US20050126877A1 - Method and system for cooling the clutch system of a transmission - Google Patents

Method and system for cooling the clutch system of a transmission Download PDF

Info

Publication number
US20050126877A1
US20050126877A1 US10/486,042 US48604204A US2005126877A1 US 20050126877 A1 US20050126877 A1 US 20050126877A1 US 48604204 A US48604204 A US 48604204A US 2005126877 A1 US2005126877 A1 US 2005126877A1
Authority
US
United States
Prior art keywords
clutch
accordance
friction
flywheel
clutch disk
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/486,042
Inventor
Matthias Schneider
Gerd Ahnert
Dietmar Lang
Burkhard Pollack
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schaeffler Buehl Verwaltungs GmbH
Original Assignee
LuK Lamellen und Kupplungsbau Beteiligungs KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LuK Lamellen und Kupplungsbau Beteiligungs KG filed Critical LuK Lamellen und Kupplungsbau Beteiligungs KG
Assigned to LUK LAMELLEN UND KUPPLUNGSBAU BATEILIGUNGS KG reassignment LUK LAMELLEN UND KUPPLUNGSBAU BATEILIGUNGS KG ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: AHNERT, GERD, SCHNEIDER, MATTHIAS, POLLACK, BURKHARD, LANG, DIETMAR
Publication of US20050126877A1 publication Critical patent/US20050126877A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D13/00Friction clutches
    • F16D13/58Details
    • F16D13/60Clutching elements
    • F16D13/64Clutch-plates; Clutch-lamellae
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D13/00Friction clutches
    • F16D13/58Details
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/02Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of clutch
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D13/00Friction clutches
    • F16D13/58Details
    • F16D13/72Features relating to cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K13/00Arrangement in connection with combustion air intake or gas exhaust of propulsion units
    • B60K13/04Arrangement in connection with combustion air intake or gas exhaust of propulsion units concerning exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2300/00Special features for couplings or clutches
    • F16D2300/12Mounting or assembling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49815Disassembling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49815Disassembling
    • Y10T29/49822Disassembling by applying force
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49826Assembling or joining
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49826Assembling or joining
    • Y10T29/4984Retaining clearance for motion between assembled parts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49826Assembling or joining
    • Y10T29/49904Assembling a subassembly, then assembling with a second subassembly

Definitions

  • the present invention relates to a method for the reduction of thermal loads and a method for cooling clutch systems, as well as a system therefor.
  • the components of the clutch especially the friction lining, have a limited temperature resistance, and the energy input is very high in relation to the available space, whereby the heat transfer to the environment is too low.
  • the pressure plate for example, has a smaller heat capacity in contrast to the flywheel of the clutch. Furthermore, the heat flow to the surrounding parts is relatively low and the heat transfer to the surrounding air within the clutch bell housing is also low. Thus, there is a limit relative to the operation of the clutch system as a result of the expected temperature rise in known clutch systems, especially of the pressure plate.
  • the object of the present invention is directed to a method and a system of the above-described type that makes possible the optimal cooling of a clutch system of a power train, so that the operating conditions of the clutch system in particular are improved.
  • the object of the invention is particularly achieved by providing a method for the reduction of the thermal load on a clutch system with which torque is transmitted.
  • the clutch system includes at least a pressure plate, a clutch disk, and a flywheel, whereby the frictional torque that exists at the time on the friction surfaces of the clutch disk is unevenly distributed.
  • the frictional load generated in the clutch system is determined by the frictional torque that acts and the relative speed.
  • an identical speed condition at both friction surfaces of the clutch disk is preferred.
  • a solution can consequently lie in producing uneven frictional torques on the respective friction surfaces.
  • the pressure plate for example, can be supplied with a smaller portion of the frictional energy that occurs, so that the thermal load is reduced.
  • a further embodiment can be provided in which different friction linings with different coefficients of friction can be utilized at the two friction surfaces of the clutch disk.
  • the frictional load that is produced is thereby introduced unequally to the two friction surfaces by providing different friction parameters at both frictional sides of the clutch disk.
  • the frictional torque that is generated depends on the effective friction radius, the contact pressure of the pressure plate, and the coefficient of friction of the respective friction surfaces. Influencing the clutch system coefficient of friction conditions provides the possibility to suitably distribute the thermal load. It is also conceivable that the other influence values could be changed.
  • a lower coefficient of friction can be utilized on the pressure-plate-side friction surface of the clutch disk than on the flywheel-side friction surface, so that a lesser amount of frictional energy is introduced on the pressure plate than on the flywheel. In that way, a desired distribution of the frictional load can be realized. Thereby, in an advantageous way, lower thermal loads arise on the pressure plate.
  • the respective friction partners on the flywheel-side are selected in such a way that a higher coefficient of friction arises when the temperature increases.
  • the clutch disk can have different friction linings on its two friction surfaces.
  • the friction partners on the flywheel-side have such a type of temperature dependence that a higher coefficient of friction arises with increasing temperature. If, as expected, a higher temperature arises at the friction point during the operation of the clutch, the coefficient of friction on the pressure plate side decreases, so that the desired coefficient of friction difference is adjusted.
  • the pressure plate and the flywheel can be made from combinations of the materials steel and aluminum.
  • the respective friction partners have such a temperature dependence that a lower coefficient of friction arises with increasing temperature, whereby a higher temperature exists on the pressure plate than on the flywheel, so that the desired coefficient of friction difference is realized.
  • a higher coefficient of friction is utilized on the pressure-plate-side friction surface of the clutch disk, for example, than on the flywheel-side friction surface if the pressure plate is suitably cooled.
  • a reverse friction load distribution is also conceivable.
  • a higher temperature of the pressure plate for example, can lead to an altogether better heat elimination at the clutch system by reason of a higher temperature differential.
  • a temperature-resistant friction lining must be utilized at each friction surface as the friction lining.
  • the underlying object of the invention is also especially achieved in that a method is proposed for cooling the clutch in a power train of a motor vehicle, in which a flow of cooling air for the clutch is utilized. Furthermore, particularly for carrying out the method, a system for cooling the clutch of a power train of a motor vehicle is proposed, wherein a flow of cooling air is provided that can be conducted through the clutch bell surrounding the clutch as a housing.
  • the already-existing air inlets of the motor vehicle for example for the ventilation of the interior, can be utilized as a cooling airflow to cool the clutch.
  • the flow of cooling air can be guided through the clutch bell that surrounds the clutch as a housing.
  • the inlets for example, could be designed and dimensioned accordingly. All together, the advantage of using already-existing air inlets is that, for example, filters, dirt pans, water drains, and the like, only have to be provided once in a motor vehicle because of their dual usage. In addition, by means of the air passages provided, acoustic advantages can be realized in contrast with open clutches.
  • the exiting cool air flow can be carried off to the environment using the existing exhaust gas system of the motor vehicle.
  • the cool air flow can thus be carried off through the exhaust gas system together with the exhaust gas.
  • the exhaust system is located near the transmission.
  • the cool air flow can be provided by a pump device provided in the exhaust gas flow of the exhaust gas system.
  • the cool airflow can thereby be drawn off through the clutch bell.
  • the pump device can especially be a jet pump, or the like, which is preferably provided in the exhaust gas stream. In that way, other necessary (active) cooling measures can be avoided.
  • the cool airflow is interrupted at least periodically through a shutter device in the exhaust system, so that an independent stationary exhaust gas measurement is made possible.
  • a shutter device in the exhaust system, so that an independent stationary exhaust gas measurement is made possible.
  • at least a flap, or the like can be utilized as a shutter device.
  • the proposed system and method can be utilized in high performance clutches, especially in a load-shift transmission (USG) and/or a double-clutch transmission (DKG).
  • USG load-shift transmission
  • DKG double-clutch transmission
  • FIG. 1 is a schematic view of a system for cooling a clutch with a jet pump
  • FIG. 2 is a graph with the results of a simulation calculation for a method for reducing the thermal load of a clutch.
  • FIG. 1 there is shown in FIG. 1 one possible embodiment of a system in accordance with the invention to cool a clutch, whereby an engine 101 with a connected exhaust gas system 102 , and a transmission 103 with a clutch bell 104 , as well as a drive shaft 105 , are shown in schematically.
  • an exemplary existing air inlet 107 for example for the windshield for ventilating the motor vehicle interior, which is utilized additionally for the cooling airflow in accordance with the invention.
  • Other air inlets can also be provided for the cooling airflow.
  • the cooling airflow can be withdrawn from the clutch bell 104 by means of at least one air outlet 108 through a jet pump 106 .
  • the jet pump 106 is located in the exhaust system 102 , and which is shown larger in the FIG. 1 enlargement portion.
  • the system in accordance with the invention by interconnection with the existing air inlet system and exhaust gas system provided in the motor vehicle, can enable the supply and withdrawal of the cooling airflow in accordance with the invention for the cooling of the clutch.
  • the system can especially be utilized in connection with a load-shift transmission (USG), a double-clutch transmission (DKG), and all types of high-performance clutches that require (air) cooling.
  • USG load-shift transmission
  • DKG double-clutch transmission
  • FIG. 2 there is shown the result of a simulation calculation for a method for reducing the thermal load on a clutch. There are shown therein different temperature trends over time.
  • the simulation model was prepared for a load-shift clutch of a USG system. In that way, the effect of the changed coefficients of friction can be shown.
  • the coefficients of friction of the respective friction surfaces are assumed, one time with a constant ratio (1:1) and one time with a ratio of 0.7:1.
  • a plurality of maximum accelerations of the motor vehicle to a speed of 100 km/h were assumed as the loading.
  • the upper curve of the pressure plate temperature TDP signifies the coefficient of friction ratio of 1:1, while the lower curve shows the pressure plate temperature T DP at the coefficient of friction ratio of 0.7:1.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Operated Clutches (AREA)
  • Hydraulic Clutches, Magnetic Clutches, Fluid Clutches, And Fluid Joints (AREA)
  • Control Of Transmission Device (AREA)
  • Arrangement Of Transmissions (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Structure Of Transmissions (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Automatic Assembly (AREA)
  • General Details Of Gearings (AREA)

Abstract

A method and apparatus for reducing the thermal load on a motor vehicle clutch system. The clutch includes at least a pressure plate, a clutch disk, and a flywheel, by way of which a torque is transmitted. The friction forces that exist on the respective friction surfaces of the clutch disk are unevenly distributed. The clutch is cooled by a flow of cooling air that is led through the clutch bell that encloses the clutch and that defines a housing. The cooling air is conducted from the existing ventilation air inlets of the vehicle, and a jet pump arranged in the exhaust system is disclosed for withdrawing the cooling air from the clutch housing.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention relates to a method for the reduction of thermal loads and a method for cooling clutch systems, as well as a system therefor.
  • 2. Description of the Related Art
  • It has been shown that the thermal economy in clutch systems, such as, for example, a dry friction clutch, is problematic, especially at high power input. A thermal overload is especially to be suspected in a load-shift clutch of an uninterruptible transmission (USG).
  • The components of the clutch, especially the friction lining, have a limited temperature resistance, and the energy input is very high in relation to the available space, whereby the heat transfer to the environment is too low.
  • In addition, the pressure plate, for example, has a smaller heat capacity in contrast to the flywheel of the clutch. Furthermore, the heat flow to the surrounding parts is relatively low and the heat transfer to the surrounding air within the clutch bell housing is also low. Thus, there is a limit relative to the operation of the clutch system as a result of the expected temperature rise in known clutch systems, especially of the pressure plate.
  • Therefore, especially in load-shift transmissions, it is a necessity that the temperature load on the clutch be lowered by cooling measures. In the case of a so-called inline transmission, for example for a rear drive motor vehicle, an open type of construction, which of a certain size makes cooling possible (tunnel assembly, water spray, near the exhaust system), can only be realized with limitations.
  • The object of the present invention is directed to a method and a system of the above-described type that makes possible the optimal cooling of a clutch system of a power train, so that the operating conditions of the clutch system in particular are improved.
  • SUMMARY OF THE INVENTION
  • The object of the invention is particularly achieved by providing a method for the reduction of the thermal load on a clutch system with which torque is transmitted. The clutch system includes at least a pressure plate, a clutch disk, and a flywheel, whereby the frictional torque that exists at the time on the friction surfaces of the clutch disk is unevenly distributed.
  • The frictional load generated in the clutch system is determined by the frictional torque that acts and the relative speed. In known clutch systems an identical speed condition at both friction surfaces of the clutch disk is preferred. A solution can consequently lie in producing uneven frictional torques on the respective friction surfaces. In that way, the pressure plate, for example, can be supplied with a smaller portion of the frictional energy that occurs, so that the thermal load is reduced.
  • Within the scope of the invention a further embodiment can be provided in which different friction linings with different coefficients of friction can be utilized at the two friction surfaces of the clutch disk. The frictional load that is produced is thereby introduced unequally to the two friction surfaces by providing different friction parameters at both frictional sides of the clutch disk.
  • The frictional torque that is generated depends on the effective friction radius, the contact pressure of the pressure plate, and the coefficient of friction of the respective friction surfaces. Influencing the clutch system coefficient of friction conditions provides the possibility to suitably distribute the thermal load. It is also conceivable that the other influence values could be changed.
  • In the method in accordance with the invention several possibilities are provided for influencing the coefficient of friction conditions in the clutch system, which are described below.
  • For example, a lower coefficient of friction can be utilized on the pressure-plate-side friction surface of the clutch disk than on the flywheel-side friction surface, so that a lesser amount of frictional energy is introduced on the pressure plate than on the flywheel. In that way, a desired distribution of the frictional load can be realized. Thereby, in an advantageous way, lower thermal loads arise on the pressure plate.
  • In accordance with the invention, by the use of different friction linings on the clutch disk it can be provided that the respective friction partners on the flywheel-side are selected in such a way that a higher coefficient of friction arises when the temperature increases. For example, the clutch disk can have different friction linings on its two friction surfaces. The friction partners on the flywheel-side have such a type of temperature dependence that a higher coefficient of friction arises with increasing temperature. If, as expected, a higher temperature arises at the friction point during the operation of the clutch, the coefficient of friction on the pressure plate side decreases, so that the desired coefficient of friction difference is adjusted.
  • In addition, in accordance with the invention it can be provided that in the case of identical friction linings on the clutch disk two friction partners with different characteristics are utilized, so that the desired coefficient of friction difference or frictional torque distribution results. For example, the pressure plate and the flywheel can be made from combinations of the materials steel and aluminum.
  • Furthermore, in the case of identical friction linings on the clutch disk, it can be provided that the respective friction partners have such a temperature dependence that a lower coefficient of friction arises with increasing temperature, whereby a higher temperature exists on the pressure plate than on the flywheel, so that the desired coefficient of friction difference is realized.
  • The previously-described possibilities can also be arbitrarily combined in order to further improve the proposed method.
  • Alternatively, in the method in accordance with the invention it can also be provided that a higher coefficient of friction is utilized on the pressure-plate-side friction surface of the clutch disk, for example, than on the flywheel-side friction surface if the pressure plate is suitably cooled. In that way, under certain circumstances, namely when cooling measures are carried out at the pressure plate, a reverse friction load distribution is also conceivable. Thereby, a higher temperature of the pressure plate, for example, can lead to an altogether better heat elimination at the clutch system by reason of a higher temperature differential. At the same time, it must be noted, however, that a temperature-resistant friction lining must be utilized at each friction surface as the friction lining.
  • Furthermore, the underlying object of the invention is also especially achieved in that a method is proposed for cooling the clutch in a power train of a motor vehicle, in which a flow of cooling air for the clutch is utilized. Furthermore, particularly for carrying out the method, a system for cooling the clutch of a power train of a motor vehicle is proposed, wherein a flow of cooling air is provided that can be conducted through the clutch bell surrounding the clutch as a housing.
  • Advantages and additional embodiments of the system and the method in accordance with the invention for cooling the clutch of a power train are described in greater detail below.
  • In accordance with an advantageous further development of the invention, the already-existing air inlets of the motor vehicle, for example for the ventilation of the interior, can be utilized as a cooling airflow to cool the clutch. Preferably, the flow of cooling air can be guided through the clutch bell that surrounds the clutch as a housing.
  • For that purpose, the inlets, for example, could be designed and dimensioned accordingly. All together, the advantage of using already-existing air inlets is that, for example, filters, dirt pans, water drains, and the like, only have to be provided once in a motor vehicle because of their dual usage. In addition, by means of the air passages provided, acoustic advantages can be realized in contrast with open clutches.
  • Within the scope of an arrangement of the invention, the exiting cool air flow can be carried off to the environment using the existing exhaust gas system of the motor vehicle. The cool air flow can thus be carried off through the exhaust gas system together with the exhaust gas. Especially in motor vehicles with rear drive, the exhaust system is located near the transmission. In accordance with that arrangement there results the advantage that in that way clutch noises are not considered to be disturbing in the surrounding area because of the muffler.
  • Preferably, the cool air flow can be provided by a pump device provided in the exhaust gas flow of the exhaust gas system. The cool airflow can thereby be drawn off through the clutch bell. The pump device can especially be a jet pump, or the like, which is preferably provided in the exhaust gas stream. In that way, other necessary (active) cooling measures can be avoided.
  • It is also possible that the cool airflow is interrupted at least periodically through a shutter device in the exhaust system, so that an independent stationary exhaust gas measurement is made possible. Preferably, at least a flap, or the like, can be utilized as a shutter device.
  • Preferably, the proposed system and method can be utilized in high performance clutches, especially in a load-shift transmission (USG) and/or a double-clutch transmission (DKG).
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Additional advantages and embodiments follow from the dependent claims and the following description and drawings in which:
  • FIG. 1 is a schematic view of a system for cooling a clutch with a jet pump; and
  • FIG. 2 is a graph with the results of a simulation calculation for a method for reducing the thermal load of a clutch.
  • DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • There is shown in FIG. 1 one possible embodiment of a system in accordance with the invention to cool a clutch, whereby an engine 101 with a connected exhaust gas system 102, and a transmission 103 with a clutch bell 104, as well as a drive shaft 105, are shown in schematically. In addition, there is shown in FIG. 1 an exemplary existing air inlet 107, for example for the windshield for ventilating the motor vehicle interior, which is utilized additionally for the cooling airflow in accordance with the invention. Other air inlets can also be provided for the cooling airflow.
  • The cooling airflow can be withdrawn from the clutch bell 104 by means of at least one air outlet 108 through a jet pump 106. The jet pump 106 is located in the exhaust system 102, and which is shown larger in the FIG. 1 enlargement portion.
  • The system in accordance with the invention, by interconnection with the existing air inlet system and exhaust gas system provided in the motor vehicle, can enable the supply and withdrawal of the cooling airflow in accordance with the invention for the cooling of the clutch.
  • The system can especially be utilized in connection with a load-shift transmission (USG), a double-clutch transmission (DKG), and all types of high-performance clutches that require (air) cooling.
  • In FIG. 2 there is shown the result of a simulation calculation for a method for reducing the thermal load on a clutch. There are shown therein different temperature trends over time.
  • The simulation model was prepared for a load-shift clutch of a USG system. In that way, the effect of the changed coefficients of friction can be shown.
  • Moreover, the coefficients of friction of the respective friction surfaces are assumed, one time with a constant ratio (1:1) and one time with a ratio of 0.7:1. A plurality of maximum accelerations of the motor vehicle to a speed of 100 km/h were assumed as the loading. The upper curve of the pressure plate temperature TDP signifies the coefficient of friction ratio of 1:1, while the lower curve shows the pressure plate temperature TDP at the coefficient of friction ratio of 0.7:1.
  • One can clearly appreciate that the pressure plate temperature is lower at a coefficient of friction ratio of 0.7:1. The temperatures of the flywheel TSR by comparison increased only slightly. That is perceptible in the curve for TSR.
  • The patent claims included in the application are illustrative and are without prejudice to acquiring wider patent protection. The applicants reserve the right to claim additional combinations of features disclosed in the specification and/or drawings.
  • The references contained in the dependent claims point to further developments of the object of the main claim by means of the features of the particular claim; they are not to be construed as renunciation to independent, objective protection for the combinations of features of the related dependent claims.
  • Although the subject matter of the dependent claims can constitute separate and independent inventions in the light of the state of the art on the priority date, the applicants reserve the right to make them the subject of independent claims or separate statements. They can, moreover, also embody independent inventions that can be produced from the independent developments of the subject matter of the included dependent claims.
  • The exemplary embodiments are not to be considered to be limitations of the invention. On the contrary, many changes and variations are possible within the scope of the invention in the existing disclosure, in particular such variants, elements, and combinations and/or materials which, for example, are inventive by combining or modifying single features that are in combination and are described individually in relation to the general specification and embodiments as well as the claims and shown in the drawings, as well as elements or method steps that can be derived by a person skilled in the art in the light of the disclosed solutions of the problem, and which by means of combined features lead to a new object or new method steps or sequences of method steps, as well as manufacturing, testing, and operational procedures.

Claims (25)

1. A method for reducing the thermal load in a clutch system that includes at least a pressure plate, a clutch disk, and a flywheel, said method comprising the steps of: transmitting a torque between respective friction surfaces of the pressure plate, the clutch disk, and the flywheel, and unevenly distributing frictional torque that acts at each friction surface of the clutch disk.
2. A method in accordance with claim 1, including the step of providing different friction linings with different coefficients of friction on respective opposite friction surfaces of the clutch disk.
3. A method in accordance with claim 1, including the step of providing a lower coefficient of friction on a pressure-plate-side friction surface of the clutch disk than on a flywheel-side friction surface of the clutch disk, so that a smaller amount of frictional energy is introduced into the pressure plate than into the flywheel.
4. A method in accordance with claim 3, including the step of providing on the flywheel-side of the clutch disk a friction lining having a higher coefficient of friction at increasing temperature.
5. A method in accordance with claim 1, including the step of providing identical friction linings on respective sides of the clutch disk, and providing different friction characteristics at a pressure-plate to clutch disk interface and at a flywheel to clutch disk interface for a desired frictional torque distribution.
6. A method in accordance with claim 5, wherein the friction characteristics of at least one of the pressure plate and the flywheel are provided by a combination of steel and aluminum friction surfaces.
7. A method in accordance with claim 1, wherein the clutch disk has identical friction linings on respective sides thereof and each friction exhibits such interface has a temperature dependence in the case of identical to provide a lower coefficient of friction with increasing temperature, whereby a higher temperature occurs at the pressure plate than at the flywheel, so that a desired coefficient of friction difference is realized at the pressure plate and the flywheel sides of the clutch disk.
8. A method in accordance with claim 1, wherein a higher coefficient of friction exists at a friction surface on the pressure-plate side of the clutch disk than at a friction surface on the flywheel side when the pressure plate is cooled.
9. A method in accordance with claim 8, wherein a temperature-resistant friction lining is utilized as the friction lining at each friction surface.
10. A method in accordance with claim 1, including the step of introducing a cooling airflow into a housing that surrounds the clutch.
11. A method in accordance with claim 10, including the step of utilizing at least one existing air inlet for the ventilation of the interior of a motor vehicle as an inlet for the cooling airflow, and conducting the cooling airflow through the clutch housing.
12. A method in accordance with claim 10, wherein cooling airflow is withdrawn from the housing to the environment through an existing exhaust system of the vehicle.
13. A method in accordance with e claim 10, wherein the cooling airflow is provided by a pump means positioned in the exhaust gas flow of the exhaust system.
14. A method in accordance with claim 13, wherein the pump means is a jet pump.
15. A method in accordance with claim 10, including the step of Periodically interrupting the cooling airflow by a blocking means to allow a stationary exhaust gas measurement
16. A method in accordance with claim 15, wherein the blocking means is a shutter.
17. A method in accordance with claim 10, wherein the clutch is included in a power train that includes one of a load-shift transmission and a double-clutch transmission.
18. A system for cooling a clutch in a motor vehicle power train, said system comprising: a flywheel, a clutch disk, and a pressure plate, wherein the flywheel and the pressure plate frictionally engage respective opposed surfaces of the clutch disk, a clutch bell that surrounds at least the clutch disk and the pressure plate as a clutch housing, and means for introducing a cooling airflow into the clutch housing.
19. A system in accordance with claim 18, wherein the means for introducing cooling airflow includes as an air inlet at least one existing air inlet for the ventilation of the interior of the motor vehicle.
20. A system in accordance with claim 18, wherein an existing exhaust system of the motor vehicle is in communication with the clutch housing for withdrawal of cooling airflow from the clutch housing.
21. A system in accordance with one claim 20, including pump device is means in the exhaust gas flow of the exhaust system for producing the cooling airflow.
22. A system in accordance with claim 21, wherein the pump means includes at least one jet pump.
23. A system in accordance with claim 20, including blocking is means provided in the exhaust system for blocking flow into an exhaust gas stream of cooling airflow from the clutch housing.
24. A system in accordance with claim 23, wherein the blocking means is a shutter.
25. A system in accordance with claim 18, wherein the system is incorporated into a motor vehicle power train that includes a high-performance clutches clutch and at least one of a load-shift transmission and a double-clutch transmission.
US10/486,042 2001-08-06 2002-08-01 Method and system for cooling the clutch system of a transmission Abandoned US20050126877A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10138570 2001-08-06
DE10138570.6 2001-08-06
PCT/DE2002/002832 WO2003016735A1 (en) 2001-08-06 2002-08-01 Method and system for cooling the clutch system of a transmission

Publications (1)

Publication Number Publication Date
US20050126877A1 true US20050126877A1 (en) 2005-06-16

Family

ID=7694565

Family Applications (3)

Application Number Title Priority Date Filing Date
US10/485,973 Expired - Lifetime US7139654B2 (en) 2001-08-06 2002-08-01 Method for synchronizing a gearbox and device for damping the vibrations in gearbox, especially during synchronization
US10/486,042 Abandoned US20050126877A1 (en) 2001-08-06 2002-08-01 Method and system for cooling the clutch system of a transmission
US10/773,027 Expired - Fee Related US7325291B2 (en) 2001-08-06 2004-02-05 Method for assembling a clutch system

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/485,973 Expired - Lifetime US7139654B2 (en) 2001-08-06 2002-08-01 Method for synchronizing a gearbox and device for damping the vibrations in gearbox, especially during synchronization

Family Applications After (1)

Application Number Title Priority Date Filing Date
US10/773,027 Expired - Fee Related US7325291B2 (en) 2001-08-06 2004-02-05 Method for assembling a clutch system

Country Status (9)

Country Link
US (3) US7139654B2 (en)
JP (2) JP2004538204A (en)
KR (1) KR101043151B1 (en)
CN (1) CN1318772C (en)
BR (3) BR0205834A (en)
DE (9) DE10293614D2 (en)
FR (4) FR2828142A1 (en)
IT (4) ITMI20021778A1 (en)
WO (4) WO2003016735A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060180423A1 (en) * 2005-02-15 2006-08-17 Thomas Kos Torque converter with a lock-up clutch assembly having a floating friction disk
US20100113216A1 (en) * 2008-11-05 2010-05-06 Eli Avny Temperature Control of Dual Input Clutch Transmission
US20110024258A1 (en) * 2008-11-05 2011-02-03 Ford Global Technologies Llc Transmission with Durability Enhancement Techniques
US20120123635A1 (en) * 2010-11-16 2012-05-17 Ford Global Technologies Llc Powertrain thermal management system for a dry-clutch transmission
US8527161B2 (en) 2011-01-21 2013-09-03 Ford Global Technologies, Llc Vehicle with transmission cooling system
US8783433B2 (en) 2010-10-02 2014-07-22 Ford Global Technologies, Llc Dry-clutch transmission with cooling techniques
US8930103B2 (en) 2013-03-04 2015-01-06 GETRAG Getriebe- und Zahnradfabrik Harmann Hagenmeyer GmbH & Cie KG Control method for a dual-clutch transmission

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10242298A1 (en) * 2002-09-12 2004-03-18 Robert Bosch Gmbh Wiper unit for a motor vehicle's front/rear windscreens has a wiper drive with a wiper motor, a gearing mechanism and a drive shaft for the gearing to drive a wiper arm shaft for a wiper arm
DE10334451A1 (en) * 2003-07-29 2005-03-03 Zf Friedrichshafen Ag Method for controlling an actuating actuator of a starting clutch of a motor vehicle automatic transmission
FR2871106B1 (en) * 2004-06-03 2007-10-05 Peugeot Citroen Automobiles Sa DOUBLE CLUTCH TRANSMISSION ELEMENT FOR A MOTOR VEHICLE HYBRID TRACTION CHAIN, ASSEMBLY METHOD, AND MOTOR VEHICLE EQUIPPED WITH SUCH ELEMENT
US7204166B2 (en) * 2004-11-08 2007-04-17 Eaton Corporation Dual clutch assembly for a heavy-duty automotive powertrain
FR2883350B1 (en) * 2005-03-21 2008-11-07 Peugeot Citroen Automobiles Sa MOTOR VEHICLE GEARBOX AND METHOD OF CHANGING THE REPORTING FOR SUCH A GEARBOX.
WO2007000151A2 (en) 2005-06-28 2007-01-04 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Clutch unit
JP5282882B2 (en) 2005-06-28 2013-09-04 シェフラー テクノロジーズ アクチエンゲゼルシャフト ウント コンパニー コマンディートゲゼルシャフト Clutch system
DE502007004521D1 (en) * 2006-11-30 2010-09-02 Luk Lamellen & Kupplungsbau TORQUE TRANSMISSIONS
DE102009008103B4 (en) 2008-02-28 2018-12-20 Schaeffler Technologies AG & Co. KG Method for assembling a double clutch
US8534436B2 (en) * 2008-07-14 2013-09-17 Schaeffler Technologies AG & Co. KG Dual clutch
GB2464103A (en) * 2008-10-01 2010-04-07 Gm Global Tech Operations Inc Clutch attached to a flywheel by laterally orientated fasteners
WO2012022292A1 (en) 2010-08-12 2012-02-23 Schaeffler Technologies Gmbh & Co. Kg Tool and method for resetting a bracing device of a plug-in toothing
JP5701150B2 (en) * 2011-05-26 2015-04-15 富士重工業株式会社 Control device for hybrid vehicle
JP5947086B2 (en) * 2012-04-02 2016-07-06 ダイムラー・アクチェンゲゼルシャフトDaimler AG Vehicle shift control device
DE102013205181A1 (en) * 2012-04-16 2013-10-17 Schaeffler Technologies AG & Co. KG Centering element for dual-mass flywheel arranged in powertrain of combustion engine-driven motor car, has combustion-engine side and gear-box side centering portions inserted into recesses of input and output sections respectively
US8849460B2 (en) * 2012-05-30 2014-09-30 GM Global Technology Operations LLC Method and apparatus for determining engine pulse cancellation torque
DE102013014667B4 (en) * 2013-08-30 2015-04-09 Iav Gmbh Ingenieurgesellschaft Auto Und Verkehr Method for the application of the control of the drive of a hybrid vehicle
JP6255980B2 (en) * 2013-12-20 2018-01-10 スズキ株式会社 Transmission
KR101466537B1 (en) * 2014-04-01 2014-11-27 최영철 How to dual-clutch assembly
KR101588790B1 (en) * 2014-07-29 2016-01-26 현대자동차 주식회사 Vehicle control system having motor
DE102015211681A1 (en) * 2015-06-24 2016-12-29 Schaeffler Technologies AG & Co. KG A friction clutch having an axis of rotation for releasably connecting an output shaft to an output shaft
DE102016118756A1 (en) * 2016-10-04 2018-04-05 Getrag Getriebe- Und Zahnradfabrik Hermann Hagenmeyer Gmbh & Cie Kg Method for starting a motor vehicle
US10300785B2 (en) 2017-09-25 2019-05-28 GM Global Technology Operations LLC Cooling by suction of air
CN108568667B (en) * 2017-12-04 2020-04-03 湖南吉盛国际动力传动系统有限公司 Automatic transmission assembly assembling and testing method
CN109175994B (en) * 2018-08-31 2020-06-09 中国航空工业集团公司西安飞行自动控制研究所 Assembling method of strong magnetic clutch
CN109080737B (en) * 2018-09-28 2020-06-23 安徽江淮汽车集团股份有限公司 Hybrid clutch installs frock
US11040607B2 (en) 2019-07-12 2021-06-22 Allison Transmission, Inc. Multiple motor multiple speed continuous power transmission
US11173781B2 (en) 2019-12-20 2021-11-16 Allison Transmission, Inc. Component alignment for a multiple motor mixed-speed continuous power transmission
US11331991B2 (en) 2019-12-20 2022-05-17 Allison Transmission, Inc. Motor configurations for multiple motor mixed-speed continuous power transmission
US11193562B1 (en) 2020-06-01 2021-12-07 Allison Transmission, Inc. Sandwiched gear train arrangement for multiple electric motor mixed-speed continuous power transmission
CN115106772B (en) * 2022-06-21 2023-07-18 南昌久耐汽车离合器有限公司 Copper substrate combination device of mining heavy-duty truck clutch and interconnecting method thereof

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1883981A (en) * 1930-04-04 1932-10-25 Raybestos Manhattan Inc Clutch or brake mechanism
US2198792A (en) * 1937-12-17 1940-04-30 Yellow Truck & Coach Mfg Co Clutch ventilation
US2719438A (en) * 1952-11-22 1955-10-04 Paul J Schiefer Engine flywheel
US3213986A (en) * 1961-12-29 1965-10-26 Borg Warner Friction device
US3335837A (en) * 1965-10-14 1967-08-15 Gen Motors Corp Two plate clutch with energy balanced facing material
US3584718A (en) * 1969-06-02 1971-06-15 Schiefer Mfg Co Wear surfaces of clutches, flywheels and the like
US4951793A (en) * 1989-01-25 1990-08-28 Hays Bill J Clutch assembly with improved dual frictional facings
US5033599A (en) * 1989-01-25 1991-07-23 Hays Bill J Clutch with dissimilar frictional facings and centrifugal assist
US5655637A (en) * 1995-12-18 1997-08-12 Hays; Bill J. Automotive clutch with improved heat shield
US6202820B1 (en) * 1998-10-21 2001-03-20 Mannesmann Sachs Ag Pressure plate for a friction clutch
US6651795B2 (en) * 2002-03-11 2003-11-25 Ford Global Technologies, Llc Clutch pressure plate and flywheel with friction wear surfaces

Family Cites Families (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1455657A1 (en) * 1963-02-14 1969-02-13 Opel Adam Ag Rigid drive unit, especially for motor vehicles
DE2552851A1 (en) * 1975-11-25 1977-05-26 Klaus Glueck DRIVE UNIT FOR MOTOR VEHICLES
DE3023294A1 (en) * 1980-06-21 1982-01-07 Fichtel & Sachs Ag, 8720 Schweinfurt FLYWHEEL COUPLING
US4442727A (en) * 1980-10-29 1984-04-17 Alastair John Young Control means for rotary power transmission
JPS57175821U (en) * 1981-04-30 1982-11-06
DE3123151A1 (en) * 1981-06-11 1982-12-30 LuK Lamellen und Kupplungsbau GmbH, 7580 Bühl Method for the disassembling and assembly of gearbox, clutch and engine units
DE8221673U1 (en) * 1982-07-30 1986-08-21 Klöckner-Humboldt-Deutz AG, 5000 Köln Clutch that is attached to an internal combustion engine
DE3334711A1 (en) * 1983-09-26 1985-04-04 Wabco Westinghouse Fahrzeug Accelerator control device for a drive engine
JPS60157519A (en) * 1984-01-26 1985-08-17 Toyota Motor Corp Clutch release mechanism
US4860607A (en) * 1986-06-20 1989-08-29 Toyota Jidosha Kabushiki Kaisha Automatic transmission for automotive vehicle
GB2226372B (en) * 1988-12-15 1992-11-11 Luk Lamellen & Kupplungsbau Assembly process for the clutch and clutch disc in motor vehicles and tool for carrying out the process
DE4019792A1 (en) * 1990-06-21 1991-07-04 Daimler Benz Ag Disc brake for motor vehicle - has brake pads which are made from materials with different friction characteristics
WO1992004558A1 (en) * 1990-09-05 1992-03-19 Valentin Balass Double clutch gear-change for motor vehicles
DE4137143A1 (en) * 1991-11-12 1993-05-13 Zahnradfabrik Friedrichshafen MOTOR VEHICLE TRANSMISSION
DE4204401A1 (en) 1992-02-14 1993-08-19 Bosch Gmbh Robert DEVICE FOR CONTROLLING THE OUTPUT TORQUE OF AN AUTOMATIC MANUAL TRANSMISSION
DE4317332B4 (en) * 1992-06-03 2005-01-27 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Pre-assembled torque transfer unit
JP3316231B2 (en) * 1992-07-13 2002-08-19 マツダ株式会社 Phase matching method and phase matching apparatus for rotating body
DE4323392A1 (en) * 1992-08-05 1994-02-10 Fichtel & Sachs Ag Arrangement for attaching a clutch to a crankshaft
DE4309903B4 (en) 1992-11-19 2011-11-17 Robert Bosch Gmbh Method and device for controlling the output torque of a vehicle drive
US5459916A (en) * 1993-01-30 1995-10-24 Luk Lamellen Und Kupplungsbau Gmbh Method of assembling and mounting a torque transmitting apparatus
GB9312013D0 (en) * 1993-06-10 1993-07-28 Eaton Corp Clutch disengage logic
DE4333899A1 (en) 1993-10-05 1995-07-13 Bosch Gmbh Robert Method for controlling the output torque of an automatic transmission
JPH08277890A (en) * 1995-04-05 1996-10-22 Aqueous Res:Kk Transmission with synchronizing means
DE19518678C1 (en) * 1995-05-22 1996-10-31 Fichtel & Sachs Ag Connection of a flywheel to the crankshaft
US5713119A (en) * 1995-06-30 1998-02-03 Lagatta; Richard Transmission assembly tool
US5573477A (en) 1995-07-27 1996-11-12 Rockwell International Corporation Method and apparatus for assisting in shifting transmission to neutral
DE19536320C2 (en) 1995-09-29 1997-07-17 Fichtel & Sachs Ag Method and device for changing a useful torque in a drive train of a motor vehicle
DE19544516C3 (en) * 1995-11-29 2003-12-11 Siemens Ag Control device for an automatic motor vehicle transmission
DE19616960C2 (en) 1996-04-27 1998-07-16 Daimler Benz Ag Device for automatic clutch adjustment during starting and / or gear change processes
US5755639A (en) * 1996-04-30 1998-05-26 Eaton Corporation Semi-automatic shift implementation with automatic splitter shifting
US5788037A (en) * 1996-07-16 1998-08-04 New Venture Gear, Inc. Integrated clutch transmission
JP3956416B2 (en) * 1997-02-10 2007-08-08 マツダ株式会社 Transmission assembly method
GB2348255B (en) * 1997-12-23 2002-07-03 Luk Lamellen & Kupplungsbau Gear box
JPH11254981A (en) * 1998-03-13 1999-09-21 Kubota Corp Clutch cooling device
DE19853824A1 (en) * 1998-11-21 2000-05-31 Getrag Getriebe Zahnrad Automated motor vehicle drive train has parallel force transfer paths; second force transfer path transfers torque to drive shaft during force transfer interruption in first transfer path
FR2786842B1 (en) * 1998-12-04 2001-04-06 Renault METHOD AND DEVICE FOR CHANGING SPEEDS WITH COUPLED PASSAGES
FR2790297B1 (en) * 1999-02-26 2001-04-13 Renault MULTIPLE SYNCHRONIZATION OF A GEARBOX WITH So-called Robotic Control
US6246941B1 (en) * 1999-03-25 2001-06-12 Zf Meritor, Llc Method of synchronizing engine torque with vehicle torque load for accomplishing vehicle transmission shifting
DE19930972C1 (en) * 1999-07-05 2001-02-15 Getrag Getriebe Zahnrad Method for power shifting a drive train, power shiftable drive train and coupling device for a power shiftable drive train
GB2352214B (en) * 1999-07-22 2003-04-23 Rover Group A vehicle
DE19939334A1 (en) * 1999-08-19 2001-03-08 Daimler Chrysler Ag Method for shifting double-clutch gearbox without tractive force interruption has two lay shafts connected to output shaft through shiftable gear stages and associated with friction clutch for connection to drive motor
DE10043420B4 (en) * 1999-10-06 2015-11-12 Schaeffler Technologies AG & Co. KG Method for controlling a gear change operation
JP3940246B2 (en) * 1999-11-15 2007-07-04 株式会社エクセディ Clutch device
DE19963746A1 (en) * 1999-12-30 2001-07-12 Bosch Gmbh Robert Method for coordinated control of vehicle engine and servo clutch during torque reduction resulting from gear change based on matching reference characteristics for clutch torque and engine torque
DE10190489B4 (en) 2000-02-15 2017-03-09 Schaeffler Technologies AG & Co. KG transmission
US6308125B1 (en) * 2000-05-11 2001-10-23 General Motors Corporation Adaptive clutch control of a closed-throttle downshift
US6550599B2 (en) * 2000-06-06 2003-04-22 Asmo Co., Ltd. Motor having clutch and manufacturing method thereof
JP2002031224A (en) * 2000-07-17 2002-01-31 Hitachi Ltd Control method and control device for automatic transmission
JP5023372B2 (en) * 2000-11-22 2012-09-12 シェフラー テクノロジーズ アクチエンゲゼルシャフト ウント コンパニー コマンディートゲゼルシャフト Clutch device
DE10291335D2 (en) * 2001-04-02 2004-04-29 Luk Lamellen & Kupplungsbau Method for controlling and / or regulating an automated clutch and / or an automated transmission of a vehicle
US6609602B2 (en) * 2001-08-30 2003-08-26 Eaton Corporation Friction clutch with installation device
DE10149704A1 (en) * 2001-10-09 2003-04-10 Zf Sachs Ag Input-side clutch device has torque transmission device fixed for rotation to positive connecting element
JP3761162B2 (en) * 2002-03-27 2006-03-29 ローム株式会社 Bipolar transistor and semiconductor device using the same
US6666313B2 (en) * 2002-03-27 2003-12-23 Eaton Corporation Dual mass clutch system
US20040214653A1 (en) * 2003-04-23 2004-10-28 Maurice Jaysen E. Synthetic golf practice mat
US6808055B1 (en) * 2003-04-30 2004-10-26 Eaton Corporation Friction clutch with installation device
EP1643148A3 (en) * 2004-07-22 2007-11-14 LuK Lamellen und Kupplungsbau Beteiligungs KG Device to connect a internal combustion engine with a gearbox

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1883981A (en) * 1930-04-04 1932-10-25 Raybestos Manhattan Inc Clutch or brake mechanism
US2198792A (en) * 1937-12-17 1940-04-30 Yellow Truck & Coach Mfg Co Clutch ventilation
US2719438A (en) * 1952-11-22 1955-10-04 Paul J Schiefer Engine flywheel
US3213986A (en) * 1961-12-29 1965-10-26 Borg Warner Friction device
US3335837A (en) * 1965-10-14 1967-08-15 Gen Motors Corp Two plate clutch with energy balanced facing material
US3584718A (en) * 1969-06-02 1971-06-15 Schiefer Mfg Co Wear surfaces of clutches, flywheels and the like
US4951793A (en) * 1989-01-25 1990-08-28 Hays Bill J Clutch assembly with improved dual frictional facings
US5033599A (en) * 1989-01-25 1991-07-23 Hays Bill J Clutch with dissimilar frictional facings and centrifugal assist
US5655637A (en) * 1995-12-18 1997-08-12 Hays; Bill J. Automotive clutch with improved heat shield
US6202820B1 (en) * 1998-10-21 2001-03-20 Mannesmann Sachs Ag Pressure plate for a friction clutch
US6651795B2 (en) * 2002-03-11 2003-11-25 Ford Global Technologies, Llc Clutch pressure plate and flywheel with friction wear surfaces

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060180423A1 (en) * 2005-02-15 2006-08-17 Thomas Kos Torque converter with a lock-up clutch assembly having a floating friction disk
US7357233B2 (en) * 2005-02-15 2008-04-15 Borgwarner Inc. Torque converter with a lock-up clutch assembly having a floating friction disk
US20100113216A1 (en) * 2008-11-05 2010-05-06 Eli Avny Temperature Control of Dual Input Clutch Transmission
US20110024258A1 (en) * 2008-11-05 2011-02-03 Ford Global Technologies Llc Transmission with Durability Enhancement Techniques
US8062178B2 (en) 2008-11-05 2011-11-22 Ford Global Technologies, Llc Temperature control of dual input clutch transmission
US8919520B2 (en) 2008-11-05 2014-12-30 Ford Global Technologies, Llc Transmission with durability enhancement techniques
US8783433B2 (en) 2010-10-02 2014-07-22 Ford Global Technologies, Llc Dry-clutch transmission with cooling techniques
US9328776B2 (en) 2010-10-02 2016-05-03 Ford Global Technologies, Llc Dry-clutch transmission with cooling techniques
US20120123635A1 (en) * 2010-11-16 2012-05-17 Ford Global Technologies Llc Powertrain thermal management system for a dry-clutch transmission
US8965628B2 (en) * 2010-11-16 2015-02-24 Ford Global Technologies, Llc Powertrain thermal management system for a dry-clutch transmission
US8527161B2 (en) 2011-01-21 2013-09-03 Ford Global Technologies, Llc Vehicle with transmission cooling system
US8930103B2 (en) 2013-03-04 2015-01-06 GETRAG Getriebe- und Zahnradfabrik Harmann Hagenmeyer GmbH & Cie KG Control method for a dual-clutch transmission

Also Published As

Publication number Publication date
DE10235260A1 (en) 2003-07-17
WO2003016734A1 (en) 2003-02-27
US7139654B2 (en) 2006-11-21
KR101043151B1 (en) 2011-06-20
DE10235260B4 (en) 2015-06-11
FR2828162A1 (en) 2003-02-07
FR2828142A1 (en) 2003-02-07
BR0205835B1 (en) 2012-10-02
DE10293612D2 (en) 2004-07-01
BR0205837A (en) 2003-12-23
FR2828249A1 (en) 2003-02-07
US7325291B2 (en) 2008-02-05
ITMI20021778A1 (en) 2003-02-07
CN1318772C (en) 2007-05-30
DE10293611D2 (en) 2004-07-01
DE10235259A1 (en) 2003-04-30
DE10235258A1 (en) 2003-04-30
US20040216296A1 (en) 2004-11-04
DE10235256A1 (en) 2003-02-27
JP2004538168A (en) 2004-12-24
BR0205834A (en) 2003-12-23
WO2003016087A1 (en) 2003-02-27
WO2003016747A1 (en) 2003-02-27
DE10293614D2 (en) 2004-07-01
CN1539063A (en) 2004-10-20
FR2828258A1 (en) 2003-02-07
DE10235257A1 (en) 2003-02-27
ITMI20021779A1 (en) 2003-02-07
KR20040035714A (en) 2004-04-29
DE10293613D2 (en) 2004-07-01
WO2003016735A1 (en) 2003-02-27
BR0205835A (en) 2003-12-23
FR2828162B1 (en) 2007-09-14
ITMI20021776A1 (en) 2003-02-07
JP2004538204A (en) 2004-12-24
ITMI20021777A1 (en) 2003-02-07
US20050003929A1 (en) 2005-01-06
BR0205837B1 (en) 2013-03-05

Similar Documents

Publication Publication Date Title
US20050126877A1 (en) Method and system for cooling the clutch system of a transmission
US10119577B2 (en) Cooling system for a dry dual clutch of a dual clutch transmission
US7448483B2 (en) Clutch cooling grooves for uniform plate temperature in friction launch
US6840363B2 (en) Multi-disk friction device selective lubrication on demand
US6244407B1 (en) Multi-disk friction device having forced lubrication on demand
US9249838B2 (en) Transmission clutch with improved cooling
US6206163B1 (en) Flow control capsule for clutch lubrication and cooling
CN101417608A (en) Regulating transmission fluid and engine coolant temperatures in a motor vehicle
CN104061319B (en) A kind of double clutch lubrication system for dual-clutch transmission
US6202814B1 (en) Automatic transmission having grounded clutch with convergent cooling
WO2011044797A1 (en) Clutch for automatic transmission
KR20130132691A (en) Drive train having a hydrodynamic retarder
GB2136880A (en) Anti-icing of gas turbine engine air intakes
US8844697B2 (en) Clutches
US5806793A (en) Cooling device for a turboshaft engine on an aircraft
US8522945B2 (en) Mechanical slip failsafe system for a heavy duty multi-speed fan clutch
US20070000728A1 (en) Multiple path fluid flow architecture for transmission cooling and lubrication
US6729990B1 (en) Automatic gearbox
KR20100066373A (en) Compact dry dual clutch module
CN112997027A (en) Working medium circuit of transmission
JP5652773B1 (en) Dry dual clutch cooling structure
US6267212B1 (en) Automatic controlled transmission
US20140001005A1 (en) Mechanical Slip Failsafe System For A Heavy-Duty Multi-Speed Fan Clutch
US11772480B2 (en) Transaxle-integrated cooling circulation system
JP3933510B2 (en) Power transmission method and apparatus

Legal Events

Date Code Title Description
AS Assignment

Owner name: LUK LAMELLEN UND KUPPLUNGSBAU BATEILIGUNGS KG, GER

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SCHNEIDER, MATTHIAS;AHNERT, GERD;LANG, DIETMAR;AND OTHERS;REEL/FRAME:015892/0544;SIGNING DATES FROM 20040319 TO 20040330

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION