US20050008210A1 - System and method for three-dimensional reconstruction of an artery - Google Patents
System and method for three-dimensional reconstruction of an artery Download PDFInfo
- Publication number
- US20050008210A1 US20050008210A1 US10/892,348 US89234804A US2005008210A1 US 20050008210 A1 US20050008210 A1 US 20050008210A1 US 89234804 A US89234804 A US 89234804A US 2005008210 A1 US2005008210 A1 US 2005008210A1
- Authority
- US
- United States
- Prior art keywords
- artery
- arterial tree
- dimensional reconstruction
- interest
- angiographic images
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 210000001367 artery Anatomy 0.000 title claims abstract description 141
- 238000000034 method Methods 0.000 title claims abstract description 39
- 238000003384 imaging method Methods 0.000 claims abstract description 10
- 230000002966 stenotic effect Effects 0.000 claims description 23
- 208000031481 Pathologic Constriction Diseases 0.000 claims description 20
- 230000036262 stenosis Effects 0.000 claims description 20
- 208000037804 stenosis Diseases 0.000 claims description 20
- 238000004590 computer program Methods 0.000 claims description 7
- 230000002490 cerebral effect Effects 0.000 claims description 2
- 230000002440 hepatic effect Effects 0.000 claims description 2
- 230000002685 pulmonary effect Effects 0.000 claims description 2
- 238000005259 measurement Methods 0.000 claims 5
- 230000008878 coupling Effects 0.000 claims 1
- 238000010168 coupling process Methods 0.000 claims 1
- 238000005859 coupling reaction Methods 0.000 claims 1
- 238000002583 angiography Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 230000000007 visual effect Effects 0.000 description 3
- 210000004351 coronary vessel Anatomy 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 230000003213 activating effect Effects 0.000 description 1
- 230000007505 plaque formation Effects 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/50—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications
- A61B6/504—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications for diagnosis of blood vessels, e.g. by angiography
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T19/00—Manipulating 3D models or images for computer graphics
- G06T19/20—Editing of 3D images, e.g. changing shapes or colours, aligning objects or positioning parts
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2211/00—Image generation
- G06T2211/40—Computed tomography
- G06T2211/404—Angiography
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2219/00—Indexing scheme for manipulating 3D models or images for computer graphics
- G06T2219/20—Indexing scheme for editing of 3D models
- G06T2219/2016—Rotation, translation, scaling
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S128/00—Surgery
- Y10S128/92—Computer assisted medical diagnostics
- Y10S128/922—Computer assisted medical diagnostics including image analysis
Definitions
- Stenosis of an artery refers to narrowing of the artery lumen due to plaque formation on the interior wall of the artery.
- the severity of the stenosis is the fraction of the cross-sectional area of the lumen that is occluded by plaque. Since narrowing is often asymmetrical about the axis of the artery, in order to assess the severity of a stenosis, it is necessary to obtain at least two, and preferably more, images perpendicular to the artery axis from orthogonal perspectives.
- Such an objective is realized in accordance with a first aspect of the invention by a system comprising means for obtaining two-dimensional angiographic images of arteries, and a microprocessor for processing the images.
- the images may be obtained, for example, by X-ray angiography or by ultrasound.
- An artery for example, a stenotic or aneurotic artery present in any of the obtained angiographic images may be detected by analysis of the images by the microprocessor or by visual examination of the images by the operator.
- the microprocessor determines the orientation of the axis of the artery in the 3D reconstruction of the arterial tree.
- the microprocessor then calculates two or more perspectives of the artery perpendicular to the arterial axis. Preferably, two orthogonal perspectives are determined. If images of the selected artery have not already been obtained approximately from the calculated perspectives, the operator obtains angiographic images of the artery from these perspectives and the microprocessor then constructs a 3D reconstruction of the artery from the angiographic images by methods known in the art.
- the invention provides a method for diagnosing stenosis in an arterial tree in an individual, the method comprising the steps of:
- FIG. 2 is block diagram showing an embodiment of the system of the invention according to one embodiment of the invention.
- the analog ECG signal 270 is converted into a digital signal 280 by analog-to-digital converter 275 and the digital ECG signal 280 is inputted to the microprocessor 230 and stored in the memory 240 .
- the detector signal 225 and the ECG signal 280 are synchronized by the microprocessor 230 .
- An operator input 250 that may be, for example, a key board or a computer mouse, is used to allow an operator to input instructions to the microprocessor 230 .
- a display 255 is used to display images either in real-time or images called up from the memory 240 .
- An artery of interest for example, a stenotic artery, in an image or in the 3D reconstructed tree is selected by the operator or detected by the microprocessor, for example, by gray level analysis as is known in the art.
- an image or the reconstructed tree may be displayed on the display 255 , and an artery selected by the operator by means of input 250 .
- the microprocessor determines from the 3D reconstruction of the arterial tree the angular orientation of the selected artery.
- the microprocessor calculates two or more perspectives perpendicular to the axis of the selected artery.
- the perspectives preferably include two orthogonal perspectives. If images of the selected artery have not already been obtained approximately from the calculated perspectives, the operator obtains such images.
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Medical Informatics (AREA)
- Physics & Mathematics (AREA)
- Molecular Biology (AREA)
- Public Health (AREA)
- Biophysics (AREA)
- High Energy & Nuclear Physics (AREA)
- Dentistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Optics & Photonics (AREA)
- Pathology (AREA)
- Radiology & Medical Imaging (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Vascular Medicine (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Veterinary Medicine (AREA)
- Architecture (AREA)
- Computer Graphics (AREA)
- Computer Hardware Design (AREA)
- General Engineering & Computer Science (AREA)
- Software Systems (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Apparatus For Radiation Diagnosis (AREA)
- Image Processing (AREA)
- Ultra Sonic Daignosis Equipment (AREA)
- Magnetic Resonance Imaging Apparatus (AREA)
- Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
- Processing Or Creating Images (AREA)
Abstract
A method and system for imaging an artery contained in an arterial tree. A microprocessor generates a three-dimensional reconstruction of the arterial tree from two or more angiographic images obtained from different perspectives. The orientation of the axis of the artery in the arterial tree is then determined, and a perspective of the artery perpendicular to the axis of the artery is determined. A three dimensional reconstruction of the artery from angiographic images obtained from the determined perspective is then generated.
Description
- The present invention relates to medical devices, and more specifically to such devices for use in angiography.
- Stenosis of an artery refers to narrowing of the artery lumen due to plaque formation on the interior wall of the artery. The severity of the stenosis is the fraction of the cross-sectional area of the lumen that is occluded by plaque. Since narrowing is often asymmetrical about the axis of the artery, in order to assess the severity of a stenosis, it is necessary to obtain at least two, and preferably more, images perpendicular to the artery axis from orthogonal perspectives.
- In angiography, the arterial lumen is filled with a radio-opaque substance and X-ray images of the arterial tree are obtained from different perspectives. Selection of these perspectives is partly arbitrary and partly a process of trial and error once a stenosis has been observed. However, the overall number of images that can be obtained is limited by time, safety and cost. Usually four to seven projections for the left coronary arterial system and two to four for the right coronary artery are obtained. The operator assesses the severity of the stenosis either on the basis of visual examination of the images or by computer analysis of a single image. Since these projections are in general not perpendicular to the arterial axis, estimation of stenosis severity and its length from these images is usually not accurate.
- It is therefore an object of the invention to provide a more accurate process and system for computer reconstruction of an artery from discrete images of the artery.
- Such an objective is realized in accordance with a first aspect of the invention by a system comprising means for obtaining two-dimensional angiographic images of arteries, and a microprocessor for processing the images. The images may be obtained, for example, by X-ray angiography or by ultrasound.
- In accordance with a second aspect of the invention, there is provided a process for obtaining two or more angiographic images of an arterial tree. The images preferably include two images taken from perpendicular perspectives. In the case of the coronary arterial tree, all images are preferably obtained when the heart is in the same state, for example, diastole. A three dimensional (3D) reconstruction of the arterial tree is generated by the microprocessor from the images by methods known in the art. Methods of generating a 3D reconstruction of an arterial tree from discrete images can be found, for example, in anyone of the following references all of which are included herein in their entirety by reference: Faugeras, O. D., Mass. Inst. Tech. 1993; Garreau, et al., IEEE Trans Med Imag 10(2):122-131; Grosskopf, S, Dissertation, Technical University of Berlin, 1994; and Hildebrand and Grosskopf, in Proc. Comp. Assisted Radiology CAR 95 conference, Berlin Springer, pp 201-207, 1995. The arterial tree may be, for example, the coronary arterial tree, the renal arterial tree, the pulmonary arterial tree, the cerebral arterial tree, or the hepatic arterial tree.
- The 3D reconstructed arterial tree may be represented on a display screen using pseudo 3D effects such as directional lighting and shading. In a preferred embodiment, the reconstructed tree is presented as a stereoscopic pair of images to be viewed by the operator using a stereoscopic viewer. The reconstruction may be manipulated on the screen by the operator, allowing him, for example, to zoom in on a specific region or to rotate the reconstructed artery on the screen to obtain a desired perspective.
- An artery, for example, a stenotic or aneurotic artery present in any of the obtained angiographic images may be detected by analysis of the images by the microprocessor or by visual examination of the images by the operator. The microprocessor determines the orientation of the axis of the artery in the 3D reconstruction of the arterial tree. The microprocessor then calculates two or more perspectives of the artery perpendicular to the arterial axis. Preferably, two orthogonal perspectives are determined. If images of the selected artery have not already been obtained approximately from the calculated perspectives, the operator obtains angiographic images of the artery from these perspectives and the microprocessor then constructs a 3D reconstruction of the artery from the angiographic images by methods known in the art. The invention thus allows an operator to obtain images of the artery from orthogonal perspectives more rapidly than is possible by prior art methods of trial and error. This allows a smaller radio-opaque dosage to the patient and a reduced exposure of the patient and the is operator to X-rays.
- The microprocessor may apply meteorological tools to the reconstructed artery. In the case of a stenotic artery, the microprocessor may provide accurate quantitative assessment of the extent and length of the stenosis. The severity of a stenosis may be described quantitatively, for example, by the fraction of the arterial lumen occupied by plaque.
- The 3D reconstructed artery may be represented on a display screen using pseudo 3D effects such as directional lighting and shading. In a preferred embodiment, the reconstructed artery is presented as a stereoscopic pair of images to be viewed by the operator using a stereoscopic viewer. The reconstruction may be presented to the operator embedded in the 3D reconstruction of the entire arterial tree. The reconstruction may be manipulated on the screen by the operator, allowing him, for example, to zoom in on a specific region or to rotate the reconstructed artery on the screen to obtain a desired perspective of the stenosis including a perspective showing maximal narrowing or a cross section of the artery.
- Thus, in its first aspect the invention provides a system for imaging an artery contained in an arterial tree, the artery having an axis, the system comprising:
-
- a a microprocessor configured to
- aa generate a three-dimensional reconstruction of the arterial tree from two or more angiographic images of the arterial tree obtained from different perspectives;
- ab determine an orientation of the axis of the artery in the arterial tree;
- ac determine from the three-dimensional reconstruction of the arterial tree at least one perspective of the artery perpendicular to the axis of the artery; and
- ad generate a three dimensional reconstruction of the artery from angiographic images obtained essentially from the determined at least one perspective.
- a a microprocessor configured to
- In its second aspect, the invention provides a method for imaging an artery contained in an arterial tree, the artery having an axis, the method comprising the steps of:
-
- a generating a three-dimensional reconstruction of the arterial tree from two or more angiographic images of the arterial tree obtained from different perspectives;
- b determining an orientation of the axis of the artery in the arterial tree;
- c determining from the three-dimensional reconstruction of the arterial tree at least one perspective of the artery perpendicular to the axis of the artery; and
- d generating a three dimensional reconstruction of the artery from angiographic images obtained essentially from the determined at least one perspective.
- In its third aspect, the invention provides a method for diagnosing stenosis in an arterial tree in an individual, the method comprising the steps of:
-
- a generating a three-dimensional reconstruction of the arterial tree from two or more angiographic images of the arterial tree obtained from different perspectives;
- b detecting in the three-dimensional reconstruction of the arterial tree a stenotic artery, the stenotic artery having an axis;
- c determining an orientation of the axis of the stenotic artery;
- d determining from the three-dimensional reconstruction of the arterial tree at least one perspective of the stenotic artery perpendicular to the axis of the artery;
- e generating a three dimensional reconstruction of the artery from angiographic images obtained essentially from the determined at least one perspective; and
- f analyzing the three-dimensional reconstruction of the artery.
- In its fourth aspect, the invention provides a program storage device readable by machine, tangibly embodying a program of instructions executable by the machine to perform method steps for imaging an artery contained in an arterial tree, the artery having an axis, said method steps comprising:
-
- a generating a three-dimensional reconstruction of the arterial tree from two or more angiographic images of the arterial tree obtained from different perspectives;
- b determining an orientation of the axis of the artery in the arterial tree;
- c determining from the three-dimensional reconstruction of the arterial tree at least one perspective of the artery perpendicular to the axis of the artery; and
- d generating a three dimensional reconstruction of the artery from angiographic images obtained essentially from the determined at least one perspective.
- In its fifth aspect, the invention provides a computer program product comprising a computer useable medium having computer readable program code embodied therein for imaging an artery contained in an arterial tree, the artery having an axis, the computer program product comprising
-
- a computer readable program code for causing the computer to generate a three-dimensional reconstruction of the arterial tree from two or more angiographic images of the arterial tree obtained from different perspectives;
- b computer readable program code for causing the computer to determining an orientation of the axis of the artery in the arterial tree;
- c computer readable program code for causing the computer to determine from the three-dimensional reconstruction of the arterial tree at least one perspective of the artery perpendicular to the axis of the artery; and
- d computer readable program code for causing the computer to generate a three dimensional reconstruction of the artery from angiographic images obtained essentially from the determined at least one perspective.
- In its sixth aspect, the invention provides a program storage device readable by machine, tangibly embodying a program of instructions executable by the machine to perform method steps for diagnosing stenosis in an arterial tree in an individual, said method steps comprising:
-
- a generating a three-dimensional reconstruction of the arterial tree from two or more angiographic images of the arterial tree obtained from different perspectives;
- b detecting in the three-dimensional reconstruction of the arterial tree a stenotic artery, the stenotic artery having an axis;
- c determining an orientation of the axis of the stenotic artery;
- d determining from the three-dimensional reconstruction of the arterial tree at least one perspective of the stenotic artery perpendicular to the axis of the artery;
- e generating a three dimensional reconstruction of the artery from angiographic images obtained essentially from the determined at least one perspective; and
- f analyzing the three-dimensional reconstruction of the artery.
- In its seventh aspect, the invention provides a computer program product comprising a computer useable medium having computer readable program code embodied therein for diagnosing stenosis in an arterial tree in an individual the computer program product comprising:
-
- a computer readable program code for causing the computer to generate a three-dimensional reconstruction of the arterial tree from two or more angiographic images of the arterial tree obtained from different perspectives;
- b computer readable program code for causing the computer to detect in the three-dimensional reconstruction of the arterial tree a stenotic artery, the stenotic artery having an axis;
- c computer readable program code for causing the computer to determine an orientation of the axis of the stenotic artery;
- d computer readable program code for causing the computer to determine from the three-dimensional reconstruction of the arterial tree at least one perspective of the stenotic artery perpendicular to the axis of the artery;
- e computer readable program code for causing the computer to generate a three dimensional reconstruction of the artery from angiographic images obtained essentially from the determined at least one perspective;. and
- f computer readable program code for causing the computer to analyze the three-dimensional reconstruction of the artery.
- In order to understand the invention and to see how it may be carried out in practice, a preferred embodiment will now be described, by way of non-limiting example only, with reference to the accompanying drawings, in which:
-
FIG. 1 shows a cross-sectional view and two projections of a stenotic artery; -
FIG. 2 is block diagram showing an embodiment of the system of the invention according to one embodiment of the invention; and -
FIG. 3 is a flow chart diagram of the process of constructing a three-dimensional reconstruction of a stenotic artery. - Referring first to
FIG. 1 , a cross section 100 of a stenotic artery is shown. The artery has a circular lumen that is partially occluded byplaque 105. In angiography, the unoccluded portion of thelumen 110, (indicated inFIG. 1 by cross-hatching) is filled with a radio-opaque substance. 115 a and 115 b are two longitudinal projections of the radio-opacity of the artery as would be obtained in angiography. Theprojections broken lines projection 115 a the stenosis appears to be non-critical. Theprojection 115 b, on the other hand, shows maximal narrowing of the arterial lumen indicating that the stenosis is in fact critical. - In
FIG. 2 , a block diagram of a preferred embodiment of the system of the invention is shown. AnX-ray source 200 and anX-ray detector 205 are used to obtain angiographic images of an individual 210. AnX-ray beam 212 is produced by theX-ray source 200 and is detected by thedetector 205 after having passed through the body of the individual 210. Theanalog signal 215 produced by thedetector 205 is converted into adigital signal 225 by analog-to-digital converter 220. Thedigital signal 225 is inputted into amicroprocessor 230 and stored in amemory 240. Ananalog ECG signal 270 may also be simultaneously obtained from the individual 210. Theanalog ECG signal 270 is converted into adigital signal 280 by analog-to-digital converter 275 and thedigital ECG signal 280 is inputted to themicroprocessor 230 and stored in thememory 240. Thedetector signal 225 and the ECG signal 280 are synchronized by themicroprocessor 230. Anoperator input 250, that may be, for example, a key board or a computer mouse, is used to allow an operator to input instructions to themicroprocessor 230. Adisplay 255 is used to display images either in real-time or images called up from thememory 240. - The orientation of the
X-ray beam 212 and theplane 260 of the individual's body may be selected by the operator in order to produce an image of an arterial tree of the individual, for example, the coronary artery tree, from a desired perspective. The operator inputs the desired perspective into themicroprocessor 230 by means ofoperator input 250. Themicroprocessor 230 then brings theX-ray source 200 and thedetector 205 into the required orientation by activating a mechanism (not shown) that moves the X-ray source and the detector into the desired orientation relative to the individual's body, as is known in the art. - The
microprocessor 230 is programmed to generate a 3D reconstruction of the arterial tree based upon the obtained images. The 3D reconstruction of the arterial tree may be represented ondisplay 255 using pseudo 3D effects such as directional lighting and shading. In a preferred embodiment, the reconstructed tree is presented as a stereoscopic pair of images ondisplay 255 to be viewed by the operator using a stereoscopic viewer. The 3D reconstruction of the arterial tree may be manipulated on thedisplay 255 by the operator by means ofoperator input 250, allowing him, for example, to zoom in on a specific region or to rotate the reconstruction on the display to obtain a desired perspective. - An artery of interest, for example, a stenotic artery, in an image or in the 3D reconstructed tree is selected by the operator or detected by the microprocessor, for example, by gray level analysis as is known in the art. For example, an image or the reconstructed tree may be displayed on the
display 255, and an artery selected by the operator by means ofinput 250. The microprocessor determines from the 3D reconstruction of the arterial tree the angular orientation of the selected artery. The microprocessor then calculates two or more perspectives perpendicular to the axis of the selected artery. The perspectives preferably include two orthogonal perspectives. If images of the selected artery have not already been obtained approximately from the calculated perspectives, the operator obtains such images. Themicroprocessor 230 is programmed to reconstruct a 3D image of the selected artery based upon these images. The 3D reconstruction of the artery may be represented ondisplay 255 using pseudo 3D effects such as directional lighting and shading. In a preferred embodiment, the reconstruction is presented as a stereoscopic pair of images ondisplay 255 to be viewed by the operator using a stereoscopic viewer. The reconstruction of the artery may be presented to the operator embedded in the 3D reconstruction of the entire arterial tree. - The 3D reconstruction of the artery may be manipulated on the
display 255 by the operator by means ofoperator input 250, allowing him, for example, to zoom in on a specific region or to rotate the reconstruction on the display to obtain a desired perspective, including an optimal perspective or a cross-section. - The microprocessor may optionally be programmed to determine quantitative and qualitative parameters of a stenosis based upon the 3D reconstruction. Such parameters may include, for example, the length and severity of a stenosis.
- Referring now to
FIG. 3 , a flow chart is shown describing a preferred embodiment of the process of the invention. Atstep 310 the operator obtains at least two angiographic images of an arterial tree of the individual 210 from different, preferably perpendicular, perspectives. The images are displayed on thedisplay 255 instep 315, and a 3D reconstruction of the arterial tree is generated from the obtainedimages 318. The 3D reconstruction may optionally be displayed on thedisplay 255. The obtained angiographic images or the 3D reconstructed tree is examined for arteries of interest, for example, stenotic arteries. The examination may be performed either automatically by themicroprocessor 230 or by visual examination by the operator (step 320). If no artery of interest is detected in any of the images or in the 3D reconstructed tree the operator decides whether additional images are to be obtained from a new perspective (step 330). If atstep 330 the operator decides not to obtain additional images, the process is terminated. If, atstep 330 the operator decides to obtain an additional image, a perspective is selected and the operator inputs the perspective into themicroprocessor 230, and the process then returns to step 315. If instep 320 one or more arteries of interest are observed, an artery of interest is selected instep 340. Instep 345 the microprocessor calculates two or more perspectives perpendicular to the axis of the selected artery (step 348). The perspectives preferably include two orthogonal perspectives. If images of the selected artery have not already been obtained approximately from the calculated perspectives, the operator obtains such images (step 348). Instep 350, the microprocessor updates the 3D reconstruction of the artery. The reconstructed artery is displayed on thedisplay 255 instep 355 together with parameters describing the artery. For example, for a stenotic artery, the parameters may include the severity and length of the stenosis. The reconstructed artery may be presented to the operator embedded in the 3D reconstruction of the entire arterial tree. The operator may change thedisplay using input 250, for example, by rotating the reconstructed artery on thedisplay 255 so as to change the scale of the reconstruction of the artery or view the reconstruction from a desired perspective, including an optimal perspective or a cross-section. The operator then decides instep 360 whether he wishes to obtain a 3D reconstruction of another artery of interest in the arterial tree. If so, the process returns to step 340. If not, additional images are desired, the process terminates. - It will also be understood that the system according to the invention may be a suitably programmed computer. Likewise, the invention contemplates a computer program being readable by a computer for executing the method of the invention. The invention further contemplates a machine-readable memory tangibly embodying a program of instructions executable by the machine for executing the method of the invention.
- In the method claims that follow, alphabetic characters used to designate claim steps are provided for convenience only and do not imply any particular order of performing the steps.
Claims (28)
1. (canceled)
2. The system of claim 20 wherein the microprocessor is further configured to display on the display device any one or more of: an angiographic image, the three dimensional reconstruction of the artery and metrological measurements on the three dimensional reconstruction of the artery.
3. (canceled)
4. The system of claim 20 wherein the microprocessor is further configured to make measurements on the reconstruction of the artery.
5. The system according to claim 20 wherein the microprocessor is further configured to manipulate an image on the display.
6. (canceled)
7. The system of claim 2 wherein the microprocessor is configured to display on the display a view of the three-dimensional reconstruction of the artery from a selected perspective, such as a cross sectional perspective.
8-9. (canceled)
10. The method of claim 27 further comprising displaying any one or more of an angiographic image, the three-dimensional reconstruction of the artery and metrological measurements on the three dimensional reconstruction of the artery.
11. The method of claim 27 further comprising performing metrological measurements on the three-dimensional reconstruction of the artery.
12. The method according to claim 10 further comprising manipulating an image on the display.
13. (canceled)
14. The method of claim 10 further comprising displaying a view of the three-dimensional reconstruction of the artery from a selected perspective, such as a cross sectional perspective.
15-17. (canceled)
18. The method according to claim 27 wherein the arterial tree is selected from the group comprising the coronary arterial tree, the renal arterial tree, the pulmonary arterial tree, the cerebral arterial tree, and the hepatic arterial tree.
19. The method according to claim 29 wherein the stenotic artery has a lumen, the lumen has a cross-section of maximal narrowing, the cross-section of maximal narrowing has a fraction occluded by plaque, and determining the severity of the stenosis includes determining the fraction of the cross-section of maximal narrowing occluded by plaque.
20. A system for imaging an artery contained in an arterial tree, the system comprising:
a processor adapted for coupling to a display device for displaying on said display device at least two angiographic images of the arterial tree from different perspectives;
said processor being responsive to an artery of interest in the displayed angiographic images for generating a three dimensional reconstruction of the artery of interest from at least one of the displayed angiographic images.
21. The system according to claim 4 , wherein the artery of interest is a stenotic artery and the metrological measurements include a severity and length of stenosis of the artery.
22. The system according to claim 20 , wherein the processor is adapted to be coupled to a manual selection device for selecting the artery of interest manually.
23. The system according to claim 20 , wherein the processor is responsive to an additional perspective being selected for updating the reconstruction of the artery of interest for display by the display device.
24. The system according to claim 20 , wherein:
the processor is responsive to one or more manual operator commands for image processing the reconstructed artery for display on the display device.
25. A system for imaging an artery contained in an arterial tree, the system comprising:
a display device for displaying at least two angiographic images of the arterial tree from different perspectives;
a selection device for selecting an artery of interest in the displayed angiographic images;
a processor coupled to the display device and to the selection device for generating a three dimensional reconstruction of the artery of interest from at least one of the displayed angiographic images.
26. The system according to claim 25 , wherein the selection device is a manual operator control.
27. A method for imaging an artery contained in an arterial tree, the method comprising:
displaying at least two angiographic images of the arterial tree from different perspectives;
selecting an artery of interest in the displayed angiographic images;
generating a three dimensional reconstruction of the artery of interest from at least one of the displayed angiographic images; and
displaying the three dimensional reconstruction of the artery of interest.
28. The method according to claim 27 , wherein the artery of interest is a stenotic artery.
29. The method according to claim 28 , the method further comprising analyzing the three-dimensional reconstruction of the artery to determine a severity and length of stenosis of the artery.
30. A program storage device readable by machine, tangibly embodying a program of instructions executable by the machine to perform method steps for imaging an artery contained in an arterial tree, the method comprising:
displaying at least two angiographic images of the arterial tree from different perspectives;
selecting an artery of interest in the displayed angiographic images;
generating a three dimensional reconstruction of the artery of interest from at least one of the displayed angiographic images; and
displaying the three dimensional reconstruction of the artery of interest.
31. A computer program product comprising a computer useable medium having computer readable program code embodied therein for imaging an artery contained in an arterial tree, the computer program product comprising:
computer readable program code for causing the computer to display at least two angiographic images of the arterial tree from different perspectives;
computer readable program code for causing the computer to select an artery of interest in the displayed angiographic images;
computer readable program code for causing the computer to generate a three dimensional reconstruction of the artery of interest from at least one of the displayed angiographic images; and
computer readable program code for causing the computer to display the three dimensional reconstruction of the artery of interest.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/892,348 US20050008210A1 (en) | 2000-05-09 | 2004-07-16 | System and method for three-dimensional reconstruction of an artery |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
IL13605000A IL136050A0 (en) | 2000-05-09 | 2000-05-09 | System and method for three-dimensional reconstruction of an artery |
IL136050 | 2000-05-09 | ||
US66232500A | 2000-09-14 | 2000-09-14 | |
US10/892,348 US20050008210A1 (en) | 2000-05-09 | 2004-07-16 | System and method for three-dimensional reconstruction of an artery |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US66232500A Continuation | 2000-05-09 | 2000-09-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
US20050008210A1 true US20050008210A1 (en) | 2005-01-13 |
Family
ID=26323946
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/275,913 Expired - Fee Related US7321677B2 (en) | 2000-05-09 | 2001-03-02 | System and method for three-dimensional reconstruction of an artery |
US10/892,348 Abandoned US20050008210A1 (en) | 2000-05-09 | 2004-07-16 | System and method for three-dimensional reconstruction of an artery |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/275,913 Expired - Fee Related US7321677B2 (en) | 2000-05-09 | 2001-03-02 | System and method for three-dimensional reconstruction of an artery |
Country Status (7)
Country | Link |
---|---|
US (2) | US7321677B2 (en) |
EP (1) | EP1280459B1 (en) |
JP (1) | JP2004513673A (en) |
AT (1) | ATE396648T1 (en) |
AU (1) | AU2001235964A1 (en) |
DE (1) | DE60134223D1 (en) |
WO (1) | WO2001085030A1 (en) |
Cited By (117)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006018841A2 (en) | 2004-08-16 | 2006-02-23 | Navicath Ltd. | Image-guided navigation for catheter-based interventions |
US20070225598A1 (en) * | 2003-12-08 | 2007-09-27 | Koninklijke Philips Electronics Nv | Image Segmentation in a Volume Data Set |
US20080103389A1 (en) * | 2006-10-25 | 2008-05-01 | Rcadia Medical Imaging Ltd. | Method and system for automatic analysis of blood vessel structures to identify pathologies |
US20080170763A1 (en) * | 2006-10-25 | 2008-07-17 | Rcadia Medical Imaging Ltd. | Method and system for automatic analysis of blood vessel structures and pathologies in support of a triple rule-out procedure |
US20080212871A1 (en) * | 2007-02-13 | 2008-09-04 | Lars Dohmen | Determining a three-dimensional model of a rim of an anatomical structure |
US20080221439A1 (en) * | 2007-03-08 | 2008-09-11 | Sync-Rx, Ltd. | Tools for use with moving organs |
US20080219530A1 (en) * | 2006-10-25 | 2008-09-11 | Rcadia Medical Imaging, Ltd | Method and system for automatic quality control used in computerized analysis of ct angiography |
US20090306547A1 (en) * | 2007-03-08 | 2009-12-10 | Sync-Rx, Ltd. | Stepwise advancement of a medical tool |
WO2010058398A2 (en) | 2007-03-08 | 2010-05-27 | Sync-Rx, Ltd. | Image processing and tool actuation for medical procedures |
US7860283B2 (en) | 2006-10-25 | 2010-12-28 | Rcadia Medical Imaging Ltd. | Method and system for the presentation of blood vessel structures and identified pathologies |
US8103074B2 (en) | 2006-10-25 | 2012-01-24 | Rcadia Medical Imaging Ltd. | Identifying aorta exit points from imaging data |
US8298147B2 (en) | 2005-06-24 | 2012-10-30 | Volcano Corporation | Three dimensional co-registration for intravascular diagnosis and therapy |
US20120293498A1 (en) * | 2011-05-19 | 2012-11-22 | Ron Hubertus Schormans | Method and Apparatus for Determining Optimal Image Viewing Direction |
US8480618B2 (en) | 2008-05-06 | 2013-07-09 | Corindus Inc. | Catheter system |
US8494616B2 (en) | 2000-01-19 | 2013-07-23 | Christie Medical Holdings, Inc. | Method and apparatus for projection of subsurface structure onto an object's surface |
US8694157B2 (en) | 2008-08-29 | 2014-04-08 | Corindus, Inc. | Catheter control system and graphical user interface |
US8790297B2 (en) | 2009-03-18 | 2014-07-29 | Corindus, Inc. | Remote catheter system with steerable catheter |
US8855744B2 (en) | 2008-11-18 | 2014-10-07 | Sync-Rx, Ltd. | Displaying a device within an endoluminal image stack |
WO2014201125A1 (en) | 2013-06-12 | 2014-12-18 | Medtronic, Inc. | Implantable electrode location selection |
WO2014201126A1 (en) | 2013-06-12 | 2014-12-18 | Medtronic, Inc. | Implantable electrode location selection |
WO2015013574A1 (en) | 2013-07-26 | 2015-01-29 | Medtronic, Inc. | Method and system for improved estimation of time of left ventricular pacing with respect to intrinsic right ventricular activation in cardiac resynchronization therapy |
WO2015089002A1 (en) | 2013-12-09 | 2015-06-18 | Medtronic, Inc. | Noninvasive cardiac therapy evaluation |
US9095313B2 (en) | 2008-11-18 | 2015-08-04 | Sync-Rx, Ltd. | Accounting for non-uniform longitudinal motion during movement of an endoluminal imaging probe |
US9101286B2 (en) | 2008-11-18 | 2015-08-11 | Sync-Rx, Ltd. | Apparatus and methods for determining a dimension of a portion of a stack of endoluminal data points |
US9144394B2 (en) | 2008-11-18 | 2015-09-29 | Sync-Rx, Ltd. | Apparatus and methods for determining a plurality of local calibration factors for an image |
WO2015164013A1 (en) | 2014-04-25 | 2015-10-29 | Medtronic, Inc. | Guidance system for localization and cannulation of the coronary sinus |
US9220568B2 (en) | 2009-10-12 | 2015-12-29 | Corindus Inc. | Catheter system with percutaneous device movement algorithm |
WO2016025805A1 (en) | 2014-08-15 | 2016-02-18 | Medtronic, Inc. | Systems, methods, and interfaces for configuring cardiac therapy |
US9265951B2 (en) | 2010-02-12 | 2016-02-23 | The Brigham And Women's Hospital | System and method for automated adjustment of cardiac resynchronization therapy control parameters |
US9265954B2 (en) | 2013-07-26 | 2016-02-23 | Medtronic, Inc. | Method and system for improved estimation of time of left ventricular pacing with respect to intrinsic right ventricular activation in cardiac resynchronization therapy |
US9278220B2 (en) | 2013-07-23 | 2016-03-08 | Medtronic, Inc. | Identification of healthy versus unhealthy substrate for pacing from a multipolar lead |
US9278219B2 (en) | 2013-03-15 | 2016-03-08 | Medtronic, Inc. | Closed loop optimization of control parameters during cardiac pacing |
US9282907B2 (en) | 2013-07-23 | 2016-03-15 | Medtronic, Inc. | Identification of healthy versus unhealthy substrate for pacing from a multipolar lead |
US9305334B2 (en) | 2007-03-08 | 2016-04-05 | Sync-Rx, Ltd. | Luminal background cleaning |
US9320446B2 (en) | 2013-12-09 | 2016-04-26 | Medtronic, Inc. | Bioelectric sensor device and methods |
US9375164B2 (en) | 2007-03-08 | 2016-06-28 | Sync-Rx, Ltd. | Co-use of endoluminal data and extraluminal imaging |
US9406129B2 (en) | 2013-10-10 | 2016-08-02 | Medtronic, Inc. | Method and system for ranking instruments |
US9474457B2 (en) | 2013-06-12 | 2016-10-25 | Medtronic, Inc. | Metrics of electrical dyssynchrony and electrical activation patterns from surface ECG electrodes |
US9510763B2 (en) | 2011-05-03 | 2016-12-06 | Medtronic, Inc. | Assessing intra-cardiac activation patterns and electrical dyssynchrony |
US9586050B2 (en) | 2014-08-15 | 2017-03-07 | Medtronic, Inc. | Systems and methods for configuration of atrioventricular interval |
US9586052B2 (en) | 2014-08-15 | 2017-03-07 | Medtronic, Inc. | Systems and methods for evaluating cardiac therapy |
US9591982B2 (en) | 2014-07-31 | 2017-03-14 | Medtronic, Inc. | Systems and methods for evaluating cardiac therapy |
US9633431B2 (en) | 2014-07-02 | 2017-04-25 | Covidien Lp | Fluoroscopic pose estimation |
US9629571B2 (en) | 2007-03-08 | 2017-04-25 | Sync-Rx, Ltd. | Co-use of endoluminal data and extraluminal imaging |
US9668818B2 (en) | 2014-10-15 | 2017-06-06 | Medtronic, Inc. | Method and system to select an instrument for lead stabilization |
US9764143B2 (en) | 2014-08-15 | 2017-09-19 | Medtronic, Inc. | Systems and methods for configuration of interventricular interval |
US9776009B2 (en) | 2014-03-20 | 2017-10-03 | Medtronic, Inc. | Non-invasive detection of phrenic nerve stimulation |
US9833293B2 (en) | 2010-09-17 | 2017-12-05 | Corindus, Inc. | Robotic catheter system |
US9888969B2 (en) | 2007-03-08 | 2018-02-13 | Sync-Rx Ltd. | Automatic quantitative vessel analysis |
US9924884B2 (en) | 2013-04-30 | 2018-03-27 | Medtronic, Inc. | Systems, methods, and interfaces for identifying effective electrodes |
US9962229B2 (en) | 2009-10-12 | 2018-05-08 | Corindus, Inc. | System and method for navigating a guide wire |
US9974509B2 (en) | 2008-11-18 | 2018-05-22 | Sync-Rx Ltd. | Image super enhancement |
US10064567B2 (en) | 2013-04-30 | 2018-09-04 | Medtronic, Inc. | Systems, methods, and interfaces for identifying optimal electrical vectors |
WO2018169925A1 (en) | 2017-03-15 | 2018-09-20 | Medtronic, Inc. | Qrs offset and onset determination |
WO2019023478A1 (en) | 2017-07-28 | 2019-01-31 | Medtronic, Inc. | Cardiac cycle selection |
WO2019023472A1 (en) | 2017-07-28 | 2019-01-31 | Medtronic, Inc. | Generating activation times |
WO2019126261A1 (en) | 2017-12-22 | 2019-06-27 | Medtronic, Inc. | Evaluation of his bundle pacing therapy |
WO2019125772A1 (en) | 2017-12-22 | 2019-06-27 | Medtronic, Inc. | Ectopic beat-compensated electrical heterogeneity information |
US10362962B2 (en) | 2008-11-18 | 2019-07-30 | Synx-Rx, Ltd. | Accounting for skipped imaging locations during movement of an endoluminal imaging probe |
WO2019168773A1 (en) | 2018-02-27 | 2019-09-06 | Medtronic, Inc. | Mapping electrical activity on a model heart |
WO2019169062A1 (en) | 2018-03-01 | 2019-09-06 | Medtronic, Inc. | Delivery of pacing therapy by a cardiac pacing device |
WO2019183458A1 (en) | 2018-03-23 | 2019-09-26 | Medtronic, Inc. | Evaluation of ventricle from atrium pacing therapy |
WO2019183514A1 (en) | 2018-03-23 | 2019-09-26 | Medtronic, Inc. | Vfa cardiac therapy for tachycardia |
WO2019183512A1 (en) | 2018-03-23 | 2019-09-26 | Medtronic, Inc. | Vfa cardiac resynchronization therapy |
WO2019183507A1 (en) | 2018-03-23 | 2019-09-26 | Medtronic, Inc. | Av synchronous vfa cardiac therapy |
WO2019191602A1 (en) | 2018-03-29 | 2019-10-03 | Medtronic, Inc. | Left ventricular assist device adjustment and evaluation |
US10433746B2 (en) | 2017-12-22 | 2019-10-08 | Regents Of The University Of Minnesota | Systems and methods for anterior and posterior electrode signal analysis |
US10492705B2 (en) | 2017-12-22 | 2019-12-03 | Regents Of The University Of Minnesota | Anterior and posterior electrode signals |
WO2019232309A1 (en) | 2018-06-01 | 2019-12-05 | Medtronic, Inc. | System for use in cardiac evaluation |
WO2019232313A1 (en) | 2018-06-01 | 2019-12-05 | Medtronic, Inc. | System for use in cardiac evaluation |
US10532213B2 (en) | 2017-03-03 | 2020-01-14 | Medtronic, Inc. | Criteria for determination of local tissue latency near pacing electrode |
WO2020044312A1 (en) | 2018-08-31 | 2020-03-05 | Medtronic, Inc. | Adaptive vfa cardiac therapy |
WO2020102622A1 (en) | 2018-11-17 | 2020-05-22 | Medtronic, Inc. | Vfa delivery systems |
WO2020131384A1 (en) | 2018-12-20 | 2020-06-25 | Medtronic, Inc. | Implantable medical device delivery for cardiac therapy |
WO2020132446A1 (en) | 2018-12-21 | 2020-06-25 | Medtronic, Inc. | Delivery systems and methods for left ventricular pacing |
WO2020131619A1 (en) | 2018-12-20 | 2020-06-25 | Medtronic, Inc. | Propagation patterns system |
US10716528B2 (en) | 2007-03-08 | 2020-07-21 | Sync-Rx, Ltd. | Automatic display of previously-acquired endoluminal images |
US10748289B2 (en) | 2012-06-26 | 2020-08-18 | Sync-Rx, Ltd | Coregistration of endoluminal data points with values of a luminal-flow-related index |
WO2020185400A1 (en) | 2019-03-11 | 2020-09-17 | Medtronic, Inc. | Vfa cardiac resynchronization therapy using accelerometer |
US10780279B2 (en) | 2016-02-26 | 2020-09-22 | Medtronic, Inc. | Methods and systems of optimizing right ventricular only pacing for patients with respect to an atrial event and left ventricular event |
WO2020205091A1 (en) | 2019-03-29 | 2020-10-08 | Medtronic, Inc. | Systems, methods, and devices for adaptive cardiac therapy |
WO2021015984A1 (en) | 2019-07-24 | 2021-01-28 | Medtronic, Inc. | Av synchronous septal pacing |
US10918870B2 (en) | 2018-03-07 | 2021-02-16 | Medtronic, Inc. | Atrial lead placement for treatment of atrial dyssynchrony |
WO2021041414A1 (en) | 2019-08-26 | 2021-03-04 | Medtronic, Inc. | Vfa delivery and implant region detection |
WO2021071714A1 (en) | 2019-10-09 | 2021-04-15 | Medtronic, Inc. | Systems and methods for configuring cardiac therapy |
WO2021071742A1 (en) | 2019-10-09 | 2021-04-15 | Medtronic, Inc. | Synchronizing external electrical activity |
WO2021071713A1 (en) | 2019-10-09 | 2021-04-15 | Medtronic, Inc. | Systems, methods, and devices for determining cardiac condition |
WO2021091843A1 (en) | 2019-11-04 | 2021-05-14 | Medtronic, Inc. | Systems for evaluating cardiac therapy |
US11064964B2 (en) | 2007-03-08 | 2021-07-20 | Sync-Rx, Ltd | Determining a characteristic of a lumen by measuring velocity of a contrast agent |
US11064903B2 (en) | 2008-11-18 | 2021-07-20 | Sync-Rx, Ltd | Apparatus and methods for mapping a sequence of images to a roadmap image |
US11071500B2 (en) | 2019-05-02 | 2021-07-27 | Medtronic, Inc. | Identification of false asystole detection |
US11071505B2 (en) | 2016-05-11 | 2021-07-27 | Koninklijke Philips N.V. | Anatomy adapted acquisition with fixed multi-source x-ray system |
WO2021154481A1 (en) | 2020-01-30 | 2021-08-05 | Medtronic, Inc. | Disturbance detection and removal in cardiac signals |
WO2021202379A1 (en) | 2020-03-30 | 2021-10-07 | Medtronic, Inc. | Pacing efficacy determination using a representative morphology of external cardiac signals |
WO2021202713A1 (en) | 2020-04-03 | 2021-10-07 | Medtronic, Inc. | Cardiac conduction system therapy benefit determination |
WO2021202711A1 (en) | 2020-04-03 | 2021-10-07 | Medtronic, Inc. | Cardiac conduction system engagement |
US11172895B2 (en) | 2015-12-07 | 2021-11-16 | Covidien Lp | Visualization, navigation, and planning with electromagnetic navigation bronchoscopy and cone beam computed tomography integrated |
WO2021236701A1 (en) | 2020-05-21 | 2021-11-25 | Medtronic, Inc. | Qrs detection and bracketing |
US11197651B2 (en) | 2007-03-08 | 2021-12-14 | Sync-Rx, Ltd. | Identification and presentation of device-to-vessel relative motion |
US11213676B2 (en) | 2019-04-01 | 2022-01-04 | Medtronic, Inc. | Delivery systems for VfA cardiac therapy |
US11219769B2 (en) | 2016-02-26 | 2022-01-11 | Medtronic, Inc. | Noninvasive methods and systems of determining the extent of tissue capture from cardiac pacing |
US11235161B2 (en) | 2018-09-26 | 2022-02-01 | Medtronic, Inc. | Capture in ventricle-from-atrium cardiac therapy |
WO2022026162A1 (en) | 2020-07-30 | 2022-02-03 | Medtronic, Inc. | Patient screening and ecg belt for brady therapy tuning |
WO2022026154A1 (en) | 2020-07-31 | 2022-02-03 | Medtronic, Inc. | Stable cardiac signal identification |
WO2022026998A1 (en) | 2020-07-30 | 2022-02-03 | Medtronic, Inc. | Ecg belt systems to interoperate with imds |
US11253178B2 (en) | 2015-01-29 | 2022-02-22 | Medtronic, Inc. | Noninvasive assessment of cardiac resynchronization therapy |
US11419539B2 (en) | 2017-12-22 | 2022-08-23 | Regents Of The University Of Minnesota | QRS onset and offset times and cycle selection using anterior and posterior electrode signals |
WO2023021367A1 (en) | 2021-08-19 | 2023-02-23 | Medtronic, Inc. | Pacing artifact mitigation |
US11642032B2 (en) | 2019-12-31 | 2023-05-09 | Medtronic, Inc. | Model-based therapy parameters for heart failure |
WO2023105316A1 (en) | 2021-12-07 | 2023-06-15 | Medtronic, Inc. | Determination of cardiac conduction system therapy benefit |
US11679265B2 (en) | 2019-02-14 | 2023-06-20 | Medtronic, Inc. | Lead-in-lead systems and methods for cardiac therapy |
US11697025B2 (en) | 2019-03-29 | 2023-07-11 | Medtronic, Inc. | Cardiac conduction system capture |
US11712188B2 (en) | 2019-05-07 | 2023-08-01 | Medtronic, Inc. | Posterior left bundle branch engagement |
US11813466B2 (en) | 2020-01-27 | 2023-11-14 | Medtronic, Inc. | Atrioventricular nodal stimulation |
US11813464B2 (en) | 2020-07-31 | 2023-11-14 | Medtronic, Inc. | Cardiac conduction system evaluation |
US11918314B2 (en) | 2009-10-12 | 2024-03-05 | Corindus, Inc. | System and method for navigating a guide wire |
US11944461B2 (en) | 2019-12-02 | 2024-04-02 | Medtronic, Inc. | Generating representative cardiac information |
Families Citing this family (45)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2001235964A1 (en) * | 2000-05-09 | 2001-11-20 | Paieon Inc. | System and method for three-dimensional reconstruction of an artery |
AU2002212639A1 (en) | 2000-10-18 | 2002-05-15 | Paieon Inc. | Method and system for positioning a device in a tubular organ |
US7112208B2 (en) * | 2001-08-06 | 2006-09-26 | Morris John K | Compact suture punch with malleable needle |
DE60328983D1 (en) * | 2002-06-04 | 2009-10-08 | Koninkl Philips Electronics Nv | HYBRID THREE-DIMENSIONAL RECONSTRUCTION OF CORONARY ARTERIES BY ROTATION ANGIOGRAPHY |
FR2847798B1 (en) | 2002-11-28 | 2006-02-10 | Ge Med Sys Global Tech Co Llc | METHOD FOR DETERMINING FUNCTIONAL PARAMETERS IN A FLUOROSCOPIC DEVICE |
FR2847797B1 (en) * | 2002-11-28 | 2005-09-23 | Ge Med Sys Global Tech Co Llc | IMPROVEMENTS IN FLUOROSCOPIC IMAGING METHODS AND DEVICES |
US8078274B2 (en) * | 2003-02-21 | 2011-12-13 | Dtherapeutics, Llc | Device, system and method for measuring cross-sectional areas in luminal organs |
WO2004093684A1 (en) * | 2003-04-22 | 2004-11-04 | Philips Intellectual Property & Standards Gmbh | Apparatus for angiographic x-ray photography |
US6873866B2 (en) * | 2003-06-04 | 2005-03-29 | Segami Corporation | Stereoscopic visualization of beating heart |
CA2533538A1 (en) | 2003-07-21 | 2005-01-27 | Paieon Inc. | Method and system for identifying an optimal image within a series of images that depict a moving organ |
JP2007502676A (en) * | 2003-08-21 | 2007-02-15 | アイシェム コーポレイション | Automated method and system for vascular plaque detection and analysis |
EP1665130A4 (en) | 2003-09-25 | 2009-11-18 | Paieon Inc | System and method for three-dimensional reconstruction of a tubular organ |
US20060034536A1 (en) * | 2004-06-23 | 2006-02-16 | Ogren Wayne E | Systems and methods relating to magnitude enhancement analysis suitable for high bit level displays on low bit level systems, determining the material thickness, and 3D visualization of color space dimensions |
US7639847B2 (en) * | 2004-09-08 | 2009-12-29 | Ge Medical Systems Information Technologies, Inc. | Coronary artery tree imaging system and method |
EP1859414B1 (en) * | 2005-03-09 | 2011-09-14 | Koninklijke Philips Electronics N.V. | Apparatus and method for providing 2d representation of 3d image data representing an anatomical lumen tree structure |
US8295577B2 (en) | 2005-03-31 | 2012-10-23 | Michael Zarkh | Method and apparatus for guiding a device in a totally occluded or partly occluded tubular organ |
JP2008534109A (en) * | 2005-03-31 | 2008-08-28 | パイエオン インコーポレイテッド | Apparatus and method for positioning a device within a tubular organ |
US8700128B2 (en) | 2005-05-03 | 2014-04-15 | Paieon Inc. | Method and apparatus for positioning a biventrivular pacemaker lead and electrode |
DE102005027963B3 (en) * | 2005-06-16 | 2006-12-07 | Siemens Ag | Method of reconstructing three dimensional image data set of moved object from set of projected images taken from different directions involves dividing images into several partial sets taken during given phases of object movement |
JP5337416B2 (en) * | 2008-07-02 | 2013-11-06 | 株式会社東芝 | Image processing apparatus and diagnostic imaging apparatus |
US8200466B2 (en) | 2008-07-21 | 2012-06-12 | The Board Of Trustees Of The Leland Stanford Junior University | Method for tuning patient-specific cardiovascular simulations |
US9405886B2 (en) | 2009-03-17 | 2016-08-02 | The Board Of Trustees Of The Leland Stanford Junior University | Method for determining cardiovascular information |
US20220139561A1 (en) * | 2009-09-25 | 2022-05-05 | Volcano Corporation | Device and Method for Determining the Likelihood of a Patient Having a Clinical Event or a Clinically Silent Event Based on Ascertained Physiological Parameters |
DE102010009701A1 (en) * | 2010-03-01 | 2011-09-01 | Siemens Aktiengesellschaft | Method for automatically identifying narrow points of coronary blood vessel in heart of patient, involves identifying narrow points in hollow vessel based on automated evaluation of profile course curve of hollow vessel |
US8157742B2 (en) | 2010-08-12 | 2012-04-17 | Heartflow, Inc. | Method and system for patient-specific modeling of blood flow |
US8315812B2 (en) | 2010-08-12 | 2012-11-20 | Heartflow, Inc. | Method and system for patient-specific modeling of blood flow |
EP2559001B1 (en) | 2010-09-02 | 2018-07-11 | Pie Medical Imaging BV | Method and apparatus for quantitative analysis of a tree of recursively splitting tubular organs |
EP2570079B1 (en) * | 2011-09-13 | 2017-06-14 | Pie Medical Imaging BV | Method and apparatus for determining optimal 3D reconstruction of an object |
JP5886581B2 (en) * | 2011-09-26 | 2016-03-16 | 公立大学法人大阪府立大学 | Vascular plaque diagnostic imaging system |
US8861830B2 (en) | 2011-11-07 | 2014-10-14 | Paieon Inc. | Method and system for detecting and analyzing heart mechanics |
US8548778B1 (en) | 2012-05-14 | 2013-10-01 | Heartflow, Inc. | Method and system for providing information from a patient-specific model of blood flow |
US9351698B2 (en) | 2013-03-12 | 2016-05-31 | Lightlab Imaging, Inc. | Vascular data processing and image registration systems, methods, and apparatuses |
US10499813B2 (en) | 2014-09-12 | 2019-12-10 | Lightlab Imaging, Inc. | Methods, systems and apparatus for temporal calibration of an intravascular imaging system |
US10105107B2 (en) | 2015-01-08 | 2018-10-23 | St. Jude Medical International Holding S.À R.L. | Medical system having combined and synergized data output from multiple independent inputs |
US9996921B2 (en) | 2015-05-17 | 2018-06-12 | LIGHTLAB IMAGING, lNC. | Detection of metal stent struts |
US10109058B2 (en) | 2015-05-17 | 2018-10-23 | Lightlab Imaging, Inc. | Intravascular imaging system interfaces and stent detection methods |
US10222956B2 (en) | 2015-05-17 | 2019-03-05 | Lightlab Imaging, Inc. | Intravascular imaging user interface systems and methods |
US10646198B2 (en) | 2015-05-17 | 2020-05-12 | Lightlab Imaging, Inc. | Intravascular imaging and guide catheter detection methods and systems |
EP3324830B1 (en) | 2015-07-25 | 2023-01-04 | Lightlab Imaging, Inc. | Intravascular data visualization method and device |
WO2017087821A2 (en) | 2015-11-18 | 2017-05-26 | Lightlab Imaging, Inc. | X-ray image feature detection and registration systems and methods |
WO2017091598A1 (en) | 2015-11-23 | 2017-06-01 | Lightlab Imaging, Inc. | Detection of and validation of shadows in intravascular images |
CN109643449A (en) | 2016-04-14 | 2019-04-16 | 光学实验室成像公司 | The identification of vessel branch |
WO2017201026A1 (en) | 2016-05-16 | 2017-11-23 | Lightlab Imaging, Inc. | Intravascular absorbable stent detection and diagnostic methods and systems |
EP3404614B1 (en) * | 2017-05-15 | 2020-02-26 | Siemens Healthcare GmbH | Method for reconstructing a reconstruction data set of a vessel segment, imaging device, computer program, and storage medium |
CN109745062B (en) | 2019-01-30 | 2020-01-10 | 腾讯科技(深圳)有限公司 | CT image generation method, device, equipment and storage medium |
Citations (51)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3357550A (en) * | 1966-06-23 | 1967-12-12 | American Cyanamid Co | Combination reel and label for surgical sutures |
US4263916A (en) * | 1978-03-27 | 1981-04-28 | University Of Southern California | Image averaging for angiography by registration and combination of serial images |
US4889128A (en) * | 1985-09-13 | 1989-12-26 | Pfizer Hospital Products | Doppler catheter |
US5175773A (en) * | 1988-09-13 | 1992-12-29 | General Electric Cgr S.A. | Method of three-dimensional reconstruction of arborescence by labeling |
US5203777A (en) * | 1992-03-19 | 1993-04-20 | Lee Peter Y | Radiopaque marker system for a tubular device |
US5207226A (en) * | 1991-01-25 | 1993-05-04 | Regents Of The University Of Minnesota | Device and method for measurement of blood flow |
US5446800A (en) * | 1994-06-13 | 1995-08-29 | Diasonics Ultrasound, Inc. | Method and apparatus for displaying angiographic data in a topographic format |
US5583902A (en) * | 1995-10-06 | 1996-12-10 | Bhb General Partnership | Method of and apparatus for predicting computed tomography contrast enhancement |
US5699799A (en) * | 1996-03-26 | 1997-12-23 | Siemens Corporate Research, Inc. | Automatic determination of the curved axis of a 3-D tube-shaped object in image volume |
US5718724A (en) * | 1994-02-09 | 1998-02-17 | Boston Scientific Technology, Inc. | Bifurcated endoluminal prosthesis |
US5729129A (en) * | 1995-06-07 | 1998-03-17 | Biosense, Inc. | Magnetic location system with feedback adjustment of magnetic field generator |
US5732707A (en) * | 1994-05-03 | 1998-03-31 | Molecular Biosystems, Inc. | Method of ultrasonically quantitating myocardial perfusion using as intravenously injected tracer |
US5734384A (en) * | 1991-11-29 | 1998-03-31 | Picker International, Inc. | Cross-referenced sectioning and reprojection of diagnostic image volumes |
US5840025A (en) * | 1993-07-20 | 1998-11-24 | Biosense, Inc. | Apparatus and method for treating cardiac arrhythmias |
US5912945A (en) * | 1997-06-23 | 1999-06-15 | Regents Of The University Of California | X-ray compass for determining device orientation |
US5978439A (en) * | 1997-02-14 | 1999-11-02 | U.S. Philips Corporation | X-ray imaging method involving a series of images from different perspectives |
US6027460A (en) * | 1995-09-14 | 2000-02-22 | Shturman Cardiology Systems, Inc. | Rotatable intravascular apparatus |
US6047080A (en) * | 1996-06-19 | 2000-04-04 | Arch Development Corporation | Method and apparatus for three-dimensional reconstruction of coronary vessels from angiographic images |
US6094591A (en) * | 1998-04-10 | 2000-07-25 | Sunnybrook Health Science Centre | Measurement of coronary flow reserve with MR oximetry |
US6167296A (en) * | 1996-06-28 | 2000-12-26 | The Board Of Trustees Of The Leland Stanford Junior University | Method for volumetric image navigation |
US6190353B1 (en) * | 1995-10-13 | 2001-02-20 | Transvascular, Inc. | Methods and apparatus for bypassing arterial obstructions and/or performing other transvascular procedures |
US6195577B1 (en) * | 1998-10-08 | 2001-02-27 | Regents Of The University Of Minnesota | Method and apparatus for positioning a device in a body |
US6233476B1 (en) * | 1999-05-18 | 2001-05-15 | Mediguide Ltd. | Medical positioning system |
US6246898B1 (en) * | 1995-03-28 | 2001-06-12 | Sonometrics Corporation | Method for carrying out a medical procedure using a three-dimensional tracking and imaging system |
US6249695B1 (en) * | 1997-11-21 | 2001-06-19 | Fonar Corporation | Patient movement during image guided surgery |
US6290673B1 (en) * | 1999-05-20 | 2001-09-18 | Conor Medsystems, Inc. | Expandable medical device delivery system and method |
US6301498B1 (en) * | 1998-04-17 | 2001-10-09 | Cornell Research Foundation, Inc. | Method of determining carotid artery stenosis using X-ray imagery |
US6317621B1 (en) * | 1999-04-30 | 2001-11-13 | Siemens Aktiengesellschaft | Method and device for catheter navigation in three-dimensional vascular tree exposures |
US6332034B1 (en) * | 1998-03-24 | 2001-12-18 | U.S. Philips Corporation | Image processing method including steps for the segmentation of a multidimensional image, and medical imaging apparatus utilizing this method |
US6334964B1 (en) * | 1990-03-16 | 2002-01-01 | Littelfuse, Inc. | Varistor ink formulations |
US6351513B1 (en) * | 2000-06-30 | 2002-02-26 | Siemens Corporate Research, Inc. | Fluoroscopy based 3-D neural navigation based on co-registration of other modalities with 3-D angiography reconstruction data |
US6381350B1 (en) * | 1999-07-02 | 2002-04-30 | The Cleveland Clinic Foundation | Intravascular ultrasonic analysis using active contour method and system |
US6385332B1 (en) * | 1999-02-19 | 2002-05-07 | The John P. Roberts Research Institute | Automated segmentation method for 3-dimensional ultrasound |
US6389104B1 (en) * | 2000-06-30 | 2002-05-14 | Siemens Corporate Research, Inc. | Fluoroscopy based 3-D neural navigation based on 3-D angiography reconstruction data |
US20020057825A1 (en) * | 2000-10-18 | 2002-05-16 | Rami Evron | Method for processing images of coronary arteries |
US6463309B1 (en) * | 2000-05-11 | 2002-10-08 | Hanna Ilia | Apparatus and method for locating vessels in a living body |
US6505064B1 (en) * | 2000-08-22 | 2003-01-07 | Koninklijke Philips Electronics, N.V. | Diagnostic imaging systems and methods employing temporally resolved intensity tracing |
US6503203B1 (en) * | 2001-01-16 | 2003-01-07 | Koninklijke Philips Electronics N.V. | Automated ultrasound system for performing imaging studies utilizing ultrasound contrast agents |
US20030032866A1 (en) * | 2001-11-08 | 2003-02-13 | Winter Kathryn P. | Neurocognitive assessment apparatus and method |
US6535756B1 (en) * | 2000-04-07 | 2003-03-18 | Surgical Navigation Technologies, Inc. | Trajectory storage apparatus and method for surgical navigation system |
US6544230B1 (en) * | 1998-03-31 | 2003-04-08 | Transvascular, Inc. | Catheters, systems and methods for percutaneous in situ arterio-venous bypass |
US20030199759A1 (en) * | 2002-04-18 | 2003-10-23 | Richard Merwin F. | Coronary catheter with radiopaque length markers |
US20030208116A1 (en) * | 2000-06-06 | 2003-11-06 | Zhengrong Liang | Computer aided treatment planning and visualization with image registration and fusion |
US6709444B1 (en) * | 1996-02-02 | 2004-03-23 | Transvascular, Inc. | Methods for bypassing total or near-total obstructions in arteries or other anatomical conduits |
US20040102697A1 (en) * | 2000-10-18 | 2004-05-27 | Rami Evron | Method and system for positioning a device in a tubular organ |
US6748259B1 (en) * | 2000-06-15 | 2004-06-08 | Spectros Corporation | Optical imaging of induced signals in vivo under ambient light conditions |
US20040136491A1 (en) * | 2002-07-23 | 2004-07-15 | Maria Iatrou | Methods and systems for detecting components of plaque |
US20050113686A1 (en) * | 2003-11-21 | 2005-05-26 | Peckham John E. | Rotational markers |
US6990369B2 (en) * | 2000-10-06 | 2006-01-24 | The United States Of America As Represented By The Department Of Health And Human Services | Probe using diffuse-reflectance spectroscopy |
US20060036167A1 (en) * | 2004-07-03 | 2006-02-16 | Shina Systems Ltd. | Vascular image processing |
US7321677B2 (en) * | 2000-05-09 | 2008-01-22 | Paieon Inc. | System and method for three-dimensional reconstruction of an artery |
Family Cites Families (82)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3642004A (en) * | 1970-01-05 | 1972-02-15 | Life Support Equipment Corp | Urethral valve |
US3868956A (en) * | 1972-06-05 | 1975-03-04 | Ralph J Alfidi | Vessel implantable appliance and method of implanting it |
US3795246A (en) * | 1973-01-26 | 1974-03-05 | Bard Inc C R | Venocclusion device |
US3874388A (en) * | 1973-02-12 | 1975-04-01 | Ochsner Med Found Alton | Shunt defect closure system |
US4501030A (en) * | 1981-08-17 | 1985-02-26 | American Hospital Supply Corporation | Method of leaflet attachment for prosthetic heart valves |
US4425908A (en) * | 1981-10-22 | 1984-01-17 | Beth Israel Hospital | Blood clot filter |
FR2523810B1 (en) * | 1982-03-23 | 1988-11-25 | Carpentier Alain | ORGANIC GRAFT FABRIC AND PROCESS FOR ITS PREPARATION |
SE445884B (en) * | 1982-04-30 | 1986-07-28 | Medinvent Sa | DEVICE FOR IMPLANTATION OF A RODFORM PROTECTION |
US4580568A (en) * | 1984-10-01 | 1986-04-08 | Cook, Incorporated | Percutaneous endovascular stent and method for insertion thereof |
US4733665C2 (en) * | 1985-11-07 | 2002-01-29 | Expandable Grafts Partnership | Expandable intraluminal graft and method and apparatus for implanting an expandable intraluminal graft |
US4796629A (en) * | 1987-06-03 | 1989-01-10 | Joseph Grayzel | Stiffened dilation balloon catheter device |
US4819751A (en) * | 1987-10-16 | 1989-04-11 | Baxter Travenol Laboratories, Inc. | Valvuloplasty catheter and method |
US4909252A (en) * | 1988-05-26 | 1990-03-20 | The Regents Of The Univ. Of California | Perfusion balloon catheter |
US4917102A (en) * | 1988-09-14 | 1990-04-17 | Advanced Cardiovascular Systems, Inc. | Guidewire assembly with steerable adjustable tip |
US4994077A (en) * | 1989-04-21 | 1991-02-19 | Dobben Richard L | Artificial heart valve for implantation in a blood vessel |
US4986830A (en) * | 1989-09-22 | 1991-01-22 | Schneider (U.S.A.) Inc. | Valvuloplasty catheter with balloon which remains stable during inflation |
US5002559A (en) * | 1989-11-30 | 1991-03-26 | Numed | PTCA catheter |
DK124690D0 (en) * | 1990-05-18 | 1990-05-18 | Henning Rud Andersen | FAT PROTECTION FOR IMPLEMENTATION IN THE BODY FOR REPLACEMENT OF NATURAL FLEET AND CATS FOR USE IN IMPLEMENTING A SUCH FAT PROTECTION |
US5397351A (en) * | 1991-05-13 | 1995-03-14 | Pavcnik; Dusan | Prosthetic valve for percutaneous insertion |
IT1245750B (en) * | 1991-05-24 | 1994-10-14 | Sorin Biomedica Emodialisi S R | CARDIAC VALVE PROSTHESIS, PARTICULARLY FOR REPLACING THE AORTIC VALVE |
US5370685A (en) * | 1991-07-16 | 1994-12-06 | Stanford Surgical Technologies, Inc. | Endovascular aortic valve replacement |
US5507767A (en) * | 1992-01-15 | 1996-04-16 | Cook Incorporated | Spiral stent |
EP0888758B1 (en) * | 1992-05-08 | 2003-08-20 | Schneider (Usa) Inc. | Esophageal stent |
FR2708166A1 (en) * | 1993-07-22 | 1995-01-27 | Philips Laboratoire Electroniq | A method of processing digitized images for the automatic detection of stenoses. |
US5389106A (en) * | 1993-10-29 | 1995-02-14 | Numed, Inc. | Impermeable expandable intravascular stent |
US5713950A (en) * | 1993-11-01 | 1998-02-03 | Cox; James L. | Method of replacing heart valves using flexible tubes |
CA2149290C (en) * | 1994-05-26 | 2006-07-18 | Carl T. Urban | Optical trocar |
JP3667813B2 (en) * | 1995-04-18 | 2005-07-06 | 株式会社東芝 | X-ray diagnostic equipment |
US5861028A (en) * | 1996-09-09 | 1999-01-19 | Shelhigh Inc | Natural tissue heart valve and stent prosthesis and method for making the same |
JPH09215753A (en) * | 1996-02-08 | 1997-08-19 | Schneider Usa Inc | Self-expanding stent made of titanium alloy |
US5716370A (en) * | 1996-02-23 | 1998-02-10 | Williamson, Iv; Warren | Means for replacing a heart valve in a minimally invasive manner |
US5891191A (en) * | 1996-04-30 | 1999-04-06 | Schneider (Usa) Inc | Cobalt-chromium-molybdenum alloy stent and stent-graft |
DE69719237T2 (en) * | 1996-05-23 | 2003-11-27 | Samsung Electronics Co., Ltd. | Flexible, self-expandable stent and method for its manufacture |
US5855601A (en) * | 1996-06-21 | 1999-01-05 | The Trustees Of Columbia University In The City Of New York | Artificial heart valve and method and device for implanting the same |
JPH105203A (en) * | 1996-06-21 | 1998-01-13 | Toshiba Corp | Diagnostic system, diagnostic information producing method and three dimensional image reconfiguration method |
US6702851B1 (en) * | 1996-09-06 | 2004-03-09 | Joseph A. Chinn | Prosthetic heart valve with surface modification |
AU4593997A (en) * | 1996-10-01 | 1998-04-24 | Numed, Inc. | Expandable stent |
US5830229A (en) * | 1997-03-07 | 1998-11-03 | Micro Therapeutics Inc. | Hoop stent |
US5868783A (en) * | 1997-04-16 | 1999-02-09 | Numed, Inc. | Intravascular stent with limited axial shrinkage |
US5855597A (en) * | 1997-05-07 | 1999-01-05 | Iowa-India Investments Co. Limited | Stent valve and stent graft for percutaneous surgery |
US5911734A (en) * | 1997-05-08 | 1999-06-15 | Embol-X, Inc. | Percutaneous catheter and guidewire having filter and medical device deployment capabilities |
US5925063A (en) * | 1997-09-26 | 1999-07-20 | Khosravi; Farhad | Coiled sheet valve, filter or occlusive device and methods of use |
DE29880158U1 (en) * | 1997-11-07 | 2000-11-30 | Salviac Ltd | Embolic protection device |
US6221006B1 (en) * | 1998-02-10 | 2001-04-24 | Artemis Medical Inc. | Entrapping apparatus and method for use |
US6695864B2 (en) * | 1997-12-15 | 2004-02-24 | Cardeon Corporation | Method and apparatus for cerebral embolic protection |
WO1999062431A1 (en) * | 1998-06-02 | 1999-12-09 | Cook Incorporated | Multiple-sided intraluminal medical device |
FR2781140B1 (en) * | 1998-07-17 | 2000-11-10 | Ge Medical Syst Sa | METHOD FOR POSITIONING A RADIOLOGY APPARATUS |
DE19843408C2 (en) * | 1998-09-22 | 2000-10-26 | Siemens Ag | Method for reproducing x-ray images when positioning a catheter inserted into a vessel and device for carrying out the method |
US6051014A (en) * | 1998-10-13 | 2000-04-18 | Embol-X, Inc. | Percutaneous filtration catheter for valve repair surgery and methods of use |
US7018401B1 (en) * | 1999-02-01 | 2006-03-28 | Board Of Regents, The University Of Texas System | Woven intravascular devices and methods for making the same and apparatus for delivery of the same |
US20020138094A1 (en) * | 1999-02-12 | 2002-09-26 | Thomas Borillo | Vascular filter system |
US6171327B1 (en) * | 1999-02-24 | 2001-01-09 | Scimed Life Systems, Inc. | Intravascular filter and method |
US6673089B1 (en) * | 1999-03-11 | 2004-01-06 | Mindguard Ltd. | Implantable stroke treating device |
IL128938A0 (en) * | 1999-03-11 | 2000-02-17 | Mind Guard Ltd | Implantable stroke treating device |
US6179859B1 (en) * | 1999-07-16 | 2001-01-30 | Baff Llc | Emboli filtration system and methods of use |
US6168579B1 (en) * | 1999-08-04 | 2001-01-02 | Scimed Life Systems, Inc. | Filter flush system and methods of use |
FR2799364B1 (en) * | 1999-10-12 | 2001-11-23 | Jacques Seguin | MINIMALLY INVASIVE CANCELING DEVICE |
US6352708B1 (en) * | 1999-10-14 | 2002-03-05 | The International Heart Institute Of Montana Foundation | Solution and method for treating autologous tissue for implant operation |
US6440164B1 (en) * | 1999-10-21 | 2002-08-27 | Scimed Life Systems, Inc. | Implantable prosthetic valve |
US6849085B2 (en) * | 1999-11-19 | 2005-02-01 | Advanced Bio Prosthetic Surfaces, Ltd. | Self-supporting laminated films, structural materials and medical devices manufactured therefrom and method of making same |
US7195641B2 (en) * | 1999-11-19 | 2007-03-27 | Advanced Bio Prosthetic Surfaces, Ltd. | Valvular prostheses having metal or pseudometallic construction and methods of manufacture |
KR20020082217A (en) * | 2000-01-27 | 2002-10-30 | 쓰리에프 쎄러퓨틱스, 인코포레이티드 | Prosthetic Heart Valve |
US6872226B2 (en) * | 2001-01-29 | 2005-03-29 | 3F Therapeutics, Inc. | Method of cutting material for use in implantable medical device |
EP2329796B1 (en) * | 2000-01-31 | 2021-09-01 | Cook Biotech Incorporated | Stent valve |
US6695865B2 (en) * | 2000-03-20 | 2004-02-24 | Advanced Bio Prosthetic Surfaces, Ltd. | Embolic protection device |
US6334864B1 (en) * | 2000-05-17 | 2002-01-01 | Aga Medical Corp. | Alignment member for delivering a non-symmetric device with a predefined orientation |
US6527800B1 (en) * | 2000-06-26 | 2003-03-04 | Rex Medical, L.P. | Vascular device and method for valve leaflet apposition |
US6676698B2 (en) * | 2000-06-26 | 2004-01-13 | Rex Medicol, L.P. | Vascular device with valve for approximating vessel wall |
EP2292185B1 (en) * | 2000-07-24 | 2013-12-04 | Jeffrey Grayzel | Stiffened balloon catheter for dilatation and stenting |
WO2002076281A2 (en) * | 2000-11-07 | 2002-10-03 | Artemis Medical Inc. | Tissue separator assembly and method |
US6503272B2 (en) * | 2001-03-21 | 2003-01-07 | Cordis Corporation | Stent-based venous valves |
US7374571B2 (en) * | 2001-03-23 | 2008-05-20 | Edwards Lifesciences Corporation | Rolled minimally-invasive heart valves and methods of manufacture |
US6682558B2 (en) * | 2001-05-10 | 2004-01-27 | 3F Therapeutics, Inc. | Delivery system for a stentless valve bioprosthesis |
FR2828263B1 (en) * | 2001-08-03 | 2007-05-11 | Philipp Bonhoeffer | DEVICE FOR IMPLANTATION OF AN IMPLANT AND METHOD FOR IMPLANTATION OF THE DEVICE |
US6893460B2 (en) * | 2001-10-11 | 2005-05-17 | Percutaneous Valve Technologies Inc. | Implantable prosthetic valve |
US6689144B2 (en) * | 2002-02-08 | 2004-02-10 | Scimed Life Systems, Inc. | Rapid exchange catheter and methods for delivery of vaso-occlusive devices |
US6990368B2 (en) * | 2002-04-04 | 2006-01-24 | Surgical Navigation Technologies, Inc. | Method and apparatus for virtual digital subtraction angiography |
US7041132B2 (en) * | 2002-08-16 | 2006-05-09 | 3F Therapeutics, Inc, | Percutaneously delivered heart valve and delivery means thereof |
US6984242B2 (en) * | 2002-12-20 | 2006-01-10 | Gore Enterprise Holdings, Inc. | Implantable medical device assembly |
US7276078B2 (en) * | 2004-06-30 | 2007-10-02 | Edwards Lifesciences Pvt | Paravalvular leak detection, sealing, and prevention |
US7462191B2 (en) * | 2004-06-30 | 2008-12-09 | Edwards Lifesciences Pvt, Inc. | Device and method for assisting in the implantation of a prosthetic valve |
US8500785B2 (en) * | 2004-07-13 | 2013-08-06 | Boston Scientific Scimed, Inc. | Catheter |
-
2001
- 2001-03-02 AU AU2001235964A patent/AU2001235964A1/en not_active Abandoned
- 2001-03-02 WO PCT/IL2001/000201 patent/WO2001085030A1/en active IP Right Grant
- 2001-03-02 AT AT01908107T patent/ATE396648T1/en not_active IP Right Cessation
- 2001-03-02 EP EP01908107A patent/EP1280459B1/en not_active Expired - Lifetime
- 2001-03-02 JP JP2001581690A patent/JP2004513673A/en active Pending
- 2001-03-02 DE DE60134223T patent/DE60134223D1/en not_active Expired - Lifetime
- 2001-03-02 US US10/275,913 patent/US7321677B2/en not_active Expired - Fee Related
-
2004
- 2004-07-16 US US10/892,348 patent/US20050008210A1/en not_active Abandoned
Patent Citations (52)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3357550A (en) * | 1966-06-23 | 1967-12-12 | American Cyanamid Co | Combination reel and label for surgical sutures |
US4263916A (en) * | 1978-03-27 | 1981-04-28 | University Of Southern California | Image averaging for angiography by registration and combination of serial images |
US4889128A (en) * | 1985-09-13 | 1989-12-26 | Pfizer Hospital Products | Doppler catheter |
US5175773A (en) * | 1988-09-13 | 1992-12-29 | General Electric Cgr S.A. | Method of three-dimensional reconstruction of arborescence by labeling |
US6334964B1 (en) * | 1990-03-16 | 2002-01-01 | Littelfuse, Inc. | Varistor ink formulations |
US5207226A (en) * | 1991-01-25 | 1993-05-04 | Regents Of The University Of Minnesota | Device and method for measurement of blood flow |
US5734384A (en) * | 1991-11-29 | 1998-03-31 | Picker International, Inc. | Cross-referenced sectioning and reprojection of diagnostic image volumes |
US5203777A (en) * | 1992-03-19 | 1993-04-20 | Lee Peter Y | Radiopaque marker system for a tubular device |
US5840025A (en) * | 1993-07-20 | 1998-11-24 | Biosense, Inc. | Apparatus and method for treating cardiac arrhythmias |
US5718724A (en) * | 1994-02-09 | 1998-02-17 | Boston Scientific Technology, Inc. | Bifurcated endoluminal prosthesis |
US5732707A (en) * | 1994-05-03 | 1998-03-31 | Molecular Biosystems, Inc. | Method of ultrasonically quantitating myocardial perfusion using as intravenously injected tracer |
US5446800A (en) * | 1994-06-13 | 1995-08-29 | Diasonics Ultrasound, Inc. | Method and apparatus for displaying angiographic data in a topographic format |
US6246898B1 (en) * | 1995-03-28 | 2001-06-12 | Sonometrics Corporation | Method for carrying out a medical procedure using a three-dimensional tracking and imaging system |
US5729129A (en) * | 1995-06-07 | 1998-03-17 | Biosense, Inc. | Magnetic location system with feedback adjustment of magnetic field generator |
US6027460A (en) * | 1995-09-14 | 2000-02-22 | Shturman Cardiology Systems, Inc. | Rotatable intravascular apparatus |
US5583902A (en) * | 1995-10-06 | 1996-12-10 | Bhb General Partnership | Method of and apparatus for predicting computed tomography contrast enhancement |
US6190353B1 (en) * | 1995-10-13 | 2001-02-20 | Transvascular, Inc. | Methods and apparatus for bypassing arterial obstructions and/or performing other transvascular procedures |
US6709444B1 (en) * | 1996-02-02 | 2004-03-23 | Transvascular, Inc. | Methods for bypassing total or near-total obstructions in arteries or other anatomical conduits |
US5699799A (en) * | 1996-03-26 | 1997-12-23 | Siemens Corporate Research, Inc. | Automatic determination of the curved axis of a 3-D tube-shaped object in image volume |
US6501848B1 (en) * | 1996-06-19 | 2002-12-31 | University Technology Corporation | Method and apparatus for three-dimensional reconstruction of coronary vessels from angiographic images and analytical techniques applied thereto |
US6047080A (en) * | 1996-06-19 | 2000-04-04 | Arch Development Corporation | Method and apparatus for three-dimensional reconstruction of coronary vessels from angiographic images |
US6167296A (en) * | 1996-06-28 | 2000-12-26 | The Board Of Trustees Of The Leland Stanford Junior University | Method for volumetric image navigation |
US5978439A (en) * | 1997-02-14 | 1999-11-02 | U.S. Philips Corporation | X-ray imaging method involving a series of images from different perspectives |
US5912945A (en) * | 1997-06-23 | 1999-06-15 | Regents Of The University Of California | X-ray compass for determining device orientation |
US6249695B1 (en) * | 1997-11-21 | 2001-06-19 | Fonar Corporation | Patient movement during image guided surgery |
US6332034B1 (en) * | 1998-03-24 | 2001-12-18 | U.S. Philips Corporation | Image processing method including steps for the segmentation of a multidimensional image, and medical imaging apparatus utilizing this method |
US6544230B1 (en) * | 1998-03-31 | 2003-04-08 | Transvascular, Inc. | Catheters, systems and methods for percutaneous in situ arterio-venous bypass |
US6094591A (en) * | 1998-04-10 | 2000-07-25 | Sunnybrook Health Science Centre | Measurement of coronary flow reserve with MR oximetry |
US6301498B1 (en) * | 1998-04-17 | 2001-10-09 | Cornell Research Foundation, Inc. | Method of determining carotid artery stenosis using X-ray imagery |
US6195577B1 (en) * | 1998-10-08 | 2001-02-27 | Regents Of The University Of Minnesota | Method and apparatus for positioning a device in a body |
US6385332B1 (en) * | 1999-02-19 | 2002-05-07 | The John P. Roberts Research Institute | Automated segmentation method for 3-dimensional ultrasound |
US6317621B1 (en) * | 1999-04-30 | 2001-11-13 | Siemens Aktiengesellschaft | Method and device for catheter navigation in three-dimensional vascular tree exposures |
US6233476B1 (en) * | 1999-05-18 | 2001-05-15 | Mediguide Ltd. | Medical positioning system |
US6290673B1 (en) * | 1999-05-20 | 2001-09-18 | Conor Medsystems, Inc. | Expandable medical device delivery system and method |
US6381350B1 (en) * | 1999-07-02 | 2002-04-30 | The Cleveland Clinic Foundation | Intravascular ultrasonic analysis using active contour method and system |
US6535756B1 (en) * | 2000-04-07 | 2003-03-18 | Surgical Navigation Technologies, Inc. | Trajectory storage apparatus and method for surgical navigation system |
US7321677B2 (en) * | 2000-05-09 | 2008-01-22 | Paieon Inc. | System and method for three-dimensional reconstruction of an artery |
US6463309B1 (en) * | 2000-05-11 | 2002-10-08 | Hanna Ilia | Apparatus and method for locating vessels in a living body |
US20030208116A1 (en) * | 2000-06-06 | 2003-11-06 | Zhengrong Liang | Computer aided treatment planning and visualization with image registration and fusion |
US6748259B1 (en) * | 2000-06-15 | 2004-06-08 | Spectros Corporation | Optical imaging of induced signals in vivo under ambient light conditions |
US6351513B1 (en) * | 2000-06-30 | 2002-02-26 | Siemens Corporate Research, Inc. | Fluoroscopy based 3-D neural navigation based on co-registration of other modalities with 3-D angiography reconstruction data |
US6389104B1 (en) * | 2000-06-30 | 2002-05-14 | Siemens Corporate Research, Inc. | Fluoroscopy based 3-D neural navigation based on 3-D angiography reconstruction data |
US6505064B1 (en) * | 2000-08-22 | 2003-01-07 | Koninklijke Philips Electronics, N.V. | Diagnostic imaging systems and methods employing temporally resolved intensity tracing |
US6990369B2 (en) * | 2000-10-06 | 2006-01-24 | The United States Of America As Represented By The Department Of Health And Human Services | Probe using diffuse-reflectance spectroscopy |
US20020057825A1 (en) * | 2000-10-18 | 2002-05-16 | Rami Evron | Method for processing images of coronary arteries |
US20040102697A1 (en) * | 2000-10-18 | 2004-05-27 | Rami Evron | Method and system for positioning a device in a tubular organ |
US6503203B1 (en) * | 2001-01-16 | 2003-01-07 | Koninklijke Philips Electronics N.V. | Automated ultrasound system for performing imaging studies utilizing ultrasound contrast agents |
US20030032866A1 (en) * | 2001-11-08 | 2003-02-13 | Winter Kathryn P. | Neurocognitive assessment apparatus and method |
US20030199759A1 (en) * | 2002-04-18 | 2003-10-23 | Richard Merwin F. | Coronary catheter with radiopaque length markers |
US20040136491A1 (en) * | 2002-07-23 | 2004-07-15 | Maria Iatrou | Methods and systems for detecting components of plaque |
US20050113686A1 (en) * | 2003-11-21 | 2005-05-26 | Peckham John E. | Rotational markers |
US20060036167A1 (en) * | 2004-07-03 | 2006-02-16 | Shina Systems Ltd. | Vascular image processing |
Cited By (220)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8494616B2 (en) | 2000-01-19 | 2013-07-23 | Christie Medical Holdings, Inc. | Method and apparatus for projection of subsurface structure onto an object's surface |
US20070225598A1 (en) * | 2003-12-08 | 2007-09-27 | Koninklijke Philips Electronics Nv | Image Segmentation in a Volume Data Set |
US7813549B2 (en) | 2003-12-08 | 2010-10-12 | Koninklijke Philips Electronics N.V. | Image segmentation in a volume data set |
WO2006018841A2 (en) | 2004-08-16 | 2006-02-23 | Navicath Ltd. | Image-guided navigation for catheter-based interventions |
US20070276216A1 (en) * | 2004-08-16 | 2007-11-29 | Refael Beyar | Image-Guided Navigation for Catheter-Based Interventions |
EP4197447A1 (en) | 2004-08-16 | 2023-06-21 | Corindus, Inc. | Image-guided navigation for catheter-based interventions |
US8600477B2 (en) | 2004-08-16 | 2013-12-03 | Corinduc, Inc. | Image-guided navigation for catheter-based interventions |
US8298147B2 (en) | 2005-06-24 | 2012-10-30 | Volcano Corporation | Three dimensional co-registration for intravascular diagnosis and therapy |
US20080170763A1 (en) * | 2006-10-25 | 2008-07-17 | Rcadia Medical Imaging Ltd. | Method and system for automatic analysis of blood vessel structures and pathologies in support of a triple rule-out procedure |
US20080219530A1 (en) * | 2006-10-25 | 2008-09-11 | Rcadia Medical Imaging, Ltd | Method and system for automatic quality control used in computerized analysis of ct angiography |
US20080103389A1 (en) * | 2006-10-25 | 2008-05-01 | Rcadia Medical Imaging Ltd. | Method and system for automatic analysis of blood vessel structures to identify pathologies |
US8103074B2 (en) | 2006-10-25 | 2012-01-24 | Rcadia Medical Imaging Ltd. | Identifying aorta exit points from imaging data |
US7940977B2 (en) | 2006-10-25 | 2011-05-10 | Rcadia Medical Imaging Ltd. | Method and system for automatic analysis of blood vessel structures to identify calcium or soft plaque pathologies |
US7940970B2 (en) | 2006-10-25 | 2011-05-10 | Rcadia Medical Imaging, Ltd | Method and system for automatic quality control used in computerized analysis of CT angiography |
US7873194B2 (en) | 2006-10-25 | 2011-01-18 | Rcadia Medical Imaging Ltd. | Method and system for automatic analysis of blood vessel structures and pathologies in support of a triple rule-out procedure |
US7860283B2 (en) | 2006-10-25 | 2010-12-28 | Rcadia Medical Imaging Ltd. | Method and system for the presentation of blood vessel structures and identified pathologies |
US20080212871A1 (en) * | 2007-02-13 | 2008-09-04 | Lars Dohmen | Determining a three-dimensional model of a rim of an anatomical structure |
US10307061B2 (en) | 2007-03-08 | 2019-06-04 | Sync-Rx, Ltd. | Automatic tracking of a tool upon a vascular roadmap |
US9216065B2 (en) | 2007-03-08 | 2015-12-22 | Sync-Rx, Ltd. | Forming and displaying a composite image |
US20100222671A1 (en) * | 2007-03-08 | 2010-09-02 | Sync-Rx, Ltd. | Identification and presentation of device-to-vessel relative motion |
US20100191102A1 (en) * | 2007-03-08 | 2010-07-29 | Sync-Rx, Ltd. | Automatic correction and utilization of a vascular roadmap comprising a tool |
US20100290693A1 (en) * | 2007-03-08 | 2010-11-18 | Sync-Rx, Ltd. | Location-sensitive cursor control and its use for vessel analysis |
US20100171819A1 (en) * | 2007-03-08 | 2010-07-08 | Sync-Rx, Ltd. | Automatic reduction of interfering elements from an image stream of a moving organ |
US20100172556A1 (en) * | 2007-03-08 | 2010-07-08 | Sync-Rx, Ltd. | Automatic enhancement of an image stream of a moving organ |
US20100161023A1 (en) * | 2007-03-08 | 2010-06-24 | Sync-Rx, Ltd. | Automatic tracking of a tool upon a vascular roadmap |
US20100161022A1 (en) * | 2007-03-08 | 2010-06-24 | Sync-Rx, Ltd. | Pre-deployment positioning of an implantable device within a moving organ |
US20100157041A1 (en) * | 2007-03-08 | 2010-06-24 | Sync-Rx, Ltd. | Automatic stabilization of an image stream of a moving organ |
US8290228B2 (en) | 2007-03-08 | 2012-10-16 | Sync-Rx, Ltd. | Location-sensitive cursor control and its use for vessel analysis |
US20100160764A1 (en) * | 2007-03-08 | 2010-06-24 | Sync-Rx, Ltd. | Automatic generation and utilization of a vascular roadmap |
US9968256B2 (en) | 2007-03-08 | 2018-05-15 | Sync-Rx Ltd. | Automatic identification of a tool |
US8463007B2 (en) | 2007-03-08 | 2013-06-11 | Sync-Rx, Ltd. | Automatic generation of a vascular skeleton |
US9888969B2 (en) | 2007-03-08 | 2018-02-13 | Sync-Rx Ltd. | Automatic quantitative vessel analysis |
WO2010058398A2 (en) | 2007-03-08 | 2010-05-27 | Sync-Rx, Ltd. | Image processing and tool actuation for medical procedures |
US8542900B2 (en) | 2007-03-08 | 2013-09-24 | Sync-Rx Ltd. | Automatic reduction of interfering elements from an image stream of a moving organ |
US20090306547A1 (en) * | 2007-03-08 | 2009-12-10 | Sync-Rx, Ltd. | Stepwise advancement of a medical tool |
US8670603B2 (en) | 2007-03-08 | 2014-03-11 | Sync-Rx, Ltd. | Apparatus and methods for masking a portion of a moving image stream |
US8693756B2 (en) | 2007-03-08 | 2014-04-08 | Sync-Rx, Ltd. | Automatic reduction of interfering elements from an image stream of a moving organ |
US9855384B2 (en) | 2007-03-08 | 2018-01-02 | Sync-Rx, Ltd. | Automatic enhancement of an image stream of a moving organ and displaying as a movie |
US8700130B2 (en) | 2007-03-08 | 2014-04-15 | Sync-Rx, Ltd. | Stepwise advancement of a medical tool |
US8781193B2 (en) | 2007-03-08 | 2014-07-15 | Sync-Rx, Ltd. | Automatic quantitative vessel analysis |
US10226178B2 (en) | 2007-03-08 | 2019-03-12 | Sync-Rx Ltd. | Automatic reduction of visibility of portions of an image |
US20100220917A1 (en) * | 2007-03-08 | 2010-09-02 | Sync-Rx, Ltd. | Automatic generation of a vascular skeleton |
US20080221440A1 (en) * | 2007-03-08 | 2008-09-11 | Sync-Rx, Ltd. | Imaging and tools for use with moving organs |
US9629571B2 (en) | 2007-03-08 | 2017-04-25 | Sync-Rx, Ltd. | Co-use of endoluminal data and extraluminal imaging |
US12053317B2 (en) | 2007-03-08 | 2024-08-06 | Sync-Rx Ltd. | Determining a characteristic of a lumen by measuring velocity of a contrast agent |
US9008367B2 (en) | 2007-03-08 | 2015-04-14 | Sync-Rx, Ltd. | Apparatus and methods for reducing visibility of a periphery of an image stream |
US9008754B2 (en) | 2007-03-08 | 2015-04-14 | Sync-Rx, Ltd. | Automatic correction and utilization of a vascular roadmap comprising a tool |
US9014453B2 (en) | 2007-03-08 | 2015-04-21 | Sync-Rx, Ltd. | Automatic angiogram detection |
US9375164B2 (en) | 2007-03-08 | 2016-06-28 | Sync-Rx, Ltd. | Co-use of endoluminal data and extraluminal imaging |
US10716528B2 (en) | 2007-03-08 | 2020-07-21 | Sync-Rx, Ltd. | Automatic display of previously-acquired endoluminal images |
US20080221439A1 (en) * | 2007-03-08 | 2008-09-11 | Sync-Rx, Ltd. | Tools for use with moving organs |
US9308052B2 (en) | 2007-03-08 | 2016-04-12 | Sync-Rx, Ltd. | Pre-deployment positioning of an implantable device within a moving organ |
US9305334B2 (en) | 2007-03-08 | 2016-04-05 | Sync-Rx, Ltd. | Luminal background cleaning |
US10499814B2 (en) | 2007-03-08 | 2019-12-10 | Sync-Rx, Ltd. | Automatic generation and utilization of a vascular roadmap |
US11197651B2 (en) | 2007-03-08 | 2021-12-14 | Sync-Rx, Ltd. | Identification and presentation of device-to-vessel relative motion |
US11064964B2 (en) | 2007-03-08 | 2021-07-20 | Sync-Rx, Ltd | Determining a characteristic of a lumen by measuring velocity of a contrast agent |
US11179038B2 (en) | 2007-03-08 | 2021-11-23 | Sync-Rx, Ltd | Automatic stabilization of a frames of image stream of a moving organ having intracardiac or intravascular tool in the organ that is displayed in movie format |
US9717415B2 (en) | 2007-03-08 | 2017-08-01 | Sync-Rx, Ltd. | Automatic quantitative vessel analysis at the location of an automatically-detected tool |
US10342953B2 (en) | 2008-05-06 | 2019-07-09 | Corindus, Inc. | Robotic catheter system |
US11717645B2 (en) | 2008-05-06 | 2023-08-08 | Corindus, Inc. | Robotic catheter system |
US9402977B2 (en) | 2008-05-06 | 2016-08-02 | Corindus Inc. | Catheter system |
US9095681B2 (en) | 2008-05-06 | 2015-08-04 | Corindus Inc. | Catheter system |
US9623209B2 (en) | 2008-05-06 | 2017-04-18 | Corindus, Inc. | Robotic catheter system |
US10987491B2 (en) | 2008-05-06 | 2021-04-27 | Corindus, Inc. | Robotic catheter system |
US8480618B2 (en) | 2008-05-06 | 2013-07-09 | Corindus Inc. | Catheter system |
US8694157B2 (en) | 2008-08-29 | 2014-04-08 | Corindus, Inc. | Catheter control system and graphical user interface |
US9101286B2 (en) | 2008-11-18 | 2015-08-11 | Sync-Rx, Ltd. | Apparatus and methods for determining a dimension of a portion of a stack of endoluminal data points |
US9144394B2 (en) | 2008-11-18 | 2015-09-29 | Sync-Rx, Ltd. | Apparatus and methods for determining a plurality of local calibration factors for an image |
US8855744B2 (en) | 2008-11-18 | 2014-10-07 | Sync-Rx, Ltd. | Displaying a device within an endoluminal image stack |
US9974509B2 (en) | 2008-11-18 | 2018-05-22 | Sync-Rx Ltd. | Image super enhancement |
US10362962B2 (en) | 2008-11-18 | 2019-07-30 | Synx-Rx, Ltd. | Accounting for skipped imaging locations during movement of an endoluminal imaging probe |
US11883149B2 (en) | 2008-11-18 | 2024-01-30 | Sync-Rx Ltd. | Apparatus and methods for mapping a sequence of images to a roadmap image |
US11064903B2 (en) | 2008-11-18 | 2021-07-20 | Sync-Rx, Ltd | Apparatus and methods for mapping a sequence of images to a roadmap image |
US9095313B2 (en) | 2008-11-18 | 2015-08-04 | Sync-Rx, Ltd. | Accounting for non-uniform longitudinal motion during movement of an endoluminal imaging probe |
US8790297B2 (en) | 2009-03-18 | 2014-07-29 | Corindus, Inc. | Remote catheter system with steerable catheter |
US11696808B2 (en) | 2009-10-12 | 2023-07-11 | Corindus, Inc. | System and method for navigating a guide wire |
US11918314B2 (en) | 2009-10-12 | 2024-03-05 | Corindus, Inc. | System and method for navigating a guide wire |
US9220568B2 (en) | 2009-10-12 | 2015-12-29 | Corindus Inc. | Catheter system with percutaneous device movement algorithm |
US9962229B2 (en) | 2009-10-12 | 2018-05-08 | Corindus, Inc. | System and method for navigating a guide wire |
US10881474B2 (en) | 2009-10-12 | 2021-01-05 | Corindus, Inc. | System and method for navigating a guide wire |
US9265951B2 (en) | 2010-02-12 | 2016-02-23 | The Brigham And Women's Hospital | System and method for automated adjustment of cardiac resynchronization therapy control parameters |
US9833293B2 (en) | 2010-09-17 | 2017-12-05 | Corindus, Inc. | Robotic catheter system |
US9962097B2 (en) | 2011-05-03 | 2018-05-08 | Medtronic, Inc. | Assessing intra-cardiac activation patterns and electrical dyssynchrony |
US9974457B2 (en) | 2011-05-03 | 2018-05-22 | Medtronic, Inc. | Assessing intra-cardiac activation patterns |
US11027135B2 (en) | 2011-05-03 | 2021-06-08 | Medtronic, Inc. | Assessing intra-cardiac activation patterns |
US9510763B2 (en) | 2011-05-03 | 2016-12-06 | Medtronic, Inc. | Assessing intra-cardiac activation patterns and electrical dyssynchrony |
US9129418B2 (en) * | 2011-05-19 | 2015-09-08 | Pie Medical Imaging B.V. | Method and apparatus for determining optimal image viewing direction |
US20120293498A1 (en) * | 2011-05-19 | 2012-11-22 | Ron Hubertus Schormans | Method and Apparatus for Determining Optimal Image Viewing Direction |
US10748289B2 (en) | 2012-06-26 | 2020-08-18 | Sync-Rx, Ltd | Coregistration of endoluminal data points with values of a luminal-flow-related index |
US10984531B2 (en) | 2012-06-26 | 2021-04-20 | Sync-Rx, Ltd. | Determining a luminal-flow-related index using blood velocity determination |
US9649497B2 (en) | 2013-03-15 | 2017-05-16 | Medtronic, Inc. | Closed loop optimization of control parameters during cardiac pacing |
US9278219B2 (en) | 2013-03-15 | 2016-03-08 | Medtronic, Inc. | Closed loop optimization of control parameters during cardiac pacing |
US10064567B2 (en) | 2013-04-30 | 2018-09-04 | Medtronic, Inc. | Systems, methods, and interfaces for identifying optimal electrical vectors |
US11648406B2 (en) | 2013-04-30 | 2023-05-16 | Medtronic, Inc. | Systems, methods, and interfaces for identifying effective electrodes |
US9924884B2 (en) | 2013-04-30 | 2018-03-27 | Medtronic, Inc. | Systems, methods, and interfaces for identifying effective electrodes |
US9931048B2 (en) | 2013-04-30 | 2018-04-03 | Medtronic, Inc. | Systems, methods, and interfaces for identifying effective electrodes |
WO2014201125A1 (en) | 2013-06-12 | 2014-12-18 | Medtronic, Inc. | Implantable electrode location selection |
WO2014201126A1 (en) | 2013-06-12 | 2014-12-18 | Medtronic, Inc. | Implantable electrode location selection |
US9474457B2 (en) | 2013-06-12 | 2016-10-25 | Medtronic, Inc. | Metrics of electrical dyssynchrony and electrical activation patterns from surface ECG electrodes |
US9486151B2 (en) | 2013-06-12 | 2016-11-08 | Medtronic, Inc. | Metrics of electrical dyssynchrony and electrical activation patterns from surface ECG electrodes |
US10251555B2 (en) | 2013-06-12 | 2019-04-09 | Medtronic, Inc. | Implantable electrode location selection |
US9877789B2 (en) | 2013-06-12 | 2018-01-30 | Medtronic, Inc. | Implantable electrode location selection |
US9282907B2 (en) | 2013-07-23 | 2016-03-15 | Medtronic, Inc. | Identification of healthy versus unhealthy substrate for pacing from a multipolar lead |
US9278220B2 (en) | 2013-07-23 | 2016-03-08 | Medtronic, Inc. | Identification of healthy versus unhealthy substrate for pacing from a multipolar lead |
WO2015013574A1 (en) | 2013-07-26 | 2015-01-29 | Medtronic, Inc. | Method and system for improved estimation of time of left ventricular pacing with respect to intrinsic right ventricular activation in cardiac resynchronization therapy |
US9265955B2 (en) | 2013-07-26 | 2016-02-23 | Medtronic, Inc. | Method and system for improved estimation of time of left ventricular pacing with respect to intrinsic right ventricular activation in cardiac resynchronization therapy |
US9265954B2 (en) | 2013-07-26 | 2016-02-23 | Medtronic, Inc. | Method and system for improved estimation of time of left ventricular pacing with respect to intrinsic right ventricular activation in cardiac resynchronization therapy |
US9406129B2 (en) | 2013-10-10 | 2016-08-02 | Medtronic, Inc. | Method and system for ranking instruments |
US9986928B2 (en) | 2013-12-09 | 2018-06-05 | Medtronic, Inc. | Noninvasive cardiac therapy evaluation |
US10206601B2 (en) | 2013-12-09 | 2019-02-19 | Medtronic, Inc. | Noninvasive cardiac therapy evaluation |
WO2015088998A1 (en) | 2013-12-09 | 2015-06-18 | Medtronic, Inc. | Noninvasive cardiac therapy evaluation |
US11456062B2 (en) | 2013-12-09 | 2022-09-27 | Medtronic, Inc. | Noninvasive cardiac therapy evaluation |
WO2015089002A1 (en) | 2013-12-09 | 2015-06-18 | Medtronic, Inc. | Noninvasive cardiac therapy evaluation |
US9320446B2 (en) | 2013-12-09 | 2016-04-26 | Medtronic, Inc. | Bioelectric sensor device and methods |
US10368766B2 (en) | 2013-12-09 | 2019-08-06 | Medtronic, Inc. | Bioelectric sensor device and methods |
US9993172B2 (en) | 2013-12-09 | 2018-06-12 | Medtronic, Inc. | Noninvasive cardiac therapy evaluation |
US9776009B2 (en) | 2014-03-20 | 2017-10-03 | Medtronic, Inc. | Non-invasive detection of phrenic nerve stimulation |
WO2015164013A1 (en) | 2014-04-25 | 2015-10-29 | Medtronic, Inc. | Guidance system for localization and cannulation of the coronary sinus |
US11523782B2 (en) | 2014-04-25 | 2022-12-13 | Medtronic, Inc. | Guidance system for localization and cannulation of the coronary sinus |
US10004467B2 (en) | 2014-04-25 | 2018-06-26 | Medtronic, Inc. | Guidance system for localization and cannulation of the coronary sinus |
US9633431B2 (en) | 2014-07-02 | 2017-04-25 | Covidien Lp | Fluoroscopic pose estimation |
US11798178B2 (en) | 2014-07-02 | 2023-10-24 | Covidien Lp | Fluoroscopic pose estimation |
US10706540B2 (en) | 2014-07-02 | 2020-07-07 | Covidien Lp | Fluoroscopic pose estimation |
US9959620B2 (en) | 2014-07-02 | 2018-05-01 | Covidien Lp | Fluoroscopic pose estimation |
US10163207B2 (en) | 2014-07-02 | 2018-12-25 | Covidien Lp | Fluoroscopic pose estimation |
US9591982B2 (en) | 2014-07-31 | 2017-03-14 | Medtronic, Inc. | Systems and methods for evaluating cardiac therapy |
US9764143B2 (en) | 2014-08-15 | 2017-09-19 | Medtronic, Inc. | Systems and methods for configuration of interventricular interval |
US9586052B2 (en) | 2014-08-15 | 2017-03-07 | Medtronic, Inc. | Systems and methods for evaluating cardiac therapy |
US9707400B2 (en) | 2014-08-15 | 2017-07-18 | Medtronic, Inc. | Systems, methods, and interfaces for configuring cardiac therapy |
WO2016025805A1 (en) | 2014-08-15 | 2016-02-18 | Medtronic, Inc. | Systems, methods, and interfaces for configuring cardiac therapy |
US9586050B2 (en) | 2014-08-15 | 2017-03-07 | Medtronic, Inc. | Systems and methods for configuration of atrioventricular interval |
US9668818B2 (en) | 2014-10-15 | 2017-06-06 | Medtronic, Inc. | Method and system to select an instrument for lead stabilization |
US11253178B2 (en) | 2015-01-29 | 2022-02-22 | Medtronic, Inc. | Noninvasive assessment of cardiac resynchronization therapy |
US11172895B2 (en) | 2015-12-07 | 2021-11-16 | Covidien Lp | Visualization, navigation, and planning with electromagnetic navigation bronchoscopy and cone beam computed tomography integrated |
US11925493B2 (en) | 2015-12-07 | 2024-03-12 | Covidien Lp | Visualization, navigation, and planning with electromagnetic navigation bronchoscopy and cone beam computed tomography integrated |
US10780279B2 (en) | 2016-02-26 | 2020-09-22 | Medtronic, Inc. | Methods and systems of optimizing right ventricular only pacing for patients with respect to an atrial event and left ventricular event |
US11219769B2 (en) | 2016-02-26 | 2022-01-11 | Medtronic, Inc. | Noninvasive methods and systems of determining the extent of tissue capture from cardiac pacing |
US11071505B2 (en) | 2016-05-11 | 2021-07-27 | Koninklijke Philips N.V. | Anatomy adapted acquisition with fixed multi-source x-ray system |
US10532213B2 (en) | 2017-03-03 | 2020-01-14 | Medtronic, Inc. | Criteria for determination of local tissue latency near pacing electrode |
WO2018169925A1 (en) | 2017-03-15 | 2018-09-20 | Medtronic, Inc. | Qrs offset and onset determination |
US10773085B2 (en) | 2017-03-15 | 2020-09-15 | Medtronic, Inc. | QRS offset and onset determination |
US11701062B2 (en) | 2017-03-15 | 2023-07-18 | Medtronic, Inc. | Detection of noise signals in cardiac signals |
US10987517B2 (en) | 2017-03-15 | 2021-04-27 | Medtronic, Inc. | Detection of noise signals in cardiac signals |
WO2019023478A1 (en) | 2017-07-28 | 2019-01-31 | Medtronic, Inc. | Cardiac cycle selection |
WO2019023472A1 (en) | 2017-07-28 | 2019-01-31 | Medtronic, Inc. | Generating activation times |
US11471678B2 (en) | 2017-07-28 | 2022-10-18 | Medtronic, Inc. | Cardiac cycle selection |
US10918863B2 (en) | 2017-07-28 | 2021-02-16 | Medtronic, Inc. | Generating activation times |
WO2019126261A1 (en) | 2017-12-22 | 2019-06-27 | Medtronic, Inc. | Evaluation of his bundle pacing therapy |
US10786167B2 (en) | 2017-12-22 | 2020-09-29 | Medtronic, Inc. | Ectopic beat-compensated electrical heterogeneity information |
US10799703B2 (en) | 2017-12-22 | 2020-10-13 | Medtronic, Inc. | Evaluation of his bundle pacing therapy |
WO2019125772A1 (en) | 2017-12-22 | 2019-06-27 | Medtronic, Inc. | Ectopic beat-compensated electrical heterogeneity information |
US11419539B2 (en) | 2017-12-22 | 2022-08-23 | Regents Of The University Of Minnesota | QRS onset and offset times and cycle selection using anterior and posterior electrode signals |
US10492705B2 (en) | 2017-12-22 | 2019-12-03 | Regents Of The University Of Minnesota | Anterior and posterior electrode signals |
US10433746B2 (en) | 2017-12-22 | 2019-10-08 | Regents Of The University Of Minnesota | Systems and methods for anterior and posterior electrode signal analysis |
US10617318B2 (en) | 2018-02-27 | 2020-04-14 | Medtronic, Inc. | Mapping electrical activity on a model heart |
WO2019168773A1 (en) | 2018-02-27 | 2019-09-06 | Medtronic, Inc. | Mapping electrical activity on a model heart |
WO2019169062A1 (en) | 2018-03-01 | 2019-09-06 | Medtronic, Inc. | Delivery of pacing therapy by a cardiac pacing device |
US10668290B2 (en) | 2018-03-01 | 2020-06-02 | Medtronic, Inc. | Delivery of pacing therapy by a cardiac pacing device |
US10918870B2 (en) | 2018-03-07 | 2021-02-16 | Medtronic, Inc. | Atrial lead placement for treatment of atrial dyssynchrony |
US11819699B2 (en) | 2018-03-23 | 2023-11-21 | Medtronic, Inc. | VfA cardiac resynchronization therapy |
WO2019183507A1 (en) | 2018-03-23 | 2019-09-26 | Medtronic, Inc. | Av synchronous vfa cardiac therapy |
US11058880B2 (en) | 2018-03-23 | 2021-07-13 | Medtronic, Inc. | VFA cardiac therapy for tachycardia |
WO2019183514A1 (en) | 2018-03-23 | 2019-09-26 | Medtronic, Inc. | Vfa cardiac therapy for tachycardia |
WO2019183458A1 (en) | 2018-03-23 | 2019-09-26 | Medtronic, Inc. | Evaluation of ventricle from atrium pacing therapy |
WO2019183512A1 (en) | 2018-03-23 | 2019-09-26 | Medtronic, Inc. | Vfa cardiac resynchronization therapy |
US11400296B2 (en) | 2018-03-23 | 2022-08-02 | Medtronic, Inc. | AV synchronous VfA cardiac therapy |
US11235159B2 (en) | 2018-03-23 | 2022-02-01 | Medtronic, Inc. | VFA cardiac resynchronization therapy |
US10780281B2 (en) | 2018-03-23 | 2020-09-22 | Medtronic, Inc. | Evaluation of ventricle from atrium pacing therapy |
WO2019191602A1 (en) | 2018-03-29 | 2019-10-03 | Medtronic, Inc. | Left ventricular assist device adjustment and evaluation |
US11285312B2 (en) | 2018-03-29 | 2022-03-29 | Medtronic, Inc. | Left ventricular assist device adjustment and evaluation |
US11304641B2 (en) | 2018-06-01 | 2022-04-19 | Medtronic, Inc. | Systems, methods, and interfaces for use in cardiac evaluation |
WO2019232311A1 (en) | 2018-06-01 | 2019-12-05 | Medtronic, Inc. | Systems for use in cardiac evaluation |
WO2019232309A1 (en) | 2018-06-01 | 2019-12-05 | Medtronic, Inc. | System for use in cardiac evaluation |
WO2019232313A1 (en) | 2018-06-01 | 2019-12-05 | Medtronic, Inc. | System for use in cardiac evaluation |
WO2019232293A1 (en) | 2018-06-01 | 2019-12-05 | Medtronic, Inc. | Systems, methods, and interfaces for use in cardiac evaluation |
US10940321B2 (en) | 2018-06-01 | 2021-03-09 | Medtronic, Inc. | Systems, methods, and interfaces for use in cardiac evaluation |
WO2020044312A1 (en) | 2018-08-31 | 2020-03-05 | Medtronic, Inc. | Adaptive vfa cardiac therapy |
US11235161B2 (en) | 2018-09-26 | 2022-02-01 | Medtronic, Inc. | Capture in ventricle-from-atrium cardiac therapy |
WO2020102622A1 (en) | 2018-11-17 | 2020-05-22 | Medtronic, Inc. | Vfa delivery systems |
US11951313B2 (en) | 2018-11-17 | 2024-04-09 | Medtronic, Inc. | VFA delivery systems and methods |
WO2020131384A1 (en) | 2018-12-20 | 2020-06-25 | Medtronic, Inc. | Implantable medical device delivery for cardiac therapy |
WO2020131619A1 (en) | 2018-12-20 | 2020-06-25 | Medtronic, Inc. | Propagation patterns system |
WO2020132446A1 (en) | 2018-12-21 | 2020-06-25 | Medtronic, Inc. | Delivery systems and methods for left ventricular pacing |
US11679265B2 (en) | 2019-02-14 | 2023-06-20 | Medtronic, Inc. | Lead-in-lead systems and methods for cardiac therapy |
WO2020185400A1 (en) | 2019-03-11 | 2020-09-17 | Medtronic, Inc. | Vfa cardiac resynchronization therapy using accelerometer |
US11701517B2 (en) | 2019-03-11 | 2023-07-18 | Medtronic, Inc. | Cardiac resynchronization therapy using accelerometer |
US11697025B2 (en) | 2019-03-29 | 2023-07-11 | Medtronic, Inc. | Cardiac conduction system capture |
US11547858B2 (en) | 2019-03-29 | 2023-01-10 | Medtronic, Inc. | Systems, methods, and devices for adaptive cardiac therapy |
WO2020205091A1 (en) | 2019-03-29 | 2020-10-08 | Medtronic, Inc. | Systems, methods, and devices for adaptive cardiac therapy |
US11213676B2 (en) | 2019-04-01 | 2022-01-04 | Medtronic, Inc. | Delivery systems for VfA cardiac therapy |
US11937948B2 (en) | 2019-05-02 | 2024-03-26 | Medtronic, Inc. | Identification of false asystole detection |
US11071500B2 (en) | 2019-05-02 | 2021-07-27 | Medtronic, Inc. | Identification of false asystole detection |
US11712188B2 (en) | 2019-05-07 | 2023-08-01 | Medtronic, Inc. | Posterior left bundle branch engagement |
WO2021015984A1 (en) | 2019-07-24 | 2021-01-28 | Medtronic, Inc. | Av synchronous septal pacing |
US11633607B2 (en) | 2019-07-24 | 2023-04-25 | Medtronic, Inc. | AV synchronous septal pacing |
WO2021041414A1 (en) | 2019-08-26 | 2021-03-04 | Medtronic, Inc. | Vfa delivery and implant region detection |
US11305127B2 (en) | 2019-08-26 | 2022-04-19 | Medtronic Inc. | VfA delivery and implant region detection |
US11497431B2 (en) | 2019-10-09 | 2022-11-15 | Medtronic, Inc. | Systems and methods for configuring cardiac therapy |
WO2021071713A1 (en) | 2019-10-09 | 2021-04-15 | Medtronic, Inc. | Systems, methods, and devices for determining cardiac condition |
WO2021071742A1 (en) | 2019-10-09 | 2021-04-15 | Medtronic, Inc. | Synchronizing external electrical activity |
WO2021071714A1 (en) | 2019-10-09 | 2021-04-15 | Medtronic, Inc. | Systems and methods for configuring cardiac therapy |
US11642533B2 (en) | 2019-11-04 | 2023-05-09 | Medtronic, Inc. | Systems and methods for evaluating cardiac therapy |
WO2021091843A1 (en) | 2019-11-04 | 2021-05-14 | Medtronic, Inc. | Systems for evaluating cardiac therapy |
US11944461B2 (en) | 2019-12-02 | 2024-04-02 | Medtronic, Inc. | Generating representative cardiac information |
US11642032B2 (en) | 2019-12-31 | 2023-05-09 | Medtronic, Inc. | Model-based therapy parameters for heart failure |
US11813466B2 (en) | 2020-01-27 | 2023-11-14 | Medtronic, Inc. | Atrioventricular nodal stimulation |
WO2021154481A1 (en) | 2020-01-30 | 2021-08-05 | Medtronic, Inc. | Disturbance detection and removal in cardiac signals |
EP4435798A2 (en) | 2020-03-30 | 2024-09-25 | Medtronic, Inc. | Pacing efficacy determination using a representative morphology of external cardiac signals |
WO2021202379A1 (en) | 2020-03-30 | 2021-10-07 | Medtronic, Inc. | Pacing efficacy determination using a representative morphology of external cardiac signals |
WO2021202713A1 (en) | 2020-04-03 | 2021-10-07 | Medtronic, Inc. | Cardiac conduction system therapy benefit determination |
US11911168B2 (en) | 2020-04-03 | 2024-02-27 | Medtronic, Inc. | Cardiac conduction system therapy benefit determination |
WO2021202711A1 (en) | 2020-04-03 | 2021-10-07 | Medtronic, Inc. | Cardiac conduction system engagement |
WO2021236701A1 (en) | 2020-05-21 | 2021-11-25 | Medtronic, Inc. | Qrs detection and bracketing |
WO2022026162A1 (en) | 2020-07-30 | 2022-02-03 | Medtronic, Inc. | Patient screening and ecg belt for brady therapy tuning |
WO2022026998A1 (en) | 2020-07-30 | 2022-02-03 | Medtronic, Inc. | Ecg belt systems to interoperate with imds |
US12023503B2 (en) | 2020-07-30 | 2024-07-02 | Medtronic, Inc. | ECG belt systems to interoperate with IMDs |
WO2022026154A1 (en) | 2020-07-31 | 2022-02-03 | Medtronic, Inc. | Stable cardiac signal identification |
US11813464B2 (en) | 2020-07-31 | 2023-11-14 | Medtronic, Inc. | Cardiac conduction system evaluation |
WO2023021367A1 (en) | 2021-08-19 | 2023-02-23 | Medtronic, Inc. | Pacing artifact mitigation |
WO2023105316A1 (en) | 2021-12-07 | 2023-06-15 | Medtronic, Inc. | Determination of cardiac conduction system therapy benefit |
Also Published As
Publication number | Publication date |
---|---|
AU2001235964A1 (en) | 2001-11-20 |
EP1280459B1 (en) | 2008-05-28 |
ATE396648T1 (en) | 2008-06-15 |
US20030078500A1 (en) | 2003-04-24 |
WO2001085030A1 (en) | 2001-11-15 |
DE60134223D1 (en) | 2008-07-10 |
JP2004513673A (en) | 2004-05-13 |
EP1280459A1 (en) | 2003-02-05 |
US7321677B2 (en) | 2008-01-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7321677B2 (en) | System and method for three-dimensional reconstruction of an artery | |
US9375191B2 (en) | Method and apparatus for determining three-dimensional reconstruction of an object | |
EP1595228B1 (en) | Method for the 3d modeling of a tubular structure | |
JP5129480B2 (en) | System for performing three-dimensional reconstruction of tubular organ and method for operating blood vessel imaging device | |
US8345957B2 (en) | Data processing apparatus, X-ray apparatus, and data processing method | |
US8463014B2 (en) | Optimal rotational trajectory determination for RA based on pre-determined optimal view map | |
EP2925216B1 (en) | Stenosis therapy planning | |
US8630468B2 (en) | Imaging method for the representation of the results of intravascular imaging and CFD results and medical system for execution of the method | |
JP2004243117A (en) | Method for obtaining physical parameters of physiological structure | |
US20060250386A1 (en) | Device and method for generating a three dimensional vascular model | |
EP2863799B1 (en) | Temporal anatomical target tagging in angiograms | |
EP2800516A1 (en) | Real-time display of vasculature views for optimal device navigation | |
Hoffmann et al. | A system for determination of 3D vessel tree centerlines from biplane images | |
JP2006516440A (en) | 3D object reconstruction method | |
JP2004320771A (en) | Method for performing digital subtraction angiography | |
CN106725851B (en) | System and method for image acquisition for surgical instrument reconstruction | |
JP3927488B2 (en) | Image processing method, image processing apparatus, and program | |
JP2007511268A (en) | Method and apparatus for visualizing tubular structures | |
JP2000175897A (en) | X-ray ct apparatus for supporting operation | |
US7706589B2 (en) | Analysis of a multi-dimensional structure | |
Hoffmann et al. | Biplane X-ray angiograms, intravascular ultrasound, and 3D visualization of coronary vessels | |
EP3622891A1 (en) | Calculation device for determining ventilation defects | |
US20020052549A1 (en) | Rendering of a multi-dimensional object data set | |
WO2002032307A1 (en) | Method and system for measuring dimensions of an organ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |