New! View global litigation for patent families

US20040267160A9 - Method and apparatus for sampling bodily fluid - Google Patents

Method and apparatus for sampling bodily fluid Download PDF

Info

Publication number
US20040267160A9
US20040267160A9 US10254314 US25431402A US2004267160A9 US 20040267160 A9 US20040267160 A9 US 20040267160A9 US 10254314 US10254314 US 10254314 US 25431402 A US25431402 A US 25431402A US 2004267160 A9 US2004267160 A9 US 2004267160A9
Authority
US
Grant status
Application
Patent type
Prior art keywords
device
incision
fluid
syringe
skin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10254314
Other versions
US20040059256A1 (en )
Inventor
Edward Perez
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Roche Diabetes Care Inc
Original Assignee
Roche Diagnostics Operations Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B10/00Other methods or instruments for diagnosis, e.g. instruments for taking a cell sample, for biopsy, for vaccination diagnosis; Sex determination; Ovulation-period determination; Throat striking implements
    • A61B10/0045Devices for taking samples of body liquids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150007Details
    • A61B5/150015Source of blood
    • A61B5/150022Source of blood for capillary blood or interstitial fluid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150007Details
    • A61B5/150053Details for enhanced collection of blood or interstitial fluid at the sample site, e.g. by applying compression, heat, vibration, ultrasound, suction or vacuum to tissue; for reduction of pain or discomfort; Skin piercing elements, e.g. blades, needles, lancets or canulas, with adjustable piercing speed
    • A61B5/150061Means for enhancing collection
    • A61B5/150068Means for enhancing collection by tissue compression, e.g. with specially designed surface of device contacting the skin area to be pierced
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150007Details
    • A61B5/150053Details for enhanced collection of blood or interstitial fluid at the sample site, e.g. by applying compression, heat, vibration, ultrasound, suction or vacuum to tissue; for reduction of pain or discomfort; Skin piercing elements, e.g. blades, needles, lancets or canulas, with adjustable piercing speed
    • A61B5/150061Means for enhancing collection
    • A61B5/150083Means for enhancing collection by vibration, e.g. ultrasound
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150007Details
    • A61B5/150053Details for enhanced collection of blood or interstitial fluid at the sample site, e.g. by applying compression, heat, vibration, ultrasound, suction or vacuum to tissue; for reduction of pain or discomfort; Skin piercing elements, e.g. blades, needles, lancets or canulas, with adjustable piercing speed
    • A61B5/150061Means for enhancing collection
    • A61B5/150099Means for enhancing collection by negative pressure, other than vacuum extraction into a syringe by pulling on the piston rod or into pre-evacuated tubes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150007Details
    • A61B5/150206Construction or design features not otherwise provided for; manufacturing or production; packages; sterilisation of piercing element, piercing device or sampling device
    • A61B5/150236Pistons, i.e. cylindrical bodies that sit inside the syringe barrel, typically with an air tight seal, and slide in the barrel to create a vacuum or to expel blood
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150007Details
    • A61B5/150206Construction or design features not otherwise provided for; manufacturing or production; packages; sterilisation of piercing element, piercing device or sampling device
    • A61B5/150244Rods for actuating or driving the piston, i.e. the cylindrical body that sits inside the syringe barrel, typically with an air tight seal, and slides in the barrel to create a vacuum or to expel blood
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150007Details
    • A61B5/150374Details of piercing elements or protective means for preventing accidental injuries by such piercing elements
    • A61B5/150381Design of piercing elements
    • A61B5/150389Hollow piercing elements, e.g. canulas, needles, for piercing the skin
    • A61B5/150396Specific tip design, e.g. for improved penetration characteristics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150007Details
    • A61B5/150374Details of piercing elements or protective means for preventing accidental injuries by such piercing elements
    • A61B5/150381Design of piercing elements
    • A61B5/150503Single-ended needles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/151Devices specially adapted for taking samples of capillary blood, e.g. by lancets, needles or blades
    • A61B5/15101Details
    • A61B5/15103Piercing procedure
    • A61B5/15107Piercing being assisted by a triggering mechanism
    • A61B5/15113Manually triggered, i.e. the triggering requires a deliberate action by the user such as pressing a drive button
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/151Devices specially adapted for taking samples of capillary blood, e.g. by lancets, needles or blades
    • A61B5/15101Details
    • A61B5/15115Driving means for propelling the piercing element to pierce the skin, e.g. comprising mechanisms based on shape memory alloys, magnetism, solenoids, piezoelectric effect, biased elements, resilient elements, vacuum or compressed fluids
    • A61B5/15117Driving means for propelling the piercing element to pierce the skin, e.g. comprising mechanisms based on shape memory alloys, magnetism, solenoids, piezoelectric effect, biased elements, resilient elements, vacuum or compressed fluids comprising biased elements, resilient elements or a spring, e.g. a helical spring, leaf spring, or elastic strap
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/151Devices specially adapted for taking samples of capillary blood, e.g. by lancets, needles or blades
    • A61B5/15186Devices loaded with a single lancet, i.e. a single lancet with or without a casing is loaded into a reusable drive device and then discarded after use; drive devices reloadable for multiple use
    • A61B5/15188Constructional features of reusable driving devices
    • A61B5/1519Constructional features of reusable driving devices comprising driving means, e.g. a spring, for propelling the piercing unit
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/151Devices specially adapted for taking samples of capillary blood, e.g. by lancets, needles or blades
    • A61B5/15186Devices loaded with a single lancet, i.e. a single lancet with or without a casing is loaded into a reusable drive device and then discarded after use; drive devices reloadable for multiple use
    • A61B5/15188Constructional features of reusable driving devices
    • A61B5/15192Constructional features of reusable driving devices comprising driving means, e.g. a spring, for retracting the lancet unit into the driving device housing
    • A61B5/15194Constructional features of reusable driving devices comprising driving means, e.g. a spring, for retracting the lancet unit into the driving device housing fully automatically retracted, i.e. the retraction does not require a deliberate action by the user, e.g. by terminating the contact with the patient's skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/157Devices characterised by integrated means for measuring characteristics of blood
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B10/00Other methods or instruments for diagnosis, e.g. instruments for taking a cell sample, for biopsy, for vaccination diagnosis; Sex determination; Ovulation-period determination; Throat striking implements
    • A61B10/0045Devices for taking samples of body liquids
    • A61B2010/008Interstitial fluid

Abstract

Bodily fluid is sampled by causing a syringe mounted in a housing to be displaced toward a skin surface. A suction element disposed on the housing is utilized to creates a suction in the area to be incised causing bodily fluid to pool. Additionally, the suction mechanism may be utilized to create a suction in the tube for drawing in bodily fluid through the piercing element and into the tube. The syringe remains in the resulting incision while the surrounding body tissue is stimulated by a stimulator ring to urge bodily fluid toward the incision. Simultaneously, the syringe may be moved relative to the incision to keep the incision open. Such movement of the syringe may comprise reciprocation in the longitudinal or lateral directions, or both. Alternatively, the movement of the syringe may comprise rotation about a longitudinal center line of the syringe, with the pointed end of the syringe being in the shape of one-half of a cone segment. The suction may then be applied to the area being incised to promote further pooling of bodily fluid. After the bodily fluid has been pooled, suction may be created in a collection tube disposed in communication with the syringe, to draw bodily fluid inwardly through the syringe.

Description

    PRIOR APPLICATIONS
  • [0001]
    This application claims benefit to U.S. Provisional Applications: Ser. No. 60/296,950, 60/297,045, and 60/297,098 each filed Jun. 8, 2001; No. 60/263,533 filed Jan. 22, 2001; and U.S. patent application Ser. No. 09/528,097 filed Mar. 17, 2000; US97/08401 file May 16, 1997; US97/08400 filed May 16, 1997; Ser. No. 09/887,574 filed Jun. 21, 2001; Ser. No. 09/586,969 filed Jun. 5, 2000; Ser. No. 09/180,839 filed Nov. 16, 1998; Ser. No. 09/542,040 filed Mar. 31, 2000; Ser. No. 09/567,054 filed May 8, 2000; The entireties of each of which are herein incorporated by reference.
  • FIELD OF THE INVENTION
  • [0002]
    The present invention relates to lancing devices and methods for obtaining samples of blood and other fluids from a body for analysis or processing.
  • BACKGROUND OF THE INVENTION
  • [0003]
    Many medical procedures in use today require a relatively small sample of blood, in the range of 3-50 milliliters. It is more cost effective and less traumatic to the patient to obtain such a sample by lancing or piercing the skin at a selected location, such as the finger, to enable the collection of 1 or 2 drops of blood, than by using a phlebotomist to draw a tube of venous blood. With the advent of home use tests such as self monitoring of blood glucose, there is a requirement for a simple procedure which can be performed in any setting by a person needing to test.
  • [0004]
    Lancets in conventional use generally have a rigid body and a sterile needle which protrudes from one end. The lancet may be used to pierce the skin, thereby enabling the collection of a blood sample from the opening created. The blood is transferred to a test device or collection device. Blood is most commonly taken from the fingertips, where the supply is generally excellent. However, because the patient must perform multiple tests daily, the fingertips become sensitive or calloused thereby making it difficult to obtain a sample. Additionally, the nerve density in this region causes significant pain in many patients. Therefore alternate sampling sites, such as earlobes and limbs, is sometimes practiced to access a bodily fluid sample.
  • [0005]
    To reduce the anxiety of piercing the skin and the associated pain, many spring loaded devices have been developed. The following two patents are representative of the devices which were developed in the 1980's for use with home diagnostic test products.
  • [0006]
    U.S. Pat. No. 4,503,856, Cornell et al., describes a spring loaded lancet injector. The reusable device interfaces with a disposable lancet. The lancet holder may be latched in a retracted position. When the user contacts a release, a spring causes the lancet to pierce the skin at high speed and then retract. The speed is important to reduce the pain associated with the puncture.
  • [0007]
    Levin et al. U.S. Pat. No. 4,517,978 describes a blood sampling instrument. This device, which is also spring loaded, uses a standard disposable lancet. The design enables easy and accurate positioning against a fingertip so the impact site can be readily determined. After the lancet pierces the skin, a bounce back spring retracts the lancet to a safe position within the device.
  • [0008]
    In institutional settings, it is often desirable to collect the sample from the patient and then introduce the sample to a test device in a controlled fashion. Some blood glucose monitoring systems, for example, require that the blood sample be applied to a test device which is in contact with a test instrument. In such situations, bringing the finger of a patient directly to the test device poses some risk of contamination from blood of a previous patient. With such systems, particularly in hospital settings, it is common to lance a patient, collect a sample in a micropipette via capillary action and then deliver the sample from the pipette to the test device.
  • [0009]
    Haynes U.S. Pat. No. 4,920,977 describes a blood collection assembly with lancet and microcollection tube. This device incorporates a lancet and collection container in a single device. The lancing and collection are two separate activities, but the device is a convenient single disposable unit for situations when sample collection prior to use is desirable. Similar devices are disclosed in Sarrine U.S. Pat. No. 4,360,016, and O'Brien U.S. Pat. No. 4,924,879.
  • [0010]
    Jordan et al. U.S. Pat. No. 4,850,973 and No. 4,858,607, disclose a combination device which may be alternatively used as a syringe-type injection device and a lancing device with disposable solid needle lancet, depending on configuration.
  • [0011]
    Lange et al. U.S. Pat. No. 5,318,584 describes a blood lancet device for withdrawing blood for diagnostic purposes. This invention uses a rotary/sliding transmission system to reduce the pain of lancing. The puncture depth is easily and precisely adjustable by the user.
  • [0012]
    Suzuki et al. U.S. Pat. No. 5,368,047, Dombrowski U.S. Pat. No. 4,654,513 and Ishibashi et al. U.S. Pat. No. 5,320,607 each describe suction-type blood samplers. These devices develop suction between the lancing site and the end of the device when the lancet holding mechanism withdraws after piercing the skin. A flexible gasket around the end of the device helps seal the end around the puncture site until adequate sample is drawn from the puncture site or the user pulls back on the device.
  • [0013]
    Garcia et al. U.S. Pat. No. 4,637,403 and Haber et al. U.S. Pat. No. 5,217,480, disclose combination lancing and blood collection devices which use a diaphragm to create a vacuum over the wound site.
  • [0014]
    Erickson et al. U.S. Pat. No. 5,582,184 describes a means of collecting and measuring bodily fluids. This system uses a coaxial syringe and capillary tube disposed within a spacer member. The spacer member limits the depth of syringe penetration, and compresses body tissue around the syringe while the syringe is in the skin, for improving the flow of interstitial fluid to the syringe. A suction device draws bodily fluid through the syringe and into the capillary tube.
  • [0015]
    Single use devices have also been developed for single use tests, i.e. home cholesterol testing, and for institutional use to eliminate cross-patient contamination multi-patient use. Crossman et al. U.S. Pat. No. 4,869,249, and Swierczek U.S. Pat. No. 5,402,798, also disclose disposable, single use lancing devices. U.S. Pat. Nos. 5,421,816; 5,445,611; and 5,458,140 disclose, as a replacement for invasive sampling, the use of ultrasound to act as a pump for expressing interstitial fluid directly through intact (non-lanced) skin. The amount of fluid which can be obtained in that way is very limited, however.
  • [0016]
    The disclosures of the above patents are incorporated herein by reference.
  • [0017]
    Even with the many improvements which have been made, the pain associated with lancing remains a significant issue for many patients. The need for blood sampling and the fear of the associated pain is also a major obstacle for the millions of diagnosed diabetics, who do not adequately monitor their blood glucose due to'the pain involved. Moreover, lancing to obtain a blood sample for other diagnostic applications is becoming more commonplace, and a less painful, minimally invasive device is needed to enhance those applications and make those technologies more acceptable.
  • [0018]
    An object of the present invention therefore, is to provide a device and a method for obtaining a sample of bodily fluid through the skin which is virtually pain free and minimally invasive.
  • [0019]
    Therefore, it is another object of the invention to provide a lancet carrier which eliminates the above-mentioned shortcomings.
  • [0020]
    Another object of this invention is to provide a method which can result in a sample of either blood or interstitial fluid, depending on the sample site and the penetration depth utilized. While there are no commercially available devices utilizing interstitial fluid (ISF) at this time, there are active efforts to establish the correlation of analytes, such as glucose, in ISF compared to whole blood. If ISF could be readily obtained and correlation is established, ISF may be preferable as a sample since there is no interference of red blood cells or hematocrit adjustment required.
  • [0021]
    Another object of this invention is to provide a method which can draw a small but adjustable sample, i.e. 3 microliters for one test device and 8 microliters for another test device, as appropriate.
  • [0022]
    Another object of this invention is to provide a method by which the drawn sample is collected and may be easily presented to a testing device, regardless of the location of the sample site on the body. This approach helps with infection control in that multiple patients are not brought in contact with a single test instrument; only the sampling device with a disposable patient-contact portion is brought to the test instrument. Alternatively, the disposable portion of a test device may be physically coupled with the sampler so the sample can be brought directly into the test device during sampling. The test device may then be read in a test instrument if appropriate or the testing system can be integrated into the sampler and the test device can provide direct results displayed for the patient.
  • [0023]
    It is a further object of the invention is to provide a device for minimally invasive sampling comprising a reusable sampler and disposable sample collection.
  • [0024]
    Yet another object of the present invention is to provide a method of increasing the amount of bodily fluid available for sampling.
  • SUMMARY OF THE INVENTION
  • [0025]
    These and other objects are achieved by the present invention, one aspect of which relates to a method for sampling blood comprising the steps of placing a forward end of a housing against a skin surface, advancing a hollow piercing element forwardly to cut an incision through the skin surface, and depressing a ring of body tissue in surrounding relationship to the incision to spread apart sides of the incision while urging bodily fluid toward and into the incision. Simultaneously, the piercing element is moved within the incision to keep the incision open. A suction may be applied to the skin to aid the pooling of bodily fluid in the area of the incision. Additionally, a suction may be applied to the piercing element to draw in bodily fluid from the incision and into a tube communicating with the piercing element.
  • [0026]
    Another aspect of the present invention relates to a sampling device for sampling bodily fluid. The sampling device comprises a housing, a piercing element carrier mounted in the housing and carrying a hollow piercing element. A tube communicates with the piercing element. A driver mechanism mounted in the housing drives the syringe carrier forwardly to cut an incision in the skin and maintain and end of the piercing element in the incision. A stimulator mechanism disposed on the housing depresses a ring of body tissue in surrounding relationship to the incision to spread apart sides of the incision while urging bodily fluid toward the incision. A syringe-moving mechanism disposed on the housing moves the end of the piercing element relative to the incision to maintain the incision open while the stimulator mechanism urges bodily fluid thereto. A suction mechanism disposed on the housing creates a suction to cause bodily fluid to pool in the area to be incised, as will be described in greater detail below. Additionally, the suction element may be applied to the tube and utilized for drawing in bodily fluid through the piercing element and into the tube.
  • [0027]
    Still another aspect of the invention relates to a device for obtaining a sampling of a bodily fluid through the skin comprising a housing member containing a hollow piercing element for piercing the skin. A first spring member disposed in the housing urges the piercing element to protrude from a forward end of the housing sufficient to cut an incision through the skin. A stop member defines a maximum penetration depth of the piercing element. A second spring disposed in the housing partially retracts the piercing element while maintaining a front end of the piercing element in the incision. A tube communicates with a rear end of the piercing element. A suction mechanism creates a suction in the tube for drawing in bodily fluid through the piercing element.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • [0028]
    The objects and advantages of the invention will become apparent from the following detailed description of preferred embodiments thereof in connection with the accompanying drawings in which like numerals designate like elements and in which:
  • [0029]
    [0029]FIG. 1 is a longitudinal sectional view taken through a sampling device according to the present invention, with a syringe thereof in an armed state;
  • [0030]
    [0030]FIG. 2 is a view similar to FIG. 1 after the syringe has been triggered and forms an incision in a skin surface;
  • [0031]
    [0031]FIG. 3 is a view similar to FIG. 2 after a suction mechanism has been actuated to draw in bodily fluid through the syringe;
  • [0032]
    [0032]FIG. 3A is a sectional view taken along the line 3A-3A in FIG. 3;
  • [0033]
    [0033]FIG. 4 is a schematic view of a syringe being reciprocated longitudinally within an incision according to the present invention;
  • [0034]
    [0034]FIG. 5 is a schematic view of a syringe being reciprocated laterally within an incision according to the present invention;
  • [0035]
    [0035]FIG. 6 is a schematic view of a syringe being oscillated in an elliptical direction according to the present invention;
  • [0036]
    [0036]FIG. 7 is a schematic view of a syringe being rotated within an incision according to the present invention;
  • [0037]
    [0037]FIG. 8 is a longitudinal sectional view of a lower portion of a modified sampling device according to the present invention, with a syringe disposed in a retracted state;
  • [0038]
    [0038]FIG. 9 is a view similar to FIG. 8 after the syringe has been urged forwardly;
  • [0039]
    [0039]FIG. 10 is a side elevational view of a lower end of a syringe having a stop member fixed thereto according to the present invention; and
  • [0040]
    [0040]FIG. 11 is a sectional view taken along the line 11-11 in FIG. 10;
  • [0041]
    [0041]FIG. 12 is a top view of a integrated testing/lancing apparatus according to one embodiment of the present invention;
  • [0042]
    [0042]FIG. 13 is a cross-sectional side view illustrating an integrated lancet and test strip holder according to the present invention; and
  • [0043]
    [0043]FIG. 14 is a side view illustrating the anti-coring needle in accordance with a lancing device of the present invention.
  • DESCRIPTION OF PREFERRED EMBODIMENTS
  • [0044]
    For the purposes of promoting an understanding of the principles of the invention, reference will now be made to the embodiments illustrated and specific language will be used to describe the same. It will nevertheless be understood that no limitation of the scope of the invention is thereby intended, such alterations, modifications, and further applications of the principles of the invention being contemplated as would normally occur to one skilled in the art to which the invention relates.
  • [0045]
    Depicted in FIGS. 1-3 is a bodily fluid sampling device 10 comprising an outer cylindrical housing 12. Screwed into an upper end of the housing 12 is a fixing sleeve 14 in which are formed upper and lower recesses 16, 18. The upper recess 16 has an internal screw thread connected to an externally threaded stop ring 20 which can be adjusted to a selected vertical position relative to the housing.
  • [0046]
    Slidably disposed for longitudinal movement within the fixing sleeve 14 is a hollow drive rod 22. Screwed onto a lower end of the drive rod 22 is a syringe carrier 24. Mounted in a lower end of the carrier 24 is a syringe 26 of the type which includes a longitudinal capillary passage 28 (see FIG. 4). That passage is preferably offset laterally with respect to a center axis of the syringe. In lieu of a syringe, any suitable type of hollow piercing element can be employed, such as a needle or sharp cannula, for example. An upper end of the syringe communicates with a sampling tube 30, an upper end of the tube fitting into a lower recess 32 formed in the drive rod 22.
  • [0047]
    Intermediate its upper and lower ends, the drive rod 22 includes a radial enlargement 33 in which an outwardly open, annular groove 34 is formed that is sized to receive a pin 36 of a first trigger 38.
  • [0048]
    Slidably mounted within the sampling tube 30 is a plunger 40 having a soft tip 42 that snugly (sealingly) engages an inner surface of the tube 30. An upper end of the plunger 40 is fixed to the lower end of a drawbar 46 which slides within a center bore of the drive rod 22.
  • [0049]
    Screwed to an upper end of the drive rod 22 is a mounting sleeve 48 in which a second trigger 50 is mounted for lateral sliding movement. Formed in the second trigger 50 is a center hole 52 that is larger than the outer diameter of the drawbar 46. The drawbar 46 has a recess 54 sized to receive respective sides of the hole 52.
  • [0050]
    A drive spring 56 in the form of a coil compression spring acts between the enlargement 33 and the fixing sleeve 14. Resting on the fixing sleeve 14 is a retraction spring 58 in the form of a coil compression spring. Acting between the enlargement 33 and the top of the plunger 40 is a suction spring 60 in the form of a coil compression spring.
  • [0051]
    Mounted on the syringe carrier 24 is a piezoelectric transducer 66 which is electrically connected to a battery 68. Piezoelectric transducers are conventional types of vibrators which can be oriented to produce vibrations in any desired direction. A lower end of the piezoelectric transducer 66 is in contact with the syringe for vibrating the syringe, i.e., either vertically (longitudinally), laterally, or elliptically (a combination of vertical and lateral vibrations).
  • [0052]
    Disposed at a lower end of the housing 12 is a stimulator sleeve 70. That sleeve has an annular lower face 72 of frusto-conical shape, and is screwed into a sleeve carrier 74. Projecting from diametrically opposite positions of the sleeve carrier 74 are pins 76 which are slidably disposed in respective vertical slots 78 formed in the housing 12.
  • [0053]
    Rotatably mounted on diametrically opposite sides of the housing 12 are a pair of identical drive gears 80 (see also FIG. 3A). Formed in an inner surface of each drive gear 80 is a cam groove 82 in which a respective pin 76 projects. Mounted above the drive gear for rotation about a central longitudinal axis of the housing is a ring gear 84 which is rotated by an output pinion 86 of an electric motor 88. The underside of the ring gear 84 is formed with teeth that mesh with teeth formed around the outer peripheries of the drive gears 80. Therefore, rotation of the pinion gear 86 is transmitted to the drive gears 80 to rotate the drive gears. The accompanying rotation of the eccentric grooves 82 of the drive gears causes the pins 76, and thus the sleeve carrier 74, to reciprocate vertically, along with the stimulator sleeve.
  • [0054]
    The operation of the sampling device 10 will now be explained. To arm the device, the mounting sleeve 48 is pulled upwardly by a user until a beveled face 90 of the enlargement 33 of the drive rod 22 cams the first trigger 38 laterally outwardly. When the groove 34 of the enlargement becomes aligned with the cammed-out first trigger 38, the first trigger is urged inwardly by a spring (not shown) to insert the pin 36 into the groove 34 for retaining the drive rod 22 in the armed state (FIG. 1). Simultaneously, the drive spring 56 is compressed from a relaxed state, and the syringe carrier 24, together with the syringe 26, is raised. The drawbar 46 is retained by the second trigger 50, with the suction spring 60 disposed in a compressed state.
  • [0055]
    The lower end 72 of the housing 12 is placed against the skin surface S, preferably at a portion of the body having fewer nerve endings than, say the fingertip. A forearm would be a suitable location. Suction may be applied to the skin surface S at this time. The suction may be applied and held, or applied and released prior to the syringe cutting the skin. The trigger 38 is then pulled out against a spring bias to release the drive rod 22 and the compressed drive spring 56. As a result, the drive rod 22, the syringe carrier 24, and syringe 26 are driven downwardly, so that the syringe cuts an incision I through the skin surface S, as shown in FIG. 2.
  • [0056]
    During downward movement of the drive rod 22, the mounting sleeve 48 engages an upper end of the retraction spring 58 and then abuts the stop ring 20, thereby limiting the incision depth and slightly compressing the retraction spring 58. The retraction spring 58 then moves the drive rod 22 slightly upwardly, but not enough to completely remove the syringe 26 from the incision I. Then, the motor 88 is actuated, either manually, or automatically in response to the firing of the syringe, to vertically reciprocate the stimulator sleeve 70. Consequently, the lower face 72 repeatedly depresses a ring of skin and body tissue which surrounds the incision. Each depression of that ring causes the incision to bulge and the sides of the incision to be spread apart, and urges bodily fluid such as blood or interstitial fluid toward and outwardly through the incision I, as explained also in commonly assigned U.S Pat. Nos. 5,879,311, and 5,591,493.
  • [0057]
    In order to enable the inwardly urged bodily fluid to pool at the incision (for subsequent sampling), the syringe 26 is vibrated relatively slowly by the piezoelectric transducer 66 to keep the incision open. As noted earlier, the direction of vibration can be determined by the particular orientation of the transducer 66. In one embodiment, the direction of vibration is longitudinal or vertical (FIG. 4); in another embodiment the vibration is lateral (FIG. 5); in another embodiment the vibration is a combination of lateral and vertical, i.e., generally elliptical oscillation (FIG. 6).
  • [0058]
    It will be appreciated that if the syringe were not moved within the incision, the presence of a stationary syringe within the incision could result in a closing of the incision by collagen in the skin, whereby bodily fluid could not pool at the incision.
  • [0059]
    After a short period, sufficient to allow an ample amount of bodily fluid to pool at the incision, the second trigger 50 is manually actuated to release the drawbar 46, causing the spring 60 to raise the plunger 40 within the tube 30. That produces a suction in the tube 30 below the plunger 40, which draws in a sample 91 of bodily fluid through the syringe 26 (FIG. 3).
  • [0060]
    Then, the device can be removed from the skin, and the sample delivered to a suitable test site. Alternatively, the device may contain a test device in conjunction with the sampling device described above. Suitable test devices which may be incorporated with the sampler described above are shown and described in co-pending U.S. patent application No. (Insert)
  • [0061]
    As an alternative to the reciprocation of the syringe, the syringe can be rotated about its own center axis while disposed in the incision I. In that regard, a rotatable syringe 92 as shown in FIG. 7 can be utilized in a device 10′ shown in FIGS. 8 and 9. That device 10′ is similar to that depicted in FIGS. 1-3 with the addition of a rotary gear 94 that is driven by a pinion 95 of a second motor 96. The gear 94 includes an upwardly open recess 98 sized to receive, with a snug fit, a lower end 100 of the tube 30 in which the syringe 92 is disposed. Thus, when the syringe carrier 24′ is driven toward the skin, the lower portion 100 of the tube 30 enters the recess 98 to create a frictional engagement between the tube 30 and the gear 94 (see FIG. 9). By then rotating the pinion 95, the gear 94, the tube 30, and the syringe 92 are rotated relative to the carrier 24′ about an axis coinciding with a center axis of the syringe 92. The syringe 92 includes a pointed end 102 in the form of one-half of a cone. As the syringe rotates about its own axis, the semi-conical segment 102 cuts a conical recess 104 in the incision and keeps the incision open as the stimulator sleeve 70 reciprocates.
  • [0062]
    Any of the syringes described thus far can be provided with a stop which would replace the stop ring 20. Such a stop 110 is shown in FIGS. 10 and 11 in connection with the syringe 92. The stop 110 comprises a disc fixed to the syringe. When the disc contacts the skin surface, no further entry of the syringe into the skin can occur. The stop ring 20 could also be used to open and close the incision to promote bodily fluid pooling.
  • [0063]
    It will be appreciated that the present invention minimizes the pain experienced by a user, because it can be used to provide a sample of bodily fluid at an area of the body which contains fewer nerve endings than in an area such as the finger tips. By stimulating the body tissue surrounding the incision, while moving the syringe relative to the incision, bodily fluid is caused to pool in the incision, thereby providing an ample sample to be sucked through the syringe and into a collection tube. Thus, an area of the body less sensitive to pain can be used as a source of bodily fluid.
  • [0064]
    Although the stimulator member 70 is disclosed as having a generally annular skin contacting surface, i.e., a surface which is symmetric about the center axis thereof, the member 70 could instead have an elliptical or polygonal end face whereby the ring of body tissue depressed thereby would have a corresponding shape.
  • [0065]
    An alternative method according to the present invention includes the use of a suction device prior to use of the lancing device. The lower end of the housing 12 is placed against the skin surface S, preferably at a portion of the body where the sample is to be taken from. For example, a forearm would be a suitable location. A vacuum source is activated whereupon the skin S adjacent the lower end of the housing 12 is drawn into the frusto-conical shaped distal tip. The suction causes bodily fluid beneath the skin to pool in the area of skin S in contact with the testing device 10. The vacuum is released thereby releasing the skin. The trigger 38 is then pulled out against a spring bias to release the drive rod 22 and the compressed drive spring 56. As a result, the drive rod 22, the syringe carrier 24, and syringe 26 are driven downwardly, so that he syringe cuts an incision I through the skin surface S. During the downward movement of the drive rod 22, the mounting sleeve 48 engages an upper end of the retraction spring 58 and then abuts the stop ring 20, thereby limiting the incision depth and slightly compressing the retraction spring 58. The retraction spring 58 then moves the drive rod 22 slightly upwardly, but not enough to completely remove the syringe 26 from the incision I. Then, the motor 88 is actuated, either manually, or automatically in response to the firing of the syringe, to vertically reciprocate the stimulator sleeve 70. Consequently, the lower face 72 repeatably depresses a ring of skin and body tissue which surrounds the incision. The depression of the ring causes the skin adjacent the incision to bulge and the sides of the incision spread apart, such that bodily fluid is urged from the incision in response to the applied force.
  • [0066]
    After a short period, sufficient to allow an ample amount of bodily fluid to pool at the incision, the second trigger 50 is manually actuate to release the drawbar 46, causing the spring 60 to raise the plunger 40 within the tube 30. This produces suction in the tube 30 below the plunger 40, which draws in a sample 91 of bodily fluid through the syringe. The sample may then be delivered to an appropriate test media or testing device as described above.
  • [0067]
    Additionally, as described above, the vacuum may be repeatedly applied to the skin prior to deployment of the needle to form the incision I. By repeatably applying a vacuum source to the skin S this encourages bodily fluid to pool in the location adjacent to where the incision is to be made. Because bodily fluid is pooled in this area prior to formation of the incision I, once the incision I is formed the a sample is bodily fluid is easily collected because of the large volume of fluid available within the area.
  • [0068]
    It is further contemplated that the vacuum mechanism may be activated after the incision is formed to further express fluid from the incision. In addition to the vacuum source, it is also contemplated that a vibratory force, a heat force, and/or an ultrasonic force may be applied to the area to be lanced to further the expression of bodily fluid. Additionally, the vacuum may be repeatedly applied to the skin after the formation of incision I. Repeated application of a vacuum after the incision is formed encourages bodily fluid to continue to pool in the area adjacent to the incision, thereby aiding collection of the bodily fluid.
  • [0069]
    Referring now to FIG. 12 there is shown yet another alternative embodiment of the present invention. As shown in FIG. 12 the test device 100 comprises a main body 120, a test strip holder/tip assembly 130, and a lancing device 150. The functions of the testing device 100 are similar to that as described above with reference to testing device 10. The testing device 100 is prepared for use by first inserting a disposable lancet/test strip holder and test strip into the lancing device 150. The lancing device 150 is then prepared for use by pulling up on a driving mechanism (not shown) thereby compressing a driving spring (not shown). The device 100 is placed over an area to be lanced, wherein a vacuum mechanism disposed within the main body 120 and in communication with the tip assembly 130 is then activated. Skin S is drawn into the distal end of the device 100. The vacuum mechanism may then be deactivated thereby releasing the vacuum force on the skin, or repeatedly activated and deactivated.
  • [0070]
    After the vacuum device has been utilized, device 100 releases the driving spring, wherein a lancet is advanced through the patient's skin to form an incision I therein. The lancet may then be retracted from the incision I. Alternatively, it may be desirable to leave the lancet within or directly adjacent the incision for the reasons described above. Additionally, the vacuum device may be activated, activated and deactivated, or repeatedly activated and deactivated after forming the incision. Furthermore, a vibratory force may be applied to the lancet, the vibratory force may be applied vertically, horizontally, or any combination thereof.
  • [0071]
    A sample of bodily fluid may then be withdrawn from the incision and transported to a test area. The sample may be withdrawn from the incision through a capillary tube having one end disposed within the end of the test device 100 and the other end in communication with a chemical pad of a test strip and or electrochemical measuring device. Alternatively, the test strip may include capillary means such as a capillary tube or a cascading capillary. In yet another alternative embodiment, the test strip may be disposed adjacent to the distal end of the testing device wherein the lancet passes through an aperture in the test strip. The test strip may further include a gasket and/or a deep dermal constriction device. Furthermore, by placing the strip against the patient's skin and lancing there through this eliminates the need for a capillary to transport the bodily fluid from the incision to the test strip. This may lead to shorter sample times and/or lessen the likelihood of a failed test due to inadequate sample delivery.
  • [0072]
    In yet an additional alternative embodiment as shown in FIGS. 13 and 14, the test device 200 may include a test strip (not pictured) and lancet 220 which may be formed as an integrated unit. The lancet 220 may be embodied in the form of an anti-coring needle having a pre-bent radius of curvature R and a fluid inlet 223 such as that described in co-pending provisional patent application No. 60/297,098 filed on Jun. 8, 2001, the entirety of which is herein incorporated by reference. In this embodiment, the test device is placed over the area to be lanced, a vacuum is drawn on the skin thereby increasing the amount of bodily fluid adjacent the test device. The vacuum is release and the lancet is advanced thereby forming an incision within the patient's skin. Bodily fluid may then be withdrawn from the incision. The bodily fluid is then collected using one of the devices described above. After a sufficiently sized sample has been collected, the test device may be removed from the patient's skin, this may be prompted by a audible and/or visual marker. The test device will then deliver to the patient a visual indication of the test results.
  • [0073]
    While the invention has been illustrated and described in detail in the drawings and foregoing description, the same is to be considered as illustrative and not restrictive in character, it being understood that only the preferred embodiment has been shown and described and that all changes and modifications that come within the spirit of the invention are desired to be protected.

Claims (28)

    What is claimed is:
  1. 1. A method of expressing bodily fluid from an incision in the skin, the method comprising:
    disposing a testing device against the skin at a location from which the bodily fluid sample is to be taken, the testing device including a distal end portion forming a seal with the skin;
    activating a vacuum source communicating with the distal end portion of the testing device and drawing the skin in the area into the distal end portion of the testing device;
    deactivating the vacuum source;
    forming an incision in the skin with a hollow piercing element; and
    collecting the bodily fluid for testing using the hollow piercing element.
  2. 2. The method according to claim 1, wherein the testing device includes the vacuum source.
  3. 3. The method according to claim 1, wherein the vacuum source is applied before forming the incision.
  4. 4. The method according to claim 1, wherein the vacuum source is applied after the forming the incision.
  5. 5. The method according to claim 1, wherein the vacuum source is applied before and after the forming the incision.
  6. 6. The method according to claim 1, wherein the step of deactivating the vacuum source further includes releasing the vacuum between the testing device and the area of the skin to be lanced.
  7. 7. The method according to claim 1, wherein the testing device further includes a hollow fluid transport member having one end in fluid communication with the hollow piercing element and a second end in fluid communication with a test strip.
  8. 8. The method according to claim 7, wherein the vacuum source creates a vacuum in the hollow fluid transport member.
  9. 9. The method according to claim 7, wherein the test strip is chemical based.
  10. 10. The method according to claim 7, wherein the test strip is electrochemical.
  11. 11. The method according to claim 1, wherein the method further includes drawing the sample of bodily fluid from the incision to a test strip, determining the level of glucose in the bodily fluid, and displaying the level on a display included on the testing device.
  12. 12. The method according to claim 1, wherein the testing device further includes a stimulating device disposed about the distal end of the testing device, the method further including stimulating the area of the skin to be lanced with the stimulating device to pucker the skin.
  13. 13. The method according to claim 1, wherein the method further includes vibrating the hollow piercing element after forming the incision.
  14. 14. The method according to claim 1, wherein the method further includes rotating the hollow piercing element after forming the incision.
  15. 15. The method according to claim 5, wherein the testing device further includes a stimulating device disposed about the distal end of the testing device, wherein the method further includes oscillating the stimulating to cause the area of the skin to be lanced to pucker, said method further including oscillating the hollow piercing element after forming the incision.
  16. 16. A hand-held apparatus for extracting bodily fluid from an incision in the skin, comprising:
    a body having a distal end, the distal end being positionable against the skin surrounding an incision location;
    a suction means coupled with said body for applying a suction to the distal end of said body;
    a cutting member connected with said body and movable between a first position displaced from the skin and a second position extending into the skin at an incision location; and
    a fluid extraction member positioned to receive bodily fluid from the incision location.
  17. 17. The invention of claim 16 wherein said suction means is for applying the suction prior to said cutting member contacting the skin.
  18. 18. The invention of claim 17 wherein said suction means is further for releasing the suction prior to said cutting member contacting the skin.
  19. 19. The invention of claim 16 wherein said suction means is for applying the suction after said cutting member contacts the skin.
  20. 20. The invention of claim 19 wherein said suction member is for first applying the suction and then subsequently releasing the suction.
  21. 21. The invention of claim 16 wherein said body further includes means for vibrating said cutting member after contacting the skin.
  22. 22. The invention of claim 16 wherein said body includes means for rotating said cutting member after contacting the skin.
  23. 23. The invention of claim 16 wherein said suction means is for applying the suction to said fluid extraction member.
  24. 24. The invention of claim 16 in which said body further includes a testing member wherein said fluid extraction member is configured to deposit extracted fluid onto said testing member.
  25. 25. The invention of claim 16 wherein said cutting member is hollow.
  26. 26. The invention of claim 16 wherein said body further includes means for oscillating the distal end.
  27. 27. The invention of claim 21 in which said body further includes a testing member, said fluid extraction member being configured to deposit extracted fluid onto said testing member, said body further including means for oscillating the distal end.
  28. 28. The invention of claim 21 wherein said cutting member is hollow and is in fluid communication with said fluid extraction member, said suction means being for applying suction to said fluid extraction member, said body further including means for oscillating the distal end.
US10254314 2001-09-26 2002-09-25 Method and apparatus for sampling bodily fluid Abandoned US20040267160A9 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US32451401 true 2001-09-26 2001-09-26
US10254314 US20040267160A9 (en) 2001-09-26 2002-09-25 Method and apparatus for sampling bodily fluid

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10254314 US20040267160A9 (en) 2001-09-26 2002-09-25 Method and apparatus for sampling bodily fluid
US11353849 US7758516B2 (en) 2001-09-26 2006-02-14 Method and apparatus for sampling bodily fluid

Publications (2)

Publication Number Publication Date
US20040059256A1 true US20040059256A1 (en) 2004-03-25
US20040267160A9 true true US20040267160A9 (en) 2004-12-30

Family

ID=23263927

Family Applications (2)

Application Number Title Priority Date Filing Date
US10254314 Abandoned US20040267160A9 (en) 2001-09-26 2002-09-25 Method and apparatus for sampling bodily fluid
US11353849 Expired - Fee Related US7758516B2 (en) 2001-09-26 2006-02-14 Method and apparatus for sampling bodily fluid

Family Applications After (1)

Application Number Title Priority Date Filing Date
US11353849 Expired - Fee Related US7758516B2 (en) 2001-09-26 2006-02-14 Method and apparatus for sampling bodily fluid

Country Status (5)

Country Link
US (2) US20040267160A9 (en)
EP (1) EP1432353A1 (en)
JP (1) JP4320255B2 (en)
CA (1) CA2461370A1 (en)
WO (1) WO2003039369A1 (en)

Cited By (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040127818A1 (en) * 2002-12-27 2004-07-01 Roe Steven N. Precision depth control lancing tip
US20050277849A1 (en) * 2004-06-10 2005-12-15 Daniel Wong Vacuum sample expression device
US20080039795A1 (en) * 2006-08-09 2008-02-14 Slate John B Injection System With Hidden Needles
US7648468B2 (en) 2002-04-19 2010-01-19 Pelikon Technologies, Inc. Method and apparatus for penetrating tissue
US7666149B2 (en) 1997-12-04 2010-02-23 Peliken Technologies, Inc. Cassette of lancet cartridges for sampling blood
US7674232B2 (en) 2002-04-19 2010-03-09 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7682318B2 (en) 2001-06-12 2010-03-23 Pelikan Technologies, Inc. Blood sampling apparatus and method
US7699791B2 (en) 2001-06-12 2010-04-20 Pelikan Technologies, Inc. Method and apparatus for improving success rate of blood yield from a fingerstick
US7708701B2 (en) 2002-04-19 2010-05-04 Pelikan Technologies, Inc. Method and apparatus for a multi-use body fluid sampling device
US7717863B2 (en) 2002-04-19 2010-05-18 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7731729B2 (en) 2002-04-19 2010-06-08 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7749174B2 (en) 2001-06-12 2010-07-06 Pelikan Technologies, Inc. Method and apparatus for lancet launching device intergrated onto a blood-sampling cartridge
US7780631B2 (en) 1998-03-30 2010-08-24 Pelikan Technologies, Inc. Apparatus and method for penetration with shaft having a sensor for sensing penetration depth
US7822454B1 (en) 2005-01-03 2010-10-26 Pelikan Technologies, Inc. Fluid sampling device with improved analyte detecting member configuration
US7833171B2 (en) 2002-04-19 2010-11-16 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7841992B2 (en) 2001-06-12 2010-11-30 Pelikan Technologies, Inc. Tissue penetration device
US7850621B2 (en) 2003-06-06 2010-12-14 Pelikan Technologies, Inc. Method and apparatus for body fluid sampling and analyte sensing
US7862520B2 (en) 2002-04-19 2011-01-04 Pelikan Technologies, Inc. Body fluid sampling module with a continuous compression tissue interface surface
US7874994B2 (en) 2002-04-19 2011-01-25 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7892183B2 (en) 2002-04-19 2011-02-22 Pelikan Technologies, Inc. Method and apparatus for body fluid sampling and analyte sensing
US7892185B2 (en) 2002-04-19 2011-02-22 Pelikan Technologies, Inc. Method and apparatus for body fluid sampling and analyte sensing
US7901365B2 (en) 2002-04-19 2011-03-08 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7901362B2 (en) 2002-04-19 2011-03-08 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7909778B2 (en) 2002-04-19 2011-03-22 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7909777B2 (en) 2002-04-19 2011-03-22 Pelikan Technologies, Inc Method and apparatus for penetrating tissue
US7914465B2 (en) 2002-04-19 2011-03-29 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7976476B2 (en) 2002-04-19 2011-07-12 Pelikan Technologies, Inc. Device and method for variable speed lancet
US7988645B2 (en) 2001-06-12 2011-08-02 Pelikan Technologies, Inc. Self optimizing lancing device with adaptation means to temporal variations in cutaneous properties
US8007446B2 (en) 2002-04-19 2011-08-30 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8079960B2 (en) 2002-04-19 2011-12-20 Pelikan Technologies, Inc. Methods and apparatus for lancet actuation
US8197421B2 (en) 2002-04-19 2012-06-12 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8221334B2 (en) 2002-04-19 2012-07-17 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US8262614B2 (en) 2003-05-30 2012-09-11 Pelikan Technologies, Inc. Method and apparatus for fluid injection
US8267870B2 (en) 2002-04-19 2012-09-18 Sanofi-Aventis Deutschland Gmbh Method and apparatus for body fluid sampling with hybrid actuation
US8282576B2 (en) 2003-09-29 2012-10-09 Sanofi-Aventis Deutschland Gmbh Method and apparatus for an improved sample capture device
US8333710B2 (en) 2002-04-19 2012-12-18 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US8360992B2 (en) 2002-04-19 2013-01-29 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US8435190B2 (en) 2002-04-19 2013-05-07 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US8556829B2 (en) 2002-04-19 2013-10-15 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US8574895B2 (en) 2002-12-30 2013-11-05 Sanofi-Aventis Deutschland Gmbh Method and apparatus using optical techniques to measure analyte levels
US8641644B2 (en) 2000-11-21 2014-02-04 Sanofi-Aventis Deutschland Gmbh Blood testing apparatus having a rotatable cartridge with multiple lancing elements and testing means
US8652831B2 (en) 2004-12-30 2014-02-18 Sanofi-Aventis Deutschland Gmbh Method and apparatus for analyte measurement test time
US8668656B2 (en) 2003-12-31 2014-03-11 Sanofi-Aventis Deutschland Gmbh Method and apparatus for improving fluidic flow and sample capture
US8702624B2 (en) 2006-09-29 2014-04-22 Sanofi-Aventis Deutschland Gmbh Analyte measurement device with a single shot actuator
US8721671B2 (en) 2001-06-12 2014-05-13 Sanofi-Aventis Deutschland Gmbh Electric lancet actuator
US8784335B2 (en) 2002-04-19 2014-07-22 Sanofi-Aventis Deutschland Gmbh Body fluid sampling device with a capacitive sensor
US8828203B2 (en) 2004-05-20 2014-09-09 Sanofi-Aventis Deutschland Gmbh Printable hydrogels for biosensors
US20140296825A1 (en) * 2010-12-02 2014-10-02 Debiotech S.A. Method and device for inserting needles
US8965476B2 (en) 2010-04-16 2015-02-24 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US9144401B2 (en) 2003-06-11 2015-09-29 Sanofi-Aventis Deutschland Gmbh Low pain penetrating member
US9226699B2 (en) 2002-04-19 2016-01-05 Sanofi-Aventis Deutschland Gmbh Body fluid sampling module with a continuous compression tissue interface surface
US9248267B2 (en) 2002-04-19 2016-02-02 Sanofi-Aventis Deustchland Gmbh Tissue penetration device
US9314194B2 (en) 2002-04-19 2016-04-19 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US9351680B2 (en) 2003-10-14 2016-05-31 Sanofi-Aventis Deutschland Gmbh Method and apparatus for a variable user interface
US9375169B2 (en) 2009-01-30 2016-06-28 Sanofi-Aventis Deutschland Gmbh Cam drive for managing disposable penetrating member actions with a single motor and motor and control system
US9386944B2 (en) 2008-04-11 2016-07-12 Sanofi-Aventis Deutschland Gmbh Method and apparatus for analyte detecting device
US9427532B2 (en) 2001-06-12 2016-08-30 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US9775553B2 (en) 2004-06-03 2017-10-03 Sanofi-Aventis Deutschland Gmbh Method and apparatus for a fluid sampling device
US9795747B2 (en) 2010-06-02 2017-10-24 Sanofi-Aventis Deutschland Gmbh Methods and apparatus for lancet actuation
US9820684B2 (en) 2004-06-03 2017-11-21 Sanofi-Aventis Deutschland Gmbh Method and apparatus for a fluid sampling device
US9937298B2 (en) 2008-12-16 2018-04-10 Sanofi-Aventis Deutschland Gmbh Tissue penetration device

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7052652B2 (en) 2003-03-24 2006-05-30 Rosedale Medical, Inc. Analyte concentration detection devices and methods
US20050070819A1 (en) * 2003-03-31 2005-03-31 Rosedale Medical, Inc. Body fluid sampling constructions and techniques
CN100508888C (en) * 2004-02-06 2009-07-08 拜尔健康护理有限责任公司 Dampening and retraction mechanism for a lancing device
US20060036187A1 (en) * 2004-06-30 2006-02-16 Hester Vos Devices, systems and methods for extracting bodily fluid and monitoring an analyte therein
US20080097503A1 (en) * 2004-09-09 2008-04-24 Creaven John P Damping System for a Lancet Using Compressed Air
US9055898B2 (en) 2005-03-04 2015-06-16 Bayer Healthcare Llc Lancet release mechanism
CN101163448A (en) * 2005-03-04 2008-04-16 拜尔保健有限公司 Lancet-release mechanism
US20060281187A1 (en) 2005-06-13 2006-12-14 Rosedale Medical, Inc. Analyte detection devices and methods with hematocrit/volume correction and feedback control
WO2007005665A1 (en) * 2005-06-30 2007-01-11 Bayer Healthcare Llc Single-puncture lancing system
EP1903927A2 (en) * 2005-06-30 2008-04-02 Bayer Healthcare, LLC Single-puncture lancing system
EP1919363B1 (en) 2005-07-14 2010-10-20 Bayer HealthCare, LLC Lancing device for one skin puncture
WO2007019202A3 (en) 2005-08-04 2007-06-14 Bayer Healthcare Llc Small lancing device
US20070038148A1 (en) * 2005-08-11 2007-02-15 Joel Mechelke Sampling module for extracting interstitial fluid
US8801631B2 (en) * 2005-09-30 2014-08-12 Intuity Medical, Inc. Devices and methods for facilitating fluid transport
EP2989981A1 (en) 2005-09-30 2016-03-02 Intuity Medical, Inc. Multi-site body fluid sampling and analysis cartridge
US8057404B2 (en) * 2005-10-12 2011-11-15 Panasonic Corporation Blood sensor, blood testing apparatus, and method for controlling blood testing apparatus
EP1797822A1 (en) 2005-12-15 2007-06-20 Boehringer Mannheim Gmbh Lancing system for sampling of bodily fluid
US7794656B2 (en) * 2006-01-23 2010-09-14 Quidel Corporation Device for handling and analysis of a biological sample
US7871568B2 (en) * 2006-01-23 2011-01-18 Quidel Corporation Rapid test apparatus
US20090215159A1 (en) * 2006-01-23 2009-08-27 Quidel Corporation Device for handling and analysis of a biological sample
ES2421781T3 (en) * 2006-09-04 2013-09-05 Hoffmann La Roche Lancing system for extracting a body fluid
WO2008111936A1 (en) * 2007-03-12 2008-09-18 Bayer Healthcare Llc Lancet-eject mechanism
CN101896121B (en) * 2008-05-09 2012-02-29 松下电器产业株式会社 Skin incision apparatus and method for incising skin by skin incision apparatus
WO2009139134A1 (en) 2008-05-13 2009-11-19 パナソニック株式会社 Skin incision device and method of incising skin with the same
EP2293719B1 (en) * 2008-05-30 2015-09-09 Intuity Medical, Inc. Body fluid sampling device -- sampling site interface
CA2726067A1 (en) 2008-06-06 2009-12-10 Intuity Medical, Inc. Detection meter and mode of operation
GB0919568D0 (en) * 2009-11-09 2009-12-23 Owen Mumford Ltd Skin stimulus
US8919605B2 (en) 2009-11-30 2014-12-30 Intuity Medical, Inc. Calibration material delivery devices and methods
WO2013020103A1 (en) 2011-08-03 2013-02-07 Intuity Medical, Inc. Devices and methods for body fluid sampling and analysis
CN103654872B (en) * 2012-09-20 2015-08-05 苏州生物医学工程技术研究所 Automatically synchronize negative biopsy sampling device reusable
CA2884845A1 (en) * 2012-09-27 2014-04-03 Facet Technologies, Llc Depth-adjust mechanism for lancing device

Citations (90)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6183489B2 (en) *
US6285A (en) * 1849-04-10 Beehive
US263533A (en) * 1882-08-29 kinder
US297045A (en) * 1884-04-15 Seth wheelee
US296950A (en) * 1884-04-15 John s
US528097A (en) * 1894-10-23 Powder or shot feeding mechanism
US2714890A (en) * 1953-08-06 1955-08-09 Vang Alfred Vibratory surgical instruments
US3086288A (en) * 1955-04-20 1963-04-23 Cavitron Ultrasonics Inc Ultrasonically vibrated cutting knives
US3208452A (en) * 1960-09-08 1965-09-28 Panray Parlam Corp Surface treating device
US3673475A (en) * 1970-09-15 1972-06-27 Fred M Hufnagel Pulse drive circuit for coils of dental impact tools and the like
US3832776A (en) * 1972-11-24 1974-09-03 H Sawyer Electronically powered knife
US4077406A (en) * 1976-06-24 1978-03-07 American Cyanamid Company Pellet implanter for animal treatment
US4154228A (en) * 1976-08-06 1979-05-15 California Institute Of Technology Apparatus and method of inserting a microelectrode in body tissue or the like using vibration means
US4203446A (en) * 1976-09-24 1980-05-20 Hellige Gmbh Precision spring lancet
US4223674A (en) * 1978-06-29 1980-09-23 Arthur J. McIntosh Implant gun
US4356826A (en) * 1979-05-09 1982-11-02 Olympus Optical Co., Ltd. Stabbing apparatus for diagnosis of living body
US4449529A (en) * 1981-11-18 1984-05-22 Becton Dickinson And Company Automatic retractable lancet assembly
US4462405A (en) * 1982-09-27 1984-07-31 Ehrlich Joseph C Blood letting apparatus
US4518384A (en) * 1983-06-17 1985-05-21 Survival Technology, Inc. Multiple medicament cartridge clip and medicament discharging device therefor
US4535773A (en) * 1982-03-26 1985-08-20 Inbae Yoon Safety puncturing instrument and method
US4750489A (en) * 1985-08-29 1988-06-14 Coopervision, Inc. Radial keratotomy knife and system using same
US4794926A (en) * 1986-11-24 1989-01-03 Invictus, Inc. Lancet cartridge
US4823806A (en) * 1985-11-18 1989-04-25 Serge Bajada Apparatus for testing the sensory system on humans or animals
US5047044A (en) * 1988-10-12 1991-09-10 Thorne, Smith, Astill Technologies, Inc. Medical droplet whole blood and like monitoring
US5097810A (en) * 1990-04-06 1992-03-24 Henry Fishman Allergy testing apparatus and method
US5145565A (en) * 1989-05-01 1992-09-08 Spacelabs, Inc. Contamination-free method and apparatus for measuring body fluid chemical parameters
US5152775A (en) * 1990-10-04 1992-10-06 Norbert Ruppert Automatic lancet device and method of using the same
US5188118A (en) * 1990-11-07 1993-02-23 Terwilliger Richard A Automatic biopsy instrument with independently actuated stylet and cannula
US5189751A (en) * 1991-03-21 1993-03-02 Gemtech, Inc. Vibrating toothbrush using a magnetic driver
US5222504A (en) * 1992-02-11 1993-06-29 Solomon Charles L Disposable neurological pinwheel
US5320808A (en) * 1988-08-02 1994-06-14 Abbott Laboratories Reaction cartridge and carousel for biological sample analyzer
US5415169A (en) * 1989-11-21 1995-05-16 Fischer Imaging Corporation Motorized mammographic biopsy apparatus
US5514152A (en) * 1994-08-16 1996-05-07 Specialized Health Products, Inc. Multiple segment encapsulated medical lancing device
US5529074A (en) * 1993-02-26 1996-06-25 Greenfield; Jon B. Uniform pressure diagnostic pinwheel
US5575403A (en) * 1995-01-13 1996-11-19 Bayer Corporation Dispensing instrument for fluid monitoring sensors
US5630986A (en) * 1995-01-13 1997-05-20 Bayer Corporation Dispensing instrument for fluid monitoring sensors
US5632410A (en) * 1995-04-17 1997-05-27 Bayer Corporation Means of handling multiple sensors in a glucose monitoring instrument system
US5714390A (en) * 1996-10-15 1998-02-03 Bio-Tech Imaging, Inc. Cartridge test system for the collection and testing of blood in a single step
US5720924A (en) * 1993-04-23 1998-02-24 Boehringer Mannheim Gmbh Storage system for test elements
US5758643A (en) * 1996-07-29 1998-06-02 Via Medical Corporation Method and apparatus for monitoring blood chemistry
US5776157A (en) * 1996-10-02 1998-07-07 Specialized Health Products, Inc. Lancet apparatus and methods
US5788651A (en) * 1995-01-26 1998-08-04 Weilandt; Anders Instrument and apparatus for biopsy
US5801057A (en) * 1996-03-22 1998-09-01 Smart; Wilson H. Microsampling device and method of construction
US5810199A (en) * 1996-06-10 1998-09-22 Bayer Corporation Dispensing instrument for fluid monitoring sensor
US5823973A (en) * 1995-09-08 1998-10-20 Integ, Inc. Needle assembly for fluid sampler
US5830219A (en) * 1997-02-24 1998-11-03 Trex Medical Corporation Apparatus for holding and driving a surgical cutting device using stereotactic mammography guidance
US5855801A (en) * 1994-06-06 1999-01-05 Lin; Liwei IC-processed microneedles
US5857983A (en) * 1996-05-17 1999-01-12 Mercury Diagnostics, Inc. Methods and apparatus for sampling body fluid
US5880829A (en) * 1996-09-02 1999-03-09 Nokia Mobile Phones Limited Apparatus for taking and analysing liquid samples, such as blood samples
US5885211A (en) * 1993-11-15 1999-03-23 Spectrix, Inc. Microporation of human skin for monitoring the concentration of an analyte
US5916229A (en) * 1996-02-07 1999-06-29 Evans; Donald Rotating needle biopsy device and method
US5938679A (en) * 1997-10-14 1999-08-17 Hewlett-Packard Company Apparatus and method for minimally invasive blood sampling
US5951582A (en) * 1998-05-22 1999-09-14 Specialized Health Products, Inc. Lancet apparatus and methods
US5968063A (en) * 1997-05-14 1999-10-19 Jennifer Chu Intramuscular stimulation therapy facilitating device and method
US5971941A (en) * 1997-12-04 1999-10-26 Hewlett-Packard Company Integrated system and method for sampling blood and analysis
US6027459A (en) * 1996-12-06 2000-02-22 Abbott Laboratories Method and apparatus for obtaining blood for diagnostic tests
US6036924A (en) * 1997-12-04 2000-03-14 Hewlett-Packard Company Cassette of lancet cartridges for sampling blood
US6071294A (en) * 1997-12-04 2000-06-06 Agilent Technologies, Inc. Lancet cartridge for sampling blood
US6117630A (en) * 1997-10-30 2000-09-12 Motorola, Inc. Molecular detection apparatus and method
US6120462A (en) * 1999-03-31 2000-09-19 Ethicon Endo-Surgery, Inc. Control method for an automated surgical biopsy device
US6132449A (en) * 1999-03-08 2000-10-17 Agilent Technologies, Inc. Extraction and transportation of blood for analysis
US6136013A (en) * 1996-09-18 2000-10-24 Owen Mumford Limited Lancet device
US6139562A (en) * 1998-03-30 2000-10-31 Agilent Technologies, Inc. Apparatus and method for incising
US6183489B1 (en) * 1996-05-17 2001-02-06 Amira Medical Disposable element for use in a body fluid sampling device
US6193673B1 (en) * 1998-02-20 2001-02-27 United States Surgical Corporation Biopsy instrument driver apparatus
US6210421B1 (en) * 1996-02-06 2001-04-03 Roche Diagnostics Gmbh Cutting device for skin for obtaining small blood samples in almost pain-free manner
US6210420B1 (en) * 1999-01-19 2001-04-03 Agilent Technologies, Inc. Apparatus and method for efficient blood sampling with lancet
US6228100B1 (en) * 1999-10-25 2001-05-08 Steven Schraga Multi-use lancet device
US6231531B1 (en) * 1999-04-09 2001-05-15 Agilent Technologies, Inc. Apparatus and method for minimizing pain perception
US6261245B1 (en) * 1998-01-22 2001-07-17 Terumo Kabushiki Kaisha Body-fluid inspection device
US6285454B1 (en) * 1998-12-07 2001-09-04 Mercury Diagnostics, Inc. Optics alignment and calibration system
US6283926B1 (en) * 1996-12-06 2001-09-04 Abbott Laboratories Method and apparatus for obtaining blood for diagnostic tests
US6306152B1 (en) * 1999-03-08 2001-10-23 Agilent Technologies, Inc. Lancet device with skin movement control and ballistic preload
US20020002344A1 (en) * 1996-05-17 2002-01-03 Douglas Joel S. Methods and apparatus for sampling and analyzing body fluid
US20020004196A1 (en) * 2000-07-10 2002-01-10 Bayer Corporation Thin lance and test sensor having same
US6364889B1 (en) * 1999-11-17 2002-04-02 Bayer Corporation Electronic lancing device
US6375627B1 (en) * 2000-03-02 2002-04-23 Agilent Technologies, Inc. Physiological fluid extraction with rapid analysis
US6379317B1 (en) * 1997-11-28 2002-04-30 Hans Kintzig Analytical measuring device with lancing device
US6379969B1 (en) * 2000-03-02 2002-04-30 Agilent Technologies, Inc. Optical sensor for sensing multiple analytes
US20020052618A1 (en) * 2000-10-31 2002-05-02 Hans-Peter Haar Analytical device with integrated lancet
US6391005B1 (en) * 1998-03-30 2002-05-21 Agilent Technologies, Inc. Apparatus and method for penetration with shaft having a sensor for sensing penetration depth
US6402701B1 (en) * 1999-03-23 2002-06-11 Fna Concepts, Llc Biopsy needle instrument
US6402704B1 (en) * 2000-04-18 2002-06-11 Sonexxus Incorporated Prothrombin test apparatus for home use
US6409740B1 (en) * 1999-10-09 2002-06-25 Roche Diagnostics Gmbh Blood lancet system for withdrawing blood for diagnostic purposes
US20020082543A1 (en) * 2000-12-14 2002-06-27 Jung-Hwan Park Microneedle devices and production thereof
US20020103499A1 (en) * 2001-01-22 2002-08-01 Perez Edward P. Lancet device having capillary action
US6461496B1 (en) * 1998-10-08 2002-10-08 Therasense, Inc. Small volume in vitro analyte sensor with diffusible or non-leachable redox mediator
US6503210B1 (en) * 1999-10-13 2003-01-07 Arkray, Inc. Blood-collection position indicator
US6506575B1 (en) * 1999-09-24 2003-01-14 Roche Diagnostics Gmbh Analytical element and method for the determination of an analyte in a liquid
US20030199902A1 (en) * 2002-04-19 2003-10-23 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue

Family Cites Families (143)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2646799A (en) * 1951-02-14 1953-07-28 Jr George W Jacoby Blood lancet
US3030959A (en) 1959-09-04 1962-04-24 Praemeta Surgical lancet for blood sampling
US3235337A (en) 1962-10-22 1966-02-15 Miles Lab Diagnostic compositions and test indicators
US3623475A (en) 1968-07-26 1971-11-30 Micromedic Systems Inc Blood collector device
NL6909366A (en) 1968-07-26 1970-01-29
GB1323675A (en) 1969-07-09 1973-07-18 Nat Res Dev Endoscopes
US3741197A (en) 1970-09-04 1973-06-26 Micromedia Syst Inc Percussion apparatus for blood sampling
US3734085A (en) 1971-07-30 1973-05-22 T Russell Stimulator
DE2611721C3 (en) 1976-03-19 1979-06-21 R. Geerd Dr.Med. 6108 Weiterstadt Hamer
US4222380A (en) * 1977-12-02 1980-09-16 Olympus Optical Co., Ltd. Celiac injector
DE3013384C2 (en) 1980-04-05 1988-04-07 Bernd Dr.Med. Tersteegen
US4360016A (en) 1980-07-01 1982-11-23 Transidyne General Corp. Blood collecting device
US4441510A (en) * 1980-07-25 1984-04-10 Worley Michael W Method and apparatus for fetal pH scalp studies
US4535769A (en) * 1981-03-23 1985-08-20 Becton, Dickinson And Company Automatic retractable lancet assembly
US4383530A (en) 1981-06-05 1983-05-17 John Bruno Hypodermic needle and method of making needles
US4503856A (en) 1981-06-29 1985-03-12 Sherwood Medical Company Lancet injector
US4517978A (en) 1983-01-13 1985-05-21 Levin Paul D Blood sampling instrument
US4580564A (en) 1983-06-07 1986-04-08 Andersen Michael A Finger pricking device
DE3426090A1 (en) 1983-10-06 1985-04-18 Storz Karl Gmbh & Co Obstetric apparatus
US4637978A (en) 1983-10-28 1987-01-20 Eastman Kodak Company Assay for analysis of whole blood
US4577630A (en) * 1984-02-14 1986-03-25 Becton, Dickinson And Co. Reusable breach loading target pressure activated lancet firing device
US4622974A (en) 1984-03-07 1986-11-18 University Of Tennessee Research Corporation Apparatus and method for in-vivo measurements of chemical concentrations
GB8406154D0 (en) 1984-03-09 1984-04-11 Palmer G C Sampling fluid
NL8401536A (en) 1984-05-11 1985-12-02 Medscan B V I O Blood Sampler.
DE3508365A1 (en) 1984-06-14 1985-12-19 Weise Gustav Watch with a bracelet consisting of a plurality of links
EP0166574A3 (en) 1984-06-28 1987-06-16 Mitchell P. Dombrowski, M.D. Fetal blood sampling instrument
US4653511A (en) 1984-10-05 1987-03-31 Goch Thomas A Microsample blood collecting device
US4627445A (en) 1985-04-08 1986-12-09 Garid, Inc. Glucose medical monitoring system
US4787398A (en) 1985-04-08 1988-11-29 Garid, Inc. Glucose medical monitoring system
US5279294A (en) 1985-04-08 1994-01-18 Cascade Medical, Inc. Medical diagnostic system
US4653513A (en) 1985-08-09 1987-03-31 Dombrowski Mitchell P Blood sampler
DE3708031A1 (en) 1986-03-20 1987-11-12 Wolfgang Dr Med Wagner Measurement device or induction device with measurement device, or device for material recovery for a measurement device for metabolic states in the blood by puncturing under reduced pressure in a suction cup with displacement of the measurement zone outside the tip region of the puncturing device
US4658821A (en) 1986-01-08 1987-04-21 Packaging Corporation International A/K/A/ Medicore Ejector for an automatic lancet arm
US4685463A (en) 1986-04-03 1987-08-11 Williams R Bruce Device for continuous in vivo measurement of blood glucose concentrations
US5029583A (en) 1986-07-22 1991-07-09 Personal Diagnostics, Inc. Optical analyzer
US4873993A (en) 1986-07-22 1989-10-17 Personal Diagnostics, Inc. Cuvette
US4790979A (en) 1986-08-29 1988-12-13 Technimed Corporation Test strip and fixture
GB8818491D0 (en) 1987-09-08 1988-09-07 Wagner W Device for control of metabolism especially of diabetes
US5002054A (en) 1987-02-25 1991-03-26 Ash Medical Systems, Inc. Interstitial filtration and collection device and method for long-term monitoring of physiological constituents of the body
GB8710470D0 (en) 1987-05-01 1987-06-03 Mumford Ltd Owen Blood sampling devices
US4805623A (en) 1987-09-04 1989-02-21 Vander Corporation Spectrophotometric method for quantitatively determining the concentration of a dilute component in a light- or other radiation-scattering environment
US4850973A (en) 1987-10-16 1989-07-25 Pavel Jordon & Associates Plastic device for injection and obtaining blood samples
US4844095A (en) 1987-12-14 1989-07-04 Medicore, Inc. Automatic lancet device
US5070886A (en) 1988-01-22 1991-12-10 Safety Diagnostice, Inc. Blood collection and testing means
US5014718A (en) 1988-01-22 1991-05-14 Safety Diagnostics, Inc. Blood collection and testing method
US4883068A (en) 1988-03-14 1989-11-28 Dec In Tech, Inc. Blood sampling device and method
US4924879A (en) 1988-10-07 1990-05-15 Brien Walter J O Blood lancet device
US4920977A (en) 1988-10-25 1990-05-01 Becton, Dickinson And Company Blood collection assembly with lancet and microcollection tube
US4895147A (en) * 1988-10-28 1990-01-23 Sherwood Medical Company Lancet injector
US4994073A (en) 1989-02-22 1991-02-19 United States Surgical Corp. Skin fastener
US5035704A (en) 1989-03-07 1991-07-30 Lambert Robert D Blood sampling mechanism
CA1337167C (en) 1989-03-14 1995-10-03 Eastman Kodak Company Needle housing with retractable needle
US5054499A (en) 1989-03-27 1991-10-08 Swierczek Remi D Disposable skin perforator and blood testing device
US5402798A (en) 1991-07-18 1995-04-04 Swierczek; Remi Disposable skin perforator and blood testing device
US4953552A (en) 1989-04-21 1990-09-04 Demarzo Arthur P Blood glucose monitoring system
US5100620A (en) 1989-05-15 1992-03-31 Miles, Inc. Capillary tube/gap reagent format
US4994079A (en) * 1989-07-28 1991-02-19 C. R. Bard, Inc. Grasping forceps
US4976724A (en) 1989-08-25 1990-12-11 Lifescan, Inc. Lancet ejector mechanism
US4994068A (en) 1989-11-24 1991-02-19 Unidex, Inc. Combination sterile pad support and lancet containing lancet disposal element
US5052403A (en) 1989-12-29 1991-10-01 Habley Medical Technology Corporation Self-contained, safety blood collection system
US5250066A (en) 1990-03-19 1993-10-05 Becton Dickinson And Company Plastic pointed articles and method for their preparation
US5271385A (en) * 1990-03-29 1993-12-21 United States Surgical Corporation Abdominal cavity organ retractor
US5161532A (en) 1990-04-19 1992-11-10 Teknekron Sensor Development Corporation Integral interstitial fluid sensor
US5066859A (en) 1990-05-18 1991-11-19 Karkar Maurice N Hematocrit and oxygen saturation blood analyzer
US5163442A (en) 1991-07-30 1992-11-17 Harry Ono Finger tip blood collector
WO1993009723A1 (en) 1991-11-12 1993-05-27 Ramel Urs A Lancet device
US5231993A (en) 1991-11-20 1993-08-03 Habley Medical Technology Corporation Blood sampler and component tester with guide member
JP2572823Y2 (en) 1992-02-13 1998-05-25 株式会社アドバンス Simple blood collection device
US5165418B1 (en) 1992-03-02 1999-12-14 Nikola I Tankovich Blood sampling device and method using a laser
GB9207120D0 (en) 1992-04-01 1992-05-13 Owen Mumford Ltd Improvements relating to blood sampling devices
DE4212315A1 (en) 1992-04-13 1993-10-14 Boehringer Mannheim Gmbh Blood lancet device for withdrawing blood for diagnostic purposes
JPH0610900A (en) 1992-04-27 1994-01-21 Canon Inc Method and device for moving liquid and measuring device utilizing these method and device
US5318583A (en) 1992-05-05 1994-06-07 Ryder International Corporation Lancet actuator mechanism
US5217480A (en) 1992-06-09 1993-06-08 Habley Medical Technology Corporation Capillary blood drawing device
US5277198A (en) 1992-07-27 1994-01-11 Ryder International Corporation Blood sampling syringe
US5421816A (en) 1992-10-14 1995-06-06 Endodermic Medical Technologies Company Ultrasonic transdermal drug delivery system
US5282822A (en) 1993-01-19 1994-02-01 Sherwood Medical Company Lancet ejector for lancet injector
US5395387A (en) 1993-02-26 1995-03-07 Becton Dickinson And Company Lancet blade designed for reduced pain
US5353806A (en) 1993-03-04 1994-10-11 The Venture Fund Of Washington Liquid collection device
US5902279A (en) 1993-04-20 1999-05-11 Advanced Cytometrix, Inc. Aspiration needle and method
JP2630197B2 (en) 1993-04-28 1997-07-16 株式会社ニッショー Blood suction device
DE4320463A1 (en) 1993-06-21 1994-12-22 Boehringer Mannheim Gmbh Blood lancet device for withdrawing blood for diagnostic purposes
US5387203A (en) 1993-06-28 1995-02-07 Goodrich; Hubert J. Subcutaneous extractor
JP3494183B2 (en) 1993-08-10 2004-02-03 株式会社アドバンス Simple blood collection device
US5582184A (en) 1993-10-13 1996-12-10 Integ Incorporated Interstitial fluid collection and constituent measurement
US5472427A (en) 1993-10-22 1995-12-05 Rammler; David H. Trocar device
WO1995011621A1 (en) 1993-10-28 1995-05-04 I-Stat Corporation Fluid sample collection and introduction device
US5458140A (en) 1993-11-15 1995-10-17 Non-Invasive Monitoring Company (Nimco) Enhancement of transdermal monitoring applications with ultrasound and chemical enhancers
US5445611A (en) 1993-12-08 1995-08-29 Non-Invasive Monitoring Company (Nimco) Enhancement of transdermal delivery with ultrasound and chemical enhancers
US5397334A (en) 1994-01-11 1995-03-14 Sherwood Medical Company Distal movement limiting assembly for finger stick device
US5474084A (en) 1994-03-15 1995-12-12 Cunniff; Joseph G. Algesimeter with detachable pin wheel
JP3368985B2 (en) 1994-05-10 2003-01-20 バイエルコーポレーション Automatic feeder
JP2723048B2 (en) 1994-06-24 1998-03-09 株式会社ニッショー Blood suction device
US5700695A (en) 1994-06-30 1997-12-23 Zia Yassinzadeh Sample collection and manipulation method
US5569212A (en) 1994-07-22 1996-10-29 Raya Systems, Inc. Apparatus for electrically determining injection doses in syringes
US5518006A (en) 1994-08-09 1996-05-21 International Technidyne Corp. Blood sampling device
US5504011A (en) 1994-10-21 1996-04-02 International Technidyne Corporation Portable test apparatus and associated method of performing a blood coagulation test
GB9422260D0 (en) 1994-11-04 1994-12-21 Owen Mumford Ltd Improvements relating to skin prickers
US5947957A (en) 1994-12-23 1999-09-07 Jmar Technology Co. Portable laser for blood sampling
US5628764A (en) 1995-03-21 1997-05-13 Schraga; Steven Collar lancet device
WO1996037256A1 (en) 1995-05-22 1996-11-28 Silicon Microdevices, Inc. Micromechanical patch for enhancing the delivery of compounds through the skin
JPH08317917A (en) 1995-05-25 1996-12-03 Advance Co Ltd Blood drawing device
KR0135178Y1 (en) 1995-06-26 1999-03-20 김인환 Lancet device for obtaining blood samples
US5671753A (en) 1995-06-27 1997-09-30 Pitesky; Isadore Disposable multiple allergen testing apparatus
US5730753A (en) 1995-07-28 1998-03-24 Apls Co., Ltd. Assembly for adjusting pricking depth of lancet
US5709699A (en) 1995-09-01 1998-01-20 Biosafe Diagnostics Corporation Blood collection and testing device
US5682233A (en) 1995-09-08 1997-10-28 Integ, Inc. Interstitial fluid sampler
US5779642A (en) 1996-01-16 1998-07-14 Nightengale; Christopher Interrogation device and method
US5662127A (en) 1996-01-17 1997-09-02 Bio-Plas, Inc. Self-contained blood withdrawal apparatus and method
US5628309A (en) 1996-01-25 1997-05-13 Raya Systems, Inc. Meter for electrically measuring and recording injection syringe doses
JP3973689B2 (en) * 1996-02-08 2007-09-12 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Security system
JP3098971B2 (en) 1996-05-15 2000-10-16 松下電工株式会社 Epilation device
US5951492A (en) 1996-05-17 1999-09-14 Mercury Diagnostics, Inc. Methods and apparatus for sampling and analyzing body fluid
US6015392A (en) * 1996-05-17 2000-01-18 Mercury Diagnostics, Inc. Apparatus for sampling body fluid
US5879311A (en) 1996-05-17 1999-03-09 Mercury Diagnostics, Inc. Body fluid sampling device and methods of use
WO1997042885A1 (en) 1996-05-17 1997-11-20 Mercury Diagnostics, Inc. Methods and apparatus for sampling body fluid
US6332871B1 (en) 1996-05-17 2001-12-25 Amira Medical Blood and interstitial fluid sampling device
EP0955914B1 (en) 1996-05-17 2010-02-24 Roche Diagnostics Operations, Inc. Apparatus for sampling body fluid from an incision
US6146361A (en) 1996-09-26 2000-11-14 Becton Dickinson And Company Medication delivery pen having a 31 gauge needle
US5935864A (en) 1996-10-07 1999-08-10 Saliva Diagnostic Systems Inc. Method and kit for collecting samples of liquid specimens for analytical testing
JP3394262B2 (en) 1997-02-06 2003-04-07 イー.ヘラー アンド カンパニー Small volume in vitro analyte sensor
US5951493A (en) 1997-05-16 1999-09-14 Mercury Diagnostics, Inc. Methods and apparatus for expressing body fluid from an incision
US5948695A (en) 1997-06-17 1999-09-07 Mercury Diagnostics, Inc. Device for determination of an analyte in a body fluid
FI111217B (en) 1997-06-19 2003-06-30 Nokia Corp Device for taking samples
US5964718A (en) 1997-11-21 1999-10-12 Mercury Diagnostics, Inc. Body fluid sampling device
US6155992A (en) 1997-12-02 2000-12-05 Abbott Laboratories Method and apparatus for obtaining interstitial fluid for diagnostic tests
US5871494A (en) 1997-12-04 1999-02-16 Hewlett-Packard Company Reproducible lancing for sampling blood
JP2001527216A (en) 1997-12-19 2001-12-25 アミラ メディカル Embossed test strip system
US6306347B1 (en) 1998-01-21 2001-10-23 Bayer Corporation Optical sensor and method of operation
US6261241B1 (en) 1998-03-03 2001-07-17 Senorx, Inc. Electrosurgical biopsy device and method
DE59912876D1 (en) 1998-04-24 2006-01-12 Roche Diagnostics Gmbh Storage container for analytical tools
US6086545A (en) 1998-04-28 2000-07-11 Amira Medical Methods and apparatus for suctioning and pumping body fluid from an incision
US6022366A (en) 1998-06-11 2000-02-08 Stat Medical Devices Inc. Lancet having adjustable penetration depth
DE69939598D1 (en) 1999-01-04 2008-10-30 Terumo Corp Landzettenanordnung for removing and evidence of body fluids
DE60045351D1 (en) 1999-02-04 2011-01-20 Integ Inc Needle body fluid tester
US6152942A (en) 1999-06-14 2000-11-28 Bayer Corporation Vacuum assisted lancing device
EP1211979A1 (en) 1999-06-30 2002-06-12 Nederlandse Organisatie voor toegepast-natuurwetenschappelijk Onderzoek TNO Pricking device, carrier and cassette comprising a plurality of lancets
JP4359671B2 (en) * 1999-09-29 2009-11-04 アークレイ株式会社 The body fluid sampling tool
DE10010694A1 (en) 2000-03-04 2001-09-06 Roche Diagnostics Gmbh Lancet including tipped needle with body surrounding tip
DE10029453C2 (en) * 2000-06-21 2002-06-13 Roche Diagnostics Gmbh Pump for very low flow rates
US6491709B2 (en) 2000-12-22 2002-12-10 Becton, Dickinson And Company Alternate-site lancer
CN101366633B (en) 2001-01-19 2011-03-30 松下电器产业株式会社 Lancet-integrated sensor, measuring device for lancet-integrated sensor, and cartridge
US7041068B2 (en) * 2001-06-12 2006-05-09 Pelikan Technologies, Inc. Sampling module device and method

Patent Citations (100)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6183489B2 (en) *
US6285A (en) * 1849-04-10 Beehive
US263533A (en) * 1882-08-29 kinder
US297045A (en) * 1884-04-15 Seth wheelee
US296950A (en) * 1884-04-15 John s
US528097A (en) * 1894-10-23 Powder or shot feeding mechanism
US2714890A (en) * 1953-08-06 1955-08-09 Vang Alfred Vibratory surgical instruments
US3086288A (en) * 1955-04-20 1963-04-23 Cavitron Ultrasonics Inc Ultrasonically vibrated cutting knives
US3208452A (en) * 1960-09-08 1965-09-28 Panray Parlam Corp Surface treating device
US3673475A (en) * 1970-09-15 1972-06-27 Fred M Hufnagel Pulse drive circuit for coils of dental impact tools and the like
US3832776A (en) * 1972-11-24 1974-09-03 H Sawyer Electronically powered knife
US4077406A (en) * 1976-06-24 1978-03-07 American Cyanamid Company Pellet implanter for animal treatment
US4154228A (en) * 1976-08-06 1979-05-15 California Institute Of Technology Apparatus and method of inserting a microelectrode in body tissue or the like using vibration means
US4203446A (en) * 1976-09-24 1980-05-20 Hellige Gmbh Precision spring lancet
US4223674A (en) * 1978-06-29 1980-09-23 Arthur J. McIntosh Implant gun
US4356826A (en) * 1979-05-09 1982-11-02 Olympus Optical Co., Ltd. Stabbing apparatus for diagnosis of living body
US4449529A (en) * 1981-11-18 1984-05-22 Becton Dickinson And Company Automatic retractable lancet assembly
US4535773A (en) * 1982-03-26 1985-08-20 Inbae Yoon Safety puncturing instrument and method
US4462405A (en) * 1982-09-27 1984-07-31 Ehrlich Joseph C Blood letting apparatus
US4518384A (en) * 1983-06-17 1985-05-21 Survival Technology, Inc. Multiple medicament cartridge clip and medicament discharging device therefor
US4750489A (en) * 1985-08-29 1988-06-14 Coopervision, Inc. Radial keratotomy knife and system using same
US4823806A (en) * 1985-11-18 1989-04-25 Serge Bajada Apparatus for testing the sensory system on humans or animals
US4794926A (en) * 1986-11-24 1989-01-03 Invictus, Inc. Lancet cartridge
US5320808A (en) * 1988-08-02 1994-06-14 Abbott Laboratories Reaction cartridge and carousel for biological sample analyzer
US5047044A (en) * 1988-10-12 1991-09-10 Thorne, Smith, Astill Technologies, Inc. Medical droplet whole blood and like monitoring
US5145565A (en) * 1989-05-01 1992-09-08 Spacelabs, Inc. Contamination-free method and apparatus for measuring body fluid chemical parameters
US5415169A (en) * 1989-11-21 1995-05-16 Fischer Imaging Corporation Motorized mammographic biopsy apparatus
US5097810A (en) * 1990-04-06 1992-03-24 Henry Fishman Allergy testing apparatus and method
US5152775A (en) * 1990-10-04 1992-10-06 Norbert Ruppert Automatic lancet device and method of using the same
US5188118A (en) * 1990-11-07 1993-02-23 Terwilliger Richard A Automatic biopsy instrument with independently actuated stylet and cannula
US5189751A (en) * 1991-03-21 1993-03-02 Gemtech, Inc. Vibrating toothbrush using a magnetic driver
US5222504A (en) * 1992-02-11 1993-06-29 Solomon Charles L Disposable neurological pinwheel
US5529074A (en) * 1993-02-26 1996-06-25 Greenfield; Jon B. Uniform pressure diagnostic pinwheel
US5720924A (en) * 1993-04-23 1998-02-24 Boehringer Mannheim Gmbh Storage system for test elements
US5863800A (en) * 1993-04-23 1999-01-26 Boehringer Mannheim Gmbh Storage system for test elements
US5885211A (en) * 1993-11-15 1999-03-23 Spectrix, Inc. Microporation of human skin for monitoring the concentration of an analyte
US5855801A (en) * 1994-06-06 1999-01-05 Lin; Liwei IC-processed microneedles
US5514152A (en) * 1994-08-16 1996-05-07 Specialized Health Products, Inc. Multiple segment encapsulated medical lancing device
US5630986A (en) * 1995-01-13 1997-05-20 Bayer Corporation Dispensing instrument for fluid monitoring sensors
US5738244A (en) * 1995-01-13 1998-04-14 Bayer Corporation Dispensing instrument for fluid monitoring sensors
US5575403A (en) * 1995-01-13 1996-11-19 Bayer Corporation Dispensing instrument for fluid monitoring sensors
US5788651A (en) * 1995-01-26 1998-08-04 Weilandt; Anders Instrument and apparatus for biopsy
US5632410A (en) * 1995-04-17 1997-05-27 Bayer Corporation Means of handling multiple sensors in a glucose monitoring instrument system
US5823973A (en) * 1995-09-08 1998-10-20 Integ, Inc. Needle assembly for fluid sampler
US6203504B1 (en) * 1995-09-08 2001-03-20 Integ, Inc. Enhanced interstitial fluid collection
US6210421B1 (en) * 1996-02-06 2001-04-03 Roche Diagnostics Gmbh Cutting device for skin for obtaining small blood samples in almost pain-free manner
US5916229A (en) * 1996-02-07 1999-06-29 Evans; Donald Rotating needle biopsy device and method
US5801057A (en) * 1996-03-22 1998-09-01 Smart; Wilson H. Microsampling device and method of construction
US5857983A (en) * 1996-05-17 1999-01-12 Mercury Diagnostics, Inc. Methods and apparatus for sampling body fluid
US6183489B1 (en) * 1996-05-17 2001-02-06 Amira Medical Disposable element for use in a body fluid sampling device
US20020002344A1 (en) * 1996-05-17 2002-01-03 Douglas Joel S. Methods and apparatus for sampling and analyzing body fluid
US5810199A (en) * 1996-06-10 1998-09-22 Bayer Corporation Dispensing instrument for fluid monitoring sensor
US5758643A (en) * 1996-07-29 1998-06-02 Via Medical Corporation Method and apparatus for monitoring blood chemistry
US5880829A (en) * 1996-09-02 1999-03-09 Nokia Mobile Phones Limited Apparatus for taking and analysing liquid samples, such as blood samples
US6136013A (en) * 1996-09-18 2000-10-24 Owen Mumford Limited Lancet device
US5776157A (en) * 1996-10-02 1998-07-07 Specialized Health Products, Inc. Lancet apparatus and methods
US5714390A (en) * 1996-10-15 1998-02-03 Bio-Tech Imaging, Inc. Cartridge test system for the collection and testing of blood in a single step
US20010031931A1 (en) * 1996-12-06 2001-10-18 Cunningham David D. Method and apparatus for obtaining blood for diagnostic tests
US6283926B1 (en) * 1996-12-06 2001-09-04 Abbott Laboratories Method and apparatus for obtaining blood for diagnostic tests
US6027459A (en) * 1996-12-06 2000-02-22 Abbott Laboratories Method and apparatus for obtaining blood for diagnostic tests
US6093156A (en) * 1996-12-06 2000-07-25 Abbott Laboratories Method and apparatus for obtaining blood for diagnostic tests
US6306104B1 (en) * 1996-12-06 2001-10-23 Abbott Laboratories Method and apparatus for obtaining blood for diagnostic tests
US5830219A (en) * 1997-02-24 1998-11-03 Trex Medical Corporation Apparatus for holding and driving a surgical cutting device using stereotactic mammography guidance
US5968063A (en) * 1997-05-14 1999-10-19 Jennifer Chu Intramuscular stimulation therapy facilitating device and method
US5938679A (en) * 1997-10-14 1999-08-17 Hewlett-Packard Company Apparatus and method for minimally invasive blood sampling
US6117630A (en) * 1997-10-30 2000-09-12 Motorola, Inc. Molecular detection apparatus and method
US6379317B1 (en) * 1997-11-28 2002-04-30 Hans Kintzig Analytical measuring device with lancing device
US6071294A (en) * 1997-12-04 2000-06-06 Agilent Technologies, Inc. Lancet cartridge for sampling blood
US5971941A (en) * 1997-12-04 1999-10-26 Hewlett-Packard Company Integrated system and method for sampling blood and analysis
US6036924A (en) * 1997-12-04 2000-03-14 Hewlett-Packard Company Cassette of lancet cartridges for sampling blood
US6472220B1 (en) * 1997-12-04 2002-10-29 Agilent Technologies, Inc. Method of using cassette of lancet cartridges for sampling blood
US6261245B1 (en) * 1998-01-22 2001-07-17 Terumo Kabushiki Kaisha Body-fluid inspection device
US6193673B1 (en) * 1998-02-20 2001-02-27 United States Surgical Corporation Biopsy instrument driver apparatus
US6171325B1 (en) * 1998-03-30 2001-01-09 Ganapati R. Mauze Apparatus and method for incising
US6391005B1 (en) * 1998-03-30 2002-05-21 Agilent Technologies, Inc. Apparatus and method for penetration with shaft having a sensor for sensing penetration depth
US6139562A (en) * 1998-03-30 2000-10-31 Agilent Technologies, Inc. Apparatus and method for incising
US6176865B1 (en) * 1998-03-30 2001-01-23 Agilent Technologies, Inc. Apparatus and method for incising
US5951582A (en) * 1998-05-22 1999-09-14 Specialized Health Products, Inc. Lancet apparatus and methods
US6461496B1 (en) * 1998-10-08 2002-10-08 Therasense, Inc. Small volume in vitro analyte sensor with diffusible or non-leachable redox mediator
US6285454B1 (en) * 1998-12-07 2001-09-04 Mercury Diagnostics, Inc. Optics alignment and calibration system
US6210420B1 (en) * 1999-01-19 2001-04-03 Agilent Technologies, Inc. Apparatus and method for efficient blood sampling with lancet
US6306152B1 (en) * 1999-03-08 2001-10-23 Agilent Technologies, Inc. Lancet device with skin movement control and ballistic preload
US6132449A (en) * 1999-03-08 2000-10-17 Agilent Technologies, Inc. Extraction and transportation of blood for analysis
US6364890B1 (en) * 1999-03-08 2002-04-02 Agilent Technologies, Inc. Extraction and transportation of blood for analysis
US6402701B1 (en) * 1999-03-23 2002-06-11 Fna Concepts, Llc Biopsy needle instrument
US6120462A (en) * 1999-03-31 2000-09-19 Ethicon Endo-Surgery, Inc. Control method for an automated surgical biopsy device
US6231531B1 (en) * 1999-04-09 2001-05-15 Agilent Technologies, Inc. Apparatus and method for minimizing pain perception
US6506575B1 (en) * 1999-09-24 2003-01-14 Roche Diagnostics Gmbh Analytical element and method for the determination of an analyte in a liquid
US6409740B1 (en) * 1999-10-09 2002-06-25 Roche Diagnostics Gmbh Blood lancet system for withdrawing blood for diagnostic purposes
US6503210B1 (en) * 1999-10-13 2003-01-07 Arkray, Inc. Blood-collection position indicator
US6228100B1 (en) * 1999-10-25 2001-05-08 Steven Schraga Multi-use lancet device
US6364889B1 (en) * 1999-11-17 2002-04-02 Bayer Corporation Electronic lancing device
US6375627B1 (en) * 2000-03-02 2002-04-23 Agilent Technologies, Inc. Physiological fluid extraction with rapid analysis
US6379969B1 (en) * 2000-03-02 2002-04-30 Agilent Technologies, Inc. Optical sensor for sensing multiple analytes
US6402704B1 (en) * 2000-04-18 2002-06-11 Sonexxus Incorporated Prothrombin test apparatus for home use
US20020004196A1 (en) * 2000-07-10 2002-01-10 Bayer Corporation Thin lance and test sensor having same
US20020052618A1 (en) * 2000-10-31 2002-05-02 Hans-Peter Haar Analytical device with integrated lancet
US20020082543A1 (en) * 2000-12-14 2002-06-27 Jung-Hwan Park Microneedle devices and production thereof
US20020103499A1 (en) * 2001-01-22 2002-08-01 Perez Edward P. Lancet device having capillary action
US20030199902A1 (en) * 2002-04-19 2003-10-23 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue

Cited By (140)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7666149B2 (en) 1997-12-04 2010-02-23 Peliken Technologies, Inc. Cassette of lancet cartridges for sampling blood
US8439872B2 (en) 1998-03-30 2013-05-14 Sanofi-Aventis Deutschland Gmbh Apparatus and method for penetration with shaft having a sensor for sensing penetration depth
US7780631B2 (en) 1998-03-30 2010-08-24 Pelikan Technologies, Inc. Apparatus and method for penetration with shaft having a sensor for sensing penetration depth
US8641644B2 (en) 2000-11-21 2014-02-04 Sanofi-Aventis Deutschland Gmbh Blood testing apparatus having a rotatable cartridge with multiple lancing elements and testing means
US7909775B2 (en) 2001-06-12 2011-03-22 Pelikan Technologies, Inc. Method and apparatus for lancet launching device integrated onto a blood-sampling cartridge
US8622930B2 (en) 2001-06-12 2014-01-07 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US9802007B2 (en) 2001-06-12 2017-10-31 Sanofi-Aventis Deutschland Gmbh Methods and apparatus for lancet actuation
US9694144B2 (en) 2001-06-12 2017-07-04 Sanofi-Aventis Deutschland Gmbh Sampling module device and method
US8382683B2 (en) 2001-06-12 2013-02-26 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US8641643B2 (en) 2001-06-12 2014-02-04 Sanofi-Aventis Deutschland Gmbh Sampling module device and method
US8360991B2 (en) 2001-06-12 2013-01-29 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US7682318B2 (en) 2001-06-12 2010-03-23 Pelikan Technologies, Inc. Blood sampling apparatus and method
US7699791B2 (en) 2001-06-12 2010-04-20 Pelikan Technologies, Inc. Method and apparatus for improving success rate of blood yield from a fingerstick
US8343075B2 (en) 2001-06-12 2013-01-01 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US9427532B2 (en) 2001-06-12 2016-08-30 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US8216154B2 (en) 2001-06-12 2012-07-10 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US8211037B2 (en) 2001-06-12 2012-07-03 Pelikan Technologies, Inc. Tissue penetration device
US8206319B2 (en) 2001-06-12 2012-06-26 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US7749174B2 (en) 2001-06-12 2010-07-06 Pelikan Technologies, Inc. Method and apparatus for lancet launching device intergrated onto a blood-sampling cartridge
US8679033B2 (en) 2001-06-12 2014-03-25 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US8337421B2 (en) 2001-06-12 2012-12-25 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US8206317B2 (en) 2001-06-12 2012-06-26 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US7841992B2 (en) 2001-06-12 2010-11-30 Pelikan Technologies, Inc. Tissue penetration device
US7850622B2 (en) 2001-06-12 2010-12-14 Pelikan Technologies, Inc. Tissue penetration device
US8845550B2 (en) 2001-06-12 2014-09-30 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US8282577B2 (en) 2001-06-12 2012-10-09 Sanofi-Aventis Deutschland Gmbh Method and apparatus for lancet launching device integrated onto a blood-sampling cartridge
US8162853B2 (en) 2001-06-12 2012-04-24 Pelikan Technologies, Inc. Tissue penetration device
US8721671B2 (en) 2001-06-12 2014-05-13 Sanofi-Aventis Deutschland Gmbh Electric lancet actuator
US8016774B2 (en) 2001-06-12 2011-09-13 Pelikan Technologies, Inc. Tissue penetration device
US7988645B2 (en) 2001-06-12 2011-08-02 Pelikan Technologies, Inc. Self optimizing lancing device with adaptation means to temporal variations in cutaneous properties
US7981055B2 (en) 2001-06-12 2011-07-19 Pelikan Technologies, Inc. Tissue penetration device
US8123700B2 (en) 2001-06-12 2012-02-28 Pelikan Technologies, Inc. Method and apparatus for lancet launching device integrated onto a blood-sampling cartridge
US9560993B2 (en) 2001-11-21 2017-02-07 Sanofi-Aventis Deutschland Gmbh Blood testing apparatus having a rotatable cartridge with multiple lancing elements and testing means
US7959582B2 (en) 2002-04-19 2011-06-14 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US9089294B2 (en) 2002-04-19 2015-07-28 Sanofi-Aventis Deutschland Gmbh Analyte measurement device with a single shot actuator
US7909777B2 (en) 2002-04-19 2011-03-22 Pelikan Technologies, Inc Method and apparatus for penetrating tissue
US7914465B2 (en) 2002-04-19 2011-03-29 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7938787B2 (en) 2002-04-19 2011-05-10 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7909778B2 (en) 2002-04-19 2011-03-22 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7976476B2 (en) 2002-04-19 2011-07-12 Pelikan Technologies, Inc. Device and method for variable speed lancet
US7901362B2 (en) 2002-04-19 2011-03-08 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7981056B2 (en) 2002-04-19 2011-07-19 Pelikan Technologies, Inc. Methods and apparatus for lancet actuation
US7901365B2 (en) 2002-04-19 2011-03-08 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7892185B2 (en) 2002-04-19 2011-02-22 Pelikan Technologies, Inc. Method and apparatus for body fluid sampling and analyte sensing
US7988644B2 (en) 2002-04-19 2011-08-02 Pelikan Technologies, Inc. Method and apparatus for a multi-use body fluid sampling device with sterility barrier release
US8007446B2 (en) 2002-04-19 2011-08-30 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7892183B2 (en) 2002-04-19 2011-02-22 Pelikan Technologies, Inc. Method and apparatus for body fluid sampling and analyte sensing
US8808201B2 (en) 2002-04-19 2014-08-19 Sanofi-Aventis Deutschland Gmbh Methods and apparatus for penetrating tissue
US8062231B2 (en) 2002-04-19 2011-11-22 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8079960B2 (en) 2002-04-19 2011-12-20 Pelikan Technologies, Inc. Methods and apparatus for lancet actuation
US7874994B2 (en) 2002-04-19 2011-01-25 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8157748B2 (en) 2002-04-19 2012-04-17 Pelikan Technologies, Inc. Methods and apparatus for lancet actuation
US7875047B2 (en) 2002-04-19 2011-01-25 Pelikan Technologies, Inc. Method and apparatus for a multi-use body fluid sampling device with sterility barrier release
US7862520B2 (en) 2002-04-19 2011-01-04 Pelikan Technologies, Inc. Body fluid sampling module with a continuous compression tissue interface surface
US8197421B2 (en) 2002-04-19 2012-06-12 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8202231B2 (en) 2002-04-19 2012-06-19 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US7833171B2 (en) 2002-04-19 2010-11-16 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7909774B2 (en) 2002-04-19 2011-03-22 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7731729B2 (en) 2002-04-19 2010-06-08 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7717863B2 (en) 2002-04-19 2010-05-18 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8221334B2 (en) 2002-04-19 2012-07-17 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US8235915B2 (en) 2002-04-19 2012-08-07 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US9498160B2 (en) 2002-04-19 2016-11-22 Sanofi-Aventis Deutschland Gmbh Method for penetrating tissue
US7713214B2 (en) 2002-04-19 2010-05-11 Pelikan Technologies, Inc. Method and apparatus for a multi-use body fluid sampling device with optical analyte sensing
US8267870B2 (en) 2002-04-19 2012-09-18 Sanofi-Aventis Deutschland Gmbh Method and apparatus for body fluid sampling with hybrid actuation
US8845549B2 (en) 2002-04-19 2014-09-30 Sanofi-Aventis Deutschland Gmbh Method for penetrating tissue
US8784335B2 (en) 2002-04-19 2014-07-22 Sanofi-Aventis Deutschland Gmbh Body fluid sampling device with a capacitive sensor
US9339612B2 (en) 2002-04-19 2016-05-17 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US8333710B2 (en) 2002-04-19 2012-12-18 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US8337419B2 (en) 2002-04-19 2012-12-25 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US8197423B2 (en) 2002-04-19 2012-06-12 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8337420B2 (en) 2002-04-19 2012-12-25 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US7708701B2 (en) 2002-04-19 2010-05-04 Pelikan Technologies, Inc. Method and apparatus for a multi-use body fluid sampling device
US7674232B2 (en) 2002-04-19 2010-03-09 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8360992B2 (en) 2002-04-19 2013-01-29 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US8366637B2 (en) 2002-04-19 2013-02-05 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US8372016B2 (en) 2002-04-19 2013-02-12 Sanofi-Aventis Deutschland Gmbh Method and apparatus for body fluid sampling and analyte sensing
US7648468B2 (en) 2002-04-19 2010-01-19 Pelikon Technologies, Inc. Method and apparatus for penetrating tissue
US8382682B2 (en) 2002-04-19 2013-02-26 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US8388551B2 (en) 2002-04-19 2013-03-05 Sanofi-Aventis Deutschland Gmbh Method and apparatus for multi-use body fluid sampling device with sterility barrier release
US8403864B2 (en) 2002-04-19 2013-03-26 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US8414503B2 (en) 2002-04-19 2013-04-09 Sanofi-Aventis Deutschland Gmbh Methods and apparatus for lancet actuation
US8430828B2 (en) 2002-04-19 2013-04-30 Sanofi-Aventis Deutschland Gmbh Method and apparatus for a multi-use body fluid sampling device with sterility barrier release
US8435190B2 (en) 2002-04-19 2013-05-07 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US9724021B2 (en) 2002-04-19 2017-08-08 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US8491500B2 (en) 2002-04-19 2013-07-23 Sanofi-Aventis Deutschland Gmbh Methods and apparatus for lancet actuation
US8496601B2 (en) 2002-04-19 2013-07-30 Sanofi-Aventis Deutschland Gmbh Methods and apparatus for lancet actuation
US8556829B2 (en) 2002-04-19 2013-10-15 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US8562545B2 (en) 2002-04-19 2013-10-22 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US9314194B2 (en) 2002-04-19 2016-04-19 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US8579831B2 (en) 2002-04-19 2013-11-12 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US9795334B2 (en) 2002-04-19 2017-10-24 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US8636673B2 (en) 2002-04-19 2014-01-28 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US9839386B2 (en) 2002-04-19 2017-12-12 Sanofi-Aventis Deustschland Gmbh Body fluid sampling device with capacitive sensor
US9907502B2 (en) 2002-04-19 2018-03-06 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US9248267B2 (en) 2002-04-19 2016-02-02 Sanofi-Aventis Deustchland Gmbh Tissue penetration device
US9226699B2 (en) 2002-04-19 2016-01-05 Sanofi-Aventis Deutschland Gmbh Body fluid sampling module with a continuous compression tissue interface surface
US9089678B2 (en) 2002-04-19 2015-07-28 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US8690796B2 (en) 2002-04-19 2014-04-08 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US9186468B2 (en) 2002-04-19 2015-11-17 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US8905945B2 (en) 2002-04-19 2014-12-09 Dominique M. Freeman Method and apparatus for penetrating tissue
US9072842B2 (en) 2002-04-19 2015-07-07 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US20110237979A1 (en) * 2002-12-27 2011-09-29 Roche Diagnostics Operations, Inc. Precision depth control lancing tip
US20040127818A1 (en) * 2002-12-27 2004-07-01 Roe Steven N. Precision depth control lancing tip
US9554741B2 (en) 2002-12-27 2017-01-31 Roche Diabetes Care, Inc. Precision depth control lancing tip
US20040236251A1 (en) * 2002-12-27 2004-11-25 Roe Steven N. Precision depth control lancing tip
US7976477B2 (en) 2002-12-27 2011-07-12 Roche Diagnostics Operations, Inc. Precision depth control lancing tip
US7736322B2 (en) * 2002-12-27 2010-06-15 Roche Diagnostics Operations, Inc. Precision depth control lancing tip
US8574895B2 (en) 2002-12-30 2013-11-05 Sanofi-Aventis Deutschland Gmbh Method and apparatus using optical techniques to measure analyte levels
US9034639B2 (en) 2002-12-30 2015-05-19 Sanofi-Aventis Deutschland Gmbh Method and apparatus using optical techniques to measure analyte levels
US8262614B2 (en) 2003-05-30 2012-09-11 Pelikan Technologies, Inc. Method and apparatus for fluid injection
US8251921B2 (en) 2003-06-06 2012-08-28 Sanofi-Aventis Deutschland Gmbh Method and apparatus for body fluid sampling and analyte sensing
US7850621B2 (en) 2003-06-06 2010-12-14 Pelikan Technologies, Inc. Method and apparatus for body fluid sampling and analyte sensing
US9144401B2 (en) 2003-06-11 2015-09-29 Sanofi-Aventis Deutschland Gmbh Low pain penetrating member
US8282576B2 (en) 2003-09-29 2012-10-09 Sanofi-Aventis Deutschland Gmbh Method and apparatus for an improved sample capture device
US8945910B2 (en) 2003-09-29 2015-02-03 Sanofi-Aventis Deutschland Gmbh Method and apparatus for an improved sample capture device
US9351680B2 (en) 2003-10-14 2016-05-31 Sanofi-Aventis Deutschland Gmbh Method and apparatus for a variable user interface
US8668656B2 (en) 2003-12-31 2014-03-11 Sanofi-Aventis Deutschland Gmbh Method and apparatus for improving fluidic flow and sample capture
US8296918B2 (en) 2003-12-31 2012-10-30 Sanofi-Aventis Deutschland Gmbh Method of manufacturing a fluid sampling device with improved analyte detecting member configuration
US9561000B2 (en) 2003-12-31 2017-02-07 Sanofi-Aventis Deutschland Gmbh Method and apparatus for improving fluidic flow and sample capture
US9261476B2 (en) 2004-05-20 2016-02-16 Sanofi Sa Printable hydrogel for biosensors
US8828203B2 (en) 2004-05-20 2014-09-09 Sanofi-Aventis Deutschland Gmbh Printable hydrogels for biosensors
US9820684B2 (en) 2004-06-03 2017-11-21 Sanofi-Aventis Deutschland Gmbh Method and apparatus for a fluid sampling device
US9775553B2 (en) 2004-06-03 2017-10-03 Sanofi-Aventis Deutschland Gmbh Method and apparatus for a fluid sampling device
US20050277849A1 (en) * 2004-06-10 2005-12-15 Daniel Wong Vacuum sample expression device
US20090131828A1 (en) * 2004-06-10 2009-05-21 Daniel Wong Vacuum sample expression device
US8652831B2 (en) 2004-12-30 2014-02-18 Sanofi-Aventis Deutschland Gmbh Method and apparatus for analyte measurement test time
US7822454B1 (en) 2005-01-03 2010-10-26 Pelikan Technologies, Inc. Fluid sampling device with improved analyte detecting member configuration
WO2008021706A2 (en) * 2006-08-09 2008-02-21 Avant Medical Corp. Injection system with hidden needles
US20080039795A1 (en) * 2006-08-09 2008-02-14 Slate John B Injection System With Hidden Needles
US7618396B2 (en) * 2006-08-09 2009-11-17 Avant Medical Corp. Injection system with hidden needles
WO2008021706A3 (en) * 2006-08-09 2008-11-06 Avant Medical Corp Injection system with hidden needles
US8702624B2 (en) 2006-09-29 2014-04-22 Sanofi-Aventis Deutschland Gmbh Analyte measurement device with a single shot actuator
US9386944B2 (en) 2008-04-11 2016-07-12 Sanofi-Aventis Deutschland Gmbh Method and apparatus for analyte detecting device
US9937298B2 (en) 2008-12-16 2018-04-10 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US9375169B2 (en) 2009-01-30 2016-06-28 Sanofi-Aventis Deutschland Gmbh Cam drive for managing disposable penetrating member actions with a single motor and motor and control system
US8965476B2 (en) 2010-04-16 2015-02-24 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US9795747B2 (en) 2010-06-02 2017-10-24 Sanofi-Aventis Deutschland Gmbh Methods and apparatus for lancet actuation
US20140296825A1 (en) * 2010-12-02 2014-10-02 Debiotech S.A. Method and device for inserting needles
US9402984B2 (en) * 2010-12-02 2016-08-02 Debiotech S.A. Method and device for inserting needles

Also Published As

Publication number Publication date Type
CA2461370A1 (en) 2003-05-15 application
WO2003039369A1 (en) 2003-05-15 application
EP1432353A1 (en) 2004-06-30 application
US20070060845A1 (en) 2007-03-15 application
US7758516B2 (en) 2010-07-20 grant
JP4320255B2 (en) 2009-08-26 grant
US20040059256A1 (en) 2004-03-25 application
JP2005507733A (en) 2005-03-24 application

Similar Documents

Publication Publication Date Title
US5871494A (en) Reproducible lancing for sampling blood
US5913833A (en) Method and apparatus for obtaining biological fluids
US7288102B2 (en) Lancing device with decoupled lancet
US7288073B2 (en) System for withdrawing small amounts of body fluid
EP1643908B1 (en) System for withdrawing body fluid
US6837858B2 (en) Method and apparatus for obtaining blood for diagnostic tests
US6231531B1 (en) Apparatus and method for minimizing pain perception
US6645219B2 (en) Rotatable penetration depth adjusting arrangement
US20070106178A1 (en) Dual blade lancing test strip
US20040015064A1 (en) Blood sampling apparatus
US4919146A (en) Biopsy device
US20040267229A1 (en) In-situ adapter for a testing device
US6503209B2 (en) Non-invasive focused energy blood withdrawal and analysis system
US7244266B2 (en) System for pain-reduced withdrawal of blood
US20080208079A1 (en) Method for creating a puncture wound and handheld apparatus suitable therefor
US6409679B2 (en) Apparatus and method for collecting bodily fluid
US6660018B2 (en) Multiple lancet device
US20120010529A1 (en) Sampling devices and methods involving relatively little pain
EP0671146A1 (en) Simple blood sampling device
US20080058848A1 (en) Endcap for a Sampling Device
US20070049959A1 (en) Device for sampling blood
US6749618B2 (en) Lancing device and method of sample collection
US20060287664A1 (en) Endcap for a fluid sampling device
US20040236251A1 (en) Precision depth control lancing tip
US6283926B1 (en) Method and apparatus for obtaining blood for diagnostic tests

Legal Events

Date Code Title Description
AS Assignment

Owner name: AMIRA MEDICAL, INDIANA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:PEREZ, EDWARD;REEL/FRAME:013482/0852

Effective date: 20021018

AS Assignment

Owner name: ROCHE DIAGNOSTICS OPERATIONS, INC., INDIANA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ROCHE DIAGNOSTICS CORPORATION;REEL/FRAME:015215/0061

Effective date: 20040101

Owner name: ROCHE DIAGNOSTICS OPERATIONS, INC.,INDIANA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ROCHE DIAGNOSTICS CORPORATION;REEL/FRAME:015215/0061

Effective date: 20040101

AS Assignment

Owner name: ROCHE DIAGNOSTICS OPERATIONS, INC., INDIANA

Free format text: CHANGE OF NAME;ASSIGNOR:AMIRA MEDICAL;REEL/FRAME:015102/0740

Effective date: 20031010

AS Assignment

Owner name: ROCHE DIABETES CARE, INC., INDIANA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ROCHE DIAGNOSTICS OPERATIONS, INC.;REEL/FRAME:036008/0670

Effective date: 20150302