US20050180859A1 - Four-in pump - Google Patents

Four-in pump Download PDF

Info

Publication number
US20050180859A1
US20050180859A1 US10/516,581 US51658104A US2005180859A1 US 20050180859 A1 US20050180859 A1 US 20050180859A1 US 51658104 A US51658104 A US 51658104A US 2005180859 A1 US2005180859 A1 US 2005180859A1
Authority
US
United States
Prior art keywords
piston
eccentric
shafts
gear
pump according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/516,581
Other languages
English (en)
Inventor
Ki-Man Lee
Whan-Sun Lee
Myung-Sun Kwak
Ki-won Lee
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020020031420A external-priority patent/KR100408485B1/ko
Priority claimed from KR10-2002-0043777A external-priority patent/KR100517869B1/ko
Application filed by Individual filed Critical Individual
Publication of US20050180859A1 publication Critical patent/US20050180859A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/30Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C2/32Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having both the movement defined in groups F04C2/02 and relative reciprocation between co-operating members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C11/00Combinations of two or more machines or pumps, each being of rotary-piston or oscillating-piston type; Pumping installations
    • F04C11/001Combinations of two or more machines or pumps, each being of rotary-piston or oscillating-piston type; Pumping installations of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/30Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C2/34Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members
    • F04C2/344Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • F04C2/352Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member the vanes being pivoted on the axis of the outer member

Definitions

  • the present invention relates to a four-in pump where pistons respectively arranged in four volume chambers perform pumping motion, and more particularly to a four-in pump, wherein four eccentric shafts perform eccentric rotational motion using gearing means of a gear box arranged between the first and the second cylinder blocks, and pistons respectively mounted on the eccentric shafts perform inscribed eccentric circular motion with different speeds each other at the volume chambers in the first and the second cylinder blocks.
  • a diameter of an eccentric shaft is possibly made sufficiently large for enduring twisting stress, and the side of the piston closely sticks to the inner wall of the cylinder so that pumping material in the inside of the cylinder does not flow into the inside of the piston, and lubricant in the inside of the piston does not flow into the inside of the cylinder while the piston is performing inscribed eccentric rotational motion within the cylinder with a nut for applying pressure on the piston mounted on a free end of the eccentric shaft.
  • the volume type pump has inferiorities such as pulsation and severe vibration due to inscribed eccentric rotational motion of the piston.
  • an object of the present invention to provide a four-in pump capable of canceling pulsation and vibration by the construction such that four eccentric shafts perform eccentric rotational motion by gearing means of a gear box arranged between the first and the second cylinder blocks, and pistons respectively mounted on the eccentric shafts perform inscribed eccentric circular motion with different speeds each other at the volume chambers in the first and the second cylinder blocks.
  • a four-in pump including: a gear box being arranged between a first and a second cylinder blocks; a gearing means arranged within the gear box being connected with a driving shaft of a motor; four eccentric shafts being mounted for possibly performing eccentric rotational motion, on the gearing means, respectively; and four pistons respectively mounted on the eccentric shafts being arranged on an upper and a lower volume chambers of the first cylinder block and on an upper and a lower volume chambers of the second cylinder block, respectively.
  • the gearing means consists of a driving gear mounted on a driving shaft and a first and a second driven gears cooperated with the driving gear.
  • the first driven gear has a first eccentric shaft for operating a first piston and a third eccentric shaft for operating a third piston
  • the second driven gear has a second eccentric shaft for operating a second piston and a fourth eccentric shaft for operating a fourth piston.
  • a center point of rotation of the driving gear is displaced as much as a predetermined length to a direction of a vertical axis from a reference center point, and center points of rotation of the driven gears are also displaced as much as an eccentric distance of the driving gear to a direction of a vertical axis from reference center points.
  • the driving gear and the driven gear are cooperated each other with their center points displaced, while the first and the second pistons perform eccentric rotational motion of internally touching the volume chamber of the cylinder block, the second eccentric shaft at the second quadrant is rotated more slowly than an average speed of the second piston.
  • the first and the third eccentric shafts are fit in the first driven gear so that each end of them faces each other, and fixed by a key and completely fixed in the first driven gear by means of a plurality of bolts.
  • the second and the fourth eccentric shafts are fit in the second driven gear so that each end of them faces each other, and fixed by a key and completely fixed in the second driven gear by means of a plurality of bolts.
  • the driving gear and the two driven gears are helical gear capable of vertically cooperating each other, for transferring power to the eccentric shaft vertically arranged with respect to the driving shaft.
  • the two driven gears are reversed in their gear tooth directions.
  • a worm and worm gear may be used.
  • the piston comprises: the eccentric shaft possibly performing relative rotational motion with respect to a cylindrical body by means of a thrust bearing and a ball bearing; an outer peripheral surface of the cylindrical body being coated by elastic rubber; a bolt passing through a front cap being joined to a tap hole of the eccentric shaft; a spring being arranged between the front cap and the ball bearing; a front seal being arranged in front of the front cap, for sealing the cylindrical body; a rear cap being arranged at an opening in a rear part of the body; and a sealing member of a circular shape being arranged in the rear cap.
  • a four-in pump having: a gear box being arranged between a first and a second cylinder blocks; a gearing means arranged within the gear box being connected with a driving shaft of a motor; four eccentric shafts being mounted for possibly performing eccentric rotational motion, on the gearing means, respectively; pistons respectively mounted on the eccentric shafts being arranged on an upper and a lower volume chambers of the first cylinder block and on an upper and a lower volume chambers of the second cylinder block, respectively; the four-in pump includes: the upper piston having a bearing housing arranged in its piston housing; a bearing being mounted in an inside of the bearing housing; the eccentric shaft being fit in the bearing; an inner peripheral surface of the piston housing being of an elliptical shape; and an outer peripheral surface of the bearing housing being of an elliptical shape, so that a gap is formed between the piston housing and the bearing housing.
  • a plurality of elastic O-rings is mounted on the outer peripheral surface of the bearing housing, for compensating for a part spaced by a gap.
  • Construction and operation of the lower piston are the same as those of the upper piston, and further, construction and operation of an upper piston and a lower piston in the second volume chamber are also the same as those of the upper piston in the first cylinder block.
  • the gearing means includes: the driving gear and the driven gear possibly cooperating each other around the rotational central axis without eccentricity, and a rotational speed of the eccentric shafts possibly changing through change of power transferring rate by change of a gear module.
  • a four-in pump including: a gear box being arranged between a first and a second cylinder blocks; a gearing means arranged within the gear box being connected with a driving shaft of a motor; two shafts being mounted on the gearing means, respectively; and pistons respectively mounted on the shafts being arranged on an upper and a lower volume chambers of the first cylinder block and on an upper and a lower volume chambers of the second cylinder block, respectively.
  • the driving gear and the driven gear of the gearing means are cooperated, so that the shafts mounted on the driven gears could be rotated and taper parts having the same rotational axis lines as the rotational central axis lines of the shafts are formed at both ends of the shafts, and eccentric pistons displaced with respect to the rotational central axis lines of the shafts are mounted on the taper part.
  • the shafts include: the taper parts on which the eccentric pistons are mounted so that eccentric positions of the pistons could be arbitrarily adjusted and operation order of the eccentric pistons could be arbitrarily set.
  • An inner peripheral surface of the piston housing in the eccentric pistons is of an elliptical shape and an outer peripheral surface of the bearing housing mounted on the inner peripheral surface of the piston housing is of an elliptical shape, so that a gap is formed between the inner peripheral surface of the piston housing and the outer peripheral surface of the bearing housing.
  • FIG. 1 is a perspective view showing an embodiment of a four-in pump according to the present invention
  • FIG. 2 is a cross-sectional view schematically showing each element in a cross-section taken along line A-A in FIG. 1 in order to describe operation of a four-in pump according to the present invention
  • FIG. 3 is a schematic view showing a driving gear and a driven gear only in order to describe eccentricity of the driving gear and the driven gear in a four-in pump of the present invention
  • FIG. 4 is a drawing showing a driven gear and a piston side by side, in order to describe principle that a piston is operated by eccentricity of a driven gear;
  • FIGS. 5 a and 5 b are schematic views showing operation of a piston by eccentricity of a gear
  • FIG. 6 is a drawing showing problems occurring in case of there being no eccentricity in a volume type pump of a related art
  • FIG. 7 is a partial, cross-sectional view of a case that an eccentric shaft is mounted on a driven gear in a four-in pump;
  • FIG. 8 is a cross-sectional view showing an example of a piston according the present invention.
  • FIG. 9 is a cross-sectional view showing another example of a piston according the present invention.
  • FIG. 10 is a cross-sectional view taken along line A-A of FIG. 12 showing a four-in pump according to another embodiment of the present invention.
  • FIG. 11 is an exploded, perspective view of a piston of FIG. 10 ;
  • FIG. 12 a sided, cross-sectional view schematically showing a four-in pump according to another embodiment of the present invention.
  • FIG. 13 is a drawing showing that a bearing housing is moved to an inner peripheral surface of a piston housing as much as a gap when a piston operates;
  • FIG. 14 is a sided, cross-sectional view schematically showing a four-in pump according to still another embodiment of the present invention.
  • FIG. 15 is a cross-sectional view taken along line B-B of FIG. 14 showing an eccentric piston.
  • a four-in pump includes: a gear box 21 being arranged between a first and a second cylinder blocks 100 and 200 ; a gearing means 1 arranged within the gear box 21 being connected with a driving shaft 13 of a motor 11 ; four eccentric shafts ES 1 through ES 4 being mounted on the gearing means 1 , respectively; and four pistons 120 , 160 , 220 , 260 respectively mounted on the eccentric shafts ES 1 through ES 4 being arranged on an upper and a lower volume chambers 110 and 150 of the first cylinder block 100 and on an upper and a lower volume chambers 210 and 250 of the second cylinder block 200 .
  • the reference numeral 500 stands for an absorption pipe connected to absorption ports of the first and the second cylinder blocks 100 and 200
  • the reference numeral 600 stands for a discharging pipe connected to discharging ports of the first and the second cylinder blocks 100 and 200 .
  • the gearing means consists of a driving gear 31 mounted on a driving shaft 13 of a motor, and the first and the second driven gears 41 and 51 cooperated with the driving gear 31 .
  • the first driven gear 41 has a first eccentric shaft ES 1 for operating a first piston 120 and a third eccentric shaft ES 3 for operating a third piston 220
  • the second driven gear 51 has a second eccentric shaft ES 2 for operating a second piston 160 and a fourth eccentric shaft ES 4 for operating a fourth piston 260 .
  • a center point O 1 of rotation of the driving gear 31 is displaced as much as a predetermined length ‘d’ to a direction of a vertical axis ‘y’ from a reference center point P 1
  • center points O 2 and O 3 of rotation of the driven gears 41 and 51 are also displaced as much as an eccentric distance ‘d’ of the driving gear 31 to a direction of a vertical axis ‘y’ from reference center points P 2 and P 3 .
  • FIG. 4 shows a status that the first piston 120 reaches the lower dead point so that discharging of pumping material is completed in the upper volume chamber 110 of the first cylinder block 100 , while the fourth piston 160 reaches the upper dead point so that discharging of pumping material is simultaneously completed in the lower volume chamber 250 of the second cylinder block 200 .
  • the second piston reaches the lower dead point so that pumping material is absorbed into the lower volume chamber 150 of the first cylinder block 100 while the third piston 220 reaches the upper dead point so that pumping material is absorbed into the upper volume chamber 210 of the second cylinder block 200 .
  • the first driven gear 41 cooperates with the driving gear 31 through the rotational center O 2 , so that angular acceleration increases when the first driven gear 41 passes through an arc interval ABC while angular acceleration decreases when the first driven gear 41 passes through an arc interval CDA. Therefore, when the first driven gear 41 passes through the arc interval ABC, rotational speed of the first eccentric shaft ES 1 increases and rotational speed of the first piston 120 increases, so that pumping material is discharged fast into a discharging port 115 of the first cylinder block 100 .
  • the first piston 120 when reaching the point of 45° on the first quadrant F 1 , the first piston 120 does not apply pressure on the inner peripheral surface of the upper volume chamber 110 of the first cylinder block 100 , and the first piston 120 gets faster in its speed than the average speed, applying pressure on the pumping material in the first quadrant F 1 .
  • the discharging pipe(not shown) connected to the discharging port 115 is installed higher than the absorption port 113 , which is advantageous in discharging pumping material, resolving general problems occurring in case that the driving gear 31 and the driven gears 41 , 51 are not displaced from the center.
  • the first and the second pistons 420 and 430 may be destroyed or transformed by being given repulsive force from the cylinder block which is a rigid body.
  • the first and the third eccentric shafts ES 1 and ES 3 are fit in the first driven gear 41 so that each end of them faces each other, and fixed by a key 43 , and completely fixed in the first driven gear 41 by means of a plurality of bolts 45 .
  • first, the second, the third, and the fourth pistons 120 , 160 , 220 , 260 are the same in their construction and operation, description of the first piston 120 only will be made in its construction and operation with reference to FIG. 8 for convenience.
  • the sealing member 380 performs relative motion with respect to a rear panel 105 of the cylinder block 100 , for preventing pumping material in the inside of the volume chamber from flowing into the inside of the housing 310 and preventing grease in the inside of the housing from leaking out to the volume chamber of the cylinder block.
  • the bolt 340 has a spiral such that the bolt 340 being fastened further to the eccentric shaft ES 1 when the eccentric shaft ES 1 rotates, so that as the eccentric shaft ES 1 rotates, the front cap 330 applies pressure on the spring 350 , whereby the cylindrical body 310 is stuck further on the sealing member 380 of a circular shape and the rear panel 105 of the cylinder block 100 by being given force in an arrow direction 390 .
  • a piston 120 ′ according to the second embodiment of the present invention is appropriate for the large capacity-volume type pump whose volume chamber of the cylinder block and piston itself are large.
  • the Piston 120 ′ according to the second embodiment of the present invention is the same as the piston of the first embodiment in its construction except that a general shaft S having one single rotational axis line instead of the eccentric shaft is used and the cylindrical body 310 ′ is arranged in the shaft S in an eccentric manner.
  • the piston is shown by alternate long and short dash line in circular shape in order to emphasize a gap ‘d’ between the piston housing 121 and the bearing housing 130 .
  • the upper piston 120 includes: the bearing housing 130 being arranged in the piston housing 121 , the bearing 140 being mounted within the bearing housing 130 , and the eccentric shaft ES 1 being fit in the bearing 140 .
  • the inner peripheral surface 122 of the piston housing 121 is of an elliptical shape and the outer peripheral surface 131 of the bearing housing 130 is of an elliptical shape, so that a gap ‘d’ is formed between the piston housing 121 and the bearing housing 130 . Therefore, the piston housing 121 has a longer Y axis length in its inner diameter than an X 1 axis, and the bearing housing 130 has a shorter Y axis length in its diameter than an X axis.
  • the gap ‘d’ should be changed depending on the size of the volume chamber and the piston in the cylinder block. Namely, in case that a vertical length between the rotational axis center of the upper piston 120 and the rotational axis center of the lower piston 160 is 96 mm, the gap ‘d’ should be more than 1.3242 mm, while in case that a vertical length between the rotational axis center of the upper piston 120 and the rotational axis center of the lower piston 160 is 120 mm, the gap ‘d’ should be more than 1.062 mm, and in case that the vertical length is 144 mm, the gap ‘d’ should be more than 0.8862 mm.
  • the alternate long and two short dashes line stands for a virtual line on which the outer peripheral surface 131 ′ of the bearing housing 130 is positioned in case that the outer peripheral surface 131 ′ of the bearing housing 130 is not moved to the inner peripheral surface of the piston housing 121 .
  • the driving gear G 1 and the driven gears G 2 and G 3 could cooperate each other around the rotational central axis without eccentricity, and a rotational speed of the eccentric shafts ES 1 through ES 4 could be changed through change of power transferring rate by changing a module for the gears G 1 , G 2 , G 3 .
  • construction and operation of the lower piston 160 are the same as those of the upper piston 120
  • construction and operation of an upper piston 220 and a lower piston 260 in the second volume chamber 200 are also the same as those of the upper piston 120 in the first cylinder block 100 .
  • a four-in pump according to the third embodiment of the present invention includes: two shafts S 1 and S 2 without eccentricity being used instead of the four eccentric shafts of the second embodiment; the shafts S 1 and S 2 being rotated by cooperation of the driving gear G 1 and the driven gears G 2 and G 3 ; taper parts 501 , 502 , 503 , 504 having the same rotational axis lines as the rotational central axis lines of the shafts S 1 and S 2 being formed at both ends of the shafts S 1 and S 2 .
  • the eccentric pistons EP 1 , EP 2 , EP 3 , EP 4 displaced with respect to the rotational central axis lines X 2 , X 3 of the shafts S 1 , S 2 are mounted on the taper parts 501 , 502 , 503 , 504 .
  • the shafts S 1 and S 2 have the taper parts 501 , 502 , 503 , 504 on which the eccentric pistons EP 1 , EP 2 , EP 3 , EP 4 are mounted so that eccentric positions of the pistons could be arbitrarily adjusted and operation order of the eccentric pistons EP 1 , EP 2 , EP 3 , EP 4 could be arbitrarily set, whereby pumping order could be arbitrarily adjusted.
  • pumping strokes of the four pistons could be circulated in such an order that the first eccentric piston EP 1 mounted on the taper part 501 of the first and the second shafts S 1 , S 2 performs absorption stroke first at the first volume chamber 510 in the first cylinder block C 1 , and then the fourth eccentric piston EP 4 arranged at the fourth volume chamber 513 in the second cylinder block C 2 performs absorption stroke, and after that, the second eccentric piston EP 2 arranged at the second volume chamber 511 in the first cylinder block C 1 performs absorption stroke, and lastly the third eccentric piston EP 3 arranged at the third volume chamber 512 in the second cylinder block C 2 performs absorption stroke.
  • the inner peripheral surface 611 of the piston housing 610 in the first eccentric piston EP 1 is of an elliptical shape and the outer peripheral surface 621 of the bearing housing 620 mounted on the inner peripheral surface 611 of the piston housing 610 is of an elliptical shape, so that a gap ‘d’ is formed between the inner peripheral surface 611 of the piston housing 610 and the outer peripheral surface 621 of the bearing housing 620 .
  • the bearing housing 620 is displaced with respect to the central axis O 1 as much as the rotational axis X 2 , so that the piston housing 610 performs eccentric rotational motion when the shaft S 1 rotates.
  • the four eccentric shafts perform eccentric rotational motion by means of the gearing means of the gearing box arranged between the first and the second cylinder blocks, and the pistons respectively mounted on the eccentric shafts perform inscribed eccentric circular motion with different speeds at the volume chambers in the first and the second cylinder blocks, whereby pulsation and vibration are cancelled and whole pulsation and vibration are remarkably reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Reciprocating Pumps (AREA)
US10/516,581 2002-06-04 2003-04-30 Four-in pump Abandoned US20050180859A1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
KR1020020031420 2002-06-04
KR1020020031420A KR100408485B1 (en) 2002-06-04 2002-06-04 Four-in pump
KR1020020043777 2002-07-25
KR10-2002-0043777A KR100517869B1 (ko) 2002-07-25 2002-07-25 포인펌프
PCT/KR2003/000868 WO2003102417A1 (en) 2002-06-04 2003-04-30 Four-in pump

Publications (1)

Publication Number Publication Date
US20050180859A1 true US20050180859A1 (en) 2005-08-18

Family

ID=29714405

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/516,581 Abandoned US20050180859A1 (en) 2002-06-04 2003-04-30 Four-in pump

Country Status (5)

Country Link
US (1) US20050180859A1 (zh)
JP (1) JP2005528559A (zh)
CN (1) CN1659379A (zh)
AU (1) AU2003224476A1 (zh)
WO (1) WO2003102417A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108266376B (zh) * 2017-12-19 2024-05-24 珠海格力节能环保制冷技术研究中心有限公司 泵体组件、流体机械及换热设备

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4836759A (en) * 1985-11-08 1989-06-06 Nautical Services Pty. Ltd. Rotary pump with orbiting rotor of harder material than stator

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60127497U (ja) * 1984-02-06 1985-08-27 株式会社日本自動車部品総合研究所 ロ−リングピストン型圧縮機
KR970009955B1 (ko) * 1994-05-11 1997-06-19 나필찬 쌍원통 펌프
KR200240462Y1 (ko) * 2001-04-26 2001-10-12 박종국 용적식 펌프

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4836759A (en) * 1985-11-08 1989-06-06 Nautical Services Pty. Ltd. Rotary pump with orbiting rotor of harder material than stator

Also Published As

Publication number Publication date
AU2003224476A1 (en) 2003-12-19
WO2003102417A1 (en) 2003-12-11
CN1659379A (zh) 2005-08-24
JP2005528559A (ja) 2005-09-22

Similar Documents

Publication Publication Date Title
CN1202362C (zh) 内啮合行星齿轮结构的传动装置
TWI398580B (zh) 旋轉式致動器
US20210062655A1 (en) Rotary Machine With Pressure Relief Mechanism
US11953007B2 (en) Rotary lobe pump with internal bearing
US6074184A (en) Pump utilizing helical seal
US20050180859A1 (en) Four-in pump
JP2004509787A (ja) 高粘性媒体用スクリュー押出機・歯車ポンプ装置
CN2924081Y (zh) 摆线双相凸轮活齿泵
EP0887122A2 (de) Wasser-Hochdruckreinigungsgerät
CN201627905U (zh) 圆柱齿轮传动装置
JP4130470B1 (ja) 液体移送ポンプ
CN1755114A (zh) 装有滚动轴承的轴套式齿轮泵及齿轮马达
CN100482939C (zh) 液压马达/泵
CN106884789B (zh) 液压装置
KR100517869B1 (ko) 포인펌프
US2831438A (en) Rotary piston pump
DE10349752A1 (de) Motorpumpenaggregat
CN2924079Y (zh) 行星液压油泵
CN214403972U (zh) 用于螺杆泵转子的连接杆结构
CN2908885Y (zh) 一种液压马达
JPS5920576A (ja) 可変容量形アキシヤルピストン機械の容量制御機構
CN2752487Y (zh) 装有滚动轴承的轴套式齿轮泵及齿轮马达
JPH05172035A (ja) 油圧装置
CN116950954A (zh) 一种对称布置的多线螺旋摆动液压缸及其工作方法
KR20210126482A (ko) 가변 용량 지로터 펌프

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION