US20050256044A1 - Gastrointestinal proliferative factor and uses thereof - Google Patents
Gastrointestinal proliferative factor and uses thereof Download PDFInfo
- Publication number
- US20050256044A1 US20050256044A1 US11/046,456 US4645605A US2005256044A1 US 20050256044 A1 US20050256044 A1 US 20050256044A1 US 4645605 A US4645605 A US 4645605A US 2005256044 A1 US2005256044 A1 US 2005256044A1
- Authority
- US
- United States
- Prior art keywords
- gipf
- cells
- polypeptide
- protein
- seq
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 230000002496 gastric effect Effects 0.000 title abstract description 18
- 230000002062 proliferating effect Effects 0.000 title abstract description 14
- 108090000765 processed proteins & peptides Proteins 0.000 claims abstract description 340
- 102000004196 processed proteins & peptides Human genes 0.000 claims abstract description 315
- 229920001184 polypeptide Polymers 0.000 claims abstract description 302
- 239000008194 pharmaceutical composition Substances 0.000 claims abstract description 40
- 238000000034 method Methods 0.000 claims description 173
- 239000000203 mixture Substances 0.000 claims description 84
- 239000012634 fragment Substances 0.000 claims description 62
- 210000000813 small intestine Anatomy 0.000 claims description 39
- 239000003937 drug carrier Substances 0.000 claims description 21
- 230000008556 epithelial cell proliferation Effects 0.000 claims description 21
- 210000001035 gastrointestinal tract Anatomy 0.000 claims description 13
- 230000004936 stimulating effect Effects 0.000 claims description 8
- 210000003238 esophagus Anatomy 0.000 claims description 7
- 210000002429 large intestine Anatomy 0.000 claims description 7
- 210000002784 stomach Anatomy 0.000 claims description 4
- 102000040430 polynucleotide Human genes 0.000 abstract description 156
- 108091033319 polynucleotide Proteins 0.000 abstract description 156
- 239000002157 polynucleotide Substances 0.000 abstract description 156
- 230000001225 therapeutic effect Effects 0.000 abstract description 20
- 210000004877 mucosa Anatomy 0.000 abstract description 8
- 230000007850 degeneration Effects 0.000 abstract description 3
- 108090000623 proteins and genes Proteins 0.000 description 324
- 102000004169 proteins and genes Human genes 0.000 description 268
- 235000018102 proteins Nutrition 0.000 description 253
- 210000004027 cell Anatomy 0.000 description 250
- 230000014509 gene expression Effects 0.000 description 110
- 150000007523 nucleic acids Chemical class 0.000 description 93
- 239000013598 vector Substances 0.000 description 91
- 150000001875 compounds Chemical class 0.000 description 89
- 108700019146 Transgenes Proteins 0.000 description 79
- 230000000694 effects Effects 0.000 description 79
- 102000039446 nucleic acids Human genes 0.000 description 68
- 108020004707 nucleic acids Proteins 0.000 description 68
- 241001465754 Metazoa Species 0.000 description 65
- 125000003729 nucleotide group Chemical group 0.000 description 57
- 239000002773 nucleotide Substances 0.000 description 56
- 238000011282 treatment Methods 0.000 description 51
- 241000699670 Mus sp. Species 0.000 description 48
- 210000001519 tissue Anatomy 0.000 description 48
- 229940024606 amino acid Drugs 0.000 description 45
- 235000001014 amino acid Nutrition 0.000 description 45
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 45
- 108020004414 DNA Proteins 0.000 description 43
- 125000003275 alpha amino acid group Chemical group 0.000 description 43
- 150000001413 amino acids Chemical class 0.000 description 42
- 230000009261 transgenic effect Effects 0.000 description 41
- 239000004480 active ingredient Substances 0.000 description 38
- 239000003795 chemical substances by application Substances 0.000 description 38
- 239000000523 sample Substances 0.000 description 37
- 108091028043 Nucleic acid sequence Proteins 0.000 description 35
- 230000001105 regulatory effect Effects 0.000 description 34
- 238000011830 transgenic mouse model Methods 0.000 description 31
- 208000022559 Inflammatory bowel disease Diseases 0.000 description 28
- 210000003719 b-lymphocyte Anatomy 0.000 description 28
- 208000035475 disorder Diseases 0.000 description 28
- 206010028116 Mucosal inflammation Diseases 0.000 description 25
- 201000010927 Mucositis Diseases 0.000 description 25
- 239000013604 expression vector Substances 0.000 description 25
- 230000002103 transcriptional effect Effects 0.000 description 25
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 description 24
- 241000699666 Mus <mouse, genus> Species 0.000 description 24
- 241000701161 unidentified adenovirus Species 0.000 description 24
- 108091026890 Coding region Proteins 0.000 description 23
- 210000001100 crypt cell Anatomy 0.000 description 23
- 230000004071 biological effect Effects 0.000 description 22
- 102000037865 fusion proteins Human genes 0.000 description 22
- 108020001507 fusion proteins Proteins 0.000 description 22
- 108020004999 messenger RNA Proteins 0.000 description 22
- 102000004127 Cytokines Human genes 0.000 description 21
- 108090000695 Cytokines Proteins 0.000 description 21
- 241000699660 Mus musculus Species 0.000 description 21
- 238000002512 chemotherapy Methods 0.000 description 21
- 239000013603 viral vector Substances 0.000 description 21
- 238000003556 assay Methods 0.000 description 20
- 210000002919 epithelial cell Anatomy 0.000 description 20
- 241000894007 species Species 0.000 description 20
- 230000027455 binding Effects 0.000 description 19
- 239000002299 complementary DNA Substances 0.000 description 19
- 238000012217 deletion Methods 0.000 description 19
- 230000037430 deletion Effects 0.000 description 19
- 210000000981 epithelium Anatomy 0.000 description 19
- 230000035755 proliferation Effects 0.000 description 19
- 241000124008 Mammalia Species 0.000 description 18
- 241000700605 Viruses Species 0.000 description 18
- 208000027418 Wounds and injury Diseases 0.000 description 18
- 206010009887 colitis Diseases 0.000 description 18
- 230000010076 replication Effects 0.000 description 18
- 239000000243 solution Substances 0.000 description 18
- 206010049416 Short-bowel syndrome Diseases 0.000 description 17
- 201000010099 disease Diseases 0.000 description 17
- 238000007490 hematoxylin and eosin (H&E) staining Methods 0.000 description 17
- 238000009396 hybridization Methods 0.000 description 17
- 239000007924 injection Substances 0.000 description 17
- 238000002347 injection Methods 0.000 description 17
- 238000003780 insertion Methods 0.000 description 17
- 230000037431 insertion Effects 0.000 description 17
- 238000006467 substitution reaction Methods 0.000 description 17
- 125000000539 amino acid group Chemical group 0.000 description 16
- -1 aromatic amino acids Chemical class 0.000 description 16
- 239000003814 drug Substances 0.000 description 16
- 238000001727 in vivo Methods 0.000 description 16
- 238000001959 radiotherapy Methods 0.000 description 16
- 108010076504 Protein Sorting Signals Proteins 0.000 description 15
- 210000001744 T-lymphocyte Anatomy 0.000 description 15
- 230000001580 bacterial effect Effects 0.000 description 15
- 230000000295 complement effect Effects 0.000 description 15
- 238000009472 formulation Methods 0.000 description 15
- 210000002490 intestinal epithelial cell Anatomy 0.000 description 15
- 238000003752 polymerase chain reaction Methods 0.000 description 15
- 239000000047 product Substances 0.000 description 15
- 239000000126 substance Substances 0.000 description 15
- 210000001671 embryonic stem cell Anatomy 0.000 description 14
- 238000000338 in vitro Methods 0.000 description 14
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 13
- 108091034117 Oligonucleotide Proteins 0.000 description 13
- BLFLLBZGZJTVJG-UHFFFAOYSA-N benzocaine Chemical compound CCOC(=O)C1=CC=C(N)C=C1 BLFLLBZGZJTVJG-UHFFFAOYSA-N 0.000 description 13
- 230000002950 deficient Effects 0.000 description 13
- 210000002257 embryonic structure Anatomy 0.000 description 13
- 210000001161 mammalian embryo Anatomy 0.000 description 13
- 238000004519 manufacturing process Methods 0.000 description 13
- 239000000463 material Substances 0.000 description 13
- 238000012216 screening Methods 0.000 description 13
- 238000012360 testing method Methods 0.000 description 13
- 206010028980 Neoplasm Diseases 0.000 description 12
- 108060008245 Thrombospondin Proteins 0.000 description 12
- 206010052428 Wound Diseases 0.000 description 12
- 239000000427 antigen Substances 0.000 description 12
- 108091007433 antigens Proteins 0.000 description 12
- 102000036639 antigens Human genes 0.000 description 12
- 210000001072 colon Anatomy 0.000 description 12
- 230000002068 genetic effect Effects 0.000 description 12
- 239000003102 growth factor Substances 0.000 description 12
- 230000001965 increasing effect Effects 0.000 description 12
- 238000002560 therapeutic procedure Methods 0.000 description 12
- 241000282412 Homo Species 0.000 description 11
- 102000002938 Thrombospondin Human genes 0.000 description 11
- 230000006378 damage Effects 0.000 description 11
- 230000004048 modification Effects 0.000 description 11
- 238000012986 modification Methods 0.000 description 11
- 238000000746 purification Methods 0.000 description 11
- 208000024891 symptom Diseases 0.000 description 11
- 238000012546 transfer Methods 0.000 description 11
- 108700026244 Open Reading Frames Proteins 0.000 description 10
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 10
- 235000014680 Saccharomyces cerevisiae Nutrition 0.000 description 10
- 230000004075 alteration Effects 0.000 description 10
- 239000003153 chemical reaction reagent Substances 0.000 description 10
- 230000004069 differentiation Effects 0.000 description 10
- 210000004602 germ cell Anatomy 0.000 description 10
- 230000002209 hydrophobic effect Effects 0.000 description 10
- 239000013612 plasmid Substances 0.000 description 10
- 230000006641 stabilisation Effects 0.000 description 10
- 238000011105 stabilization Methods 0.000 description 10
- 239000003981 vehicle Substances 0.000 description 10
- 241000283973 Oryctolagus cuniculus Species 0.000 description 9
- 238000003776 cleavage reaction Methods 0.000 description 9
- 238000010276 construction Methods 0.000 description 9
- 230000007423 decrease Effects 0.000 description 9
- 239000003623 enhancer Substances 0.000 description 9
- 230000006870 function Effects 0.000 description 9
- 208000015181 infectious disease Diseases 0.000 description 9
- 208000014674 injury Diseases 0.000 description 9
- 239000002245 particle Substances 0.000 description 9
- 230000008929 regeneration Effects 0.000 description 9
- 238000011069 regeneration method Methods 0.000 description 9
- 230000007017 scission Effects 0.000 description 9
- 238000012163 sequencing technique Methods 0.000 description 9
- 230000003612 virological effect Effects 0.000 description 9
- 241000894006 Bacteria Species 0.000 description 8
- 108090000368 Fibroblast growth factor 8 Proteins 0.000 description 8
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 8
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 8
- 238000010171 animal model Methods 0.000 description 8
- 239000003146 anticoagulant agent Substances 0.000 description 8
- 230000037396 body weight Effects 0.000 description 8
- 210000000988 bone and bone Anatomy 0.000 description 8
- 239000002775 capsule Substances 0.000 description 8
- 230000001086 cytosolic effect Effects 0.000 description 8
- 238000011161 development Methods 0.000 description 8
- 230000018109 developmental process Effects 0.000 description 8
- 239000001963 growth medium Substances 0.000 description 8
- 230000000968 intestinal effect Effects 0.000 description 8
- 229960000310 isoleucine Drugs 0.000 description 8
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 8
- 210000004962 mammalian cell Anatomy 0.000 description 8
- 239000003550 marker Substances 0.000 description 8
- 238000010369 molecular cloning Methods 0.000 description 8
- 229920001223 polyethylene glycol Polymers 0.000 description 8
- 238000002360 preparation method Methods 0.000 description 8
- 230000008569 process Effects 0.000 description 8
- 102000005962 receptors Human genes 0.000 description 8
- 108020003175 receptors Proteins 0.000 description 8
- 238000010186 staining Methods 0.000 description 8
- 210000000130 stem cell Anatomy 0.000 description 8
- 230000009466 transformation Effects 0.000 description 8
- 238000012384 transportation and delivery Methods 0.000 description 8
- 241000283690 Bos taurus Species 0.000 description 7
- 108020004705 Codon Proteins 0.000 description 7
- 241000701022 Cytomegalovirus Species 0.000 description 7
- 108020004711 Nucleic Acid Probes Proteins 0.000 description 7
- 102000010780 Platelet-Derived Growth Factor Human genes 0.000 description 7
- 108010038512 Platelet-Derived Growth Factor Proteins 0.000 description 7
- 108020004511 Recombinant DNA Proteins 0.000 description 7
- 241000700584 Simplexvirus Species 0.000 description 7
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 7
- 238000007792 addition Methods 0.000 description 7
- 230000003321 amplification Effects 0.000 description 7
- 230000003399 chemotactic effect Effects 0.000 description 7
- 239000006184 cosolvent Substances 0.000 description 7
- 238000001514 detection method Methods 0.000 description 7
- 230000003394 haemopoietic effect Effects 0.000 description 7
- 230000001900 immune effect Effects 0.000 description 7
- 239000007788 liquid Substances 0.000 description 7
- 239000011159 matrix material Substances 0.000 description 7
- 239000012528 membrane Substances 0.000 description 7
- 230000035772 mutation Effects 0.000 description 7
- 238000003199 nucleic acid amplification method Methods 0.000 description 7
- 239000002853 nucleic acid probe Substances 0.000 description 7
- 102000005162 pleiotrophin Human genes 0.000 description 7
- 210000003491 skin Anatomy 0.000 description 7
- 239000000725 suspension Substances 0.000 description 7
- 239000003826 tablet Substances 0.000 description 7
- 230000035897 transcription Effects 0.000 description 7
- 238000013518 transcription Methods 0.000 description 7
- 239000004475 Arginine Substances 0.000 description 6
- 102000015735 Beta-catenin Human genes 0.000 description 6
- 108060000903 Beta-catenin Proteins 0.000 description 6
- 241000283707 Capra Species 0.000 description 6
- 208000011231 Crohn disease Diseases 0.000 description 6
- 102000004190 Enzymes Human genes 0.000 description 6
- 108090000790 Enzymes Proteins 0.000 description 6
- 241000588724 Escherichia coli Species 0.000 description 6
- 108090000385 Fibroblast growth factor 7 Proteins 0.000 description 6
- 102000003972 Fibroblast growth factor 7 Human genes 0.000 description 6
- 102000004961 Furin Human genes 0.000 description 6
- 108090001126 Furin Proteins 0.000 description 6
- 108010010803 Gelatin Proteins 0.000 description 6
- 206010061218 Inflammation Diseases 0.000 description 6
- 108090000723 Insulin-Like Growth Factor I Proteins 0.000 description 6
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 6
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical group OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 6
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical group OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 6
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 6
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 6
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 6
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 6
- 235000004279 alanine Nutrition 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 6
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 6
- 230000008901 benefit Effects 0.000 description 6
- 210000004369 blood Anatomy 0.000 description 6
- 239000008280 blood Substances 0.000 description 6
- 210000004556 brain Anatomy 0.000 description 6
- 210000000481 breast Anatomy 0.000 description 6
- 239000000872 buffer Substances 0.000 description 6
- 239000000969 carrier Substances 0.000 description 6
- 238000004113 cell culture Methods 0.000 description 6
- 230000001684 chronic effect Effects 0.000 description 6
- 235000018417 cysteine Nutrition 0.000 description 6
- 229940079593 drug Drugs 0.000 description 6
- 238000004520 electroporation Methods 0.000 description 6
- 229940088598 enzyme Drugs 0.000 description 6
- 239000000499 gel Substances 0.000 description 6
- 229920000159 gelatin Polymers 0.000 description 6
- 239000008273 gelatin Substances 0.000 description 6
- 235000019322 gelatine Nutrition 0.000 description 6
- 235000011852 gelatine desserts Nutrition 0.000 description 6
- 238000001415 gene therapy Methods 0.000 description 6
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 6
- 235000004554 glutamine Nutrition 0.000 description 6
- 230000004054 inflammatory process Effects 0.000 description 6
- 238000001990 intravenous administration Methods 0.000 description 6
- 210000004185 liver Anatomy 0.000 description 6
- 210000004698 lymphocyte Anatomy 0.000 description 6
- 210000004379 membrane Anatomy 0.000 description 6
- 229930182817 methionine Natural products 0.000 description 6
- 210000001672 ovary Anatomy 0.000 description 6
- 230000008488 polyadenylation Effects 0.000 description 6
- 238000012545 processing Methods 0.000 description 6
- 230000004044 response Effects 0.000 description 6
- 150000003839 salts Chemical class 0.000 description 6
- 239000003381 stabilizer Substances 0.000 description 6
- 230000008685 targeting Effects 0.000 description 6
- 239000004474 valine Substances 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 108010037362 Extracellular Matrix Proteins Proteins 0.000 description 5
- 102000010834 Extracellular Matrix Proteins Human genes 0.000 description 5
- GHASVSINZRGABV-UHFFFAOYSA-N Fluorouracil Chemical compound FC1=CNC(=O)NC1=O GHASVSINZRGABV-UHFFFAOYSA-N 0.000 description 5
- 102000005720 Glutathione transferase Human genes 0.000 description 5
- 108010070675 Glutathione transferase Proteins 0.000 description 5
- 241000238631 Hexapoda Species 0.000 description 5
- 102000014429 Insulin-like growth factor Human genes 0.000 description 5
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 5
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 5
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 5
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical group C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 5
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical group OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 5
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 5
- 241001529936 Murinae Species 0.000 description 5
- 241001494479 Pecora Species 0.000 description 5
- 239000002202 Polyethylene glycol Substances 0.000 description 5
- 241000700159 Rattus Species 0.000 description 5
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 5
- 229920002472 Starch Polymers 0.000 description 5
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 5
- 239000004473 Threonine Substances 0.000 description 5
- 102000007614 Thrombospondin 1 Human genes 0.000 description 5
- 108010046722 Thrombospondin 1 Proteins 0.000 description 5
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 5
- 239000001506 calcium phosphate Substances 0.000 description 5
- 238000004422 calculation algorithm Methods 0.000 description 5
- 201000011510 cancer Diseases 0.000 description 5
- 210000000845 cartilage Anatomy 0.000 description 5
- 230000001413 cellular effect Effects 0.000 description 5
- 238000010367 cloning Methods 0.000 description 5
- 238000012258 culturing Methods 0.000 description 5
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 5
- 229940000406 drug candidate Drugs 0.000 description 5
- 230000001747 exhibiting effect Effects 0.000 description 5
- 239000000284 extract Substances 0.000 description 5
- 229960002949 fluorouracil Drugs 0.000 description 5
- 230000004927 fusion Effects 0.000 description 5
- 230000013595 glycosylation Effects 0.000 description 5
- 238000006206 glycosylation reaction Methods 0.000 description 5
- 210000000987 immune system Anatomy 0.000 description 5
- 238000002513 implantation Methods 0.000 description 5
- 238000010348 incorporation Methods 0.000 description 5
- 210000000936 intestine Anatomy 0.000 description 5
- 238000007912 intraperitoneal administration Methods 0.000 description 5
- 210000003734 kidney Anatomy 0.000 description 5
- 210000000088 lip Anatomy 0.000 description 5
- 239000002502 liposome Substances 0.000 description 5
- 230000001404 mediated effect Effects 0.000 description 5
- 230000000813 microbial effect Effects 0.000 description 5
- 210000003300 oropharynx Anatomy 0.000 description 5
- 230000007170 pathology Effects 0.000 description 5
- 239000000546 pharmaceutical excipient Substances 0.000 description 5
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 5
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 5
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 5
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 5
- 230000027365 positive regulation of epithelial cell proliferation Effects 0.000 description 5
- 239000000843 powder Substances 0.000 description 5
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 5
- 210000001236 prokaryotic cell Anatomy 0.000 description 5
- 230000005855 radiation Effects 0.000 description 5
- 238000003259 recombinant expression Methods 0.000 description 5
- 238000002271 resection Methods 0.000 description 5
- 108091008146 restriction endonucleases Proteins 0.000 description 5
- 230000028327 secretion Effects 0.000 description 5
- 235000004400 serine Nutrition 0.000 description 5
- 229940124597 therapeutic agent Drugs 0.000 description 5
- 235000008521 threonine Nutrition 0.000 description 5
- 230000001988 toxicity Effects 0.000 description 5
- 231100000419 toxicity Toxicity 0.000 description 5
- 238000001890 transfection Methods 0.000 description 5
- 238000013519 translation Methods 0.000 description 5
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 5
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 5
- 235000002374 tyrosine Nutrition 0.000 description 5
- 241001430294 unidentified retrovirus Species 0.000 description 5
- WOVKYSAHUYNSMH-RRKCRQDMSA-N 5-bromodeoxyuridine Chemical compound C1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C(Br)=C1 WOVKYSAHUYNSMH-RRKCRQDMSA-N 0.000 description 4
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 4
- WOVKYSAHUYNSMH-UHFFFAOYSA-N BROMODEOXYURIDINE Natural products C1C(O)C(CO)OC1N1C(=O)NC(=O)C(Br)=C1 WOVKYSAHUYNSMH-UHFFFAOYSA-N 0.000 description 4
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- 241000702421 Dependoparvovirus Species 0.000 description 4
- 208000018522 Gastrointestinal disease Diseases 0.000 description 4
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Chemical compound OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 4
- 239000004471 Glycine Substances 0.000 description 4
- 108060003951 Immunoglobulin Proteins 0.000 description 4
- 108010074328 Interferon-gamma Proteins 0.000 description 4
- 108010065805 Interleukin-12 Proteins 0.000 description 4
- 102000013462 Interleukin-12 Human genes 0.000 description 4
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 4
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 description 4
- 239000004472 Lysine Substances 0.000 description 4
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 4
- 108090000157 Metallothionein Proteins 0.000 description 4
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 description 4
- 241000714474 Rous sarcoma virus Species 0.000 description 4
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 4
- 241000282898 Sus scrofa Species 0.000 description 4
- 239000004098 Tetracycline Substances 0.000 description 4
- 102000004887 Transforming Growth Factor beta Human genes 0.000 description 4
- 108090001012 Transforming Growth Factor beta Proteins 0.000 description 4
- 230000000692 anti-sense effect Effects 0.000 description 4
- 230000002785 anti-thrombosis Effects 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 4
- 235000009582 asparagine Nutrition 0.000 description 4
- 229960001230 asparagine Drugs 0.000 description 4
- 229950004398 broxuridine Drugs 0.000 description 4
- 239000001768 carboxy methyl cellulose Substances 0.000 description 4
- 230000015556 catabolic process Effects 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 230000001659 chemokinetic effect Effects 0.000 description 4
- 238000006731 degradation reaction Methods 0.000 description 4
- 230000001419 dependent effect Effects 0.000 description 4
- 239000008298 dragée Substances 0.000 description 4
- 210000003527 eukaryotic cell Anatomy 0.000 description 4
- 238000010353 genetic engineering Methods 0.000 description 4
- 210000001368 germline stem cell Anatomy 0.000 description 4
- 230000012010 growth Effects 0.000 description 4
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 4
- 238000002744 homologous recombination Methods 0.000 description 4
- 230000006801 homologous recombination Effects 0.000 description 4
- 230000028993 immune response Effects 0.000 description 4
- 102000018358 immunoglobulin Human genes 0.000 description 4
- 230000001506 immunosuppresive effect Effects 0.000 description 4
- 230000006698 induction Effects 0.000 description 4
- 230000001939 inductive effect Effects 0.000 description 4
- 229940117681 interleukin-12 Drugs 0.000 description 4
- 210000004347 intestinal mucosa Anatomy 0.000 description 4
- 239000003446 ligand Substances 0.000 description 4
- 230000013011 mating Effects 0.000 description 4
- 229960000485 methotrexate Drugs 0.000 description 4
- 238000000520 microinjection Methods 0.000 description 4
- 229930014626 natural product Natural products 0.000 description 4
- 238000007911 parenteral administration Methods 0.000 description 4
- 239000008177 pharmaceutical agent Substances 0.000 description 4
- 230000036470 plasma concentration Effects 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- 230000002441 reversible effect Effects 0.000 description 4
- 238000012552 review Methods 0.000 description 4
- 239000003352 sequestering agent Substances 0.000 description 4
- 210000002966 serum Anatomy 0.000 description 4
- 238000010561 standard procedure Methods 0.000 description 4
- 235000019698 starch Nutrition 0.000 description 4
- 230000000638 stimulation Effects 0.000 description 4
- 235000000346 sugar Nutrition 0.000 description 4
- 230000004083 survival effect Effects 0.000 description 4
- 238000013268 sustained release Methods 0.000 description 4
- 239000012730 sustained-release form Substances 0.000 description 4
- 229960002180 tetracycline Drugs 0.000 description 4
- 229930101283 tetracycline Natural products 0.000 description 4
- 235000019364 tetracycline Nutrition 0.000 description 4
- 150000003522 tetracyclines Chemical class 0.000 description 4
- 230000002537 thrombolytic effect Effects 0.000 description 4
- 210000002105 tongue Anatomy 0.000 description 4
- 241001529453 unidentified herpesvirus Species 0.000 description 4
- DIGQNXIGRZPYDK-WKSCXVIASA-N (2R)-6-amino-2-[[2-[[(2S)-2-[[2-[[(2R)-2-[[(2S)-2-[[(2R,3S)-2-[[2-[[(2S)-2-[[2-[[(2S)-2-[[(2S)-2-[[(2R)-2-[[(2S,3S)-2-[[(2R)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[2-[[(2S)-2-[[(2R)-2-[[2-[[2-[[2-[(2-amino-1-hydroxyethylidene)amino]-3-carboxy-1-hydroxypropylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1-hydroxyethylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1,3-dihydroxypropylidene]amino]-1-hydroxyethylidene]amino]-1-hydroxypropylidene]amino]-1,3-dihydroxypropylidene]amino]-1,3-dihydroxypropylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1,3-dihydroxybutylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1-hydroxypropylidene]amino]-1,3-dihydroxypropylidene]amino]-1-hydroxyethylidene]amino]-1,5-dihydroxy-5-iminopentylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1,3-dihydroxybutylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1,3-dihydroxypropylidene]amino]-1-hydroxyethylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1-hydroxyethylidene]amino]hexanoic acid Chemical compound C[C@@H]([C@@H](C(=N[C@@H](CS)C(=N[C@@H](C)C(=N[C@@H](CO)C(=NCC(=N[C@@H](CCC(=N)O)C(=NC(CS)C(=N[C@H]([C@H](C)O)C(=N[C@H](CS)C(=N[C@H](CO)C(=NCC(=N[C@H](CS)C(=NCC(=N[C@H](CCCCN)C(=O)O)O)O)O)O)O)O)O)O)O)O)O)O)O)N=C([C@H](CS)N=C([C@H](CO)N=C([C@H](CO)N=C([C@H](C)N=C(CN=C([C@H](CO)N=C([C@H](CS)N=C(CN=C(C(CS)N=C(C(CC(=O)O)N=C(CN)O)O)O)O)O)O)O)O)O)O)O)O DIGQNXIGRZPYDK-WKSCXVIASA-N 0.000 description 3
- 108010085238 Actins Proteins 0.000 description 3
- 102000007469 Actins Human genes 0.000 description 3
- 235000014469 Bacillus subtilis Nutrition 0.000 description 3
- COVZYZSDYWQREU-UHFFFAOYSA-N Busulfan Chemical compound CS(=O)(=O)OCCCCOS(C)(=O)=O COVZYZSDYWQREU-UHFFFAOYSA-N 0.000 description 3
- 241000282693 Cercopithecidae Species 0.000 description 3
- 206010009900 Colitis ulcerative Diseases 0.000 description 3
- CMSMOCZEIVJLDB-UHFFFAOYSA-N Cyclophosphamide Chemical compound ClCCN(CCCl)P1(=O)NCCCO1 CMSMOCZEIVJLDB-UHFFFAOYSA-N 0.000 description 3
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 3
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 3
- 102000053602 DNA Human genes 0.000 description 3
- 239000012591 Dulbecco’s Phosphate Buffered Saline Substances 0.000 description 3
- 241000196324 Embryophyta Species 0.000 description 3
- 241000283086 Equidae Species 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- 241000233866 Fungi Species 0.000 description 3
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- 102100029572 Immunoglobulin kappa constant Human genes 0.000 description 3
- 108010090227 Immunoglobulin kappa-Chains Proteins 0.000 description 3
- 102100037850 Interferon gamma Human genes 0.000 description 3
- HNDVDQJCIGZPNO-YFKPBYRVSA-N L-histidine Chemical compound OC(=O)[C@@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-YFKPBYRVSA-N 0.000 description 3
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 3
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 3
- 108010074338 Lymphokines Proteins 0.000 description 3
- 102000008072 Lymphokines Human genes 0.000 description 3
- 206010025476 Malabsorption Diseases 0.000 description 3
- 208000004155 Malabsorption Syndromes Diseases 0.000 description 3
- 102000003792 Metallothionein Human genes 0.000 description 3
- 241000713333 Mouse mammary tumor virus Species 0.000 description 3
- 241000288906 Primates Species 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 108700008625 Reporter Genes Proteins 0.000 description 3
- 206010038997 Retroviral infections Diseases 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 108091008874 T cell receptors Proteins 0.000 description 3
- 230000005867 T cell response Effects 0.000 description 3
- 102000016266 T-Cell Antigen Receptors Human genes 0.000 description 3
- 102000006601 Thymidine Kinase Human genes 0.000 description 3
- 108020004440 Thymidine kinase Proteins 0.000 description 3
- 208000025865 Ulcer Diseases 0.000 description 3
- 201000006704 Ulcerative Colitis Diseases 0.000 description 3
- 230000009471 action Effects 0.000 description 3
- 235000003704 aspartic acid Nutrition 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 3
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 3
- 230000008827 biological function Effects 0.000 description 3
- 230000033228 biological regulation Effects 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 210000001109 blastomere Anatomy 0.000 description 3
- 229910000389 calcium phosphate Inorganic materials 0.000 description 3
- 235000011010 calcium phosphates Nutrition 0.000 description 3
- 150000001720 carbohydrates Chemical class 0.000 description 3
- 229910002092 carbon dioxide Inorganic materials 0.000 description 3
- 230000000112 colonic effect Effects 0.000 description 3
- 229960004397 cyclophosphamide Drugs 0.000 description 3
- 230000016396 cytokine production Effects 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 239000008121 dextrose Substances 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 239000000839 emulsion Substances 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 208000010227 enterocolitis Diseases 0.000 description 3
- 230000002255 enzymatic effect Effects 0.000 description 3
- 229960005420 etoposide Drugs 0.000 description 3
- VJJPUSNTGOMMGY-MRVIYFEKSA-N etoposide Chemical compound COC1=C(O)C(OC)=CC([C@@H]2C3=CC=4OCOC=4C=C3[C@@H](O[C@H]3[C@@H]([C@@H](O)[C@@H]4O[C@H](C)OC[C@H]4O3)O)[C@@H]3[C@@H]2C(OC3)=O)=C1 VJJPUSNTGOMMGY-MRVIYFEKSA-N 0.000 description 3
- 210000002744 extracellular matrix Anatomy 0.000 description 3
- 238000000605 extraction Methods 0.000 description 3
- 210000002950 fibroblast Anatomy 0.000 description 3
- 239000000945 filler Substances 0.000 description 3
- 235000013922 glutamic acid Nutrition 0.000 description 3
- 239000004220 glutamic acid Substances 0.000 description 3
- 230000035876 healing Effects 0.000 description 3
- 229910052588 hydroxylapatite Inorganic materials 0.000 description 3
- 230000002519 immonomodulatory effect Effects 0.000 description 3
- 238000003018 immunoassay Methods 0.000 description 3
- 238000000099 in vitro assay Methods 0.000 description 3
- 238000004255 ion exchange chromatography Methods 0.000 description 3
- 230000005865 ionizing radiation Effects 0.000 description 3
- 238000002372 labelling Methods 0.000 description 3
- 239000008101 lactose Substances 0.000 description 3
- 230000000670 limiting effect Effects 0.000 description 3
- 230000033001 locomotion Effects 0.000 description 3
- 229920002521 macromolecule Polymers 0.000 description 3
- 238000012423 maintenance Methods 0.000 description 3
- 239000002609 medium Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 210000004400 mucous membrane Anatomy 0.000 description 3
- 210000000440 neutrophil Anatomy 0.000 description 3
- 238000012758 nuclear staining Methods 0.000 description 3
- 210000004940 nucleus Anatomy 0.000 description 3
- 208000015380 nutritional deficiency disease Diseases 0.000 description 3
- 239000003921 oil Substances 0.000 description 3
- 235000019198 oils Nutrition 0.000 description 3
- 210000000056 organ Anatomy 0.000 description 3
- 210000003101 oviduct Anatomy 0.000 description 3
- XYJRXVWERLGGKC-UHFFFAOYSA-D pentacalcium;hydroxide;triphosphate Chemical compound [OH-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O XYJRXVWERLGGKC-UHFFFAOYSA-D 0.000 description 3
- 239000012071 phase Substances 0.000 description 3
- 230000026731 phosphorylation Effects 0.000 description 3
- 238000006366 phosphorylation reaction Methods 0.000 description 3
- 230000004952 protein activity Effects 0.000 description 3
- 238000003127 radioimmunoassay Methods 0.000 description 3
- 230000001177 retroviral effect Effects 0.000 description 3
- 238000004007 reversed phase HPLC Methods 0.000 description 3
- 238000002741 site-directed mutagenesis Methods 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 239000000600 sorbitol Substances 0.000 description 3
- 230000000087 stabilizing effect Effects 0.000 description 3
- 208000003265 stomatitis Diseases 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 150000008163 sugars Chemical class 0.000 description 3
- 239000004094 surface-active agent Substances 0.000 description 3
- ZRKFYGHZFMAOKI-QMGMOQQFSA-N tgfbeta Chemical compound C([C@H](NC(=O)[C@H](C(C)C)NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CC(C)C)NC(=O)CNC(=O)[C@H](C)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](C)NC(=O)[C@@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](N)CCSC)C(C)C)[C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](C)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C)C(=O)N[C@@H](CC(C)C)C(=O)N1[C@@H](CCC1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(O)=O)C1=CC=C(O)C=C1 ZRKFYGHZFMAOKI-QMGMOQQFSA-N 0.000 description 3
- 230000005030 transcription termination Effects 0.000 description 3
- 125000002987 valine group Chemical group [H]N([H])C([H])(C(*)=O)C([H])(C([H])([H])[H])C([H])([H])[H] 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- 230000029663 wound healing Effects 0.000 description 3
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 2
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 2
- IXPNQXFRVYWDDI-UHFFFAOYSA-N 1-methyl-2,4-dioxo-1,3-diazinane-5-carboximidamide Chemical compound CN1CC(C(N)=N)C(=O)NC1=O IXPNQXFRVYWDDI-UHFFFAOYSA-N 0.000 description 2
- NHJVRSWLHSJWIN-UHFFFAOYSA-N 2,4,6-trinitrobenzenesulfonic acid Chemical compound OS(=O)(=O)C1=C([N+]([O-])=O)C=C([N+]([O-])=O)C=C1[N+]([O-])=O NHJVRSWLHSJWIN-UHFFFAOYSA-N 0.000 description 2
- VVIAGPKUTFNRDU-UHFFFAOYSA-N 6S-folinic acid Natural products C1NC=2NC(N)=NC(=O)C=2N(C=O)C1CNC1=CC=C(C(=O)NC(CCC(O)=O)C(O)=O)C=C1 VVIAGPKUTFNRDU-UHFFFAOYSA-N 0.000 description 2
- 206010000060 Abdominal distension Diseases 0.000 description 2
- 102000007698 Alcohol dehydrogenase Human genes 0.000 description 2
- 108010021809 Alcohol dehydrogenase Proteins 0.000 description 2
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 2
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 2
- 108700028369 Alleles Proteins 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 241000271566 Aves Species 0.000 description 2
- 102100035683 Axin-2 Human genes 0.000 description 2
- 101700047552 Axin-2 Proteins 0.000 description 2
- 102000019260 B-Cell Antigen Receptors Human genes 0.000 description 2
- 108010012919 B-Cell Antigen Receptors Proteins 0.000 description 2
- 244000063299 Bacillus subtilis Species 0.000 description 2
- 208000035143 Bacterial infection Diseases 0.000 description 2
- 101710155856 C-C motif chemokine 3 Proteins 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- 241000282472 Canis lupus familiaris Species 0.000 description 2
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 2
- 102000000013 Chemokine CCL3 Human genes 0.000 description 2
- 108010035532 Collagen Proteins 0.000 description 2
- 102000008186 Collagen Human genes 0.000 description 2
- 241000699802 Cricetulus griseus Species 0.000 description 2
- 230000004568 DNA-binding Effects 0.000 description 2
- 102000004163 DNA-directed RNA polymerases Human genes 0.000 description 2
- 108090000626 DNA-directed RNA polymerases Proteins 0.000 description 2
- 229920002307 Dextran Polymers 0.000 description 2
- 206010012735 Diarrhoea Diseases 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- AOJJSUZBOXZQNB-TZSSRYMLSA-N Doxorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 AOJJSUZBOXZQNB-TZSSRYMLSA-N 0.000 description 2
- 239000012594 Earle’s Balanced Salt Solution Substances 0.000 description 2
- 108010000912 Egg Proteins Proteins 0.000 description 2
- 102000002322 Egg Proteins Human genes 0.000 description 2
- 206010058838 Enterocolitis infectious Diseases 0.000 description 2
- 241000701959 Escherichia virus Lambda Species 0.000 description 2
- 241000282326 Felis catus Species 0.000 description 2
- 108090001047 Fibroblast growth factor 10 Proteins 0.000 description 2
- 102000004864 Fibroblast growth factor 10 Human genes 0.000 description 2
- 108090000379 Fibroblast growth factor 2 Proteins 0.000 description 2
- 102000003974 Fibroblast growth factor 2 Human genes 0.000 description 2
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 2
- 206010064147 Gastrointestinal inflammation Diseases 0.000 description 2
- 108700039691 Genetic Promoter Regions Proteins 0.000 description 2
- 102100039289 Glial fibrillary acidic protein Human genes 0.000 description 2
- 101710193519 Glial fibrillary acidic protein Proteins 0.000 description 2
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Chemical compound OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 description 2
- HTTJABKRGRZYRN-UHFFFAOYSA-N Heparin Chemical compound OC1C(NC(=O)C)C(O)OC(COS(O)(=O)=O)C1OC1C(OS(O)(=O)=O)C(O)C(OC2C(C(OS(O)(=O)=O)C(OC3C(C(O)C(O)C(O3)C(O)=O)OS(O)(=O)=O)C(CO)O2)NS(O)(=O)=O)C(C(O)=O)O1 HTTJABKRGRZYRN-UHFFFAOYSA-N 0.000 description 2
- 101000659879 Homo sapiens Thrombospondin-1 Proteins 0.000 description 2
- 101000611183 Homo sapiens Tumor necrosis factor Proteins 0.000 description 2
- 108090000144 Human Proteins Proteins 0.000 description 2
- 102000003839 Human Proteins Human genes 0.000 description 2
- 241000701044 Human gammaherpesvirus 4 Species 0.000 description 2
- 102100029567 Immunoglobulin kappa light chain Human genes 0.000 description 2
- 101710189008 Immunoglobulin kappa light chain Proteins 0.000 description 2
- 206010062016 Immunosuppression Diseases 0.000 description 2
- 102000000589 Interleukin-1 Human genes 0.000 description 2
- 108010002352 Interleukin-1 Proteins 0.000 description 2
- 102000004388 Interleukin-4 Human genes 0.000 description 2
- 108090000978 Interleukin-4 Proteins 0.000 description 2
- 108010002616 Interleukin-5 Proteins 0.000 description 2
- 108091092195 Intron Proteins 0.000 description 2
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 description 2
- ONIBWKKTOPOVIA-BYPYZUCNSA-N L-Proline Chemical compound OC(=O)[C@@H]1CCCN1 ONIBWKKTOPOVIA-BYPYZUCNSA-N 0.000 description 2
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical compound NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 description 2
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 2
- AYFVYJQAPQTCCC-GBXIJSLDSA-N L-threonine Chemical compound C[C@@H](O)[C@H](N)C(O)=O AYFVYJQAPQTCCC-GBXIJSLDSA-N 0.000 description 2
- 102000004058 Leukemia inhibitory factor Human genes 0.000 description 2
- 108090000581 Leukemia inhibitory factor Proteins 0.000 description 2
- 102100032913 Leukocyte surface antigen CD47 Human genes 0.000 description 2
- 208000002720 Malnutrition Diseases 0.000 description 2
- 101710175625 Maltose/maltodextrin-binding periplasmic protein Proteins 0.000 description 2
- 108010052285 Membrane Proteins Proteins 0.000 description 2
- 108091061960 Naked DNA Proteins 0.000 description 2
- 206010030216 Oesophagitis Diseases 0.000 description 2
- 238000012408 PCR amplification Methods 0.000 description 2
- 102000004211 Platelet factor 4 Human genes 0.000 description 2
- 108090000778 Platelet factor 4 Proteins 0.000 description 2
- 108091081062 Repeated sequence (DNA) Proteins 0.000 description 2
- 239000008156 Ringer's lactate solution Substances 0.000 description 2
- 241000293869 Salmonella enterica subsp. enterica serovar Typhimurium Species 0.000 description 2
- PXIPVTKHYLBLMZ-UHFFFAOYSA-N Sodium azide Chemical compound [Na+].[N-]=[N+]=[N-] PXIPVTKHYLBLMZ-UHFFFAOYSA-N 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 229920002125 Sokalan® Polymers 0.000 description 2
- 238000002105 Southern blotting Methods 0.000 description 2
- 241000282887 Suidae Species 0.000 description 2
- 102000002933 Thioredoxin Human genes 0.000 description 2
- 102000036693 Thrombopoietin Human genes 0.000 description 2
- 108010041111 Thrombopoietin Proteins 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 102000009618 Transforming Growth Factors Human genes 0.000 description 2
- 108010009583 Transforming Growth Factors Proteins 0.000 description 2
- 101800004564 Transforming growth factor alpha Proteins 0.000 description 2
- 102400001320 Transforming growth factor alpha Human genes 0.000 description 2
- 208000035896 Twin-reversed arterial perfusion sequence Diseases 0.000 description 2
- 108700005077 Viral Genes Proteins 0.000 description 2
- 102000044880 Wnt3A Human genes 0.000 description 2
- 108700013515 Wnt3A Proteins 0.000 description 2
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- DZBUGLKDJFMEHC-UHFFFAOYSA-N acridine Chemical compound C1=CC=CC2=CC3=CC=CC=C3N=C21 DZBUGLKDJFMEHC-UHFFFAOYSA-N 0.000 description 2
- 230000003213 activating effect Effects 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 210000004100 adrenal gland Anatomy 0.000 description 2
- 239000000443 aerosol Substances 0.000 description 2
- 229960000723 ampicillin Drugs 0.000 description 2
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 2
- 229940124650 anti-cancer therapies Drugs 0.000 description 2
- 239000002260 anti-inflammatory agent Substances 0.000 description 2
- 229940121363 anti-inflammatory agent Drugs 0.000 description 2
- 238000011319 anticancer therapy Methods 0.000 description 2
- 238000013528 artificial neural network Methods 0.000 description 2
- 229940009098 aspartate Drugs 0.000 description 2
- 230000002238 attenuated effect Effects 0.000 description 2
- 230000003376 axonal effect Effects 0.000 description 2
- 208000022362 bacterial infectious disease Diseases 0.000 description 2
- 238000010256 biochemical assay Methods 0.000 description 2
- 210000000601 blood cell Anatomy 0.000 description 2
- 229960002092 busulfan Drugs 0.000 description 2
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 2
- 235000014633 carbohydrates Nutrition 0.000 description 2
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 2
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- 235000010980 cellulose Nutrition 0.000 description 2
- 239000013611 chromosomal DNA Substances 0.000 description 2
- 210000000349 chromosome Anatomy 0.000 description 2
- 208000037976 chronic inflammation Diseases 0.000 description 2
- 208000037893 chronic inflammatory disorder Diseases 0.000 description 2
- 239000013599 cloning vector Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 229920001436 collagen Polymers 0.000 description 2
- 238000004590 computer program Methods 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 125000000151 cysteine group Chemical group N[C@@H](CS)C(=O)* 0.000 description 2
- 210000000805 cytoplasm Anatomy 0.000 description 2
- 230000001120 cytoprotective effect Effects 0.000 description 2
- OPTASPLRGRRNAP-UHFFFAOYSA-N cytosine Chemical compound NC=1C=CNC(=O)N=1 OPTASPLRGRRNAP-UHFFFAOYSA-N 0.000 description 2
- 230000034994 death Effects 0.000 description 2
- 230000002939 deleterious effect Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 229960002086 dextran Drugs 0.000 description 2
- 235000005911 diet Nutrition 0.000 description 2
- 230000037213 diet Effects 0.000 description 2
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 2
- 239000002552 dosage form Substances 0.000 description 2
- 235000013601 eggs Nutrition 0.000 description 2
- 210000005081 epithelial layer Anatomy 0.000 description 2
- 208000006881 esophagitis Diseases 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000010685 fatty oil Substances 0.000 description 2
- 230000004720 fertilization Effects 0.000 description 2
- 230000001605 fetal effect Effects 0.000 description 2
- 108700014844 flt3 ligand Proteins 0.000 description 2
- VVIAGPKUTFNRDU-ABLWVSNPSA-N folinic acid Chemical compound C1NC=2NC(N)=NC(=O)C=2N(C=O)C1CNC1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 VVIAGPKUTFNRDU-ABLWVSNPSA-N 0.000 description 2
- 235000008191 folinic acid Nutrition 0.000 description 2
- 239000011672 folinic acid Substances 0.000 description 2
- 235000013305 food Nutrition 0.000 description 2
- 230000037406 food intake Effects 0.000 description 2
- 208000018925 gastrointestinal mucositis Diseases 0.000 description 2
- 238000007429 general method Methods 0.000 description 2
- 210000005046 glial fibrillary acidic protein Anatomy 0.000 description 2
- 229930195712 glutamate Natural products 0.000 description 2
- 229920000669 heparin Polymers 0.000 description 2
- 229960002897 heparin Drugs 0.000 description 2
- 238000004128 high performance liquid chromatography Methods 0.000 description 2
- 210000003630 histaminocyte Anatomy 0.000 description 2
- 102000013574 human thrombospondin-1 Human genes 0.000 description 2
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 description 2
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 description 2
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 description 2
- UFVKGYZPFZQRLF-UHFFFAOYSA-N hydroxypropyl methyl cellulose Chemical compound OC1C(O)C(OC)OC(CO)C1OC1C(O)C(O)C(OC2C(C(O)C(OC3C(C(O)C(O)C(CO)O3)O)C(CO)O2)O)C(CO)O1 UFVKGYZPFZQRLF-UHFFFAOYSA-N 0.000 description 2
- 208000026278 immune system disease Diseases 0.000 description 2
- 238000003365 immunocytochemistry Methods 0.000 description 2
- 238000003364 immunohistochemistry Methods 0.000 description 2
- 238000010324 immunological assay Methods 0.000 description 2
- 230000001976 improved effect Effects 0.000 description 2
- 238000011065 in-situ storage Methods 0.000 description 2
- 238000011534 incubation Methods 0.000 description 2
- 239000012678 infectious agent Substances 0.000 description 2
- 208000027139 infectious colitis Diseases 0.000 description 2
- 230000005764 inhibitory process Effects 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 238000005304 joining Methods 0.000 description 2
- 210000003246 kidney medulla Anatomy 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 229960001691 leucovorin Drugs 0.000 description 2
- 150000002632 lipids Chemical class 0.000 description 2
- 231100000053 low toxicity Toxicity 0.000 description 2
- 210000004072 lung Anatomy 0.000 description 2
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 2
- 230000001071 malnutrition Effects 0.000 description 2
- 235000000824 malnutrition Nutrition 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 125000001360 methionine group Chemical group N[C@@H](CCSC)C(=O)* 0.000 description 2
- 229920000609 methyl cellulose Polymers 0.000 description 2
- 235000010981 methylcellulose Nutrition 0.000 description 2
- 239000001923 methylcellulose Substances 0.000 description 2
- 238000002493 microarray Methods 0.000 description 2
- 244000005700 microbiome Species 0.000 description 2
- 238000013508 migration Methods 0.000 description 2
- 210000001616 monocyte Anatomy 0.000 description 2
- 230000001537 neural effect Effects 0.000 description 2
- 231100000252 nontoxic Toxicity 0.000 description 2
- 230000003000 nontoxic effect Effects 0.000 description 2
- 235000015097 nutrients Nutrition 0.000 description 2
- 238000011275 oncology therapy Methods 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 210000004681 ovum Anatomy 0.000 description 2
- 230000036961 partial effect Effects 0.000 description 2
- 230000001575 pathological effect Effects 0.000 description 2
- 239000000816 peptidomimetic Substances 0.000 description 2
- 239000000825 pharmaceutical preparation Substances 0.000 description 2
- WVDDGKGOMKODPV-ZQBYOMGUSA-N phenyl(114C)methanol Chemical compound O[14CH2]C1=CC=CC=C1 WVDDGKGOMKODPV-ZQBYOMGUSA-N 0.000 description 2
- 239000002953 phosphate buffered saline Substances 0.000 description 2
- 239000002504 physiological saline solution Substances 0.000 description 2
- 239000013600 plasmid vector Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920000747 poly(lactic acid) Polymers 0.000 description 2
- 239000004626 polylactic acid Substances 0.000 description 2
- 235000010482 polyoxyethylene sorbitan monooleate Nutrition 0.000 description 2
- 239000000244 polyoxyethylene sorbitan monooleate Substances 0.000 description 2
- 229940068968 polysorbate 80 Drugs 0.000 description 2
- 229920000053 polysorbate 80 Polymers 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 239000003755 preservative agent Substances 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 238000000159 protein binding assay Methods 0.000 description 2
- 230000004853 protein function Effects 0.000 description 2
- ZCCUUQDIBDJBTK-UHFFFAOYSA-N psoralen Chemical compound C1=C2OC(=O)C=CC2=CC2=C1OC=C2 ZCCUUQDIBDJBTK-UHFFFAOYSA-N 0.000 description 2
- 238000011002 quantification Methods 0.000 description 2
- 230000006798 recombination Effects 0.000 description 2
- 238000005215 recombination Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 238000007480 sanger sequencing Methods 0.000 description 2
- 238000002864 sequence alignment Methods 0.000 description 2
- 239000008159 sesame oil Substances 0.000 description 2
- 235000011803 sesame oil Nutrition 0.000 description 2
- 238000001542 size-exclusion chromatography Methods 0.000 description 2
- 150000003384 small molecules Chemical class 0.000 description 2
- 235000010413 sodium alginate Nutrition 0.000 description 2
- 239000000661 sodium alginate Substances 0.000 description 2
- 229940005550 sodium alginate Drugs 0.000 description 2
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 description 2
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 239000008107 starch Substances 0.000 description 2
- 238000007920 subcutaneous administration Methods 0.000 description 2
- 238000010254 subcutaneous injection Methods 0.000 description 2
- 239000007929 subcutaneous injection Substances 0.000 description 2
- 230000002194 synthesizing effect Effects 0.000 description 2
- 230000009885 systemic effect Effects 0.000 description 2
- 239000000454 talc Substances 0.000 description 2
- 229910052623 talc Inorganic materials 0.000 description 2
- 235000012222 talc Nutrition 0.000 description 2
- 210000001550 testis Anatomy 0.000 description 2
- 108060008226 thioredoxin Proteins 0.000 description 2
- 229940094937 thioredoxin Drugs 0.000 description 2
- 210000001685 thyroid gland Anatomy 0.000 description 2
- 230000008467 tissue growth Effects 0.000 description 2
- 230000017423 tissue regeneration Effects 0.000 description 2
- 239000003053 toxin Substances 0.000 description 2
- 231100000765 toxin Toxicity 0.000 description 2
- 108700012359 toxins Proteins 0.000 description 2
- 238000011820 transgenic animal model Methods 0.000 description 2
- 238000012301 transgenic model Methods 0.000 description 2
- 230000014621 translational initiation Effects 0.000 description 2
- 230000032258 transport Effects 0.000 description 2
- 230000008733 trauma Effects 0.000 description 2
- 229940078499 tricalcium phosphate Drugs 0.000 description 2
- 229910000391 tricalcium phosphate Inorganic materials 0.000 description 2
- 235000019731 tricalcium phosphate Nutrition 0.000 description 2
- 230000007306 turnover Effects 0.000 description 2
- 230000036269 ulceration Effects 0.000 description 2
- 210000003932 urinary bladder Anatomy 0.000 description 2
- VBEQCZHXXJYVRD-GACYYNSASA-N uroanthelone Chemical compound C([C@@H](C(=O)N[C@H](C(=O)N[C@@H](CS)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CS)C(=O)N[C@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)NCC(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CS)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O)C(C)C)[C@@H](C)O)NC(=O)[C@H](CO)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@@H](NC(=O)[C@H](CC=1NC=NC=1)NC(=O)[C@H](CCSC)NC(=O)[C@H](CS)NC(=O)[C@@H](NC(=O)CNC(=O)CNC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CS)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)CNC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@H](CO)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CS)NC(=O)CNC(=O)[C@H]1N(CCC1)C(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC(N)=O)C(C)C)[C@@H](C)CC)C1=CC=C(O)C=C1 VBEQCZHXXJYVRD-GACYYNSASA-N 0.000 description 2
- 210000004291 uterus Anatomy 0.000 description 2
- 108090000195 villin Proteins 0.000 description 2
- 239000011782 vitamin Substances 0.000 description 2
- 229930003231 vitamin Natural products 0.000 description 2
- 229940088594 vitamin Drugs 0.000 description 2
- 150000003722 vitamin derivatives Chemical class 0.000 description 2
- 239000006226 wash reagent Substances 0.000 description 2
- 238000001262 western blot Methods 0.000 description 2
- KIUKXJAPPMFGSW-DNGZLQJQSA-N (2S,3S,4S,5R,6R)-6-[(2S,3R,4R,5S,6R)-3-Acetamido-2-[(2S,3S,4R,5R,6R)-6-[(2R,3R,4R,5S,6R)-3-acetamido-2,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-2-carboxy-4,5-dihydroxyoxan-3-yl]oxy-5-hydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-3,4,5-trihydroxyoxane-2-carboxylic acid Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@H](O[C@H]2[C@@H]([C@@H](O[C@H]3[C@@H]([C@@H](O)[C@H](O)[C@H](O3)C(O)=O)O)[C@H](O)[C@@H](CO)O2)NC(C)=O)[C@@H](C(O)=O)O1 KIUKXJAPPMFGSW-DNGZLQJQSA-N 0.000 description 1
- LNAZSHAWQACDHT-XIYTZBAFSA-N (2r,3r,4s,5r,6s)-4,5-dimethoxy-2-(methoxymethyl)-3-[(2s,3r,4s,5r,6r)-3,4,5-trimethoxy-6-(methoxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6r)-4,5,6-trimethoxy-2-(methoxymethyl)oxan-3-yl]oxyoxane Chemical compound CO[C@@H]1[C@@H](OC)[C@H](OC)[C@@H](COC)O[C@H]1O[C@H]1[C@H](OC)[C@@H](OC)[C@H](O[C@H]2[C@@H]([C@@H](OC)[C@H](OC)O[C@@H]2COC)OC)O[C@@H]1COC LNAZSHAWQACDHT-XIYTZBAFSA-N 0.000 description 1
- LOGFVTREOLYCPF-KXNHARMFSA-N (2s,3r)-2-[[(2r)-1-[(2s)-2,6-diaminohexanoyl]pyrrolidine-2-carbonyl]amino]-3-hydroxybutanoic acid Chemical compound C[C@@H](O)[C@@H](C(O)=O)NC(=O)[C@H]1CCCN1C(=O)[C@@H](N)CCCCN LOGFVTREOLYCPF-KXNHARMFSA-N 0.000 description 1
- 102000040650 (ribonucleotides)n+m Human genes 0.000 description 1
- DDMOUSALMHHKOS-UHFFFAOYSA-N 1,2-dichloro-1,1,2,2-tetrafluoroethane Chemical compound FC(F)(Cl)C(F)(F)Cl DDMOUSALMHHKOS-UHFFFAOYSA-N 0.000 description 1
- HBOMLICNUCNMMY-KJFJCRTCSA-N 1-[(4s,5s)-4-azido-5-(hydroxymethyl)oxolan-2-yl]-5-methylpyrimidine-2,4-dione Chemical compound O=C1NC(=O)C(C)=CN1C1O[C@H](CO)[C@@H](N=[N+]=[N-])C1 HBOMLICNUCNMMY-KJFJCRTCSA-N 0.000 description 1
- DURPTKYDGMDSBL-UHFFFAOYSA-N 1-butoxybutane Chemical compound CCCCOCCCC DURPTKYDGMDSBL-UHFFFAOYSA-N 0.000 description 1
- GZCWLCBFPRFLKL-UHFFFAOYSA-N 1-prop-2-ynoxypropan-2-ol Chemical compound CC(O)COCC#C GZCWLCBFPRFLKL-UHFFFAOYSA-N 0.000 description 1
- BFSVOASYOCHEOV-UHFFFAOYSA-N 2-diethylaminoethanol Chemical compound CCN(CC)CCO BFSVOASYOCHEOV-UHFFFAOYSA-N 0.000 description 1
- HZLCGUXUOFWCCN-UHFFFAOYSA-N 2-hydroxynonadecane-1,2,3-tricarboxylic acid Chemical compound CCCCCCCCCCCCCCCCC(C(O)=O)C(O)(C(O)=O)CC(O)=O HZLCGUXUOFWCCN-UHFFFAOYSA-N 0.000 description 1
- 101150033426 2.5 gene Proteins 0.000 description 1
- OSJPPGNTCRNQQC-UWTATZPHSA-N 3-phospho-D-glyceric acid Chemical compound OC(=O)[C@H](O)COP(O)(O)=O OSJPPGNTCRNQQC-UWTATZPHSA-N 0.000 description 1
- VXGRJERITKFWPL-UHFFFAOYSA-N 4',5'-Dihydropsoralen Natural products C1=C2OC(=O)C=CC2=CC2=C1OCC2 VXGRJERITKFWPL-UHFFFAOYSA-N 0.000 description 1
- 108091022879 ADAMTS Proteins 0.000 description 1
- 102000029750 ADAMTS Human genes 0.000 description 1
- 208000030507 AIDS Diseases 0.000 description 1
- 108010079721 ATP synthase subunit 6 Proteins 0.000 description 1
- 102100021921 ATP synthase subunit a Human genes 0.000 description 1
- 208000004998 Abdominal Pain Diseases 0.000 description 1
- 244000215068 Acacia senegal Species 0.000 description 1
- 102000013563 Acid Phosphatase Human genes 0.000 description 1
- 108010051457 Acid Phosphatase Proteins 0.000 description 1
- 241000251468 Actinopterygii Species 0.000 description 1
- 229920001817 Agar Polymers 0.000 description 1
- 229920000936 Agarose Polymers 0.000 description 1
- NBTGEURICRTMGL-WHFBIAKZSA-N Ala-Gly-Ser Chemical compound C[C@H](N)C(=O)NCC(=O)N[C@@H](CO)C(O)=O NBTGEURICRTMGL-WHFBIAKZSA-N 0.000 description 1
- 108010088751 Albumins Proteins 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- 102000003730 Alpha-catenin Human genes 0.000 description 1
- 108090000020 Alpha-catenin Proteins 0.000 description 1
- 206010001985 Amoebic colitis Diseases 0.000 description 1
- 108020005544 Antisense RNA Proteins 0.000 description 1
- XPSGESXVBSQZPL-SRVKXCTJSA-N Arg-Arg-Arg Chemical compound NC(N)=NCCC[C@H](N)C(=O)N[C@@H](CCCN=C(N)N)C(=O)N[C@@H](CCCN=C(N)N)C(O)=O XPSGESXVBSQZPL-SRVKXCTJSA-N 0.000 description 1
- 206010003497 Asphyxia Diseases 0.000 description 1
- 241000416162 Astragalus gummifer Species 0.000 description 1
- 208000023275 Autoimmune disease Diseases 0.000 description 1
- 210000002237 B-cell of pancreatic islet Anatomy 0.000 description 1
- 206010070545 Bacterial translocation Diseases 0.000 description 1
- 102000015081 Blood Coagulation Factors Human genes 0.000 description 1
- 108010039209 Blood Coagulation Factors Proteins 0.000 description 1
- 206010065553 Bone marrow failure Diseases 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 1
- 241001260012 Bursa Species 0.000 description 1
- 102100032528 C-type lectin domain family 11 member A Human genes 0.000 description 1
- 101710167766 C-type lectin domain family 11 member A Proteins 0.000 description 1
- 102000001902 CC Chemokines Human genes 0.000 description 1
- 108010040471 CC Chemokines Proteins 0.000 description 1
- 101710180456 CD-NTase-associated protein 4 Proteins 0.000 description 1
- 102000049320 CD36 Human genes 0.000 description 1
- 108010045374 CD36 Antigens Proteins 0.000 description 1
- QCMYYKRYFNMIEC-UHFFFAOYSA-N COP(O)=O Chemical class COP(O)=O QCMYYKRYFNMIEC-UHFFFAOYSA-N 0.000 description 1
- 108050006947 CXC Chemokine Proteins 0.000 description 1
- 102000019388 CXC chemokine Human genes 0.000 description 1
- 208000034598 Caecitis Diseases 0.000 description 1
- 101100408682 Caenorhabditis elegans pmt-2 gene Proteins 0.000 description 1
- 241000589875 Campylobacter jejuni Species 0.000 description 1
- 241000222120 Candida <Saccharomycetales> Species 0.000 description 1
- 241000282465 Canis Species 0.000 description 1
- DLGOEMSEDOSKAD-UHFFFAOYSA-N Carmustine Chemical compound ClCCNC(=O)N(N=O)CCCl DLGOEMSEDOSKAD-UHFFFAOYSA-N 0.000 description 1
- 206010007710 Cartilage injury Diseases 0.000 description 1
- 102100026548 Caspase-8 Human genes 0.000 description 1
- 241000700198 Cavia Species 0.000 description 1
- 102000011022 Chorionic Gonadotropin Human genes 0.000 description 1
- 108010062540 Chorionic Gonadotropin Proteins 0.000 description 1
- 241000193403 Clostridium Species 0.000 description 1
- 206010009657 Clostridium difficile colitis Diseases 0.000 description 1
- 206010009895 Colitis ischaemic Diseases 0.000 description 1
- 206010009944 Colon cancer Diseases 0.000 description 1
- 108010027644 Complement C9 Proteins 0.000 description 1
- 102100031037 Complement component C9 Human genes 0.000 description 1
- 108020004635 Complementary DNA Proteins 0.000 description 1
- 108091035707 Consensus sequence Proteins 0.000 description 1
- 229920002261 Corn starch Polymers 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- 238000001712 DNA sequencing Methods 0.000 description 1
- 241000450599 DNA viruses Species 0.000 description 1
- 206010011968 Decreased immune responsiveness Diseases 0.000 description 1
- 102100036912 Desmin Human genes 0.000 description 1
- 108010044052 Desmin Proteins 0.000 description 1
- 206010012741 Diarrhoea haemorrhagic Diseases 0.000 description 1
- 239000004338 Dichlorodifluoromethane Substances 0.000 description 1
- 108010016626 Dipeptides Proteins 0.000 description 1
- 101100290057 Drosophila virilis Mal-B1 gene Proteins 0.000 description 1
- 206010058314 Dysplasia Diseases 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- LVGKNOAMLMIIKO-UHFFFAOYSA-N Elaidinsaeure-aethylester Natural products CCCCCCCCC=CCCCCCCCC(=O)OCC LVGKNOAMLMIIKO-UHFFFAOYSA-N 0.000 description 1
- 206010014418 Electrolyte imbalance Diseases 0.000 description 1
- 241000792859 Enema Species 0.000 description 1
- 206010014896 Enterocolitis haemorrhagic Diseases 0.000 description 1
- YQYJSBFKSSDGFO-UHFFFAOYSA-N Epihygromycin Natural products OC1C(O)C(C(=O)C)OC1OC(C(=C1)O)=CC=C1C=C(C)C(=O)NC1C(O)C(O)C2OCOC2C1O YQYJSBFKSSDGFO-UHFFFAOYSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 239000001856 Ethyl cellulose Substances 0.000 description 1
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 1
- 241000206602 Eukaryota Species 0.000 description 1
- 101150021185 FGF gene Proteins 0.000 description 1
- 108010054218 Factor VIII Proteins 0.000 description 1
- 102000001690 Factor VIII Human genes 0.000 description 1
- 108010001515 Galectin 4 Proteins 0.000 description 1
- 102100039556 Galectin-4 Human genes 0.000 description 1
- 208000003098 Ganglion Cysts Diseases 0.000 description 1
- 208000007882 Gastritis Diseases 0.000 description 1
- 206010017865 Gastritis erosive Diseases 0.000 description 1
- 206010061172 Gastrointestinal injury Diseases 0.000 description 1
- UTKUTMJSWKKHEM-WDSKDSINSA-N Glu-Ala-Gly Chemical compound OC(=O)CNC(=O)[C@H](C)NC(=O)[C@@H](N)CCC(O)=O UTKUTMJSWKKHEM-WDSKDSINSA-N 0.000 description 1
- QOXDAWODGSIDDI-GUBZILKMSA-N Glu-Ser-Lys Chemical compound C(CCN)C[C@@H](C(=O)O)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(=O)O)N QOXDAWODGSIDDI-GUBZILKMSA-N 0.000 description 1
- 102000019058 Glycogen Synthase Kinase 3 beta Human genes 0.000 description 1
- 108010051975 Glycogen Synthase Kinase 3 beta Proteins 0.000 description 1
- 102000003886 Glycoproteins Human genes 0.000 description 1
- 108090000288 Glycoproteins Proteins 0.000 description 1
- 102000006771 Gonadotropins Human genes 0.000 description 1
- 108010086677 Gonadotropins Proteins 0.000 description 1
- 208000009329 Graft vs Host Disease Diseases 0.000 description 1
- 108010017080 Granulocyte Colony-Stimulating Factor Proteins 0.000 description 1
- 102000004269 Granulocyte Colony-Stimulating Factor Human genes 0.000 description 1
- 108010017213 Granulocyte-Macrophage Colony-Stimulating Factor Proteins 0.000 description 1
- 102100039620 Granulocyte-macrophage colony-stimulating factor Human genes 0.000 description 1
- 241000696272 Gull adenovirus Species 0.000 description 1
- 229920000084 Gum arabic Polymers 0.000 description 1
- 238000010268 HPLC based assay Methods 0.000 description 1
- 102000002812 Heat-Shock Proteins Human genes 0.000 description 1
- 108010004889 Heat-Shock Proteins Proteins 0.000 description 1
- 108091005904 Hemoglobin subunit beta Proteins 0.000 description 1
- 241001272567 Hominoidea Species 0.000 description 1
- 101000756632 Homo sapiens Actin, cytoplasmic 1 Proteins 0.000 description 1
- 101000942297 Homo sapiens C-type lectin domain family 11 member A Proteins 0.000 description 1
- 101001040800 Homo sapiens Integral membrane protein GPR180 Proteins 0.000 description 1
- 101000599940 Homo sapiens Interferon gamma Proteins 0.000 description 1
- 101001076407 Homo sapiens Interleukin-1 receptor antagonist protein Proteins 0.000 description 1
- 101000599048 Homo sapiens Interleukin-6 receptor subunit alpha Proteins 0.000 description 1
- 101000868279 Homo sapiens Leukocyte surface antigen CD47 Proteins 0.000 description 1
- 101000990990 Homo sapiens Midkine Proteins 0.000 description 1
- 108091006905 Human Serum Albumin Proteins 0.000 description 1
- 102000008100 Human Serum Albumin Human genes 0.000 description 1
- 241001135569 Human adenovirus 5 Species 0.000 description 1
- 241000598171 Human adenovirus sp. Species 0.000 description 1
- 241000701024 Human betaherpesvirus 5 Species 0.000 description 1
- 108010003272 Hyaluronate lyase Proteins 0.000 description 1
- 102000001974 Hyaluronidases Human genes 0.000 description 1
- 239000004354 Hydroxyethyl cellulose Substances 0.000 description 1
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 description 1
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 1
- 108010091358 Hypoxanthine Phosphoribosyltransferase Proteins 0.000 description 1
- 102100029098 Hypoxanthine-guanine phosphoribosyltransferase Human genes 0.000 description 1
- XQFRJNBWHJMXHO-RRKCRQDMSA-N IDUR Chemical compound C1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C(I)=C1 XQFRJNBWHJMXHO-RRKCRQDMSA-N 0.000 description 1
- 108700005091 Immunoglobulin Genes Proteins 0.000 description 1
- 208000026350 Inborn Genetic disease Diseases 0.000 description 1
- 108090001061 Insulin Proteins 0.000 description 1
- 102100037852 Insulin-like growth factor I Human genes 0.000 description 1
- 102100021244 Integral membrane protein GPR180 Human genes 0.000 description 1
- 102000008070 Interferon-gamma Human genes 0.000 description 1
- 229940119178 Interleukin 1 receptor antagonist Drugs 0.000 description 1
- 102000003777 Interleukin-1 beta Human genes 0.000 description 1
- 108090000193 Interleukin-1 beta Proteins 0.000 description 1
- 102000051628 Interleukin-1 receptor antagonist Human genes 0.000 description 1
- 102000000743 Interleukin-5 Human genes 0.000 description 1
- 102000004889 Interleukin-6 Human genes 0.000 description 1
- 108090001005 Interleukin-6 Proteins 0.000 description 1
- 108010038501 Interleukin-6 Receptors Proteins 0.000 description 1
- 102000010781 Interleukin-6 Receptors Human genes 0.000 description 1
- 102100037792 Interleukin-6 receptor subunit alpha Human genes 0.000 description 1
- 102000015696 Interleukins Human genes 0.000 description 1
- 108010063738 Interleukins Proteins 0.000 description 1
- 206010022714 Intestinal ulcer Diseases 0.000 description 1
- 102000011782 Keratins Human genes 0.000 description 1
- 108010076876 Keratins Proteins 0.000 description 1
- 241000235649 Kluyveromyces Species 0.000 description 1
- 241000235058 Komagataella pastoris Species 0.000 description 1
- 101150062031 L gene Proteins 0.000 description 1
- AHLPHDHHMVZTML-BYPYZUCNSA-N L-Ornithine Chemical compound NCCC[C@H](N)C(O)=O AHLPHDHHMVZTML-BYPYZUCNSA-N 0.000 description 1
- 101710098610 Leukocyte surface antigen CD47 Proteins 0.000 description 1
- HLFSDGLLUJUHTE-SNVBAGLBSA-N Levamisole Chemical compound C1([C@H]2CN3CCSC3=N2)=CC=CC=C1 HLFSDGLLUJUHTE-SNVBAGLBSA-N 0.000 description 1
- 206010024774 Localised infection Diseases 0.000 description 1
- 235000019759 Maize starch Nutrition 0.000 description 1
- 208000013836 Malacoplakia Diseases 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- 108010072582 Matrilin Proteins Proteins 0.000 description 1
- 102000055008 Matrilin Proteins Human genes 0.000 description 1
- 102100030335 Midkine Human genes 0.000 description 1
- 241000713869 Moloney murine leukemia virus Species 0.000 description 1
- 101001044384 Mus musculus Interferon gamma Proteins 0.000 description 1
- 101000969137 Mus musculus Metallothionein-1 Proteins 0.000 description 1
- 101100460719 Mus musculus Noto gene Proteins 0.000 description 1
- 241000545499 Mycobacterium avium-intracellulare Species 0.000 description 1
- 101710107068 Myelin basic protein Proteins 0.000 description 1
- 206010051606 Necrotising colitis Diseases 0.000 description 1
- 229930193140 Neomycin Natural products 0.000 description 1
- 101100336468 Neurospora crassa (strain ATCC 24698 / 74-OR23-1A / CBS 708.71 / DSM 1257 / FGSC 987) gem-1 gene Proteins 0.000 description 1
- 238000000636 Northern blotting Methods 0.000 description 1
- 101710163270 Nuclease Proteins 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 108020005187 Oligonucleotide Probes Proteins 0.000 description 1
- AHLPHDHHMVZTML-UHFFFAOYSA-N Orn-delta-NH2 Natural products NCCCC(N)C(O)=O AHLPHDHHMVZTML-UHFFFAOYSA-N 0.000 description 1
- UTJLXEIPEHZYQJ-UHFFFAOYSA-N Ornithine Natural products OC(=O)C(C)CCCN UTJLXEIPEHZYQJ-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 229930012538 Paclitaxel Natural products 0.000 description 1
- 241000282579 Pan Species 0.000 description 1
- 108010067372 Pancreatic elastase Proteins 0.000 description 1
- 241001631646 Papillomaviridae Species 0.000 description 1
- 235000019483 Peanut oil Nutrition 0.000 description 1
- 108010077524 Peptide Elongation Factor 1 Proteins 0.000 description 1
- KHGNFPUMBJSZSM-UHFFFAOYSA-N Perforine Natural products COC1=C2CCC(O)C(CCC(C)(C)O)(OC)C2=NC2=C1C=CO2 KHGNFPUMBJSZSM-UHFFFAOYSA-N 0.000 description 1
- 102000012288 Phosphopyruvate Hydratase Human genes 0.000 description 1
- 108010022181 Phosphopyruvate Hydratase Proteins 0.000 description 1
- 108091000080 Phosphotransferase Proteins 0.000 description 1
- 241000224016 Plasmodium Species 0.000 description 1
- 102100039277 Pleiotrophin Human genes 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 229920002732 Polyanhydride Polymers 0.000 description 1
- 229920000954 Polyglycolide Polymers 0.000 description 1
- 229920002642 Polysorbate 65 Polymers 0.000 description 1
- 208000004210 Pressure Ulcer Diseases 0.000 description 1
- 108010050808 Procollagen Proteins 0.000 description 1
- 206010036790 Productive cough Diseases 0.000 description 1
- 239000004365 Protease Substances 0.000 description 1
- 108010067787 Proteoglycans Proteins 0.000 description 1
- 102000016611 Proteoglycans Human genes 0.000 description 1
- 108700005482 Protozoan circumsporozoite Proteins 0.000 description 1
- 208000003100 Pseudomembranous Enterocolitis Diseases 0.000 description 1
- 241000589516 Pseudomonas Species 0.000 description 1
- 238000011529 RT qPCR Methods 0.000 description 1
- 238000010240 RT-PCR analysis Methods 0.000 description 1
- 206010038063 Rectal haemorrhage Diseases 0.000 description 1
- 241001068295 Replication defective viruses Species 0.000 description 1
- 108091027981 Response element Proteins 0.000 description 1
- 108091028664 Ribonucleotide Proteins 0.000 description 1
- 241000283984 Rodentia Species 0.000 description 1
- 102100027296 SCO-spondin Human genes 0.000 description 1
- 108010010180 SCO-spondin Proteins 0.000 description 1
- 241000607142 Salmonella Species 0.000 description 1
- 241000235347 Schizosaccharomyces pombe Species 0.000 description 1
- 102000014105 Semaphorin Human genes 0.000 description 1
- 108050003978 Semaphorin Proteins 0.000 description 1
- 241000607768 Shigella Species 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 108020004682 Single-Stranded DNA Proteins 0.000 description 1
- 206010041067 Small cell lung cancer Diseases 0.000 description 1
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 1
- 102100036428 Spondin-1 Human genes 0.000 description 1
- 101710092167 Spondin-1 Proteins 0.000 description 1
- 102100036427 Spondin-2 Human genes 0.000 description 1
- 241000191940 Staphylococcus Species 0.000 description 1
- 208000007107 Stomach Ulcer Diseases 0.000 description 1
- 241000187747 Streptomyces Species 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 102000003698 Syndecan-3 Human genes 0.000 description 1
- 108090000068 Syndecan-3 Proteins 0.000 description 1
- 208000005400 Synovial Cyst Diseases 0.000 description 1
- 108700005078 Synthetic Genes Proteins 0.000 description 1
- 230000024932 T cell mediated immunity Effects 0.000 description 1
- 101150006914 TRP1 gene Proteins 0.000 description 1
- 108020005038 Terminator Codon Proteins 0.000 description 1
- 210000000447 Th1 cell Anatomy 0.000 description 1
- 210000004241 Th2 cell Anatomy 0.000 description 1
- RYYWUUFWQRZTIU-UHFFFAOYSA-N Thiophosphoric acid Chemical class OP(O)(S)=O RYYWUUFWQRZTIU-UHFFFAOYSA-N 0.000 description 1
- 208000007536 Thrombosis Diseases 0.000 description 1
- 229920001615 Tragacanth Polymers 0.000 description 1
- 102100037116 Transcription elongation factor 1 homolog Human genes 0.000 description 1
- 102000040945 Transcription factor Human genes 0.000 description 1
- 108091023040 Transcription factor Proteins 0.000 description 1
- 108700029229 Transcriptional Regulatory Elements Proteins 0.000 description 1
- 102000004357 Transferases Human genes 0.000 description 1
- 108090000992 Transferases Proteins 0.000 description 1
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- 102000004243 Tubulin Human genes 0.000 description 1
- 108090000704 Tubulin Proteins 0.000 description 1
- 102100040247 Tumor necrosis factor Human genes 0.000 description 1
- 208000004387 Typhlitis Diseases 0.000 description 1
- 208000037386 Typhoid Diseases 0.000 description 1
- 108091023045 Untranslated Region Proteins 0.000 description 1
- 206010054880 Vascular insufficiency Diseases 0.000 description 1
- 241000607626 Vibrio cholerae Species 0.000 description 1
- 102100035071 Vimentin Human genes 0.000 description 1
- 108010065472 Vimentin Proteins 0.000 description 1
- 208000036142 Viral infection Diseases 0.000 description 1
- 241000607734 Yersinia <bacteria> Species 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 235000010489 acacia gum Nutrition 0.000 description 1
- 239000000205 acacia gum Substances 0.000 description 1
- 230000021736 acetylation Effects 0.000 description 1
- 238000006640 acetylation reaction Methods 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 230000010933 acylation Effects 0.000 description 1
- 238000005917 acylation reaction Methods 0.000 description 1
- 239000002671 adjuvant Substances 0.000 description 1
- 238000009098 adjuvant therapy Methods 0.000 description 1
- 210000004404 adrenal cortex Anatomy 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000001042 affinity chromatography Methods 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 235000010419 agar Nutrition 0.000 description 1
- 229940040563 agaric acid Drugs 0.000 description 1
- 239000000556 agonist Substances 0.000 description 1
- 238000012867 alanine scanning Methods 0.000 description 1
- 108010024078 alanyl-glycyl-serine Proteins 0.000 description 1
- 235000010443 alginic acid Nutrition 0.000 description 1
- 229920000615 alginic acid Polymers 0.000 description 1
- 239000000783 alginic acid Substances 0.000 description 1
- 229960001126 alginic acid Drugs 0.000 description 1
- 150000004781 alginic acids Chemical class 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 229920013820 alkyl cellulose Polymers 0.000 description 1
- 239000002168 alkylating agent Substances 0.000 description 1
- 108010050122 alpha 1-Antitrypsin Proteins 0.000 description 1
- 108010026331 alpha-Fetoproteins Proteins 0.000 description 1
- 150000004645 aluminates Chemical class 0.000 description 1
- 210000002588 alveolar type II cell Anatomy 0.000 description 1
- 230000006229 amino acid addition Effects 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 239000003708 ampul Substances 0.000 description 1
- 239000005557 antagonist Substances 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 230000003432 anti-folate effect Effects 0.000 description 1
- 230000000118 anti-neoplastic effect Effects 0.000 description 1
- 230000002788 anti-peptide Effects 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 229940127074 antifolate Drugs 0.000 description 1
- 239000002246 antineoplastic agent Substances 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 239000008346 aqueous phase Substances 0.000 description 1
- 239000008135 aqueous vehicle Substances 0.000 description 1
- 150000008209 arabinosides Chemical class 0.000 description 1
- 108010062796 arginyllysine Proteins 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 210000004507 artificial chromosome Anatomy 0.000 description 1
- 238000002820 assay format Methods 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 230000003305 autocrine Effects 0.000 description 1
- VSRXQHXAPYXROS-UHFFFAOYSA-N azanide;cyclobutane-1,1-dicarboxylic acid;platinum(2+) Chemical compound [NH2-].[NH2-].[Pt+2].OC(=O)C1(C(O)=O)CCC1 VSRXQHXAPYXROS-UHFFFAOYSA-N 0.000 description 1
- 230000007375 bacterial translocation Effects 0.000 description 1
- 208000007456 balantidiasis Diseases 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 210000002469 basement membrane Anatomy 0.000 description 1
- 238000002869 basic local alignment search tool Methods 0.000 description 1
- OGBUMNBNEWYMNJ-UHFFFAOYSA-N batilol Chemical class CCCCCCCCCCCCCCCCCCOCC(O)CO OGBUMNBNEWYMNJ-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 239000003613 bile acid Substances 0.000 description 1
- 238000004166 bioassay Methods 0.000 description 1
- 239000003462 bioceramic Substances 0.000 description 1
- 230000003115 biocidal effect Effects 0.000 description 1
- 229920000249 biocompatible polymer Polymers 0.000 description 1
- 239000005312 bioglass Substances 0.000 description 1
- 239000013060 biological fluid Substances 0.000 description 1
- 230000008512 biological response Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229960000074 biopharmaceutical Drugs 0.000 description 1
- 229960002685 biotin Drugs 0.000 description 1
- 235000020958 biotin Nutrition 0.000 description 1
- 239000011616 biotin Substances 0.000 description 1
- 210000002459 blastocyst Anatomy 0.000 description 1
- 208000024330 bloating Diseases 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 239000003114 blood coagulation factor Substances 0.000 description 1
- 210000001772 blood platelet Anatomy 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 230000008468 bone growth Effects 0.000 description 1
- 210000001185 bone marrow Anatomy 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 229940098773 bovine serum albumin Drugs 0.000 description 1
- 238000009395 breeding Methods 0.000 description 1
- 230000001488 breeding effect Effects 0.000 description 1
- 235000010633 broth Nutrition 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 210000004899 c-terminal region Anatomy 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- BPKIGYQJPYCAOW-FFJTTWKXSA-I calcium;potassium;disodium;(2s)-2-hydroxypropanoate;dichloride;dihydroxide;hydrate Chemical compound O.[OH-].[OH-].[Na+].[Na+].[Cl-].[Cl-].[K+].[Ca+2].C[C@H](O)C([O-])=O BPKIGYQJPYCAOW-FFJTTWKXSA-I 0.000 description 1
- BMLSTPRTEKLIPM-UHFFFAOYSA-I calcium;potassium;disodium;hydrogen carbonate;dichloride;dihydroxide;hydrate Chemical compound O.[OH-].[OH-].[Na+].[Na+].[Cl-].[Cl-].[K+].[Ca+2].OC([O-])=O BMLSTPRTEKLIPM-UHFFFAOYSA-I 0.000 description 1
- 150000004657 carbamic acid derivatives Chemical class 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229960004424 carbon dioxide Drugs 0.000 description 1
- 229960004562 carboplatin Drugs 0.000 description 1
- 230000021523 carboxylation Effects 0.000 description 1
- 238000006473 carboxylation reaction Methods 0.000 description 1
- 230000022159 cartilage development Effects 0.000 description 1
- 238000012219 cassette mutagenesis Methods 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 230000034196 cell chemotaxis Effects 0.000 description 1
- 230000011712 cell development Effects 0.000 description 1
- 230000010261 cell growth Effects 0.000 description 1
- 230000022534 cell killing Effects 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 238000002659 cell therapy Methods 0.000 description 1
- 230000008614 cellular interaction Effects 0.000 description 1
- 230000030570 cellular localization Effects 0.000 description 1
- 230000036755 cellular response Effects 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000035605 chemotaxis Effects 0.000 description 1
- 210000004978 chinese hamster ovary cell Anatomy 0.000 description 1
- 229960005091 chloramphenicol Drugs 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 230000002759 chromosomal effect Effects 0.000 description 1
- 230000003021 clonogenic effect Effects 0.000 description 1
- 229940110456 cocoa butter Drugs 0.000 description 1
- 235000019868 cocoa butter Nutrition 0.000 description 1
- 208000008609 collagenous colitis Diseases 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000003184 complementary RNA Substances 0.000 description 1
- 230000001010 compromised effect Effects 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 230000027326 copulation Effects 0.000 description 1
- 239000003246 corticosteroid Substances 0.000 description 1
- 229960001334 corticosteroids Drugs 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 239000000287 crude extract Substances 0.000 description 1
- 210000001771 cumulus cell Anatomy 0.000 description 1
- 238000011461 current therapy Methods 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- 150000001945 cysteines Chemical class 0.000 description 1
- 238000012303 cytoplasmic staining Methods 0.000 description 1
- 229940104302 cytosine Drugs 0.000 description 1
- 229940127089 cytotoxic agent Drugs 0.000 description 1
- 238000011393 cytotoxic chemotherapy Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 239000003405 delayed action preparation Substances 0.000 description 1
- 239000005547 deoxyribonucleotide Substances 0.000 description 1
- 125000002637 deoxyribonucleotide group Chemical group 0.000 description 1
- 238000001212 derivatisation Methods 0.000 description 1
- 210000005045 desmin Anatomy 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 239000008356 dextrose and sodium chloride injection Substances 0.000 description 1
- 239000008355 dextrose injection Substances 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 239000000032 diagnostic agent Substances 0.000 description 1
- 229940039227 diagnostic agent Drugs 0.000 description 1
- 238000007435 diagnostic evaluation Methods 0.000 description 1
- 125000005265 dialkylamine group Chemical group 0.000 description 1
- PXBRQCKWGAHEHS-UHFFFAOYSA-N dichlorodifluoromethane Chemical compound FC(F)(Cl)Cl PXBRQCKWGAHEHS-UHFFFAOYSA-N 0.000 description 1
- 235000019404 dichlorodifluoromethane Nutrition 0.000 description 1
- 229940042935 dichlorodifluoromethane Drugs 0.000 description 1
- 229940087091 dichlorotetrafluoroethane Drugs 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 230000029087 digestion Effects 0.000 description 1
- 230000001079 digestive effect Effects 0.000 description 1
- 210000002249 digestive system Anatomy 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- USIUVYZYUHIAEV-UHFFFAOYSA-N diphenyl ether Chemical compound C=1C=CC=CC=1OC1=CC=CC=C1 USIUVYZYUHIAEV-UHFFFAOYSA-N 0.000 description 1
- 210000001840 diploid cell Anatomy 0.000 description 1
- POLCUAVZOMRGSN-UHFFFAOYSA-N dipropyl ether Chemical compound CCCOCCC POLCUAVZOMRGSN-UHFFFAOYSA-N 0.000 description 1
- 230000009266 disease activity Effects 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- NAGJZTKCGNOGPW-UHFFFAOYSA-N dithiophosphoric acid Chemical class OP(O)(S)=S NAGJZTKCGNOGPW-UHFFFAOYSA-N 0.000 description 1
- 201000008243 diversion colitis Diseases 0.000 description 1
- 231100000673 dose–response relationship Toxicity 0.000 description 1
- 230000003828 downregulation Effects 0.000 description 1
- 229960004679 doxorubicin Drugs 0.000 description 1
- 238000007877 drug screening Methods 0.000 description 1
- 208000000718 duodenal ulcer Diseases 0.000 description 1
- 201000006549 dyspepsia Diseases 0.000 description 1
- 230000002500 effect on skin Effects 0.000 description 1
- 230000013020 embryo development Effects 0.000 description 1
- 230000001804 emulsifying effect Effects 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 210000002472 endoplasmic reticulum Anatomy 0.000 description 1
- 210000002889 endothelial cell Anatomy 0.000 description 1
- 210000003038 endothelium Anatomy 0.000 description 1
- 239000007920 enema Substances 0.000 description 1
- 229940079360 enema for constipation Drugs 0.000 description 1
- 238000006911 enzymatic reaction Methods 0.000 description 1
- 238000001952 enzyme assay Methods 0.000 description 1
- 238000001976 enzyme digestion Methods 0.000 description 1
- 210000003979 eosinophil Anatomy 0.000 description 1
- 206010057271 eosinophilic colitis Diseases 0.000 description 1
- 208000002854 epidermolysis bullosa simplex superficialis Diseases 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 230000000925 erythroid effect Effects 0.000 description 1
- 235000019325 ethyl cellulose Nutrition 0.000 description 1
- 229920001249 ethyl cellulose Polymers 0.000 description 1
- LVGKNOAMLMIIKO-QXMHVHEDSA-N ethyl oleate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCC LVGKNOAMLMIIKO-QXMHVHEDSA-N 0.000 description 1
- 229940093471 ethyl oleate Drugs 0.000 description 1
- 229960000301 factor viii Drugs 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 238000000855 fermentation Methods 0.000 description 1
- 230000004151 fermentation Effects 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 239000012847 fine chemical Substances 0.000 description 1
- 238000000684 flow cytometry Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000007850 fluorescent dye Substances 0.000 description 1
- 239000004052 folic acid antagonist Substances 0.000 description 1
- 230000003325 follicular Effects 0.000 description 1
- 230000037433 frameshift Effects 0.000 description 1
- 230000002538 fungal effect Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 208000021302 gastroesophageal reflux disease Diseases 0.000 description 1
- 238000001641 gel filtration chromatography Methods 0.000 description 1
- 208000016361 genetic disease Diseases 0.000 description 1
- 230000000762 glandular Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 125000005456 glyceride group Chemical group 0.000 description 1
- 150000002334 glycols Chemical class 0.000 description 1
- 230000002414 glycolytic effect Effects 0.000 description 1
- VPZXBVLAVMBEQI-UHFFFAOYSA-N glycyl-DL-alpha-alanine Natural products OC(=O)C(C)NC(=O)CN VPZXBVLAVMBEQI-UHFFFAOYSA-N 0.000 description 1
- 230000002710 gonadal effect Effects 0.000 description 1
- 230000001456 gonadotroph Effects 0.000 description 1
- 239000002622 gonadotropin Substances 0.000 description 1
- 230000036449 good health Effects 0.000 description 1
- 208000024908 graft versus host disease Diseases 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 239000007952 growth promoter Substances 0.000 description 1
- 201000010536 head and neck cancer Diseases 0.000 description 1
- 208000014829 head and neck neoplasm Diseases 0.000 description 1
- 210000002216 heart Anatomy 0.000 description 1
- 208000024798 heartburn Diseases 0.000 description 1
- 210000003958 hematopoietic stem cell Anatomy 0.000 description 1
- 210000003494 hepatocyte Anatomy 0.000 description 1
- 230000000971 hippocampal effect Effects 0.000 description 1
- 125000000487 histidyl group Chemical group [H]N([H])C(C(=O)O*)C([H])([H])C1=C([H])N([H])C([H])=N1 0.000 description 1
- 238000007825 histological assay Methods 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 102000043557 human IFNG Human genes 0.000 description 1
- 210000005260 human cell Anatomy 0.000 description 1
- 229940084986 human chorionic gonadotropin Drugs 0.000 description 1
- 210000003917 human chromosome Anatomy 0.000 description 1
- 230000028996 humoral immune response Effects 0.000 description 1
- 229920002674 hyaluronan Polymers 0.000 description 1
- 229960003160 hyaluronic acid Drugs 0.000 description 1
- 229960002773 hyaluronidase Drugs 0.000 description 1
- 238000004191 hydrophobic interaction chromatography Methods 0.000 description 1
- 229920001600 hydrophobic polymer Polymers 0.000 description 1
- 229920013821 hydroxy alkyl cellulose Polymers 0.000 description 1
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 description 1
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 1
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 1
- 206010020718 hyperplasia Diseases 0.000 description 1
- 210000003016 hypothalamus Anatomy 0.000 description 1
- 208000036260 idiopathic disease Diseases 0.000 description 1
- 230000037189 immune system physiology Effects 0.000 description 1
- 230000003053 immunization Effects 0.000 description 1
- 238000003317 immunochromatography Methods 0.000 description 1
- 230000002163 immunogen Effects 0.000 description 1
- 229940072221 immunoglobulins Drugs 0.000 description 1
- 238000002991 immunohistochemical analysis Methods 0.000 description 1
- 239000003018 immunosuppressive agent Substances 0.000 description 1
- 229940125721 immunosuppressive agent Drugs 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 238000007901 in situ hybridization Methods 0.000 description 1
- 230000006882 induction of apoptosis Effects 0.000 description 1
- 230000001524 infective effect Effects 0.000 description 1
- 208000027866 inflammatory disease Diseases 0.000 description 1
- 230000028709 inflammatory response Effects 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 150000007529 inorganic bases Chemical class 0.000 description 1
- 239000013546 insoluble monolayer Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 102000006495 integrins Human genes 0.000 description 1
- 108010044426 integrins Proteins 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 229960003130 interferon gamma Drugs 0.000 description 1
- 239000003407 interleukin 1 receptor blocking agent Substances 0.000 description 1
- 229940047122 interleukins Drugs 0.000 description 1
- 210000003963 intermediate filament Anatomy 0.000 description 1
- 230000009698 intestinal cell proliferation Effects 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 238000010255 intramuscular injection Methods 0.000 description 1
- 239000007927 intramuscular injection Substances 0.000 description 1
- 239000007928 intraperitoneal injection Substances 0.000 description 1
- 238000007913 intrathecal administration Methods 0.000 description 1
- 238000010253 intravenous injection Methods 0.000 description 1
- 238000007914 intraventricular administration Methods 0.000 description 1
- 230000009545 invasion Effects 0.000 description 1
- 239000003456 ion exchange resin Substances 0.000 description 1
- 229920003303 ion-exchange polymer Polymers 0.000 description 1
- UWKQSNNFCGGAFS-XIFFEERXSA-N irinotecan Chemical compound C1=C2C(CC)=C3CN(C(C4=C([C@@](C(=O)OC4)(O)CC)C=4)=O)C=4C3=NC2=CC=C1OC(=O)N(CC1)CCC1N1CCCCC1 UWKQSNNFCGGAFS-XIFFEERXSA-N 0.000 description 1
- 229960004768 irinotecan Drugs 0.000 description 1
- 210000004153 islets of langerhan Anatomy 0.000 description 1
- FZWBNHMXJMCXLU-BLAUPYHCSA-N isomaltotriose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1OC[C@@H]1[C@@H](O)[C@H](O)[C@@H](O)[C@@H](OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C=O)O1 FZWBNHMXJMCXLU-BLAUPYHCSA-N 0.000 description 1
- 210000003292 kidney cell Anatomy 0.000 description 1
- 210000000231 kidney cortex Anatomy 0.000 description 1
- 210000001985 kidney epithelial cell Anatomy 0.000 description 1
- 238000011005 laboratory method Methods 0.000 description 1
- 101150109249 lacI gene Proteins 0.000 description 1
- 101150066555 lacZ gene Proteins 0.000 description 1
- 239000004922 lacquer Substances 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 230000003902 lesion Effects 0.000 description 1
- 231100000518 lethal Toxicity 0.000 description 1
- 230000001665 lethal effect Effects 0.000 description 1
- 229960001614 levamisole Drugs 0.000 description 1
- 210000003041 ligament Anatomy 0.000 description 1
- 125000005647 linker group Chemical group 0.000 description 1
- 230000029226 lipidation Effects 0.000 description 1
- 238000001638 lipofection Methods 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 229940057995 liquid paraffin Drugs 0.000 description 1
- 238000002865 local sequence alignment Methods 0.000 description 1
- 230000027928 long-term synaptic potentiation Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000007937 lozenge Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 210000001165 lymph node Anatomy 0.000 description 1
- 239000006166 lysate Substances 0.000 description 1
- 230000002934 lysing effect Effects 0.000 description 1
- 108010009298 lysylglutamic acid Proteins 0.000 description 1
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 1
- 239000000347 magnesium hydroxide Substances 0.000 description 1
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 1
- 235000019359 magnesium stearate Nutrition 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 208000010560 malakoplakia Diseases 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 238000002483 medication Methods 0.000 description 1
- 229960001924 melphalan Drugs 0.000 description 1
- SGDBTWWWUNNDEQ-LBPRGKRZSA-N melphalan Chemical compound OC(=O)[C@@H](N)CC1=CC=C(N(CCCl)CCCl)C=C1 SGDBTWWWUNNDEQ-LBPRGKRZSA-N 0.000 description 1
- 210000000713 mesentery Anatomy 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 230000011987 methylation Effects 0.000 description 1
- 238000007069 methylation reaction Methods 0.000 description 1
- 239000000693 micelle Substances 0.000 description 1
- 239000011859 microparticle Substances 0.000 description 1
- 210000004939 midgestation embryo Anatomy 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 235000013336 milk Nutrition 0.000 description 1
- 239000008267 milk Substances 0.000 description 1
- 210000004080 milk Anatomy 0.000 description 1
- 108010074865 mindin Proteins 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 235000010446 mineral oil Nutrition 0.000 description 1
- 235000020786 mineral supplement Nutrition 0.000 description 1
- 229940029985 mineral supplement Drugs 0.000 description 1
- 230000002297 mitogenic effect Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000010172 mouse model Methods 0.000 description 1
- 210000000214 mouth Anatomy 0.000 description 1
- 210000003097 mucus Anatomy 0.000 description 1
- 238000002703 mutagenesis Methods 0.000 description 1
- 231100000350 mutagenesis Toxicity 0.000 description 1
- 239000003471 mutagenic agent Substances 0.000 description 1
- 210000000066 myeloid cell Anatomy 0.000 description 1
- 108010065781 myosin light chain 2 Proteins 0.000 description 1
- 229940086322 navelbine Drugs 0.000 description 1
- 230000017074 necrotic cell death Effects 0.000 description 1
- 208000004995 necrotizing enterocolitis Diseases 0.000 description 1
- 230000014399 negative regulation of angiogenesis Effects 0.000 description 1
- 229960004927 neomycin Drugs 0.000 description 1
- 238000007857 nested PCR Methods 0.000 description 1
- 230000000955 neuroendocrine Effects 0.000 description 1
- 210000004412 neuroendocrine cell Anatomy 0.000 description 1
- 210000005044 neurofilament Anatomy 0.000 description 1
- 230000014511 neuron projection development Effects 0.000 description 1
- 230000007514 neuronal growth Effects 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 231100000956 nontoxicity Toxicity 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 210000000633 nuclear envelope Anatomy 0.000 description 1
- 235000016709 nutrition Nutrition 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 210000004248 oligodendroglia Anatomy 0.000 description 1
- 229940046166 oligodeoxynucleotide Drugs 0.000 description 1
- 239000002751 oligonucleotide probe Substances 0.000 description 1
- 150000007530 organic bases Chemical class 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 239000003791 organic solvent mixture Substances 0.000 description 1
- 229960003104 ornithine Drugs 0.000 description 1
- 230000011164 ossification Effects 0.000 description 1
- 230000002188 osteogenic effect Effects 0.000 description 1
- 230000002611 ovarian Effects 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 229960001592 paclitaxel Drugs 0.000 description 1
- 210000002741 palatine tonsil Anatomy 0.000 description 1
- 210000000496 pancreas Anatomy 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 235000016236 parenteral nutrition Nutrition 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 239000000312 peanut oil Substances 0.000 description 1
- 230000006320 pegylation Effects 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 229930192851 perforin Natural products 0.000 description 1
- 201000006195 perinatal necrotizing enterocolitis Diseases 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 210000001322 periplasm Anatomy 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- PHEDXBVPIONUQT-RGYGYFBISA-N phorbol 13-acetate 12-myristate Chemical compound C([C@]1(O)C(=O)C(C)=C[C@H]1[C@@]1(O)[C@H](C)[C@H]2OC(=O)CCCCCCCCCCCCC)C(CO)=C[C@H]1[C@H]1[C@]2(OC(C)=O)C1(C)C PHEDXBVPIONUQT-RGYGYFBISA-N 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 150000004713 phosphodiesters Chemical group 0.000 description 1
- 108010079892 phosphoglycerol kinase Proteins 0.000 description 1
- 150000003904 phospholipids Chemical class 0.000 description 1
- 102000020233 phosphotransferase Human genes 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 230000035790 physiological processes and functions Effects 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 239000006187 pill Substances 0.000 description 1
- 210000002826 placenta Anatomy 0.000 description 1
- 230000003169 placental effect Effects 0.000 description 1
- 210000002381 plasma Anatomy 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920000729 poly(L-lysine) polymer Polymers 0.000 description 1
- 229940068886 polyethylene glycol 300 Drugs 0.000 description 1
- 239000004633 polyglycolic acid Substances 0.000 description 1
- 229930001119 polyketide Natural products 0.000 description 1
- 125000000830 polyketide group Chemical group 0.000 description 1
- 229930001118 polyketide hybrid Natural products 0.000 description 1
- 125000003308 polyketide hybrid group Chemical group 0.000 description 1
- 235000010988 polyoxyethylene sorbitan tristearate Nutrition 0.000 description 1
- 239000001816 polyoxyethylene sorbitan tristearate Substances 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 150000004804 polysaccharides Chemical class 0.000 description 1
- 229940099511 polysorbate 65 Drugs 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000013641 positive control Substances 0.000 description 1
- 230000004481 post-translational protein modification Effects 0.000 description 1
- XAEFZNCEHLXOMS-UHFFFAOYSA-M potassium benzoate Chemical compound [K+].[O-]C(=O)C1=CC=CC=C1 XAEFZNCEHLXOMS-UHFFFAOYSA-M 0.000 description 1
- 229940103091 potassium benzoate Drugs 0.000 description 1
- 235000010235 potassium benzoate Nutrition 0.000 description 1
- 239000004300 potassium benzoate Substances 0.000 description 1
- 229920001592 potato starch Polymers 0.000 description 1
- 230000035935 pregnancy Effects 0.000 description 1
- 230000002335 preservative effect Effects 0.000 description 1
- 230000009465 prokaryotic expression Effects 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 239000003380 propellant Substances 0.000 description 1
- 230000000069 prophylactic effect Effects 0.000 description 1
- 238000011321 prophylaxis Methods 0.000 description 1
- 210000002307 prostate Anatomy 0.000 description 1
- 238000002331 protein detection Methods 0.000 description 1
- 108020001580 protein domains Proteins 0.000 description 1
- 238000001742 protein purification Methods 0.000 description 1
- 230000030788 protein refolding Effects 0.000 description 1
- 239000001397 quillaja saponaria molina bark Substances 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 238000003753 real-time PCR Methods 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 230000024155 regulation of cell adhesion Effects 0.000 description 1
- 230000020129 regulation of cell death Effects 0.000 description 1
- 230000009703 regulation of cell differentiation Effects 0.000 description 1
- 230000021014 regulation of cell growth Effects 0.000 description 1
- 230000012760 regulation of cell migration Effects 0.000 description 1
- 230000022532 regulation of transcription, DNA-dependent Effects 0.000 description 1
- 239000003488 releasing hormone Substances 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 230000003362 replicative effect Effects 0.000 description 1
- 230000001850 reproductive effect Effects 0.000 description 1
- 210000001533 respiratory mucosa Anatomy 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 108090000064 retinoic acid receptors Proteins 0.000 description 1
- 102000003702 retinoic acid receptors Human genes 0.000 description 1
- 238000003757 reverse transcription PCR Methods 0.000 description 1
- 239000002336 ribonucleotide Substances 0.000 description 1
- 125000002652 ribonucleotide group Chemical group 0.000 description 1
- 229940100486 rice starch Drugs 0.000 description 1
- 229920002477 rna polymer Chemical group 0.000 description 1
- 210000003079 salivary gland Anatomy 0.000 description 1
- 238000005185 salting out Methods 0.000 description 1
- 229930182490 saponin Natural products 0.000 description 1
- 150000007949 saponins Chemical class 0.000 description 1
- 238000013341 scale-up Methods 0.000 description 1
- 201000004409 schistosomiasis Diseases 0.000 description 1
- 238000007423 screening assay Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 210000002027 skeletal muscle Anatomy 0.000 description 1
- 206010040882 skin lesion Diseases 0.000 description 1
- 231100000444 skin lesion Toxicity 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 208000000587 small cell lung carcinoma Diseases 0.000 description 1
- 210000002460 smooth muscle Anatomy 0.000 description 1
- 210000000329 smooth muscle myocyte Anatomy 0.000 description 1
- 239000001632 sodium acetate Substances 0.000 description 1
- 235000017281 sodium acetate Nutrition 0.000 description 1
- 229960004249 sodium acetate Drugs 0.000 description 1
- 239000008354 sodium chloride injection Substances 0.000 description 1
- FQENQNTWSFEDLI-UHFFFAOYSA-J sodium diphosphate Chemical compound [Na+].[Na+].[Na+].[Na+].[O-]P([O-])(=O)OP([O-])([O-])=O FQENQNTWSFEDLI-UHFFFAOYSA-J 0.000 description 1
- 229940048086 sodium pyrophosphate Drugs 0.000 description 1
- 239000007901 soft capsule Substances 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 239000012439 solid excipient Substances 0.000 description 1
- 210000001082 somatic cell Anatomy 0.000 description 1
- 230000000392 somatic effect Effects 0.000 description 1
- 238000000527 sonication Methods 0.000 description 1
- 239000003549 soybean oil Substances 0.000 description 1
- 235000012424 soybean oil Nutrition 0.000 description 1
- 229940124547 specific antidotes Drugs 0.000 description 1
- 210000000952 spleen Anatomy 0.000 description 1
- 210000004989 spleen cell Anatomy 0.000 description 1
- 210000003046 sporozoite Anatomy 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 210000003802 sputum Anatomy 0.000 description 1
- 208000024794 sputum Diseases 0.000 description 1
- 230000010473 stable expression Effects 0.000 description 1
- 238000012289 standard assay Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 230000023895 stem cell maintenance Effects 0.000 description 1
- 108020003113 steroid hormone receptors Proteins 0.000 description 1
- 102000005969 steroid hormone receptors Human genes 0.000 description 1
- 210000000498 stratum granulosum Anatomy 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 239000000829 suppository Substances 0.000 description 1
- 239000002511 suppository base Substances 0.000 description 1
- 239000000375 suspending agent Substances 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- 210000000225 synapse Anatomy 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000010189 synthetic method Methods 0.000 description 1
- 208000006379 syphilis Diseases 0.000 description 1
- 239000006188 syrup Substances 0.000 description 1
- 235000020357 syrup Nutrition 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 238000007910 systemic administration Methods 0.000 description 1
- RCINICONZNJXQF-MZXODVADSA-N taxol Chemical compound O([C@@H]1[C@@]2(C[C@@H](C(C)=C(C2(C)C)[C@H](C([C@]2(C)[C@@H](O)C[C@H]3OC[C@]3([C@H]21)OC(C)=O)=O)OC(=O)C)OC(=O)[C@H](O)[C@@H](NC(=O)C=1C=CC=CC=1)C=1C=CC=CC=1)O)C(=O)C1=CC=CC=C1 RCINICONZNJXQF-MZXODVADSA-N 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 210000002435 tendon Anatomy 0.000 description 1
- 230000002381 testicular Effects 0.000 description 1
- 235000019818 tetrasodium diphosphate Nutrition 0.000 description 1
- 239000001577 tetrasodium phosphonato phosphate Substances 0.000 description 1
- 231100001274 therapeutic index Toxicity 0.000 description 1
- 230000008719 thickening Effects 0.000 description 1
- 125000003396 thiol group Chemical group [H]S* 0.000 description 1
- 230000036962 time dependent Effects 0.000 description 1
- 230000000451 tissue damage Effects 0.000 description 1
- 231100000827 tissue damage Toxicity 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- 238000011200 topical administration Methods 0.000 description 1
- 230000000699 topical effect Effects 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 230000005026 transcription initiation Effects 0.000 description 1
- 238000012256 transgenic experiment Methods 0.000 description 1
- 230000010474 transient expression Effects 0.000 description 1
- 238000002054 transplantation Methods 0.000 description 1
- 230000000472 traumatic effect Effects 0.000 description 1
- 230000008736 traumatic injury Effects 0.000 description 1
- 238000011269 treatment regimen Methods 0.000 description 1
- 150000003626 triacylglycerols Chemical class 0.000 description 1
- 125000005270 trialkylamine group Chemical group 0.000 description 1
- YFDSDPIBEUFTMI-UHFFFAOYSA-N tribromoethanol Chemical compound OCC(Br)(Br)Br YFDSDPIBEUFTMI-UHFFFAOYSA-N 0.000 description 1
- 229950004616 tribromoethanol Drugs 0.000 description 1
- CYRMSUTZVYGINF-UHFFFAOYSA-N trichlorofluoromethane Chemical compound FC(Cl)(Cl)Cl CYRMSUTZVYGINF-UHFFFAOYSA-N 0.000 description 1
- 229940029284 trichlorofluoromethane Drugs 0.000 description 1
- 208000009920 trichuriasis Diseases 0.000 description 1
- 229960004418 trolamine Drugs 0.000 description 1
- 210000002993 trophoblast Anatomy 0.000 description 1
- 125000000430 tryptophan group Chemical group [H]N([H])C(C(=O)O*)C([H])([H])C1=C([H])N([H])C2=C([H])C([H])=C([H])C([H])=C12 0.000 description 1
- 201000008827 tuberculosis Diseases 0.000 description 1
- 201000008297 typhoid fever Diseases 0.000 description 1
- 238000010798 ubiquitination Methods 0.000 description 1
- 230000034512 ubiquitination Effects 0.000 description 1
- 231100000397 ulcer Toxicity 0.000 description 1
- 230000009452 underexpressoin Effects 0.000 description 1
- 241000701447 unidentified baculovirus Species 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 210000002700 urine Anatomy 0.000 description 1
- 230000002792 vascular Effects 0.000 description 1
- 208000023577 vascular insufficiency disease Diseases 0.000 description 1
- 230000035899 viability Effects 0.000 description 1
- 210000005048 vimentin Anatomy 0.000 description 1
- CILBMBUYJCWATM-PYGJLNRPSA-N vinorelbine ditartrate Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O.OC(=O)[C@H](O)[C@@H](O)C(O)=O.C1N(CC=2C3=CC=CC=C3NC=22)CC(CC)=C[C@H]1C[C@]2(C(=O)OC)C1=CC([C@]23[C@H]([C@@]([C@H](OC(C)=O)[C@]4(CC)C=CCN([C@H]34)CC2)(O)C(=O)OC)N2C)=C2C=C1OC CILBMBUYJCWATM-PYGJLNRPSA-N 0.000 description 1
- 230000009385 viral infection Effects 0.000 description 1
- 235000013343 vitamin Nutrition 0.000 description 1
- 235000019195 vitamin supplement Nutrition 0.000 description 1
- 230000004580 weight loss Effects 0.000 description 1
- 229940100445 wheat starch Drugs 0.000 description 1
- 210000005253 yeast cell Anatomy 0.000 description 1
- 210000001325 yolk sac Anatomy 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 210000004340 zona pellucida Anatomy 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/17—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/5005—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
- G01N33/5008—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
- G01N33/5082—Supracellular entities, e.g. tissue, organisms
- G01N33/5088—Supracellular entities, e.g. tissue, organisms of vertebrates
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K67/00—Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
- A01K67/027—New or modified breeds of vertebrates
- A01K67/0275—Genetically modified vertebrates, e.g. transgenic
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/17—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- A61K38/1703—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
- A61K38/1709—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/17—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- A61K38/18—Growth factors; Growth regulators
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K48/00—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
- A61K48/005—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'active' part of the composition delivered, i.e. the nucleic acid delivered
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P29/00—Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/475—Growth factors; Growth regulators
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/85—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
- C12N15/8509—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells for producing genetically modified animals, e.g. transgenic
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K2217/00—Genetically modified animals
- A01K2217/07—Animals genetically altered by homologous recombination
- A01K2217/072—Animals genetically altered by homologous recombination maintaining or altering function, i.e. knock in
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K2227/00—Animals characterised by species
- A01K2227/10—Mammal
- A01K2227/105—Murine
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K2267/00—Animals characterised by purpose
- A01K2267/01—Animal expressing industrially exogenous proteins
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2799/00—Uses of viruses
- C12N2799/02—Uses of viruses as vector
- C12N2799/021—Uses of viruses as vector for the expression of a heterologous nucleic acid
- C12N2799/022—Uses of viruses as vector for the expression of a heterologous nucleic acid where the vector is derived from an adenovirus
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2800/00—Nucleic acids vectors
- C12N2800/30—Vector systems comprising sequences for excision in presence of a recombinase, e.g. loxP or FRT
Definitions
- the present invention relates generally to compositions that comprise gastrointestinal proliferation factor polypeptides and polynucleotides, and methods for using the same.
- a sequence listing is provided.
- Mucositis is the inflammation of the mucous membranes and is a particularly common problem in this patient population due to the use of chemotherapy and radiation therapy used with curative or palliative intent.
- the mucosal injuries to the gastrointestinal tract seen with radiation and chemotherapy include the destruction of crypt cells, a decrease in villous height and ulceration and necrosis of the gastrointestinal epithelium (Berthrong M, World J Surg 10:155-170 (1986)), which underlie disorders including gastrointestinal mucositis and enterocolitis.
- Chemotherapy and radiation therapy cause injury to the oral and gastrointestinal mucosa through direct and indirect toxicity.
- the mechanism for direct mucositis is nonspecific cell killing of rapidly dividing basal epithelial cells that results in epithelial thinning, inflammation, decreased cell renewal, and ultimately ulceration. These painful lesions also produce an increased risk for local and systemic infection.
- Indirect mucotoxicity is a byproduct of chemotherapy-induced myelosuppression, which permits bacterial and viral infections at the site of direct mucosal injury. The severity of these effects may preclude dose escalation, delay treatment, and warrant dose reductions, thus limiting the effectiveness of cancer therapy.
- Prophylaxis and therapy for chemotherapy and radiation therapy-induced (mucosal) gastrointestinal injuries commonly entails prescription of suboptimal doses of chemotherapy or radiotherapy, a downward dose modification in subsequent treatment courses following toxicity, or the use of specific antidotes such as leucovorin after moderate-dose or high-dose methotrexate (Allegra C J. Antifolates. In: Chabner and Collins, eds. Cancer Chemotherapy: Principles and Practice. Philadelphia, Pa. JP Lippincoft Co; 1990:110-153.)
- inflammatory bowel disease a chronic inflammatory disorders of the gastrointestinal tract, which are collectively referred to as inflammatory bowel disease.
- Cytokine-based therapies are available for the treatment of inflammatory bowel disease (Bouma and Strober Nature Rev 3:521-533 (2003)).
- resection of the small intestine is often indicated in patients with inflammatory bowel disease such as Crohn's disease.
- Surgical resection of the small intestine may also be necessary following traumatic injury, vascular accidents, and cancer. Surgical resection that leaves less than 200 cm of viable small bowel places a patient at risk for developing short-bowel syndrome (SBS).
- SBS short-bowel syndrome
- SBS is a disorder that is clinically defined by malabsorption, diarrhea, fluid and electrolyte disturbances, and malnutrition.
- the management of patients with SBS frequently requires long-term, if not life long use of parenteral nutrition (DiBaise et al., Am J Gastroenterol 99:1823-1832 (2004)).
- compositions comprising GIPF, fragments or analogs thereof, may be used for the treatment of conditions where epithelialization is desirable, such as for the treatment of gastrointestinal disorders including chemotherapy and radiation therapy-induced mucositis, mucositis of the oropharynx, lips and esophagus, inflammatory bowel disease, and other conditions including wounds, burns, ophthalmic disorders, and any disorder where stimulation of epithelial cell proliferation or regeneration is desired.
- GIPF GastroIntestinal Proliferative Factor
- the invention is directed to a composition comprising a therapeutically effective amount of a GIPF polypeptide and a pharmaceutically acceptable carrier.
- compositions of the present invention include isolated polynucleotides encoding GIPF polypeptides, including recombinant DNA molecules, and cloned genes or degenerate variants thereof, especially naturally occurring variants such as allelic variants.
- the polynucleotides of the present invention are based on a GIPF polynucleotide isolated from a cDNA library prepared from human fetal skin mRNA (SEQ ID NO: 2).
- compositions of the present invention also include vectors such as expression vectors containing the polynucleotides of the invention, cells genetically engineered to contain such polynucleotides and cells genetically engineered to express such polynucleotides.
- compositions of the invention comprise isolated polynucleotides that include, but are not limited to, a GIPF polynucleotide, a fragment, or variant thereof; a polynucleotide comprising the full length protein coding sequence of SEQ ID NO: 2 or 3 (for example, SEQ ID NO: 4; GIPFwt); a polynucleotide comprising the V5-His-tagged protein coding sequence of SEQ ID NO: 5 (for example SEQ ID NO: 6; GIPFt); a polynucleotide comprising the nucleotide sequence of the dominant mature protein coding sequence of SEQ ID NO: 9 (for example SEQ ID NO: 10); a polynucleotide comprising the nucleotide sequence of the mature protein coding sequence of SEQ ID NO: 11 (for example SEQ ID NO: 12); a polynucleotide comprising the nucleotide sequence of the thrombospondin domain of SEQ ID NO: 13 (for
- the polynucleotide compositions of the present invention also include, but are not limited to, a polynucleotide that hybridizes under stringent hybridization conditions to (a) the complement of any of the nucleotide sequences set forth in SEQ ID NO: 2, 3, 5, 9, 11, 13, 15, 17, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104 or 177; (b) a nucleotide sequence encoding any of SEQ ID NO: 4, 6, 8, 10, 12, 14, 16, 18, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105 or 178; a polynucleotide which is an variant (e.g., an allelic variant) of any polynucleotides recited above having at least 70% (e.g., 75%, 80%, 85%, 90%, 92%, 94%, 96%, 98%, or 99%) polynucleotide sequence identity to
- This invention further provides cloning or expression vectors comprising at least a fragment of the polynucleotides set forth above and host cells or organisms transformed with these expression vectors.
- Useful vectors include plasmids, cosmids, lambda phage derivatives, phagemids, and the like, that are well known in the art.
- the invention also provides a vector including a polynucleotide of the invention and a host cell containing the polynucleotide.
- the vector contains an origin of replication functional in at least one organism, convenient restriction endonuclease sites, and a selectable marker for the host cell.
- Vectors according to the invention include expression vectors, replication vectors, probe generation vectors, and sequencing vectors.
- a host cell according to the invention can be a prokaryotic or eukaryotic cell and can be a unicellular organism or part of a multicellular organism.
- compositions of the present invention include polypeptides comprising, but not limited to, an isolated polypeptide selected from the group comprising the amino acid sequence of SEQ ID NO: 4, 6, 10, 12, 14, 16, 18, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105 or 178.
- Polypeptides of the invention also include polypeptides with biological activity that are encoded by (a) any of the polynucleotides having a nucleotide sequence set forth in the SEQ ID NO: 2, 3, 5, 9, 11, 13, 15, 17, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 177 above; or (b) polynucleotides that hybridize to the complement of the polynucleotides of (a) under stringent hybridization conditions.
- polypeptides of the invention may be wholly or partially chemically synthesized but are preferably produced by recombinant means using the genetically engineered cells (e.g. host cells) of the invention.
- the invention includes polypeptides that are at least 85%, 90%, 92%, 94%, 96%, 98%, or 99% identical to any of SEQ ID NO: 4, 6, 10, 12, 14, 16, 18, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105 and 178.
- the invention also includes polypeptides that differ in sequence from any of SEQ ID NO: 4, 6, 10, 12, 14, 16, 18, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105 and 178 and at 20, 15, 10, 9, 8, 7, 6, 5, 4, 3, 2 or 1 amino acid residues.
- the amino acid changes can be conservative or non-conservative.
- the invention also relates to methods for producing a GIPF polypeptide comprising culturing host cells comprising an expression vector containing at least a fragment of a GIPF polynucleotide encoding the GIPF polypeptide of the invention in a suitable culture medium under conditions permitting expression of the desired polypeptide, and purifying the protein or peptide from the culture or from the host cells.
- Preferred embodiments include those in which the protein produced by such a process is a mature or dominant mature form of the protein.
- polypeptides according to the invention can be used in a variety of conventional procedures and methods that are currently applied to other proteins.
- a polypeptide of the invention can be used to generate an antibody that specifically binds the polypeptide.
- Such antibodies, particularly monoclonal antibodies, are useful for detecting or quantifying the polypeptide in tissue.
- the subject invention is directed to a method of stimulating epithelial cell proliferation.
- the method comprises contacting epithelial cells with a composition that includes a therapeutically effective amount of a GIPF polypeptide, fragment or analog thereof, and a pharmaceutically acceptable carrier.
- a subject in need of stimulation (including cytoprotection, proliferation and/or differentiation) of epithelial cells will be administered therapeutically-effective or prophylactically-effective amounts of GIPF protein, fragments or analogs thereof.
- epithelial cells may be contacted with the GIPF polypeptides in vitro or in vivo.
- Methods are also provided for preventing, treating, or ameliorating a medical condition which comprises the step of administering to a mammalian subject a therapeutically effective amount of a composition comprising a peptide of the present invention and a pharmaceutically acceptable carrier.
- the GIPF polypeptides of the invention may be used to induce the proliferation and/or differentiation of gastrointestinal crypt cells to regenerate the epithelial layer of the alimentary tract.
- the GIPF polypeptides and polynucleotides of the invention may be used in the treatment of chemotherapy or radiation therapy-induced mucositis and enterocolitis, and inflammatory bowel disease. They may also be used in the treatment of diseases, and other conditions including wounds, burns, ophthalmic disorders, and any disorder where stimulation of epithelial cell proliferation or regeneration is desired.
- Polynucleotides and polypeptides of the invention may also be used as markers of differentiation and development of gastrointestinal epithelium.
- the methods of the invention also provide methods for the treatment of disorders as recited herein which comprise the administration of a therapeutically effective amount of a composition comprising a polynucleotide or polypeptide of the invention and a pharmaceutically acceptable carrier to a mammalian subject exhibiting symptoms or tendencies related to disorders as recited herein.
- the invention encompasses methods for treating diseases or disorders as recited herein comprising the step of administering a composition comprising compounds and other substances that modulate the overall activity of the target gene products and a pharmaceutically acceptable carrier. Compounds and other substances can effect such modulation either on the level of target gene/protein expression or target protein activity.
- methods for preventing, treating or ameliorating a medical condition, including mucositis and inflammatory bowel disease, wounds, which comprises administering to a mammalian subject, including but not limited to humans, a therapeutically effective amount of a composition comprising a polypeptide of the invention or a therapeutically effective amount of a composition comprising a binding partner of GIPF polypeptides of the invention.
- a mammalian subject including but not limited to humans
- a therapeutically effective amount of a composition comprising a polypeptide of the invention or a therapeutically effective amount of a composition comprising a binding partner of GIPF polypeptides of the invention The mechanics of the particular condition or pathology will dictate whether the polypeptides of the invention or binding partners of these would be beneficial to the individual in need of treatment.
- the invention further provides methods for manufacturing medicaments useful in the above-described methods.
- the present invention further relates to methods for detecting the presence of the polynucleotides or polypeptides of the invention in a sample (e.g., tissue or sample). Such methods can, for example, be utilized as part of prognostic and diagnostic evaluation of disorders as recited herein and for the identification of subjects exhibiting a predisposition to such conditions.
- the invention provides a method for detecting a polypeptide of the invention in a sample comprising contacting the sample with a compound that binds to and forms a complex with the polypeptide under conditions and for a period sufficient to form the complex and detecting formation of the complex, so that if a complex is formed, the polypeptide is detected.
- kits comprising polynucleotide probes and/or monoclonal antibodies, and optionally quantitative standards, for carrying out methods of the invention. Furthermore, the invention provides methods for evaluating the efficacy of drugs, and monitoring the progress of patients, involved in clinical trials for the treatment of disorders as recited above.
- the invention also provides methods for the identification of compounds that modulate (i.e., increase or decrease) the expression or activity of the polynucleotides and/or polypeptides of the invention. Such methods can be utilized, for example, for the identification of compounds that can enhance the therapeutic activity of the GIPF polypeptides, and ameliorate symptoms of disorders as recited herein. Such methods can include, but are not limited to, assays for identifying compounds and other substances that interact with (e.g., bind to) the polypeptides of the invention.
- the invention provides a method for identifying a compound that binds to the polypeptide of the present invention comprising contacting the compound with the polypeptide under conditions and for a time sufficient to form a polypeptide/compound complex and detecting the complex, so that if the polypeptide/compound complex is detected, a compound that binds to the polypeptide is identified.
- Also provided is a method for identifying a compound that binds to the polypeptide comprising contacting the compound with the polypeptide in a cell for a time sufficient to form a polypeptide/compound complex wherein the complex drives expression of a reporter gene sequence in the cell and detecting the complex by detecting reporter gene sequence expression so that if the polypeptide/compound complex is detected a compound that binds to the polypeptide is identified.
- Another embodiment of the invention provides gene therapy by delivery of GIPF polypeptides for the treatment of conditions or disorders recited herein.
- the invention is directed to use of a vector comprising a gene encoding a GIPF polypeptide operably associated with an expression control sequence that provides for expression of the GIPF polypeptide in the manufacture of a medicament for treating disorders as recited herein. More particularly, the invention provides for use of an adenoviral vector of the invention, e.g., as set out below, in the manufacture of a medicament for treating mucositis or inflammatory bowel disease.
- the invention provides a novel virus vector comprising a gene encoding a GIPF polypeptide operably associated with an expression control sequence.
- the virus vector is an adenovirus vector.
- the virus vectors of the invention can provide a gene encoding any GIPF polypeptide, as set forth above.
- the invention further provides a pharmaceutical composition comprising any of the virus vectors of the invention and a pharmaceutically acceptable carrier.
- the invention concerns a transgene construct comprising a nucleic acid encoding a native human GIPF protein, analog or a fragment thereof, under the control of transcriptional regulatory sequences directing its expression to B-cells.
- the transgene construct preferably comprises a B-cell specific promoter, such as an immunoglobulin kappa chain promoter.
- the invention concerns a transgenic non-human mammal that produces in its B-cells detectable levels of a native human GIPF protein, analog or a fragment thereof, wherein said transgenic mammal has stably integrated into its genome a nucleic acid sequence encoding a native human GIPF protein, analog or a fragment thereof having the biological activity of native human GIPF, operably linked to transcriptional regulatory sequences directing its expression to B-cells.
- the transcriptional regulatory sequences preferably comprise a B-cell specific promoter, such as the immunoglobulin kappa chain promoter.
- the non-human transgenic mammal may, for example, be mouse, rat, rabbit, pig, sheep, goat or cattle.
- the invention concerns a method of screening drug candidates for the treatment of a disease or disorder recited herein comprising (a) administering a drug candidate to a transgenic mouse that expresses in its B-cells a GIPF polypeptide, and develops intestinal distension associated with hyperproliferation of epithelial cells, and (b) evaluating the effect of the candidate drug on the hyperproliferation of the epithelial cells.
- the drug candidates may modulate (i.e. increase or decrease) the expression or activity of the polynucleotides and/or polypeptides of the invention.
- the invention also includes a method of treating or ameliorating a medical condition, including mucositis and inflammatory bowel disease, and wounds, which comprises administering to a mammalian subject, including but not limited to humans, a therapeutically effective amount of a GIPF polypeptide together with a cytokine.
- the invention includes pharmaceutical compositions comprising a polypeptide of the invention, a second therapeutic agent, e.g., a cytokine, and a pharmaceutically acceptable carrier.
- a second therapeutic agent e.g., a cytokine
- the invention features, a composition comprising a therapeutically effective amount of a GIPF polypeptide, fragment, or analog thereof, and a pharmaceutically acceptable carrier.
- the invention also features a pharmaceutical composition
- a pharmaceutical composition comprising a polypeptide comprising a biologically active fragment of GIPF and a pharmaceutically acceptable carrier.
- the GIPF is human GIPF; and the polypeptide comprises a biologically active fragment of the polypeptide of SEQ ID NO:4.
- the invention features a pharmaceutical composition
- a pharmaceutical composition comprising a polypeptide comprising a polypeptide fragment of SEQ ID NO:4 wherein the polypeptide fragment comprises an amino acid sequence selected from the group consisting of SEQ ID NO: 10, 12, 14, 16, 18, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, and 178.
- the polypeptide is glycosylated; the polypeptide is not glycosylated; the polypeptide stimulates epithelial cell proliferation; and the polypeptide comprises an amino acid sequence that is at least 80% identical to the amino acid sequence of SEQ ID NO:4.
- the invention also features: a method of stimulating epithelial cell proliferation in a subject comprising administering to said subject a composition comprising a GIPF polypeptide, fragment or analog thereof and a carrier; a method of treatment comprising administering to a mammalian subject in need thereof a therapeutically effective amount of a composition comprising a GIPF polypeptide and a pharmaceutically acceptable carrier; a method of treating mucositis, inflammatory bowel disease, or short bowel syndrome comprising administering to a mammalian subject in need thereof a therapeutically effective amount of a composition comprising a GIPF polypeptide and a pharmaceutically acceptable carrier; a method for stimulating epithelial cell proliferation in the gastrointestinal tract of a patient, the method comprising administering a therapeutically effective amount of a composition comprising a GIPF polypeptide and a pharmaceutically acceptable carrier.
- epithelial cell proliferation in the esophagus is stimulated, epithelial cell proliferation in the small intestine is stimulated; epithelial cell proliferation in the large intestine is stimulated; epithelial cell proliferation in the oral cavity is stimulated and epithelial cell proliferation in the stomach is stimulated.
- the invention also features a method for treating a patient at risk for damage to epithelial cells lining at least a portion of the gastrointestinal tract, the method comprising administering a therapeutically effective amount of a composition comprising a GIPF polypeptide and a pharmaceutically acceptable carrier.
- the patient has undergone or will undergo radiation therapy and the patient has undergone or will undergo chemotherapy.
- the invention includes a method for treating a patient that has undergone radiation therapy or chemotherapy comprising administering a therapeutically effective amount of a composition comprising a GIPF polypeptide and a pharmaceutically acceptable carrier.
- the invention features an adenoviral vector comprising a gene encoding GIPF operably associated with an expression control sequence as well as a pharmaceutical composition comprising such a vector.
- the invention features a method of stimulating epithelial cell proliferation in a subject comprising administering to said subject the pharmaceutical composition comprising features an adenoviral vector comprising a gene encoding GIPF operably associated with an expression control sequence.
- the invention also features a transgene construct comprising a nucleic acid encoding a GIPF protein, wherein said nucleic acid is operably linked to transcriptional regulatory sequences directing its expression in B-cells.
- the transgene construct comprises a B-cell specific promoter.
- the invention also features a transgenic mouse that produces in its B-cells cells detectable levels of a native human GIPF protein, wherein said transgenic mouse has stably integrated into its genome a nucleic acid sequence encoding a GIPF protein, operably linked to transcriptional regulatory sequences directing its expression to B-cells.
- the transcriptional regulatory sequences comprise a B-cell promoter.
- the invention features a method of identifying a drug candidate for the treatment of mucositis, inflammatory bowel disease or short bowel syndrome, comprising:
- the invention also features: an isolated polynucleotide selected from the group consisting of SEQ ID NO: 9, 11, 13, 15, 17, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, and 104; an isolated polynucleotide encoding a polypeptide with biological activity, said polynucleotide having greater than about 95% sequence identity to polynucleotide selected from the group consisting of SEQ ID NO: 9, 11, 13, 15, 17, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, and 104.
- the invention also features: an isolated polypeptide selected from the group consisting of SEQ ID NO: 12, 14, 16, 18, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, and 105; and an isolated polypeptide comprising an amino acid sequence which is at least 95% identical to the amino acid sequence selected from the group consisting of SEQ ID NO: 12, 14, 16, 18, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, and 105.
- the invention further features an expression vector comprising expression regulatory elements operatively linked to a polynucleotide of SEQ ID NO: 5, 9, 11, 13, 15, 17, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, and 104.
- the invention also features a host cell transformed or transfected with a polynucleotide of SEQ ID NO: 5, 9, 11, 13, 15, 17, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104 or 177.
- the cell is prokaryotic, in others it is eukaryotic.
- the invention also features a method for producing a polypeptide comprising the amino acid sequence of SEQ ID NO: 12, 14, 16, 18, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, or 105, the method comprising:
- the invention features a method for producing a pharmaceutical composition
- a pharmaceutical composition comprising a polypeptide comprising the amino acid sequence of SEQ ID NO: 12, 14, 16, 18, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105 or 178, the method comprising
- the invention also features an expression vector construct comprising a nucleic acid encoding a GIPF protein, wherein the nucleic acid is operably linked to transcriptional regulatory sequences directing expression of the GIPF protein in intestinal epithelial cells.
- the invention includes a transgenic mouse that produces in its intestinal epithelial cells detectable levels of a GIPF protein, wherein said transgenic mouse has stably integrated into its genome a nucleic acid sequence encoding a GIPF protein, wherein the nucleic acid sequence encoding the GIPF protein is operably linked to transcriptional regulatory sequences directing expression of the GIPF protein in intestinal epithelial cells.
- the invention features an expression vector construct comprising a nucleic acid encoding a GIPF protein and a Wnt3a protein, wherein the nucleic acid is operably linked to transcriptional regulatory sequences directing its expression in intestinal epithelial cells.
- the invention also features a transgenic mouse that produces in its intestinal epithelial cells detectable levels of a native GIPF and Wnt3a protein, wherein said transgenic mouse has stably integrated into its genome a nucleic acid sequence encoding a GIPF protein, operably linked to transcriptional regulatory sequences directing expression of the GIPF protein in intestinal epithelial cells.
- the transgenic mouse exhibits intestinal distension.
- FIG. 1 depicts the DNA sequence (SEQ ID NO: 2) (A) and corresponding amino acid sequence for the full-length GIPF (SEQ ID NO: 4) (B).
- SEQ ID NO: 2 includes the 5 prime and 3 prime untranslated regions in conjunction with the open reading frame.
- FIG. 2 depicts the expression of GIPF mRNA in tissues from human (A) and mouse (B).
- FIG. 3 is a schematic representation of the GIPF polypeptides of the compositions of the invention.
- the numbers that are underlined correspond to the SEQ ID NOs of the polypeptides, and the remaining numbers are the SEQ ID NOs of the encoding polynucleotide sequences.
- FIG. 4A shows the BLASTP amino acid sequence alignment between the GIPF protein encoded by SEQ ID NO: 2 or 3 (i.e. SEQ ID NO: 4) and human stem cell growth factor A1 SEQ ID NO: 23 (SEQ ID NO: 10 from PCT WO 01/77169 A2), indicates that the two sequences share 63% similarity over amino acid residues 10 through 251 of SEQ ID NO: 4 and amino acid residues 11 through 257 of SEQ ID NO: 23, and 46% identity over the amino acid residues 10 through 251 of SEQ ID NO: 4 and amino acid residues 11 through 257 of SEQ ID NO: 23.
- FIG. 4B shows the BLASTP amino acid sequence alignment between the GIPF protein encoded by SEQ ID NO: 2 or 3 (i.e. SEQ ID NO: 4) GIPF polypeptide and a specific region of human thrombospondin 1 (amino acid residues 501 through 657 of SwissProt accession number P07996; SEQ ID NO: 28).
- FIGS. 5A-5R depicts the steps of the method used to generate the GIPF-knock-in (GIPF-KI) vector of the invention. A preferred method for generating transgenic mice that express GIPF in their B cells is also described.
- FIG. 6 depicts the location of the probe utilized in Southern blot analysis to select ES clones resulting from homologous recombination, as well as the EcoRI digest fragment sizes of mouse genomic DNA that has undergone homologous or non-homologous recombination.
- FIG. 7 shows the gross pathology of the intestinal tract of the GIPF-KI mice: control (A) GIPF-KI (B).
- FIG. 8 H&E staining of transverse sections of small intestine of GIPF-KI (A) and control chimeric (B) mice, respectively.
- FIG. 9 shows H&E staining of the intestinal sections of FIG. 8 seen under higher magnification.
- Panels A and C correspond to the GIPF-KI section seen in panel A of FIG. 8
- panels B and D correspond to the intestinal section derived from a control chimeric mouse seen in panel B of FIG. 8 .
- FIG. 10 shows Ki67 staining of cross-sections of the small intestine from a control chimeric mouse (A and C), and from a GIPF-KI mouse (B and D).
- FIG. 11 Cross-sections of small intestine derived from a control mouse (A and C), and from a mouse treated with 1 ⁇ 10 10 viral particles (VP). The sections were obtained three days following injection of the empty or GIPF adenovirus, respectively.
- FIG. 12 Cross-sections of small intestine derived from control (A and C), and from a mouse treated with 1 ⁇ 10 10 viral particles (VP) ( FIG. 12 B and D). The sections were obtained five days following injection of the empty or GIPF adenovirus, respectively.
- FIG. 13 Incorporation of BrdU into proliferating crypt cells of the small intestine of control mice (A and C) and mice treated with 1 ⁇ 10 10 viral particles (VP) (B and D).
- FIG. 14 Ki67 staining of proliferating crypt cells of the small intestine of control (A and C) and GIPF-adenovirus-treated mice (B and D).
- FIG. 15 H&E staining of cross sections derived from the small intestine of control mice (A and C) and mice that had been treated with GIPF-adenovirus at 1 ⁇ 10 9 viral particles (B and D).
- FIG. 16 H&E staining of cross-sections derived from the colon of control (A and C) and GIPF-adenovirus-treated mice (B and D).
- FIG. 17 Solubility requirements of native V5-His-tagged GIPF protein purified from CHO cells.
- FIG. 18 Pharmacokinetics of V5-His-tagged GIPF protein in mouse serum.
- FIG. 19 H&E staining of cross sections derived from the small intestine of control mice (A and C) and mice that had been treated with purified GIPF protein (B and D).
- FIG. 20 Incorporation of BrdU into proliferating crypt cells of the small intestine of control mice (A and C) and mice that had been treated with purified GIPF protein (B and D).
- FIG. 21 H&E staining of cross sections derived from the colon of control mice (A) and mice that had been treated with purified GIPF protein (B).
- FIG. 22 Incorporation of BrdU into proliferating crypt cells of the colon of control mice (A and C) and mice that had been treated with purified GIPF protein (B and D).
- FIG. 23 H&E staining of cross sections derived from the small intestine of non-irradiated mice (A), irradiated mice treated with saline (B), KGF (C) or GIPFwt (D).
- FIG. 24 Effect of 5-FU on the size of tumors in control mice and mice receiving GIPFwt.
- FIG. 25 Effect of GIPF on the gross pathology of the small intestine and colon of normal (E and F) and tumor-bearing mice (A-D).
- FIG. 26 H&E staining of cross sections derived from the small intestine and colon of normal and tumor-bearing mice that had received 5-FU and/or GIPF.
- FIG. 27 Micromorphometry measuremts of the villus height and crypt depth show the effect of GIPF on the intestinal epithelium of mice that received 5-FU.
- FIG. 28 Ki67 staining of proliferating epithelial cells of the ventral tongue of control mice (A and B), and mice treated with KGF or GIPF (C-E) and submitted to total body irradiadion.
- FIG. 29 Ki67 staining of proliferating epithelial cells of the dorsal tongue of control mice (A and B), and mice treated with KGF or GIPF (C and D) and submitted to total body irradiadion.
- FIG. 30 Proliferative index of ventral tongue epithelium from mice treated with KGF or GIPF and submitted to total body irradiation.
- FIG. 32 Effect of GIPF on the inflammatory bowel disease activity index (IBDAI) of mice with DSS-iduced colitis.
- FIG. 33 Effect of GIPF on the score for aninal body weight in mice with DSS-induced colitis.
- FIG. 34 Effect of GIPF on the score for stool consistency in mice with DSS-induced colitis.
- FIG. 35 Effect of GIPF on the score for rectal bleeding in mice with DSS-induced colitis.
- FIG. 36 Effect of GIPF on the gross pathology of the small intestine and colon of control and DSS-treated mice.
- FIG. 38 Micromorphometry measuremts of the villus height and crypt depth show the effect of GIPF on the intestinal epithelium of mice with DSS-induced colitis.
- FIG. 39 Incorporation of BrdU into proliferating crypt cells of the small intestine and colon of mice that had received DSS and/or GIPF.
- FIG. 40 Effect of GIPF on the proliferation of the small intestinal epithelium of mice with DSS-induced colitis.
- FIG. 41 Effect of GIPF on the stabilization of ⁇ -catenin in human endocrinic and kidney epithelial cells.
- GIPF induced the dose-dependent (A) and time-dependent (B) stabilization of ⁇ -catenin in HEK293 cells.
- the stabilizing effect of GIPF is not disrupted by boiling (C).
- FIG. 42 Effect of GIPF on the phosphorylation of GSK3 ⁇ .
- FIG. 43 Schematic representation GIPF polypeptide analogs designed to determine the ability of various regions of GIPF in stabilizing ⁇ -catenin.
- the fragment numbers 1-11 respectively correspond to polypeptide SEQ ID NOs; 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, and 105.
- FIG. 44 Stabilization of ⁇ -catenin by the GIPF analogs depicted in FIG. 43 .
- FIG. 45 Comparison of the activity of human and mouse GIPF on the gross pathology of mouse intestines.
- FIG. 46 Effect of GIPF on intestinal crypt depth.
- FIG. 47 Effect of GIPF on the stabilization of ⁇ -catenin in isolated crypt cells.
- FIG. 48 Effect of GIPF on body weight of animals with TNBS-induced colitis.
- FIG. 49 Effect of GIPF on the colitis score in animals with TNBS-induced colitis.
- FIG. 50 Effect of GIPF on chronic colitis induced by DSS.
- FIG. 51 Effect of GIPF on villus height and crypt depth in animals with DSS-induced chronic colitis.
- FIG. 52 Effect of GIPF on the crypt proliferative index of animals with DSS-induced chronic colitis.
- FIG. 53 Effect of GIPF on the survival of crypts following irradiation.
- FIGS. 54 A-N Diagrammatic representation of the construction of a transgene for the villin-driven expression of GIPF in the epithelium of transgenic mice.
- FIG. 55 Embryonic expression of GIPF in the intestinal epithelium and liver of transgenic mice.
- FIG. 56 Stabilization of ⁇ -catenin in transgenic mice that express GIPF.
- FIGS. 58 A-C Diagrammatic representation of the construction of a transgene for the villin-driven expression of GIPF and Wnt3a in transgenic mice.
- FIG. 59 Embryonic expression of GIPF and Wnt3a in the small and large intestine of transgenic mice.
- FIG. 60 Stabilization of ⁇ -catenin in transgenic mice that express GIPF and Wnt3a.
- FIGS. 61 H&E staining of sections of the small intestine of a transgenic mouse embryo that expresses GIPF and Wnt3a.
- FIGS. 62 A-K Diagrammatic representation of the construction of the RS-KO vector.
- FIG. 63 Genomic map of wild type and recombinant RS-KO clones.
- FIGS. 64 A-K Diagrammatic representation of the construction of a knock-in vector pCk m4 KI for the expression of GIPF deletion mutant (SEQ ID NO: 91) in transgenic mice.
- FIGS. 65 A-C Diagrammatic representation of the construction of a knock-in vector pPS m4 KI for the expression of GIPF deletion mutant (SEQ ID NO: 91) in transgenic mice.
- FIG. 66 Genomic map of wild type and recombinant Ck m4 KI clones.
- FIG. 67 Genomic map of wild type and recombinant PS m4 KI clones.
- FIGS. 68 A-C Diagrammatic representation of the construction of a knock-in vector pCk VR KI for the expression of GIPF variant (SEQ ID NO: 177; GenBank Accession Number AK098225) in transgenic mice.
- FIGS. 69 A-C Diagrammatic representation of the construction of a knock-in vector pPS VR KI for the expression of GIPF variant (SEQ ID NO: 177; GenBank Accession Number AK098225) in transgenic mice.
- FIG. 70 Genomic map of wild type and recombinant Ck VR KI clones.
- FIG. 71 Genomic map of wild type and recombinant PS VR KI clones.
- FIG. 72 Comparison of small and large intestines of control and transgenic mice expressing the GIPF deletion mutant SEQ ID NO: 91.
- FIGS. 73 H&E staining of cross-sections of small intestine from transgenic mice expressing GIPF deletion mutant SEQ ID NO: 91 (low magnification).
- FIGS. 74 H&E staining of cross-sections of small intestine from transgenic mice expressing GIPF deletion mutant SEQ ID NO: 91 (high magnification).
- FIG. 75 Stabilization of Axin-2 in transgenic mice that express GIPF deletion mutant SEQ ID NO: 91.
- FIG. 76 Comparison of small and large intestines of control and transgenic mice (PSVR KI) expressing GIPF variant (SEQ ID NO: 177; GenBank Accession Number AK098225) to that of a control animal.
- FIGS. 77 H&E staining of cross-sections of small intestine from control and transgenic mice (PSVR KI) expressing GIPF variant (SEQ ID NO: 177; GenBank Accession Number AK098225) (low magnification).
- FIGS. 78 H&E staining of cross-sections of small intestine from control and transgenic mice (PSVR KI) expressing GIPF variant (SEQ ID NO: 177; GenBank Accession Number AK098225) (high magnification).
- FIG. 79 Stabilization of Axin-2 in control and transgenic mice that express GIPF variant (SEQ ID NO: 177; GenBank Accession Number AK098225).
- FIGS. 80 H&E staining of sections from the large intestine of control animal and an animal in which chronic IBD was induced by T-cell transfer (example 37).
- polypeptides of the invention are depicted in FIG. 3 , and are described in detail below.
- the GIPF polypeptide of SEQ ID NO: 4 is a 263-amino acid protein with a predicted molecular mass of approximately 29 kDa unglycosylated.
- SEQ ID NO:2 is a cDNA encoding GIPF polypeptide. The initial methionine starts at position 603 of SEQ ID NO: 2 and the putative stop codon begins at position 1392 of SEQ ID NO: 2.
- SEQ ID NO: 4 is homologous to SEQ ID NO: 23 Stem Cell Growth Factor A-1 (SEQ ID NO: 10 from PCT WO 01/77169 A2) ( FIG. 4A ), and human thrombospondin 1 (SEQ ID NO: 28) ( FIG. 4B ).
- a predicted approximately twenty-residue signal peptide extends from residue 1 to residue 20 of SEQ ID NO: 4. The extracellular portion is useful on its own.
- the signal peptide region was predicted using the Neural Network Signal P VI.I program (Nielsen et al., Int. J. Neural Syst. 8:581-599 (1997)), incorporated herein by reference) and/or using Neural Network SignalP V1.1 program (Nielsen et al, (1997) Int. J. Neural Syst. 8, 581-599).
- SEQ ID NO: 10 is the GIPF polypeptide of SEQ ID NO: 4 that lacks the putative signal peptide (SEQ ID NO: 8).
- SEQ ID NO: 10 is the polypeptide form purified from cellular medium of Chinese Hamster Ovary (CHO) cells that are transfected with a vector construct comprising nucleotide sequence of SEQ ID NO: 3.
- the polypeptide of SEQ ID NO: 10 is herein known as the dominant mature form of GIPF.
- SEQ ID NO: 9 is a nucleotide sequence that encodes the polypeptide of SEQ ID NO: 10. The N-terminal sequence for this polypeptide form was determined through Edman degradation sequencing (Speicher, D. W.
- SEQ ID NO: 12 is the mature polypeptide form isolated from the cellular medium of human embryonic kidney 293 cells that are transfected with a vector construct comprising SEQ ID NO: 3.
- SEQ ID NO: 11 is a corresponding nucleotide sequence that encodes the polypeptide of SEQ ID NO: 12. Through Edman degradation sequencing, it has been determined that the polypeptide of SEQ ID NO: 12 lacks the first 31 amino acid residues of SEQ ID NO: 4.
- the 31 amino acid peptide comprises a consensus site (SEQ ID NO: 20) for furin protease cleavage (Zhou et al., J Biol Chem 274:20745-20748 (1999), herein incorporated by reference in its entirety).
- GIPF polypeptide SEQ ID NO: 4
- SEQ ID NO: 14 encoded by the nucleotide sequence of SEQ ID NO 13
- the Pfam score for the thrombospondin type 1 domain contained within SEQ ID NO: 4 is 0.0034, and is predicted to be from amino acid residue 151 through 206 of SEQ ID NO: 4.
- the thrombospondin domain may be useful on its own.
- GIPF-I polypeptide having the amino acid sequence of SEQ ID NO:4 except that the valine at position 50 of SEQ ID NO:4 is replaced by an isoleucine
- GIPF-I polypeptide having the amino acid sequence of SEQ ID NO:4 except that the valine at position 50 of SEQ ID NO:4 is replaced by an isoleucine
- Another form of GIPF-I has the amino acid sequence of SEQ ID NO:10 except that the the valine at position 30 of SEQ ID NO:10 is replaced by an isoleucine (SEQ ID NO:______).
- a third form of GIPF-I has the amino acid sequence of SEQ ID NO:12 except that the the valine at position 19 of SEQ ID NO:12 is replaced by an isoleucine (SEQ ID NO:______).
- GIPF includes the amino aicd sequence common to SEQ ID NO:4 and SEQ ID NO:178.
- this polypeptide ahas the amino acid sequence of amino acids 33-263 of SEQ ID NO:4 (SEQ ID NO:______).
- SEQ ID NO: 16 is a nucleotide sequence included in a vector system that results in the expression of a polypeptide (SEQ ID NO: 16) in which the predicted signal peptide (SEQ ID NO: 8) adjoins the predominant mature form produced in 293 cells (SEQ ID NO: 10).
- SEQ ID NO: 17 is a nucleotide construct produced by site-directed mutagenesis (Weiner et al., Gene 126:35-41(1993)) to contain a mutation in the furin-protease cleavage consensus site (SEQ ID NO: 22). This mutation changes the first arginine (R) residue of SEQ ID NO: 20 to a glutamine (Q). The arginine to glutamine mutation enables the production of the dominant mature form of GIPF by 293 cells (SEQ ID NO: 10).
- Thrombospondins are a family of extracellular matrix proteins that are involved in cell-cell and cell-matrix communication (Lawler et al., Curr. Opin. Cell Bio. 12:634-640 (2000)). More than five different thrombospondins are known with distinct patterns of tissue distribution. Some tissues like heart, cartilage, and brain express most of the thrombospondin gene products.
- Thrombospondin-1 is a major constituent of blood platelets. Thrombospondin-1 appears to function at the cell surface to bring together membrane proteins and cytokines and other soluble factors.
- Membrane proteins that bind thrombospondin-1 include integrins, integrin-associated protein (CD47), CD36, proteoglycans. Transforming growth factor ⁇ (TGF ⁇ ) and platelet-derived growth factor also bind thrombospondin-1.
- TGF ⁇ Transforming growth factor ⁇
- platelet-derived growth factor also bind thrombospondin-1.
- Thrombospondin-1 is a large protein with many distinct domains. It contains a globular domain at both amino and carboxy terminus, a region of homology with procollagen, and three types of repeated sequence motifs termed thrombospondin (TSP) type 1, type 2, and type 3 repeats. TSP1 repeats have been found in various different proteins including, complement components (C6, C7, C8A etc.) extracellular matrix proteins like ADAMTS, mindin, axonal guidance molecule like F-spondin semaphorins, and also SCO-spondin, and TRAP proteins of Plasmodium.
- complement components C6, C7, C8A etc.
- Thrombospondin type 1 (TSP1) repeat can activate TGFf ⁇ epithelial tissues which are involved in regulation of cell growth, differentiation, adhesion, migration, and death. TSP1 is further involved in protein binding, heparin binding, cell attachment, neurite outgrowth, inhibition of proliferation, inhibition of angiogenesis, and activation of apoptosis. TSP1 domains of Plasmodium circumsporozoite (CS) protein and TRAP proteins are implicated in salivary gland invasion by the sporozoite.
- CS Plasmodium circumsporozoite
- TSP1 sequences are characterized by conserved cysteines, closely spaced tryptophans, and a cluster of basic residues. Spatial configuration of TSP1 sequences shows two ⁇ -sheet domains which are shown to bind heparin (Kilpelainen et al (200) J. Biol. Chem. 275, 13564-13570, incorporated herein by reference). A similar spatial fold has been described for heparin-binding growth associated molecule (HB-GAM). HB-GAM is identical to mitogenic and neurite outgrowth-promoting protein pleitrophin; osteoblast specific factor-1; heparin-binding neurotrophic factor; and heparin affin regulatory peptide.
- HB-GAM heparin-binding growth associated molecule
- HB-GAM HB-GAM-associated with extracellular matrix of axonal tracts and synapses, and also with basement membranes outside of brain and in the cartilage matrix.
- N-syndecan has been shown to be a receptor for HB-GAM in brain and has been suggested to play roles in regulation of hippocampal long-term potentiation, a form of brain plasticity implicated in memory and learning. Therefore, TSP1 containing proteins may act as growth promoters and may exhibit GIPF activities.
- thrombospondin synthesized in bone marrow and deposited within the extracellular matrix, functions as a cytoadhesion molecule for primary pluripotent progenitor cells, as well as for hematopoietic progenitor cells committed to erythroid, granulocytic, and megakaryocytic lineages.
- thrombospondins may be important in blood cell development (Long and Dixit (1990) Blood 75, 2311-2318, incorporated herein by reference).
- GIPF polypeptides and polynucleotides of the invention may be used to induce proliferation or differentiation of gastrointestinal crypt cells. They may also be used in the treatment of conditions where epithelialization is required, such as for the treatment of gastrointestinal disorders including chemotherapy and radiation therapy-induced mucositis, mucositis of the oropharynx, lips and esophagus, inflammatory bowel disease, and other conditions including wounds, burns, ophthalmic disorders, and any disorder where stimulation of epithelial cell proliferation or regeneration is desired.
- the polynucleotides and polypeptides of the invention may further be utilized to generate new tissues and organs that may aid patients in need of transplanted tissues.
- GIPF refers to the “gastrointestinal proliferative factor” that is particularly active on epithelial cells.
- GIPF protein(s) or “GIPF polypeptide(s) refers to the full-length protein defined by amino acids Met 1 to Ala 263 (SEQ ID NO: 4), fragments and analogs thereof.
- full-length GIPF “long form of GIPF”, “wild type GIPF”, or “native GIPF” as used herein all refer to the polypeptide that contains 263 amino acid residues (SEQ ID NO: 4), as shown in FIG. 1B .
- GIPFwt or “hGIPF” refer to the human wild type, full-length GIPF polypeptide (SEQ ID NO: 4); the term “GIPFt” refers to the V5His6-tagged polypeptide of human GIPF (SEQ ID NO: 6); and “mGIPFt” refers to the V5His6-tagged GIPF from mouse (SEQ ID NO: 69).
- fragment refers to a polypeptide derived from the native GIPF that does not include the entire sequence of GIPF. Such a fragment may be a truncated version of the full-length molecule, for example SEQ ID NO: 9, and 12, as well as an internally deleted polypeptide, for example SEQ ID NO: 16.
- a GIPF fragment may have GIPF bioactivity as determined by the effect of GIPF on the proliferation of epithelial cells in vitro and/or in vivo, as described herein.
- analog refers to derivatives of the reference molecule.
- the analog may retain biological activity, as described above.
- the term “analog” refers to compounds having a native polypeptide sequence and structure with one or more amino acid additions, substitutions (generally conservative in nature) and/or deletions, relative to the native molecule, so long as the modifications do not destroy activity.
- SEQ ID NO: 18 is an example of a GIPF analog.
- the analog has at least the same biological activity as the parent molecule, and may even display enhanced activity over the parent molecule. Methods for making polypeptide analogs are known in the art.
- amino acids are generally divided into four families: (1) acidic: aspartate and glutamate; (2) basic: lysine, arginine, histidine; (3) non-polar: alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan; and (4) uncharged polar: glycine, asparagine, glutamine, cysteine, serine, threonine, tyrosine. Phenylalanine, tryptophan, and tyrosine are sometimes classified as aromatic amino acids.
- Guidance in determining which amino acid residues may be replaced, added or deleted without abolishing activities of interest may be found by comparing the sequence of the particular polypeptide with that of homologous peptides and minimizing the number of amino acid sequence changes made in regions of high homology (conserved regions) or by replacing amino acids with consensus sequence.
- recombinant analogs encoding these same or similar polypeptides may be synthesized or selected by making use of the “redundancy” in the genetic code.
- Various codon substitutions such as the silent changes which produce various restriction sites, may be introduced to optimize cloning into a plasmid or viral vector or expression in a particular prokaryotic or eukaryotic system.
- Mutations in the polynucleotide sequence may be reflected in the polypeptide or domains of other peptides added to the polypeptide to modify the properties of any part of the polypeptide, to change characteristics such as ligand-binding affinities, interchain affinities, or degradation/turnover rate.
- amino acid “substitutions” are the result of replacing one amino acid with another amino acid having similar structural and/or chemical properties, i.e., conservative amino acid replacements. “Conservative” amino acid substitutions may be made on the basis of similarity in polarity, charge, solubility, hydrophobicity, hydrophilicity, and/or the amphipathic nature of the residues involved.
- nonpolar (hydrophobic) amino acids include alanine, leucine, isoleucine, valine, proline, phenylalanine, tryptophan, and methionine; polar neutral amino acids include glycine, serine, threonine, cysteine, tyrosine, asparagine, and glutamine; positively charged (basic) amino acids include arginine, lysine, and histidine; and negatively charged (acidic) amino acids include aspartic acid and glutamic acid.
- “Insertions” or “deletions” are preferably in the range of about 1 to 20 amino acids, more preferably 1 to 10 amino acids. The variation allowed may be experimentally determined by systematically making insertions, deletions, or substitutions of amino acids in a polypeptide molecule using recombinant DNA techniques and assaying the resulting recombinant variants for activity.
- insertions, deletions or non-conservative alterations can be engineered to produce altered polypeptides.
- Such alterations can, for example, alter one or more of the biological functions or biochemical characteristics of the polypeptides of the invention.
- such alterations may change polypeptide characteristics such as ligand-binding affinities, interchain affinities, or degradation/turnover rate.
- such alterations can be selected so as to generate polypeptides that are better suited for expression, scale up and the like in the host cells chosen for expression.
- cysteine residues can be deleted or substituted with another amino acid residue in order to eliminate disulfide bridges.
- derivative refers to polypeptides chemically modified by such techniques as ubiquitination, labeling (e.g., with radionuclides or various enzymes), covalent polymer attachment such as pegylation (derivatization with polyethylene glycol) and insertion or substitution by chemical synthesis of amino acids such as ornithine, which do not normally occur in human proteins.
- polypeptide and protein refer to a polymer of amino acid residues and are not limited to a minimum length of the product. The terms also include, unless otherwise indicated, modifications of the polypeptide that do not change the sequence of amino acids, for example, glycosylated, acetylated and phosphorylated forms.
- a polypeptide or protein, for purposes of the present invention may be synthetically or recombinantly produced, as well as isolated from natural sources.
- purified and “isolated” is meant, when referring to a polypeptide or polynucleotide, that the indicated molecule is present in the substantial absence of other biological macromolecules of the same type.
- the term “purified” as used herein preferably means at least 75% by weight, more preferably at least 85% by weight, more preferably still at least 95% by weight, and most preferably at least 98% by weight, of biological macromolecules of the same type are present in the sample.
- the polynucleotide or polypeptide is purified such that it constitutes at least 95% by weight of the indicated biological macromolecules present but water, buffers, and other small molecules, especially molecules having a molecular weight of less than 1000 daltons, can be present.
- isolated polynucleotide which encodes a particular polypeptide refers to a nucleic acid molecule which is substantially free of other nucleic acid molecules that do not encode the subject polypeptide; however, the molecule may include some additional bases or moieties which do not deleteriously affect the basic characteristics of the composition.
- naturally occurring polypeptide refers to polypeptides produced by cells that have not been genetically engineered and specifically contemplates various polypeptides arising from post-translational modifications of the polypeptide including, but not limited to, acetylation, carboxylation, glycosylation, phosphorylation, lipidation and acylation.
- translated protein coding portion means a sequence which encodes for the full length protein which may include any leader sequence or a processing sequence.
- the term “dominant mature protein coding sequence” refers to a sequence which encodes a peptide or protein without any leader/signal sequence.
- the “dominant mature protein portion” refers to that portion of the protein without the leader/signal sequence.
- the “mature” form refers to a GIPF polypeptide that lacks the leader/signal sequence and the furin cleavage site.
- the peptide may have the leader sequence and/or the furin cleavage site removed during processing in the cell or the protein may have been produced synthetically or using a polynucleotide only encoding for the mature protein coding sequence. It is contemplated that the mature or dominant mature protein portion may or may not include an initial methionine residue. The initial methionine is often removed during processing of the peptide.
- isolated refers to a nucleic acid or polypeptide separated from at least one other component (e.g., nucleic acid or polypeptide) present with the nucleic acid or polypeptide in its natural source.
- the nucleic acid or polypeptide is found in the presence of (if anything) only a solvent, buffer, ion, or other components normally present in a solution of the same.
- isolated and purified do not encompass nucleic acids or polypeptides present in their natural source.
- recombinant when used herein to refer to a polypeptide or protein, means that a polypeptide or protein is derived from recombinant (e.g., microbial, insect, or mammalian) expression systems.
- Microbial refers to recombinant polypeptides or proteins made in bacterial or fungal (e.g., yeast) expression systems.
- recombinant microbial defines a polypeptide or protein essentially free of native endogenous substances and unaccompanied by associated native glycosylation. Polypeptides or proteins expressed in most bacterial cultures, e.g., E. coli , will be free of glycosylation modifications; polypeptides or proteins expressed in yeast will have a glycosylation pattern in general different from those expressed in mammalian cells.
- a “recombinant polypeptide” is intended a polypeptide which has been prepared by recombinant DNA techniques as described herein.
- the gene coding for the desired polypeptide is cloned and then expressed in transformed organisms, as described farther below.
- the host organism expresses the foreign gene to produce the polypeptide under expression conditions.
- the promoter controlling expression of an endogenous polypeptide can be altered to render a recombinant polypeptide.
- biological activity refers to a protein or peptide having structural, regulatory or biochemical functions of a naturally occurring molecule.
- biologically active or biological activity refers to the capability of the natural, recombinant or synthetic GIPF peptide, or any peptide thereof, to induce a specific biological response in appropriate animals or cells and to bind with specific antibodies.
- secreted includes a protein that is transported across or through a membrane, including transport as a result of signal sequences in its amino acid sequence when it is expressed in a suitable host cell.
- “Secreted” proteins include without limitation proteins secreted wholly (e.g., soluble proteins) or partially (e.g., receptors) from the cell in which they are expressed.
- “Secreted” proteins also include without limitation proteins that are transported across the membrane of the endoplasmic reticulum.
- “Secreted” proteins are also intended to include proteins containing non-typical signal sequences (e.g. Interleukin-1 Beta, see Krasney, P. A. and Young, P. R.
- polynucleotide or “nucleic acid molecule” as used herein refers to a polymeric form of nucleotides of any length, either ribonucleotides or deoxyribonucleotides. This term refers only to the primary structure of the molecule and thus includes double- and single-stranded DNA and RNA.
- internucleotide modifications such as, for example, those with uncharged linkages (e.g., methyl phosphonates, phosphotriesters, phosphoamidates, carbamates, etc.) and with charged linkages (e.g., phosphorothioates, phosphorodithioates, etc.), those containing pendant moieties, such as, for example proteins (including for e.g., nucleases, toxins, antibodies, signal peptides, poly-L-lysine, etc.), those with intercalators (e.g., acridine, psoralen, etc.), those containing chelates (e.g., metals, radioactive metals, boron, oxidative metals, etc.), those containing alkylators, those with modified linkages (e.g., alkylators, those with modified linkages (e.g., alkylators, those with modified linkages (e.g., alkylators, those with modified linkages (e.
- nucleic acid segments provided by this invention may be assembled from fragments of the genome and short oligonucleotide linkers, or from a series of oligonucleotides, or from individual nucleotides, to provide a synthetic nucleic acid which is capable of being expressed in a recombinant transcriptional unit comprising regulatory elements derived from a microbial or viral operon, or a eukaryotic gene.
- oligonucleotide fragment or a “polynucleotide fragment”, “portion,” or “segment” or “probe” or “primer” are used interchangeably and refer to a sequence of nucleotide residues which are at least about 5 nucleotides, more preferably at least about 7 nucleotides, more preferably at least about 9 nucleotides, more preferably at least about 11 nucleotides and most preferably at least about 17 nucleotides.
- the fragment is preferably less than about 500 nucleotides, preferably less than about 200 nucleotides, more preferably less than about 100 nucleotides, more preferably less than about 50 nucleotides and most preferably less than 30 nucleotides.
- the probe is from about 6 nucleotides to about 200 nucleotides, preferably from about 15 to about 50 nucleotides, more preferably from about 17 to 30 nucleotides and most preferably from about 20 to 25 nucleotides.
- the fragments can be used in polymerase chain reaction (PCR), various hybridization procedures or microarray procedures to identify or amplify identical or related parts of mRNA or DNA molecules.
- a fragment or segment may uniquely identify each polynucleotide sequence of the present invention.
- the fragment comprises a sequence substantially similar to a portion of SEQ ID NO: 1, 2, 5, 7, 9, 11, 13, 15, 17, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104 or 177.
- Probes may, for example, be used to determine whether specific mRNA molecules are present in a cell or tissue or to isolate similar nucleic acid sequences from chromosomal DNA as described by Walsh et al. (Walsh, P. S. et al., 1992, PCR Methods Appl 1:241-250). They may be labeled by nick translation, Klenow fill-in reaction, PCR, or other methods well known in the art. Probes of the present invention, their preparation and/or labeling are elaborated in Sambrook, J. et al., 1989, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, NY; or Ausubel, F. M. et al., 1989, Current Protocols in Molecular Biology, John Wiley & Sons, New York N.Y., both of which are incorporated herein by reference in their entirety.
- the nucleic acid sequences of the present invention also include the sequence information from any of the nucleic acid sequences of SEQ ID NO: 1, 2, 5, 7, 9, 11, 13, 15, 17, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104 or 177.
- the sequence information can be a segment of SEQ ID NO: 1, 2, 5, 7, 9, 11, 13, 15, 17, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104 or 177 that uniquely identifies or represents the sequence information of SEQ ID NO: 1, 2, 5, 7, 9, 11, 13, 15, 17, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104 or 177.
- One such segment can be a twenty-mer nucleic acid sequence because the probability that a twenty-mer is fully matched in the human genome is 1 in 300. In the human genome, there are three billion base pairs in one set of chromosomes. Because 4 20 possible twenty-mers exist, there are 300 times more twenty-mers than there are base pairs in a set of human chromosomes. Using the same analysis, the probability for a seventeen-mer to be fully matched in the human genome is approximately 1 in 5. When these segments are used in arrays for expression studies, fifteen-mer segments can be used. The probability that the fifteen-mer is fully matched in the expressed sequences is also approximately one in five because expressed sequences comprise less than approximately 5% of the entire genome sequence.
- a segment when using sequence information for detecting a single mismatch, a segment can be a twenty-five mer.
- the probability that the twenty-five mer would appear in a human genome with a single mismatch is calculated by multiplying the probability for a full match (1 ⁇ 4 25 ) times the increased probability for mismatch at each nucleotide position (3 ⁇ 25).
- the probability that an eighteen mer with a single mismatch can be detected in an array for expression studies is approximately one in five.
- the probability that a twenty-mer with a single mismatch can be detected in a human genome is approximately one in five.
- ORF open reading frame
- operably linked refers to functionally related nucleic acid sequences.
- a promoter is operably associated or operably linked with a coding sequence if the promoter controls the transcription of the coding sequence.
- operably linked nucleic acid sequences can be contiguous and in the same reading frame, certain genetic elements e.g. repressor genes are not contiguously linked to the coding sequence but still control transcription/translation of the coding sequence.
- recombinant DNA molecule or “recombinant polynucleotide” are used herein to refer to a polynucleotide of genomic, cDNA, semisynthetic, or synthetic origin which, by virtue of its origin or manipulation: (1) is not associated with all or a portion of a polynucleotide with which it is associated in nature, (2) is linked to a polynucleotide other than that to which it is linked in nature, or (3) does not occur in nature.
- the term encompasses “synthetically derived” nucleic acid molecules.
- complementarity refers to the natural binding of polynucleotides by base pairing.
- sequence 5′-AGT-3′ binds to the complementary sequence 3′-TCA-5′.
- Complementarity between two single-stranded molecules may be “partial” such that only some of the nucleic acids bind or it may be “complete” such that total complementarity exists between the single stranded molecules.
- the degree of complementarity between the nucleic acid strands has significant effects on the efficiency and strength of the hybridization between the nucleic acid strands.
- stringent is used to refer to conditions that are commonly understood in the art as stringent.
- Stringent conditions can include highly stringent conditions (i.e., hybridization to filter-bound DNA in 0.5 M NaHPO 4 , 7% sodium dodecyl sulfate (SDS), 1 mM EDTA at 65° C., and washing in 0.1 ⁇ SSC/0.1% SDS at 68° C.), and moderately stringent conditions (i.e., washing in 0.2 ⁇ SSC/0.1% SDS at 42° C.).
- SDS sodium dodecyl sulfate
- moderately stringent conditions i.e., washing in 0.2 ⁇ SSC/0.1% SDS at 42° C.
- Other exemplary hybridization conditions are described herein in the examples.
- additional exemplary stringent hybridization conditions include washing in 6 ⁇ SSC/0.05% sodium pyrophosphate at 37° C. (for 14-base oligonucleotides), 48° C. (for 17-base oligonucleotides), 55° C. (for 20-base oligonucleotides), and 60° C. (for 23-base oligonucleotides).
- substantially equivalent can refer both to nucleotide and amino acid sequences, for example a mutant sequence, that varies from a reference sequence by one or more substitutions, deletions, or additions, the net effect of which does not result in an adverse functional dissimilarity between the reference and subject sequences.
- a substantially equivalent sequence varies from one of those listed herein by no more than about 35% (i.e., the number of individual residue substitutions, additions, and/or deletions in a substantially equivalent sequence, as compared to the corresponding reference sequence, divided by the total number of residues in the substantially equivalent sequence is about 0.35 or less).
- Such a sequence is said to have 65% sequence identity to the listed sequence.
- a substantially equivalent, e.g., mutant, sequence of the invention varies from a listed sequence by no more than 30% (70% sequence identity); in a variation of this embodiment, by no more than 25% (75% sequence identity); and in a further variation of this embodiment, by no more than 20% (80% sequence identity) and in a further variation of this embodiment, by no more than 10% (90% sequence identity) and in a further variation of this embodiment, by no more that 5% (95% sequence identity).
- Substantially equivalent, e.g., mutant, amino acid sequences according to the invention preferably have at least 80% sequence identity with a listed amino acid sequence, more preferably at least 90% sequence identity.
- nucleotide sequence of the invention can have lower percent sequence identities, taking into account, for example, the redundancy or degeneracy of the genetic code.
- nucleotide sequence has at least about 65% identity, more preferably at least about 75% identity, and most preferably at least about 95% identity.
- sequences having substantially equivalent biological activity and substantially equivalent expression characteristics are considered substantially equivalent.
- sequence identity may be determined, e.g., using the Jotun Hein method (Hein, J. (1990) Methods Enzymol. 183:626-645). Identity between sequences can also be determined by other methods known in the art, e.g. by varying hybridization conditions.
- vector refers to a nucleic acid molecule capable of transporting another nucleic acid to which it has been linked.
- expression vector includes plasmids, cosmids or phages capable of synthesizing the GIPF protein encoded by the respective recombinant gene carried by the vector.
- Preferred vectors are those capable of autonomous replication and expression of nucleic acids to which they are linked.
- transformation means introducing DNA into a suitable host cell so that the DNA is replicable, either as an extrachromosomal element, or by chromosomal integration.
- transfection refers to the taking up of an expression vector by a suitable host cell, whether or not any coding sequences are in fact expressed.
- infection refers to the introduction of nucleic acids into a suitable host cell by use of a virus or viral vector.
- transcriptional regulatory elements and transcriptional regulatory sequences are used interchangeably to refer to DNA sequences necessary for the expression of an operably linked coding sequence in a particular organism.
- the control sequences that are suitable for prokaryotes include a promoter, optionally an operator sequence, and a ribosome binding site.
- Eukaryotic cells are known to utilize promoters, enhancers, splicing signals and polyadenylation signals. These terms are intended to encompass all elements that promote or regulate transcription, including promoters, core elements required for basic interaction of RNA polymerase and transcription factors, upstream elements, enhancers, and response elements (Lewin, “Genes V” (Oxford University Press, Oxford) pages 847-873).
- a coding sequence is “under the control” of transcriptional and translational control sequences in a cell when RNA polymerase transcribes the coding sequence into mRNA, which is then optionally trans-RNA spliced and translated into the protein encoded by the coding sequence.
- tissue-specific promoter means a nucleotide sequence that serves as a promoter, i.e. regulates expression of a selected DNA sequence operably linked to the promoter, and which effects the expression of the selected DNA sequence in specific cells, such as B-cells.
- gene constructs utilizing B-cell specific promoters can be used to preferentially direct expression of a GIPF protein or protein fragment in B-cells.
- EMF expression modulating fragment
- a sequence is said to “modulate the expression of an operably linked sequence” when the expression of the sequence is altered by the presence of the EMF.
- EMFs include, but are not limited to, promoters, and promoter modulating sequences (inducible elements).
- One class of EMFs is nucleic acid fragments which induce the expression of an operably linked ORF in response to a specific regulatory factor or physiological event.
- recombinant expression vehicle or vector refers to a plasmid or phage or virus or vector, for expressing a polypeptide from a DNA (RNA) sequence.
- An expression vehicle can comprise a transcriptional unit comprising an assembly of (1) a genetic element or elements having a regulatory role in gene expression, for example, promoters or enhancers, (2) a structural or coding sequence which is transcribed into mRNA and translated into protein, and (3) appropriate transcription initiation and termination sequences.
- Structural units intended for use in yeast or eukaryotic expression systems preferably include a leader sequence enabling extracellular secretion of translated protein by a host cell.
- recombinant protein is expressed without a leader or transport sequence, it may include an amino terminal methionine residue. This residue may or may not be subsequently cleaved from the expressed recombinant protein to provide a final product.
- recombinant expression system means host cells which have stably integrated a recombinant transcriptional unit into chromosomal DNA or carry the recombinant transcriptional unit extrachromosomally.
- Recombinant expression systems as defined herein will express heterologous polypeptides or proteins upon induction of the regulatory elements linked to the DNA segment or synthetic gene to be expressed.
- This term also means host cells which have stably integrated a recombinant genetic element or elements having a regulatory role in gene expression, for example, promoters or enhancers.
- Recombinant expression systems as defined herein will express polypeptides or proteins endogenous to the cell upon induction of the regulatory elements linked to the endogenous DNA segment or gene to be expressed.
- the cells can be prokaryotic or eukaryotic.
- transgene refers to a nucleic acid sequence which is partly or entirely heterologous i.e. foreign, to the transgenic animal or cell into which it is introduced, or, is homologous to an endogenous gene of the transgenic animal or cell into which it is introduced, but which is designed to be inserted, or is inserted into the animal's genome in such a way as to alter the genome of the cell into which it is inserted. e.g. it is inserted at a location which differs from that of the natural gene).
- a transgene can be operably linked to one or more transcriptional regulatory sequences and any other nucleic acids, such as introns, that may be necessary for optimal expression of a selected nucleic acid.
- a “transgene construct” refers to a nucleic acid which includes a transgene, and optionally such other nucleic acid sequences as transcriptionally regulatory sequences, polyadenylation sites, replication origins, marker genes etc. which may be useful in the general manipulation of the transgene for insertion in the genome of a host organism.
- transgenic is used herein as an adjective to describe the property, for example, of an animal or construct, of harboring a transgene.
- a “transgenic organism” is any animal, preferably a non-human mammal, in which one or more of the cells of the animal contain heterologous nucleic acids introduced by way of human intervention, such as by transgenic techniques known in the art.
- the nucleic acid is introduced into the cell, directly, or indirectly by introduction into a precursor of the cell, by way of a deliberate genetic manipulation, such as by microinjection or by infection with a recombinant virus.
- the nucleic acid may be integrated within a chromosome, or it may be extrachromosomally replicating DNA.
- the transgene causes cells to express or overexpress GIPF proteins.
- pluripotent refers to the capability of a cell to differentiate into a number of differentiated cell types that are present in an adult organism.
- a pluripotent cell is restricted in its differentiation capability in comparison to a totipotent cell.
- Embryonic stem cells refers to a cell that can give rise to many differentiated cell types in an embryo or an adult, including the germ cells.
- GSCs germ line stem cells
- primordial stem cells that provide a steady and continuous source of germ cells for the production of gametes.
- primordial germ cells PGCs
- PGCs primary germ cells
- PGCs are the source from which GSCs and ES cells are derived. The PGCs, the GSCs and the ES cells are capable of self-renewal.
- totipotent refers to the capability of a cell to differentiate into all of the cell types of an adult organism.
- pluripotent refers to the capability of a cell to differentiate into a number of differentiated cell types that are present in an adult organism. A pluripotent cell is restricted in its differentiation capability in comparison to a totipotent cell.
- founder line and “founder animal” refer to those animals that are the mature product of the embryos to which the transgene was added i.e. those animals that grew from the embryos into which DNA was inserted and that were implanted into one or more surrogate hosts.
- progeny and “progeny of the transgenic animal” refer to any and all offspring of every generation subsequent to the originally transformed mammals.
- non-human mammal refers to all members of the class Mammalia except humans. “Mammal” refers tot any animal classified as a mammal, including humans, domestic and farm animals, and zoo, sports, or pet animals, such as a mouse, rat, rabbit, pig, sheep, goat, cattle and higher primates.
- treat refers to both therapeutic and prophylactic or preventative measures, wherein the object is to prevent or lessen an undesired physiological change or condition, such as chemotherapy or radiation therapy-induced mucositis.
- beneficial or desired clinical results include, but are not limited to alleviation of symptoms, diminishment of extent of the disease, stabilized state of the disease, whether detectable or undetectable.
- a “disorder” is any condition that would benefit from treatment with a molecule identified using the transgenic animal model of the invention. This includes chronic and acute disorders or diseases including those pathological conditions which predispose the mammal to the disorder in question.
- disorders to be treated herein include mucositis, inflammatory bowel disease and skin lesions.
- a preferred disorder to be treated in accordance with the present invention is mucositis.
- IBD Inflammatory bowel disease
- Mucositis herein refers to inflammation of the mucous membranes of the alimentary tract including the oropharynx and lips, esophagus, and large and small intestine.
- SBS Short Bowel Syndrome
- an effective amount of a GIPF fragment for use with the present methods is an amount sufficient to stimulate epithelial cell stimulation or proliferation, and preferably an amount sufficient to cause increased regeneration of the gastrointestinal epithelium in a subject suffering from chemotherapy or radiation therapy-induced mucositis, inflammatory bowel disease, or other disorders where epithelial cell proliferation is desired. Such amounts are described below.
- An appropriate “effective” amount in any individual case may be determined by one of ordinary skill in the art using routine experimentation.
- pharmaceutically acceptable or “pharmacologically acceptable” is meant a material which is not biologically or otherwise undesirable, i.e., the material may be administered to an individual without causing any undesirable biological effects or interacting in a deleterious manner with any of the components of the composition in which it is contained.
- physiological pH or a “pH in the physiological range” is meant a pH in the range of approximately 7.0 to 8.0 inclusive.
- Preferred physiological pH is in the range of approximately 7.2 to 7.6 inclusive.
- the term “subject” encompasses mammals and non-mammals.
- mammals include, but are not limited to, any member of the Mammalia class: humans, non-human primates such as chimpanzees, and other apes and monkey species; farm animals such as cattle, horses, sheep, goats, swine; domestic animals such as rabbits, dogs, and cats; laboratory animals including rodents, such as rats, mice and guinea pigs, and the like.
- non-mammals include, but are not limited to, birds, fish and the like. The term does not denote a particular age or gender.
- compositions comprising the epithelial cell growth factor polypeptide, GIPF, and the polynucleotides encoding the GIPF polypeptide stimulate the growth and proliferation of intestinal epithelial cells including crypt cells. Therefore, the use of these compositions for the diagnosis and treatment of conditions wherein stimulation of epithelial cell proliferation or regeneration is desired, is contemplated.
- the isolated polynucleotides of the invention include, but are not limited to a polynucleotide comprising any of the nucleotide sequences of SEQ ID NO: 2, 3, 5, 7, 9, 11, 13, 15, 17, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104 or 177; a polynucleotide comprising the full length protein coding sequence of SEQ ID NO: 3, 5, 7, 9, 11, 13, 15, 17, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104 or 177; (for example coding for SEQ ID NO: 4, 6, 8, 10, 12, 14, 16, 18, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105 or 178); and a polynucleotide comprising the nucleotide sequence encoding the mature and dominant mature protein coding sequence of the polypeptide of SEQ ID NO: 4.
- the polynucleotides of the present invention also include, but are not limited to, a polynucleotide that hybridizes under stringent conditions to (a) the complement of any of the nucleotides sequences of SEQ ID NO: 2, 3, 5, 7, 9, 11, 13, 15, 17, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104 or 177; (b) a polynucleotide encoding any one of the polypeptides of SEQ ID NO: 4, 6, 8, 10, 12, 14, 16, 18, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105 or 178; (c) a polynucleotide which is an allelic variant of any polynucleotides recited above; (d) a polynucleotide which encodes a species homolog of any of the proteins recited above; or (e) a polynucleotide that encodes a poly
- the polynucleotides of the invention include naturally occurring or wholly or partially synthetic DNA, e.g., cDNA and genomic DNA, and RNA, e.g., mRNA.
- the polynucleotides may include all of the coding region of the cDNA or may represent a portion of the coding region of the cDNA.
- the present invention also provides compositions comprising genes corresponding to the cDNA sequences disclosed herein.
- the corresponding genes can be isolated in accordance with known methods using the sequence information disclosed herein. Such methods include the preparation of probes or primers from the disclosed sequence information for identification and/or amplification of genes in appropriate genomic libraries or other sources of genomic materials. Further 5′ and 3′ sequence can be obtained using methods known in the art.
- full length cDNA or genomic DNA that corresponds to any of the polynucleotide of SEQ ID NO: 2 can be obtained by screening appropriate cDNA or genomic DNA libraries under suitable hybridization conditions using any of the polynucleotides of SEQ ID NO: 2, 3, 5, 7, 9, 11, 13, 15, 17, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104 or 177 or a portion thereof as a probe.
- polynucleotides of SEQ ID NO: 2, 3, 5, 7, 9, 11, 13, 15, 17, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104 or 177 may be used as the basis for suitable primer(s) that allow identification and/or amplification of genes in appropriate genomic DNA or cDNA libraries.
- the nucleic acid sequences of the invention can be assembled from ESTs and sequences (including cDNA and genomic sequences) obtained from one or more public databases, such as dbEST, gbpri, and UniGene.
- the EST sequences can provide identifying sequence information, representative fragment or segment information, or novel segment information for the full-length gene.
- polynucleotides of the invention also provide polynucleotides including nucleotide sequences that are substantially equivalent to the polynucleotides recited above.
- Polynucleotides according to the invention can have, e.g., at least about 65%, at least about 70%, at least about 75%, at least about 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, or 89%, more typically at least about 90%, 91%, 92%, 93%, or 94% and even more typically at least about 95%, 96%, 97%, 98% or 99% sequence identity to a polynucleotide recited above.
- nucleic acid sequence fragments that hybridize under stringent conditions to any of the nucleotide sequences of SEQ ID NO: 1, 6, 8, 10, 12, 14, 17, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104 or 177, or complements thereof, which fragment is greater than about 5 nucleotides, preferably 7 nucleotides, more preferably greater than 9 nucleotides and most preferably greater than 17 nucleotides. Fragments of, e.g. 15, 17, or 20 nucleotides or more that are selective for (i.e.
- Probes capable of specifically hybridizing to a polynucleotide can differentiate polynucleotide sequences of the invention from other polynucleotide sequences in the same family of genes or can differentiate human genes from genes of other species, and are preferably based on unique nucleotide sequences.
- sequences falling within the scope of the present invention are not limited to these specific sequences, but also include allelic and species variations thereof. Allelic and species variations can be routinely determined by comparing the sequence provided in SEQ ID NO: 2, 3, 5, 7, 9, 11, 13, 15, 17, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104 or 177, a representative fragment thereof, or a nucleotide sequence at least 90% identical, preferably 95% identical, to SEQ ID NO: 2, 3, 5, 7, 9, 11, 13, 15, 17, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104 or 177 with a sequence from another isolate of the same species.
- the invention includes nucleic acid molecules coding for the same amino acid sequences as do the specific ORFs disclosed herein.
- substitution of one codon for another codon that encodes the same amino acid is expressly contemplated.
- the nearest neighbor result for the nucleic acids of the present invention can be obtained by searching a database using an algorithm or a program.
- a BLAST which stands for Basic Local Alignment Search Tool is used to search for local sequence alignments (Altshul, S. F. J. Mol. Evol. 36 290-300 (1993) and Altschul S. F. et al. J. Mol. Biol. 21:403-410 (1990))
- Species homologs (or orthologs) of the disclosed polynucleotides and proteins are also provided by the present invention. Species homologs may be isolated and identified by making suitable probes or primers from the sequences provided herein and screening a suitable nucleic acid source from the desired species.
- the invention also encompasses allelic variants of the disclosed polynucleotides or proteins; that is, naturally-occurring alternative forms of the isolated polynucleotide which also encodes proteins which are identical, homologous or related to that encoded by the polynucleotides.
- nucleic acid sequences of the invention are further directed to sequences which encode analogs of the described nucleic acids.
- These amino acid sequence analogs may be prepared by methods known in the art by introducing appropriate nucleotide changes into a native or variant polynucleotide. There are two variables in the construction of amino acid sequence variants: the location of the mutation and the nature of the mutation. Nucleic acids encoding the amino acid sequence analogs are preferably constructed by mutating the polynucleotide to encode an amino acid sequence that does not occur in nature. These nucleic acid alterations can be made at sites that differ in the nucleic acids from different species (variable positions) or in highly conserved regions (constant regions).
- Sites at such locations will typically be modified in series, e.g., by substituting first with conservative choices (e.g., hydrophobic amino acid to a different hydrophobic amino acid) and then with more distant choices (e.g., hydrophobic amino acid to a charged amino acid), and then deletions or insertions may be made at the target site.
- Amino acid sequence deletions generally range from about 1 to 30 residues, preferably about 1 to 10 residues, and are typically contiguous.
- Amino acid insertions include amino- and/or carboxyl-terminal fusions ranging in length from one to one hundred or more residues, as well as intrasequence insertions of single or multiple amino acid residues.
- Intrasequence insertions may range generally from about 1 to 10 amino residues, preferably from 1 to 5 residues.
- terminal insertions include the heterologous signal sequences necessary for secretion or for intracellular targeting in different host cells and sequences such as poly-histidine sequences useful for purifying the expressed protein.
- polynucleotides encoding the novel amino acid sequences are changed via site-directed mutagenesis.
- This method uses oligonucleotide sequences to alter a polynucleotide to encode the desired amino acid variant, as well as sufficient adjacent nucleotides on both sides of the changed amino acid to form a stable duplex on either side of the site being changed.
- site-directed mutagenesis is well known to those of skill in the art and this technique is exemplified by publications such as, Edelman et al., DNA 2:183 (1983).
- a versatile and efficient method for producing site-specific changes in a polynucleotide sequence was published by Zoller and Smith, Nucleic Acids Res.
- PCR may also be used to create amino acid sequence variants of the novel nucleic acids.
- primer(s) that differs slightly in sequence from the corresponding region in the template DNA can generate the desired amino acid variant.
- PCR amplification results in a population of product DNA fragments that differ from the polynucleotide template encoding the polypeptide at the position specified by the primer. The product DNA fragments replace the corresponding region in the plasmid and this gives a polynucleotide encoding the desired amino acid variant.
- a further technique for generating amino acid variants is the cassette mutagenesis technique described in Wells et al., Gene 34:315 (1985); and other mutagenesis techniques well known in the art, such as, for example, the techniques in Sambrook et al., supra, and Current Protocols in Molecular Biology , Ausubel et al. Due to the inherent degeneracy of the genetic code, other DNA sequences which encode substantially the same or a functionally equivalent amino acid sequence may be used in the practice of the invention for the cloning and expression of these novel nucleic acids. Such DNA sequences include those which are capable of hybridizing to the appropriate novel nucleic acid sequence under stringent conditions.
- Polynucleotides encoding preferred polypeptide truncations of the invention can be used to generate polynucleotides encoding chimeric or fusion proteins comprising one or more domains of the invention and heterologous protein sequences.
- the polynucleotides of the invention additionally include the complement of any of the polynucleotides recited above.
- the polynucleotide can be DNA (genomic, cDNA, amplified, or synthetic) or RNA. Methods and algorithms for obtaining such polynucleotides are well known to those of skill in the art and can include, for example, methods for determining hybridization conditions that can routinely isolate polynucleotides of the desired sequence identities.
- polynucleotide sequences comprising the dominant mature or mature protein coding sequences, coding for any one of SEQ ID NO: 6 or 8, or functional equivalents thereof, may be used to generate recombinant DNA molecules that direct the expression of that nucleic acid, or a functional equivalent thereof, in appropriate host cells. Also included are the cDNA inserts of any of the clones identified herein.
- a polynucleotide according to the invention can be joined to any of a variety of other nucleotide sequences by well-established recombinant DNA techniques (see Sambrook J et al. (1989) Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, N.Y.).
- Useful nucleotide sequences for joining to polynucleotides include an assortment of vectors, e.g., plasmids, cosmids, lambda phage derivatives, phagemids, and the like, that are well known in the art. Accordingly, the invention also provides a vector including a polynucleotide of the invention and a host cell containing the polynucleotide.
- the vector contains an origin of replication functional in at least one organism, convenient restriction endonuclease sites, and a selectable marker for the host cell.
- Vectors according to the invention include expression vectors, replication vectors, probe generation vectors, and sequencing vectors.
- a host cell according to the invention can be a prokaryotic or eukaryotic cell and can be a unicellular organism or part of a multicellular organism.
- the present invention further provides recombinant constructs comprising a nucleic acid having any of the nucleotide sequences of SEQ ID NO: 2, 3, 5, 7, 9, 11, 13, 15, 17, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104 or 177 or a fragment thereof or any other GIPF polynucleotides.
- the recombinant constructs of the present invention comprise a vector, such as a plasmid or viral vector, into which a nucleic acid having any of the nucleotide sequences of SEQ ID NO: 2, 3, 5, 7, 9, 11, 13, 15, 17, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104 or 177 or a fragment thereof is inserted.
- the vector may further comprise regulatory sequences, including for example, a promoter, operably linked to the ORF.
- Bacterial Bacterial: pBs, phagescript, PsiX174, pBluescript SK, pBs KS, pNH8a, pNH16a, pNH18a, pNH46a (Stratagene); pTrc99A, pKK223-3, pKK233-3, pDR540, pRIT5 (Pharmacia).
- Eukaryotic pWLneo, pSV2cat, pOG44, PXTI, pSG (Stratagene) pSVK3, PBPV, pMSG, and pSVL (Pharmacia).
- the nucleic acid of SEQ ID NO: 3 is inserted in the C ⁇ P2KI vector of the invention as described in the examples.
- the isolated polynucleotide of the invention may be operably linked to an expression control sequence such as the pMT2 or pED expression vectors disclosed in Kaufman et al., Nucleic Acids Res. 19, 4485-4490 (1991), in order to produce the protein recombinantly.
- an expression control sequence such as the pMT2 or pED expression vectors disclosed in Kaufman et al., Nucleic Acids Res. 19, 4485-4490 (1991)
- Many suitable expression control sequences are known in the art. General methods of expressing recombinant proteins are also known and are exemplified in R. Kaufman, Methods in Enzymology 185, 537-566 (1990).
- operably linked means that the isolated polynucleotide of the invention and an expression control sequence are situated within a vector or cell in such a way that the protein is expressed by a host cell which has been transformed (transfected) with the ligated polynucleotide/expression control sequence.
- Promoter regions can be selected from any desired gene using CAT (chloramphenicol transferase) vectors or other vectors with selectable markers.
- Two appropriate vectors are pKK232-8 and pCM7.
- Particular named bacterial promoters include lacI, lacZ, T3, T7, gpt, lambda PR, and trc.
- Eukaryotic promoters include CMV immediate early, HSV thymidine kinase, early and late SV40, LTRs from retrovirus, and mouse metallothionein-I. Selection of the appropriate vector and promoter is well within the level of ordinary skill in the art.
- recombinant expression vectors will include origins of replication and selectable markers permitting transformation of the host cell, e.g., the ampicillin resistance gene of E. coli and S. cerevisiae TRP1 gene, and a promoter derived from a highly expressed gene to direct transcription of a downstream structural sequence.
- promoters can be derived from operons encoding glycolytic enzymes such as 3-phosphoglycerate kinase (PGK), a-factor, acid phosphatase, or heat shock proteins, among others.
- PGK 3-phosphoglycerate kinase
- the heterologous structural sequence is assembled in appropriate phase with translation initiation and termination sequences, and preferably, a leader sequence capable of directing secretion of translated protein into the periplasmic space or extracellular medium.
- the heterologous sequence can encode a fusion protein including an amino terminal identification peptide imparting desired characteristics, e.g., stabilization or simplified purification of expressed recombinant product.
- Useful expression vectors for bacterial use are constructed by inserting a structural DNA sequence encoding a desired protein together with suitable translation initiation and termination signals in operable reading phase with a functional promoter.
- the vector will comprise one or more phenotypic selectable markers and an origin of replication to ensure maintenance of the vector and to, if desirable, provide amplification within the host.
- Suitable prokaryotic hosts for transformation include E. coli, Bacillus subtilis, Salmonella typhimurium and various species within the genera Pseudomonas, Streptomyces , and Staphylococcus , although others may also be employed as a matter of choice.
- useful expression vectors for bacterial use can comprise a selectable marker and bacterial origin of replication derived from commercially available plasmids comprising genetic elements of the well known cloning vector pBR322 (ATCC 37017).
- cloning vector pBR322 ATCC 37017
- Such commercial vectors include, for example, pKK223-3 (Pharmacia Fine Chemicals, Uppsala, Sweden) and GEM 1 (Promega Biotech, Madison, Wis., USA). These pBR322 “backbone” sections are combined with an appropriate promoter and the structural sequence to be expressed.
- the selected promoter is induced or derepressed by appropriate means (e.g., temperature shift or chemical induction) and cells are cultured for an additional period.
- appropriate means e.g., temperature shift or chemical induction
- Cells are typically harvested by centrifugation, disrupted by physical or chemical means, and the resulting crude extract retained for further purification.
- the present invention further includes novel expression vectors comprising promoter elements operatively linked to polynucleotide sequences encoding a protein of interest.
- novel expression vectors comprising promoter elements operatively linked to polynucleotide sequences encoding a protein of interest.
- a vector is the pcDNA/vector, which is described in Example 8.
- the present invention further provides host cells genetically engineered with the vectors of this invention, which may be, for example, a cloning vector or an expression vector that contain the polynucleotides of the invention.
- host cells may contain nucleic acids of the invention introduced into the host cell using known transformation, transfection or infection methods.
- the vector may be, for example, in the form of a plasmid, a viral particle, a phage etc.
- the engineered host cells can be cultured in conventional nutrient media modified as appropriate for activating promoters, selecting transformants or amplifying GIPF genes.
- the culture conditions, such as temperature, pH, and the like, are those previously used with the host cell selected for expression, and will be apparent to the ordinarily skilled artisan.
- the present invention still further provides host cells genetically engineered to express the polynucleotides of the invention, wherein such polynucleotides are in operative association with a regulatory sequence heterologous to the host cell which drives expression of the polynucleotides in the cell.
- the host cell can be a higher eukaryotic host cell, such as a mammalian cell, a lower eukaryotic host cell, such as a yeast cell, or the host cell can be a prokaryotic cell, such as a bacterial cell.
- Introduction of the recombinant construct into the host cell can be effected by calcium phosphate transfection, DEAE, dextran mediated transfection, or electroporation (Davis, L. et al., Basic Methods in Molecular Biology (1986)).
- the host cells containing one of polynucleotides of the invention can be used in conventional manners to produce the gene product encoded by the isolated fragment (in the case of an ORF) or can be used to produce a heterologous protein under the control of the EMF.
- Any host/vector system can be used to express one or more of the GIPF polypeptides.
- eukaryotic hosts such as HeLa cells, Cv-1 cell, COS cells, and Sf9 cells, as well as prokaryotic host such as E. coli and B. subtilis .
- the most preferred cells are those which do not normally express the particular polypeptide or protein or which expresses the polypeptide or protein at low natural level.
- Mature proteins can be expressed in mammalian cells, yeast, bacteria, or other cells under the control of appropriate promoters. Cell-free translation systems can also be employed to produce such proteins using RNAs derived from the DNA constructs of the present invention.
- mammalian cell culture systems can be employed to express recombinant protein.
- mammalian expression systems include the COS-7 lines of monkey kidney fibroblasts, described by Gluzman, Cell 23:175 (1981), and other cell lines capable of expressing a compatible vector, for example, the C127, 3T3, CHO, HeLa and BHK cell tines.
- Mammalian expression vectors will comprise an origin of replication, a suitable promoter, and also any necessary ribosome binding sites, polyadenylation site, splice donor and acceptor sites, transcriptional termination sequences, and 5′ flanking nontranscribed sequences.
- DNA sequences derived from the SV40 viral genome for example, SV40 origin, early promoter, enhancer, splice, and polyadenylation sites may be used to provide the required nontranscribed genetic elements.
- Recombinant polypeptides and proteins produced in bacterial culture are usually isolated by initial extraction from cell pellets, followed by one or more salting-out, aqueous ion exchange or size exclusion chromatography steps. Protein refolding steps can be used, as necessary, in completing configuration of the mature protein. Finally, high performance liquid chromatography (HPLC) can be employed for final purification steps.
- Microbial cells employed in expression of proteins can be disrupted by any convenient method, including freeze-thaw cycling, sonication, mechanical disruption, or use of cell lysing agents.
- Mammalian host cells include, for example, monkey COS cells, human epidermal A431 cells, human Colo205 cells, 3T3 cells, CV-1 cells, other transformed primate cell lines, normal diploid cells, cell strains derived from in vitro culture of primary tissue, primary explants, HeLa cells, mouse L cells, BHK, HL-60, U937, HaK or Jurkat cells.
- GIPF proteins are expressed in Chinese Hamster Ovary (CHO) cells, and human embryonic kidney 293 cells.
- yeast eukaryotes
- prokaryotes such as bacteria.
- yeast strains include Saccharomyces cerevisiae, Schizosaccharomyces pombe, Kluyveromyces strains, Candida, Pichia pastoris or any yeast strain capable of expressing heterologous proteins.
- Potentially suitable bacterial strains include Escherichia coli, Bacillus subtilis, Salmonella typhimurium , or any bacterial strain capable of expressing heterologous proteins. If the protein is made in yeast or bacteria, it may be necessary to modify the protein produced therein, for example by phosphorylation or glycosylation of the appropriate sites, in order to obtain the functional protein. Such covalent attachments may be accomplished using known chemical or enzymatic methods.
- a GIPF “chimeric protein” or “fusion protein” comprises a GIPF polypeptide operatively-linked to a non-GIPF polypeptide.
- a “GIPF polypeptide” refers to a polypeptide having an amino acid sequence corresponding to a GIPF protein
- a “non-GIPF polypeptide” refers to a polypeptide having an amino acid sequence corresponding to a protein that is not substantially homologous to the GIPF protein, e.g., a protein that is different from the GIPF protein and that is derived from the same or a different organism.
- a GIPF fusion protein can correspond to all or a portion of a GIPF protein.
- a GIPF fusion protein comprises at least one biologically active portion of a GIPF protein.
- a GIPF fusion protein comprises at least two biologically active portions of a GIPF protein.
- a GIPF fusion protein comprises at least three biologically active portions of a GIPF protein.
- the term “operatively-linked” is intended to indicate that the GIPF polypeptide and the non-GIPF polypeptide are fused in-frame with one another.
- the non-GIPF polypeptide can be fused to the N-terminus or C-terminus of the GIPF polypeptide.
- the fusion protein is a GST-GIPF fusion protein in which the GIPF sequences are fused to the C-terminus of the GST (glutathione S-transferase) sequences.
- Such fusion proteins can facilitate the purification of recombinant GIPF polypeptides.
- the fusion protein is a GIPF protein containing a heterologous signal sequence at its N-terminus. In certain host cells (e.g., mammalian host cells), expression and/or secretion of GIPF can be increased through use of a heterologous signal sequence.
- the GIPF polypeptide is fused with a V5-His tag for easy detection with an anti-V5 antibody and for rapid purification as described in the examples.
- a GIPF chimeric or fusion protein of the invention can be produced by standard recombinant DNA techniques. For example, DNA fragments coding for the different polypeptide sequences are ligated together in-frame in accordance with conventional techniques, e.g., by employing blunt-ended or stagger-ended termini for ligation, restriction enzyme digestion to provide for appropriate termini, filling-in of cohesive ends as appropriate, alkaline phosphatase treatment to avoid undesirable joining, and enzymatic ligation.
- the fusion gene can be synthesized by conventional techniques including automated DNA synthesizers.
- PCR amplification of gene fragments can be carried out using anchor primers that give rise to complementary overhangs between two consecutive gene fragments that can subsequently be annealed and reamplified to generate a chimeric gene sequence (see, e.g., Ausubel, et al. (eds.) CURRENT PROTOCOLS IN MOLECULAR BIOLOGY, John Wiley & Sons, 1992).
- anchor primers that give rise to complementary overhangs between two consecutive gene fragments that can subsequently be annealed and reamplified to generate a chimeric gene sequence
- a fusion moiety e.g., a GST polypeptide.
- a GIPF-encoding nucleic acid can be cloned into such an expression vector such that the fusion moiety is linked in-frame to the GIPF protein.
- compositions of the invention comprise isolated GIPF polypeptides that include, but are not limited to, a polypeptide comprising: the amino acid sequence set forth as any one of SEQ ID NO: 4, 6, 8, 10, 12, 14, 16, 18, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105 or 178, or an amino acid sequence encoded by any one of the nucleotide sequences SEQ ID NO: 2, 3, 5, 7, 9, 11, 13, 15, 17, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104 or 177.
- Polypeptides of the invention also include polypeptides preferably with biological or immunological activity that are encoded by: (a) a polynucleotide having any one of the nucleotide sequences set forth in SEQ ID NO: 2, 3, 5, 7, 9, 11, 13, 15, 17, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, or 104 or (b) polynucleotides encoding any one of the amino acid sequences set forth as SEQ ID NO: 4, 6, 8, 10, 12, 14, 16, 18, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105 or 178 or (c) polynucleotides that hybridize to the complement of the polynucleotides of either (a) or (b) under stringent hybridization conditions.
- the invention also provides biologically active or immunologically active variants of any of the amino acid sequences set forth as SEQ ID NO: 4, 6, 8, 10, 12, 14, 16, 18, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105 or 178; and “substantial equivalents” thereof (e.g., with at least about 65%, at least about 70%, at least about 75%, at least about 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, or 89%, more typically at least about 90%, 91%, 92%, 93%, or 94% and even more typically at least about 95%, 96%, 97%, 98% or 99%, most typically at least about 99% amino acid identity) that retain biological activity.
- amino acid sequences set forth as SEQ ID NO: 4, 6, 8, 10, 12, 14, 16, 18, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105 or 178; and “substantial equivalent
- Polypeptides encoded by allelic variants may have a similar, increased, or decreased activity compared to polypeptides comprising SEQ ID NO: 4, 6, 8, 10, 12, 14, 16, 18, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105 or 178.
- Fragments of the proteins of the present invention which are capable of exhibiting biological activity are also encompassed by the present invention.
- Fragments of the protein may be in linear form or they may be cyclized using known methods, for example, as described in H. U. Saragovi, et al., Bio/Technology 10, 773-778 (1992) and in R. S. McDowell, et al., J. Amer. Chem. Soc. 114, 9245-9253 (1992), both of which are incorporated herein by reference.
- Such fragments may be fused to carrier molecules such as immunoglobulins for many purposes, including increasing the valency of protein binding sites.
- the present invention also provides both full-length and dominant mature forms (for example, without a signal sequence or precursor sequence) or mature forms (for example, lacking the signal sequence and the furin cleavage site) of the disclosed proteins.
- the protein coding sequence is identified in the sequence listing by translation of the disclosed nucleotide sequences.
- the mature form of such protein may be obtained by expression of a full-length polynucleotide in a suitable mammalian cell or other host cell.
- the sequence of the mature form of the protein is also determinable from the amino acid sequence of the full-length form.
- Protein compositions of the present invention may further comprise an acceptable carrier, such as a hydrophilic, e.g., pharmaceutically acceptable, carrier.
- an acceptable carrier such as a hydrophilic, e.g., pharmaceutically acceptable, carrier.
- the present invention further provides isolated polypeptides encoded by the nucleic acid fragments of the present invention or by degenerate variants of the nucleic acid fragments of the present invention.
- degenerate variant is intended nucleotide fragments which differ from a nucleic acid fragment of the present invention (e.g., an ORF) by nucleotide sequence but, due to the degeneracy of the genetic code, encode an identical polypeptide sequence.
- Preferred nucleic acid fragments of the present invention are the ORFs that encode proteins.
- the amino acid sequence can be synthesized using commercially available peptide synthesizers.
- the synthetically-constructed protein sequences by virtue of sharing primary, secondary or tertiary structural and/or conformational characteristics with proteins may possess biological properties in common therewith, including protein activity. This technique is particularly useful in producing small peptides and fragments of larger polypeptides. Fragments are useful, for example, in generating antibodies against the native polypeptide. Thus, they may be employed as biologically active or immunological substitutes for natural, purified proteins in screening of therapeutic compounds and in immunological processes for the development of antibodies.
- polypeptides and proteins of the present invention can alternatively be purified from cells which have been altered to express the desired polypeptide or protein.
- a cell is said to be altered to express a desired polypeptide or protein when the cell, through genetic manipulation, is made to produce a polypeptide or protein which it normally does not produce or which the cell normally produces at a lower level.
- One skilled in the art can readily adapt procedures for introducing and expressing either recombinant or synthetic sequences into eukaryotic or prokaryotic cells in order to generate a cell which produces one of the polypeptides or proteins of the present invention.
- the invention also relates to methods for producing a polypeptide comprising growing a culture of host cells of the invention in a suitable culture medium, and purifying the protein from the cells or the culture in which the cells are grown.
- the methods of the invention include a process for producing a polypeptide in which a host cell containing a suitable expression vector that includes a polynucleotide of the invention is cultured under conditions that allow expression of the encoded polypeptide.
- the polypeptide can be recovered from the culture, conveniently from the culture medium, or from a lysate prepared from the host cells and further purified.
- Preferred embodiments include those in which the protein produced by such process is a full length or mature form of the protein.
- the polypeptide or protein is purified from bacterial cells which are transformed with GIPF-encoding DNA to produce the polypeptide or protein.
- One skilled in the art can readily follow known methods for isolating polypeptides and proteins in order to obtain one of the isolated polypeptides or proteins of the present invention. These include, but are not limited to, immunochromatography, HPLC, size-exclusion chromatography, ion-exchange chromatography, and immuno-affinity chromatography. See, e.g., Scopes, Protein Purification: Principles and Practice , Springer-Verlag (1994); Sambrook, et al., in Molecular Cloning: A Laboratory Manual ; Ausubel et al., Current Protocols in Molecular Biology . Polypeptide fragments that retain biological/immunological activity include fragments comprising greater than about 100 amino acids, or greater than about 200 amino acids, and fragments that encode specific protein domains.
- the purified polypeptides can be used in in vitro binding assays which are well known in the art to identify molecules which bind to the polypeptides. These molecules include but are not limited to, for e.g., small molecules, molecules from combinatorial libraries, antibodies or other proteins.
- the molecules identified in the binding assay are then tested for antagonist or agonist activity in in vivo tissue culture or animal models that are well known in the art. In brief, the molecules are titrated into a plurality of cell cultures or animals and then tested for either cell/animal death or prolonged survival of the animal/cells.
- the protein of the invention may also be expressed as a product of transgenic animals, e.g., as a component of the milk of transgenic cows, goats, pigs, or sheep which are characterized by somatic or germ cells containing a nucleotide sequence encoding the protein.
- the proteins provided herein also include proteins characterized by amino acid sequences similar to those of purified proteins but into which modification are naturally provided or deliberately engineered.
- modifications, in the peptide or DNA sequence can be made by those skilled in the art using known techniques.
- Modifications of interest in the protein sequences may include the alteration, substitution, replacement, insertion or deletion of a selected amino acid residue in the coding sequence.
- one or more of the cysteine residues may be deleted or replaced with another amino acid to alter the conformation of the molecule. Techniques for such alteration, substitution, replacement, insertion or deletion are well known to those skilled in the art (see, e.g., U.S. Pat. No. 4,518,584).
- such alteration, substitution, replacement, insertion or deletion retains the desired activity of the protein.
- Regions of the protein that are important for the protein function can be determined by various methods known in the art including the alanine-scanning method which involved systematic substitution of single or strings of amino acids with alanine, followed by testing the resulting alanine-containing variant for biological activity. This type of analysis determines the importance of the substituted amino acid(s) in biological activity. Regions of the protein that are important for protein function may be determined by the eMATRIX program.
- the protein may also be produced by operably linking the isolated polynucleotide of the invention to suitable control sequences in one or more insect expression vectors, and employing an insect expression system.
- suitable control sequences in one or more insect expression vectors, and employing an insect expression system.
- Materials and methods for baculovirus/insect cell expression systems are commercially available in kit form from, e.g., Invitrogen, San Diego, Calif., U.S.A. (the MaxBatTM kit), and such methods are well known in the art, as described in Summers and Smith, Texas Agricultural Experiment Station Bulletin No. 1555 (1987), incorporated herein by reference.
- an insect cell capable of expressing a polynucleotide of the present invention is “transformed.”
- the protein of the invention may be prepared by culturing transformed host cells under culture conditions suitable to express the recombinant protein.
- the resulting expressed protein may then be purified from such culture (i.e., from culture medium or cell extracts) using known purification processes, such as gel filtration and ion exchange chromatography.
- the purification of the protein may also include an affinity column containing agents which will bind to the protein; one or more column steps over such affinity resins as concanavalin A-agarose, heparin-toyopearlTM or Cibacrom blue 3GA SepharoseTM; one or more steps involving hydrophobic interaction chromatography using such resins as phenyl ether, butyl ether, or propyl ether; or immunoaffinity chromatography.
- the protein of the invention may also be expressed in a form which will facilitate purification.
- it may be expressed as a fusion protein, such as those of maltose binding protein (MBP), glutathione-S-transferase (GST) or thioredoxin (TRX), or as a His tag.
- Kits for expression and purification of such fusion proteins are commercially available from New England BioLab (Beverly, Mass.), Pharmacia (Piscataway, N.J.) and Invitrogen, respectively.
- the protein can also be tagged with an epitope and subsequently purified by using a specific antibody directed to such epitope.
- FLAG® is commercially available from Kodak (New Haven, Conn.).
- RP-HPLC reverse-phase high performance liquid chromatography
- hydrophobic RP-HPLC media e.g., silica gel having pendant methyl or other aliphatic groups
- the polypeptides of the invention include GIPF analogs. This embraces fragments of GIPF polypeptide, as well as GIPF polypeptides which comprise one or more amino acids deleted, inserted, or substituted. Also, analogs of the GIPF polypeptide of the invention embrace fusions of the GIPF polypeptides or modifications of the GIPF polypeptides, wherein the GIPF polypeptide or analog is fused to another moiety or moieties, e.g., targeting moiety or another therapeutic agent. Such analogs may exhibit improved properties such as activity and/or stability.
- moieties which may be fused to the GIPF polypeptide or an analog include, for example, targeting moieties which provide for the delivery of polypeptide to the small intestine, e.g., antibodies to the small intestine, or antibodies to receptor and ligands expressed on gastroinetestinal cells.
- moieties which may be fused to GIPF polypeptide include therapeutic agents which are used for treatment, for example cytokines or other medications, of gastrointestinal disorders, and other conditions as recited herein.
- the invention provides gene therapy to treat the diseases cited herein. Delivery of a functional gene encoding polypeptides of the invention to appropriate cells is effected ex vivo, in situ, or in vivo by use of vectors, and more particularly viral vectors (e.g., adenovirus, adeno-associated virus, or a retrovirus), or ex vivo by use of physical DNA transfer methods (e.g., liposomes or chemical treatments).
- viral vectors e.g., adenovirus, adeno-associated virus, or a retrovirus
- physical DNA transfer methods e.g., liposomes or chemical treatments.
- a “vector” is any means for the transfer of a nucleic acid according to the invention into a host cell.
- Preferred vectors are viral vectors, such as retroviruses, herpes viruses, adenoviruses and adeno-associated viruses.
- a gene or nucleic acid sequence encoding a GIPF protein or polypeptide domain fragment thereof is introduced in vivo, ex vivo, or in vitro using a viral vector or through direct introduction of DNA.
- Expression in targeted tissues can be effected by targeting the transgenic vector to specific cells, such as with a viral vector or a receptor ligand, or by using a tissue-specific promoter, or both.
- Viral vectors commonly used for in vivo or ex vivo targeting and therapy procedures are DNA-based vectors and retroviral vectors. Methods for constructing and using viral vectors are known in the art [see, e.g., Miller and Rosman, BioTechniques 7:980-990 (1992)].
- the viral vectors are replication defective, that is, they are unable to replicate autonomously in the target cell.
- the genome of the replication defective viral vectors which are used within the scope of the present invention lack at least one region which is necessary for the replication of the virus in the infected cell. These regions can either be eliminated (in whole or in part), be rendered non-functional by any technique known to a person skilled in the art.
- These techniques include the total removal, substitution (by other sequences, in particular by the inserted nucleic acid), partial deletion or addition of one or more bases to an essential (for replication) region.
- Such techniques may be performed in vitro (on the isolated DNA) or in situ, using the techniques of genetic manipulation or by treatment with mutagenic agents.
- the replication defective virus retains the sequences of its genome which are necessary for encapsulating the viral particles.
- DNA viral vectors include an attenuated or defective DNA virus, such as but not limited to herpes simplex virus (HSV), papillomavirus, Epstein-Barr virus (EBV), adenovirus, adeno-associated virus (AAV), and the like.
- HSV herpes simplex virus
- EBV Epstein-Barr virus
- AAV adeno-associated virus
- Defective viruses which entirely or almost entirely lack viral genes, are preferred. Defective virus is not infective after introduction into a cell.
- Use of defective viral vectors allows for administration to cells in a specific, localized area, without concern that the vector can infect other cells. Thus, a specific tissue can be specifically targeted.
- particular vectors include, but are not limited to, a defective herpes virus 1 (HSV1) vector [Kaplitt et al., Molec. Cell.
- an appropriate immunosuppressive treatment is employed in conjunction with the viral vector, e.g., adenovirus vector, to avoid immuno-deactivation of the viral vector and transfected cells.
- the viral vector e.g., adenovirus vector
- immunosuppressive cytokines such as interleukin-12 (IL-12), interferon- ⁇ (IFN- ⁇ ), or anti-CD4 antibody
- IL-12 interleukin-12
- IFN- ⁇ interferon- ⁇
- anti-CD4 antibody can be administered to block humoral or cellular immune responses to the viral vectors [see, e.g., Wilson, Nature Medicine (1995)].
- the vector is an adenovirus vector.
- the adenovirus vector has shown itself to be particularly effective for delivery of the GIPF polypeptide, as shown by the unexpectedly efficient effects of stimulating intestinal epithelial cell proliferation resulting in marked, diffuse thickening of the mucosa by crypt epithelial hyperplasia and a marked increase in crypt length and complex branching.
- Adenoviruses are eukaryotic DNA viruses that can be modified to efficiently deliver a nucleic acid of the invention to a variety of cell types.
- Various serotypes of adenovirus exist.
- adenoviruses of animal origin preference is given, within the scope of the present invention, to using type 2 or type 5 human adenoviruses (Ad 2 or Ad 5) or adenoviruses of animal origin (see WO94/26914).
- Those adenoviruses of animal origin which can be used within the scope of the present invention include adenoviruses of canine, bovine, murine (example: Mav1, Beard et al., Virology 75 (1990) 81), ovine, porcine, avian, and simian (example: SAV) origin.
- the replication defective adenoviral vectors of the invention comprise the ITRs, an encapsidation sequence and the nucleic acid of interest. Still more preferably, at least the E1 region of the adenoviral vector is non-functional. Other regions may also be modified, in particular the E3 region (WO95/02697), the E2 region (WO94/28938), the E4 region (WO94/28152, WO94/12649 and WO95/02697), or in any of the late genes L1-L5.
- the adenoviral vector has a deletion in the E1 and E3 region.
- E1-deleted adenoviruses are disclosed in EP 185,573, the contents of which are incorporated herein by reference.
- the replication defective recombinant adenoviruses according to the invention can be prepared by any technique known to the person skilled in the art (Levrero et al., Gene 101 (1991) 195, EP 185 573; Graham, EMBO J. 3 (1984) 2917). In particular, they can be prepared by homologous recombination between an adenovirus and a plasmid which carries, inter alia, the DNA sequence of interest. The homologous recombination is effected following cotransfection of the said adenovirus and plasmid into an appropriate cell line.
- the cell line which is employed should preferably (i) be transformable by the said elements, and (ii) contain the sequences which are able to complement the part of the genome of the replication defective adenovirus, preferably in integrated form in order to avoid the risks of recombination.
- Examples of cell lines which may be used are the human embryonic kidney cell line 293 (Graham et al., J. Gen. Virol. 36 (1977) 59) which contains the left-hand portion of the genome of an Ad5 adenovirus (12%) integrated into its genome, and cell lines which are able to complement the E1 and E4 functions, as described in applications WO94/26914 and WO95/02697.
- Recombinant adenoviruses are recovered and purified using standard molecular biological techniques, which are well known to one of ordinary skill in the art.
- Promoters that may be used in the present invention include both constitutive promoters and regulated (inducible) promoters.
- the promoter may be naturally responsible for the expression of the nucleic acid. It may also be from a heterologous source. In particular, it may be promoter sequences of eukaryotic or viral genes. For example, it may be promoter sequences derived from the genome of the cell which it is desired to infect. Likewise, it may be promoter sequences derived from the genome of a virus, including the adenovirus used. In this regard, there may be mentioned, for example, the promoters of the E1A, MLP, CMV and RSV genes and the like.
- the promoter may be modified by addition of activating or regulatory sequences or sequences allowing a tissue-specific or predominant expression (enolase and GFAP promoters and the like).
- the nucleic acid may be inserted, such as into the virus genome downstream of such a sequence.
- promoters useful for practice of this invention are ubiquitous promoters (e.g., HPRT, vimentin, actin, tubulin), intermediate filament promoters (e.g., desmin, neurofilaments, keratin, GFAP), therapeutic gene promoters (e.g., MDR type, CFTR, factor VIII), tissue-specific promoters (e.g., actin promoter in smooth muscle cells), promoters which are preferentially activated in dividing cells, promoters which respond to a stimulus (e.g., steroid hormone receptor, retinoic acid receptor), tetracycline-regulated transcriptional modulators, cytomegalovirus immediate-early, retroviral LTR, metallothionein, SV-40, E1a, and MLP promoters. Tetracycline-regulated transcriptional modulators and CMV promoters are described in WO 96/01313, U.S. Pat. Nos. 5,168,062 and 5,385,839, the contents of which are
- the promoters which may be used to control gene expression include, but are not limited to, the cytomegalovirus (CMV) promoter, the SV40 early promoter region (Benoist and Chambon, 1981, Nature 290:304-310), the promoter contained in the 3′ long terminal repeat of Rous sarcoma virus (Yamamoto, et al., 1980, Cell 22:787-797), the herpes thymidine kinase promoter (Wagner et al., 1981, Proc. Natl. Acad. Sci. U.S.A.
- prokaryotic expression vectors such as the b-lactamase promoter (Villa-Kamaroff, et al., 1978, Proc. Natl. Acad. Sci. U.S.A. 75:3727-3731), or the tac promoter (DeBoer, et al., 1983, Proc. Natl. Acad. Sci. U.S.A.
- eful proteins from recombinant bacteria in Scientific American, 1980, 242:74-94; promoter elements from yeast or other fungi such as the Gal 4 promoter, the ADC (alcohol dehydrogenase) promoter, PGK (phosphoglycerol kinase) promoter, alkaline phosphatase promoter; and the animal transcriptional control regions, which exhibit tissue specificity and have been utilized in transgenic animals: elastase I gene control region which is active in pancreatic acinar cells (Swift et al., 1984, Cell 38:639-646; Ornitz et al., 1986, Cold Spring Harbor Symp. Quant. Biol.
- mouse mammary tumor virus control region which is active in testicular, breast, lymphoid and mast cells (Leder et al., 1986, Cell 45:485-495), albumin gene control region which is active in liver (Pinkert et al., 1987, Genes and Devel. 1:268-276), alpha-fetoprotein gene control region which is active in liver (Krumlaufet al., 1985, Mol. Cell. Biol. 5:1639-1648; Hammer et al., 1987, Science 235:53-58), alpha 1-antitrypsin gene control region which is active in the liver (Kelsey et al., 1987, Genes and Devel.
- beta-globin gene control region which is active in myeloid cells (Mogram et al., 1985, Nature 315:338-340; Kollias et al., 1986, Cell 46:89-94), myelin basic protein gene control region which is active in oligodendrocyte cells in the brain (Readhead et al., 1987, Cell 48:703-712), myosin light chain-2 gene control region which is active in skeletal muscle (Sani, 1985, Nature 314:283-286), and gonadotropic releasing hormone gene control region which is active in the hypothalamus (Mason et al., 1986, Science 234:1372-1378).
- the present invention further includes a novel vector comprising operator and promoter elements operatively linked to polynucleotide sequences encoding a protein of interest.
- the novel adenoviral vector is the pAdenoVator-CMV5-Intron vector, which is described in detail in Examples.
- the polynucleotides of the present invention also make possible the development of chimeric animals that specifically express GIPF polypeptides in B cells. Such animals are useful as models for studying the in vivo activities of polypeptide as well as for studying modulators of the polypeptides of the invention.
- a preferred embodiment of the invention relates to a transgenic knock-in (KI) mouse model that was designed to determine the biological function of GIPF in a rapid manner.
- the transgenic KI animal model is described in International Application PCT/JP02/11236, and published as WO2003/041495.
- the transgenic model relates to a GIPF transgene that encodes the B-cell specific expression of GIPF under the control of the immunoglobulin kappa light chain promoter.
- the transgene is introduced into TT2F ES cells, which contain intact immunoglobulin heavy and light chain loci, and the ES cells that contain the GIPF transgene are implanted into mice that lack both alleles for the antibody heavy chain (IgH-KO ⁇ H ⁇ / ⁇ ) (Kitamura et al., Nature 350:423-426(1991), herein incorporated by reference in its entirety).
- the expression of the immunoglobulin kappa light chains can only occur in functional B cells that are derived from the ES cells that express the IG chains (WO 00/10383; EP 1106061A1).
- the expression of GIPF by B-cells occurs only in the GIPF-KI chimeric mice.
- the transgenic animal model of the invention thus allows for a speedy phenotypic analysis of chimeric animals, rather than heterozygous or homozygous animals containing transgenes transmitted through the germline.
- the expression of the transgene is restricted to B cells, which secrete the GIPF protein into the animal's circulation, thus exposing every tissue to GIPF, and allowing for a rapid assessment of the biological effect of GIPF, or any other encoded polypeptide. It is intended that the transgenic system of the present invention can be used for expressing and assessing the biological function of any polypeptide.
- Another advantage of the transgenic model of the invention relates to the temporal expression of the transgene.
- the activity of the kappa light chain promoter begins at approximately 14 days post-gestation and the remarkable elevation of circulating immunoglobulin concentration is observed after weaning, thus avoiding any potentially deleterious effects that GIPF might have on the early development of the mouse.
- An exemplary embodiment of the transgenic animal of the invention is described in the Examples.
- transgenic animals of the present invention all include within a plurality of their cells a transgene of the present invention, which transgene alters the phenotype of the “host cell” with respect to the specific expression of GIPF by B cells, which secrete GIPF polypeptides into the circulation of the transgenic animal.
- transgenic animal technology Various aspects of transgenic animal technology are well known in the art, and are described in detail in literature, such as Hogan et al., Manipulating the Mouse Embryo (Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y., [1986]).
- GIPF transgene sequences can be readily adapted by those skilled in the art to incorporate GIPF transgene sequences into any non-human mammal utilizing the methods and materials described below.
- Animals suitable for transgenic experiments can be obtained from standard commercial sources such as Taconic (Germantown, N.Y.).
- transgenes can be accomplished using any suitable genetic engineering techniques well known in the art, including, without limitation, the standard techniques of restriction endonuclease digestion, ligation, transformation, plasmid purification, DNA sequencing etc as described in Sambrook et al., Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Laboratory, N.Y., (1989)).
- the transgenes of the present invention are typically operably linked to transcriptional regulatory sequences, such as promoters and/or enhancers, to regulate expression of the transgene in a particular manner.
- transcriptional regulatory sequences such as promoters and/or enhancers
- the useful transcriptional regulatory sequences are those that are highly regulated with respect to activity, both temporally and spatially.
- the promoters of choice can be those that are active only in particular tissues or cell types.
- Promoters/enhancers which may be used to control the expression of the transgene in vivo include, but are not limited to, the human cytomegalovirus (CMV) promoter/enhancer (Karasuyama et al., J. Exp. Med.
- MMTV LTR mouse mammary tumor virus long terminal repeat
- MoLV LTR Moloney murine leukemia virus
- the promoter is the P2 promoter of the immunoglobulin kappa light chain (REF).
- the vectors useful for preparing the transgenes of this invention typically contain one or more other elements useful for optimizing expression of the transgene in the host animal.
- the transgene construct may include transcription termination elements, such as to direct polyadenylation of an mRNA transcript, as well as intronic sequences.
- the transgene can be flanked at its 3′ end by SV40 sequences (SV40 intron/pA) which add the transcription termination and polyadenylation signals to the transgene transcript.
- the transgene can include intron sequences. In many instances, the expression of a transgene is increased by the presence of one or more introns in the coding sequence.
- the transgene construct may include additional elements which facilitate its manipulation in cells (e.g., in bacterial cells) prior to insertion in the intended recipient cell.
- the vector may include origin of replication elements for amplification in prokaryotic cells.
- the transgene construct may contain selectable markers for isolating cells, either from the recipient animal, or cells generated as intermediate in making the transgenic animal (i.e., bacterial cells used for amplifying the construct or ES cells used for introducing the transgene). Selectable marker genes may encode proteins necessary for the survival and/or growth of transfected cells under selective culture conditions.
- Typical selection marker genes encode proteins that, for example: (i) confer resistance to antibiotics or other toxins, e.g., ampicillin, tetracycline or kanomycin for prokaryotic host cells, and neomycin, hygromycin or methotrexate for mammalian cells; or (ii) complement auxotrophic deficiencies of the cell.
- antibiotics or other toxins e.g., ampicillin, tetracycline or kanomycin for prokaryotic host cells, and neomycin, hygromycin or methotrexate for mammalian cells
- methotrexate for mammalian cells
- the “transgenic non-human mammals” of the invention are produced by introducing GIPF transgene into the germline of the non-human mammal.
- Embryonal target cells at various developmental stages can be used to introduce GIPF transgene. Different methods are used depending on the stage of development of the embryonal target cell.
- the specific line(s) of any animal used to practice this invention are selected for general good health, good embryo yields, good pronuclear visibility in the embryo, and good reproductive fitness.
- the transgene construct is introduced into a single stage embryo.
- the female animals are superovulated by hormone treatment, mated and fertilized eggs are recovered.
- mated and fertilized eggs are recovered.
- PMSG pregnant mare serum gonadotropin
- hCG human chorionic gonadotropin
- FVB strain of mice are used in this case.
- Females are then mated immediately with a stud male overnight. Such females are next examined for copulation plugs.
- Those that have mated are euthenized by CO 2 asphyxiation or cervical dislocation and embryos are recovered from excised oviducts and placed in Dulbecco's phosphate buffered saline with 0.5% bovine serum albumin (BSA; Sigma). Surrounding cumulus cells are removed with hyaluronidase (1 mg/ml). Pronuclear embryos are then washed and placed in Earle's balanced salt solution containing 0.5% BSA (EBSS) in a 37.5° C. incubator with a humidified atmosphere at 5% CO 2 , 95% air until the time of injection.
- BSA bovine serum albumin
- the transgene is introduced into the female or male pronucleus as described below.
- the male pronucleus is preferred.
- the exogenous genetic material is added to the early male pronucleus, as soon as possible after the formation of the male pronucleus, which is when the male and female pronuclei are well separated and both are located close to the cell membrane.
- the exogenous genetic material could be added to the nucleus of the sperm after it has been induced to undergo decondensation.
- Sperm containing the exogenous genetic material can then be added to the ovum or the decondensed sperm could be added to the ovum with the transgene constructs being added as soon as possible thereafter.
- volume the amount of exogenous genetic material, which can be added to the nucleus of the zygote, or to the genetic material which forms a part of the zygote nucleus.
- volume of exogenous genetic material inserted will not exceed about 10 picoliters. The physical effects of addition must not be so great as to physically destroy the viability of the zygote.
- the biological limit of the number and variety of DNA sequences will vary depending upon the particular zygote and functions of the exogenous genetic material and will be readily apparent to one skilled in the art, because the genetic material, including the exogenous genetic material, of the resulting zygote must be biologically capable of initiating and maintaining the differentiation and development of the zygote into a functional organism.
- the number of copies of the transgene constructs which are added to the zygote is dependent upon the total amount of exogenous genetic material added and will be the amount which enables the genetic transformation to occur. Theoretically only one copy is required; however, generally, numerous copies are utilized, for example, 1,000-20,000 copies of the transgene construct, in order to insure that one copy is functional.
- Each transgene construct to be inserted into the cell must first be in the linear form since the frequency of recombination is higher with linear molecules of DNA as compared to the circular molecules. Therefore, if the construct has been inserted into a vector, linearization is accomplished by digesting the DNA with a suitable restriction endonuclease selected to cut only within the vector sequence and not within the transgene sequence.
- transgene into the embryo may be accomplished by any means known in the art so long as it is not destructive to the cell, nuclear membrane or other existing cellular or genetic structures. Some of the widely used methods include microinjection, electroporation, or lipofection. Following introduction of the transgene, the embryo may be incubated in vitro for varying amounts of time, or reimplanted into the surrogate host, or both. One common method is to incubate the embryos in vitro for about 1-7 days, depending on the species, and then reimplant them into the surrogate host.
- the zygote is the best target for introducing the transgene construct by microinjection method.
- the male pronucleus reaches the size of approximately 20 micrometers in diameter which allows reproducible injection of 1-2 pl of DNA solution.
- the use of zygotes as a target for gene transfer has a major advantage in that in most cases the injected DNA will be incorporated into the host gene before the first cleavage (Brinster et al. Proc. Natl. Acad. Sci. USA 82: 4438-4442 (1985)).
- all cells of the transgenic animal will carry the incorporated transgene. This will in general also be reflected in the efficient transmission of the transgene to offspring of the founder since 50% of the germ cells will harbor the transgene.
- Retroviral infection can also be used to introduce transgene into a non-human mammal.
- the developing non-human embryo can be cultured in vitro to the blastocyst stage.
- the blastomeres can be targets for retroviral infection (Jaenich, R. Proc. Natl. Acad. Sci. USA 73: 1260-1264 (1976)).
- Efficient infection of the blastomeres is obtained by enzymatic treatment to remove the zona pellucida (Manipulating the Mouse Embryo, Hogan eds., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, (1986)).
- the viral vector system used to introduce the transgene is typically a replication-defective retrovirus carrying the transgene (Jahner et al. Proc. Natl. Acad. Sci. USA 82: 6927-6931 (1985)). Van der Putten et al. Proc. Natl. Acad. Sci. USA 82: 6148-6152 (1985)). Transfection is easily and efficiently obtained by culturing the blastomeres on a monolayer of virus-producing cells (Van der Putten, supra; Stewart et al. EMBO J. 6: 383-388 (1987)). Alternatively, infection can be performed at a later stage.
- Virus or virus-producing cells can also be injected into the blastocoele (Jahner et al. Nature 298: 623-628 (1982)). Most of the founders will be mosaic for the transgene since incorporation occurs only in a subset of the cells which formed the transgenic animal. Further, the founder may contain various retroviral insertions of the transgene at different positions in the genome which generally will segregate in the offspring. In addition, it is also possible to introduce transgenes into the germ line by intrauterine retroviral infection of the midgestation embryo (Jahner et al. (1982) supra).
- Insertion of the transgene construct into the ES cells can be accomplished using a variety of methods well known in the art including for example, electroporation, microinjection, and calcium phosphate treatment.
- a preferred method of insertion is electroporation, in which the ES cells and the transgene construct DNA are exposed to an electric pulse using an electroporation machine and following the manufacturer's guidelines for use. After electroporation, the ES cells are typically allowed to recover under suitable incubation conditions. The cells are then screened for the presence of the transgene.
- Pseudopregnant, foster or surrogate mothers are prepared for the purpose of implanting embryos, which have been modified by introducing the transgene. Such foster mothers are typically prepared by mating with vasectomized males of the same species.
- the stage of the pseudopregnant foster mother is important for successful implantation, and it is species dependent. For mice, this stage is about 2-3 days pseudopregnant. Recipient females are mated at the same time as donor females. Although the following description relates to mice, it can be adapted for any other non-human mammal by those skilled in the art.
- the recipient females are anesthetized with an intraperitoneal injection of 0.015 ml of 2.5% avertin per gram of body weight.
- the oviducts are exposed by a single midline dorsal incision.
- An incision is then made through the body wall directly over the oviduct.
- the ovarian bursa is then torn with watchmaker's forceps.
- Embryos to be transferred are placed in DPBS (Dulbecco's phosphate buffered saline) and in the tip of a transfer pipet (about 10 to 12 embryos). The pipet tip is inserted into the infundibulum and the embryos transferred. After the transfer, the incision is closed by two sutures.
- the number of embryos implanted into a particular host will vary by species, but will usually be comparable to the number of offspring the species naturally produces.
- the transformed ES cells are incorporated into the embryo as described earlier, and the embryos may be implanted into the uterus of a pseudopregnant foster mother for gestation.
- Transgenic offspring of the surrogate host may be screened for the presence and/or expression of the transgene by any suitable method. Offspring that are born to the foster mother may be screened initially for mosaic coat color where the coat color selection strategy (as described above) has been employed. Alternatively, or additionally, screening is often accomplished by Southern blot or PCR of DNA prepared from tail tissue, using a probe that is complementary to at least a portion of the transgene. Western blot analysis or immunohistochemistry using an antibody against the protein encoded by the transgene may be employed as an alternative or additional method for screening for the presence of the transgene product. Alternatively, the tissues or cells believed to express the transgene at the highest levels are tested for the RNA expression of the transgene using Northern analysis or RT-PCR.
- Alternative or additional methods for evaluating the presence of the transgene include, without limitation, suitable biochemical assays such as enzyme and/or immunological assays, histological stains for particular marker or enzyme activities, flow cytometric analysis, and the like. Analysis of the blood may also be useful to detect the presence of the transgene product in the blood, as well as to evaluate the effect of the transgene on the levels of various types of blood cells and other blood constituents.
- suitable biochemical assays such as enzyme and/or immunological assays, histological stains for particular marker or enzyme activities, flow cytometric analysis, and the like.
- Analysis of the blood may also be useful to detect the presence of the transgene product in the blood, as well as to evaluate the effect of the transgene on the levels of various types of blood cells and other blood constituents.
- Progeny of the transgenic animals may be obtained by mating the transgenic animal with a suitable partner, or by in vitro fertilization of eggs and/or sperm obtained from the transgenic animal.
- the partner may or may not be transgenic; where it is transgenic, it may contain the same or a different transgene, or both.
- the partner may be a parental line.
- in vitro fertilization is used, the fertilized embryo may be implanted into a surrogate host or incubated in vitro, or both.
- the progeny may be evaluated for the presence of the transgene using methods described above, or other appropriate methods. Typically, crossing and backcrossing is accomplished by mating siblings or a parental strain with an offspring, depending on the goal of each particular step in the breeding process.
- a preferred embodiment of the invention relates to mice that lack both alleles for antibody heavy chain (IgH-KO ⁇ H ⁇ / ⁇ ), and have very low levels of circulating antibodies (Kitamura et al., Nature 350:423-426 (1991)).
- the invention concerns a transgenic non-human mammal that produces in its B-cells GIPF protein or a fragment thereof.
- the transgenic mammal has stably integrated into its genome a nucleic acid sequence encoding GIPF or a fragment thereof having the biological activity of the native protein, operably linked to transcriptional regulatory sequences directing its expression in B-cells.
- the transcriptional regulatory sequences preferably comprise a B-cell specific promoter, such as the immunoglobulin kappa chain promoter.
- the non-human transgenic mammal may, for example, be mouse, rat, rabbit, pig, goat, goat or cattle.
- the GIPF polypeptide of the invention exhibits growth factor activity and is involved in the proliferation and differentiation of intestinal crypt cells. GIPF may also exhibit growth factor activity on other epithelial cells of the gastrointestinal tract.
- Administration of the polypeptide of the invention to crypt cells in vivo or ex vivo may maintain and expand cell populations in a totipotential state which would be useful for re-engineering damaged or diseased tissues, transplantation, manufacture of bio-pharmaceuticals and the development of bio-sensors.
- the ability to produce large quantities of human cells has important working applications for the production of human proteins which currently must be obtained from non-human sources or donors, implantation of cells to treat tissues for grafting such gastrointestinal cells.
- exogenous growth factors and/or cytokines may be administered in combination with the polypeptide of the invention to achieve the desired effect, including any of the growth factors listed herein, other stem cell maintenance factors, and specifically including stem cell factor (SCF), leukemia inhibitory factor (LIF), Flt-3 ligand (Flt-3L), any of the interleukins, recombinant soluble IL-6 receptor fused to IL-6, macrophage inflammatory protein 1-alpha (MIP-1-alpha), G-CSF, GM-CSF, thrombopoietin (TPO), platelet factor 4 (PF-4), platelet-derived growth factor (PDGF), neural growth factors, basic fibroblast growth factor (bFGF), keratinocyte growth factor-2 (KGF2), and glucagons-like peptide 2 (GLP-2).
- SCF stem cell factor
- LIF leukemia inhibitory factor
- Flt-3L Flt-3 ligand
- MIP-1-alpha macrophage inflammatory protein 1-
- Intestinal epithelial cells including crypt cells can be transfected with a polynucleotide of the invention to induce autocrine expression of the polypeptide of the invention. This will allow for generation of undifferentiated cell lines that are useful as is or that can then be differentiated into the desired mature cell types. These stable cell lines can also serve as a source of undifferentiated mRNA to create cDNA libraries and templates for polymerase chain reaction experiments. These studies would allow for the isolation and identification of differentially expressed genes in crypt cell populations that regulate crypt proliferation and/or maintenance.
- polypeptides of the present invention may be used to manipulate crypt cells in culture to give rise to gastrointestinal epithelial cells that can be used to augment or replace cells damaged by illness, autoimmune disease, accidental damage or genetic disorders, inflammation caused by ionizing radiation, chemotherapy, infection and inflammation.
- Expression of the polypeptide of the invention and its effect on crypt cells can also be manipulated to achieve controlled differentiation of the crypt cells into more differentiated cell types.
- a broadly applicable method of obtaining pure populations of a specific differentiated cell type from undifferentiated stem cell populations involves the use of a cell-type specific promoter driving a selectable marker
- In vitro cultures of intestinal epithelial cells including crypt cells can be used to determine if the polypeptide of the invention exhibits growth factor activity.
- Crypt cells are isolated from disaggregated colonic crypts from human and murine colonic mucosa, and the clonogenic activity of GIPF can be assessed using the method described by Whitehead et al., Gastroenterology 117:858-865 (1999), which is herein incorporated by reference in its entirety.
- Growth factor activity may be assed in the presence of the polypeptide of the invention alone or in combination with other growth factors or cytokines.
- compositions of the present invention may also be useful for proliferation of intestinal epithelial cells including crypt cells and for regeneration of oral and gastrointestinal tissue, i.e. for the treatment of injuries sustained by the epithelial layer which involve degeneration, death or trauma to epithelial crypt cells. More specifically, a composition may be used in the treatment of diseases of the gastrointestinal tract as recited herein.
- compositions of the invention may also be useful to promote better or faster closure of non-healing wounds, including without limitation pressure ulcers, ulcers associated with vascular insufficiency, surgical and traumatic wounds, and the like.
- Assays for wound healing activity include, without limitation, those described in: Winter, Epidermal Wound Healing, pp. 71-112 (Maibach, H. I. and Rovee, D. T., eds.), Year Book Medical Publishers, Inc., Chicago, as modified by Eaglstein and Mertz, J. Invest. Dermatol 71:382-84 (1978).
- a polypeptide of the present invention may exhibit activity relating to regulation of immune system components including, but not limited to cytokine production and/or activity, and/or cells of the immune system.
- a polynucleotide of the invention can encode a polypeptide exhibiting such attributes. Regulation of cytokines and/or cells of the immune system may include increasing and/or decreasing levels of cytokines or numbers of particular cells of the immune system.
- polypeptides of the invention may be used to treat various immune disorders.
- these disorders include, but are not limited to inflammatory bowel disease (IBD), which includes ulcerative colitis and/or Crohn's disease, and mucositis as a consequence of anti-cancer therapies including radiation treatment and/or chemotherapy.
- IBD inflammatory bowel disease
- the cause of these immune disorders may be, for example, idiopathic (i.e. of unknown cause), genetic, by infectious agents (eg. viruses, bacteria, fungi), and/or by damage induced by anti-cancer therapies (eg. radiation therapy and/or chemotherapy).
- Modulation of immune responses and/or components of the immune system may be accomplished in a number of ways. Down-regulation may be in the form of inhibiting or blocking an immune response already in progress or may involve preventing the induction of an immune response.
- the functions of activated T cells may be inhibited by suppressing T cell responses or by inducing specific tolerance in T cells, or both.
- Immunosuppression of T cell responses is generally an active, non-antigen-specific, process that requires continuous exposure of the T cells to the suppressive agent.
- Tolerance which involves inducing non-responsiveness or anergy in T cells, is distinguishable from immunosuppression in that it is generally antigen-specific and persists after exposure to the tolerizing agent has ceased. Operationally, tolerance can be demonstrated by the lack of a T cell response upon reexposure to specific antigen in the absence of tolerizing agent.
- Inflammatory bowel disease is almost always mediated by one of two pathways: excessive T helper 1 (Th1)-cell response associated with high levels of IL-12, IFN-gamma, and/or TNF or excessive T helper 2 (Th2)-cell response associated with high levels of IL-4, IL-5, and/or IL-13 (Bouma et al., herein incorporated by reference in its entirety). Therefore a mechanism through which polypeptides of the invention could mediate immunomodulatory activity in disease treatment would be to down-regulate the numbers of Th1 and/or Th2 cell populations. Alternatively, another activity could be to decrease the levels of cytokines (eg. IL-12, IFN-gamma, TNF, IL-4, IL-5, and/or IL-13) that are associated with and/or mediate the inflammatory response.
- cytokines eg. IL-12, IFN-gamma, TNF, IL-4, IL-5, and/or IL-13
- the activity of the polypeptide of the present invention may, among other means, be measured by the following methods:
- Assays for T-cell or thymocyte proliferation include without limitation those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A. M. Kruisbeek, D. H. Margulies, E. M. Shevach, W. Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, In Vitro assays for Mouse Lymphocyte Function 3.1-3.19; Chapter 7, Immunologic studies in Humans); Takai et al., J. Immunol. 137:3494-3500, 1986; Bertagnolli et al., J. Immunol. 145:1706-1712, 1990; Bertagnolli et al.,.
- Assays for cytokine production and/or proliferation of spleen cells, lymph node cells or thymocytes include, without limitation, those described in: Polyclonal T cell stimulation, Kruisbeek, A. M. and Shevach, E. M. In Current Protocols in Immunology. J. E. e.a. Coligan eds. Vol 1 pp. 3.12.1-3.12.14, John Wiley and Sons, Toronto. 1994; and Measurement of mouse and human interferon- ⁇ , Schreiber, R. D. In Current Protocols in Immunology. J. E. e.a. Coligan eds. Vol 1 pp. 6.8.1-6.8.8, John Wiley and Sons, Toronto. 1994.
- Assays for T-cell clone responses to antigens include, without limitation, those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A. M. Kruisbeek, D. H. Margulies, E. M. Shevach, W Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, In Vitro assays for Mouse Lymphocyte Function; Chapter 6, Cytokines and their cellular receptors; Chapter 7, Immunologic studies in Humans); Weinberger et al., Proc. Natl. Acad. Sci.
- a polypeptide of the present invention may be involved in chemotactic or chemokinetic activity for mammalian cells, including, for example, monocytes, fibroblasts, neutrophils, T-cells, mast cells, eosinophils, epithelial and/or endothelial cells.
- a polynucleotide of the invention can encode a polypeptide exhibiting such attributes.
- Chemotactic and chemokinetic receptor activation can be used to mobilize or attract a desired cell population to a desired site of action.
- Chemotactic or chemokinetic compositions e.g. proteins, antibodies, binding partners, or modulators of the invention
- a protein or peptide has chemotactic activity for a particular cell population if it can stimulate, directly or indirectly, the directed orientation or movement of such cell population.
- the protein or peptide has the ability to directly stimulate directed movement of cells. Whether a particular protein has chemotactic activity for a population of cells can be readily determined by employing such protein or peptide in any known assay for cell chemotaxis.
- Assays for chemotactic activity consist of assays that measure the ability of a protein to induce the migration of cells across a membrane as well as the ability of a protein to induce the adhesion of one cell population to another cell population.
- Suitable assays for movement and adhesion include, without limitation, those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A. M. Kruisbeek, D. H. Marguiles, E. M. Shevach, W. Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 6.12, Measurement of alpha and beta Chemokines 6.12.1-6.12.28; Taub et al. J. Clin. Invest.
- the transgenic non-human mammals and their progeny of the present invention provide several important uses that will be readily apparent to one of ordinary skill in the art.
- the transgenic animals are particularly useful in screening compounds that modulate (i.e. increase or decrease) the activity of the GIPF polypeptides. Screening for a useful compound involves administering the candidate compound over a range of doses to the transgenic animal, and assaying at various time points for the effect(s) of the compound on the activity of the GIPF protein.
- the compound may be administered prior to or at the onset of abdominal distension. Administration may be oral, or by suitable injection, depending on the chemical nature of the compound being evaluated.
- the cellular response to the compound is evaluated over time using appropriate biochemical and/or histological assays.
- Sources for test compounds that may be screened for ability to bind to or modulate (i.e., increase or decrease) the activity of polypeptides of the invention include (1) inorganic and organic chemical libraries, (2) natural product libraries, and (3) combinatorial libraries comprised of either random or mimetic peptides, oligonucleotides or organic molecules.
- Chemical libraries may be readily synthesized or purchased from a number of commercial sources, and may include structural analogs of known compounds or compounds that are identified as “hits” or “leads” via natural product screening.
- the sources of natural product libraries are microorganisms (including bacteria and fungi), animals, plants or other vegetation, or marine organisms, and libraries of mixtures for screening may be created by: (1) fermentation and extraction of broths from soil, plant or marine microorganisms or (2) extraction of the organisms themselves.
- Natural product libraries include polyketides, non-ribosomal peptides, and (non-naturally occurring) variants thereof. For a review, see Science 282:63-68 (1998).
- Combinatorial libraries are composed of large numbers of peptides, oligonucleotides or organic compounds and can be readily prepared by traditional automated synthesis methods, PCR, cloning or proprietary synthetic methods.
- peptide and oligonucleotide combinatorial libraries are peptide and oligonucleotide combinatorial libraries.
- Still other libraries of interest include peptide, protein, peptidomimetic, multiparallel synthetic collection, recombinatorial, and polypeptide libraries.
- combinatorial chemistry and libraries created therefrom see Myers, Curr. Opin. Biotechnol. 8:701-707 (1997).
- peptidomimetic libraries see Al-Obeidi et al., Mol.
- the present invention provides pharmaceutical reagents and methods useful for treating diseases and conditions wherein epithelialization is desired.
- GIPF polypeptides are useful to increase cytoprotection, proliferation and/or differentiation of epithelial cells of the oral and gastrointestinal tract.
- GIPF polypeptides are useful to treat or prevent diseases or conditions that include without limitation gastrointestinal diseases, mucositis of the gastrointestinal tract, mucositis of the oropharynx, lips and esophagus (oral mucositis), inflammatory bowel disease, short bowel syndrome, gastric and duodenal ulcers, erosions of the gastrointestinal tract including erosive gastritis, esophagitis, esophageal reflux and other conditions including wounds, burns, ophthalmic disorders, and any disorder where stimulation of epithelial cell proliferation or regeneration is desired. Treatment of diseases that result in insufficient production of mucus throughout the oral and gastrointestinal tract is also contemplated.
- Mucositis which includes oral and gastrointestinal mucositis, is a complication of some cancer therapies in which the lining of the digestive system becomes inflamed.
- GIPF is useful for preventing and/or ameliorating the degeneration of the mucosa of the alimentary tract that is caused by chemotherapy and/or radiation therapy given to a patient for the treatment of cancer, or is given as an adjuvant therapy following the removal of a tumor.
- chemotherapeutic agents include, without limitation, BCNU, busulfan, carboplatin, cyclophosphamide, tannorubicin, doxorubicin, etoposide, 5-fluorouracil, gemcytabine, ifophamide, irinotecan, melphalan, methotrexate, navelbine, totpotecan, and taxol
- exemplary treatment regimens include without limitation, BEAM (busulfan, etoposide, cytosine, arabinoside, methotrexate); cyclophosphamide and total body irradiation; cyclophosphamine, total body irradiation and etoposide; cyclophosphamide and busulfan; and 5-fluorouracil with leucovorin or levamisole.
- Treatment, pretreatment or post-treatment with GIPF is useful to generate a cytoprotective effect or regeneration or both, for example, of the mucosa of the
- Inflammatory bowel disease that can be treated with GIPF includes general inflammatory bowel disease that is characterized by chronic, relapsing, inflammatory disorders of unknown origin, Crohn's disease, dysplasia associated with inflammatory bowel disease, intermediate colitis, ulcerative colitis; non-infectious colitis including active colitis, antibiotic-associated colitis, collagenous colitis, diversion colitis, eosinophilic colitis, graft versus host disease, granulomatous colitis, ischaemic colitis, hemorrhagic colitis, malakoplakia, necrotizing enterocolitis, radiation enterocolitis, typhlitis; infectious colitis including adenovirus and amebic colitis, balantidiasis, HSV/AIDS associated colitis, and colitis caused by trypanosomes, E.
- coli Mycobacterium avium intracellulare, Sotavirus, Salmonella, Shigella, Campylobacter jejuni, Clostridium, Botulinum , and colitis associated with schistosomiasis, spirochetosis, syphilis, trichuriasis, tuberculosis typhoid fever, Vibrio cholera , and Yersinia.
- Short bowel syndrome is a group of problems affecting people who have had half or more of their small intestine removed. The most common reason for removing part of the small intestine is to treat Crohn's disease. In addition, surgical resection of part of the intestine may be required to remove cancerous growths. Diarrhea is the main symptom of short bowel syndrome. Other symptoms include cramping, bloating, and heartburn. Many people with short bowel syndrome are malnourished because their remaining small intestine is unable to absorb enough water, vitamins, and other nutrients from food. They may also become dehydrated, which can be life threatening. Problems associated with dehydration and malnutrition include weakness, fatigue, depression, weight loss, bacterial infections, and food sensitivities.
- Short bowel syndrome is treated through changes in diet, intravenous feeding, vitamin and mineral supplements, and medicine to relieve symptoms.
- GIPF polypeptides may be useful to increase the proliferation of the unresected intestinal tissue, thereby increasing the absorptive surface area of the intestine, and ameliorate the symptoms associated with short bowel syndrome.
- GIPF polypeptides can be tested in in vivo models of radiation induced mucositis (Withers and Elkind, Int J Radiat 17:261-267 (1970), herein incorporated by reference) in in vivo chemotherapy-induced mucositis (Soris et al., Oral Surg Oral Med Oral Pathol 69:437-443 (1990); Moore, Cancer Chemother Pharmacol 15:11-15 (1985); Farell et al., Cell Prolif 35:78-85 (2002), all of which are incorporated by reference in their entirety); in a dextran sulfate sodium (DSS) model of colitis and small intestinal ulceration or inflammation (Jeffers et al., Gastroenterology 123:1151-1162 (2002), Han et al., Am J Physiol Gastrointest Liver Physiol 279:G1011-G1022 (2000); and in a surgical model of short bowel syndrome (SBS)
- Comparisons of GIPF mRNA and protein expression levels between diseased cells, tissue and corresponding normal samples are made to determine if the subject is responsive to GIPF therapy.
- Methods for detecting and quantifying the expression of GIPF polypeptide mRNA or protein use standard nucleic acid and protein detection and quantitation techniques that are well known in the art and are described in Sambrook, et al., Molecular Cloning: A Laboratory Manual , Cold Spring Harbor Laboratory, NY (1989) or Ausubel, et al., Current Protocols in Molecular Biology , John Wiley & Sons, New York, N.Y. (1989), both of which are incorporated herein by reference in their entirety.
- Standard methods for the detection and quantification of GIPF mRNA include in situ hybridization using labeled GIPF riboprobes (Gemou-Engesaeth, et al., Pediatrics 109: E24-E32 (2002), herein incorporated by reference in its entirety), Northern blot and related techniques using GIPF polynucleotide probes (Kunzli, et al., Cancer 94: 228 (2002), herein incorporated by reference in its entirety, herein incorporated by reference in its entirety), RT-PCR analysis using GIPF-specific primers (Angchaiskisiri, et al., Blood 99:130 (2002)), and other amplification detection methods, such as branched chain DNA solution hybridization assay (Jardi, et al., J.
- Standard methods for the detection and quantification of GIPF protein include western blot analysis (Sambrook, et al., Molecular Cloning: A Laboratory Manual , Cold Spring Harbor Laboratory, NY (1989), Ausubel, et al., Current Protocols in Molecular Biology , John Wiley & Sons, New York, N.Y. (1989)), immunocytochemistry (Racila, et al., Proc. Natl. Acad. Sci.
- immunoassays including enzyme-linked immunosorbant assay (ELISA), radioimmuno assay (RIA), and specific enzyme immunoassay (EIA) (Sambrook, et al., Molecular Cloning: A Laboratory Manual , Cold Spring Harbor Laboratory, NY (1989), Ausubel, et al., Current Protocols in Molecular Biology , John Wiley & Sons, New York, N.Y. (1989)).
- ELISA enzyme-linked immunosorbant assay
- RIA radioimmuno assay
- EIA specific enzyme immunoassay
- Mammals include, for example, humans and other primates, as well as pet or companion animals such as dogs and cats, laboratory animals such as rats, mice and rabbits, and farm animals such as horses, pigs, sheep, and cattle.
- compositions including polypeptide fragments, analogs, variants and antibodies or other binding partners or modulators including antisense polynucleotides
- therapeutic applications include, but are not limited to, those exemplified herein.
- One embodiment of the invention is the administration of an effective amount of GIPF polypeptides or other composition of the invention to individuals affected by a disease or disorder that can be treated the peptides of the invention. While the mode of administration is not particularly important, parenteral administration is preferred. Exemplary modes of administration are to deliver asubcutaneous or intravenous bolus.
- the dosage of GIPF polypeptides or other composition of the invention will normally be determined by the prescribing physician. It is to be expected that the dosage will vary according to the age, weight, condition and response of the individual patient.
- the amount of polypeptide administered per dose will be in the range of about 0.01 ⁇ g/kg to 100 mg/kg of body weight, with the preferred dose being about 0.1 ⁇ g/kg to 10 mg/kg of patient body weight.
- GIPF polypeptides of the invention will be formulated in an injectable form combined with a pharmaceutically acceptable parenteral vehicle.
- Such vehicles are well known in the art and examples include water, saline, Ringer's solution, dextrose solution, and solutions consisting of small amounts of the human serum albumin.
- the vehicle may contain minor amounts of additives that maintain the isotonicity and stability of the polypeptide or other active ingredient. The preparation of such solutions is within the skill of the art.
- a protein or other composition of the present invention may be administered to a patient in need, by itself, or in pharmaceutical compositions where it is mixed with suitable carriers or excipient(s) at doses to treat or ameliorate a variety of disorders.
- a composition may optionally contain (in addition to protein or other active ingredient and a carrier) diluents, fillers, salts, buffers, stabilizers, solubilizers, and other materials well known in the art.
- pharmaceutically acceptable means a non-toxic material that does not interfere with the effectiveness of the biological activity of the active ingredient(s).
- the characteristics of the carrier will depend on the route of administration.
- the pharmaceutical composition of the invention may also contain cytokines, lymphokines, or other hematopoietic factors and various growth factors such as any of the FGFs, epidermal growth factor (EGF), platelet-derived growth factor (PDGF), transforming growth factors (TGF- ⁇ and TGF- ⁇ ), insulin-like growth factor (IGF), keratinocyte growth factor (KGF), and the like, as well as cytokines described herein.
- the pharmaceutical composition may further contain other agents which either enhance the activity of the protein or other active ingredient or complement its activity or use in treatment. Such additional factors and/or agents may be included in the pharmaceutical composition to produce a synergistic effect with protein or other active ingredient of the invention, or to minimize side effects.
- protein or other active ingredients of the present invention may be included in formulations of the particular cytokine, lymphokine, other hematopoietic factor, thrombolytic or anti-thrombotic factor, or anti-inflammatory agent to minimize side effects of the clotting factor, cytokine, lymphokine, other hematopoietic factor, thrombolytic or anti-thrombotic factor, or anti-inflammatory agent (such as IL-1Ra, IL-1 Hy1, IL-1 Hy2, anti-TNF, corticosteroids, immunosuppressive agents).
- a protein of the present invention may be active in multimers (e.g., heterodimers or homodimers) or complexes with itself or other proteins.
- pharmaceutical compositions of the invention may comprise a protein of the invention in such multimeric or complexed form.
- a second protein or a therapeutic agent may be concurrently administered with the first protein (e.g., at the same time, or at differing times provided that therapeutic concentrations of the combination of agents is achieved at the treatment site).
- Techniques for formulation and administration of the compounds of the instant application may be found in “Remington's Pharmaceutical Sciences,” Mack Publishing Co., Easton, Pa., latest edition.
- a therapeutically effective dose further refers to that amount of the compound sufficient to result in amelioration of symptoms, e.g., treatment, healing, prevention or amelioration of the relevant medical condition, or an increase in rate of treatment, healing, prevention or amelioration of such conditions.
- a therapeutically effective dose refers to that ingredient alone.
- a therapeutically effective dose refers to combined amounts of the active ingredients that result in the therapeutic effect, whether administered in combination, serially or simultaneously.
- a therapeutically effective amount of protein or other active ingredient of the present invention is administered to a mammal having a condition to be treated.
- Protein or other active ingredient of the present invention may be administered in accordance with the method of the invention either alone or in combination with other therapies such as treatments employing cytokines, lymphokines or other hematopoietic factors.
- protein or other active ingredient of the present invention may be administered either simultaneously with the cytokine(s), lymphokine(s), other hematopoietic factor(s), thrombolytic or anti-thrombotic factors, or sequentially.
- cytokine(s), lymphokine(s), other hematopoietic factor(s), thrombolytic or anti-thrombotic factors are administered sequentially, the attending physician will decide on the appropriate sequence of administering protein or other active ingredient of the present invention in combination with cytokine(s), lymphokine(s), other hematopoietic factor(s), thrombolytic or anti-thrombotic factors.
- Suitable routes of administration may, for example, include oral, rectal, transmucosal, or intestinal administration; parenteral delivery, including intramuscular, subcutaneous, intramedullary injections, as well as intrathecal, direct intraventricular, intravenous, intraperitoneal, intranasal, or intraocular injections.
- Administration of protein or other active ingredient of the present invention used in the pharmaceutical composition or to practice the method of the present invention can be carried out in a variety of conventional ways, such as oral ingestion, inhalation, topical application or cutaneous, subcutaneous, intraperitoneal (IP), parenteral or intravenous injection. Intravenous administration to the patient is preferred.
- the implantation of cells producing GIPF (cell therapy) into a subject in need of proliferation and/or stimulation of epithelial cells is contemplated.
- Cells that do not normally express GIPF or that express low levels of GIPF may be modified to produce therapeutic levels of GIPF by transformation with a polynucleotide that encodes GIPF.
- the cells may be of the same species as the subject, or may be derived from a different species.
- the cells are derived from the subject in need of GIPF therapy.
- Human or nonhuman cells may be implanted in a subject using a biocompatible, semi-permeable polymeric enclosure to allow release of GIPF protein, or may be implanted directly without encapsulation.
- a nucleotide sequence encoding GIPF is introduced directly into a subject for secretion of the protein to prevent or treat the diseases as recited herein.
- the nucleotide encoding GIPF may be injected directly into the tissue to be treated, or it may be delivered into the cells of the affected tissue by a viral vector e.g. adenovirus vector or retrovirus vector.
- Physical transfer of appropriate vectors containing a GIPF-encoding nucleic acid may also be achieved by methods including liposome-mediated transfer, direct injection of naked DNA, receptor-mediated transfer, or microparticle bombardment.
- the polypeptides of the invention are administered by any route that delivers an effective dosage to the desired site of action.
- a suitable route of administration and an effective dosage for a particular indication is within the level of skill in the art.
- Suitable dosage ranges for the polypeptides of the invention can be extrapolated from these dosages or from similar studies in appropriate animal models. Dosages can then be adjusted as necessary by the clinician to provide maximal therapeutic benefit.
- compositions for use in accordance with the present invention thus may be formulated in a conventional manner using one or more physiologically acceptable carriers comprising excipients and auxiliaries which facilitate processing of the active compounds into preparations which can be used pharmaceutically.
- These pharmaceutical compositions may be manufactured in a manner that is itself known, e.g., by means of conventional mixing, dissolving, granulating, dragee-making, levigating, emulsifying, encapsulating, entrapping or lyophilizing processes. Proper formulation is dependent upon the route of administration chosen.
- protein or other active ingredient of the present invention will be in the form of a tablet, capsule, powder, solution or elixir.
- the pharmaceutical composition of the invention may additionally contain a solid carrier such as a gelatin or an adjuvant.
- a solid carrier such as a gelatin or an adjuvant.
- the tablet, capsule, and powder contain from about 5 to 95% protein or other active ingredient of the present invention, and preferably from about 25 to 90% protein or other active ingredient of the present invention.
- a liquid carrier such as water, petroleum, oils of animal or plant origin such as peanut oil, mineral oil, soybean oil, or sesame oil, or synthetic oils may be added.
- the liquid form of the pharmaceutical composition may further contain physiological saline solution, dextrose or other saccharide solution, or glycols such as ethylene glycol, propylene glycol or polyethylene glycol.
- the pharmaceutical composition contains from about 0.5 to 90% by weight of protein or other active ingredient of the present invention, and preferably from about 1 to 50% protein or other active ingredient of the present invention.
- protein or other active ingredient of the present invention When a therapeutically effective amount of protein or other active ingredient of the present invention is administered by intravenous, cutaneous or subcutaneous injection, protein or other active ingredient of the present invention will be in the form of a pyrogen-free, parenterally acceptable aqueous solution.
- parenterally acceptable protein or other active ingredient solutions having due regard to pH, isotonicity, stability, and the like, is within the skill in the art.
- a preferred pharmaceutical composition for intravenous, cutaneous, or subcutaneous injection should contain, in addition to protein or other active ingredient of the present invention, an isotonic vehicle such as Sodium Chloride Injection, Ringer's Injection; Dextrose Injection, Dextrose and Sodium Chloride Injection, Lactated Ringer's Injection, or other vehicle as known in the art.
- the pharmaceutical composition of the present invention may also contain stabilizers, preservatives, buffers, antioxidants, or other additives known to those of skill in the art.
- the agents of the invention may be formulated in aqueous solutions, preferably in physiologically compatible buffers such as Hanks's solution, Ringer's solution, or physiological saline buffer.
- penetrants appropriate to the barrier to be permeated are used in the formulation. Such penetrants are generally known in the art.
- the compounds can be formulated readily by combining the active compounds with pharmaceutically acceptable carriers well known in the art.
- Such carriers enable the compounds of the invention to be formulated as tablets, pills, dragees, capsules, liquids, gels, syrups, slurries, suspensions and the like, for oral ingestion by a patient to be treated.
- Pharmaceutical preparations for oral use can be obtained solid excipient, optionally grinding a resulting mixture, and processing the mixture of granules, after adding suitable auxiliaries, if desired, to obtain tablets or dragee cores.
- Suitable excipients are, in particular, fillers such as sugars, including lactose, sucrose, mannitol, or sorbitol; cellulose preparations such as, for example, maize starch, wheat starch, rice starch, potato starch, gelatin, gum tragacanth, methyl cellulose, hydroxypropylmethyl-cellulose, sodium carboxymethylcellulose, and/or polyvinylpyrrolidone (PVP).
- disintegrating agents may be added, such as the cross-linked polyvinyl pyrrolidone, agar, or alginic acid or a salt thereof such as sodium alginate.
- Dragee cores are provided with suitable coatings.
- concentrated sugar solutions may be used, which may optionally contain gum arabic, talc, polyvinyl pyrrolidone, carbopol gel, polyethylene glycol, and/or titanium dioxide, lacquer solutions, and suitable organic solvents or solvent mixtures.
- Dyestuffs or pigments may be added to the tablets or dragee coatings for identification or to characterize different combinations of active compound doses.
- compositions which can be used orally include push-fit capsules made of gelatin, as well as soft, sealed capsules made of gelatin and a plasticizer, such as glycerol or sorbitol.
- the push-fit capsules can contain the active ingredients in admixture with filler such as lactose, binders such as starches, and/or lubricants such as talc or magnesium stearate and, optionally, stabilizers.
- the active compounds may be dissolved or suspended in suitable liquids, such as fatty oils, liquid paraffin, or liquid polyethylene glycols.
- stabilizers may be added. All formulations for oral administration should be in dosages suitable for such administration.
- the compositions may take the form of tablets or lozenges formulated in conventional manner.
- the compounds for use according to the present invention are conveniently delivered in the form of an aerosol spray presentation from pressurized packs or a nebuliser, with the use of a suitable propellant, e.g., dichlorodifluoromethane, trichlorofluoromethane, dichlorotetrafluoroethane, carbon dioxide or other suitable gas.
- a suitable propellant e.g., dichlorodifluoromethane, trichlorofluoromethane, dichlorotetrafluoroethane, carbon dioxide or other suitable gas.
- a suitable propellant e.g., dichlorodifluoromethane, trichlorofluoromethane, dichlorotetrafluoroethane, carbon dioxide or other suitable gas.
- a suitable propellant e.g., dichlorodifluoromethane, trichlorofluoromethane, dichlorotetrafluoroethane, carbon dioxide or
- the compounds may be formulated for parenteral administration by injection, e.g., by bolus injection or continuous infusion.
- Formulations for injection may be presented in unit dosage form, e.g., in ampules or in multi-dose containers, with an added preservative.
- the compositions may take such forms as suspensions, solutions or emulsions in oily or aqueous vehicles, and may contain formulatory agents such as suspending, stabilizing and/or dispersing agents.
- compositions for parenteral administration include aqueous solutions of the active compounds in water-soluble form.
- suspensions of the active compounds may be prepared as appropriate oily injection suspensions.
- Suitable lipophilic solvents or vehicles include fatty oils such as sesame oil, or synthetic fatty acid esters, such as ethyl oleate or triglycerides, or liposomes.
- Aqueous injection suspensions may contain substances which increase the viscosity of the suspension, such as sodium carboxymethyl cellulose, sorbitol, or dextran.
- the suspension may also contain suitable stabilizers or agents which increase the solubility of the compounds to allow for the preparation of highly concentrated solutions.
- the active ingredient may be in powder form for constitution with a suitable vehicle, e.g., sterile pyrogen-free water, before use.
- the compounds may also be formulated in rectal compositions such as suppositories or retention enemas, e.g., containing conventional suppository bases such as cocoa butter or other glycerides.
- the compounds may also be formulated as a depot preparation.
- Such long acting formulations may be administered by implantation (for example subcutaneously or intramuscularly) or by intramuscular injection.
- the compounds may be formulated with suitable polymeric or hydrophobic materials (for example as an emulsion in an acceptable oil) or ion exchange resins, or as sparingly soluble derivatives, for example, as a sparingly soluble salt.
- a pharmaceutical carrier for the hydrophobic compounds of the invention is a co-solvent system comprising benzyl alcohol, a nonpolar surfactant, a water-miscible organic polymer, and an aqueous phase.
- the co-solvent system may be the VPD co-solvent system.
- VPD is a solution of 3% w/v benzyl alcohol, 8% w/v of the nonpolar surfactant polysorbate 80, and 65% w/v polyethylene glycol 300, made up to volume in absolute ethanol.
- the VPD co-solvent system (VPD:5W) consists of VPD diluted 1:1 with a 5% dextrose in water solution.
- This co-solvent system dissolves hydrophobic compounds well, and itself produces low toxicity upon systemic administration.
- the proportions of a co-solvent system may be varied considerably without destroying its solubility and toxicity characteristics.
- identity of the co-solvent components may be varied: for example, other low-toxicity nonpolar surfactants may be used instead of polysorbate 80; the fraction size of polyethylene glycol may be varied; other biocompatible polymers may replace polyethylene glycol, e.g. polyvinyl pyrrolidone; and other sugars or polysaccharides may substitute for dextrose.
- other delivery systems for hydrophobic pharmaceutical compounds may be employed. Liposomes and emulsions are well known examples of delivery vehicles or carriers for hydrophobic drugs.
- Certain organic solvents such as dimethylsulfoxide also may be employed, although usually at the cost of greater toxicity.
- the compounds may be delivered using a sustained-release system, such as semipermeable matrices of solid hydrophobic polymers containing the therapeutic agent.
- sustained-release materials have been established and are well known by those skilled in the art.
- Sustained-release capsules may, depending on their chemical nature, release the compounds for a few weeks up to over 100 days.
- additional strategies for protein or other active ingredient stabilization may be employed.
- the pharmaceutical compositions also may comprise suitable solid or gel phase carriers or excipients.
- suitable solid or gel phase carriers or excipients include but are not limited to calcium carbonate, calcium phosphate, various sugars, starches, cellulose derivatives, gelatin, and polymers such as polyethylene glycols.
- Many of the active ingredients of the invention may be provided as salts with pharmaceutically compatible counter ions.
- Such pharmaceutically acceptable base addition salts are those salts which retain the biological effectiveness and properties of the free acids and which are obtained by reaction with inorganic or organic bases such as sodium hydroxide, magnesium hydroxide, ammonia, trialkylamine, dialkylamine, monoalkylamine, dibasic amino acids, sodium acetate, potassium benzoate, triethanol amine and the like.
- the pharmaceutical composition of the invention may be in the form of a complex of the protein(s) or other active ingredient of present invention along with protein or peptide antigens.
- the protein and/or peptide antigen will deliver a stimulatory signal to both B and T lymphocytes.
- B lymphocytes will respond to antigen through their surface immunoglobulin receptor.
- T lymphocytes will respond to antigen through the T cell receptor (TCR) following presentation of the antigen by MHC proteins.
- TCR T cell receptor
- MHC and structurally related proteins including those encoded by class I and class II MHC genes on host cells will serve to present the peptide antigen(s) to T lymphocytes.
- the antigen components could also be supplied as purified MHC-peptide complexes alone or with co-stimulatory molecules that can directly signal T cells.
- antibodies able to bind surface immunoglobulin and other molecules on B cells as well as antibodies able to bind the TCR and other molecules on T cells can be combined with the pharmaceutical composition of the invention.
- the pharmaceutical composition of the invention may be in the form of a liposome in which protein of the present invention is combined, in addition to other pharmaceutically acceptable carriers, with amphipathic agents such as lipids which exist in aggregated form as micelles, insoluble monolayers, liquid crystals, or lamellar layers in aqueous solution.
- Suitable lipids for liposomal formulation include, without limitation, monoglycerides, diglycerides, sulfatides, lysolecithins, phospholipids, saponin, bile acids, and the like. Preparation of such liposomal formulations is within the level of skill in the art, as disclosed, for example, in U.S. Pat. Nos. 4,235,871; 4,501,728; 4,837,028; and 4,737,323, all of which are incorporated herein by reference.
- the amount of protein or other active ingredient of the present invention in the pharmaceutical composition of the present invention will depend upon the nature and severity of the condition being treated, and on the nature of prior treatments which the patient has undergone. Ultimately, the attending physician will decide the amount of protein or other active ingredient of the present invention with which to treat each individual patient. Initially, the attending physician will administer low doses of protein or other active ingredient of the present invention and observe the patient's response. Larger doses of protein or other active ingredient of the present invention may be administered until the optimal therapeutic effect is obtained for the patient, and at that point the dosage is not increased further.
- the various pharmaceutical compositions used to practice the method of the present invention should contain about 0.01 ⁇ g to about 100 mg (preferably about 0.1 pg to about 10 mg, more preferably about 0.1 ⁇ g to about 1 mg) of protein or other active ingredient of the present invention per kg body weight.
- the therapeutic method includes administering the composition topically, systematically, or locally as an implant or device.
- the therapeutic composition for use in this invention is, of course, in a pyrogen-free, physiologically acceptable form.
- the composition may desirably be encapsulated or injected in a viscous form for delivery to the site of bone, cartilage or tissue damage.
- Topical administration may be suitable for wound healing and tissue repair.
- Therapeutically useful agents other than a protein or other active ingredient of the invention which may also optionally be included in the composition as described above, may alternatively or additionally, be administered simultaneously or sequentially with the composition in the methods of the invention.
- the composition would include a matrix capable of delivering the protein-containing or other active ingredient-containing composition to the site of bone and/or cartilage damage, providing a structure for the developing bone and cartilage and optimally capable of being resorbed into the body.
- Such matrices may be formed of materials presently in use for other implanted medical applications.
- compositions may be biodegradable and chemically defined calcium sulfate, tricalcium phosphate, hydroxyapatite, polylactic acid, polyglycolic acid and polyanhydrides.
- potential materials are biodegradable and biologically well-defined, such as bone or dermal collagen.
- Further matrices are comprised of pure proteins or extracellular matrix components.
- Other potential matrices are nonbiodegradable and chemically defined, such as sintered hydroxyapatite, bioglass, aluminates, or other ceramics.
- Matrices may be comprised of combinations of any of the above mentioned types of material, such as polylactic acid and hydroxyapatite or collagen and tricalcium phosphate.
- the bioceramics may be altered in composition, such as in calcium-aluminate-phosphate and processing to alter pore size, particle size, particle shape, and biodegradability.
- a 50:50 (mole weight) copolymer of lactic acid and glycolic acid in the form of porous particles having diameters ranging from 150 to 800 microns.
- a sequestering agent such as carboxymethyl cellulose or autologous blood clot, to prevent the protein compositions from disassociating from the matrix.
- a preferred family of sequestering agents is cellulosic materials such as alkylcelluloses (including hydroxyalkylcelluloses), including methylcellulose, ethylcellulose, hydroxyethylcellulose, hydroxypropylcellulose, hydroxypropyl-methylcellulose, and carboxymethylcellulose, the most preferred being cationic salts of carboxymethylcell.ulose (CMC).
- CMC carboxymethylcell.ulose
- Other preferred sequestering agents include hyaluronic acid, sodium alginate, poly(ethylene glycol), polyoxyethylene oxide, carboxyvinyl polymer and poly(vinyl alcohol).
- the amount of sequestering agent useful herein is 0.5-20 wt %, preferably 1-10 wt % based on total formulation weight, which represents the amount necessary to prevent desorption of the protein from the polymer matrix and to provide appropriate handling of the composition, yet not so much that the progenitor cells are prevented from infiltrating the matrix, thereby providing the protein the opportunity to assist the osteogenic activity of the progenitor cells.
- proteins or other active ingredient of the invention may be combined with other agents beneficial to the treatment of the bone and/or cartilage defect, wound, or tissue in question. These agents include various growth factors such as epidermal growth factor (EGF), platelet derived growth factor (PDGF), transforming growth factors (TGF- ⁇ and TGF- ⁇ ), and insulin-like growth factor (IGF).
- EGF epidermal growth factor
- PDGF platelet derived growth factor
- TGF- ⁇ and TGF- ⁇ transforming growth factors
- IGF insulin-like growth factor
- the therapeutic compositions are also presently valuable for veterinary applications. Particularly domestic animals and thoroughbred horses, in addition to humans, are desired patients for such treatment with proteins or other active ingredient of the present invention.
- the dosage regimen of a protein-containing pharmaceutical composition to be used in tissue regeneration will be determined by the attending physician considering various factors which modify the action of the proteins, e.g., amount of tissue weight desired to be formed, the site of damage, the condition of the damaged tissue, the size of a wound, type of damaged tissue (e.g., bone), the patient's age, sex, and diet, the severity of any infection, time of administration and other clinical factors.
- the dosage may vary with the type of matrix used in the reconstitution and with inclusion of other proteins in the pharmaceutical composition.
- IGF I insulin like growth factor I
- the addition of other known growth factors, such as IGF I may also effect the dosage.
- Progress can be monitored by periodic assessment of tissue/bone growth and/or repair, for example, X-rays, histomorphometric determinations and tetracycline labeling.
- Polynucleotides of the present invention can also be used for gene therapy. Such polynucleotides can be introduced either in vivo or ex vivo into cells for expression in a mammalian subject. Polynucleotides of the invention may also be administered by other known methods for introduction of nucleic acid into a cell or organism (including, without limitation, in the form of viral vectors or naked DNA). Cells may also be cultured ex vivo in the presence of proteins of the present invention in order to proliferate or to produce a desired effect on or activity in such cells. Treated cells can then be introduced in vivo for therapeutic purposes.
- compositions suitable for use in the present invention include compositions wherein the active ingredients are contained in an effective amount to achieve its intended purpose. More specifically, a therapeutically effective amount means an amount effective to prevent development of or to alleviate the existing symptoms of the subject being treated. Determination of the effective amount is well within the capability of those skilled in the art, especially in light of the detailed disclosure provided herein.
- the therapeutically effective dose can be estimated initially from appropriate in vitro assays. For example, a dose can be formulated in animal models to achieve a circulating concentration range that can be used to more accurately determine useful doses in humans.
- a dose can be formulated in animal models to achieve a circulating concentration range that includes the IC 50 as determined in cell culture (i.e., the concentration of the test compound which achieves a half-maximal inhibition of the protein's biological activity). Such information can be used to more accurately determine useful doses in humans.
- a therapeutically effective dose refers to that amount of the compound that results in amelioration of symptoms or a prolongation of survival in a patient.
- Toxicity and therapeutic efficacy of such compounds can be determined by standard pharmaceutical procedures in cell cultures or experimental animals, e.g., for determining the LD 50 (the dose lethal to 50% of the population) and the ED 50 (the dose therapeutically effective in 50% of the population).
- the dose ratio between toxic and therapeutic effects is the therapeutic index and it can be expressed as the ratio between LD 50 and ED 50 .
- Compounds which exhibit high therapeutic indices are preferred. The data obtained from these cell culture assays and animal studies can be used in formulating a range of dosage for use in human.
- the dosage of such compounds lies preferably within a range of circulating concentrations that include the ED 50 with little or no toxicity.
- the dosage may vary within this range depending upon the dosage form employed and the route of administration utilized.
- the exact formulation, route of administration and dosage can be chosen by the individual physician in view of the patient's condition. See, e.g., Fingl et al., 1975, in “The Pharmacological Basis of Therapeutics”, Ch. 1 p. 1.
- Dosage amount and interval may be adjusted individually to provide plasma levels of the active moiety which are sufficient to maintain the desired effects, or minimal effective concentration (MEC).
- MEC minimal effective concentration
- the MEC will vary for each compound but can be estimated from in vitro data. Dosages necessary to achieve the MEC will depend on individual characteristics and route of administration. However, HPLC assays or bioassays can be used to determine plasma concentrations.
- Dosage intervals can also be determined using MEC value.
- Compounds should be administered using a regimen which maintains plasma levels above the MEC for 10-90% of the time, preferably between 30-90% and most preferably between 50-90%.
- the effective local concentration of the drug may not be related to plasma concentration.
- An exemplary dosage regimen for polypeptides or other compositions of the invention will be in the range of about 0.01 ⁇ g/kg to 100 mg/kg of body weight daily, with the preferred dose being about 0.1 ⁇ g/kg to 25 mg/kg of patient body weight daily, varying in adults and children. Dosing may be once daily, or equivalent doses may be delivered at longer or shorter intervals.
- composition administered will, of course, be dependent on the subject being treated, on the subject's age and weight, the severity of the affliction, the manner of administration and the judgment of the prescribing physician.
- the present invention further provides methods to identify the presence or expression of one of the ORFs of the present invention, or homolog thereof, in a test sample, using a nucleic acid probe or antibodies of the present invention, optionally conjugated or otherwise associated with a suitable label.
- methods for detecting a polynucleotide of the invention can comprise contacting a sample with a compound that binds to and forms a complex with the polynucleotide for a period sufficient to form the complex, and detecting the complex, so that if a complex is detected, a polynucleotide of the invention is detected in the sample.
- Such methods can also comprise contacting a sample under stringent hybridization conditions with nucleic acid primers that anneal to a polynucleotide of the invention under such conditions, and amplifying annealed polynucleotides, so that if a polynucleotide is amplified, a polynucleotide of the invention is detected in the sample.
- methods for detecting a polypeptide of the invention can comprise contacting a sample with a compound that binds to and forms a complex with the polypeptide for a period sufficient to form the complex, and detecting the complex, so that if a complex is detected, a polypeptide of the invention is detected in the sample.
- such methods comprise incubating a test sample with one or more of the antibodies or one or more of the nucleic acid probes of the present invention and assaying for binding of the nucleic acid probes or antibodies to components within the test sample.
- Conditions for incubating a nucleic acid probe or antibody with a test sample vary. Incubation conditions depend on the format employed in the assay, the detection methods employed, and the type and nature of the nucleic acid probe or antibody used in the assay.
- One skilled in the art will recognize that any one of the commonly available hybridization, amplification or immunological assay formats can readily be adapted to employ the nucleic acid probes or antibodies of the present invention. Examples of such assays can be found in Chard, T., An Introduction to Radioimmunoassay and Related Techniques, Elsevier Science Publishers, Amsterdam, The Netherlands (1986); Bullock, G. R. et al., Techniques in Immunocytochemistry, Academic Press, Orlando, Fla. Vol. 1 (1982), Vol.
- test samples of the present invention include cells, protein or membrane extracts of cells, or biological fluids such as sputum, blood, serum, plasma, or urine.
- biological fluids such as sputum, blood, serum, plasma, or urine.
- the test sample used in the above-described method will vary based on the assay format, nature of the detection method and the tissues, cells or extracts used as the sample to be assayed. Methods for preparing protein extracts or membrane extracts of cells are well known in the art and can be readily be adapted in order to obtain a sample which is compatible with the system utilized.
- kits which contain the necessary reagents to carry out the assays of the present invention.
- the invention provides a compartment kit to receive, in close confinement, one or more containers which comprises: (a) a first container comprising one of the probes or antibodies of the present invention; and (b) one or more other containers comprising one or more of the following: wash reagents, reagents capable of detecting presence of a bound probe or antibody.
- a compartment kit includes any kit in which reagents are contained in separate containers.
- Such containers include small glass containers, plastic containers or strips of plastic or paper.
- Such containers allows one to efficiently transfer reagents from one compartment to another compartment such that the samples and reagents are not cross-contaminated, and the agents or solutions of each container can be added in a quantitative fashion from one compartment to another.
- Such containers will include a container which will accept the test sample, a container which contains the antibodies used in the assay, containers which contain wash reagents (such as phosphate buffered saline, Tris-buffers, etc.), and containers which contain the reagents used to detect the bound antibody or probe.
- Types of detection reagents include labeled nucleic acid probes, labeled secondary antibodies, or in the alternative, if the primary antibody is labeled, the enzymatic, or antibody binding reagents which are capable of reacting with the labeled antibody.
- labeled nucleic acid probes labeled secondary antibodies, or in the alternative, if the primary antibody is labeled, the enzymatic, or antibody binding reagents which are capable of reacting with the labeled antibody.
- the disclosed probes and antibodies of the present invention can be readily incorporated into one of the established kit formats which are well known in the art.
- the present invention further provides methods of obtaining and identifying modulatory agents which bind to a polypeptide encoded by an ORF corresponding to the nucleotide sequence set forth in SEQ ID NO: 2, 3, 5, 9, 11, 13, 15, 17, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104 or 177, or bind to a specific domain of the polypeptide encoded by the nucleic acid.
- said method comprises the steps of:
- the modulatory agents may increase or decrease the proliferative activity of GIPF on epithelial cells.
- such methods for identifying compounds that bind to a polynucleotide of the invention can comprise contacting a compound with a polynucleotide of the invention for a time sufficient to form a polynucleotide/compound complex, and detecting the complex, so that if a polynucleotide/compound complex is detected, a compound that binds to a polynucleotide of the invention is identified.
- such methods for identifying compounds that bind to a polypeptide of the invention can comprise contacting a compound with a polypeptide of the invention for a time sufficient to form a polypeptide/compound complex, and detecting the complex, so that if a polypeptide/compound complex is detected, a compound that binds to a polynucleotide of the invention is identified.
- Methods for identifying compounds that bind to a polypeptide of the invention can also comprise contacting a compound with a polypeptide of the invention in a cell for a time sufficient to form a polypeptide/compound complex, wherein the complex drives expression of a target gene sequence in the cell, and detecting the complex by detecting reporter gene sequence expression, so that if a polypeptide/compound complex is detected, a compound that binds a polypeptide of the invention is identified.
- Compounds identified via such methods can include compounds which modulate the activity of a polypeptide of the invention (that is, increase or decrease its activity, relative to activity observed in the absence of the compound).
- compounds identified via such methods can include compounds which modulate the expression of a polynucleotide of the invention (that is, increase or decrease expression relative to expression levels observed in the absence of the compound).
- Compounds, such as compounds identified via the methods of the invention can be tested using standard assays well known to those of skill in the art for their ability to modulate activity/expression.
- the agents screened in the above assay can be, but are not limited to, peptides, carbohydrates, vitamin derivatives, or other pharmaceutical agents.
- the agents can be selected and screened at random or rationally selected or designed using protein modeling techniques.
- agents such as peptides, carbohydrates, pharmaceutical agents and the like are selected at random and are assayed for their ability to bind to the protein encoded by the ORF of the present invention.
- agents may be rationally selected or designed.
- an agent is said to be “rationally selected or designed” when the agent is chosen based on the configuration of the particular protein.
- one skilled in the art can readily adapt currently available procedures to generate peptides, pharmaceutical agents and the like, capable of binding to a specific peptide sequence, in order to generate rationally designed antipeptide peptides, for example see Hurby et al., Application of Synthetic Peptides: Antisense Peptides,” In Synthetic Peptides, A User's Guide, W.H. Freeman, NY (1992), pp. 289-307, and Kaspczak et al., Biochemistry 28:9230-8 (1989), or pharmaceutical agents, or the like.
- one class of agents of the present invention can be used to control gene expression through binding to one of the ORFs or EMFs of the present invention. As described above, such agents can be randomly screened or rationally designed/selected. Targeting the ORF or EMF allows a skilled artisan to design sequence specific or element specific agents, modulating the expression of either a single ORF or multiple ORFs which rely on the same EMF for expression control.
- One class of DNA binding agents are agents which contain base residues which hybridize or form a triple helix formation by binding to DNA or RNA. Such agents can be based on the classic phosphodiester, ribonucleic acid backbone, or can be a variety of sulfhydryl or polymeric derivatives which have base attachment capacity.
- Agents suitable for use in these methods usually contain 20 to 40 bases and are designed to be complementary to a region of the gene involved in transcription (triple helix—see Lee et al., Nucl. Acids Res. 3:173 (1979); Cooney et al., Science 241:456 (1988); and Dervan et al., Science 251:1360 (1991)) orto the mRNA itself (antisense—Okano, J. Neurochem. 56:560 (1991); Oligodeoxynucleotides as Antisense Inhibitors of Gene Expression, CRC Press, Boca Raton, Fla. (1988)).
- Triple helix-formation optimally results in a shut-off of RNA transcription from DNA, while antisense RNA hybridization blocks translation of an mRNA molecule into polypeptide. Both techniques have been demonstrated to be effective in model systems. Information contained in the sequences of the present invention is necessary for the design of an antisense or triple helix oligonucleotide and other DNA binding agents.
- Agents which bind to a protein encoded by one of the ORFs of the present invention can be used as a diagnostic agent. Agents which bind to a protein encoded by one of the ORFs of the present invention can be formulated using known techniques to generate a pharmaceutical composition.
- the novel nucleic acid of SEQ ID NO: 1 was obtained from a human cDNA library prepared from fetal skin (Invitrogen), using standard PCR, sequencing by hybridization sequence signature analysis, and Sanger sequencing techniques.
- the inserts of the library were amplified with PCR using primers specific for vector sequences flanking the inserts. These samples were spotted onto nylon membranes and interrogated with oligonucleotide probes to give sequence signatures.
- the clones were clustered into groups of similar or identical sequences, and a single representative clone was selected from each group for gel sequencing.
- the 5′ sequence of the amplified insert was then deduced using the reverse M13 sequencing primer in a typical Sanger sequencing protocol.
- PCR products were purified and subjected to fluorescent dye terminator cycle sequencing. Single-pass gel sequencing was done using a 377 Applied Biosystems (ABI) sequencer. The insert of SEQ ID NO: 1 was described as a novel sequence in international publication WO 03/(029405).
- the nucleic acid (SEQ ID NO: 2) of the invention was assembled from sequences that were obtained from a cDNA library by methods described in Example 1 above, and in some cases obtained from one or more public databases. The final sequence was assembled using the EST sequences as seed. Then a recursive algorithm was used to extend the seed into an extended assemblage, by pulling additional sequences from different databases (i.e. Nuvelo's database containing EST sequences, dbEST version 124, gbpri 124, and UniGene version 124) that belong to this assemblage. The algorithm terminated when there were no additional sequences from the above databases that would extend the assemblage. Inclusion of component sequences into the assemblage was based on a BLASTN hit to the extending assemblage with BLAST score greater than 300 and percent identity greater than 95%.
- GIPF SEQ ID NO: 4
- the full-length GIPF DNA was PCR amplified from Marathon-ready cDNA libraries (Clontech).
- the primary PCR product was further amplified using nested PCR primers that generated GIPF polypeptide when expressed in suitable cell lines, as described below.
- FIG. 2 shows the relative expression of GIPF mRNA that was derived from human (A) and murine (B) tissues.
- Total mRNA was derived from the tissues indicated in FIG. 2 according to the protocol provided by the manufacturer (Qiagen, Valencia, Calif.). The RNA was subjected to quantitative real-time PCR (TaqMan) (Simpson et al., Molec Vision 6:178-183 (2000)) to determine the relative expression of GIPF in the tissues shown.
- TaqMan quantitative real-time PCR
- the forward and reverse primers that were used in the PCR reactions of human RNA were: 5′ GACCATGCTGCCTGCTCTGACAC 3′ (forward; SEQ ID NO: 29), and 5′ CACCCGCCTCCTTGCTCTCC 3′ (reverse; SEQ ID NO: 30), respectively; and the forward and reverse primers that were used in the PCR reactions of murine RNA were: 5′ GGGGGAGACCACACCACCTGCT 3′ (SEQ ID NO: 31), and 5′ TTGGACCTCGGCTCCTTGCTGTTC 3′ (SEQ ID NO: 32), respectively.
- DNA sequences encoding Elongation Factor 1, ⁇ -actin, and ATP synthase 6 were used as a positive control and normalization factors in all samples. All assays were performed in triplicate with the resulting values averaged.
- the Y axis shows the number of copies of GIPF mRNA per cell assuming that each cell has 400,000 mRNA transcripts of a median length of 1.2 Kb, and that 2% of the total RNA in a cell is mRNA.
- FIG. 2 shows that GIPF mRNA is expressed at low levels in all the tissues tested. The highest levels of GIPF mRNA were seen in mouse skin, lung, ovary and brain, and in human small intestine, skin, skin, ovary, testis, and breast.
- GIPF GIPF peptide that was predicted to be immunogenic, and having amino acid sequence Glu Ser Lys Glu Ala Gly Ala Gly Ser Arg Arg Arg Lys Gly Gin (SEQ ID NO: 67).
- Anti-GIPF antibody was affinity purified from rabbit serum using GIPF peptide coupled to Affi-Gel 10 (Bio-Rad), and stored in phosphate-buffered saline with 0.1% sodium azide.
- Tissue samples of adrenal gland, bladder, breast, colon, kidney, liver, lung, ovary, pancreas, placenta, prostate, skin, small intestine, spleen, stomach, testis, thyroid, tonsil and uterus were prepared for immunohistochemical analysis (IHC) (LifeSpan Biosciences, Inc., Seatlle, Wash.) by fixing tissues in 10% formalin, embedding in paraffin, and sectioning using standard techniques. Sections were probed using the GIPF-specific antibody and visualized with a biotin-conjugated anti-rabbit secondary using AEC as substrate.
- IHC immunohistochemical analysis
- GIPF GIPF intraepithelial neuroendocrine cells of the intestine and stomach.
- Prominent staining was also present in the adrenal cortex, gastric foveolar epithelium, and renal tubular epithelium. Lymphocytes were frequently positive and showed predominantly nuclear staining. In the skin, focal positivity was present in the stratum granulosum and in pilosebaceous units.
- a few cell types showed less intense cytoplasmic and nuclear staining, including respiratory epithelium, type II pneumocytes, prostatic epithelium, and breast epithelium.
- Focal faint nuclear staining was present in hepatocytes, colonic epithelium, placental trophoblasts, breast epithelium, ovary, and thyroid follicular epithelium.
- FIG. 5A The construction of the transgene GIPF-knock-in (GIPF-KI) vector ( FIG. 5A ) was performed according to the method described below, and depicted in FIGS. 5B-5R .
- the DNA encoding the mouse Immunoglobulin kappa Constant region (IgC ⁇ ) and the proximal region was obtained by amplification of two fragments as follows:
- FIG. 5B Preparation of IgC ⁇ Fragment 1.
- the forward (igkc1; SEQ ID NO: 34) and reverse (igkc2; SEQ ID NO: 35) primers for PCR were synthesized based on the sequence of the mouse Immunoglobulin kappa Constant region (IgC ⁇ ) and the proximal region that was obtained from GenBank (gi: V00777; SEQ ID NO: 33), and used to amplify the DNA that encodes fragment 1 of the IgC ⁇ fragment 1.
- igkc1 ATCTCGAGGAACCACTTTCCTGAGGACACAGTGATAGG (SEQ ID NO: 34) was prepared by adding a Xho I recognition sequence at 5′end site, and
- igkc2 ATGAATTCCTAACACTCATTCCTGTTGAAGCTCTTGAC (SEQ ID NO: 35) was prepared by adding an EcoR I recognition sequence at 5′end site.
- PCR was carried out using 25 ng of a clone of pBluescript SK II (+), which contains the mouse Constant and Joining regions (WO 00/10383), and served as template.
- the PCR product was digested with restriction enzymes EcoR I and Xho I and ligated into pBluescript II KS( ⁇ ) vector (Stratagene) that was pre-digested with the restriction enzymes EcoR I and Xho I.
- the resulting plasmid plgC ⁇ A contained the designated cDNA sequence of the mouse IgC ⁇ fragment 1 with no substitution in nucleotide sequence within the region between Xho I and EcoR I.
- FIG. 5C Preparation of IgC ⁇ Fragment 2.
- the forward (igkc3; SEQ ID NO: 36) and reverse (igkc4; SEQ ID NO: 37) primers for PCR were synthesized based on the sequence of the mouse downstream region of Immunoglobulin kappa Constant region (IgC ⁇ ) that was obtained from GenBank (gi: V00777; SEQ ID NO: 33), and used to amplify the DNA that encodes IgC ⁇ fragment 2.
- IgC ⁇ Immunoglobulin kappa Constant region
- Igkc3 ATGAATTCAGACAAAGGTCCTGAGACGCCACC (SEQ ID NO:36) was prepared by adding an EcoR I recognition sequence at 5′end site, and
- igkc4 ATGGATCCTCGAGTCGACTGGATTTCAGGGCAACTAAACATT (SEQ ID NO:37) was prepared by adding BamH I, Xho I, and Sal I recognition sequence at 5′end site.
- PCR was carried out using 25 ng of the clone of pBluescript SK II (+) that contains the mouse Constant and Joining regions, and served as template (WO 00/10383).
- the PCR product was digested with restriction enzymes EcoR I and BamH I and ligated into the pIgC ⁇ A vector (see above), pre-digested with the restriction enzymes EcoR I and BamH I.
- the resulting plasmid pIgC ⁇ AB contained the designated cDNA fragments 1 and 2 derived from the mouse Immunoglobulin Constant region with no substitution in nucleotide sequence within the region between EcoR I and BamH I.
- FIG. 5D Insertion of Puromycin Gene into plgC ⁇ AB
- the Lox-P Puro plasmid (WO 00/10383) was digested with restriction enzymes EcoR I and Xho I and treated with T4DNA polymerase. The resulting fragment was ligated into plgC ⁇ AB vector (see above) pre-digested with the restriction enzyme Sal I and treated with T4DNA polymerase. After verifying the connecting regions between plgC ⁇ AB and the Lox-P Puro fragment, the plasmid plgC ⁇ ABP was obtained.
- FIG. 5E Insertion of IRES cDNA into plgC ⁇ ABP
- iresfw forward (iresfw; SEQ ID NO:38) and reverse (iresrv; SEQ ID NO: 39) primers for PCR were synthesized based on the sequence of the IRES region of the pIREShyg plasmid (Clontech).
- iresfw ATGAATTCGCCCCTCTCCCTCCCCCCCCTA (SEQ ID NO: 38) was prepared by adding an EcoR/recognition sequence at 5′end site
- iresrv ATGAATTCGTCGACTTGTGGCAAGCTTATCATCGTGTT (SEQ ID NO: 39) was prepared by adding EcoR I and Sal I recognition sequences at the 5′end site.
- PCR was carried out using 150 ng of pIREShyg plasmid (Clontech) as a template.
- the PCR product was digested with the restriction enzyme EcoR I and ligated into the pGEM-T vector (Promega) which had been digested in advance with the restriction enzyme EcoR 1.
- the plasmid IRES-Sal/pGEM was obtained that contained the designated cDNA sequence with no substitutions in nucleotide sequence.
- the IRES-Sal/pGEM plasmid was digested with restriction enzyme EcoR I and ligated into the plgC ⁇ ABP plasmid (see above) which had been digested in advance with the restriction enzyme EcoR I. After verifying the sequence of connecting regions between plgC ⁇ ABP and IRES-Sal, the plasmid plgC ⁇ ABP IRES was obtained.
- FIG. 5F Construction of P ⁇ C ⁇ Sal Plasmid
- the IgCk KO vector (WO 00/10383) was digested with restriction enzyme Sac II and then partially digested with restriction enzyme EcoRI.
- Sac II restriction enzyme Sac II
- EcoRI restriction enzyme EcoRI
- a 14.6 Kb band that lacked the LoxP-PGK Puro region was isolated and ligated with a SacII/EcoRI compatible linker generated by annealing the following two oligonucleotides (SalI plus and Sal1minus), in order to replace the LoxP-PGKPuro region with a Sal I restriction site.
- SacII/EcoRI compatible linker generated by annealing the following two oligonucleotides (SalI plus and Sal1minus), in order to replace the LoxP-PGKPuro region with a Sal I restriction site.
- FIG. 5G Construction of pKI ⁇ Plasmid
- the plgC ⁇ ABP IRES plasmid was digested with the restriction enzyme Xho I and the resulting fragment consisting of C region, IRES and loxP-Puromycin was ligated with p ⁇ C ⁇ Sal vector (see above) which had been digested in advance with the restriction enzyme Sal I. After sequence verification the PKI ⁇ plasmid was obtained.
- FIG. 5H Preparation of plqC ⁇ IRES Fragment
- the plgC ⁇ ABPIRES plasmid was partially digested with restriction enzymes EcoR I and Bgl II and the resulting plgC ⁇ IRES fragment that lacked a portion of the IRES gene was isolated.
- FIG. 5I Preparation of Mouse P2 Promoter Fragment by PCR
- the following primers for PCR were synthesized based on the sequence of the mouse Immunoglobulin kappa promoter obtained from GenBank (gi: aj231225; SEQ ID NO: 42).
- FIG. 5J Preparation of Partial C ⁇ polyA Fragment by PCR
- the following primers for PCR were synthesized based on sequence of the mouse Immunoglobulin kappa polyA region obtained from GenBank (gi:v00777)
- FIG. 5K Preparation of Total C ⁇ polyA Fragment by PCR.
- TPF GGMTTCAGACAAAGGTCCTGAGACGCCACCACCAGCTCCCC
- SEQ ID NO: 47 was prepared by adding an EcoR/recognition sequence at 5′end site
- TPR CCCMGCTTGCCTCCTCAAACCTACCATGGCCCAGAGAAATAAG
- PCR was carried out using 25 ng of mouse genomic DNA as a template (genomic DNA from TT2F ES cells).
- the PCR product was digested with restriction enzymes EcoR I and Hind III and ligated into pBluescript II KS ⁇ vector (Stratagene) which had been digested in advance with the restriction enzymes EcoR I and Hind III. After sequence verification the plasmid was digested with the restriction enzymes EcoR I and Hind III, to generate the “total Ck polyA fragment”.
- FIG. 5L Construction of DNA Fragment A that Consists of Total C ⁇ polyA Fragment, P2 Promoter Fragment, and Partial Ck polyA Fragment.
- total C ⁇ poly A fragment “P2 promoter fragment”, and “partial CK poly A fragment” generated as described above were ligated in the described order into pBluescript II KS ⁇ vector (Stratagene) which had been digested in advance with the restriction enzymes EcoR I and Bgl II. After sequence verification, the purified plasmid was digested with the restriction enzymes EcoR I and Bgl II, to generate “DNA fragment A”.
- FIG. 5M Construction of plqC ⁇ IRES ProA Plasmid
- DNA fragment A was ligated into the “plgC ⁇ IRES fragment” isolated as described above. After sequence verification the plasmid plgC ⁇ IRES ProA was obtained.
- FIG. 5N Construction of C ⁇ P2H Plasmid
- plgC ⁇ IRES ProA plasmid was digested with Xho I and the main fragment that contained the upstream genomic region of mouse IgC ⁇ , mouse IgC ⁇ , DNA fragment A and Lox-P Puro thus isolated, was ligated with p ⁇ C ⁇ Sal which had been digested in advance with the restriction enzyme Sal I. After sequence verification the plasmid C ⁇ P2H was obtained.
- FIG. 5O Construction of C ⁇ 5′ Genomic Plasmid
- the following primers for PCR were synthesized based on sequence of a DNA segment containing the mouse immunoglobulin kappa J and C region genes obtained from GenBank (gi: v00777).
- 5GF ATMGAATGCGGCCGCCTCAGAGCAAATGGGTTCTACAGGCCTMCAACCT (SEQ ID NO: 49) was prepared by adding a Not I recognition sequence at 5′end site
- 5GR CCGGAATTCCTAACACTCATTCCTGTTGAAGCTCTTGACAATGG, (SEQ ID NO: 50) was prepared by adding an EcoR I recognition sequence at 5′end site.
- PCR was carried out using 25 ng of mouse genomic DNA (genomic DNA from TT2F ES cells as a template).
- the PCR product was digested with restriction enzymes Not I and EcoR I and ligated with pBluescript II KS ⁇ vector (Stratagene) which had been digested in advance with the restriction enzymes Not I and EcoR I. After sequence verification, the CK 5′ genomic plasmid was obtained.
- FIG. 5P Construction of C ⁇ P2 KI ⁇ DT Plasmid
- the C ⁇ P2H plasmid was digested with EcoR I and Xho I and a 11 Kb was obtained and was ligated into the C ⁇ 5′ genomic plasmid which had been digested in advance with the restriction enzymes EcoR I and Xho I. After sequence verification the C ⁇ P2 KI ⁇ DT plasmid was obtained.
- FIG. 5Q Construction of CK P2 KI Vector
- the DT-A fragment was isolated from the pKIK plasmid using restriction enzymes Xho I and Kpn I, and was ligated into the CK P2 KI ⁇ DT plasmid which has been digested in advance with the restriction enzymes Xho I and Kpn I. After sequence verification the C ⁇ P2 KI vector was obtained.
- FIG. 5R Assembly of the GIPF-KI Vector.
- a GIPF cDNA fragment was amplified using the following primers for PCR, which were synthesized based on the sequence of human GIPF cDNA (SEQ ID NO: 2).
- SA3F ACGCGTCGACCCACATGCGGCTTGGGCTGTGTGT (SEQ ID NO: 51) was prepared by adding a Sal/recognition sequence and Kozak sequence at 5′end site, and
- SA3R ACGCGTCGACGTCGACCTAGGCAGGCCCTG (SEQ ID NO: 52) was prepared by adding a Sal/recognition sequence at 5′end site.
- PCR was carried out using a pool of Marathon-Ready cDNA (fetal skin and fetal lung, BD Biosciences CLONTECH) as a template.
- the PCR product was digested with restriction enzyme Sal I and ligated with pBluescript II KS ⁇ vector (Stratagene) which has been digested in advance with the restriction enzyme Sal I.
- pBluescript II KS ⁇ vector (Stratagene) which has been digested in advance with the restriction enzyme Sal I.
- Sal I restriction enzyme
- GIPF cDNA fragment was purified and ligated into CK P2 KI vector, which had been digested in advance with the restriction enzyme Sal I.
- the GIPF-KI vector was obtained ( FIG. 5A ).
- the GIPF-KI vector was linearized with Not I and transferred into C57BL/6 ⁇ CBA F1 derived mouse TT2F ES cells ((Uchida, 1995), Lifetech oriental) by electroporation according to the method described by Shinichi Aizawa, “Biomanual Series 8, Gene Targeting”, published by Yodosha, 1995.
- the electroporated ES cells were suspended in 20 ml of ES medium [DMEM (GIBCO), 18% FCS (GIBCO), 0.1 mM 2-mercaptoethanol (GIBCO), 1000 U/ml LIF (leukemia inhibitory factor, CHEMICON International, Inc.)] and inoculated into two 100 mm tissue culture plastic plates (Corning) into which feeder cells (Invitrogen) were seeded in advance. After one day, the medium was replaced with a medium containing 0.75 g/ml of puromycin (Sigma). Seven to nine days thereafter, a total of 119 colonies formed were picked up.
- Each colony was grown up to confluence in a 12-well plate, and then four fifths of the culture was suspended in 0.2 ml of cryopreservation medium [ES medium+10% DMSO (Sigma)] and stored frozen at ⁇ 80° C. The remaining one fifth was inoculated into a 12-well gelatin coated plate and cultured for 2 days. Then, genomic DNA was isolated using the Puregene DNA Isolation Kit (Gentra System). Genomic DNA isolated from puromycin resistant TT2F cells was digested with restriction enzyme EcoR I (Takara Shuzo) and then subjected to 0.8% agarose gel electrophoresis.
- the selected ES clones were also tested by karyotype analysis according to the method described by Shinichi Aizawa, “Biomanual Series 8, Gene Targeting”, published by Yodosha, 1995. Two ES clones #10,12 that showed normal karyotype were used for implantation into embryos.
- the cells in a frozen stock of the targeted ES cell clones #10,12 were thawed, started to culture and injected into 8-cell stage embryos obtained by mating a male and a female mouse of Immunoglobulin heavy chain knock out mouse strain (Tomizuka et. Al. Proc. Natl. Acad. Sci . USA, 97: 722-727, 2000); the injection rate was 10-12 cells per embryo.
- mice were kept under a 12/12-hour dark/light cycle (lights on at 8:00 am) and received 5 ⁇ m filtered water and CE-2 food (CLEA JAPAN, INC.) ad libitum. Male mice were housed individually after weaning period.
- GIPF transgenic KI mice demonstrated auxetic growth of small intestine starting at the age of 4 weeks and significant abdominal distension during development.
- FIG. 7 shows that 15 week old GIPF transgenic KI mice had marked intestinal distension and increased small intestinal mass when compared to the corresponding control KI mouse.
- H&E hematoxylin and eosin
- This change consisted of a marked, diffuse thickening of the mucosa by crypt epithelial hyperplasia with a marked increased in crypt length and complexity of branching.
- the crypts were lined by plump columnar epithelial cells with basophilic cytoplasm and basally-located large ovoid heterochromatic nuclei with frequent mitoses. Numerous apoptotic bodies were scattered throughout the crypt epithelium, suggesting an increased rate of cell turnover.
- the crypt epithelial cells also commonly differentiated into both Paneth cells and mucus-secreting goblet cells throughout the length of the crypts.
- the villous epithelium was not significantly altered. Similar changes were seen in the small intestinal mucosa associated with the Peyer's patch.
- the intestinal mucosa normally externally lines and may form small invaginations into the lymphoid tissue of the Peyer's patch.
- the hyperplastic changes were also seen on the surface and in invaginations, where they were associated with mild acute inflammation and accumulations of necrotic cells within crypts, i.e. crypt microabscesses.
- This Peyer's patch was sectioned tangentially therefore the amount and character of lymphoid tissue was difficult to evaluate.
- there were small numbers of plasma cells indicating transformation of B-lymphocytes into antibody-producing cells. There were no other visible alterations in lymphoid or inflammatory cell populations in the intestine or other tissues.
- GIPF KI mice To measure intestinal epithelial cell proliferation in KI mice, immunohistochemistry using monoclonal rat anti-mouse Ki67 antigen (Dako Ltd., High Wycombe, UK) was performed on paraffin embedded sections of small intestine of control and GIPF KI mice according to manufacturer's instruction and the method previously described (Scholzen, T. et al. 2000). As shown in FIG. 10 , GIPF KI mice demonstrated increased Ki67 positive epithelial cells in the small intestine suggesting increased proliferation by GIPF protein expression.
- mice Three of the GIPF-KI mice were harvested at 12 months. These 12 month-old mice displayed the typical abdominal distention and increased intestinal mass seen in younger animals. H&E sections were prepared in various tissues including spleen, liver, adrenal, kidney, thymus, heart, lung, small intestine, large intestine, stomach and brain.
- the GIPF cDNA (SEQ ID NO: 2) was cloned into pAdenoVator CMV5-Intron using NheI and XbaI sites in multi-cloning sites (MCS) to generate V5His6 tagged GIPF recombinant adenovirus.
- pAdenoVator-CMV5-Intron was obtained by modification of pAdenoVator CMV5-IRES-GFP (Qbiogene, Carlsbad, Calif., U.S.A).
- pAdenoVator-CMV5-IRES-GFP was digested with SpeI to remove its MCS, IRES and GFP and ligated with PCR amplified Intron-MCS-V5His-BGH polyA from pcDNA/Intron vector using primers: (SEQ ID NO: 55) 5′-CACCCCTAGGTCAATATTGGCCATTAGC-3′ and (SEQ ID NO: 56) 5′-CACCCCT-AGGTAGGCATCCCCAGCATGC-3′.
- Transformation of linearized transfer vector into bacterial cells, BJ5183, (Qbiogene, Carlsbad, Calif., U.S.A) which carry AdEasy-1 plasmid that encode Adenovirus-5 genome (E1/E3 deleted) was performed by electroporation according to the manufacturer's instructions. Recombinant adenovirus was generated and amplified in QBI-293A cells (Qbiogene, Carlsbad, Calif., U.S.A) and purified by CsCl banding as previously described (Garnier, A., J. Cote et al. 1994).
- Recombinant protein expression by 293A cells that had been infected with the recombinant adenovirus was measured by Western analysis using anti-V5 antibody (Invitrogene Inc., Carlsbad, Calif.).
- the titer of CsCl purified recombinant viruses was measured using the Adeno-X rapid titer kit (BD biosciences, Palo Alto, U.S.A.) according to the manufacturer's protocols. Briefly, a viral stock was tested by infecting 293A cells with serial dilutions of the recombinant adenovirus stock followed by fixation and staining of the transduced cells with mouse anti-hexon antibody 48 hours after infection. The signal was detected with a goat anti-mouse antibody conjugated to horseradish peroxidase and developed with metal-enhanced 3,3′-diaminobenzidine tetrahydro-chloride (DAB).
- DAB metal-enhanced 3,3′-
- the GIPF recombinant adenovirus was administered to normal mice to determine the effect of GIPF on the intestinal and colonic epithelium, and to confirm that the phenotype observed in the GIPF transgenic mice could be established in a non-transgenic animal.
- bromodeoxyuridine (BrdU) was injected intraperitoneally (IP) to determine in vivo proliferation of epithelial cells.
- IP intraperitoneally
- Various tissues including small intestine, colon, spleen, liver and bone marrow were collected and fixed in formaline. Paraffin embedded sections were stained with hematoxyline and eosin (H&E) for histological evaluation. Sections were also processed for BrdU immunohistochemistry according to the manufacturer's instruction (Oncogene Research product, Boston, U.S.A.) as previously described (McKinley, J. N. et al. 2000).
- FIGS. 8 and 9 H&E staining of sections from the small intestine that had been sacrificed 3 days following the adenovirus injection ( FIG. 11 ) show that the small intestine of mice that had received the GIPF adenovirus was significantly altered, and displayed the same histological characteristics seen in the GIPF transgenic mice ( FIGS. 8 and 9 ).
- the histological changes caused by GIPF included a marked, diffuse thickening of the mucosa by crypt epithelial hyperplasia with a marked increased in crypt length and complexity of branching.
- the crypts were lined by plump columnar epithelial cells with basophilic cytoplasm and basally-located large ovoid heterochromatic nuclei with frequent mitoses.
- the crypt epithelial cells also commonly differentiated into both Paneth cells and mucus-secreting goblet cells throughout the length of the crypts.
- the effect of GIPF on crypt epithelial proliferation was further enhanced in 5 days after virus injection which was shown in FIG. 12 .
- BrdU incorporation and Ki67 immuno-staining were performed on small intestinal sections of control and mice that had received GIPF adenovirus. As shown in FIGS. 13 and 14 , the mice that had received the GIPF adenovirus had small intestinal crypts that had significantly more BrdU and Ki67 positive cells, respectively.
- GIPF The biological effect of GIPF on the proliferation of crypt epithelial cells was also observed at a lower viral dose of 1 ⁇ 10 9 viral particles per mouse ( FIG. 15 ).
- GIPF also induced crypt epithelial hyperplasia with a marked increased in crypt length and an increased number and size of Goblet cells in the colon ( FIG. 16 ).
- the cDNA encoding GIPF (SEQ ID NO: 3) was cloned into pcDNA/Intron vector using KpnI and XbaI sites to generate wild type and carboxy-terminal V5His6-tagged GIPF (SEQ ID NO: 5).
- the mammalian expression vector pcDNA/Intron was obtained by genetically modifying the pcDNA3.1TOPO vector (Invitrogene Inc., Carlsbad, Calif.) by introducing an engineered chimeric intron derived from the pCl mammalian expression vector (Promega, Madison, Wis.).
- pCl was digested with BGIII and KpnI, and the intron sequence was cloned into pcDNA3.1, which had been digested with BgIII and KpnI.
- the GIPF ORF of SEQ ID NO: 2 (SEQ ID NO: 3) was first cloned into pcDNA3.1/V5His-TOPO (Invitrogen) by PCR using the following forward 5′ CACCATGCGGCTTGGGCTGTCTC 3′ (SEQ ID NO: 57) reverse 5′ GGCAGGCCCTGCAGATGTGAGTG 3′ (SEQ ID NO: 58), and the KpnI-XbaI insert from pcDNA 3.1/V5His-TOPO that contains the entire GIPF ORF was ligated into the modified pcDNA/Intron vector to generate pcDNA/Intron construct.
- Analogs of the full-length GIPF protein were generated as follows. Mutation of the predicted consensus furin cleavage sites (amino acid 28 R/Q) of GIPF in pcDNA/Intron was performed by site directed mutagenesis using primers 5′-GATCAAGGGGAAA CA GCAGAGGCGGATCAG-3′ (SEQ ID NO: 59) and 5′-CTGATCCGCCTCTGC TG TTTCCCCTTGATC-3′ (SEQ ID NO: 60). The GIPF deletion mutant (deleted amino acid residues 21 ⁇ 31) (SEQ ID NO: 16) was generated using the stitching method.
- the deletion was introduced by PCR amplification of two fragments using primers set1: 5′-CACCGCTAGCCTCGAGMTTCACGCGTG-3′ (SEQ ID NO: 61) and phospho 5′-GCTGATGGTGAGGTGCGTC-3′ (SEQ ID NO: 62), set2: phospho 5′-ATCAGTGCCGAGGGGAGCCAG-3′ (SEQ ID NO: 63) and 5′-GCCCTCTAGAGCGGCAGGCCCTGCAGATG-3′ (SEQ ID NO: 64) followed by ligation of the two fragments.
- the GIPF cDNA carrying deletion of amino acids 21-31 was amplified by PCR using the forward and reverse primers of SEQ ID NO: 61 and 64, respectively, digested with NheI and XbaI, and subcloned into pcDNA/Intron vector using NheI and XbaI sites in its multicloning sites. Sequences were confirmed for both mutants.
- the thrombospondin (TSP) domain (nt 451 to nt 618 of the ORF of GIPF (SEQ ID NO: 13) was also cloned into pcDNA/Intron vector for mammalian expression.
- the cDNA encoding the TSP domain was amplified by PCR using NheI forward primer: CCGGCTAGCCACCATGGCGCMTGTGAAATGA (SEQ ID NO: 65) and NotI reverse primer: CCATGCGGCCGCCCTCCTCACTGTGCACCT (SEQ ID NO: 66).
- NheI and NotI restriction enzymes digested PCR product was ligated into NheI and NotI digested pcDNA/Intron vector.
- the TSP domain from PCR amplification described above was cloned into pAdenoVator-CMV5-Intron using NheI and NotI restriction enzymes. The sequence of the PCR-amplified TSP domain was confirmed.
- the biological activity of the GIPF analogs described above was assessed in vivo and in vitro using methods described in the examples below.
- the biological activity of the GIPF analogs is assessed using the GIPF transgenic model.
- V5-His-tagged GIPF (GIPFt) (SEQ ID NO: 5) was expressed in HEK293 and CHO cells and purified as follows:
- a stable cell culture of HEK293 cells that had been transfected with the GIPF pcDNA/Intron construct comprising the DNA encoding the V5-His-tagged GIPF polypeptide (SEQ ID NO: 5) was grown in serum free 293 free-style media (GIBCO).
- GEBCO serum free 293 free-style media
- a suspension culture was seeded at cell density of 1 million cells/ml, and harvested after 4-6 days. The level of the V5-His-tagged GIPF that had been secreted into the culture medium was assayed by ELISA.
- a stable cell culture of CHO cells that had been transformed with a pDEF 2S vector comprising nucleotide sequence that encodes a V5-His tagged GIPF (SEQ ID NO: 5) was grown in serum free EX-CELL302 media (JRH).
- the expression vector contains DNA sequence that encodes DHFR, which allows for positive selection and amplification in the presence of methotrexate (MTX).
- MTX methotrexate
- the media containing the secreted GIPF protein was harvested and frozen at ⁇ 80° C.
- the media was thawed at 4° C., and protease inhibitors, EDTA and Pefabloc (Roche, Basel, Switzerland) were added at a final concentration of 1 mM each to prevent degradation of GIPF.
- the media were filtered through a 0.22 ⁇ m PES filter (Corning), and concentrated 10-fold using TFF system (Pall Filtron) with a 10 kDa molecular weight cut-off membrane.
- the buffers of the concentrated media were exchanged with 20 mM sodium phosphate, 0.5M NaCl, pH 7.
- a HiTrap Ni 2+ -chelating affinity column (Pharmacia) was equilibrated with 20 mM sodium phosphate, pH 7, 0.5 M NaCl. The buffer-exchanged media was filtered with 0.22 ⁇ m PES filter and loaded onto Ni 2+ -chelating affinity column. The Ni 2+ Column was washed with 10 column volumes (CV) of 20 mM imidazole for 10 Column Volume and protein was eluted with a gradient of 20 mM to 300 mM imidazole over 35 CV. The fractions were analyzed by SDS-PAGE and Western blot. Fractions containing V5-His tagged GIPF were analyzed and pooled to yield a GIPF protein solution that was between 75-80% pure.
- the buffer containing the GIPF protein isolated using the Ni 2+ column was exchanged with 20 mM sodium phosphate, 0.3 M Arginine, pH 7 to remove the NaCl. NaCl was replaced with 0.3 M Arg in the phosphate buffer to maintain full solubility of V5-His tagged GIPF protein during the subsequent purification steps.
- the GIPF protein isolated using the Ni 2+ column was loaded onto a SP Sepharose high performance cation exchange column (Pharmacia, Piscataway, N.J.) that had been equilibrated with 20 mM sodium phosphate, 0.3 M Arginine, pH 7.
- the column was washed with 0.1 M NaCl for 8 CV, and eluted with a gradient of 0.1 M to 1 M NaCl over 30 CV. Fractions containing V5-His tagged GIPF were pooled to yield a protein solution that was between 90-95% pure.
- the buffer of the pooled fractions was exchanged with 20 mM sodium phosphate, pH 7, 0.15 M NaCl, the protein was concentrated to 1 or 2 mg/mL, and passed through a sterile 0.22 ⁇ m filter.
- the pure GIPF preparation was stored at ⁇ 80° C.
- GIPF protein is glycosylated and migrates on SDS-PAGE under non-reducing conditions with molecular weight (MW) of approximately 42 kDa. There is slight difference in the MW of the GIPF protein purified from CHO cells and that purified from HEK293 cells. This difference may be explained by the extent to which GIPF is glycosylated in different cell types.
- HEK293 cells produced two forms of the polypeptide: the dominant mature form (SEQ ID NO: 10) which corresponds to the GIPF protein of SEQ ID NO: 4 that lacks the signal sequence, and the mature form (SEQ ID NO: 12), which corresponds to the GIPF protein of SEQ ID NO: 4 that lacks both the signal peptide and the furin cleavage sequence.
- the two forms separated well on the SP column, and were expressed at a ratio of mature to dominant mature forms of approximately 1:2.
- FIG. 17 B shows the solubility of purified protein in PBS (20 mM sodium phosphate, 0.15 M NaCl, pH 7).
- GIPF protein remains in solution at concentrations of up to 8 mg/mL at 4° C., pH 7, for 7 days.
- the purification of V5-His-tagged GIPF from cultures of HEK293 or CHO cells was performed by 1) concentrating and diafiltering the GIPF protein present in the culture media, 2) performing Ni 2+ -chelating affinity chromatography, and 3) SP cation exchange chromatography.
- the purification process yields a GIPF protein that is >90% pure.
- the overall recovery of the current purification process is approximately 50%.
- Addition of 0.5 M NaCl to the buffer during the purification process of media diafiltration and Ni column is crucial to keep GIPF fully soluble at pH 7.
- NaCl was removed, and 0.3 M Arg was added to maintain high solubility and increase protein recovery.
- the addition of 0.5 M NaCl and 0.3 Arg during the first and second purification steps showed to increase the overall recovery by at least from 25% to 50%.
- the dominant mature and mature forms of the V5His-tagged GIPF were used to test the biological activity of GIPF the in vivo setting described in Example 10.
- the protein purified by the method of this example consistently induced significant proliferation of intestinal crypt epithelial cells, which underlies the distension of the small intestine of the mice that were administered the purified GIPF protein.
- the untagged, wild type GIPF protein (GIPFwt; SEQ ID NO: 4) was expressed and purified in a manner similar to that described for the tagged GIPF protein.
- a stable cell culture of HEK293 cells that had been transfected with the pcDNA/Intron vector comprising the DNA (SEQ ID NO: 3) encoding the full-length GIPF polypeptide (GIPFwt) (SEQ ID NO: 4) was adapted to grow in suspension and grown in serum-free 293 free-style medium (GIBCO) in the presence of 25 ⁇ g/ml geneticin.
- Cell culture growth in spinner For small-scale production in spinners, an aliquot of a frozen stock of cells was grown and expanded in 293 free-style media with addition of 0.5% Fetal Bovine Serum (FBS). Cells were seeded and expanded in spinners at cell density of 0.3-0.5 million/mL for each passage. When enough cells are accumulated and cell density reaches 1 million cells/mL for production, the media was exchanged with serum-free 293 free-style media to remove 0.5% FBS, and harvested after 6 days. The initial cell viability was between 80-90% and it decreased to 30% at the time of harvest. The level of GIFPwt that had been secreted into the culture medium was assayed by ELISA and western. Growth of GIPFwt in the spinners yielded 1.2-1.5 mg/l.
- FBS Fetal Bovine Serum
- GIPFwt were harvested from the bioreactor after 6-7 days when the cell viability had decreased to 25-30%.
- the level of GIPFwt that had been secreted into the culture medium was assayed by ELISA and western.
- Western analysis of the secreted GIPF showed that no degradation of the protein had occurred.
- Western analysis was performed using a purified anti-GIPF polyclonal antibody, and the detection of the protein by ELISA was performed using a purified chicken anti-GIPF polyclonal antibody as the capture antibody, and the rabbit anti-GIPF polyclonal antibody as the detection antibody.
- the rabbit and chicken polyclonal antibodies were raised against the whole protein. Growth of GIPFwt in the bioreactors yielded 2.6-3 mg/l.
- Ultrafiltration-Diafiltration the medium containing the secreted GIPFwt protein was harvested by centrifugation. Protease inhibitors 1 mM EDTA and 0.2 mM Pefabloc (Roche, Basel, Switzerland) were added to prevent degradation of GIPF. The medium was filtered through a 0.22 ⁇ m PES filter (Corning), and concentrated 10-fold using TFF system (Pall Filtron) or hollow-fiber system (Spectrum) with 10 kDa cut-off membrane. The buffer of the concentrated medium was exchanged with 20 mM sodium phosphate, 0.3 M Arg, pH 7. The addition of 0.3 M Arg in the phosphate buffer is crucial to keep GIPFwt fully soluble at pH 7 during purification. After ultrafiltration and diafiltration, a mammalian protease inhibitor cocktail (Sigma) was added at 1:500 (v/v) dilution.
- SP cation exchange chromatography the Q-sepharose flow through containing GIPFwt was collected and loaded onto a cation exchange SP sepharose HP (Amersham), which bound the GIPF protein.
- the SP sepharose column was washed with 15 column volumes (CV) of 20 mM NaP, 0.3 M Arg, 0.1M NaCl, pH 7, and GIPF was eluted with a gradient of 0.1 M to 0.7 M NaCl over 40 column volumes.
- the fractions were analyzed by SDS-PAGE and Western blot. Fractions containing GIPFwt were analyzed and pooled. The buffer of the pooled fractions was exchanged with 20 mM sodium phosphate, pH 7, 0.15 M NaCl.
- the purity of the purified protein was determined to be 92-95% when analyzed by Coomassie staining of an SDS-gel.
- the protein was concentrated to 1 mg/ml, and passed through a sterile 0.221 ⁇ m filter and stored at ⁇ 80° C.
- the endotoxin level of the final formulated GIPF protein solution was analyzed using chromogenic LAL ( Limulus Amebocyte Lysate) assay kit (Charles River), and determined to be 0.24 EU per mg of GIPF.
- LAL Limulus Amebocyte Lysate
- GIPFt was expressed and purified from a yeast culture, and the biological activity compared to that of GIPFt that had been purified from the HEK 293 cell culture described above.
- the nucleotide sequence encoding GIPFt was cloned into a Pichia expression vector pPICZ ⁇ A which contains a yeast ⁇ -factor secretion signal sequence.
- the Pichia pastoris wild type X-33 strain was used to express GIPFt.
- the protocols for the use of the Pichia vectors, expression and purification of recombinant proteins are available from Invitrogen Life Technologies (Carlsbad, Calif., USA), and are also described in “ Pichia Protocols: Methods in Molecular Biology” (D. R. Higgins and J. Cregg eds., The Humana Press, Totowa, N.J. 1998)).
- GIPFt was purified using the SP cation exchange chromatography followed by affinity chromatography on an IMAC Ni 2+ column.
- the Ni 2+ column was washed with 20 mM imidazole, and GIPF was eluted in a 20-300 mM imidazole gradient over 30 column volumes.
- SDS-PAGE of the purified product displayed a broad and smeared protein band of about 50 kDa, indicating that GIPFt is glycosylated to varying degrees.
- the biological activity analyzed in vitro and in vivo as described in Examples 17 and 20, respectively.
- GIPFt protein that was expressed in Pichia pastoris induced the proliferation of the mouse intestinal epithelium, and stabilized ⁇ -catenin, albeit to a lesser extent than that obtained with the GIPF protein that was purified from HEK293 cells (data not shown).
- SEQ ID NO: 68 which encodes the mouse ortholog of the human GIPF, was cloned into the pcDNA/Intron vector to express a V5-His tagged protein mGIPFt.
- the tagged mouse protein was expressed in HEK 293 cells, and purified according to the method described above for the purification of the human GIPFt protein.
- the protein was purified to 80% purity, and was formulated in PBS.
- the biological activity of mGIPFt was analyzed in vivo and in vitro, and shown to possess the same proliferative properties as human GIPF (Example 20).
- GIPFt and GIPFwt proteins are glycosylated and migrate on SDS-PAGE under non-reducing conditions with a molecular weight (MW) of approximately 42 kDa and 38 kDa, respectively.
- Matrix-assisted laser desorption/ionization mass spectroscopy showed that the respective molecular weights for GIPFt and GIPFwt are 37.8 kDa and 32.9 kDa., while the theoretical molecular weight for GIPFt and GIPF wt that lack the signal peptide is 30.2 kDa and 26.8 kDa, respectively.
- the discrepancy in the molecular weights suggested that it might have been accounted for by the glycosylation of the protein.
- N-linked and O-linked oligosaccharides were performed using N- and O-glycanase (Prozyme, San Leandro, Calif., USA) according to the manufacturer's instructions.
- SDS-PAGE analysis of the deglycosylated protein resulted in a decrease in apparent molecular weight of 4-5 kDa. Deglycosylation did not affect the biological activity of GIPF when assayed in vitro and in vivo as described in Examples 17 and 20, respectively (data not shown).
- GIPF Protein stability—To test the activity of GIPF following denaturation, GIPF was boiled for 5 minutes, and rapidly cooled on ice. GIPF retained full activity was determined in vitro (see Example 17) and in vivo (see Example 21). These findings indicate that GIPF is a stable protein.
- HEK293 cells produced two forms of either the GIPFt or GIPFwt polypeptide: the dominant mature form (SEQ ID NO: 10) which corresponds to the GIPF protein of SEQ ID NO: 4 that lacks the signal sequence, and the mature form (SEQ ID NO: 12), which corresponds to the GIPF protein of SEQ ID NO: 4 that lacks both the signal peptide and the furin cleavage sequence.
- the two forms separated well on the SP column, and were expressed at a ratio of mature to dominant mature forms of approximately 1:2.
- GIPFt While both the dominant mature and mature forms of GIPFt induce proliferation of intestinal crypt cells in vivo, the dominant mature form was used to test the therapeutic effect of GIPF in the animal models of disease described in Examples 11, 12, 13, and 14. CHO cells express only the dominant mature form of GIPF.
- the purification processes yield a GIPFt protein that is >90% pure, and a GIPFwt that is 92-95% pure.
- the overall recovery of the dominant mature form of GIPF using either purification processes is approximately 50%.
- the yield can be increased by expressing a protein that has a mutated furin cleavage site. Addition of 0.5 M NaCl to the buffer during the purification process of media diafiltration and Ni column is crucial to keep GIPF fully soluble at pH 7. For binding GIPF onto the SP column, NaCl was removed, and 0.3 M Arg was added to maintain high solubility and increase protein recovery.
- the dominant mature and mature forms of GIPFt and GIFP wt were used to test the biological activity of GIPF in vivo.
- the proteins purified by the methods of this example consistently induced significant proliferation of intestinal crypt epithelial cells, which underlies the distension of the small intestine of the mice that were administered the purified GIPF protein.
- GIPF The biological activity of GIPF was unaffected by deglycosylation or boiling, but was obliterated by capping cysteine residues with iodoacetamide.
- PK pharmacokinetics
- mice 6-8 weeks old BALB/c mice were injected i.v. via the tail vein with single dose of either 40 mg/KG GIPFt protein or formulation buffer as control. Blood was withdrawn at 0, 30 min, 1 hr, 3 hr, 6 hr and 24 hr after injection and serum protein level at each time point was analyzed by Western analysis using anti V5 antibody (Invitrogene Inc., Carlsbad, Calif.) ( FIG. 18A ).
- FIG. 18A shows that no significant degradation of serum GIPF protein was detected.
- GIPF protein The half-life of GIPF protein in serum was calculated by semi logarithmic plot of the protein concentration after injection using Positope (Invitrogene Inc., Carlsbad, Calif.) as a standard V5 tagged protein, and was estimated to be 5.3 hours ( FIG. 18B ).
- GIPFt protein could generate a phenotype similar to that observed in the GIPF knock-in mice and in the mice that had been injected with recombinant adenovirus.
- 6-8 weeks old BALB/c mice were injected daily through tail vein with either 4 mg/KG GIPFt protein or formulation buffer as control for 7 days. Mice were sacrificed on day 8 at 24 hours after last injection. Four hours prior to being sacrificed, 1 mg of bromodeoxyuridine (BrdU) was injected ip to determine the in vivo proliferative activity of GIPF.
- Various tissues including small intestine, colon, spleen, liver and bone marrow were collected and fixed in formaline.
- Paraffin embedded sections were stained with hematoxylin and eosin for histological evaluation. Sections were also processed for BrdU immunohistochemistry according to the manufacturer's instruction (Oncogene Research product, Boston, U.S.A.) and previously described (McKinley, J. N. et al. 2000). In all experiments, at least 3 animals were analyzed per group and experiments were repeated at least twice.
- GIPF as a prophylactic and therapeutic agent was tested in an animal model of radiation-induced mucositis.
- BDF1 mice Forty eight adult male BDF1 mice, aged 10-12 weeks, were used. On delivery from the supplier and prior to the experiment, the animals were housed for two weeks in individually ventilated cages on a 12 hour light:dark cycle to stabilize the circadian rhythm. Animals were allowed food and water ad libitum.
- the animals were divided into 8 groups of 6 animals, and were treated as follows:
- Corrected number of crypts circumference Mean crypt width in untreated control Mean crypt width in treated animal ⁇ Mean number of surviving crypts in treatment group
- FIGS. 23 A-D shows sections from the small intestine from the animals the untreated group 5 (A), the saline pre-treated group 4 (B), the KGF-treated group 3 (C) and the GIPF-treated group 2 (D).
- Foci of regeneration (surviving crypts with one or more clonogenic cells) are clearly visible in the tissue section from the saline-treated animals (group 4) ( FIG. 23B )
- the mesenchyme is entirely denuded, and these animals would have developed diarrhea and died due to the mucositis if they had been allowed to live beyond four days post irradiation.
- GIPF afforded protection of the intestinal architecture FIG.
- pre-treatment with GIPF increased considerably the number of crypts that survived the 13 Gy irradiation.
- Pre-treatment with GIPF at a dose of 2 mg/kg increased survival by 1.95 fold that of the crypts from the untreated group 4 (also known as the protection factor), and the GIPF dose of 5 mg/kg (group 2) further increased crypt survival by 2.66 fold.
- GIPF was shown to protect the epithelium of the small intestine from the injurious effects of irradiation, and could be used as a potent prophylactic in patients for whom radiation therapy has been indicated.
- GIPFwt human GIPF
- CT26 murine colon carcinoma cells ATCC, Manassas, Va., USA
- ATCC Manassas, Va., USA
- Tumor Volume (Mean ⁇ SD; mm 3 ): Group 1 TVS 95.8 ⁇ 8.1 Group 2 TVG 95.1 ⁇ 4.2 Group 3 TDS 21.8 ⁇ 3.0; p ⁇ 0.05 Group 4 TDG 16.7 ⁇ 8.6; p ⁇ 0.05
- GIPF reduced significantly the severity of the diarrhea caused by 5-FU in the healthy and the tumor-bearing mice of groups 6 and 4, respectively, when compared to the scores for the normal and tumor-bearing mice of groups 5 and 3, which did not receive GIPF. Similarly, GIPF reduced the loss of body weight that the 5-FU-treated animals experienced.
- the tumors from the untreated tumor-bearing mice (group 1) were similar in size to those from the GIPF-treated tumor-bearing mice (group 2). Thus, GIPF did not affect the growth of the tumor.
- 5-FU reduced the size of the tumors in the mice of group 3, and it also reduced the size of the tumors of the mice of group 4 Thus, GIPF did not impede the activity of 5-FU in reducing the size of the tumors ( FIG. 24 ).
- FIG. 25 The effect of GIPF on the gross appearance of the intestines is shown in FIG. 25 , and the corresponding measurement of intestinal diameter, weight and length are given in Table 5.
- the intestines of the normal and tumor-bearing mice that had received 5-FU was atrophied ( FIG. 25E ), and numerous lesions associated with bleeding were observed, while the appearance of the intestines from the mice that had received GIPF was overtly normal and accompanied by the typical distension due to the proliferative effect of GIPF on the in intestinal epithelium ( FIGS. 25 B , C, D, and F).
- FIG. 26 shows the effects of 5-FU on the small intestine
- FIG. 26B shows the effects of 5-FU on the colon.
- Micromorphometry measurements of villus height and crypt depth in the midjejenum confirm that the effect of GIPF is significant ( FIG. 27 ),
- GIPF protects that small intestine and colon from the deleterious effects of 5-FU, and it does not hinder the therapeutic effects of 5-FU. Therefore, GIPF may be used in conjunction with chemotherapeutic agents to reduce the deleterious side-effects of antineoplastic therapies.
- GIPF visibly increased the number of nuclei that stained for Ki67 in the ventral and dorsal tongue epithelium of irradiated animals when compared to that from animals that were not given GIPF ( FIGS. 28 and 29 ).
- the epithelial proliferative index which is calculated as the percent ventral epithelial cells that stained positive for Ki67, confirmed that GIPF reduced significantly the loss of cellularity caused by the radiation to the ventral tongue epithelium ( FIG. 30 ).
- the epithelial layer of the tongue from all animals that had been treated with GIPF was remarkably less damaged by 5-FU than that of the experimental animals that had not received GIPF.
- GIPF may be used as a therapeutic agent for the treatment and/or prevention of chemotherapy and radiation therapy-induced oral mucositis.
- Quantitative animal models of oral mucositis can be used to study further the therapeutic properties of GIPF, when administered in combination with other cytotoxic agent to further assess the potential role of GIPF in reducing the severity of the cellular depletion and to increase the rate of regeneration of the epithelial layers of the oral and intestinal epithelium.
- GIPFwt recombinant human GIPF
- DSS dextran sulfate sodium
- mice Six to eight-week old female BALB/c mice (Charles River Laboratories, Wilmington, Mass., USA) were housed in ventilated cages and acclimated for one week to a 12 hour light:dark cycle. Twenty four mice having similar body weight (approximately 20 g; ⁇ 5% variance) were housed in 4 cages and fed ad libitum a 4% DSS (v/w) drinking solution for 7 days.
- IBDAI IBD activity index
- the GIPF protein used in these experiments was the human recombinant GIPF protein (SEQ ID NO: 4; GIPFwt), which was expressed and purified according to the method described in Example 9.
- the analog of GLP-2, h[Gly 2 ]GLP-2 was synthesized and purchased from Biosource International (Camarillo, Calif., USA).
- FIG. 36 An example of the gross pathology of the intestine and colon of the mice from groups 1, 2, 3, and 5 is shown in FIG. 36 .
- Animals receiving DSS with saline developed severe colitis that was typically associated with atrophy, hyperemia, and diarrhea when compared to the control group.
- the small and large intestine of the animals that were treated with GIPF showed some distension, and were remarkably similar to those of the control group.
- GIPF may be used as an effective therapeutic agent for the treatment of inflammatory bowel disease. While GLP-2 afforded some therapeutic effect, the small and large intestine from this group seemed marginally less injured than that from the animals in the control group.
- the significance of the changes is reflected by the measurements of the small and large intestines shown below in Table 7.
- the animals are divided into a resected group that will have a 75% surgical resection of the midjejenunoileum, a sham-resected operated control group in which the intestine is sectioned and reanastomosed, and an unoperated control group.
- the animals are administered saline or GIPF at a dose of 2 mg/Kg.
- the 75% intestinal resection is chosen to maximize any adaptive response, and retention of equal portions of the proximal jejunumnum and distal ileum is based on the nutritional implications of removing the specialized absorptive capacity of the terminal ileum for vitamin B12 and bile acids and the ileal brake.
- the retention of 25% of the small intestine inclusive of a portion of distal ileum is sufficient to allow resected animals to achieve the same growth rate as control animals.
- the metabolic, morphological, histological, and functional response of the gut to resection and treatment with GIPF is assessed during the course of the experiment and also as end-point analysis on Day 10.
- Food intake and growth, gross and microscopic small intestinal morphology, and functional evaluation of mucosal absorptive characteristics are evaluated as described (Scott et al., supra).
- GIPF significantly increases the food consumption and reduces the loss in body weight that typically accompanies resection of the small bowel.
- GIPF also increased the length of the remnant intestine, its diameter, wet weight, and mucosal wet weight, and increases the absorptive capacity of the remnant small intestine.
- H&E staining of cross-sections of the small intestine shows that GIPF elongates both the villus height and crypt depth, and increases crypt cell proliferation in the gut of the animals with resected small intestines.
- GIPF reduces the effects of bowel resecxtion by augmenting intestinal adaptation.
- GIPF intestinal crypt epithelial cells in vivo.
- the effect of recombinant GIPFwt was tested on the proliferation of various tumor and normal cell lines in vitro.
- the rate of cell proliferation of the following cell lines was measured by assaying the incorporation of 3 H-thymidine: Caco-2 human colorectal adenocarcinoma; epithelial COLO205 human ascites from metastatic colorectal adenocarcinoma; epithelial HCC70 human mammary gland ductal carcinoma; epithelial HCT116 Human colorectal carcinoma; epithelial HT-29 Human colorectal adenocarcinoma; epithelial IEC-18 Rat ileum; epithelial IEC-6 rat small intestine; epithelial LS513 human caecum; colorectal carcinoma; epithelial MCF7 human pleural effusion from metastatic breast adenocarcinoma; epithelial NCI-H1373 human lung adenocarcinoma PC-3 human bone metastasis from prostate adenocarcinoma; epithelial SCC-25 Human tongue squamous cell carcinoma
- the rate of proliferation of the GIPF-treated cells was compared to that of untreated cells, or cells that were grown in 10% complete media (growth media, 2.5% dialyzed FBS, and pen/strep). The cells were incubated for 48 hours at 37° C., and pulsed with 0.5 ⁇ Ci 3 H-thymidine for the last 20-24 hours of incubation. Cells were harvested, the amount of 3 H-thymidine that had been incorporated was determined, and the results determined from duplicate samples of replicate experiments.
- GIPFwt did not affect the rate of proliferation of most of the tumor cells that were tested. An increase in the rate of proliferation was induced only at the higher doses of GIPF in IEC28, T84, HCT116, and HT29 cells. The extent of the proliferation was less than 40% of rate of the untreated cells.
- GIPF may not exacerbate the rate of proliferation of tumors existing in vivo, and GIPF may be used for treating cancer patients who are suffering from mucositis caused by antineoplastic therapies.
- the wnt/ ⁇ -catenin signaling pathway plays a pivotal role in development and homeostasis.
- wnt signaling is known to play a critical role as a regulator of intestinal crypt proliferation by stabilizing ⁇ -catenin, which subsequently induces the transactivation of T-cell factor (TCF) target genes (Wetering et al., Cell 111:241-250 (2002); Batle et al., Cell, 111:251-263, (2002); Perreault et al., J Biol Chem 276:43328-43333 (2001); Booth et al., Nat Med 8:1360-1361 (2002)).
- TCF T-cell factor
- the proteins were resolved by gradient (4-20%) SDS-PAGE, and the level of ⁇ -catenin was assessed using a ⁇ -catenin rabbit antibody (Abcam) that was visualized using a peroxidase conjugated secondary antibody (Cell Signaling).
- Abcam ⁇ -catenin rabbit antibody
- Cell Signaling a peroxidase conjugated secondary antibody
- GIPF induced the stabilization of ⁇ -catenin in a human endocrinic L cell line (NCI-H716, data not shown), and in HEK 293 cells in a dose-dependent and time-related manner ( FIGS. 41 A and B, respectively). Consistent with the findings described in Example 18, boiling GIPF did not affect its ability to stabilize ⁇ -catenin, but, the effect was abolished by treatment with proteinase K, and by reduction with DTT ( FIG. 41 C ).
- GIPF did not induce the stabilization of ⁇ -catenin in other cell lines including the mouse epithelial cell line C57MG in which Wnt3A has been shown to have a potent effect on induces ⁇ -catenin activation.
- Dickkopf-1 Dkk1
- Dkk1 Dickkopf-1
- Wnt3A Wnt3A
- GIPF did not completely inhibit ⁇ -catenin stabilization by GIPF in 293 cells (data not shown).
- ⁇ -catenin results in its translocation to the nucleus where it associates with transcription factors of the TCF/LEF family. Due to its transactivating ability the ⁇ -catenin-transcription-factor-complex binds to DNA and activates wnt target genes.
- GIPF-induced ⁇ -catenin signaling we determined the activation of down stream target genes in HEK293 and NCI-H716 cells by quantitative PCR.
- HEK-293 cells and 2 ⁇ 10 6 NCI-H716 cells were seeded in 6-well plates and allowed to attach 6 hrs in complete media. Cells were then changed to 0.1% FBS Assay media and incubated overnight. The day of the assay, treatments were added to the cells in an additional 1 ml of Assay media. Cells were incubated for 8 hours at 37° C./5% CO 2 with either 20 mMLiCl (Sigma), 10 ng/ml Wnt-3A (R&D Systems), 250 ng/ml GIPFt, or 250 ng/ml capped GIPF protein. A well of untreated cells, maintained in Assay media, was included as a background for gene expression.
- Primers for Quantitative PCR were designed for the following human ⁇ -catenin target genes: Axin-2 (SEQ ID NOs: 70 and 71), CD44 (SEQ ID NOs 72 and 73), EpherinB2 (SEQ ID NOs: 74 and 75), c-myc (SEQ ID NOs: 76 and 77), Proglucagon (SEQ ID NOs: 78 and 79), and Cox-2 (SEQ ID NOs: 80 and 81).
- Human EF1 (SEQ ID NOs: 82 and 83) was used as housekeeping gene to standardize expression levels.
- GIPF increased the expression of Axin-2 in HEK-293 and NCI-H716 cells, and caused the upregulation of CD44 and EphrinB2 to levels that were greater than resulting from stimulation with Wnt3A or Lithium.
- the expression levels of Cox-2, c-myc and proglucagon genes were not affected by GIPF (data not shown).
- the mammalian expression vector pIntron/IgK was obtained by genetically modifying the pSectag vector (Invitrogene Inc., Carlsbad, Calif.) by introducing an engineered chimeric intron derived from the pCI mammalian expression vector (Promega, Madison, Wis.).
- pcDNA/Intron vector was digested with BGIII and NheI, and the intron sequence was cloned into psectag, which had been digested with BglII and NheI.
- the forward and reverse primers used to amplify and subclone the polynucleotide fragments correspond to SEQ ID NOs: 106-119, as indicated in the sequence listing.
- the forward primer of SEQ ID NO: 106 was used with the reverse primers for fragments 1-7 (primer SEQ ID NOs: 107-113; the forward primer of SEQ ID NO: 114 was used with the reverse primers for fragments 8-10 (SEQ ID NOs: 115-117).
- the polypeptide fragments were transiently expressed in HEK 293 cells and the activity of the fragments in stabilizing ⁇ -catenin was assayed as described in Example 17.
- the polypeptide fragment of SEQ ID NO: 91 induced the greatest stabilization of ⁇ -catenin when compared to the activity displayed by the other fragments tested. This finding suggests that the furin-like cysteine-rich domain of GIPF may be essential for mediating the proliferative activity of GIPF.
- the activity of the polypeptide of SEQ ID NO: 91 was lower than that of the full-length GIPF ( FIG. 44 ). Therefore, other portions of the GIPF protein are necessary to enable the maximum stabilization of ⁇ -catenin.
- GIPFwt and mGIPFt The activity of human and mouse GIPF (GIPFwt and mGIPFt) was tested in mice that had been grouped and treated as follows:
- mice Twenty four female BALB/c mice were used in the experiments. GIPF was injected daily for three days. Animals were sacrificed on day 4. Prior to being sacrificed, 0.5 ml of blood was collected for hematological analysis, and two hours prior to being sacrificed, all animals were injected i.p with 0.4 ml of a 1 mg/ml solution of BrdU. The small intestine and colon were dissected, measured as described above, and segments of midjejenum and colon processed for histological analysis as described in previous Examples.
- GIPF proliferative effect of the human recombinant GIPF is not the result of an ectopic effect.
- GIPF exhibits its biological activity whether it is administered intravenously of subcutaneously.
- Colons were dissected from mice and sterilized in a 0.04% sodium hypochlorite solution for 15 minutes. After rinsing in PBS, colons were incubated in the DTT/EDTA solution (0.5 mM DTT, 3 mM EDTA in PBS) for 90 min at room temperature. After the incubation, the tissue was washed once in PBS and 10 ml of PBS was added. The tube was shaken vigorously to liberate the crypts from the submucosa. The PBS containing the crypts was transferred to a centrifuge tube and the shaking step was repeated until the crypt yield diminished. The crypts were centrifuged gently (400 rpm for 5 min) and washed with fresh PBS.
- DTT/EDTA solution 0.5 mM DTT, 3 mM EDTA in PBS
- the crypts were resuspended in 20 ml of 0.3% pancreatin (Sigma) in PBS and incubated for 90 min at room temperature shaking every 10 minutes for first 30 minutes and every 30 minutes there after. At the end of the incubation, an equal volume of PBS was added and the crypts were centrifuged at 1000 rpm for 5 min and washed with EDTA/DTT solution 1-2 more times until all mucous was removed. Crypt cells were resuspended in 1 ⁇ media (RPMI 1640 supplemented with 5% FCS, glutamine, NaHCO 3 , insulin, transferrine, selenium, penicillin/streptomycin).
- Cell clumps were broken up using 21G then 23G needles with syringe. Cells were counted and used to assay for the stabilization of ⁇ -catenin; for determining the proliferative activity by incorporation of 3 H-thymidine; and for testing the ability of GIPF to affect the clonogenicity of crypt cells.
- FIG. 47 shows the level of non-phosphorylated active ⁇ -catenin
- FIG. 47B shows the level of total ⁇ -catenin present in the cytosol.
- the non-phosphorylated ⁇ -catenin was recognized by a ⁇ -catenin antibody that was purchased from Upstate (Waltham, Mass., USA), while the total ⁇ -catenin level was assayed using an antibody from Abcam (Cambridge, Mass., USA), which recognizes both the phosphorylated and non-phosphorylated protein. This result indicates that GIPF-induced crypt epithelial cell proliferation in mice may be mediated ⁇ -catenin signaling.
- the GIPF induces proliferation of isolated crypt cells by stabilizing ⁇ -catenin, and the isolated intestinal cells may be used to elucidate the signaling pathways that underlie the proliferative effect of GIPF.
- the plates are incubated in the presence of GIPF at 50, 100, and 200 ng/ml for 3 ⁇ 4 weeks at 37° C. After the incubation, the plates are examined and the number of colonies are counted. Colonies are defined as aggregates of more than 40 cells.
- GIPF stimulates colony formation.
- the clonogenic assay is used to test the proliferative activity of GIPF and GIPF analogs in vitro.
- TNBS 2,4,6-trinitrobenzenesulfonic acid
- mice with TNBS-induced colitis The therapeutic effect of GIPF was tested in mice with TNBS-induced colitis. Intestinal inflammation was induced in 6-8 week-old female BALBc mice (group 2) by a single rectal administration of 1 mg TNBS, as described by Neurath et al, supra). A control animal group (Group 1) received rectal administration of vehicle alone (45% ethanol). The therapeutic effect of hGIPF was tested by administering subcutaneous daily doses of 100 ⁇ g (group 3) or 50 ⁇ g (group 4) hGIPF (4 mg/kg or 2 mg/kg) to animals that had received TNBS for 3 days. The mice were sacrificed after 7 days, and the induction of colitis by TNBS was assessed.
- hGIPF significantly reduced the loss of body weight induced by TNBS in the animals of group 2 ( FIG. 48 ). hGIPF also reduced the severe diarrhea, ulceration, bleeding and atrophy of the colon that the TNBS-treated animals of groups 2 suffered (data not shown).
- hGIPF determined by the histological grading of colonic colitis as follows: Histological (microscopic) grading of colonic colitis SCORE CRITERIA 0 Normal 1 Low level of (occasional) leukocyte infiltration, no structural changes 2 Moderate leukocyte infiltration in lamina pripria, surface epithelial lesion, no ulceration 3 High leukocyte infiltration with inflammatory cells extending into the submucosa, mucosal erosion, focal ulceration, moderate thickening of the colon wall 4 Very high leukocyte infiltration with transmural inflammation, extensive mucosal damage, loss of goblet cells, high vascular density, thickening of the colon wall, ulceration
- GIPF diminished the increase in TNBS-induced myeloperoxidase, which is a hallmark of neutrophil infiltration in the mouse colon.
- GIPF treatment significantly reduces the TNBS-induced diarrhea, inflammation and thickening of the colon wall, and loss of goblet cells, relative to the animals that are not treated with GIPF. Therefore, GIPF may potentially be used as a therapeutic to treat patients with Crohns disease.
- GIPFwt chronic dextran sulfate sodium
- mice Six to eight-week old female BALB/c mice (Charles River Laboratories, Wilmington, Mass., USA) were housed in ventilated cages and acclimated for one week to a 12 hour light:dark cycle. Mice were fed 4% DSS (v/w) in drinking water from Day 0 to 7 to induce colitis. From Day 7 to Day 21, mice were given water without DSS to induce the 1 st remission phase. From Day 21 to Day 28, mice were again given 4% DSS to induce the 1 st relapse phase. From Day 28 to Day 35, mice were again given water without DSS to induce the 2 nd remission phase. On Day 35, mice were randomized into various experimental groups and GIPF therapy was started on Day 35 and continued to Day 42. Mice were monitored daily from Day 35 to Day 42 for signs of disease activity. On Day 42, the experiment was terminated, the mice were sacrificed and intestinal tissue was harvested for analysis.
- DSS v/w
- IBDAI inflammatory bowel disease activity index
- hGIPF prevented the DSS-induced damage to the intestinal mucosa of the mice, and reversed the DSS-induced shortening of the villus height and crypt depth ( FIG. 51 ).
- GIPF also superseded the suppressive effect of DSS on the proliferation of crypt cells in the small intestine ( FIG. 52 ; *P ⁇ 0.05 (ANOVA, DSS/Saline vs. Water/Saline); #P ⁇ 0.05 (ANOVA, DSS/hGIPF vs. DSS/Saline)
- GIPF ulcerative colitis
- mice were divided into the following groups:
- mice Female BDF-1 mice, at age of 11-13-week, were given daily subcutaneous injections of either saline or 100 ⁇ g per dose hGIPF beginning at Day ⁇ 3. From Day 0 to Day 4, each mouse was injected intraperitoneally with a dose of 50 mg/kg of 5FU for 4 consecutive days. Mice were monitored for body weight, occurrence of diarrhea, and mortality on a daily basis.
- GIPF treatment significantly reduced 5-FU-induced gastrointestinal toxicity, including reducing maximum body weight loss, diarrhea score, and mortality (Table 9), thus indicating that GIPF is effective in reducing chemotherapy-induced gastrointestinal toxicity in mice.
- Toxicity TREAT- Maximum Diarrhea Mortality Survival 5-FU MENT weight loss (%) score (%) Time (day) YES NO 33.1 ⁇ 3.6 2.8 ⁇ 0.5 92 8.5 ⁇ 1.2 YES hGIPF 12.5 ⁇ 6.9* 0.9 ⁇ 0.6* 8.3 10.0 ⁇ 0.0* YES KGF 16.8 ⁇ 7.9* 1.7 ⁇ 0.8* 25 9.0 ⁇ 1.0 YES GLP-2 17.4 ⁇ 8.3* 1.9 ⁇ 0.8 42 8.4 ⁇ 1.1 *P ⁇ 0.05 (ANOVA, 5-FU/hGIPF, 5-FU/KGF or 5-FU/GLP-2 vs. 5_FU/saline
- a repeat-dose study of the activity of GIPF was performed in Cynomolgus monkeys to determine the activity of GIPF in a non-human primate.
- Prototcol Eight females were assigned to four treatment groups as outlined in the table below and dosed via intravenous bolus injection of GIPF protein once daily for three days. On the fourth day, all animals were administered one intravenous bolus injection of bromodeoxy uridine (BrdU) (50 mg/kg) approximately 4 hours prior to necropsy. Select tissues were collected at necropsy.
- PrdU bromodeoxy uridine
- Blood sample collection Blood was collected once during acclimation and once on the day of necropsy before administration of BrdU for hematology and serum chemistry.
- Tissue proliferation assay by using BrdU IHC paraffin-embedded sections were prepared for BrdU assay.
- hGIPF increases BrdU positive proliferation index in both small intestine and colon.
- hGIPF protein was labeled with [ 125 I] by IODO-GEN labeling method (Amersham). The initial specific activity upon labeling was 35 uCi/ug (1020 Ci/mmol). Labeled protein was further purified prior to injection into mice.
- mice male CD-1® [Crl:CD-1® (ICR) BR mice were acclimated for 7 days prior to the injection and housed individually in clean suspended wire-mesh cages. The cages were elevated above cage-board or other suitable material, changed at least three times each week. Each mouse was given a 1.67 mg/kg dose of hGIPF that contained 3 ⁇ Ci of 125 I-hGIPF protein. After receiving the radiolabeled dose, animals that were scheduled for collection of urine and feces were housed individually in metabolism units.
- All animals received for this study were treated with sodium iodide to block uptake by the thyroid of free iodide derived from the labeled test article.
- An oral (gavage) administration of 0.1 mL of 1% NaI solution was given at approximately 48, 24 and 1 hours before dosing with the radilabeled protein.
- Each animal received a single dose of [ 125 I]-hGIPF that was administered via an intravenous injection.
- the animals were divided into two groups and analyzed as outlined in the Study Design above. At the indicated times for euthanasia, blood samples were collected, and the cellular fraction and plasma were separated for analysis.
- Results The data showing the concentration and the kinetics of [ 125 I]-hGIPF in mouse plasma, red blood cells, liver, kidney, lung, heart, brain, spleen, esophagus, stomach, small intestine, and large intestine are shown in Tables 11-14.
- Table 13 A shows the percent recovery of radilabeled GIPF in tissues from various organs and in the intestinal contents, urine, feces and carcass of animals 24 hours after administration of radiolabeled hGIPF.
- the recovery of hGIPF from individual organ tissues is given in Table 13B.
- the data show that the distribution of radiolabeled hGIPF is unusually high for organs of the gastrointestinal tract following administration via the intravenous route, thus suggesting that hGIPF may have a high affinity for gastrointestinal tissues.
- the objective of this study was to define a therapeutic protocol that would provide the maximum prophylactic effect of GIPF against irradiation-induced mucositis.
- mice 10 ⁇ 12 weeks of age at the time of use. The animals were housed for 1 week on a 12 hr light/dark cycle and were allowed food and water ad libitum throughout. Animals were randomly divided into 6 groups of 5 animals each (total 30 mice) and were treated as follows:
- hGIPF may be used as a prophylactic to offset the deleterious effects of radiation-induced intestinal mucositis, and that dosing at 24 hours prior to total body irradiation provides the greatest protection to the intestinal crypts.
- hGIPF The effect of hGIPF on intestinal crypts was studied to determine whether the effect of hGIPF prior to the onset of morphological changes occurs by affecting either of both the stem cells and the transitional proliferating cells of the crypt.
- hGIPF may affect both stem cells and the dividing transit cell population.
- the number of Goblet and Paneth cells was scored following treatment of mice with hGIPF to determine whether hGIPF affects the population and distribution of these cell types in the small intestine.
- Villin an actin bundling protein found in the apical brush border of absorptive tissues, is one of the first structural genes to be transcriptionally activated in the embryonic intestinal endoderm.
- villin In the adult, villin is broadly expressed in every cell of the intestinal epithelium on both the vertical axis (crypt to villus tip) and the horizontal axis (duodenum through colon) of the intestine.
- Madison et al. documented that a 12.4 kb region of the mouse villin gene drives high level expression of two different reporter genes (LacZ and Cre recombinase) within the entire intestinal epithelium of transgenic mice ( J. Biol. Chem. 277, p33275-33283, 2002).
- To generate transgenic chimaeric mice expressing human GIPF in intestinal epithelial cells we constructed a expression vector in which the GIPF cDNA is linked to this transcriptional regulatory sequences directing its expression in intestinal epithelial cells.
- the above approximately 11 kb DNA fragment was ligated to the dephosphorylated vector fragment and the ligation mixture was transfected to XL10-Gold Ultracompetenet Cells (STRATAGENE).
- DNA samples prepared from the resultant transformants was subjected to PCR amplification using the primer set described below (SEQ ID NO: 120 and 121). Sequence analysis of the amplified fragment showed the inclusion of an approximately 11.2 kb of mouse villin gene promoter fragment (pPvil 11.2).
- the pPvil 11.2 was digested with the restriction enzymes, ClaI and BamHI, and the reaction mixture was subjected to 0.8% agarose gel electrophoresis to isolate approximately 11.2 kb fragment.
- KOD-puls (TOYOBO) was used for the PCR reaction.
- the PCR reaction mixture contained 10 pmole of each primer and mouse BAC (RP23-278N11; GenBank Accession Number: AC098570) DNA as a template.
- This PCR amplification was performed using an initial denaturing incubation at 94° C. for two minutes. Then 30 cycles of denatruration, annealing and amplification were performed by incubation at 94° C. for 15 sec and 68° C. for two minutes.
- a PCR product (approximately 1.9 kb) was purified by 0.8% agarose gel electrophoresis and QIAquick Gel Extraction Kit (QIAGEN).
- the digested fragment was purified by 0.8% agarose gel electrophoresis and QIA quick Gel Extraction Kit (QIAGEN).
- the purified fragment was ligated to pBluescriptIISK( ⁇ ) (STRATAGENE) that was digested with XhoI and XbaI, and treated with calf intestine alkaline phosphatase to dephosphorylate its both ends.
- the ligation mixture was transfected to DH5 ⁇ and the DNA samples prepared from the resultant transformsants were analyzed by nucleotide sequencing to confirm the structure of inserted fragment.
- the clone including a fragment with a correct nucleotide sequence was digested with NcoI. Following the treatment of digested fragment with Klenow fragment (TAKARA BIO) for blunting its both ends, it was further digested with XbaI and purified by 0.8% agarose gel electrophoresis. The resultant fragment was treated with E. Coli C 7-5 alkaline phosphatase to dephosphorylate its both ends.
- KOD-puls-(TOYOBO) was used for the PCR reaction.
- the PCR reaction mixture contained 10 pmole of each primer (SEQ ID NO: 124 and 125) and the GIPF cDNA as a template. This PCR amplification was performed using an initial denaturing incubation at 94° C. for three minutes. Then 30 cycles of denatruration, annealing and amplification were performed by incubation at 94° C. for 15 sec and 68° C. for two minutes.
- a PCR product (approximately 800 bp) was purified by electrophoresis using 0.8% agar and QIAquick Gel Extraction Kit (QIAGEN).
- the GIPF fragment prepared in (3) was ligated to pPvil2 prepared in (2), and the ligation mixture was transfected to DH5 ⁇ .
- the DNA samples prepared from the resultant transformsants were analyzed by nucleotide sequencing to confirm the structure of inserted fragment.
- the clone including a fragment with a correct nucleotide sequence was selected (pPvil 2-01).
- IRES-GFP The purified fragment (IRES-GFP) was ligated to pcDNA3 (Invitrogen) that was digested with XhoI and XbaI, and treated with calf intestine alkaline phosphatase to dephosphorylate its both ends. The ligation mixture was transfected to DH5 ⁇ and the DNA samples prepared from the resultant transformsants were analyzed by nucleotide sequencing to confirm the structure of inserted fragment. The clone including a fragment with a correct nucleotide sequence was selected (pIRES-GFP).
- the fragment including the IRES-GFP region was purified by 0.8% agarose gel electrophoresis and QIA quick Gel Extraction Kit (QIAGEN).
- the purified fragment (IRES-GFP) was ligated to pUC119 that was digested with BamHI and XbaI, and treated with calf intestine alkaline phosphatase to dephosphorylate its both ends.
- the ligation mixture was transfected to DH5 ⁇ and the DNA samples prepared from the resultant transformsants were analyzed by nucleotide sequencing to confirm the structure of inserted fragment.
- the clone including a fragment with a correct nucleotide sequence was selected (pUC119 IRES-GFP).
- the DNA fragment prepared by annealing of synthesized oligonucleotides described below was ligated to pUC119 IRES-GFP that was digested with EcoRI and BamHI, and treated with calf intestine alkaline phosphatase to dephosphorylate its both ends.
- the ligation mixture was transfected to DH5 ⁇ and the DNA samples prepared from the resultant transformsants were analyzed by nucleotide sequencing to confirm the structure of inserted fragment.
- the clone including a fragment with a correct nucleotide sequence was selected (pUC119 IRES-GFP+As).
- the DNA fragment prepared by annealing of synthesized oligonucleotides described below was ligated to pUC119 IRES-GFP+As that was digested with NotI and XhoI, and treated with calf intestine alkaline phosphatase to dephosphorylate its both ends.
- the ligation mixture was transfected to DH5 ⁇ and the DNA samples prepared from the resultant transformsants were analyzed by nucleotide sequencing to confirm the structure of inserted fragment.
- the clone including a fragment with a correct nucleotide sequence was selected (pUC119 IRES-GFP+loxP).
- Nt-PmIoxP-Xh S (SEQ ID NO: 128) GGCCGTTTAAACATAACTTCGTATAATGTATGCTATACGAAGTTATC Nt-PmIoxP-Xh AS (SEQ ID NO: 129) TCGAGATAACTTCGTATAGCATACATTATACGAAGTTATGTTTAAAC
- KOD-puls-(TOYOBO) was used for the PCR reaction.
- the PCR reaction mixture contained 10 pmole of each primer (SEQ ID NO: 130 and 131) and the IRES-GFP fragment prepared in (6) as a template.
- This PCR amplification was performed using an initial denaturing incubation at 94° C. for three minutes. Then 30 cycles of denatruration, annealing and amplification were performed by incubation at 94° C. for 15 sec and 68° C. for two minutes.
- a PCR product (approximately 0.2 kb) was purified by 0.8% agarose gel electrophoresis and QIAquick Gel Extraction Kit (QIAGEN).
- the clone including a fragment with a correct nucleotide sequence was digested with PmeI and EcoRV, and the fragment including the bovine growth hormone (BGH) polyA region was purified by electrophoresis using 0.8% agar and QIAquick Gel Extraction Kit (QIAGEN).
- BGH bovine growth hormone
- the pUC119 IRES-GFP+loxP was digested with PmeI and purified by 0.8% agarose gel electrophoresis.
- the BGH polyA fragment prepared in (9) was ligated to the purified pUC119 IRES-GFP+loxP vector that was treated with calf intestine alkaline phosphatase to dephosphorylate its both ends.
- the ligation mixture was transfected to DH5 ⁇ and the DNA samples prepared from the resultant transformsants were analyzed by nucleotide sequencing to confirm the structure of inserted fragment.
- the clone including a BGH polyA fragment in a same direction to coding sequence of GFP was selected (pIRES-GFP+pA).
- the pIRES-GFP+pA was digested with BamHI and XbaI, and the fragment including the IRES-GFP, bovine growth hormone polyA and loxP sequences was purified by electrophoresis using 0.8% agar and QIAquick Gel Extraction Kit (QIAGEN).
- the DNA fragment including the IRES-GFP, bovine growth hormone polyA and loxP sequences [see (10)] was ligated to pPvil2GIPF that was digested with BgIII and XbaI, and treated with calf intestine alkaline phosphatase to dephosphorylate its both ends.
- the ligation mixture was transfected to DH5 ⁇ and the DNA samples prepared from the resultant transformsants were analyzed by nucleotide sequencing to confirm the structure of inserted fragment.
- the clone including a fragment with a correct nucleotide sequence was selected (pPvil 2-01GFP).
- the approximately 11.2 kb of long fragment of mouse Villin gene promoter [see (1)] was ligated to pPvil2-01 GFP that was digested with BgIII and ClaI, and treated with E. coli C75 alkaline phosphatase to dephosphorylate its both ends.
- the ligation mixture was transfected to XL10-Gold Ultracompetent Cells (STRATAGENE) and the DNA samples prepared from the resultant transformsants were analyzed by nucleotide sequencing to confirm the structure of inserted fragment.
- the clone including the fragment with a correct nucleotide sequence was selected (pPv-total).
- the pLoxP-STneo described in WO 00/10383 was digested with XhoI and treated with Blunting high (TOYOBO) for blunting its both ends.
- the resultant DNA fragment including loxP-Neo r -loxP unit was purified by 0.8% agarose gel electrophoresis.
- the DNA fragment prepared by annealing of synthesized oligonucleotides described below (SEQ ID NO: 132 and 133) was ligated to pBlueLAB (WO 00/10383) that was digested with PacI and FseI, and purified by 0.8% agarose gel electrophoresis.
- the ligation mixture was transfected to DH5 ⁇ and the DNA samples prepared from the resultant transformsants were analyzed by nucleotide sequencing to confirm the structure of inserted fragment.
- the clone including a fragment with a correct nucleotide sequence was selected (pBlueLAB2).
- the above DNA fragment including loxP-Neo r -loxP unit was ligated to the pBlueLAB2 vector that was digested with EcoRV, and was treated with calf intestine alkaline phosphatase to dephosphorylate its both ends.
- the ligation mixture was transfected to DH5 ⁇ and the DNA samples prepared from the resultant transformsants were analyzed by nucleotide sequencing to confirm the structure of inserted fragment.
- the pPv-total plasmid DNA was digested with restriction enzymes, ClaI and XhoI, and the DNA fragment including Pv-GIPF unit was purified by 0.8% agarose gel electrophoresis.
- the purified DNA fragment was ligated to pLoxP-StneoR that was digested with ClaI and XhoI, and treated with calf intestine alkaline phosphatase to dephosphorylate its both ends.
- the ligation mixture was transfected to XL10-Gold Ultracompetent Cells (STRATAGENE) and the DNA samples prepared from the resultant transformsants were analyzed by nucleotide sequencing to confirm the structure of inserted fragment.
- the clone including a fragment with a correct nucleotide sequence was selected (pPv01GFP).
- the linearized pPv01 GFP vector was transfect into C57BL/6 ⁇ CBA F1 strain derived mouse TT2F ES cells ((Uchida, 1995), Lifetech oriental) by electroporation according to the method described by Shinichi Aizawa, “Biomanual Series 8, Gene Targeting”, published by Yodosha, 1995.
- the electroporated ES cells were suspended in 20 ml of ES medium and inoculated into two 100 mm tissue culture plastic plates (Corning) into which feeder cells were seeded in advance. After one day, the medium was replaced with a medium containing a 200 ⁇ g/ml of G418 (Invitrogen). Seven to nine days thereafter, a total of 24 colonies for each vector were picked up.
- IRESprobeF1 CTAACGTTACTGGCCGAAGC
- IRESprobeR1 ATTATCATCGTGTTTTTCAAAGGAA
- the cells in a frozen stock of the transfected ES cell clones #2 were thawed, started to culture and injected into 8 cell stage embryos obtained by mating a male and a female mouse of MCH(ICR) mouse strain (CREA JAPAN, INC.); the injection rate was 10-12 cells per embryo. After the embryos were cultured overnight in the medium for ES cells to develop into blastocysts, about ten of the ES cell-injected embryos were transplanted to each side of the uterus of a foster mother ICR mouse (CREA JAPAN, INC.), which had been subjected to a pseudopregnatnt treatment for 2.5 days. Contribution of the TT2F (agouti) ES clone-derived tissues in host embryo (albino) derived tissues can be determined eye pigmentation in embryos and coat color in viable offspring.
- RNA samples were prepared from intestinal tract of pPv01GFP/TT2F-#2 derived chimaeras at various developmental stages (E13.5, E16.5, E19.5, day 3, day 7) and were subjected to semi-quantitative RT-PCR analysis to examine GIPF-GFP mRNA expression.
- First-strand cDNA was synthesized with Superscript III (Invitrogen) using random hexamers and 500 ng of total RNA extracted from the intestinal tract of pPv01GFP/TT2F-#2 derived chimaeras and control TT2F-derived chimaeras by using Isogen (Nippon Gene) and RNasy Mini (QIAGEN).
- the nucleotide sequences and annealing temperature of primer sets for GIPF Pv01RT F1, R1; SEQ ID NO: 136 and 137
- Axin 2 Axin2 F, R; SEQ ID NO: 138 and 139
- mGAPDH mGAP DH5, 3; SEQ ID NO: 140 and 141
- the GIPF-GFP transcripts were detectable at E13.5 in intestinal tract of pPv01GFP/TT2F-#2 derived chimaeras and not detected in in all the liver samples examined, which is well consistent with the previous study (Madison et al.,
- FIG. 55 shows that the elevated expression of Axin2 mRNA is apparent at day 3 and 7 when compared to the control chimaeras, suggesting that the expression of human GIPF results in activation Wnt signaling pathway in intestial tract of newborn.
- Newborn pPv01GFP/TT2F-#2 derived chimaeric pups showed a significant abdominal distention at day 3 and the extent of this phenotype gradually intensified with age.
- Visual inspection of day 3 chimaeras at necropsy showed a remarkable enlargement in diameter throughout the small intestine, associated with augmented surface vascularisation.
- Whole embryos, pups or gastrointestinal tracts were fixed in Bouin solution. Paraffin embedded sections were stained with hematoxiyline and eosin (H&E) for histological evaluation. As shown FIG.
- histopathological analysis of H&E sections from pPv01GFP/TT2F-#2 revealed increase in number of crypts and branching from embryonic day 19.5 (E 19.5) to day 14 (d14) compared to control.
- Wnt3a Fragment ( FIG. 58A ) (SEQ ID NO: 142)
- Wnt3aFW ⁇ CGGGATCCCCATGGCTCCTCTCGGATACCTCTTAGTGCT (SEQ ID NO: 143)
- Wnt3aRV ⁇ GCTCTAGAGTTTAAACCTACTTGCAGGTGTGCACGTCATAG
- KOD-puls-(TOYOBO) was used for the PCR reaction.
- the PCR reaction mixture contained 10 pmole of each primer (SEQ ID NO: 142 and 143) and the human Wnt3a cDNA as a template. This PCR amplification was performed using an initial denaturing incubation at 94° C. for three minutes. Then 30 cycles of denatruration, annealing and amplification were performed by incubation at 94° C. for 15 sec and 68° C. for two minutes.
- a PCR product (approximately 1.06 kb) was purified by 0.8% agarose gel electrophoresis and QIAquick Gel Extraction Kit (QIAGEN).
- the clone including a fragment with a correct nucleotide sequence was digested with NcoI and PmeI, and the fragment including the Wnt3a cDNA was purified by electrophoresis using 0.8% agar and QIAquick Gel Extraction Kit (QIAGEN).
- the pIRES/GFP+pA plasmid DNA [see Example 30-(13)] was digested with NcoI and PmeI, and the vector fragment including without the GFP coding sequence was purified by 0.8% agarose gel electrophoresis.
- the fragment including the Wnt3a cDNA [see (1)] was ligated to purified vector fragment that was treated with E. coli C 7-5 alkaline phosphatase to dephosphorylate its both ends.
- the ligation mixture was transfected to DH5 ⁇ and the DNA samples prepared from the resultant transformsants were analyzed by nucleotide sequencing to confirm the structure of inserted fragment.
- the clone including a fragment with a correct nucleotide sequence (pIRES/Wnt3a+pA) was digested with AscI and XhoI, and the DNA fragment including the IRES/Wnt3a+pA unit was purified by 0.8% agarose gel electrophoresis and QIAquick Gel Extraction Kit (QIAGEN).
- the pPv01GFP plasmid DNA [see Example 30-(13)] was digested with restriction enzymes, AscI and XhoI, and the digested reaction mixture was subjected to 0.8% agarose gel electrophoresis.
- the vector fragment without the IRES/GFP+pA region was isolated and treated with calf intestine alkaline phosphatase to dephosphorylate its both ends.
- the ligation mixture of IRES/Wnt3a+pA fragment [see (2)] and the above vector fragment was transfected to XL 10-Gold Ultracompetent cells (STRATAGENE).
- the DNA samples prepared from the resultant transformsants were analyzed by nucleotide sequencing to confirm the structure of inserted fragment.
- the clone including a fragment with a correct nucleotide sequence was selected (pPv01Wnt3a).
- the plasmid DNA of pPv01Wnt3a (60 ⁇ g) was digested with ClaI in the reaction mixture containing 1 mM spermidine (pH7.0, Sigma) for 5 hours at 37° C. The reaction mixture was then subjected to phenol/chloroform extraction and ethanol precipitation (0.3M NaHCO 3 ) for 16 hours at ⁇ 20° C. The linearized vector fragment was dissolved in HBS buffer (0.5 ⁇ g/ul) and used for the following electroporation experiments.
- the linearized pPv01Wnt3a vector was transfect into C57BL/6 ⁇ CBA F1 strain derived mouse TT2F ES cells ((Uchida, 1995), Lifetech oriental) by electroporation according to the method described by Shinichi Aizawa, “Biomanual Series 8, Gene Targeting”, published by Yodosha, 1995.
- the electroporated ES cells were suspended in 20 ml of ES medium and inoculated into two 100 mm tissue culture plastic plates (Corning) into which feeder cells were seeded in advance. After one day, the medium was replaced with a medium containing a 200 ⁇ g/ml of G418 (Invitrogen). Seven to nine days thereafter, a total of 24 colonies for each vector were picked up.
- the selected ES clones were also tested by karyotype analysis according to the method described in Shinichi Aizawa, “Biomanual Series 8, Gene Targeting”, published by Yodosha, 1995. Two ES clone, #7 and #13 that showed normal karyotype were used for injection into embryos.
- the cells in a frozen stock of the transfected ES cell clones #7 and #13 were thawed, started to culture and injected into 8 cell stage embryos obtained by mating a male and a female mouse of MCH(ICR) mouse strain (CREA JAPAN, INC.); the injection rate was 10-12 cells per embryo. After the embryos were cultured overnight in the medium for ES cells to develop into blastocysts, about ten of the ES cell-injected embryos were transplanted to each side of the uterus of a foster mother ICR mouse (CREA JAPAN, INC.), which had been subjected to a pseudopregnatnt treatment for 2.5 days. Contribution of the TT2F (agouti) ES clone-derived tissues in host embryo (albino) derived tissues can be determined eye pigmentation in embryos and coat color in viable offspring.
- RNA samples were prepared from intestinal tract of pPv01Wnt3a/TT2F-#7, and #13 derived newborn chimaeras and were subjected to semi-quantitative RT-PCR analysis to examine GIPF-GFP mRNA expression.
- First-strand cDNA was synthesized with Superscript III (Invitrogen) using random hexamers and 500 ng of total RNA extracted from the intestinal tract of pPv01Wnt3a/TT2F-#7, and #13 derived chimaeras and control TT2F-derived chimaeras by using Isogen (Nippon Gene) and RNasy Mini (QIAGEN).
- the nucleotide sequences and annealing temperature of primer sets for GIPF Pv01RT F1, R1
- Axin 2 Axin2 F, R
- mGAPDH mGAPDH5, 3
- the GIPF-Wnt3a transcripts were detectable in intestinal tissues of pPv01Wnt3a/TT2F-#7 and -#13 derived from newborn chimaeras (Pv01Wnt3a: 1 to 4).
- the result also shows that the elevated expression of Axin2 mRNA is apparent when compared to the control chimaeras (TT2F: 5 and 6).
- Newborn pPv01Wnt3a/TT2F-#7 and -#13 derived chimaeric pups showed a significant abdominal distention.
- Visual inspection of newborn chimaeras at necropsy showed a remarkable enlargement in diameter throughout the small intestine, associated with augmented surface vascularisation.
- Whole embryos, pups or gastrointestinal tracts were fixed in Bouin solution. Paraffin embedded sections were stained with hematoxiyline and eosin (H&E) for histological evaluation. As shown FIG.
- FIG. 62A The construction of the RS-KO vector ( FIG. 62A ) was performed according to the method described below, and depicted in FIGS. 62B-1K .
- FIG. 62B Addition of the new restriction sites (NruI, SgrAl, and AscI) to pBluescript II SK( ⁇ )(Stratagene).
- LinkA1 TCGAGTCGCGACACCGGCGGGCGCGCCC (SEQ ID NO: 144)
- LinkA2 TCGAGGGCGCGCCCGCCGGTGTCGCGAC (SEQ ID NO: 145)
- the prepared LinkA1 and LinkA2 were ligated into pBluescript II SK( ⁇ ) that was pre-digested with the restriction enzymes SalI and XhoI.
- the resulting plasmid pBlueLA contained the newly added restriction sites (NruI, SgrAl, and AscI).
- FIG. 62C Addition of the new restriction sites (PacI, FseI, and SalI) to pBlueLA.
- LinkB1 GGCCGCTTAATTAAGGCCGGCCGTCGACG ⁇ SEQ ID NO: 146)
- LinkB2 AATTCGTCGACGGCCGGCCTTAATTAAGC ⁇ SEQ ID NO: 147)
- the prepared LinkB1 and LinkB2 were ligated into pBlueLA that was pre-digested with the restriction enzymes NotI and EcoRI.
- the resulting plasmid pBlueLAB contained the newly added restriction sites (PacI, FseI, and SalI).
- FIG. 62D Preparation of LoxP-Neo-B Fragment
- LoxP-Neo-B fragment was prepared by T4 DNA polymerase treatment of LoxP-Neo that was obtained from Xho I digestion of pLoxP-STneo (WO 00/10383).
- FIG. 62E Preparation of pBlueLAB-LoxP-Neo Plasmid
- LoxP-Neo-B fragment was ligated into pBlueLAB that was pre-digested with the restriction enzyme EcoRV.
- the resulting plasmid pBlueLAB-LoxP-Neo contained LoxP-Neo-B fragment.
- FIG. 62F Preparation of DT-A Fragment
- pMC1 DT-A ⁇ GIBCO BRL ⁇ was digested with XhoI and SalI, and the resulting DT-A fragment was separated and recovered from agarose gel electrophoresis.
- FIG. 62G Preparation of pBlueLAB-LoxP-Neo-DT-A Plasmid
- DT-A fragment was ligated into pBlueLAB-LoxP-Neo that was pre-digested with the restriction enzyme XhoI.
- the resulting plasmid pBlueLAB-LoxP-Neo-DT-A contained DT-A fragment.
- FIG. 62H Preparation of 3′Genomic Region of RS Element
- the forward (RS3′FW2; SEQ ID NO: 148) and reverse (RS3′RV3; SEQ ID NO: 149) primers for PCR were synthesized based on the sequence of the mouse obtained from GenBank (Accession Number ⁇ AC090291), and used to amplify the DNA of 3′ genomic region of RS element.
- RS3′FW2 TTGGCGCCCTCCCTAGGACTGCAGTTGAGCTCAGATTTGA (SEQ ID NO: 148) was prepared by adding a AscI recognition sequence at 5′end site, and RS3′RV3: CCGCTCGAGTCTTACTGTCTCAGCAACAATAATATAAACAGGGG (SEQ ID NO: 149) was prepared by adding a XhoI recognition sequence at 5′end site.
- PCR was carried out using BAC clone RP23-43514 (GenBank Accession Number AC090291) as template.
- the PCR product was digested with restriction enzymes AscI and XhoI, and ligated into pBlueLAB that was pre-digested with the restriction enzymes AscI and XhoI.
- the resulting plasmid contained the designated DNA sequence of 3′genomic region of RS element with no substitution in nucleotide sequence within the region between AscI and XhoI was treated with AscI and XhoI and then the 3′genomic region of RS element (about 2 Kb) was obtained.
- FIG. 62I Insertion of 3′Genomic Region of RS Element into pBlueLAB-LoxP-Neo-DT-A
- the 3′genomic region of RS element was ligated into pBlueLAB-LoxP-Neo-DT-A that was pre-digested with AscI and XhoI. After verifying the connecting regions between pBlueLAB-LoxP-Neo-DT-A and the 3′genomic region of RS element, the plasmid pBlueLAB-LoxP-Neo-DT-A-3′RS was obtained.
- FIG. 62J Preparation of 5′Genomic Region of Mouse RS Element
- the forward (RS5′FW3; SEQ ID NO: 150) and the reverse (RS5′RV3; SEQ ID NO: 151) primers for PCR were synthesized based on the sequence of the mouse obtained from GenBank (Accession Number AC090291), and used to amplify the DNA of 5′genomic region of RS element.
- RS5′FW3 ATAAGAATGCGGCCGCAAAGCTGGTGGGTTAAGACTATCTCGTGAAGTG
- SEQ ID NO: 150 was prepared by adding a NotI recognition sequence at 5′end site
- RS5′RV3 ACGCGTCGACTCACAGGTTGGTCCCTCTCTGTGTGTGGTTGCTGT (SEQ ID NO: 151) was prepared by adding a SalI recognition sequence at 5′end site.
- PCR was carried out using BAC clone RP23-435I4 (GenBank Accession Number AC090291) as template. The PCR product was digested with restriction enzymes NotI and SalI, and ligated into pBlueLAB that was pre-digested with the restriction enzymes NotI and SalI.
- the resulting plasmid contained the designated DNA sequence of 5′genomic region of RS element with no substitution in nucleotide sequence within the region between NotI and SalI was treated with NotI and SalI and then the 5′genomic region of RS element (about 5 Kb) was obtained.
- FIG. 62K Insertion of 5′genomic region of RS element into pBlueLAB-LoxP-Neo-DT-A-3′RS
- the 5′genomic region of RS element was ligated into pBlueLAB-LoxP-Neo-DT-A-3′RS that was pre-digested with NotI and SalI. After verifying the connecting regions between pBlueLAB-LoxP-Neo-DT-A-3′RS and the 5′genomic region of RS element, the RS-KO vector was constructed.
- the electroporated ES cells were suspended in 20 ml of ES medium [DMEM (GIBCO), 18% FBS (GIBCO), 0.1 mM 2-mercaptoethanol (GIBCO), 1000 U/ml LIF (leukemia inhibitory factor, CHEMICON International, Inc.)] and inoculated into two 100 mm tissue culture plastic plates (Corning) into which feeder cells (Invitrogen) were seeded in advance. After one day, the medium was replaced with a medium containing 0.75 g/ml of puromycin (Sigma). Seven days thereafter, puromycin resistant colonies formed were picked up.
- Each colony was grown up to confluence in a 24-well plate, and then two third of the culture was suspended in 0.2 ml of cryopreservation medium [FBS+10% DMSO (Sigma)] and stored frozen at ⁇ 80° C. The remaining one third was inoculated into a 12-well gelatin coated plate and cultured for 2 days. Then, genomic DNA was isolated using the Puregene DNA Isolation Kit (Gentra System).
- 3′KO-probe for Southern analysis was prepared as follows.
- RS3′ Southern FW1 (SEQ ID NO: 152) and RS3′ Southern RV2 (SEQ ID NO: 153) primers were synthesized based on the sequence of the mouse obtained from GenBank (Accession Number AC090291), and used to amplify about 600 mer long DNA fragment of 3′ genomic region of RS element.
- RS3′Southern FW1 TCTTACTAGAGTTCTCACTAGCTCT ⁇ SEQ ID NO: 152)
- RS3′Southern RV2 GGAACCAAAGAATGAGGAAGCTGTT ⁇ SEQ ID NO: 153)
- Genomic DNA isolated from puromycin resistant TT2F cells was digested with restriction enzyme EcoR I (Takara Shuzo) and then subjected to 0.8% agarose gel electrophoresis.
- FIG. 64A The construction of the GIPF deletion mutant 4 Ck knock-in (pCk m4 KI) vector ( FIG. 64A ) was performed according to the method described below, and depicted in FIGS. 64B-64K .
- FIG. 64B Preparation of Ck P2 KI+AS KI
- the oligo DNA fragments (SEQ ID NO: 154 and 155) for the addition of the new restriction sites in Ck P2 KI were synthesized.
- AscI top linker GGCCAGGCGCGCCTTGC (SEQ ID NO: 154)
- AscI bottom linker GGCCGCAAGGCGCGCCT (SEQ ID NO: 155)
- the prepared AscI top linker and AscI bottom linker were ligated into Ck P2 KI that was pre-digested with the restriction enzyme NotI.
- the resulting plasmid Ck P2 KI+AS KI contained the newly added restriction site (AscI).
- FIG. 64C Preparation of pBlueLAB+Nh
- the oligo DNA fragments (SEQ ID NO: 156 and 157) for the addition of the new restriction sites in pBlueLAB were synthesized.
- Pac-Nhe-Fse S TAAGGGCTAGCTAGGGCCGG (SEQ ID NO: 156)
- Pac-Nhe-Fse AS CCCTAGCTAGCCCTTAAT (SEQ ID NO: 157)
- the prepared Pac-Nhe-Fse-S and Pac-Nhe-Fse AS were ligated into pBlueLAB that was pre-digested with the restriction enzymes PacI and FseI.
- the resulting plasmid pBlueLAB+Nh contained the newly added restriction site (NheI).
- FIG. 64D Preparation of pBlueLAB+NhHp
- the oligo DNA fragments (SEQ ID NO: 158 and 159) for the addition of the new restriction sites in pBlueLAB+Nh were synthesized.
- the prepared S/HpaI/Hd-S and S/HpaI/Hd-AS were ligated into pBlueLAB+Nh that was pre-digested with the restriction enzymes SalI and HindIII.
- the resulting plasmid pBlueLAB+NhHp contained the newly added restriction site (HpaI).
- FIG. 64E Preparation of pCkpAP2
- pCkP2+As KI was digested with HpaI and NheI, and the resulting 952 bp fragment was separated and recovered from agarose gel electrophoresis.
- the 952 bp fragment was ligated into pBlueLAB+NhHp that was pre-digested with the restriction enzymes HpaI and NheI.
- the resulting plasmid pCkpAP2 contained the 952 bp fragment.
- FIG. 64F Preparation of pCkpAMCS
- the oligo DNA fragments (SEQ ID NO: 160 and 161) for the addition of the new restriction sites in pCkpAP2 were synthesized.
- SPFNlinker-S AGCTGTCGACTTAATTAAGGCCGGCCG (SEQ ID NO: 160)
- SPFNlinker-AS CTAGCGGCCGGCCTTAATTAAGTCGAC (SEQ ID NO: 161)
- the prepared SPFNlinker-S and SPFNlinker-AS were ligated into CkpAMCS that was pre-digested with the restriction enzymes HindIII and NheI.
- the resulting plasmid CkpAMCS contained the newly added restriction site (PacI).
- FIG. 64G Preparation of pCkP2 ⁇ P
- pCkpAMCS was digested with HpaI and NheI, and the resulting about 700 bp long fragment was separated and recovered from agarose gel electrophoresis.
- the 700 bp fragment was ligated into pCkP2+As KI that was pre-digested with the restriction enzymes HpaI and NheI.
- the resulting plasmid pCkP2 ⁇ P contained the 700 bp fragment.
- FIG. 64H Preparation of pBS+PFN
- S/PFN/Hd-S TCGACTTAATTAAGGCCGGCCCTAGCTAGCA (SEQ ID NO:162)
- S/PFN/Hd-AS AGCTTGCTAGCTAGGGCCGGCCTTAATTAAG (SEQ ID NO:163)
- the prepared S/PFN/Hd-S and S/PFN/Hd-AS were ligated into pBluescript II SK( ⁇ ) that was pre-digested with the restriction enzymes SalI and HindIII.
- the resulting plasmid pBS ⁇ PFN contained the newly added restriction sites (PacI, FseI, and NheI).
- FIG. 641 Preparation of pPSs3.8
- the forward (PsecSP FW1; SEQ ID NO: 164) and reverse (PsecSP RV; SEQ ID NO: 165) primers for PCR were synthesized based on the sequence of the mouse obtained from GenBank (Accession Number K02159), and used to amplify the DNA of promoter and leader sequence coding region of Ig ⁇ .
- the leader sequence coding region contained intrinsic intron sequence.
- PsecSP FW1 CCTTMTTAAAGTTATGTGTCCTAGAGGGCTGCAAACTCMGATC (SEQ ID NO: 164) was prepared by adding a PacI recognition sequence at 5′end site, and PsecSP RV: TTGGCCGGCCTTGGCGCCAGTGGAACCTGGGAATGATAAACACAAAGATTATTG (SEQ ID NO: 165) was prepared by adding a FseI recognition sequence at 5′end site.
- PCR was carried out using the mouse genome from TT2F ES cells ((Uchida, 1995), Lifetech oriental) as template.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Veterinary Medicine (AREA)
- Genetics & Genomics (AREA)
- Zoology (AREA)
- Biomedical Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Organic Chemistry (AREA)
- Animal Behavior & Ethology (AREA)
- Molecular Biology (AREA)
- Immunology (AREA)
- Biotechnology (AREA)
- Pharmacology & Pharmacy (AREA)
- Public Health (AREA)
- Biochemistry (AREA)
- Gastroenterology & Hepatology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Epidemiology (AREA)
- General Engineering & Computer Science (AREA)
- Toxicology (AREA)
- Environmental Sciences (AREA)
- Biophysics (AREA)
- Cell Biology (AREA)
- Physics & Mathematics (AREA)
- Hematology (AREA)
- Urology & Nephrology (AREA)
- Microbiology (AREA)
- Wood Science & Technology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Plant Pathology (AREA)
- Pathology (AREA)
- Animal Husbandry (AREA)
- Tropical Medicine & Parasitology (AREA)
- Marine Sciences & Fisheries (AREA)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US11/046,456 US20050256044A1 (en) | 2004-01-27 | 2005-01-27 | Gastrointestinal proliferative factor and uses thereof |
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US53960504P | 2004-01-27 | 2004-01-27 | |
| US61924104P | 2004-10-15 | 2004-10-15 | |
| US11/046,456 US20050256044A1 (en) | 2004-01-27 | 2005-01-27 | Gastrointestinal proliferative factor and uses thereof |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20050256044A1 true US20050256044A1 (en) | 2005-11-17 |
Family
ID=34830487
Family Applications (4)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US11/046,456 Abandoned US20050256044A1 (en) | 2004-01-27 | 2005-01-27 | Gastrointestinal proliferative factor and uses thereof |
| US11/046,644 Abandoned US20050256036A1 (en) | 2004-01-27 | 2005-01-27 | Gastrointestinal proliferative factor and uses thereof |
| US11/805,883 Abandoned US20080300183A1 (en) | 2004-01-27 | 2007-05-24 | Gastrointestinal proliferative factor and uses thereof |
| US12/589,727 Expired - Fee Related US7951381B2 (en) | 2004-01-27 | 2009-10-27 | Method of stimulating epithelial cell proliferation by administration of gastrointestinal proliferative factor |
Family Applications After (3)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US11/046,644 Abandoned US20050256036A1 (en) | 2004-01-27 | 2005-01-27 | Gastrointestinal proliferative factor and uses thereof |
| US11/805,883 Abandoned US20080300183A1 (en) | 2004-01-27 | 2007-05-24 | Gastrointestinal proliferative factor and uses thereof |
| US12/589,727 Expired - Fee Related US7951381B2 (en) | 2004-01-27 | 2009-10-27 | Method of stimulating epithelial cell proliferation by administration of gastrointestinal proliferative factor |
Country Status (14)
| Country | Link |
|---|---|
| US (4) | US20050256044A1 (enExample) |
| EP (1) | EP1727560B1 (enExample) |
| JP (1) | JP2007526248A (enExample) |
| KR (1) | KR20070007289A (enExample) |
| AU (1) | AU2005208945A1 (enExample) |
| BR (1) | BRPI0507168A (enExample) |
| CA (1) | CA2554403A1 (enExample) |
| IL (1) | IL177060A0 (enExample) |
| MX (1) | MXPA06008495A (enExample) |
| NO (1) | NO20063522L (enExample) |
| RU (2) | RU2343158C2 (enExample) |
| SG (1) | SG149059A1 (enExample) |
| TW (1) | TW200536859A (enExample) |
| WO (1) | WO2005072419A2 (enExample) |
Cited By (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8540989B2 (en) | 2007-07-02 | 2013-09-24 | Oncomed Pharmaceuticals, Inc. | Compositions and methods for treating and diagnosing cancer |
| US8802097B2 (en) | 2011-07-15 | 2014-08-12 | Oncomed Pharmaceuticals, Inc. | Anti-RSPO1 antibodies |
| US9181333B2 (en) | 2012-07-13 | 2015-11-10 | Oncomed Pharmaceuticals, Inc. | RSPO3 binding agents and uses thereof |
| US10064937B2 (en) | 2014-09-16 | 2018-09-04 | Oncomed Pharmaceuticals, Inc. | Treatment of dermal fibrosis |
| US20210309708A1 (en) * | 2005-05-04 | 2021-10-07 | Zealand Pharma A/S | Glucagon-like-peptide-2 (glp-2) analogues |
| WO2021247497A1 (en) * | 2020-06-03 | 2021-12-09 | Children's Hospital Medical Center | Compositions and methods comprising r-spondins for treatment of tumors |
| US12297251B1 (en) | 2017-06-16 | 2025-05-13 | Zealand Pharma A/S | Injection pen for subcutaneous administration of a peptide |
Families Citing this family (25)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| PL2157192T3 (pl) | 2003-10-10 | 2014-01-31 | Deutsches Krebsforsch | Kompozycje do diagnozowania i terapii chorób związanych z nieprawidłową ekspresją futrin (R-spondin) |
| JP2009511017A (ja) * | 2005-10-07 | 2009-03-19 | ヌベロ インコーポレーティッド | 幹細胞因子様タンパク質scfa1及びその使用 |
| AU2007334260A1 (en) | 2006-11-15 | 2008-06-26 | Massachusetts Eye & Ear Infirmary | Generation of inner ear cells |
| WO2008088524A2 (en) * | 2006-12-28 | 2008-07-24 | Nuvelo, Inc. | Thrombospondin-domain-deficient r-spondin 1 protein as gastrointestinal tract epithelial proliferation factor |
| US9464275B2 (en) | 2008-08-21 | 2016-10-11 | The Board Of Trustees Of The Leland Stanford Junior University | Ex vivo culture, proliferation and expansion of intestinal epithelium |
| US10143711B2 (en) | 2008-11-24 | 2018-12-04 | Massachusetts Eye & Ear Infirmary | Pathways to generate hair cells |
| EP3061808B1 (en) | 2009-02-03 | 2020-08-12 | Koninklijke Nederlandse Akademie van Wetenschappen | Culture medium for epithelial stem cells and organoids comprising said stem cells |
| US9752124B2 (en) | 2009-02-03 | 2017-09-05 | Koninklijke Nederlandse Akademie Van Wetenschappen | Culture medium for epithelial stem cells and organoids comprising the stem cells |
| EP2412800A1 (en) | 2010-07-29 | 2012-02-01 | Koninklijke Nederlandse Akademie van Wetenschappen | Liver organoid, uses thereof and culture method for obtaining them |
| IT1396935B1 (it) | 2009-11-26 | 2012-12-20 | Solartium Entpr Ltd | Uso di una combinazione per il trattamento delle mucositi indotte da radiazioni o da chemioterapici |
| RU2532323C2 (ru) * | 2011-06-20 | 2014-11-10 | Мапикс Эс.Эй.Ар.Эл. | Лекарственное средство для лечения патологического синдрома и способ лечения функциональных нарушений кишечника |
| GB201106395D0 (en) * | 2011-04-14 | 2011-06-01 | Hubrecht Inst | Compounds |
| CA2883896C (en) | 2012-09-07 | 2023-03-07 | Massachusetts Eye & Ear Infirmary | Treating hearing loss |
| WO2014108856A1 (en) * | 2013-01-10 | 2014-07-17 | Biocon Limited | Process for expression of recombinant proteins in pichia pastoris using a fed batch model |
| WO2016022776A2 (en) | 2014-08-06 | 2016-02-11 | Massachusetts Eye And Ear Infirmary | Increasing atoh1 life to drive sensorineural hair cell differentiantion |
| CA3009153A1 (en) | 2015-01-30 | 2016-08-04 | The University Of North Carolina At Chapel Hill | Methods to generate gastrointestinal epithelial tissue constructs |
| US11185536B2 (en) | 2015-12-04 | 2021-11-30 | Massachusetts Eye And Ear Infirmary | Treatment of hearing loss by inhibition of casein kinase 1 |
| US11466252B2 (en) | 2016-01-29 | 2022-10-11 | Massachusetts Eye And Ear Infirmary | Expansion and differentiation of inner ear supporting cells and methods of use thereof |
| US11180735B2 (en) | 2016-10-28 | 2021-11-23 | The Board Of Trustees Of The Leland Stanford Junior University | Methods to preserve tumor-stromal interactions in culture and therapeutic predictive applications thereof |
| WO2019222333A1 (en) | 2018-05-15 | 2019-11-21 | The University Of North Carolina At Chapel Hill | Devices, systems and apparatuses for generating self-sustaining hypoxic conditions and gaseous and non-gaseous chemical gradients for in vitro cell culture |
| US20230098968A1 (en) | 2018-05-25 | 2023-03-30 | The University Of North Carolina At Chapel Hill | Formation of arrays of planar intestinal crypts possessing a stem/proliferative cell compartment and differentiated cell zone |
| EP3880785A4 (en) | 2018-11-16 | 2022-08-24 | The University of North Carolina at Chapel Hill | In vitro cell culture mucus systems |
| US20240173561A1 (en) | 2021-05-21 | 2024-05-30 | Emblation Limited | Microwave treatment of tissue |
| US12465781B2 (en) | 2021-06-11 | 2025-11-11 | Joon Bu Park | Negative Poisson's ratio materials for thermal and radiation therapy seeds |
| WO2023097236A1 (en) * | 2021-11-24 | 2023-06-01 | The Rockefeller University | Compositions and methods for generating immunoglobulin knock-in mice |
Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6824973B2 (en) * | 2000-02-03 | 2004-11-30 | Kirin Beer Kabushiki Kaisha | Method of promoting stem cell proliferation or survival by contacting a cell with a stem cell factor-like polypeptide |
Family Cites Families (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| RU2198180C2 (ru) * | 1994-10-13 | 2003-02-10 | Амген Инк. | Аналог природного фактора роста кератиноцитов (варианты), фармацевтическая композиция, рекомбинантная молекула нуклеиновой кислоты, кодирующая аналог, экспрессионный вектор, штамм e.coli, трансформированный вектором, способ получения аналога и способ стимулирования образования нефибробластных эпителиальных клеток |
| JP2003530124A (ja) * | 2000-04-05 | 2003-10-14 | 麒麟麦酒株式会社 | 新規幹細胞成長因子様ポリペプチドおよびポリヌクレオチドに関する方法および物質 |
| US20030032034A1 (en) * | 2001-03-05 | 2003-02-13 | Tang Y. Tom | Methods and materials relating to stem cell growth factor-like polypeptides and polynucleotides |
| US7411052B2 (en) * | 2001-03-05 | 2008-08-12 | Nuvelo, Inc. | Methods and materials relating to stem cell growth factor-like polypeptides and polynucleotides |
| AU2002332767A1 (en) * | 2001-08-30 | 2003-04-14 | Nuvelo | Methods and materials relating to stem cell growth factor-like polypeptides and polynucleotides |
| CA2462795A1 (en) * | 2001-10-03 | 2003-04-10 | Incyte Genomics, Inc. | Secreted proteins |
| WO2003054152A2 (en) * | 2001-12-10 | 2003-07-03 | Nuvelo, Inc. | Novel nucleic acids and polypeptides |
| US7193069B2 (en) * | 2002-03-22 | 2007-03-20 | Research Association For Biotechnology | Full-length cDNA |
| WO2005110009A2 (en) | 2003-07-22 | 2005-11-24 | Immunex Corporation | COMPOSITIONS AND METHODS RELATING TO TSP-30a, b, c AND d |
| WO2005032574A1 (en) * | 2003-10-03 | 2005-04-14 | The Board Of Trustees Of The Leland Stanford Junior University | Modulation of gastrointestinal epithelium proliferation through the wnt signaling pathway |
| PL2157192T3 (pl) * | 2003-10-10 | 2014-01-31 | Deutsches Krebsforsch | Kompozycje do diagnozowania i terapii chorób związanych z nieprawidłową ekspresją futrin (R-spondin) |
-
2005
- 2005-01-27 AU AU2005208945A patent/AU2005208945A1/en not_active Abandoned
- 2005-01-27 US US11/046,456 patent/US20050256044A1/en not_active Abandoned
- 2005-01-27 EP EP05712439A patent/EP1727560B1/en not_active Expired - Lifetime
- 2005-01-27 US US11/046,644 patent/US20050256036A1/en not_active Abandoned
- 2005-01-27 JP JP2006551541A patent/JP2007526248A/ja not_active Withdrawn
- 2005-01-27 SG SG200809511-9A patent/SG149059A1/en unknown
- 2005-01-27 BR BRPI0507168-2A patent/BRPI0507168A/pt not_active IP Right Cessation
- 2005-01-27 MX MXPA06008495A patent/MXPA06008495A/es not_active Application Discontinuation
- 2005-01-27 TW TW094102490A patent/TW200536859A/zh unknown
- 2005-01-27 KR KR1020067017297A patent/KR20070007289A/ko not_active Ceased
- 2005-01-27 WO PCT/US2005/002996 patent/WO2005072419A2/en not_active Ceased
- 2005-01-27 CA CA002554403A patent/CA2554403A1/en not_active Abandoned
- 2005-01-27 RU RU2006130791/13A patent/RU2343158C2/ru active
-
2006
- 2006-07-25 IL IL177060A patent/IL177060A0/en unknown
- 2006-08-02 NO NO20063522A patent/NO20063522L/no not_active Application Discontinuation
-
2007
- 2007-05-24 US US11/805,883 patent/US20080300183A1/en not_active Abandoned
-
2008
- 2008-09-09 RU RU2008136324/13A patent/RU2008136324A/ru not_active Application Discontinuation
-
2009
- 2009-10-27 US US12/589,727 patent/US7951381B2/en not_active Expired - Fee Related
Patent Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6824973B2 (en) * | 2000-02-03 | 2004-11-30 | Kirin Beer Kabushiki Kaisha | Method of promoting stem cell proliferation or survival by contacting a cell with a stem cell factor-like polypeptide |
Cited By (16)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20210309708A1 (en) * | 2005-05-04 | 2021-10-07 | Zealand Pharma A/S | Glucagon-like-peptide-2 (glp-2) analogues |
| US9717794B2 (en) | 2007-07-02 | 2017-08-01 | Oncomed Pharmaceuticals, Inc. | Compositions and methods for treating and diagnosing cancer |
| US8628774B2 (en) | 2007-07-02 | 2014-01-14 | Oncomed Pharmaceuticals, Inc. | Compositions and methods for treating and diagnosing cancer |
| US8883736B2 (en) | 2007-07-02 | 2014-11-11 | Oncomed Pharmaceuticals, Inc. | Compositions and methods for treating and diagnosing cancer |
| US9040044B2 (en) | 2007-07-02 | 2015-05-26 | Oncomed Pharmaceuticals, Inc. | Compositions and methods for treating and diagnosing cancer |
| US8540989B2 (en) | 2007-07-02 | 2013-09-24 | Oncomed Pharmaceuticals, Inc. | Compositions and methods for treating and diagnosing cancer |
| US9610348B2 (en) | 2007-07-02 | 2017-04-04 | Oncomed Pharmaceuticals, Inc | Compositions and methods for treating and diagnosing cancer |
| US8802097B2 (en) | 2011-07-15 | 2014-08-12 | Oncomed Pharmaceuticals, Inc. | Anti-RSPO1 antibodies |
| US9109025B2 (en) | 2011-07-15 | 2015-08-18 | Oncomed Pharmaceuticals, Inc. | Anti-RSPO2 antibodies |
| US9109024B2 (en) | 2011-07-15 | 2015-08-18 | Oncomed Pharmaceuticals, Inc. | Anti-RSPO1 antibodies and uses thereof |
| US9644034B2 (en) | 2011-07-15 | 2017-05-09 | Oncomed Pharmaceuticals, Inc. | Anti-RSPO2 antibodies and uses thereof |
| US9598497B2 (en) | 2012-07-13 | 2017-03-21 | Oncomed Pharmaceuticals, Inc. | RSPO3 binding agents and uses thereof |
| US9181333B2 (en) | 2012-07-13 | 2015-11-10 | Oncomed Pharmaceuticals, Inc. | RSPO3 binding agents and uses thereof |
| US10064937B2 (en) | 2014-09-16 | 2018-09-04 | Oncomed Pharmaceuticals, Inc. | Treatment of dermal fibrosis |
| US12297251B1 (en) | 2017-06-16 | 2025-05-13 | Zealand Pharma A/S | Injection pen for subcutaneous administration of a peptide |
| WO2021247497A1 (en) * | 2020-06-03 | 2021-12-09 | Children's Hospital Medical Center | Compositions and methods comprising r-spondins for treatment of tumors |
Also Published As
| Publication number | Publication date |
|---|---|
| RU2006130791A (ru) | 2008-03-27 |
| RU2343158C2 (ru) | 2009-01-10 |
| IL177060A0 (en) | 2008-03-20 |
| EP1727560B1 (en) | 2012-09-12 |
| TW200536859A (en) | 2005-11-16 |
| RU2008136324A (ru) | 2010-03-20 |
| EP1727560A2 (en) | 2006-12-06 |
| WO2005072419A2 (en) | 2005-08-11 |
| US20050256036A1 (en) | 2005-11-17 |
| EP1727560A4 (en) | 2009-09-09 |
| CA2554403A1 (en) | 2005-08-11 |
| JP2007526248A (ja) | 2007-09-13 |
| NO20063522L (no) | 2006-10-25 |
| US7951381B2 (en) | 2011-05-31 |
| BRPI0507168A (pt) | 2007-06-26 |
| AU2005208945A1 (en) | 2005-08-11 |
| MXPA06008495A (es) | 2007-05-23 |
| KR20070007289A (ko) | 2007-01-15 |
| SG149059A1 (en) | 2009-01-29 |
| US20100137210A1 (en) | 2010-06-03 |
| US20080300183A1 (en) | 2008-12-04 |
| WO2005072419A3 (en) | 2007-06-28 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US7951381B2 (en) | Method of stimulating epithelial cell proliferation by administration of gastrointestinal proliferative factor | |
| US7674890B2 (en) | Stem cell factor-like proteins and uses thereof | |
| Farrell et al. | TFF2/SP-deficient mice show decreased gastric proliferation, increased acid secretion, and increased susceptibility to NSAID injury | |
| US7976839B2 (en) | Growth differentiation factor-11 | |
| US20030225250A1 (en) | Intestinal trefoil proteins | |
| US20080305106A1 (en) | Novel Gene Disruptions, Composition and Methods Relating Thereto | |
| JP2021169461A (ja) | 寿命に関する動物モデル並びに寿命を延ばす及び腫瘍化を阻害する関連方法 | |
| US20090118176A1 (en) | Stem Cell Factor-Like Protein Scfa1 and Uses Thereof | |
| US20080119404A1 (en) | Antiobesity Drug | |
| JP2002526034A (ja) | 増殖分化因子−11 | |
| CN101060855A (zh) | 胃肠增殖因子及其用途 | |
| WO2004108920A1 (ja) | 抗肥満薬のスクリーニング方法及び肥満モデル動物 | |
| JP2003304778A (ja) | トランスジェニック非ヒト哺乳動物 | |
| AU2003262440A1 (en) | Growth differentiation factor-11 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: NUVELO, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BOYLE, BRYAN J.;FUNK, WALTER;KAKITANI, MAKOTO;AND OTHERS;REEL/FRAME:016481/0153;SIGNING DATES FROM 20050517 TO 20050617 Owner name: KIRIN BEER KABUSHIKI KAISHA, JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BOYLE, BRYAN J.;FUNK, WALTER;KAKITANI, MAKOTO;AND OTHERS;REEL/FRAME:016481/0153;SIGNING DATES FROM 20050517 TO 20050617 |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |