US20050086903A1 - Outside conversion corner for form work - Google Patents

Outside conversion corner for form work Download PDF

Info

Publication number
US20050086903A1
US20050086903A1 US10/626,014 US62601403A US2005086903A1 US 20050086903 A1 US20050086903 A1 US 20050086903A1 US 62601403 A US62601403 A US 62601403A US 2005086903 A1 US2005086903 A1 US 2005086903A1
Authority
US
United States
Prior art keywords
corner
panels
conversion
leg
corner bracket
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/626,014
Inventor
Robert Flathau
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dayton Superior Corp
Original Assignee
Dayton Superior Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dayton Superior Corp filed Critical Dayton Superior Corp
Priority to US10/626,014 priority Critical patent/US20050086903A1/en
Assigned to SYMONS CORPORATION reassignment SYMONS CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SAFWAY FORMWORK SYSTEMS, L.L.C.
Assigned to DAYTON SUPERIOR CORPORATION reassignment DAYTON SUPERIOR CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SYMONS CORPORATION
Publication of US20050086903A1 publication Critical patent/US20050086903A1/en
Assigned to DAYTON SUPERIOR DELAWARE CORPORATION (D/B/A DAYTON SUPERIOR CORPORATION) reassignment DAYTON SUPERIOR DELAWARE CORPORATION (D/B/A DAYTON SUPERIOR CORPORATION) MERGER (SEE DOCUMENT FOR DETAILS). Assignors: DAYTON SUPERIOR CORPORATION
Abandoned legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G13/00Falsework, forms, or shutterings for particular parts of buildings, e.g. stairs, steps, cornices, balconies foundations, sills
    • E04G13/02Falsework, forms, or shutterings for particular parts of buildings, e.g. stairs, steps, cornices, balconies foundations, sills for columns or like pillars; Special tying or clamping means therefor
    • E04G13/023Falsework, forms, or shutterings for particular parts of buildings, e.g. stairs, steps, cornices, balconies foundations, sills for columns or like pillars; Special tying or clamping means therefor with means for modifying the sectional dimensions
    • E04G13/025Falsework, forms, or shutterings for particular parts of buildings, e.g. stairs, steps, cornices, balconies foundations, sills for columns or like pillars; Special tying or clamping means therefor with means for modifying the sectional dimensions with stiff clamping means bracing the back-side of the form without penetrating the forming surface
    • E04G13/026Falsework, forms, or shutterings for particular parts of buildings, e.g. stairs, steps, cornices, balconies foundations, sills for columns or like pillars; Special tying or clamping means therefor with means for modifying the sectional dimensions with stiff clamping means bracing the back-side of the form without penetrating the forming surface the forming surface-element being the same for different sections of the column
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G17/00Connecting or other auxiliary members for forms, falsework structures, or shutterings
    • E04G17/001Corner fastening or connecting means for forming or stiffening elements
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G17/00Connecting or other auxiliary members for forms, falsework structures, or shutterings
    • E04G17/004Strips for creating a chamfered edge

Definitions

  • the present invention relates in general to the field of building construction. More particularly, the present invention relates to building construction form work structures. Specifically, a preferred embodiment of the present invention relates to outside conversion corner piece for joining form work panels.
  • wood slats or other “fillers” must often be used to extend the dimensions of the panels so that they can be used in U.S. construction projects. Others offset or cut the panels to meet their needs for forming walls. After crude modifications such as these are made, these panels can often meet most desired U.S. customary unit-based system measurement specifications.
  • U.S. Pat. No. 5,700,106 relates to an easily assembled concrete form including a plurality of elongated wall members manufactured by roll forming and connected together to define an enclosure.
  • Each wall member has a first end and a second end, an inner surface and an outer surface.
  • Attached to the inner surface of the wall member at the first end is a U-shaped key having legs extending beyond the first end of the wall member.
  • Attached to the inner surface of the wall member at the second end is an interlocking bracket having two vertically spaced slots for receiving the legs of the U-shaped key to connect adjacent wall members together.
  • One of the slots is enlarged for also receiving an extending flange from a support bracket to frictionally maintain the U-shaped key and interlocking bracket in a locked relationship.
  • U.S. Pat. No. 5,397,095 relates to a modular building system for constructing the frame of a structure.
  • Standardized foundation forms, vertical forms, and tie beam forms are attached to each other.
  • the vertical forms are hinged so as to be capable of defining a corner of any angle.
  • Cover plates are selectively inserted into the tie beam forms so as to define a reception recess which corresponds to the size of a roof truss being used.
  • the various forms can be attached to each other with a minimal amount of labor.
  • U.S. Pat. No. 5,044,601 relates to an outside bay adaptor for a concrete forming structure.
  • the adaptor has a pair of elongated flat plates, each of substantial length.
  • the plates are disposed in an angular V-shaped relation to one another.
  • the plates have a pair of confronting slots.
  • the slots on the plates are transversely aligned with one another.
  • Slotted wedge bolts are extended through the line slots and extend outwardly and in diverging relation to one another and adjacent opposite ends of the plates.
  • a weldment is located at each end of the plates. The weldment connects the slotted wedge bolts which extend through the slots to the plates in a unitary assembly.
  • U.S. Pat. No. 4,958,800 discloses a locking hinge mechanism for concrete forms.
  • the mechanism includes parallel hinge strips connected together by hinges positioned at intervals along the length of the strips.
  • Each hinge includes a provision for a wedge lock.
  • the wedge lock when fully inserted position the hinge strips at a secure 90° angle.
  • the hinge strips are spaced apart from the juncture of the strips, when arranged at the 90° angle, so that concrete flashings do not clog the hinge.
  • the hinge strips are in turn affixed to side rails of the joining concrete forms to form a 90° angle, such as for a column form arrangement.
  • U.S. Pat. No. 3,917,216 discloses a quick release fastening device for releasably securing together the outer edges of two pivotally connected right angle sections of a concrete column form.
  • the concrete form is comprised of a series of upstanding rectangular panels, some of which are in a contiguous relationship. Along their adjacent side edges are outwardly extending flange-like members which extend at right angles to each other and have transverse slots therein.
  • the quick release fastening device consists of a T-bolt embodying a plate-like body portion at one end and a reduced longitudinally slotted shank at the other end. The body portion is disposed in the space between the two flange-like members and abuts against one of the flange-like members. The shank portion extends through and beyond a transverse slot in one flange-like member. An additional T-bolt may also be employed.
  • U.S. Pat. No. 901,209 discloses an improved clip which is composed of sheet metal and made in one piece. It comprises a body portion 1 having two sets or pairs of spaced engaging portions or flanges, 2 and 3 , arranged respectively in planes at right angels to each other. A supplemental flange 6 having an opening 7 is formed on the body 1 at a point centrally between the flanges 3 , a flange 4 . Formed in the body 1 at points near its ends are openings or perforations 8 for reception of screws or other fastening members by means of which the clip may be attached to one of the mold sections or boards.
  • U.S. Pat. No. 1,109,810 discloses cross bars which are attached to the sides of the molding boards. The opposite members of each pair are drawn together to clamp the molding boards between them, by longitudinal strips, preferably, though not necessarily, in the form of angle irons 4 which extend lengthwise the column and overlie and the ends of the cross bars. Bolts 5 are then employed to clamp the irons together at any appropriate points, preferably, however, near the top and bottom of the mold and at one or more intermediate points according to the dimensions of the mold. The angle irons may be drilled at frequent intervals as represented so that the bolts may be inserted at any point required.
  • U.S. Pat. No. 1,170,753 discloses a form for concrete columns.
  • the form consists of a series of angle plates having a series of apertures formed in their edges and adapted to be adjustably secured together by bolts located in apertures of adjacent plates.
  • a series of longitudinally extending notched braces are located at intermediate points of the sides of the mold, and a series of transversely extending clamps are located in the notches of the longitudinally extending braces.
  • U.S. Pat. No. 1,171,760 discloses the vertical end edges of the panels 2 and 5 along with angles 23 and 24 . These angles are similar to the angles 18 and 19 illustrated in FIG. 1 . Bolted to the flanges of these angels are the angles 25 and 26 , the free wings of which, as indicated FIG. 3 , are provided with a plurality of horizontal slots 27 . Angle 25 has slots 27 at left hand end of panel 2 in FIG. 1 .
  • the corner panel 7 is provided with a plurality of rows of holes 28 ( FIG. 1 ). This panel is secured to the angles 25 and 26 by means of stove bolts 29 which extend through the holes in the corner panel and through the slots 27 in the wings of the angles 25 and 26 . This arrangement gives any and all desired adjustments since the slots 27 in the arms or flanges of the angles 25 and 26 lying next the plates 7 give adjustments lying between the holes in the rows 28 .
  • U.S. Pat. No. 1,374,864 discloses a form which is designed for use in molding a concrete column of rectangular shape in cross section each of the sections will comprise four parts 1 , 2 , 3 and 4 of such proportions that when they are arranged in the manner shown in FIG. 2 they will overlap each other more or less according to the diameter of the column, each of said parts being of substantially L-shaped in outline.
  • the parts of the base section A are of substantially channel shaped in vertical cross section, as shown in FIG. 4 , and each of the parts comprises a vertical web 5 provided at its upper and lower edges with an outwardly-projecting portion or vertical flange 7 a .
  • the parts are adapted to be arranged in telescopic engagement with each other by slipping one end of each part longitudinally into the end of an adjacent part, thus forming a rectangular shaped frame composed of four parts that are interlocked securely with each other.
  • U.S. Pat. No. 1,468,702 discloses a structure preferably comprised of two elongated rectangular shaped walls A and B. These walls are permanently and integrally joined to each other along their meeting longitudinal edges so as to be disposed in planes at right angels to each other in transverse section. Adjacent the longitudinal edges, opposite the joined edges, walls A and B are, respectively, provided with parallel pairs of ears 5 and 6 .
  • the movable walls C and D are hingedly connected to walls A and B by upper and lower hinge brackets 7 and 8 .
  • the brackets extend from the respective walls, i.e., brackets 7 of wall C are positioned at their lateral ends between ears 6 and pivotally assembled therewith by pins 9 .
  • the lateral ends of brackets 8 are similarly positioned between ears 5 and pivotally assembled therewith by pins 10 .
  • U.S. Pat. No. 1,861,766 discloses several wall sections to make up a form such as plates A, B, C, etc. be right-angular in cross-section each having the walls 10 and 11 .
  • FIG. 12 it is shown how these right-angular plates overlie one upon the marginal edge of the other so as to be adjustable to vary the width of the wall of the form which they will serve to make.
  • FIG. 14 shows flanges 12 , 13 formed upon the corner parts of each right-angular plate A, B, C and D respectively, the terminals 10 A of the walls 10 of which plates project beyond the adjacent extreme end of the flange 12 , so these parts are shouldered one against the other.
  • the flanges serve to reinforce the right-angular plates giving them more strength and durability.
  • FIG. 14 shows how these plates are arranged to provide a rectangular enclosure for building a concrete column or post therein. Since the sheet metal plates will be of inappreciable thickness their overlap will hardly interfere with the flush continuation of each side of the completed column.
  • a device that converts odd-sized imported form work building panels for use in the home country in a cost-effective manner is of interest to, for example, those in the field of building construction.
  • the present invention is directed towards a means for using various elements to form a static mold or form work structure.
  • the mold may be used to form a building structure such as a wall corner or a column.
  • the elements include odd-sized molding or form work panels.
  • the means comprises use of a corner bracket for connecting the edges of the panels.
  • the bracket can have a stepped angle bend to form the corner of the mold where the adjacent panels do not abut.
  • a primary object of the invention is to provide a column or corner forming apparatus which uses a device such as a conversion corner to aid in converting metric sized panels for use in U.S. customary unit-based construction projects.
  • Another object of the invention is to provide a column or corner forming apparatus which uses a device such as a conversion corner to aid in converting U.S. customary unit sized panels for use in metric unit based construction projects.
  • Still another object of the invention is to provide an apparatus that is relatively inexpensive, ruggedized and reliable, thereby decreasing down time and operating costs.
  • Yet another object of the invention is to provide a device that has one or more of the characteristics discussed above but which is relatively simple to manufacture and assemble using a minimum of equipment.
  • Another object of the invention is to provide a method that can be used to form a concrete member. Another object of the invention is to provide a method that is predictable and reproducible, thereby decreasing variance and operating costs. Another object of the invention is to provide a method that has one or more of the characteristics discussed above but which is which is relatively simple to setup and operate using relatively low skilled workers.
  • these objects are achieved by providing a method of forming concrete members in standardized U.S. customary unit dimensions from a form work panel structure having standardized metric dimensions, the method comprising the steps of: connecting two form work panels with at least one conversion corner bracket to form a first corner; connecting two additional form work panels with at least one conversion corner bracket to form a second corner; configuring the second corner to oppose the first corner; securing the panels in place; erecting the form work panel structure; and pouring a building material in between the first corner and second corner to form a building member.
  • FIG. 1 shows a perspective view of one embodiment of the building structure forming apparatus of the current invention
  • FIG. 1A shows a perspective view of another embodiment of the building structure forming apparatus of the current invention
  • FIG. 2 shows a top plan view of the apparatus of FIG. 1 ;
  • FIG. 2A shows a top plan view of the apparatus of FIG. 1A ;
  • FIG. 3 shows one embodiment of a means of securing corners of the apparatus of FIG. 1 ;
  • FIG. 3A shows an alternative embodiment of a means of securing corresponding to the apparatus of FIG. 1A ;
  • FIG. 3B shows an alternative embodiment of a means of securing capable of corresponding to the apparatus of FIG. 1A ;
  • FIG. 4 shows a perspective view of one embodiment of the conversion corner bracket of the present invention
  • FIG. 5 shows a top plan view of the conversion corner bracket of FIG. 4 ;
  • FIG. 5A shows an alternative top plan view of the conversion corner bracket of FIG. 5 ;
  • FIG. 6 shows one embodiment of a forming apparatus as typically used in the art
  • FIG. 6A shows another embodiment of a forming apparatus as typically used in the art.
  • FIG. 7 shows an embodiment of a corner forming apparatus comprising a means for securing.
  • the present invention is a building structure forming apparatus 5 .
  • the structure forming apparatus is a form work mold which may be used to form columns and walls for construction projects.
  • a typical building material contained by the form work is concrete, although other suitable building materials, such as polyurethane foam, can be used.
  • the apparatus 5 is formed generally from a plurality of panels 8 which may be constructed and arranged to form a column, a pilaster, a corner of wall, or some other building structure.
  • the panels 8 a , 8 b , 8 c , and 8 d may be used to construct corner pairs or sets.
  • these corner sets may be configured to form a generally square, box-like structure for forming columns, pilasters, or the like.
  • the corner sets may be constructed and arranged to form a wall corner (see FIG. 7 ).
  • the panels 8 a , 8 b , 8 c , and 8 d are preferably constructed of paneling 9 preferably constructed of plywood. Attached to the paneling 9 is a support structure comprised of outer horizontal support beams 12 and vertical support beams 13 . In one preferred embodiment, inner horizontal support beams 14 are added for additional strength and support (best shown in FIG. 1 ).
  • the vertical support beams 13 generally have a plurality of holes 15 throughout. Similarly, the horizontal support beams also have a plurality of holes 16 .
  • panels 8 can be joined together by outer corner clamps 18 .
  • the clamps 18 preferably can be adjusted and tightly secured by using securing mechanism 20 .
  • a preferred mechanism 20 can be easily tightened by construction crew workers.
  • a conversion corner bracket 24 connects the corner sets in the proper configuration to form a concrete column. Once the conversion corner brackets 24 are secured in place, they form a concrete receiving orifice 22 . As shown by the partial cut-away sectional view of FIG. 2 , as well as in FIG. 1 , a securing member 28 , such as a bolt, is generally inserted into a hole 15 in the vertical support beam 13 (both shown in FIG. 1 ) and secured on opposing sides by a nut 26 .
  • FIG. 3 illustrate one acceptable nut 26 and bolt 28 arrangement.
  • bolt 28 preferably comprises a bent handle portion.
  • the handle portion is bent approximately 90°.
  • the bend in the handle facilitates tightening of the nut and bolt arrangement by making it easier for one to grasp and hold.
  • the handle can act as a “stop” or “stopping” mechanism that can work to prevent the nut/bolt arrangement from loosening, and ultimately, becoming unfastened. It is understood that the number and placement of bolts (and their corresponding nuts) will vary to convenience, depending on the particular project requirements.
  • FIG. 3A An alternative securing member embodiment comprising nut 26 a and bolt 28 a is illustrated in FIG. 3A .
  • FIGS. 1A and 2A also illustrate this alternative securing member embodiment and are primarily included for this purpose.
  • FIG. 3B illustrates yet another securing member embodiment, comprising nut 26 b and bolt 28 b which is similar to that of FIG. 3 , but without the bent handle portion.
  • the conversion corner bracket 24 has a bracket first leg 30 and a bracket second leg 32 .
  • the conversion corner bracket 24 is generally W-shaped to maximize strength while reducing weight.
  • the legs 30 , 32 are essentially joined to form a right angle. That is, a first plane of the first leg 30 and a second plane of the second leg 32 are perpendicular to each other, thus forming a 90° angle.
  • An outer corner of the conversion corner bracket 24 is a V-shaped indented outer corner 34 which lies between the first leg 30 and the second leg 32 . Opposite the V-shaped indented corner 34 is a rounded inside corner 36 .
  • Securing members or bolts secure the W-shaped conversion corner bracket 24 by penetrating bore 38 contained therein.
  • the V-shaped indentation can be replaced with a substantially flat surface 34 a at 45° to first leg 30 and second leg 32 . This would provide a poured concrete column with a 45° chamfered corner.
  • a plurality of similar bolts 28 secure each conversion corner bracket 24 through numerous bores 38 displaced along the length of the bracket 24 , as best shown in FIG. 4 .
  • each bore 38 of the conversion corner 24 is then properly aligned with holes 15 in the vertical support beam 13 .
  • Nuts 26 are then preferably engaged with each bolt 28 to secure the conversion corner bracket 24 to the panels 8 .
  • the column forming apparatus 5 has a telescoping supporting tubular steel prop 40 .
  • the prop 40 is constructed of a tubular strut 42 which may consist of two or more telescoping tubes within a tube.
  • Strut base 44 serves to stabilize the prop 40 .
  • a strut connector 46 connects the prop 40 to the vertical support beam 13 of a panel 8 .
  • a horizontal stabilizer bar 48 may be connected from the strut base 44 to the base of the form work 7 at a point near the bottom of a vertical support beam 13 .
  • Conversion corner bracket 24 can be properly dimensioned to allow for the use of standardized metric dimensioned panels to be used on U.S. customary unit based construction projects.
  • Conversion corner bracket 24 can be constructed of extruded aluminum. The corner bracket typically will have a milled finish to ensure proper texture and dimensions.
  • the first leg 30 of conversion corner bracket 24 is about ⁇ fraction (5/16) ⁇ ′′ wide and about 43 ⁇ 4′′ long.
  • the V-shaped, indented outer corner 34 is approximately ⁇ fraction (3/8) ⁇ ′′ deep along one dimension and 3 ⁇ 8′′ deep along the other.
  • the second leg 32 is also about ⁇ fraction (5/16) ⁇ ′′ thick and about 4 ⁇ fraction ( 3 / 4 ) ⁇ ′′ long.
  • the extruded aluminum bracket 24 stands about 118.09′′ high.
  • the bores 38 are approximately 0.75′′ in diameter.
  • the radius of the rounded inside corner 36 is about 1 ⁇ fraction ( 1 / 4 ) ⁇ ′′.
  • the outside conversion corner bracket stands approximately 106.298′′ high.
  • the outside conversion corner stands approximately 5.045′′ high.
  • Table I shows the standardized U.S. customary unit-based column sizes which can be constructed from various metric unit based panels by using one preferred embodiment of the present invention.
  • TABLE I Column Size Panel Actual Dimension 18 inches 45 cm 18.09 inches 20 inches 50 cm 20.06 inches 22 inches 55 cm 22.03 inches 24 inches 60 cm 23.99 inches 26 inches 65 cm 25.96 inches 28 inches 70 cm 27.93 inches 30 inches 75 cm 29.90 inches 32 inches 80 cm 31.87 inches 34 inches 85 cm 33.84 inches 36 inches 90 cm 35.81 inches
  • the dimensions are: 12 inches 30 cm 12.186 inches
  • the largest column which can be formed is 36 inches ⁇ 32 inches.
  • a somewhat differently dimensioned conversion corner bracket 24 so that builders can use Imperial (also known as U.S. customary unit) unit based form work panels 8 to construct metric unit based building structures for metric unit based buildings.
  • Imperial also known as U.S. customary unit
  • a 60 centimeter column may be formed using a standardized 22-inch panel and 1 ⁇ fraction (5/8) ⁇ inch conversion corner.
  • FIG. 7 shows an embodiment of a corner forming apparatus.
  • the apparatus comprises means for securing such as bolt 28 and nut 26 .
  • Two form work panels 8 a and 8 b are connected with a first conversion corner bracket 24 to form a first corner pair or set 52 .
  • Two additional form work panels 8 c and 8 d are connected to each other with a second conversion corner bracket 24 which is similar to the first conversion corner bracket to form a second corner pair or set 54 .
  • the second corner set 54 is then properly configured to oppose the first corner set 52 to correctly form the intended structure 50 .
  • the first corner 52 and the second corner 54 configured to resemble two offset L-shapes.
  • the first corner set 52 and the second corner set 54 are configured in a box shape (see FIG. 1 ).
  • the panels 8 a , 8 b , 8 c , 8 d are secured in place with a securing mechanism such as a clamp 20 .
  • the form work panels 8 a , 8 b , 8 c , and 8 d are then erected and supported if necessary by tubular steel props 40 .
  • Building material, such as concrete, is then poured between the first corner set 52 and the second corner set 54 to form a structure 50 .
  • the conversion corner bracket of the present invention can be made of any material. Nevertheless, for the manufacturing operation, it is moreover an advantage to employ an extrudable, aluminum-like material.
  • the panels may be made of any suitable, durable, strong and light-weight material.
  • the individual components need not be formed in the disclosed shapes, or assembled in the disclosed configuration, but could be provided in virtually any shape, and assembled in virtually any configuration.
  • the panel components and conversion corner are described herein is physically separate modules, it will be manifest that they may be integrated.
  • all the disclosed features of each disclosed embodiment can be combined with, or substituted for, the disclosed features of every other disclosed embodiment except where such features are mutually exclusive.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Mechanical Engineering (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Forms Removed On Construction Sites Or Auxiliary Members Thereof (AREA)

Abstract

A building member forming apparatus is comprised of standardized metric dimensioned panels including plywood paneling, outer horizontal support beams, vertical support beams, and inner horizontal support beams. A conversion corner bracket has a first leg and a second leg joined to form a right angle, a V-shaped indented outer corner, and a rounded inside corner opposite the V-shaped indented corner. The conversion corner bracket is attached to the panels by securing members which secure the conversion corner bracket to the vertical support beam of the panels. The conversion corner allows the apparatus to convert standardized dimensioned panels for use with either metric or U.S. customary unit-based construction structures.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention relates in general to the field of building construction. More particularly, the present invention relates to building construction form work structures. Specifically, a preferred embodiment of the present invention relates to outside conversion corner piece for joining form work panels.
  • 2. Discussion of the Related Art
  • Historically, builders have used form work panels to form walls and columns. For example when forming a wall, concrete is poured between two opposing panels of form work and over vertically projecting re-bar. After the concrete cures, the panels are removed to leave a free-standing wall. Similarly, when forming a column concrete is poured over inside pairs of opposing panels of form work and vertically projecting re-bar. When the concrete cures, the panels are removed to leave a free-standing column.
  • Some form work panels are imported from abroad. These panels are often made according to the exporting country's measurement system. For example, it is nearly impossible to use panels imported from Europe on construction projects in the U.S. or other home country. This is because imported panels are typically created to conform with metric units. Metric units do not translate well in the world of U.S. building construction because contractors are typically not as familiar with such measurements and equipment. Moreover, building codes and blueprint specifications are not easily tailored to metric units to meet the builders' needs.
  • As is known to those skilled in the art, wood slats or other “fillers” must often be used to extend the dimensions of the panels so that they can be used in U.S. construction projects. Others offset or cut the panels to meet their needs for forming walls. After crude modifications such as these are made, these panels can often meet most desired U.S. customary unit-based system measurement specifications.
  • However, the metric-sized panels are especially problematic when used to form columns on U.S. construction projects. One unsatisfactory previously recognized approach to solving the problem referred to herein involves the use of wood slats or fillers mentioned above. Fillers are generally impractical as they take time to construct and put into place. With the high cost of construction crew labor, this previously recognized solution also has the disadvantage of relatively high cost. Consequently, a preferred solution will be seen by the end-user as being cost effective. A solution is cost effective when it is seen by the end-user as compelling when compared with other potential uses that the end-user could make of limited resources.
  • Also, the fillers may shift during the concrete pouring or drying process. This may cause safety and/or structural problems. Because of this fact, a number of jurisdictions restrict the use of the aforementioned previously recognized approach because of the aforementioned disadvantages. However, since up until now there has been no suitable alternative, many jurisdictions are generally not enforcing such a prohibition.
  • What is needed therefore is a device which converts odd-sized imported form work building panels for use in the home country. Further, what is also needed is an inventive outside conversion corner configured and dimensioned such that the panels can be easily joined to fit most U.S. customary unit applications.
  • The below-referenced U.S. patents, and allowed U.S. applications in which the issue fees have been paid, disclose embodiments that were at least in-part satisfactory for the purposes for which they were intended. The disclosures of all the below-referenced prior United States patents, and applications, in their entireties are hereby expressly incorporated by reference into the present application for purposes including, but not limited to, indicating the background of the present invention and illustrating the state of the art.
  • U.S. Pat. No. 5,700,106 relates to an easily assembled concrete form including a plurality of elongated wall members manufactured by roll forming and connected together to define an enclosure. Each wall member has a first end and a second end, an inner surface and an outer surface. Attached to the inner surface of the wall member at the first end is a U-shaped key having legs extending beyond the first end of the wall member. Attached to the inner surface of the wall member at the second end is an interlocking bracket having two vertically spaced slots for receiving the legs of the U-shaped key to connect adjacent wall members together. One of the slots is enlarged for also receiving an extending flange from a support bracket to frictionally maintain the U-shaped key and interlocking bracket in a locked relationship.
  • U.S. Pat. No. 5,397,095 relates to a modular building system for constructing the frame of a structure. Standardized foundation forms, vertical forms, and tie beam forms are attached to each other. The vertical forms are hinged so as to be capable of defining a corner of any angle. Cover plates are selectively inserted into the tie beam forms so as to define a reception recess which corresponds to the size of a roof truss being used. The various forms can be attached to each other with a minimal amount of labor.
  • U.S. Pat. No. 5,044,601 relates to an outside bay adaptor for a concrete forming structure. The adaptor has a pair of elongated flat plates, each of substantial length. The plates are disposed in an angular V-shaped relation to one another. The plates have a pair of confronting slots. The slots on the plates are transversely aligned with one another. Slotted wedge bolts are extended through the line slots and extend outwardly and in diverging relation to one another and adjacent opposite ends of the plates. A weldment is located at each end of the plates. The weldment connects the slotted wedge bolts which extend through the slots to the plates in a unitary assembly.
  • U.S. Pat. No. 4,958,800 discloses a locking hinge mechanism for concrete forms. The mechanism includes parallel hinge strips connected together by hinges positioned at intervals along the length of the strips. Each hinge includes a provision for a wedge lock. The wedge lock when fully inserted position the hinge strips at a secure 90° angle. The hinge strips are spaced apart from the juncture of the strips, when arranged at the 90° angle, so that concrete flashings do not clog the hinge. The hinge strips are in turn affixed to side rails of the joining concrete forms to form a 90° angle, such as for a column form arrangement.
  • U.S. Pat. No. 3,917,216 discloses a quick release fastening device for releasably securing together the outer edges of two pivotally connected right angle sections of a concrete column form. The concrete form is comprised of a series of upstanding rectangular panels, some of which are in a contiguous relationship. Along their adjacent side edges are outwardly extending flange-like members which extend at right angles to each other and have transverse slots therein. The quick release fastening device consists of a T-bolt embodying a plate-like body portion at one end and a reduced longitudinally slotted shank at the other end. The body portion is disposed in the space between the two flange-like members and abuts against one of the flange-like members. The shank portion extends through and beyond a transverse slot in one flange-like member. An additional T-bolt may also be employed.
  • U.S. Pat. No. 901,209 discloses an improved clip which is composed of sheet metal and made in one piece. It comprises a body portion 1 having two sets or pairs of spaced engaging portions or flanges, 2 and 3, arranged respectively in planes at right angels to each other. A supplemental flange 6 having an opening 7 is formed on the body 1 at a point centrally between the flanges 3, a flange 4. Formed in the body 1 at points near its ends are openings or perforations 8 for reception of screws or other fastening members by means of which the clip may be attached to one of the mold sections or boards.
  • U.S. Pat. No. 1,109,810 discloses cross bars which are attached to the sides of the molding boards. The opposite members of each pair are drawn together to clamp the molding boards between them, by longitudinal strips, preferably, though not necessarily, in the form of angle irons 4 which extend lengthwise the column and overlie and the ends of the cross bars. Bolts 5 are then employed to clamp the irons together at any appropriate points, preferably, however, near the top and bottom of the mold and at one or more intermediate points according to the dimensions of the mold. The angle irons may be drilled at frequent intervals as represented so that the bolts may be inserted at any point required.
  • U.S. Pat. No. 1,170,753 discloses a form for concrete columns. The form consists of a series of angle plates having a series of apertures formed in their edges and adapted to be adjustably secured together by bolts located in apertures of adjacent plates. A series of longitudinally extending notched braces are located at intermediate points of the sides of the mold, and a series of transversely extending clamps are located in the notches of the longitudinally extending braces. These embrace the joined plates and have a series of apertures formed therein.
  • U.S. Pat. No. 1,171,760 discloses the vertical end edges of the panels 2 and 5 along with angles 23 and 24. These angles are similar to the angles 18 and 19 illustrated in FIG. 1. Bolted to the flanges of these angels are the angles 25 and 26, the free wings of which, as indicated FIG. 3, are provided with a plurality of horizontal slots 27. Angle 25 has slots 27 at left hand end of panel 2 in FIG. 1. The corner panel 7 is provided with a plurality of rows of holes 28 (FIG. 1). This panel is secured to the angles 25 and 26 by means of stove bolts 29 which extend through the holes in the corner panel and through the slots 27 in the wings of the angles 25 and 26. This arrangement gives any and all desired adjustments since the slots 27 in the arms or flanges of the angles 25 and 26 lying next the plates 7 give adjustments lying between the holes in the rows 28.
  • U.S. Pat. No. 1,374,864 discloses a form which is designed for use in molding a concrete column of rectangular shape in cross section each of the sections will comprise four parts 1, 2, 3 and 4 of such proportions that when they are arranged in the manner shown in FIG. 2 they will overlap each other more or less according to the diameter of the column, each of said parts being of substantially L-shaped in outline. The parts of the base section A are of substantially channel shaped in vertical cross section, as shown in FIG. 4, and each of the parts comprises a vertical web 5 provided at its upper and lower edges with an outwardly-projecting portion or vertical flange 7 a. The parts are adapted to be arranged in telescopic engagement with each other by slipping one end of each part longitudinally into the end of an adjacent part, thus forming a rectangular shaped frame composed of four parts that are interlocked securely with each other.
  • U.S. Pat. No. 1,468,702 discloses a structure preferably comprised of two elongated rectangular shaped walls A and B. These walls are permanently and integrally joined to each other along their meeting longitudinal edges so as to be disposed in planes at right angels to each other in transverse section. Adjacent the longitudinal edges, opposite the joined edges, walls A and B are, respectively, provided with parallel pairs of ears 5 and 6. The movable walls C and D are hingedly connected to walls A and B by upper and lower hinge brackets 7 and 8. The brackets extend from the respective walls, i.e., brackets 7 of wall C are positioned at their lateral ends between ears 6 and pivotally assembled therewith by pins 9. On the other hand, the lateral ends of brackets 8 are similarly positioned between ears 5 and pivotally assembled therewith by pins 10.
  • U.S. Pat. No. 1,861,766 discloses several wall sections to make up a form such as plates A, B, C, etc. be right-angular in cross-section each having the walls 10 and 11. In FIG. 12, it is shown how these right-angular plates overlie one upon the marginal edge of the other so as to be adjustable to vary the width of the wall of the form which they will serve to make. FIG. 14 shows flanges 12, 13 formed upon the corner parts of each right-angular plate A, B, C and D respectively, the terminals 10A of the walls 10 of which plates project beyond the adjacent extreme end of the flange 12, so these parts are shouldered one against the other. The flanges serve to reinforce the right-angular plates giving them more strength and durability.
  • FIG. 14 shows how these plates are arranged to provide a rectangular enclosure for building a concrete column or post therein. Since the sheet metal plates will be of inappreciable thickness their overlap will hardly interfere with the flush continuation of each side of the completed column.
  • In short, a device that converts odd-sized imported form work building panels for use in the home country in a cost-effective manner is of interest to, for example, those in the field of building construction.
  • SUMMARY AND OBJECTS OF THE INVENTION
  • By way of summary, the present invention is directed towards a means for using various elements to form a static mold or form work structure. The mold may be used to form a building structure such as a wall corner or a column. The elements include odd-sized molding or form work panels. The means comprises use of a corner bracket for connecting the edges of the panels. The bracket can have a stepped angle bend to form the corner of the mold where the adjacent panels do not abut.
  • A primary object of the invention is to provide a column or corner forming apparatus which uses a device such as a conversion corner to aid in converting metric sized panels for use in U.S. customary unit-based construction projects. Another object of the invention is to provide a column or corner forming apparatus which uses a device such as a conversion corner to aid in converting U.S. customary unit sized panels for use in metric unit based construction projects. Still another object of the invention is to provide an apparatus that is relatively inexpensive, ruggedized and reliable, thereby decreasing down time and operating costs. Yet another object of the invention is to provide a device that has one or more of the characteristics discussed above but which is relatively simple to manufacture and assemble using a minimum of equipment.
  • Another object of the invention is to provide a method that can be used to form a concrete member. Another object of the invention is to provide a method that is predictable and reproducible, thereby decreasing variance and operating costs. Another object of the invention is to provide a method that has one or more of the characteristics discussed above but which is which is relatively simple to setup and operate using relatively low skilled workers.
  • In accordance with one aspect of the invention, these objects are achieved by providing a method of forming concrete members in standardized U.S. customary unit dimensions from a form work panel structure having standardized metric dimensions, the method comprising the steps of: connecting two form work panels with at least one conversion corner bracket to form a first corner; connecting two additional form work panels with at least one conversion corner bracket to form a second corner; configuring the second corner to oppose the first corner; securing the panels in place; erecting the form work panel structure; and pouring a building material in between the first corner and second corner to form a building member.
  • These, and other, aspects and objects of the present invention will be better appreciated and understood when considered in conjunction with the following description and the accompanying drawings. It should be understood, however, that the following description, while indicating preferred embodiments of the present invention, is given by way of illustration and not of limitation. Many changes and modifications may be made within the scope of the present invention without departing from the spirit thereof, and the invention includes all such modifications.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • A clear conception of the advantages and features constituting the present invention, and of the construction and operation of typical mechanisms provided with the present invention, will become more readily apparent by referring to the exemplary, and therefore non-limiting, embodiments illustrated in the drawings accompanying and forming a part of this specification, wherein like reference numerals designate the same elements in the several views, and in which:
  • FIG. 1 shows a perspective view of one embodiment of the building structure forming apparatus of the current invention;
  • FIG. 1A shows a perspective view of another embodiment of the building structure forming apparatus of the current invention;
  • FIG. 2 shows a top plan view of the apparatus of FIG. 1;
  • FIG. 2A shows a top plan view of the apparatus of FIG. 1A;
  • FIG. 3 shows one embodiment of a means of securing corners of the apparatus of FIG. 1;
  • FIG. 3A shows an alternative embodiment of a means of securing corresponding to the apparatus of FIG. 1A;
  • FIG. 3B shows an alternative embodiment of a means of securing capable of corresponding to the apparatus of FIG. 1A;
  • FIG. 4 shows a perspective view of one embodiment of the conversion corner bracket of the present invention;
  • FIG. 5 shows a top plan view of the conversion corner bracket of FIG. 4;
  • FIG. 5A shows an alternative top plan view of the conversion corner bracket of FIG. 5;
  • FIG. 6 shows one embodiment of a forming apparatus as typically used in the art;
  • FIG. 6A shows another embodiment of a forming apparatus as typically used in the art; and
  • FIG. 7 shows an embodiment of a corner forming apparatus comprising a means for securing.
  • DESCRIPTION OF PREFERRED EMBODIMENTS
  • The present invention and the various features and advantageous details thereof are explained more fully with reference to the non-limiting embodiments described in detail in the following description.
  • Specific embodiments of the present invention will now be further described by the following, non-limiting examples which will serve to illustrate various features of significance. The examples are intended merely to facilitate an understanding of ways in which the present invention may be practiced and to further enable those of skill in the art to practice the present invention. Accordingly, the examples should not be construed as limiting the scope of the present invention.
  • Referring to the drawings FIGS. 1-7, it can be seen that the present invention is a building structure forming apparatus 5. The structure forming apparatus is a form work mold which may be used to form columns and walls for construction projects. A typical building material contained by the form work is concrete, although other suitable building materials, such as polyurethane foam, can be used.
  • The apparatus 5 is formed generally from a plurality of panels 8 which may be constructed and arranged to form a column, a pilaster, a corner of wall, or some other building structure.
  • Referring to the embodiment shown in FIG. 1, the panels 8 a, 8 b, 8 c, and 8 d may be used to construct corner pairs or sets. In the embodiment shown, these corner sets may be configured to form a generally square, box-like structure for forming columns, pilasters, or the like. Alternatively, the corner sets may be constructed and arranged to form a wall corner (see FIG. 7).
  • Referring again to FIG. 1, the panels 8 a, 8 b, 8 c, and 8 d are preferably constructed of paneling 9 preferably constructed of plywood. Attached to the paneling 9 is a support structure comprised of outer horizontal support beams 12 and vertical support beams 13. In one preferred embodiment, inner horizontal support beams 14 are added for additional strength and support (best shown in FIG. 1). The vertical support beams 13 generally have a plurality of holes 15 throughout. Similarly, the horizontal support beams also have a plurality of holes 16.
  • As is known in the art, panels 8 can be joined together by outer corner clamps 18. The clamps 18 preferably can be adjusted and tightly secured by using securing mechanism 20. As shown in FIG. 1, a preferred mechanism 20 can be easily tightened by construction crew workers.
  • Referring now to FIG. 2, once the clamps 18 are in place, a conversion corner bracket 24 connects the corner sets in the proper configuration to form a concrete column. Once the conversion corner brackets 24 are secured in place, they form a concrete receiving orifice 22. As shown by the partial cut-away sectional view of FIG. 2, as well as in FIG. 1, a securing member 28, such as a bolt, is generally inserted into a hole 15 in the vertical support beam 13 (both shown in FIG. 1) and secured on opposing sides by a nut 26.
  • FIG. 3 (as well as FIGS. 1 and 2 described above and FIGS. 6 and 7 which follow) illustrate one acceptable nut 26 and bolt 28 arrangement. As is illustrated, bolt 28 preferably comprises a bent handle portion. In one preferred embodiment, the handle portion is bent approximately 90°. The bend in the handle facilitates tightening of the nut and bolt arrangement by making it easier for one to grasp and hold. In addition the handle can act as a “stop” or “stopping” mechanism that can work to prevent the nut/bolt arrangement from loosening, and ultimately, becoming unfastened. It is understood that the number and placement of bolts (and their corresponding nuts) will vary to convenience, depending on the particular project requirements.
  • An alternative securing member embodiment comprising nut 26 a and bolt 28 a is illustrated in FIG. 3A. FIGS. 1A and 2A also illustrate this alternative securing member embodiment and are primarily included for this purpose. FIG. 3B illustrates yet another securing member embodiment, comprising nut 26 b and bolt 28 b which is similar to that of FIG. 3, but without the bent handle portion.
  • Referring to FIGS. 4 and 5, the conversion corner bracket 24 has a bracket first leg 30 and a bracket second leg 32. In the preferred embodiment, the conversion corner bracket 24 is generally W-shaped to maximize strength while reducing weight. The legs 30, 32 are essentially joined to form a right angle. That is, a first plane of the first leg 30 and a second plane of the second leg 32 are perpendicular to each other, thus forming a 90° angle. An outer corner of the conversion corner bracket 24 is a V-shaped indented outer corner 34 which lies between the first leg 30 and the second leg 32. Opposite the V-shaped indented corner 34 is a rounded inside corner 36. Securing members or bolts secure the W-shaped conversion corner bracket 24 by penetrating bore 38 contained therein.
  • Alternatively, and as shown in FIG. 5A, the V-shaped indentation can be replaced with a substantially flat surface 34 a at 45° to first leg 30 and second leg 32. This would provide a poured concrete column with a 45° chamfered corner.
  • Preferably, a plurality of similar bolts 28 secure each conversion corner bracket 24 through numerous bores 38 displaced along the length of the bracket 24, as best shown in FIG. 4. Once a bolt 28 is inserted into a bore 38, each bore 38 of the conversion corner 24 is then properly aligned with holes 15 in the vertical support beam 13. Nuts 26 are then preferably engaged with each bolt 28 to secure the conversion corner bracket 24 to the panels 8.
  • Referring to FIG. 6, a typical form work column forming apparatus 5 is shown. In one preferred embodiment, the column forming apparatus 5 has a telescoping supporting tubular steel prop 40. The prop 40 is constructed of a tubular strut 42 which may consist of two or more telescoping tubes within a tube. Strut base 44 serves to stabilize the prop 40. A strut connector 46 connects the prop 40 to the vertical support beam 13 of a panel 8. Once erected, building material, such as concrete, is poured in between the first corner 52 and the second corner 54 of the form work to form building structure 50.
  • As shown in FIG. 6A, a horizontal stabilizer bar 48 may be connected from the strut base 44 to the base of the form work 7 at a point near the bottom of a vertical support beam 13.
  • An important aspect of the inventive conversion corner bracket 24 is it can be properly dimensioned to allow for the use of standardized metric dimensioned panels to be used on U.S. customary unit based construction projects. Conversion corner bracket 24 can be constructed of extruded aluminum. The corner bracket typically will have a milled finish to ensure proper texture and dimensions.
  • In one preferred embodiment, the first leg 30 of conversion corner bracket 24 is about {fraction (5/16)}″ wide and about 4¾″ long. The V-shaped, indented outer corner 34 is approximately {fraction (3/8)}″ deep along one dimension and ⅜″ deep along the other. The second leg 32 is also about {fraction (5/16)}″ thick and about 4{fraction (3/4)}″ long. In one preferred embodiment, the extruded aluminum bracket 24 stands about 118.09″ high. The bores 38 are approximately 0.75″ in diameter. The radius of the rounded inside corner 36 is about 1{fraction (1/4)}″. In another embodiment, the outside conversion corner bracket stands approximately 106.298″ high. In another embodiment, the outside conversion corner stands approximately 5.045″ high.
  • Table I (set forth below) shows the standardized U.S. customary unit-based column sizes which can be constructed from various metric unit based panels by using one preferred embodiment of the present invention.
    TABLE I
    Column Size Panel Actual Dimension
    18 inches 45 cm 18.09 inches
    20 inches 50 cm 20.06 inches
    22 inches 55 cm 22.03 inches
    24 inches 60 cm 23.99 inches
    26 inches 65 cm 25.96 inches
    28 inches 70 cm 27.93 inches
    30 inches 75 cm 29.90 inches
    32 inches 80 cm 31.87 inches
    34 inches 85 cm 33.84 inches
    36 inches 90 cm 35.81 inches
    For smaller columns the dimensions are:
    12 inches 30 cm 12.186 inches 
  • In the preferred embodiment illustrated above, the largest column which can be formed is 36 inches×32 inches. The smallest is (formed from 30 centimeters (cm) panels) is 18 inches×14 inches.
  • As can be expected, it is also possible to use a somewhat differently dimensioned conversion corner bracket 24 so that builders can use Imperial (also known as U.S. customary unit) unit based form work panels 8 to construct metric unit based building structures for metric unit based buildings. For example, a 60 centimeter column may be formed using a standardized 22-inch panel and 1{fraction (5/8)} inch conversion corner.
  • FIG. 7 shows an embodiment of a corner forming apparatus. The apparatus comprises means for securing such as bolt 28 and nut 26.
  • When in use and operation in one preferred embodiment, the following steps are followed:
  • Two form work panels 8 a and 8 b are connected with a first conversion corner bracket 24 to form a first corner pair or set 52. Two additional form work panels 8 c and 8 d are connected to each other with a second conversion corner bracket 24 which is similar to the first conversion corner bracket to form a second corner pair or set 54.
  • The second corner set 54 is then properly configured to oppose the first corner set 52 to correctly form the intended structure 50. For example, if a corner of a wall is to be formed, the first corner 52 and the second corner 54 configured to resemble two offset L-shapes. On the other hand, if a column is to be formed, the first corner set 52 and the second corner set 54 are configured in a box shape (see FIG. 1). Once properly configured, the panels 8 a, 8 b, 8 c, 8 d are secured in place with a securing mechanism such as a clamp 20.
  • The form work panels 8 a, 8 b, 8 c, and 8 d are then erected and supported if necessary by tubular steel props 40. Building material, such as concrete, is then poured between the first corner set 52 and the second corner set 54 to form a structure 50.
  • Conveniently, although aluminum is preferred, the conversion corner bracket of the present invention can be made of any material. Nevertheless, for the manufacturing operation, it is moreover an advantage to employ an extrudable, aluminum-like material. Similarly, the panels may be made of any suitable, durable, strong and light-weight material.
  • Moreover, the individual components need not be formed in the disclosed shapes, or assembled in the disclosed configuration, but could be provided in virtually any shape, and assembled in virtually any configuration. Further, although the panel components and conversion corner are described herein is physically separate modules, it will be manifest that they may be integrated. Furthermore, all the disclosed features of each disclosed embodiment can be combined with, or substituted for, the disclosed features of every other disclosed embodiment except where such features are mutually exclusive.
  • There may be virtually innumerable uses for the present invention, all of which need not be detailed here. Moreover, all the disclosed embodiments can be practiced without undue experimentation.
  • Although the best mode contemplated by the inventors of carrying out the present invention is disclosed above, practice of the present invention is not limited thereto. It will be manifest that various additions, modifications and rearrangements of the features of the present invention may be made without deviating from the spirit and scope of the underlying inventive concept.
  • The terms upper lower, top, bottom and the like in the specification and claims are intended to assist the reader in understanding invention and are not intended as terms of limitation.
  • It is intended that the appended claims cover all such additions, modifications and rearrangements. Expedient embodiments of the present invention are differentiated by the appended subclaims.

Claims (25)

1. A concrete forming apparatus comprising:
form work panels; and
at least one conversion corner bracket for connecting the form work panels at right angles.
2. The apparatus of claim 1, wherein the outside conversion corner is constructed of extruded aluminum.
3. The apparatus of claim 1, wherein the conversion corner bracket comprises:
(a) a first leg in a first plane;
(b) a second leg in a second plane which is substantially perpendicular to the first plane;
(c) an indented outer corner between the first leg and the second leg; and
(d) a rounded inside corner opposing the indented outer corner.
4. The apparatus of claim 3, wherein the conversion corner bracket is generally W-shaped.
5. The apparatus of claim 3, wherein the outer corner is indented in a substantially V-shaped fashion.
6. The apparatus of claim 1, wherein the form work panel has standardized dimensions in metric units.
7. The apparatus of claim 1, wherein the conversion corner bracket is for converting metric unit dimensioned panels to U.S. customary unit-based construction projects and vice versa.
8. The apparatus of claim 7 wherein the conversion corner bracket is generally W-shaped.
9. The apparatus of claim 1, further comprising outer corner clamps to join at least two of the panels.
10. The apparatus of claim 9, further comprising an adjustable securing mechanism to adjust the clamps.
11. The apparatus of claim 1, further comprising a telescoping supporting tubular steel prop for stabilizing the panels.
12. The apparatus of claim 11, wherein the prop includes a tubular strut which can comprise at least two telescoping tubes, a strut connected to the prop and a strut base to stabilize the prop.
13. The apparatus of claim 12, further comprising a horizontal stabilizer bar is connected to the strut base to the form work.
14. A conversion corner bracket comprising:
(a) a first leg in a first plane;
(b) a second leg in a second plane which is substantially perpendicular to the first leg in the first plane; and
(c) an indented outer corner between the first leg and the second leg.
15. The conversion corner bracket of claim 14 further comprising a rounded inside corner opposing the indented outer corner.
16. The conversion corner bracket of claim 14 wherein the conversion corner is generally W-shaped.
17. The conversion corner bracket of claim 14 wherein the outer corner is indented in a substantially V-shaped fashion.
18. The conversion corner bracket of claim 14 wherein the outer corner comprises a substantially flat surface at approximately 45° to the first leg and the second leg.
19. A building member forming apparatus comprising:
standardized metric dimensioned panels; and
a conversion corner bracket joined to the standarized metric dimensioned panels,
wherein the conversion corner bracket provides for the use of the standarized metric dimensioned panels on U.S. customary unit-based construction projects.
20. A building member forming apparatus comprising:
standardized metric dimensioned panels including plywood paneling, outer horizontal support beams, vertical support beams, and inner horizontal support beams;
a conversion corner bracket having a first leg and a second leg joined to form a right angle, a V-shaped indented outer corner, and a rounded inside corner opposite the V-shaped indented corner; and
securing members to secure the conversion corner bracket to at least one of the vertical support beams.
21. A concrete forming apparatus comprising:
form work panels; and
at least one conversion corner bracket for connecting the form work panels at right angles,
wherein the conversion corner bracket provides for the use of the standarized metric dimensioned panels on U.S. customary unit-based construction projects.
22. A method of forming building members in standardized dimensions, the method comprising the steps of:
connecting first and second form work panels with at least one conversion corner bracket to form a first corner assembly;
connecting third and fourth form work panels with at least one conversion corner bracket to form a second corner assembly;
configuring the second corner assembly to substantially oppose the first corner assembly;
securing each of the first and the second corner assemblies in place to form a column assembly; and
pouring a building material into the column assembly to form a building member.
23. The method of claim 22 wherein the connecting steps provide for converting work panels dimensioned in a first unit dimension system to a second unit dimension system.
24. The method of claim 23 wherein the first unit dimension system is the metric system and the second unit dimension system is the U.S. customary system.
25. The method of claim 23 wherein the first unit dimension system is the U.S. customary system and the second unit dimension system is the metric system.
US10/626,014 1999-11-23 2003-07-24 Outside conversion corner for form work Abandoned US20050086903A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/626,014 US20050086903A1 (en) 1999-11-23 2003-07-24 Outside conversion corner for form work

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US16695999P 1999-11-23 1999-11-23
US09/721,077 US6419204B1 (en) 1999-11-23 2000-11-22 Outside conversion corner for form work
US10/120,761 US6733059B2 (en) 1999-11-23 2002-04-11 Outside conversion corner for form work
US10/626,014 US20050086903A1 (en) 1999-11-23 2003-07-24 Outside conversion corner for form work

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/120,761 Continuation US6733059B2 (en) 1999-11-23 2002-04-11 Outside conversion corner for form work

Publications (1)

Publication Number Publication Date
US20050086903A1 true US20050086903A1 (en) 2005-04-28

Family

ID=26862716

Family Applications (3)

Application Number Title Priority Date Filing Date
US09/721,077 Expired - Fee Related US6419204B1 (en) 1999-11-23 2000-11-22 Outside conversion corner for form work
US10/120,761 Expired - Fee Related US6733059B2 (en) 1999-11-23 2002-04-11 Outside conversion corner for form work
US10/626,014 Abandoned US20050086903A1 (en) 1999-11-23 2003-07-24 Outside conversion corner for form work

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US09/721,077 Expired - Fee Related US6419204B1 (en) 1999-11-23 2000-11-22 Outside conversion corner for form work
US10/120,761 Expired - Fee Related US6733059B2 (en) 1999-11-23 2002-04-11 Outside conversion corner for form work

Country Status (1)

Country Link
US (3) US6419204B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100334312C (en) * 2005-07-29 2007-08-29 梁振成 Detachable building form component unit and construction method of building form frame
US20090307255A1 (en) * 2008-06-06 2009-12-10 Johnson Controls Technology Company Graphical management of building devices
CN104251052A (en) * 2013-06-27 2014-12-31 中国二十冶集团有限公司 Application of internal and external corner beads in plastering construction
CN105178594A (en) * 2015-09-01 2015-12-23 山东电力建设第一工程公司 Hollow column formwork free of scaffold construction and construction method thereof

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6502802B2 (en) * 2001-02-23 2003-01-07 Wilian Holding Company Double bias corner form
AU2002307209A1 (en) * 2001-04-09 2002-10-21 Ronald R. Harris Jr. Building structure assembly
US6655650B2 (en) * 2001-04-12 2003-12-02 Western Forms, Inc. Concrete forming panel with flexible barrier
ITRM20010377A1 (en) * 2001-07-02 2003-01-02 Caluisi Anna REMAINING STRUCTURAL FORMWORKS FOR REINFORCED AND NON-REINFORCED CONCRETE CASTINGS.
KR100446360B1 (en) * 2001-08-07 2004-09-01 선암산업개발주식회사 Utilize Stone Repair and Reinforcement Method of Pier
KR100440092B1 (en) * 2001-08-07 2004-07-14 선암산업개발주식회사 Pannel for Repair and Reinforcement Method of Pier and Utilize Pannel Repair and Reinforcement Method
US7146770B2 (en) * 2002-11-05 2006-12-12 Simmons Robert J Angle-section column-beam connector
US20050257449A1 (en) * 2004-05-20 2005-11-24 Mcnutt Guy T Masonry and concrete forming scheme and apparatuses
US8043714B2 (en) * 2006-04-13 2011-10-25 Fujifilm Corporation Transparent thermoplastic film and a method of producing the same
WO2007149964A2 (en) * 2006-06-22 2007-12-27 John Vitale Round rubber champhering ring
AU2007295936B2 (en) * 2006-09-15 2013-03-21 Illinois Tool Works Inc. A magnetic clamp assembly
US8544830B2 (en) * 2006-09-18 2013-10-01 Srb Construction Technologies Pty Ltd Magnetic clamp
ITPD20070037A1 (en) * 2007-02-06 2008-08-07 Faresin Building Division Spa FORMWORK FOR THE PILLAR JET
WO2010091453A1 (en) * 2009-02-11 2010-08-19 R J Wallace Pty Ltd A structural member
US20110108701A1 (en) * 2009-11-09 2011-05-12 Daniel Heeren Apparatus for Making Windows And Shafts In Concrete Slabs
CN103806650B (en) * 2014-02-25 2016-12-07 绍兴县明煌建材科技有限公司 A kind of steel column mould form of construction work
CN104481140A (en) * 2014-12-10 2015-04-01 高路恒 Technology for mounting column formworks of steel frame systems
CN105421766A (en) * 2015-12-16 2016-03-23 绍兴县明煌建材科技有限公司 Column steel die plate assembly and construction method thereof
CN109555317B (en) * 2019-01-28 2023-12-26 中南大学 Template construction device and construction method for visual construction of stand column
CN110952776A (en) * 2019-10-23 2020-04-03 中船第九设计研究院工程有限公司 Cast-in-place concrete constructional column and ring beam disassembly-free formwork and manufacturing method thereof
CN111622499A (en) * 2020-05-15 2020-09-04 中亿丰建设集团股份有限公司 Combined template for stiff steel column and construction method thereof
CN115573558A (en) * 2022-11-10 2023-01-06 甘肃第三建设集团有限公司 Can have enough to meet need combination formula shaped steel column hoop device and application thereof

Citations (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US340070A (en) * 1886-04-13 Mold and angle-piece used in constructing concrete walls
US481243A (en) * 1892-08-23 Fireproof-floor construction
US901209A (en) * 1907-10-28 1908-10-13 John Howell Sullivan Fastening device for molds.
US1109810A (en) * 1910-12-16 1914-09-08 William W Wilson Column-mold.
US1129658A (en) * 1914-06-03 1915-02-23 John H Foy Corner-form for concrete construction.
US1170753A (en) * 1916-02-08 Jesse E Hodges Adjustable column-form.
US1171760A (en) * 1915-02-20 1916-02-15 Blaw Steel Construction Company Beam and girder mold.
US1235542A (en) * 1917-02-15 1917-08-07 Robert T Bagby Form for concrete work.
US1374864A (en) * 1920-01-20 1921-04-12 Metalform Construction Corp Adjustable form for concrete structures
US1468702A (en) * 1922-05-29 1923-09-25 W E Dunn Mfg Company Form for concrete structures
US1552334A (en) * 1923-10-13 1925-09-01 Edgar H Mosher Concrete-form clamp
US1670338A (en) * 1926-08-19 1928-05-22 Samuel D Butterworth Column form
US1694292A (en) * 1928-02-10 1928-12-04 Fred A Tracey Method of constructing and supporting forms for concrete work
US1861766A (en) * 1930-08-06 1932-06-07 William G Venard Form for building columns and beams
US1871919A (en) * 1928-11-24 1932-08-16 Fred V Schubert Form for concrete columns
US2017553A (en) * 1931-11-09 1935-10-15 Arthur E Troiel Form for plastic structural work
US2475890A (en) * 1945-06-11 1949-07-12 Hamilton William Formwork for molding concrete columns and the like
US2495100A (en) * 1946-03-27 1950-01-17 Cemenstone Corp Apparatus for making precast concrete units
US2940152A (en) * 1956-03-14 1960-06-14 Superior Concrete Accessories Concrete form and chamfer corner strip therefor
US2940100A (en) * 1958-07-14 1960-06-14 Grossmeyer Roy Composite scouring and wiping device
US2953835A (en) * 1956-10-17 1960-09-27 Armstrong Corner former for poured concrete
US3260493A (en) * 1963-11-07 1966-07-12 George S Beckham Concrete form
US3672626A (en) * 1970-03-06 1972-06-27 James Thornton Reusable forms for casting columns
US3822858A (en) * 1969-07-14 1974-07-09 J Franklin Spacer elements for corner forming system
US3917216A (en) * 1974-03-25 1975-11-04 Symons Corp Articulated concrete column form with novel corner fastening device
US3945601A (en) * 1973-03-23 1976-03-23 Rowley Edward C Knock-down reusable column form
US4433826A (en) * 1981-09-25 1984-02-28 Symons Corporation Adjustable long bolt
US4717517A (en) * 1982-08-13 1988-01-05 Halberstadt Alex E Concurrent method of building construction and formwork structure therefore
US4944664A (en) * 1989-09-19 1990-07-31 Allred Cecil F Concrete wall form apparatus
US4958800A (en) * 1989-07-06 1990-09-25 Western Forms, Inc. Locking hinge mechanism
US4978099A (en) * 1989-02-07 1990-12-18 Western Forms, Inc. Chamfer strip and adjustable corner squaring strip for a concrete column form
US5044601A (en) * 1989-05-30 1991-09-03 Symons Corporation Outside bay adapter for a concrete forming system
US5397095A (en) * 1993-03-19 1995-03-14 Jeffrey; Alfred S. Modular building system
US5616271A (en) * 1994-07-05 1997-04-01 Symons Corporation Concrete forming chamfer strip
US5700106A (en) * 1996-03-12 1997-12-23 Young; James E. Island form

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US147011A (en) * 1874-02-03 Improvement in wrought-iron columns
US854654A (en) * 1905-09-22 1907-05-21 Hubert Krantz Construction for panel-boards and the like.
US1240436A (en) * 1916-05-09 1917-09-18 Armini Gendron Mold for constructing hollow walls of concrete.
US1536651A (en) * 1924-11-06 1925-05-05 Bowen Troy Almond Leonard Steel-derrick reenforcement
US1977715A (en) * 1931-08-08 1934-10-23 Dahlstrom Metallic Door Compan Structural member
FR1017047A (en) * 1950-05-03 1952-11-28 Metal formwork
DE852147C (en) * 1950-11-10 1952-10-13 Arthur Schroeder Edge or corner angles of a steel formwork
US3420021A (en) * 1967-10-10 1969-01-07 Formica Corp Knock-down shower unit enclosure
DE2919468C2 (en) * 1979-05-15 1982-03-04 Heinrich Dipl.-Ing. 4030 Ratingen Schliephacke Formwork to form an inside corner
GB2056538A (en) * 1979-08-17 1981-03-18 Umenyiora V Shuttering system
US4949648A (en) * 1984-07-16 1990-08-21 Samsung Electronics Co., Ltd. Sheet metal shelving assembly
GB2178776B (en) * 1985-08-07 1989-08-23 Mah Const & Eng Pty Ltd Silo construction system
JP2782453B2 (en) * 1989-04-27 1998-07-30 東急建設株式会社 Column formwork device
JP2677893B2 (en) * 1990-03-12 1997-11-17 株式会社フジタ Pillar formwork construction method
JP3260264B2 (en) 1995-10-17 2002-02-25 富士通株式会社 How to create and operate patches at a high-level language level
US6454111B1 (en) * 2001-08-13 2002-09-24 Two One One Partners Compost receptacle

Patent Citations (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US340070A (en) * 1886-04-13 Mold and angle-piece used in constructing concrete walls
US481243A (en) * 1892-08-23 Fireproof-floor construction
US1170753A (en) * 1916-02-08 Jesse E Hodges Adjustable column-form.
US901209A (en) * 1907-10-28 1908-10-13 John Howell Sullivan Fastening device for molds.
US1109810A (en) * 1910-12-16 1914-09-08 William W Wilson Column-mold.
US1129658A (en) * 1914-06-03 1915-02-23 John H Foy Corner-form for concrete construction.
US1171760A (en) * 1915-02-20 1916-02-15 Blaw Steel Construction Company Beam and girder mold.
US1235542A (en) * 1917-02-15 1917-08-07 Robert T Bagby Form for concrete work.
US1374864A (en) * 1920-01-20 1921-04-12 Metalform Construction Corp Adjustable form for concrete structures
US1468702A (en) * 1922-05-29 1923-09-25 W E Dunn Mfg Company Form for concrete structures
US1552334A (en) * 1923-10-13 1925-09-01 Edgar H Mosher Concrete-form clamp
US1670338A (en) * 1926-08-19 1928-05-22 Samuel D Butterworth Column form
US1694292A (en) * 1928-02-10 1928-12-04 Fred A Tracey Method of constructing and supporting forms for concrete work
US1871919A (en) * 1928-11-24 1932-08-16 Fred V Schubert Form for concrete columns
US1861766A (en) * 1930-08-06 1932-06-07 William G Venard Form for building columns and beams
US2017553A (en) * 1931-11-09 1935-10-15 Arthur E Troiel Form for plastic structural work
US2475890A (en) * 1945-06-11 1949-07-12 Hamilton William Formwork for molding concrete columns and the like
US2495100A (en) * 1946-03-27 1950-01-17 Cemenstone Corp Apparatus for making precast concrete units
US2940152A (en) * 1956-03-14 1960-06-14 Superior Concrete Accessories Concrete form and chamfer corner strip therefor
US2953835A (en) * 1956-10-17 1960-09-27 Armstrong Corner former for poured concrete
US2940100A (en) * 1958-07-14 1960-06-14 Grossmeyer Roy Composite scouring and wiping device
US3260493A (en) * 1963-11-07 1966-07-12 George S Beckham Concrete form
US3822858A (en) * 1969-07-14 1974-07-09 J Franklin Spacer elements for corner forming system
US3672626A (en) * 1970-03-06 1972-06-27 James Thornton Reusable forms for casting columns
US3945601A (en) * 1973-03-23 1976-03-23 Rowley Edward C Knock-down reusable column form
US3917216A (en) * 1974-03-25 1975-11-04 Symons Corp Articulated concrete column form with novel corner fastening device
US4433826A (en) * 1981-09-25 1984-02-28 Symons Corporation Adjustable long bolt
US4717517A (en) * 1982-08-13 1988-01-05 Halberstadt Alex E Concurrent method of building construction and formwork structure therefore
US4978099A (en) * 1989-02-07 1990-12-18 Western Forms, Inc. Chamfer strip and adjustable corner squaring strip for a concrete column form
US5044601A (en) * 1989-05-30 1991-09-03 Symons Corporation Outside bay adapter for a concrete forming system
US4958800A (en) * 1989-07-06 1990-09-25 Western Forms, Inc. Locking hinge mechanism
US4944664A (en) * 1989-09-19 1990-07-31 Allred Cecil F Concrete wall form apparatus
US5397095A (en) * 1993-03-19 1995-03-14 Jeffrey; Alfred S. Modular building system
US5616271A (en) * 1994-07-05 1997-04-01 Symons Corporation Concrete forming chamfer strip
US5700106A (en) * 1996-03-12 1997-12-23 Young; James E. Island form

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100334312C (en) * 2005-07-29 2007-08-29 梁振成 Detachable building form component unit and construction method of building form frame
US20090307255A1 (en) * 2008-06-06 2009-12-10 Johnson Controls Technology Company Graphical management of building devices
CN104251052A (en) * 2013-06-27 2014-12-31 中国二十冶集团有限公司 Application of internal and external corner beads in plastering construction
CN105178594A (en) * 2015-09-01 2015-12-23 山东电力建设第一工程公司 Hollow column formwork free of scaffold construction and construction method thereof

Also Published As

Publication number Publication date
US20020145100A1 (en) 2002-10-10
US6419204B1 (en) 2002-07-16
US6733059B2 (en) 2004-05-11

Similar Documents

Publication Publication Date Title
US6419204B1 (en) Outside conversion corner for form work
US6865859B2 (en) Conversion corner chamfer for form work
US7913463B2 (en) Adjustable vertical brace
US3995843A (en) Apparatus for supporting a window buck frame
US4350318A (en) Tie plate
US9758976B2 (en) Concrete forming system with scaffold
US20170292280A1 (en) Method for erecting a shuttering framework
US4229915A (en) Corner bracket with saddle for hip rafters of buildings
US2301306A (en) Structural member
US6568651B2 (en) Concrete form system
US20020121586A1 (en) Gang form for use with a concrete form system and method of building a gang form
JP6846098B2 (en) Beam frame mounting structure, beam frame receiving member and beam frame passing member used for this
US5456444A (en) Concrete form wall assemblies and methods
US3211413A (en) Concrete forms and components thereof
KR100637861B1 (en) The horizontal supporter and the construction structure of concrete forms for slab of aptment balcony
JP2634571B2 (en) Concrete formwork equipment
US4477980A (en) Alignment strut for wall structures
JP2789512B2 (en) Loading stage and handrail support fixture
JPH0119718Y2 (en)
KR102117153B1 (en) A walk plate for temporary structure installation
JPH0220779B2 (en)
JP2003286753A (en) Substructure for building
JP2004324312A (en) Structural member connecting hardware for roof unit
JPH0626666Y2 (en) Formwork with adjustable length
KR930005582Y1 (en) Bracket for supporting forms

Legal Events

Date Code Title Description
AS Assignment

Owner name: SYMONS CORPORATION, ILLINOIS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SAFWAY FORMWORK SYSTEMS, L.L.C.;REEL/FRAME:015583/0239

Effective date: 20030729

AS Assignment

Owner name: DAYTON SUPERIOR CORPORATION, OHIO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SYMONS CORPORATION;REEL/FRAME:015642/0369

Effective date: 20041229

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: DAYTON SUPERIOR DELAWARE CORPORATION (D/B/A DAYTON

Free format text: MERGER;ASSIGNOR:DAYTON SUPERIOR CORPORATION;REEL/FRAME:018635/0732

Effective date: 20061214