shaping device
US20110060405A1 (en) * 2003-12-19 2011-03-10 Boston Scientific Scimed, Inc. Venous valve apparatus, system, and method
US20050137451A1 (en) * 2003-12-19 2005-06-23 Cardiac Dimensions, Inc. A Washington Corporation Tissue shaping device with integral connector and crimp
US7993397B2 (en) 2004-04-05 2011-08-09 Edwards Lifesciences Ag Remotely adjustable coronary sinus implant
US20050222678A1 (en) * 2004-04-05 2005-10-06 Lashinski Randall T Remotely adjustable coronary sinus implant
US8002824B2 (en) 2004-09-02 2011-08-23 Boston Scientific Scimed, Inc. Cardiac valve, system, and method
US20060047338A1 (en) * 2004-09-02 2006-03-02 Scimed Life Systems, Inc. Cardiac valve, system, and method
US8932349B2 (en) 2004-09-02 2015-01-13 Boston Scientific Scimed, Inc. Cardiac valve, system, and method
US9918834B2 (en) 2004-09-02 2018-03-20 Boston Scientific Scimed, Inc. Cardiac valve, system and method
US7806928B2 (en) 2004-12-09 2010-10-05 Edwards Lifesciences Corporation Diagnostic kit to assist with heart valve annulus adjustment
US20070168023A1 (en) * 2004-12-09 2007-07-19 Rowe Stanton J Diagnostic kit to assist with heart valve annulus adjustment
US20060129051A1 (en) * 2004-12-09 2006-06-15 Rowe Stanton J Diagnostic kit to assist with heart valve annulus adjustment
US11033257B2 (en) 2005-01-20 2021-06-15 Cardiac Dimensions Pty. Ltd. Tissue shaping device
US20060167544A1 (en) * 2005-01-20 2006-07-27 Cardiac Dimensions, Inc. Tissue Shaping Device
US20060173475A1 (en) * 2005-02-01 2006-08-03 Boston Scientific Scimed, Inc. Vascular catheter, system, and method
US7854755B2 (en) 2005-02-01 2010-12-21 Boston Scientific Scimed, Inc. Vascular catheter, system, and method
US9622859B2 (en) 2005-02-01 2017-04-18 Boston Scientific Scimed, Inc. Filter system and method
US20060173490A1 (en) * 2005-02-01 2006-08-03 Boston Scientific Scimed, Inc. Filter system and method
US7878966B2 (en) 2005-02-04 2011-02-01 Boston Scientific Scimed, Inc. Ventricular assist and support device
US20060178730A1 (en) * 2005-02-07 2006-08-10 Boston Scientific Scimed, Inc. Venous valve apparatus, system, and method
US7670368B2 (en) 2005-02-07 2010-03-02 Boston Scientific Scimed, Inc. Venous valve apparatus, system, and method
US7780722B2 (en) 2005-02-07 2010-08-24 Boston Scientific Scimed, Inc. Venous valve apparatus, system, and method
US9370419B2 (en) 2005-02-23 2016-06-21 Boston Scientific Scimed, Inc. Valve apparatus, system and method
US7867274B2 (en) 2005-02-23 2011-01-11 Boston Scientific Scimed, Inc. Valve apparatus, system and method
US20110071625A1 (en) * 2005-02-23 2011-03-24 Boston Scientific Scimed, Inc. Valve apparatus, system and method
US9808341B2 (en) 2005-02-23 2017-11-07 Boston Scientific Scimed Inc. Valve apparatus, system and method
US20060190074A1 (en) * 2005-02-23 2006-08-24 Boston Scientific Scimed, Inc. Valve apparatus, system and method
US20100100173A1 (en) * 2005-04-15 2010-04-22 Boston Scientific Scimed, Inc. Valve apparatus, system and method
US7722666B2 (en) 2005-04-15 2010-05-25 Boston Scientific Scimed, Inc. Valve apparatus, system and method
US8512399B2 (en) 2005-04-15 2013-08-20 Boston Scientific Scimed, Inc. Valve apparatus, system and method
US9861473B2 (en) 2005-04-15 2018-01-09 Boston Scientific Scimed Inc. Valve apparatus, system and method
US20060235509A1 (en) * 2005-04-15 2006-10-19 Boston Scientific Scimed, Inc. Valve apparatus, system and method
US7357815B2 (en) 2005-04-21 2008-04-15 Micardia Corporation Dynamically adjustable implants and methods for reshaping tissue
US20060241747A1 (en) * 2005-04-21 2006-10-26 Emanuel Shaoulian Dynamically adjustable implants and methods for reshaping tissue
US20060247491A1 (en) * 2005-04-27 2006-11-02 Vidlund Robert M Devices and methods for heart valve treatment
WO2006125120A3 (en) * 2005-05-18 2007-04-26 Cardiac Dimensions Inc Body lumen shaping device with cardiac leads
US20060282157A1 (en) * 2005-06-10 2006-12-14 Hill Jason P Venous valve, system, and method
US11337812B2 (en) 2005-06-10 2022-05-24 Boston Scientific Scimed, Inc. Venous valve, system and method
US8012198B2 (en) 2005-06-10 2011-09-06 Boston Scientific Scimed, Inc. Venous valve, system, and method
US9028542B2 (en) 2005-06-10 2015-05-12 Boston Scientific Scimed, Inc. Venous valve, system, and method
US20110230949A1 (en) * 2005-09-21 2011-09-22 Boston Scientific Scimed, Inc. Venous Valve, System, and Method With Sinus Pocket
US20070129788A1 (en) * 2005-09-21 2007-06-07 Boston Scientific Scimed, Inc. Venous valve with sinus
US10548734B2 (en) 2005-09-21 2020-02-04 Boston Scientific Scimed, Inc. Venous valve, system, and method with sinus pocket
US8672997B2 (en) 2005-09-21 2014-03-18 Boston Scientific Scimed, Inc. Valve with sinus
US7951189B2 (en) 2005-09-21 2011-05-31 Boston Scientific Scimed, Inc. Venous valve, system, and method with sinus pocket
US9474609B2 (en) 2005-09-21 2016-10-25 Boston Scientific Scimed, Inc. Venous valve, system, and method with sinus pocket
US8460365B2 (en) 2005-09-21 2013-06-11 Boston Scientific Scimed, Inc. Venous valve, system, and method with sinus pocket
US7799038B2 (en) 2006-01-20 2010-09-21 Boston Scientific Scimed, Inc. Translumenal apparatus, system, and method
US20070173930A1 (en) * 2006-01-20 2007-07-26 Boston Scientific Scimed, Inc. Translumenal apparatus, system, and method
US20070239270A1 (en) * 2006-04-11 2007-10-11 Mathis Mark L Mitral Valve Annuloplasty Device with Vena Cava Anchor
WO2008011386A3 (en) * 2006-07-17 2008-10-02 Cardiac Dimensions Inc Mitral valve annuloplasty device with twisted anchor
WO2008011386A2 (en) * 2006-07-17 2008-01-24 Cardiac Dimensions, Inc. Mitral valve annuloplasty device with twisted anchor
US11285005B2 (en) 2006-07-17 2022-03-29 Cardiac Dimensions Pty. Ltd. Mitral valve annuloplasty device with twisted anchor
US20080087608A1 (en) * 2006-10-10 2008-04-17 Multiphase Systems Integration Compact multiphase inline bulk water separation method and system for hydrocarbon production
US10687942B2 (en) 2006-11-14 2020-06-23 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Coronary sinus mitral valve annuloplasty procedure and coronary artery and myocardial protection device
US11925558B2 (en) 2006-11-14 2024-03-12 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Coronary sinus mitral valve annuloplasty procedure and coronary artery and myocardial protection device
US8211171B2 (en) 2006-11-14 2012-07-03 The United States Of America, As Represented By The Secretary Of The Department Of Health And Human Services Transcatheter coronary sinus mitral valve annuloplasty procedure and coronary artery and myocardial protection device
US9271833B2 (en) 2006-11-14 2016-03-01 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Transcatheter coronary sinus mitral valve annuloplasty procedure and coronary artery and myocardial protection device
US9943409B2 (en) 2006-11-14 2018-04-17 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Transcatheter coronary sinus mitral valve annuloplasty procedure and coronary artery and myocardial protection device
US8348999B2 (en) 2007-01-08 2013-01-08 California Institute Of Technology In-situ formation of a valve
US8133270B2 (en) 2007-01-08 2012-03-13 California Institute Of Technology In-situ formation of a valve
US20080269877A1 (en) * 2007-02-05 2008-10-30 Jenson Mark L Systems and methods for valve delivery
US7967853B2 (en) 2007-02-05 2011-06-28 Boston Scientific Scimed, Inc. Percutaneous valve, system and method
US20080300678A1 (en) * 2007-02-05 2008-12-04 Eidenschink Tracee E J Percutaneous valve, system and method
US8470023B2 (en) 2007-02-05 2013-06-25 Boston Scientific Scimed, Inc. Percutaneous valve, system, and method
US10226344B2 (en) 2007-02-05 2019-03-12 Boston Scientific Scimed, Inc. Percutaneous valve, system and method
US9421083B2 (en) 2007-02-05 2016-08-23 Boston Scientific Scimed Inc. Percutaneous valve, system and method
US11504239B2 (en) 2007-02-05 2022-11-22 Boston Scientific Scimed, Inc. Percutaneous valve, system and method
US20090030512A1 (en) * 2007-07-26 2009-01-29 Thielen Joseph M Circulatory valve, system and method
US8828079B2 (en) 2007-07-26 2014-09-09 Boston Scientific Scimed, Inc. Circulatory valve, system and method
US7892276B2 (en) 2007-12-21 2011-02-22 Boston Scientific Scimed, Inc. Valve with delayed leaflet deployment
US8137394B2 (en) 2007-12-21 2012-03-20 Boston Scientific Scimed, Inc. Valve with delayed leaflet deployment
US8414641B2 (en) 2007-12-21 2013-04-09 Boston Scientific Scimed, Inc. Valve with delayed leaflet deployment
US20110118831A1 (en) * 2007-12-21 2011-05-19 Boston Scientific Scimed, Inc. Valve with delayed leaflet deployment
US20090164029A1 (en) * 2007-12-21 2009-06-25 Boston Scientific Scimed, Inc. Valve with delayed leaflet deployment
US20090171456A1 (en) * 2007-12-28 2009-07-02 Kveen Graig L Percutaneous heart valve, system, and method
US8250960B2 (en) 2008-08-11 2012-08-28 Cardiac Dimensions, Inc. Catheter cutting tool
US20100031793A1 (en) * 2008-08-11 2010-02-11 Hayner Louis R Catheter Cutting Tool
US8006594B2 (en) 2008-08-11 2011-08-30 Cardiac Dimensions, Inc. Catheter cutting tool
US9668859B2 (en) 2011-08-05 2017-06-06 California Institute Of Technology Percutaneous heart valve delivery systems
US9011531B2 (en) 2012-02-13 2015-04-21 Mitraspan, Inc. Method and apparatus for repairing a mitral valve
US10076414B2 (en) 2012-02-13 2018-09-18 Mitraspan, Inc. Method and apparatus for repairing a mitral valve
US9744037B2 (en) 2013-03-15 2017-08-29 California Institute Of Technology Handle mechanism and functionality for repositioning and retrieval of transcatheter heart valves
US10433962B2 (en) 2016-05-06 2019-10-08 Transmural Systems Llc Annuloplasty procedures, related devices and methods
US11039923B2 (en) 2016-05-06 2021-06-22 Transmural Systems Llc Annuloplasty procedures, related devices and methods
US11007059B2 (en) 2016-05-06 2021-05-18 Transmural Systems Llc Annuloplasty procedures, related devices and methods
US10390953B2 (en) 2017-03-08 2019-08-27 Cardiac Dimensions Pty. Ltd. Methods and devices for reducing paravalvular leakage
US11399939B2 (en) 2017-03-08 2022-08-02 Cardiac Dimensions Pty. Ltd. Methods and devices for reducing paravalvular leakage
US11576781B2 (en) 2017-07-31 2023-02-14 Tau Medical Inc. Tricuspid regurgitation treatment tool to be inserted into pulmonary artery
CN110996852A (en) * 2017-07-31 2020-04-10 TauPNU医疗有限公司 Tricuspid valve regurgitation surgical instrument for pulmonary artery insertion
US11259926B2 (en) 2017-08-26 2022-03-01 Transmural Systems Llc Cardiac annuloplasty and pacing procedures, related devices and methods
US11026791B2 (en) 2018-03-20 2021-06-08 Medtronic Vascular, Inc. Flexible canopy valve repair systems and methods of use
US11701228B2 (en) 2018-03-20 2023-07-18 Medtronic Vascular, Inc. Flexible canopy valve repair systems and methods of use
US11285003B2 (en) 2018-03-20 2022-03-29 Medtronic Vascular, Inc. Prolapse prevention device and methods of use thereof
US11931261B2 (en) 2018-03-20 2024-03-19 Medtronic Vascular, Inc. Prolapse prevention device and methods of use thereof
US11564796B2 (en) 2019-01-21 2023-01-31 Tau-Pnu Medical., Ltd. Assembly-type device for treatment of tricuspid regurgitation
US11596771B2 (en) 2020-12-14 2023-03-07 Cardiac Dimensions Pty. Ltd. Modular pre-loaded medical implants and delivery systems

Also Published As

Publication number Publication date
WO2002100240A3 (en) 2003-12-04
ES2310210T3 (en) 2009-01-01
EP1395202B1 (en) 2008-07-09
EP1395202A4 (en) 2006-06-21
WO2002100240A2 (en) 2002-12-19
US20050038507A1 (en) 2005-02-17
JP4255374B2 (en) 2009-04-15
CA2447689C (en) 2009-07-21
US6800090B2 (en) 2004-10-05
US7828843B2 (en) 2010-11-09
CA2447689A1 (en) 2002-12-19
JP2004530484A (en) 2004-10-07
US7270676B2 (en) 2007-09-18
US20020169504A1 (en) 2002-11-14
US20050033419A1 (en) 2005-02-10
US20050027353A1 (en) 2005-02-03
EP1395202A2 (en) 2004-03-10
ATE400235T1 (en) 2008-07-15
DE60227514D1 (en) 2008-08-21

Similar Documents

Publication Publication Date Title
US7837728B2 (en) Reduced length tissue shaping device
US7794496B2 (en) Tissue shaping device with integral connector and crimp
US20050027351A1 (en) Mitral valve regurgitation treatment device and method
US20050137449A1 (en) Tissue shaping device with self-expanding anchors
US20040220657A1 (en) Tissue shaping device with conformable anchors
US20050137450A1 (en) Tapered connector for tissue shaping device
US11318016B2 (en) Mitral valve annuloplasty device with twisted anchor
US7887582B2 (en) Device and method for modifying the shape of a body organ
US7503932B2 (en) Mitral valve annuloplasty device with vena cava anchor
US20060271174A1 (en) Mitral Valve Annuloplasty Device with Wide Anchor
US11285005B2 (en) Mitral valve annuloplasty device with twisted anchor
EP3037065B1 (en) Device for modifying the shape of a body organ
CA2775628C (en) Device for modifying the shape of a body organ
ES2663219T3 (en) Device to modify the shape of an organ of the body
WO2008011386A2 (en) Mitral valve annuloplasty device with twisted anchor

Legal Events

Date Code Title Description
AS Assignment

Owner name: CARDIAC DIMENSIONS, INC., WASHINGTON

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:REUTER, DAVID;NIEMINEN, GREGORY;ARONSON, NATHAN;AND OTHERS;REEL/FRAME:015909/0596;SIGNING DATES FROM 20040910 TO 20040920

AS Assignment

Owner name: CARDIAC DIMENSIONS, INC., WASHINGTON

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:REUTER, DAVID;NIEMINEN, GREGORY;ARONSON, NATHAN;AND OTHERS;REEL/FRAME:022353/0110;SIGNING DATES FROM 20090202 TO 20090210

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION