US20040127818A1 - Precision depth control lancing tip - Google Patents
Precision depth control lancing tip Download PDFInfo
- Publication number
- US20040127818A1 US20040127818A1 US10/330,724 US33072402A US2004127818A1 US 20040127818 A1 US20040127818 A1 US 20040127818A1 US 33072402 A US33072402 A US 33072402A US 2004127818 A1 US2004127818 A1 US 2004127818A1
- Authority
- US
- United States
- Prior art keywords
- skin
- opening
- expression
- incision
- depth
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/15—Devices for taking samples of blood
- A61B5/150007—Details
- A61B5/150374—Details of piercing elements or protective means for preventing accidental injuries by such piercing elements
- A61B5/150534—Design of protective means for piercing elements for preventing accidental needle sticks, e.g. shields, caps, protectors, axially extensible sleeves, pivotable protective sleeves
- A61B5/150694—Procedure for removing protection means at the time of piercing
- A61B5/150717—Procedure for removing protection means at the time of piercing manually removed
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/15—Devices for taking samples of blood
- A61B5/150007—Details
- A61B5/150015—Source of blood
- A61B5/150022—Source of blood for capillary blood or interstitial fluid
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/15—Devices for taking samples of blood
- A61B5/150007—Details
- A61B5/150053—Details for enhanced collection of blood or interstitial fluid at the sample site, e.g. by applying compression, heat, vibration, ultrasound, suction or vacuum to tissue; for reduction of pain or discomfort; Skin piercing elements, e.g. blades, needles, lancets or canulas, with adjustable piercing speed
- A61B5/150061—Means for enhancing collection
- A61B5/150068—Means for enhancing collection by tissue compression, e.g. with specially designed surface of device contacting the skin area to be pierced
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/15—Devices for taking samples of blood
- A61B5/150007—Details
- A61B5/150175—Adjustment of penetration depth
- A61B5/15019—Depth adjustment mechanism using movable stops located inside the piercing device housing and limiting the travel of the drive mechanism
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/15—Devices for taking samples of blood
- A61B5/150007—Details
- A61B5/150358—Strips for collecting blood, e.g. absorbent
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/15—Devices for taking samples of blood
- A61B5/150007—Details
- A61B5/150374—Details of piercing elements or protective means for preventing accidental injuries by such piercing elements
- A61B5/150381—Design of piercing elements
- A61B5/150412—Pointed piercing elements, e.g. needles, lancets for piercing the skin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/15—Devices for taking samples of blood
- A61B5/150007—Details
- A61B5/150374—Details of piercing elements or protective means for preventing accidental injuries by such piercing elements
- A61B5/150381—Design of piercing elements
- A61B5/150442—Blade-like piercing elements, e.g. blades, cutters, knives, for cutting the skin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/15—Devices for taking samples of blood
- A61B5/150007—Details
- A61B5/150374—Details of piercing elements or protective means for preventing accidental injuries by such piercing elements
- A61B5/150381—Design of piercing elements
- A61B5/150503—Single-ended needles
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/15—Devices for taking samples of blood
- A61B5/150007—Details
- A61B5/150374—Details of piercing elements or protective means for preventing accidental injuries by such piercing elements
- A61B5/150534—Design of protective means for piercing elements for preventing accidental needle sticks, e.g. shields, caps, protectors, axially extensible sleeves, pivotable protective sleeves
- A61B5/150541—Breakable protectors, e.g. caps, shields or sleeves, i.e. protectors separated destructively, e.g. by breaking a connecting area
- A61B5/150549—Protectors removed by rotational movement, e.g. torsion or screwing
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/15—Devices for taking samples of blood
- A61B5/150007—Details
- A61B5/150374—Details of piercing elements or protective means for preventing accidental injuries by such piercing elements
- A61B5/150534—Design of protective means for piercing elements for preventing accidental needle sticks, e.g. shields, caps, protectors, axially extensible sleeves, pivotable protective sleeves
- A61B5/15058—Joining techniques used for protective means
- A61B5/150618—Integrally moulded protectors, e.g. protectors simultaneously moulded together with a further component, e.g. a hub, of the piercing element
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/15—Devices for taking samples of blood
- A61B5/151—Devices specially adapted for taking samples of capillary blood, e.g. by lancets, needles or blades
- A61B5/15186—Devices loaded with a single lancet, i.e. a single lancet with or without a casing is loaded into a reusable drive device and then discarded after use; drive devices reloadable for multiple use
- A61B5/15188—Constructional features of reusable driving devices
- A61B5/1519—Constructional features of reusable driving devices comprising driving means, e.g. a spring, for propelling the piercing unit
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/15—Devices for taking samples of blood
- A61B5/151—Devices specially adapted for taking samples of capillary blood, e.g. by lancets, needles or blades
- A61B5/15186—Devices loaded with a single lancet, i.e. a single lancet with or without a casing is loaded into a reusable drive device and then discarded after use; drive devices reloadable for multiple use
- A61B5/15188—Constructional features of reusable driving devices
- A61B5/15192—Constructional features of reusable driving devices comprising driving means, e.g. a spring, for retracting the lancet unit into the driving device housing
- A61B5/15194—Constructional features of reusable driving devices comprising driving means, e.g. a spring, for retracting the lancet unit into the driving device housing fully automatically retracted, i.e. the retraction does not require a deliberate action by the user, e.g. by terminating the contact with the patient's skin
Definitions
- the present invention generally relates to bodily fluid sampling devices and more specifically, but not exclusively, concerns a bodily fluid sampling device configured to form an incision having a precise depth and express fluid from both finger and alternate site testing (AST) locations.
- AST alternate site testing
- the testing of bodily fluids basically involves the steps of obtaining the fluid sample, transferring the sample to a test device, conducting a test on the fluid sample, and displaying the results. These steps are generally performed by a plurality of separate instruments or devices.
- One method of acquiring the fluid sample involves inserting a hollow needle or syringe into a vein or artery in order to withdraw a blood sample.
- direct vascular blood sampling can have several limitations, including pain, infection, and hematoma and other bleeding complications.
- direct vascular blood sampling is not suitable for repeating on a routine basis, can be extremely difficult and is not advised for patients to perform on themselves.
- the other common technique for collecting a bodily fluid sample is to form an incision in the skin to bring the fluid to the skin surface.
- a lancet, knife or other cutting instrument is used to form the incision in the skin.
- the resulting blood or interstitial fluid specimen is then collected in a small tube or other container, or is placed directly in contact with a test strip.
- the fingertip is frequently used as the fluid source because it is highly vascularized and therefore produces a good quantity of blood.
- the fingertip also has a large concentration of nerve endings, and lancing the fingertip can therefore be painful.
- Alternate sampling sites such as the palm of the hand, forearm, earlobe and the like, may be useful for sampling, and are less painful. However, they also produce lesser amounts of blood. These alternate sites therefore are generally appropriate for use only for test systems requiring relatively small amounts of fluid, or if steps are taken to facilitate the expression of the bodily fluid from the incision site.
- a representative commercial product that promotes the expression of bodily fluid from an incision is the Amira AtLast blood glucose system.
- sampling devices may include, for example, systems in which a tube or test strip is either located adjacent the incision site prior to forming the incision, or is moved to the incision site shortly after the incision has been formed.
- a sampling tube may acquire the fluid by suction or by capillary action.
- sampling systems may include, for example, the systems shown in U.S. Pat. No. 6,048,352, issued to Douglas et al. on Apr. 11, 2000; U.S. Pat. No. 6,099,484, issued to Douglas et al. on Aug.
- the bodily fluid sample may be analyzed for a variety of properties or components, as is well known in the art. For example, such analysis may be directed to hematocrit, blood glucose, coagulation, lead, iron, etc.
- Testing systems include such means as optical (e.g., reflectance, absorption, fluorescence, Raman, etc.), electrochemical, and magnetic means for analyzing the sampled fluid. Examples of such test systems include those in U.S. Pat. No. 5,824,491, issued to Priest et al. on Oct. 20, 1998; U.S. Pat. No. 5,962,215, issued to Douglas et al. on Oct. 5, 1999; and U.S. Pat. No. 5,776,719, issued to Douglas et al. on Jul. 7, 1998.
- a test system takes advantage of a reaction between the bodily fluid to be tested and a reagent present in the test system.
- an optical test strip will generally rely upon a color change, i.e., a change in the wavelength absorbed or reflected by dye formed by the reagent system used. See, e.g., U.S. Pat. Nos. 3,802,842; 4,061,468; and U.S. Pat. No. 4,490,465.
- a common medical test is the measurement of blood glucose level.
- the glucose level can be determined directly by analysis of the blood, or indirectly by analysis of other fluids such as interstitial fluid. Diabetics are generally instructed to measure their blood glucose level several times a day, depending on the nature and severity of their diabetes. Based upon the observed pattern in the measured glucose levels, the patient and physician determine the appropriate level of insulin to be administered, also taking into account such issues as diet, exercise and other factors.
- test systems In testing for the presence of an analyte such as glucose in a bodily fluid, test systems are commonly used which take advantage of an oxidation/reduction reaction which occurs using an oxidase/peroxidase detection chemistry.
- the test reagent is exposed to a sample of the bodily fluid for a suitable period of time, and there is a color change if the analyte (glucose) is present.
- the intensity of this change is proportional to the concentration of analyte in the sample.
- the color of the reagent is then compared to a known standard which enables one to determine the amount of analyte present in the sample.
- This determination can be made, for example, by a visual check or by an instrument, such as a reflectance spectrophotometer at a selected wavelength, or a blood glucose meter. Electrochemical and other systems are also well known for testing bodily fluids for properties on constituents.
- the fingertip is frequently used as the fluid source because it is highly vascularized and therefore produces a good quantity of blood.
- the fingertip also has a large concentration of nerve endings, and lancing the fingertip can therefore be painful.
- Alternate sampling sites such as the palm of the hand, forearm, earlobe and the like, may be useful for sampling, and are less painful. However, they also produce less blood when lanced.
- bodily fluid sampling devices are designed to express blood from either the fingertip or an alternate site, but not both.
- alternate site sampling devices need to express fluid from a large surface area surrounding the site in order to draw a sufficient amount of fluid for testing.
- fingertips are relatively small and do not need to be deeply lanced or require a large area in order to express a sufficient amount of fluid. Therefore, alternate site sampling devices usually have larger openings for expressing fluid as compared to devices designed to express fluid from fingers. If an alternate site sampling device were used to lance and express fluid from a fingertip, severe pain or serious injury to the finger may result. With the alternate site device, when an incision is being formed in the fingertip, the skin can tend to deform or bulge into the expression opening such that the lancet forms an incision with a greater depth than needed.
- One form of the present invention concerns a bodily fluid sampling device that includes an incision forming member adapted to form an incision in skin.
- An expression member defines an expression opening configured to express fluid from the incision.
- a reference member defines an aperture through which the incision forming member extends when forming the incision.
- the reference member has a reference surface received in the expression opening during formation of the incision to contact the skin and limit penetration depth of the incision forming member into the skin.
- a retraction mechanism is coupled to the reference member to retract the reference surface from the expression opening.
- FIG. 1 is a cross-sectional view of a bodily fluid sampling device according to one embodiment of the present invention.
- FIG. 2 is a cross-sectional view of the FIG. 1 device during lancing at an alternate site.
- FIG. 3 is a cross-sectional view of the FIG. 1 device expressing fluid from the alternate site.
- FIG. 4 is a cross-sectional view of the FIG. 1 device configured to lance from a fingertip site.
- FIG. 5 is a cross-sectional view of the FIG. 1 device lancing the fingertip site.
- FIG. 6 is a cross-sectional view of a bodily fluid sampling device according to according to another embodiment.
- FIG. 7 is a cross-sectional view of the FIG. 6 device configured to express fluid from an alternate site.
- FIG. 8 is an exploded view of the FIG. 6 device.
- FIG. 9 is a perspective view of the FIG. 6 device.
- FIG. 10 is a perspective view of a lancing device according to a further embodiment of the present invention.
- FIG. 11 is a cross-sectional view of the FIG. 10 device.
- FIG. 12 is a perspective view of the FIG. 10 device configured for a deep penetration depth.
- FIG. 13 is a perspective view of the FIG. 10 device configured for a shallow penetration depth.
- FIG. 14 is a cross-sectional view of a lancing device according to another embodiment.
- FIG. 15 is an exploded view of a sampling device according to a further embodiment.
- FIG. 16 is a perspective view of the FIG. 15 device.
- FIG. 17 is a perspective view of the FIG. 16 in an armed configuration.
- FIG. 18 is a perspective view of a sampling device according to another embodiment.
- FIG. 19 is a top perspective view of the FIG. 18 device in a lancing position.
- FIG. 20 is a bottom perspective view of the FIG. 18 device in a lancing position.
- FIG. 21A is a top perspective view of a sampling device according to a further embodiment.
- FIG. 21B is a bottom perspective view of the FIG. 21A device.
- FIG. 22 is a perspective view of an adjustable holder according to another embodiment holding the FIG. 21A device.
- FIG. 23 is an exploded view of a sampling device according to another embodiment.
- FIG. 24 is a perspective view of the FIG. 23 device.
- FIG. 25 is a front view of the FIG. 23 device.
- FIG. 26 is a side view of the FIG. 23 device.
- FIG. 27 is a cross-sectional view of the FIG. 23 device configured to express fluid from a fingertip.
- FIG. 28 is a cross-sectional view of the FIG. 23 device configured to express fluid from an alternate site.
- FIG. 29 a front view of a sampling device according to a further embodiment.
- FIG. 30 is a cross-sectional view of the FIG. 29 device configured to express fluid from a fingertip.
- FIG. 31 is a cross-sectional view of the FIG. 29 device configured to express fluid from an alternate site.
- Bodily fluid sampling devices are operable to form an incision with a precise depth and express fluid from both fingertip and alternate sites.
- the devices can further be configured to allow for the adjustment of the penetration depth of the lancet.
- the device includes a reference member that provides a reference surface for controlling the penetration depth of a lancet.
- the reference member is received in a large expression opening of an expression member.
- the reference member flattens the skin in the expression opening such that an incision with a precise depth can be formed.
- the reference member can be retracted from the expression opening so that the larger expression opening can be used to express a sufficient amount of bodily fluid from the alternate site.
- a spring automatically retracts the reference member after lancing, and in other forms, cam mechanisms are used to retract the reference member during expression of the fluid.
- the reference member is coupled to the lancet in order to control the penetration depth of the lancet. Further aspects of the present concern integrated sampling devices that allow test media to be attached to the lancet after sterilization so as to ensure that the test media remains properly calibrated.
- FIGS. 1 - 5 A bodily fluid sampling device 40 according to one embodiment of the present invention is illustrated in FIGS. 1 - 5 .
- the sampling device 40 includes an incision forming member 42 , a penetration depth adjuster 44 , an expression member 46 , and a reference member 48 .
- other components of the sampling device 40 that are well know in the art, such has hammers, cocking mechanisms and the like that are not important to appreciate the present invention, will not be discussed below.
- the device 40 illustrated in FIG. 1 can be back loaded into a sampling device of the type described in U.S. Pat. No. 5,964,718.
- the incision forming member 42 has a lancet 50 that is attached to a lancet body 52 .
- the lancet 50 is in the form of a needle.
- the lancet 50 can come in other forms, such as a blade.
- the incision forming member 42 in other embodiments can include multiple lancets 50 .
- the lancet body 52 has a depth stop surface 54 , which is used to control the penetration depth of the lancet 50 .
- the lancet 50 further includes a flange 56 positioned proximal to tip 58 of the lancet 52 , which is configured to cut the skin S.
- the flange 56 can be used as an auxiliary stop in order to prevent over penetration of the lancet 52 into the skin S.
- the sampling device 40 has a depth control assembly 59 that is able to adjust the penetration depth of the lancet 52 .
- the depth control assembly 58 includes adjuster 44 and reference member 48 .
- the adjuster 44 has an outer adjustment member 60 attached to an inner adjustment member 62 that interfaces with the reference member 48 .
- the outer expression member 46 defines a slot 64 through which arm 66 of the adjuster 44 connects the outer adjustment member 60 to the inner adjustment member 62 .
- the outer adjustment member 60 in the illustrated embodiment is in the form of a ring that encircles the outer expression member 46 .
- the user rotates the outer adjustment member 60 around the device 40 .
- the inner adjustment member 62 further incorporates an outwardly extending flange 68 that engages an inwardly extending flange 70 in the outer expression member 46 . As shown in FIG. 1, the inner adjustment member 62 defines an inner passageway 72 through which the lancet 50 extends. Inside passageway 72 , the inner adjustment member 62 has a stop flange 74 that is configured to engage the stop surface 54 on the incision forming member 42 .
- the inner adjustment member 62 has at least one thread 76 that engages a corresponding groove 78 formed in the reference member 48 .
- the reference member 48 can be threaded and the inner adjustment member 62 can have corresponding grooves.
- the reference member 48 surrounds the inner adjustment member 62 in the illustrated embodiment, at least a portion of the reference member 48 in other embodiments can be received inside the inner adjustment member 62 .
- the outer expression member 46 has a slot 80 that engages the reference member 48 .
- the reference member 48 has a contact portion 82 that is adapted to extend through expression opening 84 that is defined in the expression member 46 .
- the contact portion 82 has a skin contacting surface 86 that contacts the skin S when the incision is formed by the lancet 50 .
- Surface 86 surrounds an aperture 88 through which tip 58 of the lancet 50 extends.
- Distance D 1 between the skin contacting surface 86 and stop surface 89 on the stop flange 74 of the adjuster 44 controls the penetration depth of the lancet 50 .
- Rotating the outer adjustment member 60 changes distance D 1 , thereby changing the penetration depth of the lancet 50 .
- Extending around opening 84 in the outer expression member 46 is a ridge 90 that is adapted to engage the reference member 48 so as to control how far the contact portion 82 extends from the expression member 46 .
- the outer expression member 46 further has an expression surface 92 that is angled or inclined towards opening 84 in order to promote expression of bodily fluid.
- the expression surface 92 has a generally frusto-conical shape.
- An opening size adjustment or retraction mechanism 93 is used to retract reference member 48 from the expression opening 84 so as to change the opening size for expressing fluid.
- mechanism 93 includes a spring 94 .
- Spring 94 which is positioned between the outer expression member 46 and the reference member 48 , biases the reference member 48 along with the adjuster 44 against flange 70 so that the contact portion 82 is positioned out of the expression opening 84 .
- alternate sampling sites A such as the palm of the hand, forearm, earlobe and the like, may be useful for sampling because lancing these sites tends to be less painful.
- one drawback with the alternate site A is that the amount of fluid that can be expressed from an incision formed in that area is relatively small when compared to fingertip sites.
- One solution has been to increase the opening size in an expression ring so as to increase the area in which fluid is expressed from the skin.
- the skin tends to bulge to a greater degree, thereby increasing the penetration depth of the lancet by a variable amount when the incision is formed at the alternate site A.
- the expression opening 84 is sized to express a sufficient amount of fluid for testing from the alternate site A.
- the aperture 88 in the reference member 48 is relatively small.
- the aperture 88 is sized to be slightly larger than the lancet tip 58 such that the lancet 50 is able to slide through the aperture 88 .
- the size of the reference member 48 minimizes skin deformation around the lancet 50 when piercing the skin S, thereby ensuring the device 40 forms incisions with substantially consistent depths.
- the incision forming member 42 is actuated to move towards the skin S.
- the incision forming member 42 can be driven towards the skin S through a number of mechanisms, such as for example by a hammer striking the incision forming member 42 .
- the stop surface 54 of the incision forming member 42 contacts the inner flange 74 of the adjuster 44 such that the reference member 48 is driven toward the skin S.
- the arm 66 of the adjuster 44 slides within the slot 64 of the outer expression member 46 .
- the contact portion 84 of the reference member 82 extends through the expression opening 84 such that the skin contacting surface 86 of the reference member 48 contacts and flattens the skin S surrounding the lancet 50 as incision I is formed.
- the distance D 1 between the skin contacting surface 86 and the stop surface 89 of the stop flange 74 controls the penetration depth P 1 of the lancet 50 in to the skin S.
- the spring 94 retracts the reference member 48 from the expression opening 84 .
- the user is able to express bodily fluid B from the incision I using the larger expression opening 84 .
- this design allows a greater amount of fluid to be expressed from an alternate site A, while at the same time forms an incision having precise depth.
- the penetration depth of the lancet 50 can be adjusted by rotating the outer adjustment member 60 of the adjuster 44 .
- rotating the outer adjustment member 60 of the adjuster 44 extends the reference member 48 from the adjuster 44 , thereby increasing distance D 2 between the skin contacting surface 86 of the reference member 48 and the flange 74 of the adjuster 44 .
- Increasing distance D 2 in turn reduces the penetration depth P 2 of the lancet 50 , as is illustrated in FIG. 5. Reducing the penetration depth P 2 can help reduce the pain associated with lancing at especially sensitive sites, such as fingertip site F.
- a bodily fluid sampling device 40 a according to another embodiment of the present invention will now be described with reference to FIGS. 6 - 9 .
- the sampling device 40 a of the illustrated embodiment is configured to automatically increase the size of the expression opening when fluid is expressed from an alternate site.
- the sampling device 40 a includes a sleeve 96 that encloses incision forming member 42 , which has lancet 50 and lancet body 52 , of the type described above.
- surface 54 of the lancet body 52 does not act as an end stop for controlling the penetration depth of the lancet 50 . Rather, a fixed stop inside the mechanism that is used to actuate the lancet 50 controls the penetration depth.
- device 40 a can be incorporated into a SOFTCLIX brand lancing device (Boehringer Mannheim GmbH Corporation, Germany) in order to actuate and control the penetration depth of the lancet 50 . It is contemplated, however, that device 40 a can be modified such that surface 54 of the lancet body 52 can act as a stop surface for controlling the penetration depth of the lancet 50 .
- the sleeve 96 is slidable over a lancet housing 98 . As shown, the lancet housing 98 encloses the incision forming member 42 .
- a spring 100 is operatively positioned between the sleeve 96 and the housing 98 for biasing the sleeve 96 .
- the sleeve 96 is attached to a nut or inner flange 102 against which the spring 100 engages, and in a similar fashion, the housing 98 has an outwardly extending flange 104 that engages the spring 100 .
- the nut 102 threadedly engages the sleeve 96
- the nut 102 is integrally formed with the sleeve 96 .
- nut 102 and flange 104 can be attached in other manners.
- the sleeve 96 further includes one or more guide arms 106 that longitudinally extend from the sleeve 96 .
- the sleeve 96 has a pair of guide arms 106 .
- Each guide arm 106 has an end stop member 107 that extends in an inward radial direction so as to engage flange 104 of the housing 98 .
- the sleeve 96 further has an outer collar 108 that assists the user in gripping the sleeve 96 .
- the housing 98 has guide ridges 109 that longitudinally extend on opposite sides of the guide arms 106 , as shown in FIG. 8.
- the sampling device 40 a illustrated in FIGS. 6 - 9 includes an outer expression member or tip 46 a as well as a reference member 48 a.
- the reference member 48 a has aperture 88 and skin contacting portion 82 with skin contacting surface 86 .
- the expression tip 46 a has angled expression surface 92 that surrounds expression opening 84 .
- the expression tip 46 a is glued to the housing 98 , and in the another embodiment, the expression tip 46 a is integrally formed with the housing 98 . It should be understood that the expression tip 46 a can be attached to the housing 98 in other manners as generally know by those skilled in the art.
- the penetration depth of the lancet 50 is control by a fixed stop in the actuation mechanism, such as with a SOFTCLIX brand lancing device. It contemplated that the lancet 50 in the sampling device 40 a can be constructed to have a fixed penetration depth or an adjustable penetration depth, as in the manner described above for the previous embodiment by adjusting registration between the reference member 48 a and the lancet body 52 .
- the sampling device 40 a of the embodiment illustrated in FIGS. 6 - 9 is designed to automatically retract the skin contacting portion 82 of the reference member 48 a from the expression opening 84 when expressing fluid from an alternate site A.
- the skin contacting portion 82 of the reference member 48 a is positioned within the expression opening 84 .
- the sampling device 40 a incorporates a retraction mechanism 110 that includes one or more cam arms 112 pivotally mounted to the housing 98 .
- the retraction mechanism 110 incorporates a pair of cam arms 112 , but it should be appreciated that the retraction mechanism 110 can have more or less cam arms 112 than is shown.
- the cam arms 112 pivot about housing pivot pins 114 , which are received in pivot slots 116 defined in the housing 98 .
- Each of the cam arms 112 extend through cam arm openings 118 in the housing 98 and engage at one end a cam groove or surface 120 that is defined in the guide arms 106 .
- the other end of each of the cam arm 112 is engage with the reference member 48 a through aperture pin 122 that is received in cam slot 124 defined in the reference member 48 a.
- pin 122 extends within a cavity 123 (FIG. 8) defined in each cam arm 122 .
- the skin contacting portion 82 of the reference member 48 a is positioned in the expression opening 84 in order to control the penetration depth of the lancet 50 .
- the spring 100 biases the sleeve 96 away from the expression tip 46 a which in turn, through the guide arms 106 , orients the cam arms 112 so as to position the reference member 48 a in the expression opening 84 .
- the skin contacting portion 82 of the reference member 48 a is retracted from the expression opening 84 such that the bodily fluid can be expressed from the alternate site using the wider expression opening 84 .
- the user grasps the device 40 a by sleeve 96 and presses the expression tip 46 a against the skin S.
- the sleeve 96 slides in direction E along the housing 98 , and the spring 100 becomes compressed.
- the stiffness of the spring 100 is selected such that spring 100 will compress during expression, but will typically not compress during lancing.
- the guide arms 106 pivot the cam arms 112 such that the reference member 48 a is retracted into the device 40 a.
- the spring 100 returns the sleeve 96 to the original position shown in FIG. 6, and the cam arms 112 return the reference member 48 a back into the expression opening 84 .
- the incision forming member 130 includes a body portion 132 , a reference member 133 , a safety cover 134 and a lancet 136 .
- the body portion 132 , the reference member 133 and the safety cover 134 are made of plastic; while lancet 136 is made of metal. As should be appreciated, these components can be made of other materials.
- the body portion 132 has a pair of opposing notches 138 that are used secure the incision forming member 130 to the bodily fluid sampling device.
- the safety cover 134 covers the lancet 136 before use.
- the safety cover 134 can be used to ensure the sterility of the lancet 136 .
- the safety cover 134 can then be removed from the lancet 136 , as illustrated in FIGS. 11 - 13 .
- the safety cover 134 is integrally molded with the body portion 132 such that the safety cover 134 can be removed by twisting the cover 134 off the body portion 132 .
- the safety cover 134 is separate from the body portion 132 .
- the lancet 136 in FIG. 11 is configured to form an incision in the skin.
- the lancet 136 can be a blade, a needle or the like.
- the reference member 133 is attached to the body 132 of the incision forming member 130 in order to control the penetration depth of the lancet 136 .
- the incision forming member 130 is received inside the expression member 46 .
- the retraction mechanism 93 used in the illustrated embodiment is spring 94 , which is engaged between the expression member 46 and the reference member 133 .
- the reference member 133 has contact portion 82 with skin contacting surface 86 that controls the penetration depth of the lancet 136 . After the incision is formed, the incision forming member 130 along with the reference member 133 are retracted by spring 94 such that the contact portion 82 is removed from the expression opening 84 in the expression member 46 .
- the larger expression opening 84 can be used to express bodily fluid. It is contemplated, however, that the reference member 133 can be retracted in other manners.
- incision forming member 130 can be incorporated into a SOFTCLIX brand lancing device that can be used to actuate and retract the incision forming member 130 .
- the reference member 133 and the body portion 132 are threadedly mated together.
- the reference member 133 and the body portion 132 can be threadedly mated during the molding process for the parts. As shown in FIG.
- the reference member 140 has an internally threaded portion 140 that engages an externally threaded portion 142 on the body portion 132 of the incision forming member 130 .
- the reference member 133 has one or more wing members 144 extending therefrom that engage spring 94 and are used to help turn the reference member 133 relative to the body portion 132 .
- the penetration depth of the lancet 136 can be reduced by rotating the reference member 133 in a counterclockwise direction C.
- the incision forming member 130 can be threaded differently such that the penetration depth is increased by rotating the reference member 133 in the counterclockwise direction C.
- FIG. 14 An incision forming member assembly 150 according to another embodiment of the present invention is illustrated in FIG. 14. As shown, the assembly 150 includes a body 152 and lancet 136 attached to the body 152 . In the body 152 , living hinges 154 (or other spring means) resiliently attach a reference member portion 155 to the remainder of the body 152 . Notches 138 are defined in the body 152 to secure the body to a holder 156 . In the illustrated embodiment, the holder has external threads 158 that mate with internal threads 160 on depth control member 162 . The depth control member 162 has a contact edge 164 configured to contact a stop flange 166 on the reference member portion 155 .
- Assembly 150 further includes a safety cover 168 that covers the lancet 136 in order to protect the user and provide a sterile environment for the lancet 136 .
- a skin contact portion 170 extends from the stop flange 166 along the lancet 136 .
- a groove or an area of weakness 172 is formed so that the cover 168 can be detached from the skin contact portion 170 to expose the lancet 136 .
- a skin contacting surface 174 is formed at groove 172 .
- Assembly 150 is used in conjunction with an expression member 46 of the type described above. As previously mentioned, variations in skin height due to factors, such as the pressure applied to the skin, the type of skin and the skin location, can significantly alter the penetration depth of traditional lancing devices. Assembly 150 is constructed to contact the skin before lancing will occur, which in turn provides a reference surface for controlling the penetration depth into the skin. During lancing, the skin contact portion 155 extends through the expression opening 84 in the expression member 46 , and the skin contacting surface 174 of assembly 150 contacts the skin. As the skin contacting surface 174 is pressed against the skin by the actuation of the lancet assembly 150 , the living hinges 154 are compressed until the stop edge 164 contacts flange 166 .
- the distance D 3 between edge 164 and flange 166 controls the penetration depth of the lancet 136 .
- Increasing distance D 3 by rotating the depth control member 162 relative to holder 156 deepens the penetration depth of the lancet 136 .
- reducing the distance D 3 between edge 164 and flange 166 decreases the penetration depth of the lancet 136 .
- the living hinges 154 aid in retracting the lancet 136 from the incision.
- a lancing assembly 180 according to a further embodiment of the present invention will now be described with reference to FIGS. 15 - 17 .
- Lancing assembly 180 integrates a number of features into a single device; while at the same time allows for sterilization of the lancet without affecting the test strip.
- Assembly 180 includes an incision forming member 182 , test media 184 , and a carrier 186 .
- the incision forming member 182 which is used to form an incision in the skin, has a head 188 , a lancet 190 , a pry member 192 , and a safety cover 194 .
- the head 188 and the cover 194 are positioned at opposite ends of the lancet 190 , and the pry member 192 is positioned along the lancet 190 , between the head 188 and the cover 194 .
- the head 188 has a pair of lock notches 196 for locking the incision forming member 182 in an armed position.
- the lancet 190 in the illustrated embodiment is a needle.
- lancet 190 can include other types of instruments that are used to from incision, such as blades for example.
- the pry member 192 has a pair of pry surfaces 198 that are angled towards the lancet 190 . To make insertion of the incision forming member 182 into the carrier easier, surfaces 198 are rounded.
- the safety cover 194 includes covering tip 200 of the lancet 190 (see FIG. 17) in order to maintain the sterility of the lancet 190 . Moreover, the cover 194 protects users from accidentally cutting themselves. As illustrated, the cover 194 in the illustrated embodiment has a general cylindrical shape with an alignment flange 202 extending therefrom at one end. The cover 194 further has an opening 204 that is normally sealed so as to maintain the sterility of the lancet tip 200 .
- the head 188 and the pry member 192 are made from a hard plastic; the cover 194 is made of a soft plastic; and the lancet 190 is metallic. As should be appreciated, these components can be made from other types of materials.
- the test media 184 is used for determining analyte levels in the bodily fluid sample.
- analyte levels can be determined through the chemical, electrical, electrochemical and/or optical properties of the bodily fluid sample collected on the test media, to name a few.
- the test media 184 in the illustrated embodiment is a chemically reactive reagent test strip.
- reagent test strips are sensitive to thermal and/or chemical processes required for sterilization. The sterilization process can affect the results generated by the test media 184 , and therefore, recalibration of the test media 184 is required after sterilization.
- the incision forming member 182 can be separately sterilized such that the test media 184 does not have to go through the same sterilization process as the incision forming member 182 . After sterilization, the incision forming member 182 can be installed in the carrier 186 , thereby eliminating the need to recalibrate the test media 184 .
- the carrier 186 has a pair of lock arms 206 that define a receptacle 208 in which the head 188 is locked when the lancet 182 is in the armed position, as is shown in FIG. 17.
- Each lock arm 206 has a lock tab 210 that is constructed to engage a corresponding notch 196 in the head 188 .
- the carrier has a connector 211 with a slot 212 in which the lancet 190 is slidably received.
- the carrier 186 further includes a pair of living hinges 214 that connect the lock arms 206 to sampling portion 216 of the lancing assembly 180 .
- the living hinges 214 have notches 218 that allow the living hinges 214 to bend.
- Each of the living hinges has two outwardly opening notches 220 that are located proximal the connector 211 and the sampling portion 216 . Between the outwardly opening notches 220 , each living hinge 214 has an inwardly opening notch 222 .
- the living hinges 214 have expansion members 224 that are connected together by a tamper evidence link 226 .
- Each expansion member has a pry surface 228 , and the pry surfaces 228 are constructed to define a pry member cavity 230 that receives the pry member 192 of the incision forming member 182 .
- the pry surfaces 228 are angled and are concavely shaped to coincide with the shape of the surfaces 198 on the pry member 192 .
- the carrier 186 further includes a cover receptacle 280 that defines a safety cover cavity 282 in which the safety cover 194 of the incision forming member 182 is received.
- cavity 282 includes an alignment slot 284 that is configured to receive the alignment flange 202 of the safety cover 194 .
- the sampling portion 216 of the carrier 186 defines a test media cavity 286 in which the test media 184 is housed during use. Inside the test media cavity 286 , the sampling portion 216 further has a capillary channel 288 .
- the capillary channel 288 is configured to allow the lancet 182 to extend therethrough during lancing and is configured to draw fluid onto the test media 184 during sampling.
- the test media 184 is slightly spaced away from the sampling portion 216 in order to define a flat capillary space for spreading the fluid sample across the test media 184 .
- a cross member 289 extends across a portion of the channel 288 proximal the cover 194 so as to prevent removal of the incision forming member 182 when the assembly 180 is armed.
- the channel 288 fluidly communicates with an aperture 290 defined in skin contacting portion 292 .
- the skin contacting portion 292 has a skin contacting surface 294 that contacts and flattens the skin around the aperture 290 so that the lancet 182 can cut an incision with a precise depth.
- the head 188 is pushed into the receptacle 208 such that the lock arms 206 engage and lock with the notches 196 in the head 188 , as is illustrated in FIG. 17.
- the pry member 192 breaks the tamper evidence link 226 by prying the expansion members 224 apart, which in turn bends the living hinges 214 .
- the tamper evidence link 226 provides a visual indicator of prior arming or use of the device 180 .
- the tip 200 of the lancet 182 pierces through the sealed opening 204 in the cover 194 and extends into the capillary channel 288 .
- the cross member 289 helps to prevent accidental removal of the incision forming member 182 after arming.
- the test media 184 is not shown in FIG. 17 so that the tip 200 of the lancet 182 can be viewed when in the armed position and that the test media 184 is typically attached before arming in the illustrated embodiment.
- the tip 200 of the lancet 182 in one form is typically positioned within aperture 290 proximal the skin contacting surface 294 .
- assembly 180 can be used to form an incision in the skin.
- the assembly 180 is installed in a sampling device in one embodiment of the present invention.
- the assembly 180 is armed by the sampling device, and in another form, the assembly is armed before installation in the sampling device.
- the skin contacting surface 292 contacts the skin, and the tip 200 of the lancet 190 is driven through opening 290 .
- the incision forming member 182 is actuated by a hammer, or a similar device, in order to strike the head 188 of the incision forming member 182 .
- the penetration depth of the lancet 190 is controlled by an adjustable holder for assembly 180 of the type similar to the one described below with reference to FIG. 22.
- distance D 4 between the pry member 192 and the cover 194 controls the penetration depth of the lancet 190 .
- the living hinges 214 are compressed. After the tip 200 of the lancet 190 is fully extended, the compressed living hinges 214 recoil, thereby retracting the lancet 190 .
- the bodily fluid from the incision formed by the lancet 190 is collected through aperture 290 and is distributed across the test media 184 via capillary channel 184 .
- the annular space defined in aperture 290 between the lancet 190 and the skin contacting portion 292 forms a low volume capillary for transporting the fluid.
- the fluid is then transferred to the flat capillary defined between the test media 184 and the sampling portion 216 in cavity 286 .
- the gaps are small (0.1 mm or less) to promote transfer of the fluid between the annular and flat capillaries.
- venting of the capillaries is accomplished via slots or channels 295 formed around cavity 286 .
- FIGS. 18 - 20 A sampling device 300 according to another embodiment of the present invention is illustrated in FIGS. 18 - 20 .
- FIG. 18 depicts the device 300 prior to lancing; while FIGS. 19 and 20 show the device 300 during lancing.
- Sampling device 300 includes a head member 302 that has a pair of living hinges or leaf springs 304 .
- the head 302 defines a pair of openings 306 that are used to secure the device 300 .
- the ends of the leaf springs 306 that are opposite the head 302 are received in slots 306 defined in safety cover 308 .
- the safety cover 308 encapsulates lancet 190 to protect the lancet 190 from outside contamination.
- the lancet 190 is attached to the head 302 , and in another embodiment, the lancet 190 abuts the head 302 .
- the cover 308 has an encapsulating surface 310 that covers the lancet 190 .
- the encapsulating surface 310 of the safety cover 308 covers the lancet 190 .
- the tip 200 of the lancet 190 pierces the encapsulating surface 310 of the cover 308 .
- the encapsulating surface 310 includes soft foam and/or rubber that surround the tip 200 of the lancet 190 inside the cover 308 .
- the leaf springs 304 which were bent during lancing, retract the lancet 190 from the skin.
- the sampling device 300 illustrated in FIGS. 18 - 20 allows test media 312 to be assembled to the remainder of the device after the lancet 190 has been sterilized.
- the test media 312 is attached to the safety cover 308 , and the test media 312 has an overhang portion 313 that extends past surface 310 on the cover 308 .
- the test media 312 is glued to the covers.
- the test media 312 can be attached in other manners.
- the test media 312 is operable to test analyte levels electrochemically. In another embodiment, the test media 312 is operable to test analyte levels optically.
- test media 312 can test analyte levels using other techniques. Proximal to surface 310 , the test media 312 incorporates a capillary portion 314 for drawing bodily fluid into the test media 312 for testing. The overhang portion 313 of the test media 312 ensures that capillary 314 is in close proximity to the skin. The capillary portion 314 is surrounded by a skin contacting surface 315 that acts as the reference surface for controlling the penetration depth of the lancet 190 . In FIG. 20, the head 302 and the safety cover 308 have opposing stop surfaces 316 and 318 that control the penetration depth of the lancet 190 .
- the distance between stop surfaces 316 and 318 determines the penetration depth of the lancet 190 .
- spacers with varying thicknesses are placed between the stop surfaces 316 and 318 to adjust the penetration depth of the lancet 190 .
- FIGS. 21 - 23 illustrate a sampling device 330 according to another embodiment of the present invention.
- device 330 includes a housing 332 , a lancet or blade 334 slidably received in the housing 332 , and test media 336 .
- Housing 332 has first 338 and second 340 sides that are attached together through a bead 342 to form a blade cavity 344 in which blade 334 is received.
- both the first 338 and second 340 sides are generally flat to give the sampling device an overall flat appearance.
- bead 342 is an adhesive bead that adheres the first 338 and second 340 sides together.
- the housing 332 can be further subdivided into separate head 346 and skin contacting 348 portions.
- Blade 334 is attached to the head 346 and is slidable within blade cavity 344 in the skin contacting portion 348 of the housing 332 .
- the first side 338 of the housing 332 defines a living hinge or leaf spring 350 that connects the head 346 to the skin contacting portion 348 of the housing 332 .
- the head 346 can further have notches 352 for securing device 330 to a holder.
- FIGS. 21 and 22 illustrate the leaf spring 350 in a flexed state when blade 334 is extended from the housing 332 through opening 353 .
- the first side 338 of the housing 332 has a skin contacting edge 354 that acts as a reference surface for controlling the penetration depth of the blade 334 .
- the second side 340 of the housing 332 has a capillary slot 356 for drawing fluid via capillary action into the blade cavity 344 .
- the capillary slot 356 in the illustrated embodiment has a gradual tapered shaped from opening 353 to improve fluid flow from the incision into the blade cavity 344 .
- capillary slot 356 as well as opening 353 can be covered with a safety cover 358 that can be used to maintain the sterility of blade 334 and to protect the user from injury.
- a gap is formed around the blade 334 for drawing bodily fluid from the incision to the test media 336 via capillary action.
- the side of the blade 334 that faces the test media 336 is coated and/or incorporates hydrophilic material, and the opposite side is coated and/or incorporates hydrophobic material.
- this construction improves the transfer of the fluid onto the test media 336 .
- the test media 336 can be of the type described above and can be attached to the housing 332 in a number of manners.
- the test media 336 can be a chemically reactive reagent strip that is glued to the housing.
- test media 336 can be attached to the housing 332 after the blade 334 has been sterilized. Once attached, the test media 334 defines portion of the blade cavity 344 and fluid from slot 356 can be drawn to the test media 332 through the blade cavity 334 .
- a holder 360 for device 330 that is operable to adjust the penetration depth of the blade 334 is illustrated in FIG. 22.
- Holder 360 has a cover 362 with a receptacle 364 in which device 330 is received and a depth control mechanism 366 that is coupled to the cover 362 .
- a test media view window 368 is defined in the cover 362 so that the test media 336 can be viewed. Window 368 can allow the test media 336 to be analyzed optically.
- the depth control mechanism 366 has a depth adjustment wheel 370 that is rotatably coupled to a bearing member 372 through rod 374 , and the bearing member 372 is attached to the cover 362 .
- the rod 374 has a gear 376 that is engageable with an actuation gear 378 .
- Wheel 380 only partially extends around rod 374 , thereby defining a gap 380 that allows device 330 to be mounted in holder 360 .
- the wheel 380 has a series of steps 382 of graduated thickness, and the steps 382 of wheel 380 can be rotated through a slot 384 in the cover 362 .
- the actuation gear 378 rotates the wheel 380 such that gap 380 is positioned in the slot 384 .
- Device 330 is then slid into the receptacle 364 so that the head 346 of the device 330 is slid past slot 384 .
- the actuation gear 378 rotates the wheel 380 such that at least one of the steps 382 is positioned in the slot 384 between the head 346 and the skin contacting portion 348 , thereby securing the device 330 to the holder 360 .
- the step 382 with the appropriate thickness can be positioned in the slot 384 between the head 346 and the skin contacting portion 348 so as to control the penetration depth of the blade 334 .
- the skin contacting edge 354 contacts the surface of the skin.
- the skin contacting portion 348 of the housing 332 slides within the receptacle 364 towards the head 346 of the device 330 such that the blade 334 is uncovered to lance the skin.
- the skin contacting portion 348 of the housing 332 continues to retract until it engages the selected step 382 on the wheel 380 .
- the thickness of the step 382 controls the penetration depth of the blade 334 .
- the leaf spring 350 which became flexed during lancing, extends portion 348 of the housing 332 so as to recover the blade 334 .
- the skin contacting edge 354 can remain positioned against the skin (or positioned proximal to the skin) such that the fluid from the incision is drawn via capillary action into the blade cavity 344 .
- the fluid is drawn onto the side of the blade that faces the test strip 336 , which is coated with hydrophilic material. From the blade cavity 344 , the fluid is then deposited onto the test strip 336 for testing.
- Lancing device 400 according to the illustrated embodiment is configured to automatically increase the size of the expression opening and maintain the larger sized expression opening when fluid is expressed from an alternate site.
- the lancing device 400 includes an outer expression member or tip 46 b, a reference member 48 b, a cam arm 112 a, a sleeve 96 a, a latch mechanism 402 , a housing 98 a, spring 100 and nut 102 . Similar to the embodiments illustrated in FIGS.
- the reference member 48 b has skin contacting portion 82 with skin contacting surface 86 that surrounds aperture 88 (see FIG. 27).
- the expression tip 46 b in FIG. 28 has an expression surface 92 , which has a conical form, and the expression surface 92 surrounds expression opening 84 .
- the expression tip 46 b is attached to the sleeve 98 a, which is slidably received in the housing 98 a. In one form of this embodiment, the expression tip 46 b is glued to the sleeve 98 a. However, it is contemplated that the expression tip 46 b can be secured in other manners.
- the sleeve 98 a defines a pair guide slots 404 that are configured to receive a pair of guide bosses 406 on the reference member 48 b.
- the reference member 48 b can have more or less guide bosses 406 than is shown.
- the guide bosses 406 have a generally rectangular shape so as to align the reference member 48 b in the guide slots 404 .
- the housing 96 a Around the sleeve 98 a, the housing 96 a has stop arms 408 with stop members 410 that are adapted to engage a stop flange 104 a on the sleeve 98 a.
- the penetration depth of the lancet 50 is controlled by the mechanism that is used actuate the lancet 50 , such as in a SOFTCLIX brand lancing device. It is contemplated, however, that the penetration depth of the lancet 50 can be controlled in other manners. For instance, the distance between the stop flange 104 a and the stop members 410 can be used to control the penetration depth of the lancet 50 .
- the cam arm 112 a is pivotally mounted. Both arm 412 and cam arm 112 a have pivot pin openings 414 and 416 in which a pivot pin 418 is received, as is shown in FIGS. 23 - 24 .
- the cam arm 112 a has a link portion 420 that join two actuation members 422 that give the cam arm 112 a a general u-shape.
- the end of each actuation member 422 , opposite link 420 has a reference member engaging slot 424 that are configured to engage cam arm pins 426 that extend from the guide bosses 406 on the reference member 48 b.
- the actuation members 422 have a generally bowed shape so as to fit around the sleeve 98 a.
- each actuation member 422 has a sleeve engaging pin 428 that are received in a corresponding pivot pin opening 430 in the sleeve 98 a.
- a lock arm portion 430 with a lock tab 432 extends from one of the actuation members 422 .
- one end of the latch arm 402 is pivotally mounted to the housing 96 a, and the other end of the latch arm 402 has a latch notch 434 configured to engage the lock tab 432 .
- gravity is used to position the latch arm 402 such that the latch arm is able to engage the lock tab 432 .
- the latch arm 402 incorporates a spring for biasing the latch arm 402 toward the housing 96 a such that the latch arm 402 is able to engage the lock tab 432 on the cam arm 112 a. It should be appreciated that latch arm 402 can be biased in other manners.
- the device 400 By being able to accurately control the penetration depth of the lancet 50 , the device 400 is able to safely lance and express fluid from both fingertips and alternate sites. As previously discussed, the actuation mechanism for the lancet 50 controls the penetration depth of the lancet 50 .
- spring 100 With reference to FIGS. 27 - 28 , spring 100 is secured between the stop flange 104 a of the sleeve 98 a and the nut 102 , which is secured to the housing 96 a. Normally, as shown in FIG.
- the spring 100 biases the sleeve 98 a with respect to the housing 96 a such that the cam arm 112 a positions the reference member 48 b in expression opening 84 of the expression tip 46 b so that the penetration depth can be precisely controlled during lancing.
- device 400 is only used to lance the fingertip and is not used to express fluid from the fingertip because fingertips tend to provide an adequate fluid supply without the need to express the fluid.
- the user grips and presses the housing 96 a towards the skin. As the housing 96 a slides relative to the sleeve 98 a, the cam arm 112 a pivots such that the reference member 48 b is retracted from the expression opening 84 .
- the retraction of the reference member 48 b creates a large opening in which bodily fluid from an alternate site can be expressed.
- the lock tab 432 on the cam arm 112 a locks with the latch arm 402 .
- the latch arm 402 can be disengaged from the lock tab 432 to return the device 400 to its original configuration, as illustrated in FIG. 27.
- FIGS. 29 - 31 A fluid sampling device 450 according to a further embodiment of the present invention is illustrated in FIGS. 29 - 31 .
- the device 450 has an actuation knob 452 at one end and a skin contacting or expression member 454 at the other end.
- the actuation knob 452 is rotatably mounted on housing 456 , and the knob 452 can be rotated in order to change the shape and size of the expression member 454 .
- device 450 is configured to precisely control the penetration depth of a lancet for safety purposes and is configurable to express fluid from finger as well as from alternate sites.
- device 450 includes lancet 130 that is able to control and adjust its penetration depth, as was described above with reference to FIGS.
- device 450 can use other types of lancing devices that can control penetration depth of the lancet, such as the embodiments illustrated in FIGS. 14 - 23 .
- the expression member 454 has a lancet opening 458 through which lancet 130 is able to extend during lancing.
- the expression member 454 is reconfigurable to change shapes depending on the expression site.
- the sampling device 450 in FIG. 30 is configured to express fluid from a fingertip or similar site, and in FIG. 31, device 450 is in a configuration to create a larger expression opening in order to express fluid from an alternate site.
- the sampling device 450 has an inner tube 460 slidably mounted inside an outer tube 462 .
- the inner tube 460 has a proximal end that is attached to the knob 452 .
- the distal end of the inner tube 460 has a flange 464 that is rotatably coupled to a collar 464 such that the flange 464 is able to rotate relative to the collar 464 .
- living hinges 466 connect the collar 464 to the outer tube 462 , and each living hinge 466 has a relief notch or portion 468 that allows the living hinge to bend. As shown, the living hinges 466 are covered by a covering 470 that defines opening 458 .
- the covering 470 is made of a flexible material that is attached to the living hinges 466 .
- the covering 470 can be made of flexible plastic, rubber or the like.
- the collar 466 provides structural support around opening 458 so that the device 450 is able to express fluid from incision I in fingertip F. However, usually expressing the fingertip F is not required in order to obtain an adequate fluid sample.
- the sampling device 450 further incorporates an actuation mechanism 472 that, in conjunction with knob 452 , retracts the inner tube 460 inside the outer tube 462 , thereby expanding the expression member 454 to the configuration illustrated in FIG. 31.
- the actuation mechanism 472 in the illustrated embodiment includes a guide pin 474 that extends from the inner tube 460 into a guide channel 476 in the outer tube 462 .
- the guide channel 476 extends along a generally spiral shaped path on housing 456 .
- the guide channel 476 is visible on the outside of the device in FIG. 29, it is contemplated that the guide channel 476 can be enclosed so as to be invisible from the outside.
- the actuation mechanism 472 operates in a fashion similar to that of a lipstick dispenser.
- the guide pin 474 slides within channel 474 such that the distal end of the inner tube 460 is drawn inside of the outer tube 462 .
- the living hinges 468 bend to create an expression opening 476 that is larger than opening 458 such that the device 450 is able to express fluid from alternate site A.
- the living hinges 466 bend at middle notch 478 to form an outer expression edge 480 that defines expression opening 476 with an expression surface 482 .
- the expression surface 482 has a conical shape. It is contemplated that the shape of the expression member 454 can be changed in other manners. In a further embodiment, the actuation mechanism 472 and inner tube 460 are eliminated such that the user manually pushes in the expression member 454 to create a dented portion on the expression member 454 so that fluid can be expressed from an alternate site.
- the above-described devices can be incorporated into an integrated sampling device that further includes a capillary tube or some other wicking means for drawing the bodily fluid sample onto a test strip while the device remains positioned over the incision.
- Sampling device 330 which was described above with reference to FIGS. 21 - 23 , is an example of one such integrated device. As previously mentioned, device 330 remains in contact with the skin as the fluid sample is drawn into the blade cavity 344 and deposited onto the test strip 336 . It is contemplated that other devices described herein can be modified to collect and test a fluid sample in a similar fashion.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Heart & Thoracic Surgery (AREA)
- Surgery (AREA)
- Biophysics (AREA)
- Pathology (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Hematology (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Physics & Mathematics (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Dermatology (AREA)
- Pain & Pain Management (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
Abstract
Description
- The present invention generally relates to bodily fluid sampling devices and more specifically, but not exclusively, concerns a bodily fluid sampling device configured to form an incision having a precise depth and express fluid from both finger and alternate site testing (AST) locations.
- General Fluid Testing
- The acquisition and testing of bodily fluids is useful for many purposes, and continues to grow in importance for use in medical diagnosis and treatment, and in other diverse applications. In the medical field, it is desirable for lay operators to perform tests routinely, quickly and reproducibly outside of a laboratory setting, with rapid results and a readout of the resulting test information. Testing can be performed on various bodily fluids, and for certain applications is particularly related to the testing of blood and/or interstitial fluid. Such fluids can be tested for a variety of characteristics of the fluid, or analytes contained in the fluid, in order to identify a medical condition, determine therapeutic responses, assess the progress of treatment, and the like.
- General Test Steps
- The testing of bodily fluids basically involves the steps of obtaining the fluid sample, transferring the sample to a test device, conducting a test on the fluid sample, and displaying the results. These steps are generally performed by a plurality of separate instruments or devices.
- Acquiring—Vascular
- One method of acquiring the fluid sample involves inserting a hollow needle or syringe into a vein or artery in order to withdraw a blood sample. However, such direct vascular blood sampling can have several limitations, including pain, infection, and hematoma and other bleeding complications. In addition, direct vascular blood sampling is not suitable for repeating on a routine basis, can be extremely difficult and is not advised for patients to perform on themselves.
- Acquiring—Incising
- The other common technique for collecting a bodily fluid sample is to form an incision in the skin to bring the fluid to the skin surface. A lancet, knife or other cutting instrument is used to form the incision in the skin. The resulting blood or interstitial fluid specimen is then collected in a small tube or other container, or is placed directly in contact with a test strip. The fingertip is frequently used as the fluid source because it is highly vascularized and therefore produces a good quantity of blood. However, the fingertip also has a large concentration of nerve endings, and lancing the fingertip can therefore be painful. Alternate sampling sites, such as the palm of the hand, forearm, earlobe and the like, may be useful for sampling, and are less painful. However, they also produce lesser amounts of blood. These alternate sites therefore are generally appropriate for use only for test systems requiring relatively small amounts of fluid, or if steps are taken to facilitate the expression of the bodily fluid from the incision site.
- Various methods and systems for incising the skin are known in the art. Exemplary lancing devices are shown, for example, in U.S. Re. Pat. No. 35,803, issued to Lange, et al. on May 19, 1998; U.S. Pat. No. 4,924,879, issued to O'Brien on May 15, 1990; U.S. Pat. No. 5,879,311, issued to Duchon et al. on Feb. 16, 1999; U.S. Pat. No. 5,857,983, issued to Douglas on Jan. 12, 1999; U.S. Pat. No. 6,183,489, issued to Douglas et al. on Feb. 6, 2001; U.S. Pat. No. 6,332,871, issued to Douglas et al. on Dec. 25, 2001; and U.S. Pat. No. 5,964,718, issued to Duchon et al. on Oct. 12, 1999. A representative commercial lancing device is the Accu-Chek Softclix lancet.
- Expressing
- Patients are frequently advised to urge fluid to the incision site, such as by applying pressure to the area surrounding the incision to milk or pump the fluid from the incision. Mechanical devices are also known to facilitate the expression of bodily fluid from an incision. Such devices are shown, for example, in U.S. Pat. No. 5,879,311, issued to Duchon et al. on Feb. 16, 1999; U.S. Pat. No. 5,857,983, issued to Douglas on Jan. 12, 1999; U.S. Pat. No. 6,183,489, issued to Douglas et al. on Feb. 6, 2001; U.S. Pat. No. 5,951,492, issued to Douglas et al. on Sep. 14, 1999; U.S. Pat. No. 5,951,493, issued to Douglas et al. on Sep. 14, 1999; U.S. Pat. No. 5,964,718, issued to Duchon et al. on Oct. 12, 1999; and U.S. Pat. No. 6,086,545, issued to Roe et al. on Jul. 11, 2000. A representative commercial product that promotes the expression of bodily fluid from an incision is the Amira AtLast blood glucose system.
- Sampling
- The acquisition of the produced bodily fluid, hereafter referred to as the “sampling” of the fluid, can take various forms. Once the fluid specimen comes to the skin surface at the incision, a sampling device is placed into contact with the fluid. Such devices may include, for example, systems in which a tube or test strip is either located adjacent the incision site prior to forming the incision, or is moved to the incision site shortly after the incision has been formed. A sampling tube may acquire the fluid by suction or by capillary action. Such sampling systems may include, for example, the systems shown in U.S. Pat. No. 6,048,352, issued to Douglas et al. on Apr. 11, 2000; U.S. Pat. No. 6,099,484, issued to Douglas et al. on Aug. 8, 2000; and U.S. Pat. No. 6,332,871, issued to Douglas et al. on Dec. 25, 2001. Examples of commercial sampling devices include the Roche Compact, Amira AtLast, Glucometer Elite and Therasense FreeStyle test strips.
- Testing General
- The bodily fluid sample may be analyzed for a variety of properties or components, as is well known in the art. For example, such analysis may be directed to hematocrit, blood glucose, coagulation, lead, iron, etc. Testing systems include such means as optical (e.g., reflectance, absorption, fluorescence, Raman, etc.), electrochemical, and magnetic means for analyzing the sampled fluid. Examples of such test systems include those in U.S. Pat. No. 5,824,491, issued to Priest et al. on Oct. 20, 1998; U.S. Pat. No. 5,962,215, issued to Douglas et al. on Oct. 5, 1999; and U.S. Pat. No. 5,776,719, issued to Douglas et al. on Jul. 7, 1998.
- Typically, a test system takes advantage of a reaction between the bodily fluid to be tested and a reagent present in the test system. For example, an optical test strip will generally rely upon a color change, i.e., a change in the wavelength absorbed or reflected by dye formed by the reagent system used. See, e.g., U.S. Pat. Nos. 3,802,842; 4,061,468; and U.S. Pat. No. 4,490,465.
- Blood Glucose
- A common medical test is the measurement of blood glucose level. The glucose level can be determined directly by analysis of the blood, or indirectly by analysis of other fluids such as interstitial fluid. Diabetics are generally instructed to measure their blood glucose level several times a day, depending on the nature and severity of their diabetes. Based upon the observed pattern in the measured glucose levels, the patient and physician determine the appropriate level of insulin to be administered, also taking into account such issues as diet, exercise and other factors.
- In testing for the presence of an analyte such as glucose in a bodily fluid, test systems are commonly used which take advantage of an oxidation/reduction reaction which occurs using an oxidase/peroxidase detection chemistry. The test reagent is exposed to a sample of the bodily fluid for a suitable period of time, and there is a color change if the analyte (glucose) is present. Typically, the intensity of this change is proportional to the concentration of analyte in the sample. The color of the reagent is then compared to a known standard which enables one to determine the amount of analyte present in the sample. This determination can be made, for example, by a visual check or by an instrument, such as a reflectance spectrophotometer at a selected wavelength, or a blood glucose meter. Electrochemical and other systems are also well known for testing bodily fluids for properties on constituents.
- Alternate Site Testing (AST)
- As mentioned above, the fingertip is frequently used as the fluid source because it is highly vascularized and therefore produces a good quantity of blood. However, the fingertip also has a large concentration of nerve endings, and lancing the fingertip can therefore be painful. Alternate sampling sites, such as the palm of the hand, forearm, earlobe and the like, may be useful for sampling, and are less painful. However, they also produce less blood when lanced.
- In general, bodily fluid sampling devices are designed to express blood from either the fingertip or an alternate site, but not both. Typically, alternate site sampling devices need to express fluid from a large surface area surrounding the site in order to draw a sufficient amount of fluid for testing. Furthermore, it is usually more desirable to lance the skin deeply at the alternate site in order to ensure that a sufficient amount of fluid can be expressed. In comparison, fingertips are relatively small and do not need to be deeply lanced or require a large area in order to express a sufficient amount of fluid. Therefore, alternate site sampling devices usually have larger openings for expressing fluid as compared to devices designed to express fluid from fingers. If an alternate site sampling device were used to lance and express fluid from a fingertip, severe pain or serious injury to the finger may result. With the alternate site device, when an incision is being formed in the fingertip, the skin can tend to deform or bulge into the expression opening such that the lancet forms an incision with a greater depth than needed.
- Thus, needs remain for further contributions in this area of technology.
- One form of the present invention concerns a bodily fluid sampling device that includes an incision forming member adapted to form an incision in skin. An expression member defines an expression opening configured to express fluid from the incision. A reference member defines an aperture through which the incision forming member extends when forming the incision. The reference member has a reference surface received in the expression opening during formation of the incision to contact the skin and limit penetration depth of the incision forming member into the skin. A retraction mechanism is coupled to the reference member to retract the reference surface from the expression opening.
- Further forms, objects, features, aspects, benefits, advantages, and embodiments of the present invention will become apparent from a detailed description and drawings provided herewith.
- FIG. 1 is a cross-sectional view of a bodily fluid sampling device according to one embodiment of the present invention.
- FIG. 2 is a cross-sectional view of the FIG. 1 device during lancing at an alternate site.
- FIG. 3 is a cross-sectional view of the FIG. 1 device expressing fluid from the alternate site.
- FIG. 4 is a cross-sectional view of the FIG. 1 device configured to lance from a fingertip site.
- FIG. 5 is a cross-sectional view of the FIG. 1 device lancing the fingertip site.
- FIG. 6 is a cross-sectional view of a bodily fluid sampling device according to according to another embodiment.
- FIG. 7 is a cross-sectional view of the FIG. 6 device configured to express fluid from an alternate site.
- FIG. 8 is an exploded view of the FIG. 6 device.
- FIG. 9 is a perspective view of the FIG. 6 device.
- FIG. 10 is a perspective view of a lancing device according to a further embodiment of the present invention.
- FIG. 11 is a cross-sectional view of the FIG. 10 device.
- FIG. 12 is a perspective view of the FIG. 10 device configured for a deep penetration depth.
- FIG. 13 is a perspective view of the FIG. 10 device configured for a shallow penetration depth.
- FIG. 14 is a cross-sectional view of a lancing device according to another embodiment.
- FIG. 15 is an exploded view of a sampling device according to a further embodiment.
- FIG. 16 is a perspective view of the FIG. 15 device.
- FIG. 17 is a perspective view of the FIG. 16 in an armed configuration.
- FIG. 18 is a perspective view of a sampling device according to another embodiment.
- FIG. 19 is a top perspective view of the FIG. 18 device in a lancing position.
- FIG. 20 is a bottom perspective view of the FIG. 18 device in a lancing position.
- FIG. 21A is a top perspective view of a sampling device according to a further embodiment.
- FIG. 21B is a bottom perspective view of the FIG. 21A device.
- FIG. 22 is a perspective view of an adjustable holder according to another embodiment holding the FIG. 21A device.
- FIG. 23 is an exploded view of a sampling device according to another embodiment.
- FIG. 24 is a perspective view of the FIG. 23 device.
- FIG. 25 is a front view of the FIG. 23 device.
- FIG. 26 is a side view of the FIG. 23 device.
- FIG. 27 is a cross-sectional view of the FIG. 23 device configured to express fluid from a fingertip.
- FIG. 28 is a cross-sectional view of the FIG. 23 device configured to express fluid from an alternate site.
- FIG. 29 a front view of a sampling device according to a further embodiment.
- FIG. 30 is a cross-sectional view of the FIG. 29 device configured to express fluid from a fingertip.
- FIG. 31 is a cross-sectional view of the FIG. 29 device configured to express fluid from an alternate site.
- For the purposes of promoting an understanding of the principles of the invention, reference will now be made to the embodiments illustrated in the drawings and specific language will be used to describe the same. It will nevertheless be understood that no limitation of the scope of the invention is thereby intended, such alterations and further modifications in the illustrated device, and such further applications of the principles of the invention as illustrated therein being contemplated as would normally occur to one skilled in the art to which the invention relates. One embodiment of the invention is shown in great detail, although it will be apparent to those skilled in the relevant art that some features that are not relevant to the present invention may not be shown for the sake of clarity.
- Bodily fluid sampling devices according to the present invention are operable to form an incision with a precise depth and express fluid from both fingertip and alternate sites. The devices can further be configured to allow for the adjustment of the penetration depth of the lancet. In one particular embodiment, the device includes a reference member that provides a reference surface for controlling the penetration depth of a lancet. The reference member is received in a large expression opening of an expression member. During lancing, the reference member flattens the skin in the expression opening such that an incision with a precise depth can be formed. After lancing the skin, the reference member can be retracted from the expression opening so that the larger expression opening can be used to express a sufficient amount of bodily fluid from the alternate site. In one form, a spring automatically retracts the reference member after lancing, and in other forms, cam mechanisms are used to retract the reference member during expression of the fluid. In other embodiments, the reference member is coupled to the lancet in order to control the penetration depth of the lancet. Further aspects of the present concern integrated sampling devices that allow test media to be attached to the lancet after sterilization so as to ensure that the test media remains properly calibrated.
- A bodily
fluid sampling device 40 according to one embodiment of the present invention is illustrated in FIGS. 1-5. Referring to FIG. 1, thesampling device 40 includes anincision forming member 42, apenetration depth adjuster 44, anexpression member 46, and areference member 48. For the sake of clarity and brevity, other components of thesampling device 40 that are well know in the art, such has hammers, cocking mechanisms and the like that are not important to appreciate the present invention, will not be discussed below. For examples of such components, please refer to U.S. Pat. No. 5,964,718, issued to Duchon et al. on Oct. 12, 1999, which is hereby incorporated by reference in its entirety. Thedevice 40 illustrated in FIG. 1 can be back loaded into a sampling device of the type described in U.S. Pat. No. 5,964,718. - As shown in FIG. 1, the
incision forming member 42 has alancet 50 that is attached to alancet body 52. In the illustrated embodiment, thelancet 50 is in the form of a needle. However, it should be appreciated that thelancet 50 can come in other forms, such as a blade. Moreover, although a single lancet is shown, theincision forming member 42 in other embodiments can includemultiple lancets 50. As depicted in FIG. 1, thelancet body 52 has adepth stop surface 54, which is used to control the penetration depth of thelancet 50. Thelancet 50 further includes aflange 56 positioned proximal to tip 58 of thelancet 52, which is configured to cut the skin S. In one form of the present invention, theflange 56 can be used as an auxiliary stop in order to prevent over penetration of thelancet 52 into the skin S. - With continued reference to FIG. 1, the
sampling device 40 has adepth control assembly 59 that is able to adjust the penetration depth of thelancet 52. Thedepth control assembly 58 includesadjuster 44 andreference member 48. As depicted, theadjuster 44 has anouter adjustment member 60 attached to aninner adjustment member 62 that interfaces with thereference member 48. Theouter expression member 46 defines aslot 64 through whicharm 66 of theadjuster 44 connects theouter adjustment member 60 to theinner adjustment member 62. Theouter adjustment member 60 in the illustrated embodiment is in the form of a ring that encircles theouter expression member 46. To adjust the penetration depth of thelancet 50, the user rotates theouter adjustment member 60 around thedevice 40. Theinner adjustment member 62 further incorporates an outwardly extendingflange 68 that engages an inwardly extendingflange 70 in theouter expression member 46. As shown in FIG. 1, theinner adjustment member 62 defines aninner passageway 72 through which thelancet 50 extends. Insidepassageway 72, theinner adjustment member 62 has astop flange 74 that is configured to engage thestop surface 54 on theincision forming member 42. - As depicted, the
inner adjustment member 62 has at least onethread 76 that engages a correspondinggroove 78 formed in thereference member 48. As should be appreciated, in other embodiments, thereference member 48 can be threaded and theinner adjustment member 62 can have corresponding grooves. Although thereference member 48 surrounds theinner adjustment member 62 in the illustrated embodiment, at least a portion of thereference member 48 in other embodiments can be received inside theinner adjustment member 62. To prevent thereference member 48 from rotating with theadjuster 44 when the penetration depth is adjusted, theouter expression member 46 has aslot 80 that engages thereference member 48. - Referring to FIG. 1, the
reference member 48 has acontact portion 82 that is adapted to extend through expression opening 84 that is defined in theexpression member 46. Thecontact portion 82 has askin contacting surface 86 that contacts the skin S when the incision is formed by thelancet 50.Surface 86 surrounds anaperture 88 through whichtip 58 of thelancet 50 extends. Distance D1 between theskin contacting surface 86 and stopsurface 89 on thestop flange 74 of theadjuster 44 controls the penetration depth of thelancet 50. Rotating theouter adjustment member 60 changes distance D1, thereby changing the penetration depth of thelancet 50. - Extending around opening84 in the
outer expression member 46 is aridge 90 that is adapted to engage thereference member 48 so as to control how far thecontact portion 82 extends from theexpression member 46. Theouter expression member 46 further has anexpression surface 92 that is angled or inclined towards opening 84 in order to promote expression of bodily fluid. In one form, theexpression surface 92 has a generally frusto-conical shape. An opening size adjustment orretraction mechanism 93 is used to retractreference member 48 from the expression opening 84 so as to change the opening size for expressing fluid. In the illustrated embodiment,mechanism 93 includes aspring 94. As will be appreciated from the discussion below concerning the other embodiments, other types ofsize adjustment mechanisms 93 can be used to change the size of the opening for expressing fluid.Spring 94, which is positioned between theouter expression member 46 and thereference member 48, biases thereference member 48 along with theadjuster 44 againstflange 70 so that thecontact portion 82 is positioned out of theexpression opening 84. - As mentioned above, alternate sampling sites A, such as the palm of the hand, forearm, earlobe and the like, may be useful for sampling because lancing these sites tends to be less painful. However, one drawback with the alternate site A is that the amount of fluid that can be expressed from an incision formed in that area is relatively small when compared to fingertip sites. One solution has been to increase the opening size in an expression ring so as to increase the area in which fluid is expressed from the skin. However, due to the larger opening size, the skin tends to bulge to a greater degree, thereby increasing the penetration depth of the lancet by a variable amount when the incision is formed at the alternate site A. In
device 40, the expression opening 84 is sized to express a sufficient amount of fluid for testing from the alternate site A. In comparison to the expression opening 84, theaperture 88 in thereference member 48 is relatively small. In one embodiment, theaperture 88 is sized to be slightly larger than thelancet tip 58 such that thelancet 50 is able to slide through theaperture 88. The size of thereference member 48 minimizes skin deformation around thelancet 50 when piercing the skin S, thereby ensuring thedevice 40 forms incisions with substantially consistent depths. - During lancing, as shown in FIG. 2, the
incision forming member 42 is actuated to move towards the skin S. As should be understood, theincision forming member 42 can be driven towards the skin S through a number of mechanisms, such as for example by a hammer striking theincision forming member 42. As theincision forming member 42 moves toward the skin S, thestop surface 54 of theincision forming member 42 contacts theinner flange 74 of theadjuster 44 such that thereference member 48 is driven toward the skin S. While theadjuster 44 and thereference member 48 are driven towards the skin S, thearm 66 of theadjuster 44 slides within theslot 64 of theouter expression member 46. In FIG. 2, thecontact portion 84 of thereference member 82 extends through the expression opening 84 such that theskin contacting surface 86 of thereference member 48 contacts and flattens the skin S surrounding thelancet 50 as incision I is formed. As previously discussed, the distance D1 between theskin contacting surface 86 and thestop surface 89 of thestop flange 74 controls the penetration depth P1 of thelancet 50 in to the skin S. - Referring to FIG. 3, after the incision I is formed in the skin S, the
spring 94 retracts thereference member 48 from theexpression opening 84. The user is able to express bodily fluid B from the incision I using thelarger expression opening 84. As should be appreciated from the discussion above, this design allows a greater amount of fluid to be expressed from an alternate site A, while at the same time forms an incision having precise depth. - As discussed above, the penetration depth of the
lancet 50 can be adjusted by rotating theouter adjustment member 60 of theadjuster 44. As illustrated in FIG. 4, rotating theouter adjustment member 60 of theadjuster 44 extends thereference member 48 from theadjuster 44, thereby increasing distance D2 between theskin contacting surface 86 of thereference member 48 and theflange 74 of theadjuster 44. Increasing distance D2 in turn reduces the penetration depth P2 of thelancet 50, as is illustrated in FIG. 5. Reducing the penetration depth P2 can help reduce the pain associated with lancing at especially sensitive sites, such as fingertip site F. - A bodily
fluid sampling device 40 a according to another embodiment of the present invention will now be described with reference to FIGS. 6-9. Thesampling device 40 a of the illustrated embodiment is configured to automatically increase the size of the expression opening when fluid is expressed from an alternate site. As illustrated in FIGS. 6 and 8, thesampling device 40 a includes asleeve 96 that enclosesincision forming member 42, which haslancet 50 andlancet body 52, of the type described above. In the illustrated embodiment,surface 54 of thelancet body 52 does not act as an end stop for controlling the penetration depth of thelancet 50. Rather, a fixed stop inside the mechanism that is used to actuate thelancet 50 controls the penetration depth. For instance,device 40 a can be incorporated into a SOFTCLIX brand lancing device (Boehringer Mannheim GmbH Corporation, Germany) in order to actuate and control the penetration depth of thelancet 50. It is contemplated, however, thatdevice 40 a can be modified such thatsurface 54 of thelancet body 52 can act as a stop surface for controlling the penetration depth of thelancet 50. In FIG. 6, thesleeve 96 is slidable over alancet housing 98. As shown, thelancet housing 98 encloses theincision forming member 42. Aspring 100 is operatively positioned between thesleeve 96 and thehousing 98 for biasing thesleeve 96. In FIGS. 6 and 8, thesleeve 96 is attached to a nut orinner flange 102 against which thespring 100 engages, and in a similar fashion, thehousing 98 has an outwardly extendingflange 104 that engages thespring 100. In one form, thenut 102 threadedly engages thesleeve 96, and in another embodiment, thenut 102 is integrally formed with thesleeve 96. As should be understood,nut 102 andflange 104 can be attached in other manners. Thesleeve 96 further includes one ormore guide arms 106 that longitudinally extend from thesleeve 96. In the illustrated embodiment, thesleeve 96 has a pair ofguide arms 106. However, it should be appreciated that thesleeve 96 can have a different number ofguide arms 106 in other embodiments. Eachguide arm 106 has anend stop member 107 that extends in an inward radial direction so as to engageflange 104 of thehousing 98. Thesleeve 96 further has anouter collar 108 that assists the user in gripping thesleeve 96. To prevent rotation of thehousing 98 relative to thesleeve 96, thehousing 98 hasguide ridges 109 that longitudinally extend on opposite sides of theguide arms 106, as shown in FIG. 8. - Similar to the above described embodiment, the
sampling device 40 a illustrated in FIGS. 6-9 includes an outer expression member or tip 46 a as well as areference member 48 a. As shown, thereference member 48 a hasaperture 88 andskin contacting portion 82 withskin contacting surface 86. Like the embodiment before, theexpression tip 46 a has angledexpression surface 92 that surroundsexpression opening 84. In the illustrated embodiment, theexpression tip 46 a is glued to thehousing 98, and in the another embodiment, theexpression tip 46 a is integrally formed with thehousing 98. It should be understood that theexpression tip 46 a can be attached to thehousing 98 in other manners as generally know by those skilled in the art. As mentioned above, the penetration depth of thelancet 50 is control by a fixed stop in the actuation mechanism, such as with a SOFTCLIX brand lancing device. It contemplated that thelancet 50 in thesampling device 40 a can be constructed to have a fixed penetration depth or an adjustable penetration depth, as in the manner described above for the previous embodiment by adjusting registration between thereference member 48 a and thelancet body 52. - As mentioned above, the
sampling device 40 a of the embodiment illustrated in FIGS. 6-9 is designed to automatically retract theskin contacting portion 82 of thereference member 48 a from the expression opening 84 when expressing fluid from an alternate site A. Normally, as depicted in FIG. 6, theskin contacting portion 82 of thereference member 48 a is positioned within theexpression opening 84. To automatically retract thereference member 48 a, thesampling device 40 a incorporates aretraction mechanism 110 that includes one ormore cam arms 112 pivotally mounted to thehousing 98. In the illustrated embodiment, theretraction mechanism 110 incorporates a pair ofcam arms 112, but it should be appreciated that theretraction mechanism 110 can have more orless cam arms 112 than is shown. As depicted in FIGS. 6 and 8, thecam arms 112 pivot about housing pivot pins 114, which are received inpivot slots 116 defined in thehousing 98. Each of thecam arms 112 extend throughcam arm openings 118 in thehousing 98 and engage at one end a cam groove orsurface 120 that is defined in theguide arms 106. The other end of each of thecam arm 112 is engage with thereference member 48 a throughaperture pin 122 that is received incam slot 124 defined in thereference member 48 a. In the illustrated embodiment,pin 122 extends within a cavity 123 (FIG. 8) defined in eachcam arm 122. - During lancing, the
skin contacting portion 82 of thereference member 48 a is positioned in the expression opening 84 in order to control the penetration depth of thelancet 50. As illustrated in FIG. 6, thespring 100 biases thesleeve 96 away from theexpression tip 46 a which in turn, through theguide arms 106, orients thecam arms 112 so as to position thereference member 48 a in theexpression opening 84. When expressing bodily fluid from an incision I formed at an alternate site A, theskin contacting portion 82 of thereference member 48 a is retracted from the expression opening 84 such that the bodily fluid can be expressed from the alternate site using thewider expression opening 84. To retract the reference member during expression, the user grasps thedevice 40 a bysleeve 96 and presses theexpression tip 46 a against the skin S. Referring to FIG. 7, while thedevice 40 a is pressed against the skin S, thesleeve 96 slides in direction E along thehousing 98, and thespring 100 becomes compressed. The stiffness of thespring 100 is selected such thatspring 100 will compress during expression, but will typically not compress during lancing. As thesleeve 96 slides along thehousing 98, theguide arms 106 pivot thecam arms 112 such that thereference member 48 a is retracted into thedevice 40 a. Once the user ceases pressing thedevice 40 a against the skin S, thespring 100 returns thesleeve 96 to the original position shown in FIG. 6, and thecam arms 112 return thereference member 48 a back into theexpression opening 84. - An
incision forming member 130 according to another embodiment of the present invention will now be described with reference to FIGS. 10-13. As illustrated in FIGS. 10 and 11, theincision forming member 130 includes abody portion 132, areference member 133, asafety cover 134 and alancet 136. In one embodiment, thebody portion 132, thereference member 133 and thesafety cover 134 are made of plastic; whilelancet 136 is made of metal. As should be appreciated, these components can be made of other materials. Thebody portion 132 has a pair of opposingnotches 138 that are used secure theincision forming member 130 to the bodily fluid sampling device. To protect the user from being accidentally cut by thelancet 136, thesafety cover 134 covers thelancet 136 before use. In addition, thesafety cover 134 can be used to ensure the sterility of thelancet 136. When theincision forming member 130 needs to be used, thesafety cover 134 can then be removed from thelancet 136, as illustrated in FIGS. 11-13. In one form of the present invention, thesafety cover 134 is integrally molded with thebody portion 132 such that thesafety cover 134 can be removed by twisting thecover 134 off thebody portion 132. In another form, thesafety cover 134 is separate from thebody portion 132. Like the previous embodiments, thelancet 136 in FIG. 11 is configured to form an incision in the skin. By way of nonlimiting example, thelancet 136 can be a blade, a needle or the like. - In the embodiment illustrated in FIG. 11, the
reference member 133 is attached to thebody 132 of theincision forming member 130 in order to control the penetration depth of thelancet 136. As shown, theincision forming member 130 is received inside theexpression member 46. Theretraction mechanism 93 used in the illustrated embodiment isspring 94, which is engaged between theexpression member 46 and thereference member 133. Thereference member 133 hascontact portion 82 withskin contacting surface 86 that controls the penetration depth of thelancet 136. After the incision is formed, theincision forming member 130 along with thereference member 133 are retracted byspring 94 such that thecontact portion 82 is removed from the expression opening 84 in theexpression member 46. By retracting thecontact portion 82 of thereference member 133, the larger expression opening 84 can be used to express bodily fluid. It is contemplated, however, that thereference member 133 can be retracted in other manners. For instance,incision forming member 130 can be incorporated into a SOFTCLIX brand lancing device that can be used to actuate and retract theincision forming member 130. To adjust the penetration depth of thelancet 136, thereference member 133 and thebody portion 132 are threadedly mated together. For example, thereference member 133 and thebody portion 132 can be threadedly mated during the molding process for the parts. As shown in FIG. 11, thereference member 140 has an internally threadedportion 140 that engages an externally threadedportion 142 on thebody portion 132 of theincision forming member 130. Further, thereference member 133 has one ormore wing members 144 extending therefrom that engagespring 94 and are used to help turn thereference member 133 relative to thebody portion 132. For instance, as shown in FIGS. 12 and 13, the penetration depth of thelancet 136 can be reduced by rotating thereference member 133 in a counterclockwise direction C. It should be appreciated that theincision forming member 130 can be threaded differently such that the penetration depth is increased by rotating thereference member 133 in the counterclockwise direction C. - An incision forming
member assembly 150 according to another embodiment of the present invention is illustrated in FIG. 14. As shown, theassembly 150 includes abody 152 andlancet 136 attached to thebody 152. In thebody 152, living hinges 154 (or other spring means) resiliently attach areference member portion 155 to the remainder of thebody 152.Notches 138 are defined in thebody 152 to secure the body to aholder 156. In the illustrated embodiment, the holder hasexternal threads 158 that mate withinternal threads 160 ondepth control member 162. Thedepth control member 162 has acontact edge 164 configured to contact astop flange 166 on thereference member portion 155. Distance D3 betweenedge 164 and stop flange 166 controls the penetration depth of thelancet 136.Assembly 150 further includes asafety cover 168 that covers thelancet 136 in order to protect the user and provide a sterile environment for thelancet 136. In thereference member portion 155, askin contact portion 170 extends from thestop flange 166 along thelancet 136. Between theskin contact portion 170 and thesafety cover 168, a groove or an area ofweakness 172 is formed so that thecover 168 can be detached from theskin contact portion 170 to expose thelancet 136. Once thecover 168 is detached, askin contacting surface 174 is formed atgroove 172. -
Assembly 150 is used in conjunction with anexpression member 46 of the type described above. As previously mentioned, variations in skin height due to factors, such as the pressure applied to the skin, the type of skin and the skin location, can significantly alter the penetration depth of traditional lancing devices.Assembly 150 is constructed to contact the skin before lancing will occur, which in turn provides a reference surface for controlling the penetration depth into the skin. During lancing, theskin contact portion 155 extends through the expression opening 84 in theexpression member 46, and theskin contacting surface 174 ofassembly 150 contacts the skin. As theskin contacting surface 174 is pressed against the skin by the actuation of thelancet assembly 150, the living hinges 154 are compressed until thestop edge 164contacts flange 166. As previously mentioned, the distance D3 betweenedge 164 andflange 166 controls the penetration depth of thelancet 136. Increasing distance D3 by rotating thedepth control member 162 relative toholder 156 deepens the penetration depth of thelancet 136. In contrast, reducing the distance D3 betweenedge 164 andflange 166 decreases the penetration depth of thelancet 136. The living hinges 154 aid in retracting thelancet 136 from the incision. Whenassembly 150 is retracted after lancing the skin, thecontact portion 155 is removed from the expression opening 84 of theexpression member 46, thereby providing a wider opening in which the bodily fluid can be expressed. - A lancing
assembly 180 according to a further embodiment of the present invention will now be described with reference to FIGS. 15-17. Lancingassembly 180 integrates a number of features into a single device; while at the same time allows for sterilization of the lancet without affecting the test strip.Assembly 180 includes anincision forming member 182,test media 184, and acarrier 186. As shown, theincision forming member 182, which is used to form an incision in the skin, has ahead 188, alancet 190, apry member 192, and asafety cover 194. Thehead 188 and thecover 194 are positioned at opposite ends of thelancet 190, and thepry member 192 is positioned along thelancet 190, between thehead 188 and thecover 194. In the illustrated embodiment, thehead 188 has a pair oflock notches 196 for locking theincision forming member 182 in an armed position. Thelancet 190 in the illustrated embodiment is a needle. However, it should be appreciated thatlancet 190 can include other types of instruments that are used to from incision, such as blades for example. Thepry member 192 has a pair of pry surfaces 198 that are angled towards thelancet 190. To make insertion of theincision forming member 182 into the carrier easier, surfaces 198 are rounded. One of the many functions of thesafety cover 194 includes coveringtip 200 of the lancet 190 (see FIG. 17) in order to maintain the sterility of thelancet 190. Moreover, thecover 194 protects users from accidentally cutting themselves. As illustrated, thecover 194 in the illustrated embodiment has a general cylindrical shape with analignment flange 202 extending therefrom at one end. Thecover 194 further has anopening 204 that is normally sealed so as to maintain the sterility of thelancet tip 200. In one form, thehead 188 and thepry member 192 are made from a hard plastic; thecover 194 is made of a soft plastic; and thelancet 190 is metallic. As should be appreciated, these components can be made from other types of materials. - The
test media 184 is used for determining analyte levels in the bodily fluid sample. As should be appreciated, analyte levels can be determined through the chemical, electrical, electrochemical and/or optical properties of the bodily fluid sample collected on the test media, to name a few. For example, thetest media 184 in the illustrated embodiment is a chemically reactive reagent test strip. Typically, reagent test strips are sensitive to thermal and/or chemical processes required for sterilization. The sterilization process can affect the results generated by thetest media 184, and therefore, recalibration of thetest media 184 is required after sterilization. In the embodiment illustrated in FIGS. 15-17, theincision forming member 182 can be separately sterilized such that thetest media 184 does not have to go through the same sterilization process as theincision forming member 182. After sterilization, theincision forming member 182 can be installed in thecarrier 186, thereby eliminating the need to recalibrate thetest media 184. - Referring to FIGS. 15 and 16, the
carrier 186 has a pair oflock arms 206 that define areceptacle 208 in which thehead 188 is locked when thelancet 182 is in the armed position, as is shown in FIG. 17. Eachlock arm 206 has alock tab 210 that is constructed to engage acorresponding notch 196 in thehead 188. Between thelock arms 206, the carrier has aconnector 211 with aslot 212 in which thelancet 190 is slidably received. Thecarrier 186 further includes a pair of living hinges 214 that connect thelock arms 206 tosampling portion 216 of the lancingassembly 180. As shown, the living hinges 214 havenotches 218 that allow the living hinges 214 to bend. Each of the living hinges has two outwardly openingnotches 220 that are located proximal theconnector 211 and thesampling portion 216. Between the outwardly openingnotches 220, each livinghinge 214 has an inwardly openingnotch 222. The living hinges 214 haveexpansion members 224 that are connected together by atamper evidence link 226. Each expansion member has apry surface 228, and the pry surfaces 228 are constructed to define apry member cavity 230 that receives thepry member 192 of theincision forming member 182. In the illustrated embodiment, the pry surfaces 228 are angled and are concavely shaped to coincide with the shape of thesurfaces 198 on thepry member 192. Thecarrier 186 further includes acover receptacle 280 that defines asafety cover cavity 282 in which thesafety cover 194 of theincision forming member 182 is received. As illustrated in FIG. 15,cavity 282 includes analignment slot 284 that is configured to receive thealignment flange 202 of thesafety cover 194. - As shown in FIG. 15, the
sampling portion 216 of thecarrier 186 defines atest media cavity 286 in which thetest media 184 is housed during use. Inside thetest media cavity 286, thesampling portion 216 further has acapillary channel 288. Thecapillary channel 288 is configured to allow thelancet 182 to extend therethrough during lancing and is configured to draw fluid onto thetest media 184 during sampling. Incavity 286, thetest media 184 is slightly spaced away from thesampling portion 216 in order to define a flat capillary space for spreading the fluid sample across thetest media 184. As depicted, across member 289 extends across a portion of thechannel 288 proximal thecover 194 so as to prevent removal of theincision forming member 182 when theassembly 180 is armed. Thechannel 288 fluidly communicates with anaperture 290 defined inskin contacting portion 292. Theskin contacting portion 292 has askin contacting surface 294 that contacts and flattens the skin around theaperture 290 so that thelancet 182 can cut an incision with a precise depth. - To arm the
assembly 180, thehead 188 is pushed into thereceptacle 208 such that thelock arms 206 engage and lock with thenotches 196 in thehead 188, as is illustrated in FIG. 17. During arming, thepry member 192 breaks the tamper evidence link 226 by prying theexpansion members 224 apart, which in turn bends the living hinges 214. As mentioned above, thetamper evidence link 226 provides a visual indicator of prior arming or use of thedevice 180. Whenassembly 180 is armed, thetip 200 of thelancet 182 pierces through the sealedopening 204 in thecover 194 and extends into thecapillary channel 288. By extending across thecapillary channel 288, thecross member 289 helps to prevent accidental removal of theincision forming member 182 after arming. It should be noted that that thetest media 184 is not shown in FIG. 17 so that thetip 200 of thelancet 182 can be viewed when in the armed position and that thetest media 184 is typically attached before arming in the illustrated embodiment. Moreover, it should be noted that thetip 200 of thelancet 182 in one form is typically positioned withinaperture 290 proximal theskin contacting surface 294. - After arming,
assembly 180 can be used to form an incision in the skin. To form the incision, theassembly 180 is installed in a sampling device in one embodiment of the present invention. In one form, theassembly 180 is armed by the sampling device, and in another form, the assembly is armed before installation in the sampling device. During lancing, theskin contacting surface 292 contacts the skin, and thetip 200 of thelancet 190 is driven throughopening 290. In one embodiment, theincision forming member 182 is actuated by a hammer, or a similar device, in order to strike thehead 188 of theincision forming member 182. In one embodiment, the penetration depth of thelancet 190 is controlled by an adjustable holder forassembly 180 of the type similar to the one described below with reference to FIG. 22. In another embodiment, distance D4 between thepry member 192 and thecover 194 controls the penetration depth of thelancet 190. As theincision forming member 182 is driven, the living hinges 214 are compressed. After thetip 200 of thelancet 190 is fully extended, the compressed living hinges 214 recoil, thereby retracting thelancet 190. The bodily fluid from the incision formed by thelancet 190 is collected throughaperture 290 and is distributed across thetest media 184 viacapillary channel 184. The annular space defined inaperture 290 between thelancet 190 and theskin contacting portion 292 forms a low volume capillary for transporting the fluid. The fluid is then transferred to the flat capillary defined between thetest media 184 and thesampling portion 216 incavity 286. In one form, the gaps are small (0.1 mm or less) to promote transfer of the fluid between the annular and flat capillaries. In one embodiment, venting of the capillaries is accomplished via slots orchannels 295 formed aroundcavity 286. - A
sampling device 300 according to another embodiment of the present invention is illustrated in FIGS. 18-20. FIG. 18 depicts thedevice 300 prior to lancing; while FIGS. 19 and 20 show thedevice 300 during lancing.Sampling device 300 includes ahead member 302 that has a pair of living hinges orleaf springs 304. Thehead 302 defines a pair ofopenings 306 that are used to secure thedevice 300. As shown, the ends of theleaf springs 306 that are opposite thehead 302 are received inslots 306 defined insafety cover 308. Thesafety cover 308 encapsulateslancet 190 to protect thelancet 190 from outside contamination. In the illustrated embodiment, thelancet 190 is attached to thehead 302, and in another embodiment, thelancet 190 abuts thehead 302. Thecover 308 has an encapsulatingsurface 310 that covers thelancet 190. Before lancing, as depicted in FIG. 18, the encapsulatingsurface 310 of thesafety cover 308 covers thelancet 190. During lancing, as illustrated in FIG. 19, thetip 200 of thelancet 190 pierces the encapsulatingsurface 310 of thecover 308. In one embodiment, the encapsulatingsurface 310 includes soft foam and/or rubber that surround thetip 200 of thelancet 190 inside thecover 308. Following lancing of the skin, theleaf springs 304, which were bent during lancing, retract thelancet 190 from the skin. - Like the device shown in FIGS.15-17, the
sampling device 300 illustrated in FIGS. 18-20 allowstest media 312 to be assembled to the remainder of the device after thelancet 190 has been sterilized. As illustrated in FIG. 20, thetest media 312 is attached to thesafety cover 308, and thetest media 312 has anoverhang portion 313 that extendspast surface 310 on thecover 308. In one embodiment, thetest media 312 is glued to the covers. As should be appreciated, thetest media 312 can be attached in other manners. In the illustrated embodiment, thetest media 312 is operable to test analyte levels electrochemically. In another embodiment, thetest media 312 is operable to test analyte levels optically. It should be understood that thetest media 312 can test analyte levels using other techniques. Proximal to surface 310, thetest media 312 incorporates acapillary portion 314 for drawing bodily fluid into thetest media 312 for testing. Theoverhang portion 313 of thetest media 312 ensures thatcapillary 314 is in close proximity to the skin. Thecapillary portion 314 is surrounded by askin contacting surface 315 that acts as the reference surface for controlling the penetration depth of thelancet 190. In FIG. 20, thehead 302 and thesafety cover 308 have opposing stop surfaces 316 and 318 that control the penetration depth of thelancet 190. In one embodiment, the distance between stop surfaces 316 and 318 determines the penetration depth of thelancet 190. In another embodiment, spacers with varying thicknesses are placed between the stop surfaces 316 and 318 to adjust the penetration depth of thelancet 190. - FIGS.21-23 illustrate a
sampling device 330 according to another embodiment of the present invention. As shown in FIGS. 21A-B and 22,device 330 includes ahousing 332, a lancet orblade 334 slidably received in thehousing 332, andtest media 336.Housing 332 has first 338 and second 340 sides that are attached together through abead 342 to form ablade cavity 344 in whichblade 334 is received. In the illustrated embodiment, both the first 338 and second 340 sides are generally flat to give the sampling device an overall flat appearance. In one form,bead 342 is an adhesive bead that adheres the first 338 and second 340 sides together. Conceptually, thehousing 332 can be further subdivided intoseparate head 346 and skin contacting 348 portions.Blade 334 is attached to thehead 346 and is slidable withinblade cavity 344 in theskin contacting portion 348 of thehousing 332. Thefirst side 338 of thehousing 332 defines a living hinge orleaf spring 350 that connects thehead 346 to theskin contacting portion 348 of thehousing 332. Thehead 346 can further havenotches 352 for securingdevice 330 to a holder. FIGS. 21 and 22 illustrate theleaf spring 350 in a flexed state whenblade 334 is extended from thehousing 332 throughopening 353. Next to opening 353, thefirst side 338 of thehousing 332 has askin contacting edge 354 that acts as a reference surface for controlling the penetration depth of theblade 334. Opposite theedge 354, thesecond side 340 of thehousing 332 has acapillary slot 356 for drawing fluid via capillary action into theblade cavity 344. As shown, thecapillary slot 356 in the illustrated embodiment has a gradual tapered shaped from opening 353 to improve fluid flow from the incision into theblade cavity 344. As shown in FIG. 23,capillary slot 356 as well as opening 353 can be covered with asafety cover 358 that can be used to maintain the sterility ofblade 334 and to protect the user from injury. - In the
blade cavity 344, especially between theblade 334 and thesecond side 340 of thehousing 332, a gap is formed around theblade 334 for drawing bodily fluid from the incision to thetest media 336 via capillary action. In one embodiment, the side of theblade 334 that faces thetest media 336 is coated and/or incorporates hydrophilic material, and the opposite side is coated and/or incorporates hydrophobic material. As should be appreciated, this construction improves the transfer of the fluid onto thetest media 336. Thetest media 336 can be of the type described above and can be attached to thehousing 332 in a number of manners. For instance, thetest media 336 can be a chemically reactive reagent strip that is glued to the housing. To ensure proper calibration of thetest media 336, thetest media 336 can be attached to thehousing 332 after theblade 334 has been sterilized. Once attached, thetest media 334 defines portion of theblade cavity 344 and fluid fromslot 356 can be drawn to thetest media 332 through theblade cavity 334. - A
holder 360 fordevice 330 that is operable to adjust the penetration depth of theblade 334 is illustrated in FIG. 22.Holder 360 has acover 362 with areceptacle 364 in whichdevice 330 is received and adepth control mechanism 366 that is coupled to thecover 362. In the illustrated embodiment, a testmedia view window 368 is defined in thecover 362 so that thetest media 336 can be viewed.Window 368 can allow thetest media 336 to be analyzed optically. Thedepth control mechanism 366 has adepth adjustment wheel 370 that is rotatably coupled to a bearingmember 372 throughrod 374, and the bearingmember 372 is attached to thecover 362. Therod 374 has agear 376 that is engageable with anactuation gear 378.Wheel 380 only partially extends aroundrod 374, thereby defining agap 380 that allowsdevice 330 to be mounted inholder 360. As shown, thewheel 380 has a series ofsteps 382 of graduated thickness, and thesteps 382 ofwheel 380 can be rotated through aslot 384 in thecover 362. - To
insert device 330 intoholder 360, theactuation gear 378 rotates thewheel 380 such thatgap 380 is positioned in theslot 384.Device 330 is then slid into thereceptacle 364 so that thehead 346 of thedevice 330 is slidpast slot 384. Next, theactuation gear 378 rotates thewheel 380 such that at least one of thesteps 382 is positioned in theslot 384 between thehead 346 and theskin contacting portion 348, thereby securing thedevice 330 to theholder 360. Thestep 382 with the appropriate thickness can be positioned in theslot 384 between thehead 346 and theskin contacting portion 348 so as to control the penetration depth of theblade 334. During lancing, as theholder 360 is driven towards the skin, theskin contacting edge 354 contacts the surface of the skin. As theholder 360 is driven further, theskin contacting portion 348 of thehousing 332 slides within thereceptacle 364 towards thehead 346 of thedevice 330 such that theblade 334 is uncovered to lance the skin. Theskin contacting portion 348 of thehousing 332 continues to retract until it engages the selectedstep 382 on thewheel 380. As previously mentioned, the thickness of thestep 382 controls the penetration depth of theblade 334. Afterwards, theleaf spring 350, which became flexed during lancing, extendsportion 348 of thehousing 332 so as to recover theblade 334. Once the incision is formed, theskin contacting edge 354 can remain positioned against the skin (or positioned proximal to the skin) such that the fluid from the incision is drawn via capillary action into theblade cavity 344. In one embodiment, the fluid is drawn onto the side of the blade that faces thetest strip 336, which is coated with hydrophilic material. From theblade cavity 344, the fluid is then deposited onto thetest strip 336 for testing. - A lancing
device 400 according to a further embodiment, which incorporates components similar to the embodiments illustrated in FIGS. 1-9, will now be described with reference to FIGS. 23-28. Lancingdevice 400 according to the illustrated embodiment is configured to automatically increase the size of the expression opening and maintain the larger sized expression opening when fluid is expressed from an alternate site. As depicted in FIG. 23, the lancingdevice 400 includes an outer expression member ortip 46 b, areference member 48 b, acam arm 112 a, asleeve 96 a, alatch mechanism 402, ahousing 98 a,spring 100 andnut 102. Similar to the embodiments illustrated in FIGS. 1-9, thereference member 48 b hasskin contacting portion 82 withskin contacting surface 86 that surrounds aperture 88 (see FIG. 27). Theexpression tip 46 b in FIG. 28 has anexpression surface 92, which has a conical form, and theexpression surface 92 surroundsexpression opening 84. Theexpression tip 46 b is attached to thesleeve 98 a, which is slidably received in thehousing 98 a. In one form of this embodiment, theexpression tip 46 b is glued to thesleeve 98 a. However, it is contemplated that theexpression tip 46 b can be secured in other manners. - As depicted in FIG. 23, the
sleeve 98 a defines apair guide slots 404 that are configured to receive a pair ofguide bosses 406 on thereference member 48 b. It should be appreciated that thereference member 48 b can have more orless guide bosses 406 than is shown. In the illustrated embodiment, theguide bosses 406 have a generally rectangular shape so as to align thereference member 48 b in theguide slots 404. Around thesleeve 98 a, thehousing 96 a has stoparms 408 withstop members 410 that are adapted to engage astop flange 104 a on thesleeve 98 a. In the illustrated embodiment, the penetration depth of thelancet 50 is controlled by the mechanism that is used actuate thelancet 50, such as in a SOFTCLIX brand lancing device. It is contemplated, however, that the penetration depth of thelancet 50 can be controlled in other manners. For instance, the distance between thestop flange 104 a and thestop members 410 can be used to control the penetration depth of thelancet 50. On one of thestops 408,arm 412, thecam arm 112 a is pivotally mounted. Botharm 412 andcam arm 112 a havepivot pin openings pivot pin 418 is received, as is shown in FIGS. 23-24. Thecam arm 112 a has alink portion 420 that join twoactuation members 422 that give thecam arm 112 a a general u-shape. The end of eachactuation member 422,opposite link 420, has a referencemember engaging slot 424 that are configured to engage cam arm pins 426 that extend from theguide bosses 406 on thereference member 48 b. In the illustrated embodiment, theactuation members 422 have a generally bowed shape so as to fit around thesleeve 98 a. Betweenpivot pin openings 416 andslots 424, eachactuation member 422 has asleeve engaging pin 428 that are received in a corresponding pivot pin opening 430 in thesleeve 98 a. On thecam arm 112 a, alock arm portion 430 with alock tab 432 extends from one of theactuation members 422. Referring to FIGS. 25 and 26, one end of thelatch arm 402 is pivotally mounted to thehousing 96 a, and the other end of thelatch arm 402 has alatch notch 434 configured to engage thelock tab 432. In the illustrated embodiment, gravity is used to position thelatch arm 402 such that the latch arm is able to engage thelock tab 432. In another embodiment, thelatch arm 402 incorporates a spring for biasing thelatch arm 402 toward thehousing 96 a such that thelatch arm 402 is able to engage thelock tab 432 on thecam arm 112 a. It should be appreciated thatlatch arm 402 can be biased in other manners. - By being able to accurately control the penetration depth of the
lancet 50, thedevice 400 is able to safely lance and express fluid from both fingertips and alternate sites. As previously discussed, the actuation mechanism for thelancet 50 controls the penetration depth of thelancet 50. With reference to FIGS. 27-28,spring 100 is secured between thestop flange 104 a of thesleeve 98 a and thenut 102, which is secured to thehousing 96 a. Normally, as shown in FIG. 27, thespring 100 biases thesleeve 98 a with respect to thehousing 96 a such that thecam arm 112 a positions thereference member 48 b in expression opening 84 of theexpression tip 46 b so that the penetration depth can be precisely controlled during lancing. Typically,device 400 is only used to lance the fingertip and is not used to express fluid from the fingertip because fingertips tend to provide an adequate fluid supply without the need to express the fluid. When expressing from an alternate site, as depicted in FIG. 28, the user grips and presses thehousing 96 a towards the skin. As thehousing 96 a slides relative to thesleeve 98 a, thecam arm 112 a pivots such that thereference member 48 b is retracted from theexpression opening 84. The retraction of thereference member 48 b creates a large opening in which bodily fluid from an alternate site can be expressed. To ensure that thereference member 48 b remains in the retracted position during expression of fluid from an alternate site, thelock tab 432 on thecam arm 112 a locks with thelatch arm 402. After the fluid has been expressed, thelatch arm 402 can be disengaged from thelock tab 432 to return thedevice 400 to its original configuration, as illustrated in FIG. 27. - A
fluid sampling device 450 according to a further embodiment of the present invention is illustrated in FIGS. 29-31. With reference to FIG. 29, thedevice 450 has anactuation knob 452 at one end and a skin contacting orexpression member 454 at the other end. Theactuation knob 452 is rotatably mounted onhousing 456, and theknob 452 can be rotated in order to change the shape and size of theexpression member 454. Like the previous embodiments,device 450 is configured to precisely control the penetration depth of a lancet for safety purposes and is configurable to express fluid from finger as well as from alternate sites. As illustrated in FIG. 30,device 450 includeslancet 130 that is able to control and adjust its penetration depth, as was described above with reference to FIGS. 10-13. It should be appreciated thatdevice 450 can use other types of lancing devices that can control penetration depth of the lancet, such as the embodiments illustrated in FIGS. 14-23. Theexpression member 454 has alancet opening 458 through whichlancet 130 is able to extend during lancing. - As briefly mentioned above, the
expression member 454 is reconfigurable to change shapes depending on the expression site. For instance, thesampling device 450 in FIG. 30 is configured to express fluid from a fingertip or similar site, and in FIG. 31,device 450 is in a configuration to create a larger expression opening in order to express fluid from an alternate site. To accomplish this, thesampling device 450 has aninner tube 460 slidably mounted inside anouter tube 462. Theinner tube 460 has a proximal end that is attached to theknob 452. The distal end of theinner tube 460 has aflange 464 that is rotatably coupled to acollar 464 such that theflange 464 is able to rotate relative to thecollar 464. In theexpression member 454, living hinges 466 connect thecollar 464 to theouter tube 462, and each livinghinge 466 has a relief notch orportion 468 that allows the living hinge to bend. As shown, the living hinges 466 are covered by a covering 470 that definesopening 458. In the illustrated embodiment, the covering 470 is made of a flexible material that is attached to the living hinges 466. By way of nonlimiting example, the covering 470 can be made of flexible plastic, rubber or the like. Thecollar 466 provides structural support around opening 458 so that thedevice 450 is able to express fluid from incision I in fingertip F. However, usually expressing the fingertip F is not required in order to obtain an adequate fluid sample. - The
sampling device 450 further incorporates anactuation mechanism 472 that, in conjunction withknob 452, retracts theinner tube 460 inside theouter tube 462, thereby expanding theexpression member 454 to the configuration illustrated in FIG. 31. With reference to FIGS. 29 and 30, theactuation mechanism 472 in the illustrated embodiment includes aguide pin 474 that extends from theinner tube 460 into aguide channel 476 in theouter tube 462. As depicted in FIG. 29, theguide channel 476 extends along a generally spiral shaped path onhousing 456. Although theguide channel 476 is visible on the outside of the device in FIG. 29, it is contemplated that theguide channel 476 can be enclosed so as to be invisible from the outside. By way of example, theactuation mechanism 472 operates in a fashion similar to that of a lipstick dispenser. As theknob 452 is rotated relative to thehousing 456 in a clockwise fashion, as viewed from the proximal end of thedevice 450, theguide pin 474 slides withinchannel 474 such that the distal end of theinner tube 460 is drawn inside of theouter tube 462. While theinner tube 460 retracts inside theouter tube 462, the living hinges 468 bend to create anexpression opening 476 that is larger than opening 458 such that thedevice 450 is able to express fluid from alternate site A. As illustrated in FIG. 31, the living hinges 466 bend atmiddle notch 478 to form an outer expression edge 480 that defines expression opening 476 with anexpression surface 482. In the illustrated embodiment, theexpression surface 482 has a conical shape. It is contemplated that the shape of theexpression member 454 can be changed in other manners. In a further embodiment, theactuation mechanism 472 andinner tube 460 are eliminated such that the user manually pushes in theexpression member 454 to create a dented portion on theexpression member 454 so that fluid can be expressed from an alternate site. - As should be appreciated, the above-described devices can be incorporated into an integrated sampling device that further includes a capillary tube or some other wicking means for drawing the bodily fluid sample onto a test strip while the device remains positioned over the incision.
Sampling device 330, which was described above with reference to FIGS. 21-23, is an example of one such integrated device. As previously mentioned,device 330 remains in contact with the skin as the fluid sample is drawn into theblade cavity 344 and deposited onto thetest strip 336. It is contemplated that other devices described herein can be modified to collect and test a fluid sample in a similar fashion. - While the invention has been illustrated and described in detail in the drawings and foregoing description, the same is to be considered as illustrative and not restrictive in character, it being understood that only the preferred embodiment has been shown and described and that all changes and modifications that come within the spirit of the invention are desired to be protected. All publications, patents, and patent applications cited in this specification are herein incorporated by reference as if each individual publication, patent, or patent application were specifically and individually indicated to be incorporated by reference and set forth in its entirety herein.
Claims (45)
Priority Applications (11)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/330,724 US20040127818A1 (en) | 2002-12-27 | 2002-12-27 | Precision depth control lancing tip |
AU2003217403A AU2003217403A1 (en) | 2002-12-27 | 2003-02-13 | Precision depth control lancing tip |
PCT/US2003/004380 WO2004058068A2 (en) | 2002-12-27 | 2003-02-13 | Precision depth control lancing tip |
EP03713448A EP1581112A2 (en) | 2002-12-27 | 2003-02-13 | Depth control lancing device and method of using same |
US10/744,167 US7736322B2 (en) | 2002-12-27 | 2003-12-23 | Precision depth control lancing tip |
PCT/US2003/041139 WO2004060159A1 (en) | 2002-12-27 | 2003-12-23 | Precision depth control lancing tip |
AU2003300333A AU2003300333A1 (en) | 2002-12-27 | 2003-12-23 | Precision depth control lancing tip |
EP03814942A EP1578269B1 (en) | 2002-12-27 | 2003-12-23 | Precision depth control lancing tip |
US12/038,302 US7976477B2 (en) | 2002-12-27 | 2008-02-27 | Precision depth control lancing tip |
US12/180,101 US8052926B2 (en) | 2002-12-27 | 2008-07-25 | Method for manufacturing a sterilized lancet integrated biosensor |
US13/154,497 US9554741B2 (en) | 2002-12-27 | 2011-06-07 | Precision depth control lancing tip |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/330,724 US20040127818A1 (en) | 2002-12-27 | 2002-12-27 | Precision depth control lancing tip |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2003/004380 Continuation-In-Part WO2004058068A2 (en) | 2002-12-27 | 2003-02-13 | Precision depth control lancing tip |
Related Child Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2003/004380 Continuation WO2004058068A2 (en) | 2002-12-27 | 2003-02-13 | Precision depth control lancing tip |
US10/744,167 Continuation-In-Part US7736322B2 (en) | 2002-12-27 | 2003-12-23 | Precision depth control lancing tip |
US12/038,302 Division US7976477B2 (en) | 2002-12-27 | 2008-02-27 | Precision depth control lancing tip |
Publications (1)
Publication Number | Publication Date |
---|---|
US20040127818A1 true US20040127818A1 (en) | 2004-07-01 |
Family
ID=32654574
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/330,724 Abandoned US20040127818A1 (en) | 2002-12-27 | 2002-12-27 | Precision depth control lancing tip |
US10/744,167 Expired - Fee Related US7736322B2 (en) | 2002-12-27 | 2003-12-23 | Precision depth control lancing tip |
US12/038,302 Expired - Fee Related US7976477B2 (en) | 2002-12-27 | 2008-02-27 | Precision depth control lancing tip |
US13/154,497 Active 2026-03-14 US9554741B2 (en) | 2002-12-27 | 2011-06-07 | Precision depth control lancing tip |
Family Applications After (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/744,167 Expired - Fee Related US7736322B2 (en) | 2002-12-27 | 2003-12-23 | Precision depth control lancing tip |
US12/038,302 Expired - Fee Related US7976477B2 (en) | 2002-12-27 | 2008-02-27 | Precision depth control lancing tip |
US13/154,497 Active 2026-03-14 US9554741B2 (en) | 2002-12-27 | 2011-06-07 | Precision depth control lancing tip |
Country Status (4)
Country | Link |
---|---|
US (4) | US20040127818A1 (en) |
EP (2) | EP1581112A2 (en) |
AU (1) | AU2003217403A1 (en) |
WO (2) | WO2004058068A2 (en) |
Cited By (115)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020137998A1 (en) * | 2001-03-26 | 2002-09-26 | Wilson Smart | Silicon microprobe with integrated biosensor |
US20030018282A1 (en) * | 2001-07-20 | 2003-01-23 | Carlo Effenhauser | System for withdrawing small amounts of body fluid |
US20030199895A1 (en) * | 2002-04-19 | 2003-10-23 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US20040133127A1 (en) * | 2002-12-30 | 2004-07-08 | Roe Jeffrey N. | Capillary tube tip design to assist blood flow |
US20040236251A1 (en) * | 2002-12-27 | 2004-11-25 | Roe Steven N. | Precision depth control lancing tip |
US20050085839A1 (en) * | 2003-10-20 | 2005-04-21 | John Allen | Lancing device with a floating probe for control of penetration depth |
US20050131315A1 (en) * | 2003-12-16 | 2005-06-16 | Ching-Nan Chu | Method for indicating the user's name on a blood-sampling needle pen and the product thereof |
US20050143771A1 (en) * | 2003-12-02 | 2005-06-30 | Stout Jeffrey T. | Lancing device with combination depth and activation control |
US20050245844A1 (en) * | 2004-05-03 | 2005-11-03 | Mace Chad H | Analyte test device |
US20050251064A1 (en) * | 2004-05-07 | 2005-11-10 | Roe Jeffrey N | Integrated disposable for automatic or manual blood dosing |
US20050277849A1 (en) * | 2004-06-10 | 2005-12-15 | Daniel Wong | Vacuum sample expression device |
US20050283094A1 (en) * | 2004-06-21 | 2005-12-22 | Detlef Thym | Disposable lancet and lancing cap combination for increased hygiene |
US20060030788A1 (en) * | 2004-08-04 | 2006-02-09 | Daniel Wong | Apparatus and method for extracting bodily fluid utilizing a flat lancet |
US20060079810A1 (en) * | 2004-10-08 | 2006-04-13 | Paul Patel | Integrated lancing test strip with capillary transfer sheet |
US20060100543A1 (en) * | 2002-12-30 | 2006-05-11 | Raney Charles C | Integrated Analytical Test Element |
US20060173380A1 (en) * | 2003-07-16 | 2006-08-03 | Roche Diagnostics Operations, Inc. | Analysis apparatus and analysis method for body fluids |
US20060200045A1 (en) * | 2005-03-02 | 2006-09-07 | Roe Steven N | Dynamic integrated lancing test strip with sterility cover |
WO2006092309A2 (en) | 2005-03-03 | 2006-09-08 | Roche Diagnostics Gmbh | Piercing system for removing a bodily fluid |
US20060229532A1 (en) * | 2005-04-12 | 2006-10-12 | Daniel Wong | Integrated lancing test strip with retractable lancet |
US20060247554A1 (en) * | 2002-12-30 | 2006-11-02 | Roe Steven N | Blood acquisition suspension system |
US20070167869A1 (en) * | 2005-03-02 | 2007-07-19 | Roe Steven N | System and method for breaking a sterility seal to engage a lancet |
US20070182051A1 (en) * | 2006-02-09 | 2007-08-09 | Herbert Harttig | Test element with elastically mounted lancet |
US20070191739A1 (en) * | 2002-12-30 | 2007-08-16 | Roe Steven N | Flexible test strip lancet device |
US20070213636A1 (en) * | 2004-02-06 | 2007-09-13 | Kuriger Rex J | Method and apparatus for measuring an analyte in a body fluid |
US20080027474A1 (en) * | 2006-06-15 | 2008-01-31 | Abbott Diabetes Care Inc. | Adjustable Lancing Devices and Methods |
US20080065130A1 (en) * | 2006-08-22 | 2008-03-13 | Paul Patel | Elastomeric toroidal ring for blood expression |
US20080082117A1 (en) * | 2003-11-12 | 2008-04-03 | Facet Technologies, Llc | Lancing device |
US20080108910A1 (en) * | 2005-04-07 | 2008-05-08 | Heinz-Michael Hein | Method and device for the extraction of a body fluid |
US20080188731A1 (en) * | 2004-07-13 | 2008-08-07 | Dexcom, Inc. | Transcutaneous analyte sensor |
US20080262386A1 (en) * | 2007-04-21 | 2008-10-23 | Roche Diagnostics Operations, Inc. | Analytical system for detecting an analyte in a body fluid and disposable integrated puncturing and analyzing element |
US20090010802A1 (en) * | 2002-12-27 | 2009-01-08 | Abner David Joseph | Method for manufacturing a sterilized lancet integrated biosensor |
US20090088786A1 (en) * | 2007-09-27 | 2009-04-02 | Zook Ronald E | Method of Performing a Suprapubic Transurethral Cystostomy and Associated Procedures and Apparatus Therefor |
US20090216155A1 (en) * | 2005-11-21 | 2009-08-27 | Nicholas Long | Test Device |
US7648468B2 (en) | 2002-04-19 | 2010-01-19 | Pelikon Technologies, Inc. | Method and apparatus for penetrating tissue |
US20100042131A1 (en) * | 2008-08-14 | 2010-02-18 | Abbott Diabetes Care Inc. | Cocking mechanism for lancing device |
US7666149B2 (en) | 1997-12-04 | 2010-02-23 | Peliken Technologies, Inc. | Cassette of lancet cartridges for sampling blood |
US7674232B2 (en) | 2002-04-19 | 2010-03-09 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US7682318B2 (en) | 2001-06-12 | 2010-03-23 | Pelikan Technologies, Inc. | Blood sampling apparatus and method |
US7699791B2 (en) | 2001-06-12 | 2010-04-20 | Pelikan Technologies, Inc. | Method and apparatus for improving success rate of blood yield from a fingerstick |
US7708701B2 (en) | 2002-04-19 | 2010-05-04 | Pelikan Technologies, Inc. | Method and apparatus for a multi-use body fluid sampling device |
US7717863B2 (en) | 2002-04-19 | 2010-05-18 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US7727467B2 (en) | 2003-06-20 | 2010-06-01 | Roche Diagnostics Operations, Inc. | Reagent stripe for test strip |
US7731729B2 (en) | 2002-04-19 | 2010-06-08 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US20100168618A1 (en) * | 2004-12-10 | 2010-07-01 | Hans List | Lancet device for generating a puncture wound, and lancet drive assembly |
US7749174B2 (en) | 2001-06-12 | 2010-07-06 | Pelikan Technologies, Inc. | Method and apparatus for lancet launching device intergrated onto a blood-sampling cartridge |
US20100174305A1 (en) * | 2003-08-29 | 2010-07-08 | Owen Mumford Limited | Lancets |
US7780631B2 (en) | 1998-03-30 | 2010-08-24 | Pelikan Technologies, Inc. | Apparatus and method for penetration with shaft having a sensor for sensing penetration depth |
US7822454B1 (en) | 2005-01-03 | 2010-10-26 | Pelikan Technologies, Inc. | Fluid sampling device with improved analyte detecting member configuration |
US7833171B2 (en) | 2002-04-19 | 2010-11-16 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US7841992B2 (en) | 2001-06-12 | 2010-11-30 | Pelikan Technologies, Inc. | Tissue penetration device |
US7850621B2 (en) | 2003-06-06 | 2010-12-14 | Pelikan Technologies, Inc. | Method and apparatus for body fluid sampling and analyte sensing |
US7862520B2 (en) | 2002-04-19 | 2011-01-04 | Pelikan Technologies, Inc. | Body fluid sampling module with a continuous compression tissue interface surface |
US7874994B2 (en) | 2002-04-19 | 2011-01-25 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US7892183B2 (en) | 2002-04-19 | 2011-02-22 | Pelikan Technologies, Inc. | Method and apparatus for body fluid sampling and analyte sensing |
US7892185B2 (en) | 2002-04-19 | 2011-02-22 | Pelikan Technologies, Inc. | Method and apparatus for body fluid sampling and analyte sensing |
US20110046453A1 (en) * | 2009-08-20 | 2011-02-24 | Michael Keil | Test strip with a shaped tip for skin straightening |
US7901362B2 (en) | 2002-04-19 | 2011-03-08 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US7901365B2 (en) | 2002-04-19 | 2011-03-08 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US20110060245A1 (en) * | 2008-05-06 | 2011-03-10 | Gennadiy Konstantinovich Piletskiy | Device for measuring intracranial pressure in newborns and babies and a supporting member for said device |
US7909778B2 (en) | 2002-04-19 | 2011-03-22 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US7909777B2 (en) | 2002-04-19 | 2011-03-22 | Pelikan Technologies, Inc | Method and apparatus for penetrating tissue |
US7914465B2 (en) | 2002-04-19 | 2011-03-29 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US7976476B2 (en) | 2002-04-19 | 2011-07-12 | Pelikan Technologies, Inc. | Device and method for variable speed lancet |
US7988645B2 (en) | 2001-06-12 | 2011-08-02 | Pelikan Technologies, Inc. | Self optimizing lancing device with adaptation means to temporal variations in cutaneous properties |
US8071030B2 (en) | 2003-06-20 | 2011-12-06 | Roche Diagnostics Operations, Inc. | Test strip with flared sample receiving chamber |
US8079960B2 (en) | 2002-04-19 | 2011-12-20 | Pelikan Technologies, Inc. | Methods and apparatus for lancet actuation |
US8148164B2 (en) | 2003-06-20 | 2012-04-03 | Roche Diagnostics Operations, Inc. | System and method for determining the concentration of an analyte in a sample fluid |
WO2012059205A1 (en) * | 2010-11-04 | 2012-05-10 | Roche Diagnostics Gmbh | Safety lancet |
US8197421B2 (en) | 2002-04-19 | 2012-06-12 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US8221334B2 (en) | 2002-04-19 | 2012-07-17 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for penetrating tissue |
US8262614B2 (en) | 2003-05-30 | 2012-09-11 | Pelikan Technologies, Inc. | Method and apparatus for fluid injection |
US8267870B2 (en) | 2002-04-19 | 2012-09-18 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for body fluid sampling with hybrid actuation |
US8282576B2 (en) | 2003-09-29 | 2012-10-09 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for an improved sample capture device |
US8287703B2 (en) | 1999-10-04 | 2012-10-16 | Roche Diagnostics Operations, Inc. | Biosensor and method of making |
US8333710B2 (en) | 2002-04-19 | 2012-12-18 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
US8360992B2 (en) | 2002-04-19 | 2013-01-29 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for penetrating tissue |
DE102004064136B4 (en) * | 2004-12-10 | 2013-03-21 | Roche Diagnostics Gmbh | Lancet device for making puncture wound for taking out body fluid for diagnostic purpose has reference element coupling mechanism with lancet drive for moving reference element and cam which is driven by cam rider |
US8435190B2 (en) | 2002-04-19 | 2013-05-07 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for penetrating tissue |
US8444574B2 (en) | 2006-09-04 | 2013-05-21 | Roche Diagnostics Operations, Inc. | Lancing system for the extraction of a body fluid |
EP2601890A1 (en) * | 2011-12-09 | 2013-06-12 | ARKRAY, Inc. | Lancet cartridge |
US8556829B2 (en) | 2002-04-19 | 2013-10-15 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for penetrating tissue |
JP2013212288A (en) * | 2012-04-02 | 2013-10-17 | Nanbu Plastics Co Ltd | Puncturing utensil for blood sampling |
US8574895B2 (en) | 2002-12-30 | 2013-11-05 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus using optical techniques to measure analyte levels |
WO2013192179A1 (en) * | 2012-06-18 | 2013-12-27 | Facet Technologies, Llc | Lancing device endcap with internal dial-driven depth adjust |
US8641644B2 (en) | 2000-11-21 | 2014-02-04 | Sanofi-Aventis Deutschland Gmbh | Blood testing apparatus having a rotatable cartridge with multiple lancing elements and testing means |
US8652831B2 (en) | 2004-12-30 | 2014-02-18 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for analyte measurement test time |
US8668656B2 (en) | 2003-12-31 | 2014-03-11 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for improving fluidic flow and sample capture |
US8679853B2 (en) | 2003-06-20 | 2014-03-25 | Roche Diagnostics Operations, Inc. | Biosensor with laser-sealed capillary space and method of making |
US8702624B2 (en) | 2006-09-29 | 2014-04-22 | Sanofi-Aventis Deutschland Gmbh | Analyte measurement device with a single shot actuator |
US8721671B2 (en) | 2001-06-12 | 2014-05-13 | Sanofi-Aventis Deutschland Gmbh | Electric lancet actuator |
US8784335B2 (en) | 2002-04-19 | 2014-07-22 | Sanofi-Aventis Deutschland Gmbh | Body fluid sampling device with a capacitive sensor |
US8792955B2 (en) | 2004-05-03 | 2014-07-29 | Dexcom, Inc. | Transcutaneous analyte sensor |
US8828203B2 (en) | 2004-05-20 | 2014-09-09 | Sanofi-Aventis Deutschland Gmbh | Printable hydrogels for biosensors |
US8965476B2 (en) | 2010-04-16 | 2015-02-24 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
US20150157361A1 (en) * | 2011-03-14 | 2015-06-11 | Unomedical A/S | Inserter System with Transport Protection |
US9144401B2 (en) | 2003-06-11 | 2015-09-29 | Sanofi-Aventis Deutschland Gmbh | Low pain penetrating member |
US9226699B2 (en) | 2002-04-19 | 2016-01-05 | Sanofi-Aventis Deutschland Gmbh | Body fluid sampling module with a continuous compression tissue interface surface |
US9248267B2 (en) | 2002-04-19 | 2016-02-02 | Sanofi-Aventis Deustchland Gmbh | Tissue penetration device |
US9247900B2 (en) | 2004-07-13 | 2016-02-02 | Dexcom, Inc. | Analyte sensor |
US9314194B2 (en) | 2002-04-19 | 2016-04-19 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
US9351680B2 (en) | 2003-10-14 | 2016-05-31 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for a variable user interface |
US9375169B2 (en) | 2009-01-30 | 2016-06-28 | Sanofi-Aventis Deutschland Gmbh | Cam drive for managing disposable penetrating member actions with a single motor and motor and control system |
US9386944B2 (en) | 2008-04-11 | 2016-07-12 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for analyte detecting device |
US9427532B2 (en) | 2001-06-12 | 2016-08-30 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
US9775553B2 (en) | 2004-06-03 | 2017-10-03 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for a fluid sampling device |
US9795747B2 (en) | 2010-06-02 | 2017-10-24 | Sanofi-Aventis Deutschland Gmbh | Methods and apparatus for lancet actuation |
US9820684B2 (en) | 2004-06-03 | 2017-11-21 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for a fluid sampling device |
US9986942B2 (en) | 2004-07-13 | 2018-06-05 | Dexcom, Inc. | Analyte sensor |
US10085681B2 (en) | 2012-04-11 | 2018-10-02 | Facet Technologies, Llc | Lancing device with moving pivot depth adjust |
US20190159709A1 (en) * | 2016-07-29 | 2019-05-30 | Seventh Sense Biosystems, Inc. | Delivering and/or receiving fluids |
US10610135B2 (en) | 2005-03-10 | 2020-04-07 | Dexcom, Inc. | System and methods for processing analyte sensor data for sensor calibration |
US20210137435A1 (en) * | 2019-11-13 | 2021-05-13 | Loop Medical Sa | Sample collection device, system and method for extracting and collecting a sample of a fluid of a user |
US11399755B2 (en) | 2016-08-24 | 2022-08-02 | Becton, Dickinson And Company | Device for obtaining a blood sample |
US11672451B2 (en) * | 2013-03-12 | 2023-06-13 | Ascensia Diabetes Care Holdings Ag | Lancing device |
US12121353B2 (en) | 2023-06-08 | 2024-10-22 | Yourbio Health, Inc. | Systems and interfaces for blood sampling |
Families Citing this family (142)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7899511B2 (en) | 2004-07-13 | 2011-03-01 | Dexcom, Inc. | Low oxygen in vivo analyte sensor |
US9155496B2 (en) | 1997-03-04 | 2015-10-13 | Dexcom, Inc. | Low oxygen in vivo analyte sensor |
US8465425B2 (en) | 1998-04-30 | 2013-06-18 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US9066695B2 (en) | 1998-04-30 | 2015-06-30 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US6949816B2 (en) | 2003-04-21 | 2005-09-27 | Motorola, Inc. | Semiconductor component having first surface area for electrically coupling to a semiconductor chip and second surface area for electrically coupling to a substrate, and method of manufacturing same |
US6175752B1 (en) | 1998-04-30 | 2001-01-16 | Therasense, Inc. | Analyte monitoring device and methods of use |
US8480580B2 (en) | 1998-04-30 | 2013-07-09 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US8688188B2 (en) | 1998-04-30 | 2014-04-01 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US8346337B2 (en) | 1998-04-30 | 2013-01-01 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US8974386B2 (en) | 1998-04-30 | 2015-03-10 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US7175641B1 (en) | 1998-06-11 | 2007-02-13 | Stat Medical Devices, Inc. | Lancet having adjustable penetration depth |
US6560471B1 (en) | 2001-01-02 | 2003-05-06 | Therasense, Inc. | Analyte monitoring device and methods of use |
US7041468B2 (en) | 2001-04-02 | 2006-05-09 | Therasense, Inc. | Blood glucose tracking apparatus and methods |
US20030032874A1 (en) | 2001-07-27 | 2003-02-13 | Dexcom, Inc. | Sensor head for use with implantable devices |
US7004928B2 (en) | 2002-02-08 | 2006-02-28 | Rosedale Medical, Inc. | Autonomous, ambulatory analyte monitor or drug delivery device |
US8010174B2 (en) | 2003-08-22 | 2011-08-30 | Dexcom, Inc. | Systems and methods for replacing signal artifacts in a glucose sensor data stream |
US8260393B2 (en) | 2003-07-25 | 2012-09-04 | Dexcom, Inc. | Systems and methods for replacing signal data artifacts in a glucose sensor data stream |
US9247901B2 (en) | 2003-08-22 | 2016-02-02 | Dexcom, Inc. | Systems and methods for replacing signal artifacts in a glucose sensor data stream |
US8641715B2 (en) | 2002-05-31 | 2014-02-04 | Vidacare Corporation | Manual intraosseous device |
US11337728B2 (en) | 2002-05-31 | 2022-05-24 | Teleflex Life Sciences Limited | Powered drivers, intraosseous devices and methods to access bone marrow |
US9314228B2 (en) * | 2002-05-31 | 2016-04-19 | Vidacare LLC | Apparatus and method for accessing the bone marrow |
US8668698B2 (en) | 2002-05-31 | 2014-03-11 | Vidacare Corporation | Assembly for coupling powered driver with intraosseous device |
US10973545B2 (en) | 2002-05-31 | 2021-04-13 | Teleflex Life Sciences Limited | Powered drivers, intraosseous devices and methods to access bone marrow |
ATE506894T1 (en) | 2002-05-31 | 2011-05-15 | Vidacare Corp | DEVICE FOR ACCESSING BONE MARROW |
US7381184B2 (en) | 2002-11-05 | 2008-06-03 | Abbott Diabetes Care Inc. | Sensor inserter assembly |
AU2003280756A1 (en) * | 2002-11-15 | 2004-06-15 | Arkray, Inc. | Lancet and needle insertion device |
US7052652B2 (en) | 2003-03-24 | 2006-05-30 | Rosedale Medical, Inc. | Analyte concentration detection devices and methods |
DE10315544B4 (en) * | 2003-04-04 | 2007-02-15 | Roche Diagnostics Gmbh | Method for producing a piercing and measuring device and device |
US9504477B2 (en) | 2003-05-30 | 2016-11-29 | Vidacare LLC | Powered driver |
US7761130B2 (en) | 2003-07-25 | 2010-07-20 | Dexcom, Inc. | Dual electrode system for a continuous analyte sensor |
US20100168542A1 (en) | 2003-08-01 | 2010-07-01 | Dexcom, Inc. | System and methods for processing analyte sensor data |
US20190357827A1 (en) | 2003-08-01 | 2019-11-28 | Dexcom, Inc. | Analyte sensor |
US8160669B2 (en) | 2003-08-01 | 2012-04-17 | Dexcom, Inc. | Transcutaneous analyte sensor |
US7774145B2 (en) | 2003-08-01 | 2010-08-10 | Dexcom, Inc. | Transcutaneous analyte sensor |
US7778680B2 (en) | 2003-08-01 | 2010-08-17 | Dexcom, Inc. | System and methods for processing analyte sensor data |
US7905898B2 (en) | 2003-08-15 | 2011-03-15 | Stat Medical Devices, Inc. | Adjustable lancet device and method |
US20140121989A1 (en) | 2003-08-22 | 2014-05-01 | Dexcom, Inc. | Systems and methods for processing analyte sensor data |
USD914881S1 (en) | 2003-11-05 | 2021-03-30 | Abbott Diabetes Care Inc. | Analyte sensor electronic mount |
US8774886B2 (en) | 2006-10-04 | 2014-07-08 | Dexcom, Inc. | Analyte sensor |
US11633133B2 (en) | 2003-12-05 | 2023-04-25 | Dexcom, Inc. | Dual electrode system for a continuous analyte sensor |
US8364231B2 (en) | 2006-10-04 | 2013-01-29 | Dexcom, Inc. | Analyte sensor |
US8287453B2 (en) | 2003-12-05 | 2012-10-16 | Dexcom, Inc. | Analyte sensor |
US8423114B2 (en) | 2006-10-04 | 2013-04-16 | Dexcom, Inc. | Dual electrode system for a continuous analyte sensor |
EP1711790B1 (en) | 2003-12-05 | 2010-09-08 | DexCom, Inc. | Calibration techniques for a continuous analyte sensor |
US8128485B2 (en) * | 2003-12-08 | 2012-03-06 | United Tote Company | Systems and methods for accessing, manipulating and using funds associated with lottery-type games |
WO2005087103A1 (en) * | 2004-03-15 | 2005-09-22 | Terumo Kabushiki Kaisha | Body fluid collecting device |
CN1942139A (en) * | 2004-04-10 | 2007-04-04 | 霍夫曼-拉罗奇有限公司 | Method and system for taking body fluid |
US8565848B2 (en) | 2004-07-13 | 2013-10-22 | Dexcom, Inc. | Transcutaneous analyte sensor |
US8452368B2 (en) | 2004-07-13 | 2013-05-28 | Dexcom, Inc. | Transcutaneous analyte sensor |
US8886272B2 (en) | 2004-07-13 | 2014-11-11 | Dexcom, Inc. | Analyte sensor |
US7783333B2 (en) | 2004-07-13 | 2010-08-24 | Dexcom, Inc. | Transcutaneous medical device with variable stiffness |
US7905833B2 (en) | 2004-07-13 | 2011-03-15 | Dexcom, Inc. | Transcutaneous analyte sensor |
EP1848337A2 (en) * | 2004-10-21 | 2007-10-31 | Bayer HealthCare LLC | Method of determining the concentration of an analyte in a body fluid and system therefor |
US7883464B2 (en) | 2005-09-30 | 2011-02-08 | Abbott Diabetes Care Inc. | Integrated transmitter unit and sensor introducer mechanism and methods of use |
US9572534B2 (en) | 2010-06-29 | 2017-02-21 | Abbott Diabetes Care Inc. | Devices, systems and methods for on-skin or on-body mounting of medical devices |
US20090105569A1 (en) | 2006-04-28 | 2009-04-23 | Abbott Diabetes Care, Inc. | Introducer Assembly and Methods of Use |
US8333714B2 (en) | 2006-09-10 | 2012-12-18 | Abbott Diabetes Care Inc. | Method and system for providing an integrated analyte sensor insertion device and data processing unit |
US9259175B2 (en) | 2006-10-23 | 2016-02-16 | Abbott Diabetes Care, Inc. | Flexible patch for fluid delivery and monitoring body analytes |
US9351669B2 (en) | 2009-09-30 | 2016-05-31 | Abbott Diabetes Care Inc. | Interconnect for on-body analyte monitoring device |
US8029441B2 (en) | 2006-02-28 | 2011-10-04 | Abbott Diabetes Care Inc. | Analyte sensor transmitter unit configuration for a data monitoring and management system |
US9398882B2 (en) | 2005-09-30 | 2016-07-26 | Abbott Diabetes Care Inc. | Method and apparatus for providing analyte sensor and data processing device |
US7697967B2 (en) | 2005-12-28 | 2010-04-13 | Abbott Diabetes Care Inc. | Method and apparatus for providing analyte sensor insertion |
US9743862B2 (en) | 2011-03-31 | 2017-08-29 | Abbott Diabetes Care Inc. | Systems and methods for transcutaneously implanting medical devices |
US9788771B2 (en) | 2006-10-23 | 2017-10-17 | Abbott Diabetes Care Inc. | Variable speed sensor insertion devices and methods of use |
US8512243B2 (en) | 2005-09-30 | 2013-08-20 | Abbott Diabetes Care Inc. | Integrated introducer and transmitter assembly and methods of use |
US8545403B2 (en) | 2005-12-28 | 2013-10-01 | Abbott Diabetes Care Inc. | Medical device insertion |
US7731657B2 (en) | 2005-08-30 | 2010-06-08 | Abbott Diabetes Care Inc. | Analyte sensor introducer and methods of use |
US8571624B2 (en) | 2004-12-29 | 2013-10-29 | Abbott Diabetes Care Inc. | Method and apparatus for mounting a data transmission device in a communication system |
US10226207B2 (en) | 2004-12-29 | 2019-03-12 | Abbott Diabetes Care Inc. | Sensor inserter having introducer |
US8613703B2 (en) | 2007-05-31 | 2013-12-24 | Abbott Diabetes Care Inc. | Insertion devices and methods |
GB2422784A (en) * | 2005-02-07 | 2006-08-09 | Caretek Medical Ltd | Disposable assembly comprising a needle or stylet |
US7955271B2 (en) * | 2006-10-13 | 2011-06-07 | Roche Diagnostics Operations, Inc. | Tape transport lance sampler |
US20090076360A1 (en) | 2007-09-13 | 2009-03-19 | Dexcom, Inc. | Transcutaneous analyte sensor |
US8133178B2 (en) | 2006-02-22 | 2012-03-13 | Dexcom, Inc. | Analyte sensor |
WO2006123665A1 (en) * | 2005-05-16 | 2006-11-23 | Terumo Kabushiki Kaisha | Blood component measurement device and chip for blood measurement |
US8211036B2 (en) * | 2005-05-27 | 2012-07-03 | Stat Medical Devices, Inc. | Disposable lancet device cap with integral lancet and/or test strip and testing device utilizing the cap |
US20060281187A1 (en) | 2005-06-13 | 2006-12-14 | Rosedale Medical, Inc. | Analyte detection devices and methods with hematocrit/volume correction and feedback control |
US20070038147A1 (en) * | 2005-08-11 | 2007-02-15 | Joel Mechelke | Method for extracting interstitial fluid |
US20070060843A1 (en) * | 2005-08-29 | 2007-03-15 | Manuel Alvarez-Icaza | Method for lancing a target site with applied pressure sensing |
US8012103B2 (en) | 2005-09-30 | 2011-09-06 | Intuity Medical, Inc. | Catalysts for body fluid sample extraction |
US8801631B2 (en) | 2005-09-30 | 2014-08-12 | Intuity Medical, Inc. | Devices and methods for facilitating fluid transport |
US9521968B2 (en) | 2005-09-30 | 2016-12-20 | Abbott Diabetes Care Inc. | Analyte sensor retention mechanism and methods of use |
US7704265B2 (en) | 2005-11-03 | 2010-04-27 | Stat Medical Devices, Inc. | Disposable/single-use blade lancet device and method |
EP1785090A1 (en) * | 2005-11-10 | 2007-05-16 | F.Hoffmann-La Roche Ag | Lancet device and system for skin detection |
US11298058B2 (en) | 2005-12-28 | 2022-04-12 | Abbott Diabetes Care Inc. | Method and apparatus for providing analyte sensor insertion |
US9757061B2 (en) | 2006-01-17 | 2017-09-12 | Dexcom, Inc. | Low oxygen in vivo analyte sensor |
GB2434540A (en) * | 2006-01-27 | 2007-08-01 | Owen Mumford Ltd | Lancet |
US20080064937A1 (en) | 2006-06-07 | 2008-03-13 | Abbott Diabetes Care, Inc. | Analyte monitoring system and method |
US7846110B2 (en) | 2006-08-03 | 2010-12-07 | Advanced Medical Products Gmbh | Self-contained test unit for testing body fluids |
WO2008066991A2 (en) * | 2006-08-30 | 2008-06-05 | Arthur Harris | Continuous feed hypodermic syringe with self contained cartridge dispenser |
US8944069B2 (en) | 2006-09-12 | 2015-02-03 | Vidacare Corporation | Assemblies for coupling intraosseous (IO) devices to powered drivers |
US7831287B2 (en) | 2006-10-04 | 2010-11-09 | Dexcom, Inc. | Dual electrode system for a continuous analyte sensor |
US8852124B2 (en) | 2006-10-13 | 2014-10-07 | Roche Diagnostics Operations, Inc. | Tape transport lance sampler |
US8043318B2 (en) | 2007-02-08 | 2011-10-25 | Stat Medical Devices, Inc. | Push-button lance device and method |
US8469986B2 (en) | 2007-03-30 | 2013-06-25 | Stat Medical Devices, Inc. | Lancet device with combined trigger and cocking mechanism and method |
WO2009032760A2 (en) | 2007-08-30 | 2009-03-12 | Pepex Biomedical Llc | Electrochmical sensor and method for manufacturing |
WO2009051901A2 (en) * | 2007-08-30 | 2009-04-23 | Pepex Biomedical, Llc | Electrochemical sensor and method for manufacturing |
JP4625062B2 (en) * | 2007-08-31 | 2011-02-02 | テルモ株式会社 | Aid |
US8417312B2 (en) | 2007-10-25 | 2013-04-09 | Dexcom, Inc. | Systems and methods for processing sensor data |
CA2646261A1 (en) | 2007-12-14 | 2009-06-14 | Tyco Healthcare Group Lp | Blood collection device with tube retaining structure |
US8396528B2 (en) | 2008-03-25 | 2013-03-12 | Dexcom, Inc. | Analyte sensor |
US20090281526A1 (en) * | 2008-05-09 | 2009-11-12 | Tyco Healthcare Group Lp | Negative Pressure Wound Therapy Apparatus Including a Fluid Line Coupling |
CA2725264C (en) * | 2008-05-30 | 2017-06-20 | Intuity Medical, Inc. | Body fluid sampling device -- sampling site interface |
WO2009148969A1 (en) | 2008-06-02 | 2009-12-10 | Sta-Med, Llc | Needle cover assembly for a syringe |
EP2299903B1 (en) | 2008-06-06 | 2021-01-27 | Intuity Medical, Inc. | Detection meter and mode of operation |
EP3639744B1 (en) | 2008-06-06 | 2021-11-24 | Intuity Medical, Inc. | Blood glucose meter and method of operating |
US8652159B2 (en) * | 2008-07-29 | 2014-02-18 | Facet Technologies, Llc | Lancet |
US8123772B2 (en) * | 2008-08-14 | 2012-02-28 | Abbott Diabetes Care Inc. | Cap for lancing device with adjustable mode of operation |
US8506740B2 (en) | 2008-11-14 | 2013-08-13 | Pepex Biomedical, Llc | Manufacturing electrochemical sensor module |
US8951377B2 (en) | 2008-11-14 | 2015-02-10 | Pepex Biomedical, Inc. | Manufacturing electrochemical sensor module |
WO2010056878A2 (en) | 2008-11-14 | 2010-05-20 | Pepex Biomedical, Llc | Electrochemical sensor module |
US20110266149A1 (en) * | 2008-11-14 | 2011-11-03 | Pepex Biomedical, Llc | Electrochemical sensor module |
JP5486183B2 (en) * | 2008-12-08 | 2014-05-07 | テルモ株式会社 | Puncture device |
EP2210558A1 (en) * | 2009-01-21 | 2010-07-28 | Roche Diagnostics GmbH | Lancet with capillary canal and sterile protection and method for producing such a lancet |
US20100198034A1 (en) | 2009-02-03 | 2010-08-05 | Abbott Diabetes Care Inc. | Compact On-Body Physiological Monitoring Devices and Methods Thereof |
US8613892B2 (en) | 2009-06-30 | 2013-12-24 | Abbott Diabetes Care Inc. | Analyte meter with a moveable head and methods of using the same |
ES2443835T3 (en) * | 2009-07-02 | 2014-02-20 | Facet Technologies, Llc | Lancet |
EP3001194B1 (en) | 2009-08-31 | 2019-04-17 | Abbott Diabetes Care, Inc. | Medical devices and methods |
EP2506768B1 (en) | 2009-11-30 | 2016-07-06 | Intuity Medical, Inc. | Calibration material delivery devices and methods |
USD924406S1 (en) | 2010-02-01 | 2021-07-06 | Abbott Diabetes Care Inc. | Analyte sensor inserter |
ES2881798T3 (en) | 2010-03-24 | 2021-11-30 | Abbott Diabetes Care Inc | Medical device inserters and medical device insertion and use procedures |
US8162882B2 (en) | 2010-06-23 | 2012-04-24 | Sta-Med, Llc | Automatic-locking safety needle covers and methods of use and manufacture |
US10330667B2 (en) | 2010-06-25 | 2019-06-25 | Intuity Medical, Inc. | Analyte monitoring methods and systems |
US11064921B2 (en) | 2010-06-29 | 2021-07-20 | Abbott Diabetes Care Inc. | Devices, systems and methods for on-skin or on-body mounting of medical devices |
EP2661616B1 (en) | 2011-01-06 | 2015-11-18 | Pepex Biomedical, Inc. | Sensor module with enhanced capillary flow |
US8647357B2 (en) * | 2011-02-05 | 2014-02-11 | Birch Narrows Development Llc | Lancet device with flexible cover |
EP3575796B1 (en) | 2011-04-15 | 2020-11-11 | DexCom, Inc. | Advanced analyte sensor calibration and error detection |
US9504162B2 (en) | 2011-05-20 | 2016-11-22 | Pepex Biomedical, Inc. | Manufacturing electrochemical sensor modules |
WO2012166746A1 (en) | 2011-05-31 | 2012-12-06 | Sta-Med, Llc | Blood collection safety devices and methods of use and manufacture |
EP4062831B1 (en) | 2011-08-03 | 2023-11-08 | Intuity Medical, Inc. | Body fluid sampling arrangement |
FI3300658T3 (en) | 2011-12-11 | 2024-03-01 | Abbott Diabetes Care Inc | Analyte sensor methods |
US11224367B2 (en) | 2012-12-03 | 2022-01-18 | Pepex Biomedical, Inc. | Sensor module and method of using a sensor module |
JP2016522070A (en) | 2013-06-21 | 2016-07-28 | インテュイティ メディカル インコーポレイテッド | Analyte monitoring system using audible feedback |
BR112016028536B1 (en) | 2014-06-04 | 2021-11-30 | Pepex Biomedical, Inc | SENSOR COMPRISING A SKIN DRILLING MEMBER AND A BLOOD SAMPLE ANALYSIS ZONE |
US10213139B2 (en) | 2015-05-14 | 2019-02-26 | Abbott Diabetes Care Inc. | Systems, devices, and methods for assembling an applicator and sensor control device |
AU2016260547B2 (en) | 2015-05-14 | 2020-09-03 | Abbott Diabetes Care Inc. | Compact medical device inserters and related systems and methods |
CN115444410A (en) | 2017-01-23 | 2022-12-09 | 雅培糖尿病护理公司 | Applicator and assembly for inserting an in vivo analyte sensor |
CN108567435B (en) * | 2018-03-12 | 2020-12-18 | 青岛大学附属医院 | Blood treatment device for hematology department |
USD1002852S1 (en) | 2019-06-06 | 2023-10-24 | Abbott Diabetes Care Inc. | Analyte sensor device |
USD999913S1 (en) | 2020-12-21 | 2023-09-26 | Abbott Diabetes Care Inc | Analyte sensor inserter |
EP4301225A1 (en) | 2021-09-28 | 2024-01-10 | Biolinq Incorporated | Microneedle enclosure and applicator device for microneedle array based continuous analyte monitoring device |
USD1033641S1 (en) * | 2021-12-17 | 2024-07-02 | Biolinq Incorporated | Microneedle array sensor applicator device |
Citations (60)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2888924A (en) * | 1958-02-25 | 1959-06-02 | Russell P Dunmire | Hypodermic syringes |
US3802842A (en) * | 1971-04-16 | 1974-04-09 | Boehringer Mannheim Gmbh | Test strips |
US4061468A (en) * | 1974-07-30 | 1977-12-06 | Boehringer Mannheim Gmbh | Stable test strips having a water-soluble paper layer and methods for making same |
US4203446A (en) * | 1976-09-24 | 1980-05-20 | Hellige Gmbh | Precision spring lancet |
US4375815A (en) * | 1981-03-23 | 1983-03-08 | Becton Dickinson And Company | Retractable lancet assembly |
US4462405A (en) * | 1982-09-27 | 1984-07-31 | Ehrlich Joseph C | Blood letting apparatus |
US4469110A (en) * | 1981-06-25 | 1984-09-04 | Slama Gerard J | Device for causing a pinprick to obtain and to test a drop of blood |
US4490465A (en) * | 1982-03-26 | 1984-12-25 | Merck Patent Gesellschaft Mit Beschrankter Haftung | Coupled enzyme systems for determination of dissolved substances |
US4627445A (en) * | 1985-04-08 | 1986-12-09 | Garid, Inc. | Glucose medical monitoring system |
US4653513A (en) * | 1985-08-09 | 1987-03-31 | Dombrowski Mitchell P | Blood sampler |
US4677979A (en) * | 1984-09-20 | 1987-07-07 | Becton, Dickinson And Company | Lancet |
US4787398A (en) * | 1985-04-08 | 1988-11-29 | Garid, Inc. | Glucose medical monitoring system |
US4869249A (en) * | 1987-05-01 | 1989-09-26 | Owen Mumford Limited | Blood sampling devices |
US4895147A (en) * | 1988-10-28 | 1990-01-23 | Sherwood Medical Company | Lancet injector |
US4924879A (en) * | 1988-10-07 | 1990-05-15 | Brien Walter J O | Blood lancet device |
US4990154A (en) * | 1989-06-19 | 1991-02-05 | Miles Inc. | Lancet assembly |
US5304193A (en) * | 1993-08-12 | 1994-04-19 | Sam Zhadanov | Blood lancing device |
US5318584A (en) * | 1992-04-13 | 1994-06-07 | Boehringer Mannheim Gmbh | Blood lancet device for withdrawing blood for diagnostic purposes |
US5423847A (en) * | 1992-09-25 | 1995-06-13 | Amg Medical, Inc. | Safe lancet injector |
US5540709A (en) * | 1991-11-12 | 1996-07-30 | Actimed Laboratories, Inc. | Lancet device |
US5545173A (en) * | 1993-06-02 | 1996-08-13 | Herbst; Richard | Apparatus for taking blood samples |
US5569270A (en) * | 1994-12-13 | 1996-10-29 | Weng; Edward E. | Laparoscopic surgical instrument |
US5576719A (en) * | 1993-09-23 | 1996-11-19 | Lucent Technologies Inc. | Automatic telescopic antenna mechanism |
US5582184A (en) * | 1993-10-13 | 1996-12-10 | Integ Incorporated | Interstitial fluid collection and constituent measurement |
US5607401A (en) * | 1991-09-03 | 1997-03-04 | Humphrey; Bruce H. | Augmented polymeric hypodermic devices |
US5613978A (en) * | 1996-06-04 | 1997-03-25 | Palco Laboratories | Adjustable tip for lancet device |
US5628764A (en) * | 1995-03-21 | 1997-05-13 | Schraga; Steven | Collar lancet device |
US5628765A (en) * | 1994-11-29 | 1997-05-13 | Apls Co., Ltd. | Lancet assembly |
US5666966A (en) * | 1994-06-24 | 1997-09-16 | Nissho Corporation | Suction-type blood sampler |
US5709699A (en) * | 1995-09-01 | 1998-01-20 | Biosafe Diagnostics Corporation | Blood collection and testing device |
US5730753A (en) * | 1995-07-28 | 1998-03-24 | Apls Co., Ltd. | Assembly for adjusting pricking depth of lancet |
US5824491A (en) * | 1996-05-17 | 1998-10-20 | Mercury Diagnostics, Inc. | Dry reagent test strip comprising benzidine dye precursor and antipyrine compound |
US5857983A (en) * | 1996-05-17 | 1999-01-12 | Mercury Diagnostics, Inc. | Methods and apparatus for sampling body fluid |
US5879311A (en) * | 1996-05-17 | 1999-03-09 | Mercury Diagnostics, Inc. | Body fluid sampling device and methods of use |
US5951492A (en) * | 1996-05-17 | 1999-09-14 | Mercury Diagnostics, Inc. | Methods and apparatus for sampling and analyzing body fluid |
US5962215A (en) * | 1996-04-05 | 1999-10-05 | Mercury Diagnostics, Inc. | Methods for testing the concentration of an analyte in a body fluid |
US5964718A (en) * | 1997-11-21 | 1999-10-12 | Mercury Diagnostics, Inc. | Body fluid sampling device |
US6015392A (en) * | 1996-05-17 | 2000-01-18 | Mercury Diagnostics, Inc. | Apparatus for sampling body fluid |
US6048352A (en) * | 1996-05-17 | 2000-04-11 | Mercury Diagnostics, Inc. | Disposable element for use in a body fluid sampling device |
US6071294A (en) * | 1997-12-04 | 2000-06-06 | Agilent Technologies, Inc. | Lancet cartridge for sampling blood |
US6086545A (en) * | 1998-04-28 | 2000-07-11 | Amira Medical | Methods and apparatus for suctioning and pumping body fluid from an incision |
US6143164A (en) * | 1997-02-06 | 2000-11-07 | E. Heller & Company | Small volume in vitro analyte sensor |
US6156051A (en) * | 1998-06-11 | 2000-12-05 | Stat Medical Devices Inc. | Lancet having adjustable penetration depth |
US6159424A (en) * | 1997-06-19 | 2000-12-12 | Nokia Mobile Phones, Ltd. | Apparatus for taking samples |
US6168606B1 (en) * | 1999-11-10 | 2001-01-02 | Palco Labs, Inc. | Single-use lancet device |
US6210420B1 (en) * | 1999-01-19 | 2001-04-03 | Agilent Technologies, Inc. | Apparatus and method for efficient blood sampling with lancet |
US6258062B1 (en) * | 1999-02-25 | 2001-07-10 | Joseph M. Thielen | Enclosed container power supply for a needleless injector |
US6306152B1 (en) * | 1999-03-08 | 2001-10-23 | Agilent Technologies, Inc. | Lancet device with skin movement control and ballistic preload |
US6306104B1 (en) * | 1996-12-06 | 2001-10-23 | Abbott Laboratories | Method and apparatus for obtaining blood for diagnostic tests |
US6379337B1 (en) * | 1998-12-22 | 2002-04-30 | Owais Mohammad M. B. B. S. | Retractable safety needles for medical applications |
US20020177763A1 (en) * | 2001-05-22 | 2002-11-28 | Burns David W. | Integrated lancets and methods |
US20020177787A1 (en) * | 1996-05-17 | 2002-11-28 | Duchon Brent G. | Body fluid sampling device and methods of use |
US20030050573A1 (en) * | 2001-08-29 | 2003-03-13 | Hans-Juergen Kuhr | Analytical device with lancet and test element |
US20030153939A1 (en) * | 2000-03-04 | 2003-08-14 | Michael Fritz | Blood lancet with hygienic tip protection |
US6616616B2 (en) * | 2000-09-26 | 2003-09-09 | Roche Diagnostics Corporation | Lancet system |
US6645219B2 (en) * | 2001-09-07 | 2003-11-11 | Amira Medical | Rotatable penetration depth adjusting arrangement |
US20040267160A9 (en) * | 2001-09-26 | 2004-12-30 | Edward Perez | Method and apparatus for sampling bodily fluid |
US20050085839A1 (en) * | 2003-10-20 | 2005-04-21 | John Allen | Lancing device with a floating probe for control of penetration depth |
US6896666B2 (en) * | 2002-11-08 | 2005-05-24 | Kochamba Family Trust | Cutaneous injection delivery under suction |
US6929650B2 (en) * | 2001-01-12 | 2005-08-16 | Arkray, Inc. | Lancing device |
Family Cites Families (54)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US192899A (en) * | 1877-07-10 | Improvement in pen-and-pencil cases | ||
US838195A (en) * | 1901-03-11 | 1906-12-11 | Ernest A Le Sueur | Process of distillation. |
US783868A (en) * | 1904-11-18 | 1905-02-28 | James S Jarratt | Method of drying lumber. |
US2404306A (en) * | 1941-04-01 | 1946-07-16 | Rca Corp | Communication system |
US2402306A (en) * | 1943-10-07 | 1946-06-18 | Turkel Henry | Retaining guard guide for needles |
EP0147026A3 (en) * | 1983-12-27 | 1985-08-14 | Osamu Matsumura | Fuel injection apparatus |
US4873993A (en) * | 1986-07-22 | 1989-10-17 | Personal Diagnostics, Inc. | Cuvette |
US5645556A (en) * | 1990-12-18 | 1997-07-08 | Yoon; Inbae | Safety penetrating instrument with triggered penetrating member retraction and single or multiple safety member protrusion |
US5545556A (en) * | 1991-05-23 | 1996-08-13 | William Marsh Rice University | Microorganisms and methods for their use |
US5301561A (en) * | 1991-05-28 | 1994-04-12 | Energy Ventures, Inc. | Method and apparatus for taking a fluid sample |
JPH0573975A (en) | 1991-09-11 | 1993-03-26 | Tonen Corp | Magneto-optical recording medium |
US5231993A (en) | 1991-11-20 | 1993-08-03 | Habley Medical Technology Corporation | Blood sampler and component tester with guide member |
US5591224A (en) * | 1992-03-19 | 1997-01-07 | Medtronic, Inc. | Bioelastomeric stent |
US5375588A (en) * | 1992-08-17 | 1994-12-27 | Yoon; Inbae | Method and apparatus for use in endoscopic procedures |
US5352410A (en) * | 1993-06-03 | 1994-10-04 | Hansen Warren D | Fluid specimen collection and testing apparatus |
DE4401227C2 (en) * | 1994-01-18 | 1999-03-18 | Ernst Peter Prof Dr M Strecker | Endoprosthesis implantable percutaneously in a patient's body |
US5562658A (en) * | 1994-03-25 | 1996-10-08 | Snj Company, Inc. | Laser-powered surgical device for making incisions of selected depth |
US5513978A (en) * | 1994-06-08 | 1996-05-07 | Cayuga Industries, Inc. | Quick attach anchor and method for attaching decorations to wreaths |
US5514152A (en) * | 1994-08-16 | 1996-05-07 | Specialized Health Products, Inc. | Multiple segment encapsulated medical lancing device |
DE19604156A1 (en) * | 1996-02-06 | 1997-08-07 | Boehringer Mannheim Gmbh | Skin cutting device for taking pain-free small amounts of blood |
GB9604950D0 (en) * | 1996-03-08 | 1996-05-08 | Allied Colloids Ltd | Clay compositions and their use in paper making |
US5776719A (en) | 1997-07-07 | 1998-07-07 | Mercury Diagnostics, Inc. | Diagnostic compositions and devices utilizing same |
US5951493A (en) * | 1997-05-16 | 1999-09-14 | Mercury Diagnostics, Inc. | Methods and apparatus for expressing body fluid from an incision |
US6332871B1 (en) | 1996-05-17 | 2001-12-25 | Amira Medical | Blood and interstitial fluid sampling device |
US5873887A (en) * | 1996-10-25 | 1999-02-23 | Bayer Corporation | Blood sampling device |
US5984940A (en) * | 1997-05-29 | 1999-11-16 | Atrion Medical Products, Inc. | Lancet device |
US5916230A (en) * | 1997-06-16 | 1999-06-29 | Bayer Corporation | Blood sampling device with adjustable end cap |
US6162214A (en) * | 1997-10-30 | 2000-12-19 | Eclipse Surgical Technologies, Inc. | Corning device for myocardial revascularization |
US5871494A (en) * | 1997-12-04 | 1999-02-16 | Hewlett-Packard Company | Reproducible lancing for sampling blood |
US5997817A (en) * | 1997-12-05 | 1999-12-07 | Roche Diagnostics Corporation | Electrochemical biosensor test strip |
JP3902875B2 (en) | 1998-10-19 | 2007-04-11 | テルモ株式会社 | Puncture device |
AU752942B2 (en) * | 1998-04-13 | 2002-10-03 | Massachusetts Institute Of Technology | Comb copolymers for regulating cell-surface interactions |
US6986759B1 (en) * | 1998-05-15 | 2006-01-17 | Device Research & Development (Drd) | Device for protecting and neutralizing a needle for medical use |
US6346114B1 (en) * | 1998-06-11 | 2002-02-12 | Stat Medical Devices, Inc. | Adjustable length member such as a cap of a lancet device for adjusting penetration depth |
CN1315432C (en) * | 1999-01-04 | 2007-05-16 | 泰尔茂株式会社 | Body fluid collecting and detecting device |
US6045567A (en) | 1999-02-23 | 2000-04-04 | Lifescan Inc. | Lancing device causing reduced pain |
DE19909602A1 (en) * | 1999-03-05 | 2000-09-07 | Roche Diagnostics Gmbh | Device for drawing blood for diagnostic purposes |
US6283982B1 (en) * | 1999-10-19 | 2001-09-04 | Facet Technologies, Inc. | Lancing device and method of sample collection |
US6286545B1 (en) * | 2000-02-02 | 2001-09-11 | Daimlerchrysler Corporation | Power steering fluid reservoir |
US6612111B1 (en) | 2000-03-27 | 2003-09-02 | Lifescan, Inc. | Method and device for sampling and analyzing interstitial fluid and whole blood samples |
PL191428B1 (en) | 2000-04-06 | 2006-05-31 | Htl Strefa Sp Z Oo | Puncturing depth adjusting assembly for puncturing devices |
US6545219B1 (en) * | 2000-04-24 | 2003-04-08 | Tyco Electronics Corporation | Wrap-around cable sleeves having an expandable body portion and methods of making same |
DE10030410C1 (en) | 2000-06-21 | 2002-01-24 | Roche Diagnostics Gmbh | Blood lancet device for drawing blood for diagnostic purposes |
US6561989B2 (en) * | 2000-07-10 | 2003-05-13 | Bayer Healthcare, Llc | Thin lance and test sensor having same |
TW495353B (en) * | 2000-09-01 | 2002-07-21 | Bayer Ag | Adjustable endcap for lancing device |
DE10053974A1 (en) * | 2000-10-31 | 2002-05-29 | Roche Diagnostics Gmbh | Blood collection system |
MXPA03006421A (en) | 2001-01-22 | 2004-12-02 | Hoffmann La Roche | Lancet device having capillary action. |
US6516616B2 (en) * | 2001-03-12 | 2003-02-11 | Pomfret Storage Comapny, Llc | Storage of energy producing fluids and process thereof |
US6896686B2 (en) * | 2001-03-23 | 2005-05-24 | Arthrex, Inc. | Arthroscopic suture passing instrument |
US20020188223A1 (en) * | 2001-06-08 | 2002-12-12 | Edward Perez | Devices and methods for the expression of bodily fluids from an incision |
US7041068B2 (en) * | 2001-06-12 | 2006-05-09 | Pelikan Technologies, Inc. | Sampling module device and method |
US20040127818A1 (en) * | 2002-12-27 | 2004-07-01 | Roe Steven N. | Precision depth control lancing tip |
US20040248312A1 (en) * | 2003-06-06 | 2004-12-09 | Bayer Healthcare, Llc | Sensor with integrated lancet |
US7867244B2 (en) * | 2006-06-15 | 2011-01-11 | Abbott Diabetes Care Inc. | Lancing devices having lancet ejection assembly |
-
2002
- 2002-12-27 US US10/330,724 patent/US20040127818A1/en not_active Abandoned
-
2003
- 2003-02-13 WO PCT/US2003/004380 patent/WO2004058068A2/en not_active Application Discontinuation
- 2003-02-13 EP EP03713448A patent/EP1581112A2/en not_active Ceased
- 2003-02-13 AU AU2003217403A patent/AU2003217403A1/en not_active Abandoned
- 2003-12-23 US US10/744,167 patent/US7736322B2/en not_active Expired - Fee Related
- 2003-12-23 EP EP03814942A patent/EP1578269B1/en not_active Expired - Lifetime
- 2003-12-23 WO PCT/US2003/041139 patent/WO2004060159A1/en not_active Application Discontinuation
-
2008
- 2008-02-27 US US12/038,302 patent/US7976477B2/en not_active Expired - Fee Related
-
2011
- 2011-06-07 US US13/154,497 patent/US9554741B2/en active Active
Patent Citations (65)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2888924A (en) * | 1958-02-25 | 1959-06-02 | Russell P Dunmire | Hypodermic syringes |
US3802842A (en) * | 1971-04-16 | 1974-04-09 | Boehringer Mannheim Gmbh | Test strips |
US4061468A (en) * | 1974-07-30 | 1977-12-06 | Boehringer Mannheim Gmbh | Stable test strips having a water-soluble paper layer and methods for making same |
US4203446A (en) * | 1976-09-24 | 1980-05-20 | Hellige Gmbh | Precision spring lancet |
US4375815A (en) * | 1981-03-23 | 1983-03-08 | Becton Dickinson And Company | Retractable lancet assembly |
US4469110A (en) * | 1981-06-25 | 1984-09-04 | Slama Gerard J | Device for causing a pinprick to obtain and to test a drop of blood |
US4490465A (en) * | 1982-03-26 | 1984-12-25 | Merck Patent Gesellschaft Mit Beschrankter Haftung | Coupled enzyme systems for determination of dissolved substances |
US4462405A (en) * | 1982-09-27 | 1984-07-31 | Ehrlich Joseph C | Blood letting apparatus |
US4677979A (en) * | 1984-09-20 | 1987-07-07 | Becton, Dickinson And Company | Lancet |
US4627445A (en) * | 1985-04-08 | 1986-12-09 | Garid, Inc. | Glucose medical monitoring system |
US4637403A (en) * | 1985-04-08 | 1987-01-20 | Garid, Inc. | Glucose medical monitoring system |
US4787398A (en) * | 1985-04-08 | 1988-11-29 | Garid, Inc. | Glucose medical monitoring system |
US4653513A (en) * | 1985-08-09 | 1987-03-31 | Dombrowski Mitchell P | Blood sampler |
US4869249A (en) * | 1987-05-01 | 1989-09-26 | Owen Mumford Limited | Blood sampling devices |
US4924879A (en) * | 1988-10-07 | 1990-05-15 | Brien Walter J O | Blood lancet device |
US4895147A (en) * | 1988-10-28 | 1990-01-23 | Sherwood Medical Company | Lancet injector |
US4990154A (en) * | 1989-06-19 | 1991-02-05 | Miles Inc. | Lancet assembly |
US5607401A (en) * | 1991-09-03 | 1997-03-04 | Humphrey; Bruce H. | Augmented polymeric hypodermic devices |
US5540709A (en) * | 1991-11-12 | 1996-07-30 | Actimed Laboratories, Inc. | Lancet device |
US5318584A (en) * | 1992-04-13 | 1994-06-07 | Boehringer Mannheim Gmbh | Blood lancet device for withdrawing blood for diagnostic purposes |
US5423847A (en) * | 1992-09-25 | 1995-06-13 | Amg Medical, Inc. | Safe lancet injector |
US5545173A (en) * | 1993-06-02 | 1996-08-13 | Herbst; Richard | Apparatus for taking blood samples |
US5304193A (en) * | 1993-08-12 | 1994-04-19 | Sam Zhadanov | Blood lancing device |
US5576719A (en) * | 1993-09-23 | 1996-11-19 | Lucent Technologies Inc. | Automatic telescopic antenna mechanism |
US5582184A (en) * | 1993-10-13 | 1996-12-10 | Integ Incorporated | Interstitial fluid collection and constituent measurement |
US5666966A (en) * | 1994-06-24 | 1997-09-16 | Nissho Corporation | Suction-type blood sampler |
US5755733A (en) * | 1994-11-29 | 1998-05-26 | Apls Co., Ltd. | Lancet assembly |
US5628765A (en) * | 1994-11-29 | 1997-05-13 | Apls Co., Ltd. | Lancet assembly |
US5569270A (en) * | 1994-12-13 | 1996-10-29 | Weng; Edward E. | Laparoscopic surgical instrument |
US5628764A (en) * | 1995-03-21 | 1997-05-13 | Schraga; Steven | Collar lancet device |
US5730753A (en) * | 1995-07-28 | 1998-03-24 | Apls Co., Ltd. | Assembly for adjusting pricking depth of lancet |
US5709699A (en) * | 1995-09-01 | 1998-01-20 | Biosafe Diagnostics Corporation | Blood collection and testing device |
US5962215A (en) * | 1996-04-05 | 1999-10-05 | Mercury Diagnostics, Inc. | Methods for testing the concentration of an analyte in a body fluid |
US5857983A (en) * | 1996-05-17 | 1999-01-12 | Mercury Diagnostics, Inc. | Methods and apparatus for sampling body fluid |
US5824491A (en) * | 1996-05-17 | 1998-10-20 | Mercury Diagnostics, Inc. | Dry reagent test strip comprising benzidine dye precursor and antipyrine compound |
US5879311A (en) * | 1996-05-17 | 1999-03-09 | Mercury Diagnostics, Inc. | Body fluid sampling device and methods of use |
US5951492A (en) * | 1996-05-17 | 1999-09-14 | Mercury Diagnostics, Inc. | Methods and apparatus for sampling and analyzing body fluid |
US20020177787A1 (en) * | 1996-05-17 | 2002-11-28 | Duchon Brent G. | Body fluid sampling device and methods of use |
US6015392A (en) * | 1996-05-17 | 2000-01-18 | Mercury Diagnostics, Inc. | Apparatus for sampling body fluid |
US6048352A (en) * | 1996-05-17 | 2000-04-11 | Mercury Diagnostics, Inc. | Disposable element for use in a body fluid sampling device |
US6056701A (en) * | 1996-05-17 | 2000-05-02 | Amira Medical | Body fluid sampling device and methods of use |
US6183489B1 (en) * | 1996-05-17 | 2001-02-06 | Amira Medical | Disposable element for use in a body fluid sampling device |
US6099484A (en) * | 1996-05-17 | 2000-08-08 | Amira Medical | Methods and apparatus for sampling and analyzing body fluid |
US5613978A (en) * | 1996-06-04 | 1997-03-25 | Palco Laboratories | Adjustable tip for lancet device |
US6306104B1 (en) * | 1996-12-06 | 2001-10-23 | Abbott Laboratories | Method and apparatus for obtaining blood for diagnostic tests |
US6143164A (en) * | 1997-02-06 | 2000-11-07 | E. Heller & Company | Small volume in vitro analyte sensor |
US6159424A (en) * | 1997-06-19 | 2000-12-12 | Nokia Mobile Phones, Ltd. | Apparatus for taking samples |
US5964718A (en) * | 1997-11-21 | 1999-10-12 | Mercury Diagnostics, Inc. | Body fluid sampling device |
US6071294A (en) * | 1997-12-04 | 2000-06-06 | Agilent Technologies, Inc. | Lancet cartridge for sampling blood |
US6086545A (en) * | 1998-04-28 | 2000-07-11 | Amira Medical | Methods and apparatus for suctioning and pumping body fluid from an incision |
US6156051A (en) * | 1998-06-11 | 2000-12-05 | Stat Medical Devices Inc. | Lancet having adjustable penetration depth |
US6379337B1 (en) * | 1998-12-22 | 2002-04-30 | Owais Mohammad M. B. B. S. | Retractable safety needles for medical applications |
US6210420B1 (en) * | 1999-01-19 | 2001-04-03 | Agilent Technologies, Inc. | Apparatus and method for efficient blood sampling with lancet |
US6258062B1 (en) * | 1999-02-25 | 2001-07-10 | Joseph M. Thielen | Enclosed container power supply for a needleless injector |
US6306152B1 (en) * | 1999-03-08 | 2001-10-23 | Agilent Technologies, Inc. | Lancet device with skin movement control and ballistic preload |
US6168606B1 (en) * | 1999-11-10 | 2001-01-02 | Palco Labs, Inc. | Single-use lancet device |
US20030153939A1 (en) * | 2000-03-04 | 2003-08-14 | Michael Fritz | Blood lancet with hygienic tip protection |
US6616616B2 (en) * | 2000-09-26 | 2003-09-09 | Roche Diagnostics Corporation | Lancet system |
US6929650B2 (en) * | 2001-01-12 | 2005-08-16 | Arkray, Inc. | Lancing device |
US20020177763A1 (en) * | 2001-05-22 | 2002-11-28 | Burns David W. | Integrated lancets and methods |
US20030050573A1 (en) * | 2001-08-29 | 2003-03-13 | Hans-Juergen Kuhr | Analytical device with lancet and test element |
US6645219B2 (en) * | 2001-09-07 | 2003-11-11 | Amira Medical | Rotatable penetration depth adjusting arrangement |
US20040267160A9 (en) * | 2001-09-26 | 2004-12-30 | Edward Perez | Method and apparatus for sampling bodily fluid |
US6896666B2 (en) * | 2002-11-08 | 2005-05-24 | Kochamba Family Trust | Cutaneous injection delivery under suction |
US20050085839A1 (en) * | 2003-10-20 | 2005-04-21 | John Allen | Lancing device with a floating probe for control of penetration depth |
Cited By (322)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7666149B2 (en) | 1997-12-04 | 2010-02-23 | Peliken Technologies, Inc. | Cassette of lancet cartridges for sampling blood |
US7780631B2 (en) | 1998-03-30 | 2010-08-24 | Pelikan Technologies, Inc. | Apparatus and method for penetration with shaft having a sensor for sensing penetration depth |
US8439872B2 (en) | 1998-03-30 | 2013-05-14 | Sanofi-Aventis Deutschland Gmbh | Apparatus and method for penetration with shaft having a sensor for sensing penetration depth |
US8287703B2 (en) | 1999-10-04 | 2012-10-16 | Roche Diagnostics Operations, Inc. | Biosensor and method of making |
US8551308B2 (en) | 1999-10-04 | 2013-10-08 | Roche Diagnostics Operations, Inc. | Biosensor and method of making |
US8641644B2 (en) | 2000-11-21 | 2014-02-04 | Sanofi-Aventis Deutschland Gmbh | Blood testing apparatus having a rotatable cartridge with multiple lancing elements and testing means |
US20080097171A1 (en) * | 2001-03-26 | 2008-04-24 | Wilson Smart | Silicon microprobe with integrated biosensor |
US7310543B2 (en) | 2001-03-26 | 2007-12-18 | Kumetrix, Inc. | Silicon microprobe with integrated biosensor |
US20020137998A1 (en) * | 2001-03-26 | 2002-09-26 | Wilson Smart | Silicon microprobe with integrated biosensor |
US8679033B2 (en) | 2001-06-12 | 2014-03-25 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
US8216154B2 (en) | 2001-06-12 | 2012-07-10 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
US7682318B2 (en) | 2001-06-12 | 2010-03-23 | Pelikan Technologies, Inc. | Blood sampling apparatus and method |
US8641643B2 (en) | 2001-06-12 | 2014-02-04 | Sanofi-Aventis Deutschland Gmbh | Sampling module device and method |
US8845550B2 (en) | 2001-06-12 | 2014-09-30 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
US8622930B2 (en) | 2001-06-12 | 2014-01-07 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
US9427532B2 (en) | 2001-06-12 | 2016-08-30 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
US7699791B2 (en) | 2001-06-12 | 2010-04-20 | Pelikan Technologies, Inc. | Method and apparatus for improving success rate of blood yield from a fingerstick |
US7749174B2 (en) | 2001-06-12 | 2010-07-06 | Pelikan Technologies, Inc. | Method and apparatus for lancet launching device intergrated onto a blood-sampling cartridge |
US8382683B2 (en) | 2001-06-12 | 2013-02-26 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
US8360991B2 (en) | 2001-06-12 | 2013-01-29 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
US8343075B2 (en) | 2001-06-12 | 2013-01-01 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
US8337421B2 (en) | 2001-06-12 | 2012-12-25 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
US9694144B2 (en) | 2001-06-12 | 2017-07-04 | Sanofi-Aventis Deutschland Gmbh | Sampling module device and method |
US8282577B2 (en) | 2001-06-12 | 2012-10-09 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for lancet launching device integrated onto a blood-sampling cartridge |
US7850622B2 (en) | 2001-06-12 | 2010-12-14 | Pelikan Technologies, Inc. | Tissue penetration device |
US8211037B2 (en) | 2001-06-12 | 2012-07-03 | Pelikan Technologies, Inc. | Tissue penetration device |
US8721671B2 (en) | 2001-06-12 | 2014-05-13 | Sanofi-Aventis Deutschland Gmbh | Electric lancet actuator |
US8206319B2 (en) | 2001-06-12 | 2012-06-26 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
US9802007B2 (en) | 2001-06-12 | 2017-10-31 | Sanofi-Aventis Deutschland Gmbh | Methods and apparatus for lancet actuation |
US7841992B2 (en) | 2001-06-12 | 2010-11-30 | Pelikan Technologies, Inc. | Tissue penetration device |
US8206317B2 (en) | 2001-06-12 | 2012-06-26 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
US8162853B2 (en) | 2001-06-12 | 2012-04-24 | Pelikan Technologies, Inc. | Tissue penetration device |
US8123700B2 (en) | 2001-06-12 | 2012-02-28 | Pelikan Technologies, Inc. | Method and apparatus for lancet launching device integrated onto a blood-sampling cartridge |
US8016774B2 (en) | 2001-06-12 | 2011-09-13 | Pelikan Technologies, Inc. | Tissue penetration device |
US9937298B2 (en) | 2001-06-12 | 2018-04-10 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
US7988645B2 (en) | 2001-06-12 | 2011-08-02 | Pelikan Technologies, Inc. | Self optimizing lancing device with adaptation means to temporal variations in cutaneous properties |
US7981055B2 (en) | 2001-06-12 | 2011-07-19 | Pelikan Technologies, Inc. | Tissue penetration device |
US7909775B2 (en) | 2001-06-12 | 2011-03-22 | Pelikan Technologies, Inc. | Method and apparatus for lancet launching device integrated onto a blood-sampling cartridge |
US7288073B2 (en) | 2001-07-20 | 2007-10-30 | Roche Diagnostics Operations, Inc. | System for withdrawing small amounts of body fluid |
US7993284B2 (en) | 2001-07-20 | 2011-08-09 | Roche Diagnostics Operations, Inc. | System for withdrawing small amounts of body fluid |
US20080009767A1 (en) * | 2001-07-20 | 2008-01-10 | Roche Diagnostics Operations, Inc. | System for withdrawing small amounts of body fluid |
US20030018282A1 (en) * | 2001-07-20 | 2003-01-23 | Carlo Effenhauser | System for withdrawing small amounts of body fluid |
US8388552B2 (en) | 2001-07-20 | 2013-03-05 | Roche Diagnostics Operations, Inc. | System for withdrawing small amounts of body fluid |
US8821413B2 (en) | 2001-07-20 | 2014-09-02 | Roche Diagnostics Operations, Inc. | System for withdrawing small amounts of body fluid |
US9560993B2 (en) | 2001-11-21 | 2017-02-07 | Sanofi-Aventis Deutschland Gmbh | Blood testing apparatus having a rotatable cartridge with multiple lancing elements and testing means |
US9226699B2 (en) | 2002-04-19 | 2016-01-05 | Sanofi-Aventis Deutschland Gmbh | Body fluid sampling module with a continuous compression tissue interface surface |
US8197423B2 (en) | 2002-04-19 | 2012-06-12 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US9089294B2 (en) | 2002-04-19 | 2015-07-28 | Sanofi-Aventis Deutschland Gmbh | Analyte measurement device with a single shot actuator |
US9072842B2 (en) | 2002-04-19 | 2015-07-07 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for penetrating tissue |
US7648468B2 (en) | 2002-04-19 | 2010-01-19 | Pelikon Technologies, Inc. | Method and apparatus for penetrating tissue |
US9186468B2 (en) | 2002-04-19 | 2015-11-17 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for penetrating tissue |
US8905945B2 (en) | 2002-04-19 | 2014-12-09 | Dominique M. Freeman | Method and apparatus for penetrating tissue |
US8845549B2 (en) | 2002-04-19 | 2014-09-30 | Sanofi-Aventis Deutschland Gmbh | Method for penetrating tissue |
US7674232B2 (en) | 2002-04-19 | 2010-03-09 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US8808201B2 (en) | 2002-04-19 | 2014-08-19 | Sanofi-Aventis Deutschland Gmbh | Methods and apparatus for penetrating tissue |
US8784335B2 (en) | 2002-04-19 | 2014-07-22 | Sanofi-Aventis Deutschland Gmbh | Body fluid sampling device with a capacitive sensor |
US8690796B2 (en) | 2002-04-19 | 2014-04-08 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for penetrating tissue |
US9248267B2 (en) | 2002-04-19 | 2016-02-02 | Sanofi-Aventis Deustchland Gmbh | Tissue penetration device |
US7708701B2 (en) | 2002-04-19 | 2010-05-04 | Pelikan Technologies, Inc. | Method and apparatus for a multi-use body fluid sampling device |
US8636673B2 (en) | 2002-04-19 | 2014-01-28 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
US8579831B2 (en) | 2002-04-19 | 2013-11-12 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for penetrating tissue |
US7713214B2 (en) | 2002-04-19 | 2010-05-11 | Pelikan Technologies, Inc. | Method and apparatus for a multi-use body fluid sampling device with optical analyte sensing |
US7717863B2 (en) | 2002-04-19 | 2010-05-18 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US8562545B2 (en) | 2002-04-19 | 2013-10-22 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
US7731729B2 (en) | 2002-04-19 | 2010-06-08 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US8556829B2 (en) | 2002-04-19 | 2013-10-15 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for penetrating tissue |
US8496601B2 (en) | 2002-04-19 | 2013-07-30 | Sanofi-Aventis Deutschland Gmbh | Methods and apparatus for lancet actuation |
US8491500B2 (en) | 2002-04-19 | 2013-07-23 | Sanofi-Aventis Deutschland Gmbh | Methods and apparatus for lancet actuation |
US9314194B2 (en) | 2002-04-19 | 2016-04-19 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
US9339612B2 (en) | 2002-04-19 | 2016-05-17 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
US8435190B2 (en) | 2002-04-19 | 2013-05-07 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for penetrating tissue |
US8430828B2 (en) | 2002-04-19 | 2013-04-30 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for a multi-use body fluid sampling device with sterility barrier release |
US8414503B2 (en) | 2002-04-19 | 2013-04-09 | Sanofi-Aventis Deutschland Gmbh | Methods and apparatus for lancet actuation |
US8403864B2 (en) | 2002-04-19 | 2013-03-26 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for penetrating tissue |
US8388551B2 (en) | 2002-04-19 | 2013-03-05 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for multi-use body fluid sampling device with sterility barrier release |
US8382682B2 (en) | 2002-04-19 | 2013-02-26 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for penetrating tissue |
US9498160B2 (en) | 2002-04-19 | 2016-11-22 | Sanofi-Aventis Deutschland Gmbh | Method for penetrating tissue |
US8372016B2 (en) | 2002-04-19 | 2013-02-12 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for body fluid sampling and analyte sensing |
US8366637B2 (en) | 2002-04-19 | 2013-02-05 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for penetrating tissue |
US7833171B2 (en) | 2002-04-19 | 2010-11-16 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US8360992B2 (en) | 2002-04-19 | 2013-01-29 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for penetrating tissue |
US8337419B2 (en) | 2002-04-19 | 2012-12-25 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
US8337420B2 (en) | 2002-04-19 | 2012-12-25 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
US7862520B2 (en) | 2002-04-19 | 2011-01-04 | Pelikan Technologies, Inc. | Body fluid sampling module with a continuous compression tissue interface surface |
US8333710B2 (en) | 2002-04-19 | 2012-12-18 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
US8267870B2 (en) | 2002-04-19 | 2012-09-18 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for body fluid sampling with hybrid actuation |
US7874994B2 (en) | 2002-04-19 | 2011-01-25 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US7875047B2 (en) | 2002-04-19 | 2011-01-25 | Pelikan Technologies, Inc. | Method and apparatus for a multi-use body fluid sampling device with sterility barrier release |
US8235915B2 (en) | 2002-04-19 | 2012-08-07 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for penetrating tissue |
US8221334B2 (en) | 2002-04-19 | 2012-07-17 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for penetrating tissue |
US7892183B2 (en) | 2002-04-19 | 2011-02-22 | Pelikan Technologies, Inc. | Method and apparatus for body fluid sampling and analyte sensing |
US8202231B2 (en) | 2002-04-19 | 2012-06-19 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for penetrating tissue |
US7892185B2 (en) | 2002-04-19 | 2011-02-22 | Pelikan Technologies, Inc. | Method and apparatus for body fluid sampling and analyte sensing |
US9089678B2 (en) | 2002-04-19 | 2015-07-28 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for penetrating tissue |
US7901362B2 (en) | 2002-04-19 | 2011-03-08 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US7901365B2 (en) | 2002-04-19 | 2011-03-08 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US8197421B2 (en) | 2002-04-19 | 2012-06-12 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US7909778B2 (en) | 2002-04-19 | 2011-03-22 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US9724021B2 (en) | 2002-04-19 | 2017-08-08 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for penetrating tissue |
US7909777B2 (en) | 2002-04-19 | 2011-03-22 | Pelikan Technologies, Inc | Method and apparatus for penetrating tissue |
US8157748B2 (en) | 2002-04-19 | 2012-04-17 | Pelikan Technologies, Inc. | Methods and apparatus for lancet actuation |
US7909774B2 (en) | 2002-04-19 | 2011-03-22 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US9795334B2 (en) | 2002-04-19 | 2017-10-24 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for penetrating tissue |
US7914465B2 (en) | 2002-04-19 | 2011-03-29 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US8079960B2 (en) | 2002-04-19 | 2011-12-20 | Pelikan Technologies, Inc. | Methods and apparatus for lancet actuation |
US8062231B2 (en) | 2002-04-19 | 2011-11-22 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US7938787B2 (en) | 2002-04-19 | 2011-05-10 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US9839386B2 (en) | 2002-04-19 | 2017-12-12 | Sanofi-Aventis Deustschland Gmbh | Body fluid sampling device with capacitive sensor |
US7959582B2 (en) | 2002-04-19 | 2011-06-14 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US9907502B2 (en) | 2002-04-19 | 2018-03-06 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for penetrating tissue |
US8007446B2 (en) | 2002-04-19 | 2011-08-30 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US7976476B2 (en) | 2002-04-19 | 2011-07-12 | Pelikan Technologies, Inc. | Device and method for variable speed lancet |
US7981056B2 (en) | 2002-04-19 | 2011-07-19 | Pelikan Technologies, Inc. | Methods and apparatus for lancet actuation |
US20030199895A1 (en) * | 2002-04-19 | 2003-10-23 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US7988644B2 (en) | 2002-04-19 | 2011-08-02 | Pelikan Technologies, Inc. | Method and apparatus for a multi-use body fluid sampling device with sterility barrier release |
US20110237979A1 (en) * | 2002-12-27 | 2011-09-29 | Roche Diagnostics Operations, Inc. | Precision depth control lancing tip |
US20040236251A1 (en) * | 2002-12-27 | 2004-11-25 | Roe Steven N. | Precision depth control lancing tip |
US7736322B2 (en) | 2002-12-27 | 2010-06-15 | Roche Diagnostics Operations, Inc. | Precision depth control lancing tip |
US7976477B2 (en) | 2002-12-27 | 2011-07-12 | Roche Diagnostics Operations, Inc. | Precision depth control lancing tip |
US9554741B2 (en) | 2002-12-27 | 2017-01-31 | Roche Diabetes Care, Inc. | Precision depth control lancing tip |
US20090010802A1 (en) * | 2002-12-27 | 2009-01-08 | Abner David Joseph | Method for manufacturing a sterilized lancet integrated biosensor |
US8052926B2 (en) | 2002-12-27 | 2011-11-08 | Roche Diagnostics Operations, Inc. | Method for manufacturing a sterilized lancet integrated biosensor |
US8684951B2 (en) | 2002-12-30 | 2014-04-01 | Roche Diagnostics Operations, Inc. | Blood acquisition suspension system |
US8157750B2 (en) | 2002-12-30 | 2012-04-17 | Roche Diagnostics Operations, Inc. | Integrated analytical test element |
US20060247554A1 (en) * | 2002-12-30 | 2006-11-02 | Roe Steven N | Blood acquisition suspension system |
US20070191738A1 (en) * | 2002-12-30 | 2007-08-16 | Raney Charles C | Integrated analytical test element |
US20110166477A1 (en) * | 2002-12-30 | 2011-07-07 | Roe Steven N | Blood acquisition suspension system |
US20100113978A1 (en) * | 2002-12-30 | 2010-05-06 | Raney Charles C | Integrated analytical test element |
US7214200B2 (en) | 2002-12-30 | 2007-05-08 | Roche Diagnostics Operations, Inc. | Integrated analytical test element |
US7927291B2 (en) | 2002-12-30 | 2011-04-19 | Roche Diagnostics Operations, Inc. | Blood acquisition suspension system |
US20040133127A1 (en) * | 2002-12-30 | 2004-07-08 | Roe Jeffrey N. | Capillary tube tip design to assist blood flow |
US20060100543A1 (en) * | 2002-12-30 | 2006-05-11 | Raney Charles C | Integrated Analytical Test Element |
US9034639B2 (en) | 2002-12-30 | 2015-05-19 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus using optical techniques to measure analyte levels |
US20070191739A1 (en) * | 2002-12-30 | 2007-08-16 | Roe Steven N | Flexible test strip lancet device |
US7708703B2 (en) | 2002-12-30 | 2010-05-04 | Roche Diagnostics Operations, Inc. | Integrated analytical test element |
US7479119B2 (en) | 2002-12-30 | 2009-01-20 | Roche Diagnostics Operations, Inc. | Flexible test strip lancet device |
US8574895B2 (en) | 2002-12-30 | 2013-11-05 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus using optical techniques to measure analyte levels |
US8262614B2 (en) | 2003-05-30 | 2012-09-11 | Pelikan Technologies, Inc. | Method and apparatus for fluid injection |
US8251921B2 (en) | 2003-06-06 | 2012-08-28 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for body fluid sampling and analyte sensing |
US7850621B2 (en) | 2003-06-06 | 2010-12-14 | Pelikan Technologies, Inc. | Method and apparatus for body fluid sampling and analyte sensing |
US10034628B2 (en) | 2003-06-11 | 2018-07-31 | Sanofi-Aventis Deutschland Gmbh | Low pain penetrating member |
US9144401B2 (en) | 2003-06-11 | 2015-09-29 | Sanofi-Aventis Deutschland Gmbh | Low pain penetrating member |
US7892849B2 (en) | 2003-06-20 | 2011-02-22 | Roche Diagnostics Operations, Inc. | Reagent stripe for test strip |
US8071030B2 (en) | 2003-06-20 | 2011-12-06 | Roche Diagnostics Operations, Inc. | Test strip with flared sample receiving chamber |
US8586373B2 (en) | 2003-06-20 | 2013-11-19 | Roche Diagnostics Operations, Inc. | System and method for determining the concentration of an analyte in a sample fluid |
US8211379B2 (en) | 2003-06-20 | 2012-07-03 | Roche Diagnostics Operations, Inc. | Test strip with slot vent opening |
US7829023B2 (en) | 2003-06-20 | 2010-11-09 | Roche Diagnostics Operations, Inc. | Test strip with vent opening |
US8222044B2 (en) | 2003-06-20 | 2012-07-17 | Roche Diagnostics Operations, Inc. | Test strip with flared sample receiving chamber |
US7749437B2 (en) | 2003-06-20 | 2010-07-06 | Roche Diagnostics Operations, Inc. | Method and reagent for producing narrow, homogenous reagent stripes |
US8679853B2 (en) | 2003-06-20 | 2014-03-25 | Roche Diagnostics Operations, Inc. | Biosensor with laser-sealed capillary space and method of making |
US7879618B2 (en) | 2003-06-20 | 2011-02-01 | Roche Diagnostics Operations, Inc. | Method and reagent for producing narrow, homogenous reagent strips |
US8119414B2 (en) | 2003-06-20 | 2012-02-21 | Roche Diagnostics Operations, Inc. | Test strip with slot vent opening |
US8148164B2 (en) | 2003-06-20 | 2012-04-03 | Roche Diagnostics Operations, Inc. | System and method for determining the concentration of an analyte in a sample fluid |
US7727467B2 (en) | 2003-06-20 | 2010-06-01 | Roche Diagnostics Operations, Inc. | Reagent stripe for test strip |
US8142721B2 (en) | 2003-06-20 | 2012-03-27 | Roche Diagnostics Operations, Inc. | Test strip with slot vent opening |
US8298828B2 (en) | 2003-06-20 | 2012-10-30 | Roche Diagnostics Operations, Inc. | System and method for determining the concentration of an analyte in a sample fluid |
US20060173380A1 (en) * | 2003-07-16 | 2006-08-03 | Roche Diagnostics Operations, Inc. | Analysis apparatus and analysis method for body fluids |
US8684949B2 (en) * | 2003-07-16 | 2014-04-01 | Roche Diagnostics Operations, Inc. | Analysis apparatus and analysis method for body fluids |
US20100174305A1 (en) * | 2003-08-29 | 2010-07-08 | Owen Mumford Limited | Lancets |
US8652158B2 (en) * | 2003-08-29 | 2014-02-18 | Owen Mumford Limited | Lancets |
US8282576B2 (en) | 2003-09-29 | 2012-10-09 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for an improved sample capture device |
US8945910B2 (en) | 2003-09-29 | 2015-02-03 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for an improved sample capture device |
US9351680B2 (en) | 2003-10-14 | 2016-05-31 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for a variable user interface |
US20050085839A1 (en) * | 2003-10-20 | 2005-04-21 | John Allen | Lancing device with a floating probe for control of penetration depth |
US7481818B2 (en) * | 2003-10-20 | 2009-01-27 | Lifescan | Lancing device with a floating probe for control of penetration depth |
US20080082117A1 (en) * | 2003-11-12 | 2008-04-03 | Facet Technologies, Llc | Lancing device |
US20050143771A1 (en) * | 2003-12-02 | 2005-06-30 | Stout Jeffrey T. | Lancing device with combination depth and activation control |
US20050131315A1 (en) * | 2003-12-16 | 2005-06-16 | Ching-Nan Chu | Method for indicating the user's name on a blood-sampling needle pen and the product thereof |
US7293803B2 (en) * | 2003-12-16 | 2007-11-13 | Ching-Nan Chu | Method for indicating the user's name on a blood-sampling needle pen and the product thereof |
US8668656B2 (en) | 2003-12-31 | 2014-03-11 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for improving fluidic flow and sample capture |
US9561000B2 (en) | 2003-12-31 | 2017-02-07 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for improving fluidic flow and sample capture |
US8296918B2 (en) | 2003-12-31 | 2012-10-30 | Sanofi-Aventis Deutschland Gmbh | Method of manufacturing a fluid sampling device with improved analyte detecting member configuration |
US8398567B2 (en) * | 2004-02-06 | 2013-03-19 | Bayer Healthcare Llc | Method and apparatus for measuring an analyte in a body fluid |
US20070213636A1 (en) * | 2004-02-06 | 2007-09-13 | Kuriger Rex J | Method and apparatus for measuring an analyte in a body fluid |
US8792955B2 (en) | 2004-05-03 | 2014-07-29 | Dexcom, Inc. | Transcutaneous analyte sensor |
US9101302B2 (en) * | 2004-05-03 | 2015-08-11 | Abbott Diabetes Care Inc. | Analyte test device |
US10327638B2 (en) | 2004-05-03 | 2019-06-25 | Dexcom, Inc. | Transcutaneous analyte sensor |
US9833143B2 (en) | 2004-05-03 | 2017-12-05 | Dexcom, Inc. | Transcutaneous analyte sensor |
US20050245844A1 (en) * | 2004-05-03 | 2005-11-03 | Mace Chad H | Analyte test device |
US7322942B2 (en) * | 2004-05-07 | 2008-01-29 | Roche Diagnostics Operations, Inc. | Integrated disposable for automatic or manual blood dosing |
US20050251064A1 (en) * | 2004-05-07 | 2005-11-10 | Roe Jeffrey N | Integrated disposable for automatic or manual blood dosing |
US8636674B2 (en) | 2004-05-07 | 2014-01-28 | Roche Diagnostics Operations, Inc. | Integrated disposable for automatic or manual blood dosing |
US7670301B2 (en) | 2004-05-07 | 2010-03-02 | Roche Diagnostics Operations, Inc. | Integrated disposable for automatic or manual blood dosing |
US20100113977A1 (en) * | 2004-05-07 | 2010-05-06 | Roe Jeffrey N | Integrated disposable for automatic or manual blood dosing |
US9261476B2 (en) | 2004-05-20 | 2016-02-16 | Sanofi Sa | Printable hydrogel for biosensors |
US8828203B2 (en) | 2004-05-20 | 2014-09-09 | Sanofi-Aventis Deutschland Gmbh | Printable hydrogels for biosensors |
US9820684B2 (en) | 2004-06-03 | 2017-11-21 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for a fluid sampling device |
US9775553B2 (en) | 2004-06-03 | 2017-10-03 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for a fluid sampling device |
US20050277849A1 (en) * | 2004-06-10 | 2005-12-15 | Daniel Wong | Vacuum sample expression device |
US20050283094A1 (en) * | 2004-06-21 | 2005-12-22 | Detlef Thym | Disposable lancet and lancing cap combination for increased hygiene |
US7766845B2 (en) * | 2004-06-21 | 2010-08-03 | Roche Diagnostics Operations, Inc. | Disposable lancet and lancing cap combination for increased hygiene |
US8792954B2 (en) | 2004-07-13 | 2014-07-29 | Dexcom, Inc. | Transcutaneous analyte sensor |
US10993642B2 (en) | 2004-07-13 | 2021-05-04 | Dexcom, Inc. | Analyte sensor |
US10799159B2 (en) | 2004-07-13 | 2020-10-13 | Dexcom, Inc. | Analyte sensor |
US10993641B2 (en) | 2004-07-13 | 2021-05-04 | Dexcom, Inc. | Analyte sensor |
US9668677B2 (en) | 2004-07-13 | 2017-06-06 | Dexcom, Inc. | Analyte sensor |
US9247900B2 (en) | 2004-07-13 | 2016-02-02 | Dexcom, Inc. | Analyte sensor |
US10799158B2 (en) | 2004-07-13 | 2020-10-13 | Dexcom, Inc. | Analyte sensor |
US11883164B2 (en) | 2004-07-13 | 2024-01-30 | Dexcom, Inc. | System and methods for processing analyte sensor data for sensor calibration |
US10722152B2 (en) | 2004-07-13 | 2020-07-28 | Dexcom, Inc. | Analyte sensor |
US10980452B2 (en) | 2004-07-13 | 2021-04-20 | Dexcom, Inc. | Analyte sensor |
US11064917B2 (en) | 2004-07-13 | 2021-07-20 | Dexcom, Inc. | Analyte sensor |
US10813576B2 (en) | 2004-07-13 | 2020-10-27 | Dexcom, Inc. | Analyte sensor |
US10709363B2 (en) | 2004-07-13 | 2020-07-14 | Dexcom, Inc. | Analyte sensor |
US9044199B2 (en) | 2004-07-13 | 2015-06-02 | Dexcom, Inc. | Transcutaneous analyte sensor |
US9986942B2 (en) | 2004-07-13 | 2018-06-05 | Dexcom, Inc. | Analyte sensor |
US9610031B2 (en) | 2004-07-13 | 2017-04-04 | Dexcom, Inc. | Transcutaneous analyte sensor |
US9414777B2 (en) | 2004-07-13 | 2016-08-16 | Dexcom, Inc. | Transcutaneous analyte sensor |
US10709362B2 (en) | 2004-07-13 | 2020-07-14 | Dexcom, Inc. | Analyte sensor |
US9814414B2 (en) | 2004-07-13 | 2017-11-14 | Dexcom, Inc. | Transcutaneous analyte sensor |
US8989833B2 (en) | 2004-07-13 | 2015-03-24 | Dexcom, Inc. | Transcutaneous analyte sensor |
US8690775B2 (en) * | 2004-07-13 | 2014-04-08 | Dexcom, Inc. | Transcutaneous analyte sensor |
US10524703B2 (en) | 2004-07-13 | 2020-01-07 | Dexcom, Inc. | Transcutaneous analyte sensor |
US8721545B2 (en) | 2004-07-13 | 2014-05-13 | Dexcom, Inc. | Transcutaneous analyte sensor |
US10827956B2 (en) | 2004-07-13 | 2020-11-10 | Dexcom, Inc. | Analyte sensor |
US11026605B1 (en) | 2004-07-13 | 2021-06-08 | Dexcom, Inc. | Analyte sensor |
US10918313B2 (en) | 2004-07-13 | 2021-02-16 | Dexcom, Inc. | Analyte sensor |
US10918314B2 (en) | 2004-07-13 | 2021-02-16 | Dexcom, Inc. | Analyte sensor |
US8801611B2 (en) | 2004-07-13 | 2014-08-12 | Dexcom, Inc. | Transcutaneous analyte sensor |
US20100174157A1 (en) * | 2004-07-13 | 2010-07-08 | Dexcom, Inc. | Transcutaneous analyte sensor |
US8825127B2 (en) | 2004-07-13 | 2014-09-02 | Dexcom, Inc. | Transcutaneous analyte sensor |
US20100174165A1 (en) * | 2004-07-13 | 2010-07-08 | Dexcom, Inc. | Transcutaneous analyte sensor |
US10314525B2 (en) | 2004-07-13 | 2019-06-11 | Dexcom, Inc. | Analyte sensor |
US10932700B2 (en) | 2004-07-13 | 2021-03-02 | Dexcom, Inc. | Analyte sensor |
US10918315B2 (en) | 2004-07-13 | 2021-02-16 | Dexcom, Inc. | Analyte sensor |
US9833176B2 (en) | 2004-07-13 | 2017-12-05 | Dexcom, Inc. | Transcutaneous analyte sensor |
US20080188731A1 (en) * | 2004-07-13 | 2008-08-07 | Dexcom, Inc. | Transcutaneous analyte sensor |
US11045120B2 (en) | 2004-07-13 | 2021-06-29 | Dexcom, Inc. | Analyte sensor |
US20060030788A1 (en) * | 2004-08-04 | 2006-02-09 | Daniel Wong | Apparatus and method for extracting bodily fluid utilizing a flat lancet |
US20060079810A1 (en) * | 2004-10-08 | 2006-04-13 | Paul Patel | Integrated lancing test strip with capillary transfer sheet |
DE102004064136B4 (en) * | 2004-12-10 | 2013-03-21 | Roche Diagnostics Gmbh | Lancet device for making puncture wound for taking out body fluid for diagnostic purpose has reference element coupling mechanism with lancet drive for moving reference element and cam which is driven by cam rider |
US8414609B2 (en) | 2004-12-10 | 2013-04-09 | Roche Diagnostics Operations, Inc. | Lancet device for generating a puncture wound, and lancet drive assembly |
US20100168618A1 (en) * | 2004-12-10 | 2010-07-01 | Hans List | Lancet device for generating a puncture wound, and lancet drive assembly |
US8652831B2 (en) | 2004-12-30 | 2014-02-18 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for analyte measurement test time |
US7822454B1 (en) | 2005-01-03 | 2010-10-26 | Pelikan Technologies, Inc. | Fluid sampling device with improved analyte detecting member configuration |
US9445756B2 (en) | 2005-03-02 | 2016-09-20 | Roche Diabetes Care, Inc. | Dynamic integrated lancing test strip with sterility cover |
US9034250B2 (en) | 2005-03-02 | 2015-05-19 | Roche Diagnostics Operations, Inc. | Dynamic integrated lancing test strip with sterility cover |
US7935063B2 (en) | 2005-03-02 | 2011-05-03 | Roche Diagnostics Operations, Inc. | System and method for breaking a sterility seal to engage a lancet |
US7815579B2 (en) | 2005-03-02 | 2010-10-19 | Roche Diagnostics Operations, Inc. | Dynamic integrated lancing test strip with sterility cover |
US20070167869A1 (en) * | 2005-03-02 | 2007-07-19 | Roe Steven N | System and method for breaking a sterility seal to engage a lancet |
US20110000168A1 (en) * | 2005-03-02 | 2011-01-06 | Roe Steven N | Dynamic integrated lancing test strip with sterility cover |
US20060200045A1 (en) * | 2005-03-02 | 2006-09-07 | Roe Steven N | Dynamic integrated lancing test strip with sterility cover |
US20110178435A1 (en) * | 2005-03-02 | 2011-07-21 | Roe Steven N | System and method for breaking a sterility seal to engage a lancet |
US20080082023A1 (en) * | 2005-03-03 | 2008-04-03 | Frank Deck | Puncturing system for withdrawing a body fluid |
EP1865846B1 (en) * | 2005-03-03 | 2015-08-12 | Roche Diagnostics GmbH | Piercing system for removing a bodily fluid |
US8231547B2 (en) | 2005-03-03 | 2012-07-31 | Roche Diagnostics Operations, Inc. | Puncturing system for withdrawing a body fluid |
WO2006092309A2 (en) | 2005-03-03 | 2006-09-08 | Roche Diagnostics Gmbh | Piercing system for removing a bodily fluid |
US10898114B2 (en) | 2005-03-10 | 2021-01-26 | Dexcom, Inc. | System and methods for processing analyte sensor data for sensor calibration |
US11000213B2 (en) | 2005-03-10 | 2021-05-11 | Dexcom, Inc. | System and methods for processing analyte sensor data for sensor calibration |
US11051726B2 (en) | 2005-03-10 | 2021-07-06 | Dexcom, Inc. | System and methods for processing analyte sensor data for sensor calibration |
US10918317B2 (en) | 2005-03-10 | 2021-02-16 | Dexcom, Inc. | System and methods for processing analyte sensor data for sensor calibration |
US10918316B2 (en) | 2005-03-10 | 2021-02-16 | Dexcom, Inc. | System and methods for processing analyte sensor data for sensor calibration |
US10918318B2 (en) | 2005-03-10 | 2021-02-16 | Dexcom, Inc. | System and methods for processing analyte sensor data for sensor calibration |
US10856787B2 (en) | 2005-03-10 | 2020-12-08 | Dexcom, Inc. | System and methods for processing analyte sensor data for sensor calibration |
US10925524B2 (en) | 2005-03-10 | 2021-02-23 | Dexcom, Inc. | System and methods for processing analyte sensor data for sensor calibration |
US10610135B2 (en) | 2005-03-10 | 2020-04-07 | Dexcom, Inc. | System and methods for processing analyte sensor data for sensor calibration |
US10610137B2 (en) | 2005-03-10 | 2020-04-07 | Dexcom, Inc. | System and methods for processing analyte sensor data for sensor calibration |
US10743801B2 (en) | 2005-03-10 | 2020-08-18 | Dexcom, Inc. | System and methods for processing analyte sensor data for sensor calibration |
US10716498B2 (en) | 2005-03-10 | 2020-07-21 | Dexcom, Inc. | System and methods for processing analyte sensor data for sensor calibration |
US10709364B2 (en) | 2005-03-10 | 2020-07-14 | Dexcom, Inc. | System and methods for processing analyte sensor data for sensor calibration |
US10610136B2 (en) | 2005-03-10 | 2020-04-07 | Dexcom, Inc. | System and methods for processing analyte sensor data for sensor calibration |
US10617336B2 (en) | 2005-03-10 | 2020-04-14 | Dexcom, Inc. | System and methods for processing analyte sensor data for sensor calibration |
US20080108910A1 (en) * | 2005-04-07 | 2008-05-08 | Heinz-Michael Hein | Method and device for the extraction of a body fluid |
US8636675B2 (en) | 2005-04-07 | 2014-01-28 | Roche Diagnostics Operations, Inc. | Method and device for the extraction of a body fluid |
US20110028862A1 (en) * | 2005-04-07 | 2011-02-03 | Heinz-Michael Hein | Method and device for the extraction of a body fluid |
US7833172B2 (en) * | 2005-04-07 | 2010-11-16 | Roche Diagnostics Operations, Inc. | Method and device for the extraction of a body fluid |
US8328737B2 (en) | 2005-04-12 | 2012-12-11 | Roche Diagnostics Operations, Inc. | Integrated lancing test strip with retractable lancet |
US20100145230A1 (en) * | 2005-04-12 | 2010-06-10 | Daniel Wong | Integrated lancing test strip with retractable lancet |
US8025628B2 (en) | 2005-04-12 | 2011-09-27 | Roche Diagnostics Operations, Inc. | Integrated lancing test strip with retractable lancet |
US20060229532A1 (en) * | 2005-04-12 | 2006-10-12 | Daniel Wong | Integrated lancing test strip with retractable lancet |
US7695442B2 (en) | 2005-04-12 | 2010-04-13 | Roche Diagnostics Operations, Inc. | Integrated lancing test strip with retractable lancet |
US10813577B2 (en) | 2005-06-21 | 2020-10-27 | Dexcom, Inc. | Analyte sensor |
US20090216155A1 (en) * | 2005-11-21 | 2009-08-27 | Nicholas Long | Test Device |
US8353848B2 (en) * | 2005-11-21 | 2013-01-15 | Alere Switzerland Gmbh | Test device |
US20070182051A1 (en) * | 2006-02-09 | 2007-08-09 | Herbert Harttig | Test element with elastically mounted lancet |
US8062232B2 (en) * | 2006-02-09 | 2011-11-22 | Roche Diagnostics Operations, Inc. | Test element with elastically mounted lancet |
US20080033468A1 (en) * | 2006-06-15 | 2008-02-07 | Abbott Diabetes Care Inc. | Lancets and Methods of Use |
WO2007146913A3 (en) * | 2006-06-15 | 2008-12-04 | Abbott Diabetes Care Inc | Lancets and methods of use |
US20080082116A1 (en) * | 2006-06-15 | 2008-04-03 | Abbott Diabetes Care Inc. | Lancing Devices Having Lancet Ejection Assembly |
US7955348B2 (en) | 2006-06-15 | 2011-06-07 | Abbott Diabetes Care Inc. | Lancing devices and methods |
US20080077167A1 (en) * | 2006-06-15 | 2008-03-27 | Abbott Diabetes Care Inc. | Lancing Devices Having Depth Adjustment Assembly |
US20080027474A1 (en) * | 2006-06-15 | 2008-01-31 | Abbott Diabetes Care Inc. | Adjustable Lancing Devices and Methods |
US8016848B2 (en) | 2006-06-15 | 2011-09-13 | Abbott Diabetes Care Inc. | Lancets and methods of use |
US7914547B2 (en) | 2006-06-15 | 2011-03-29 | Abbott Diabetes Care Inc. | Adjustable lancing devices and methods |
US7909842B2 (en) | 2006-06-15 | 2011-03-22 | Abbott Diabetes Care Inc. | Lancing devices having depth adjustment assembly |
US20080065132A1 (en) * | 2006-06-15 | 2008-03-13 | Abbott Diabetes Care Inc. | Lancing Devices and Methods |
US7867244B2 (en) | 2006-06-15 | 2011-01-11 | Abbott Diabetes Care Inc. | Lancing devices having lancet ejection assembly |
US20080065130A1 (en) * | 2006-08-22 | 2008-03-13 | Paul Patel | Elastomeric toroidal ring for blood expression |
US8444574B2 (en) | 2006-09-04 | 2013-05-21 | Roche Diagnostics Operations, Inc. | Lancing system for the extraction of a body fluid |
US8702624B2 (en) | 2006-09-29 | 2014-04-22 | Sanofi-Aventis Deutschland Gmbh | Analyte measurement device with a single shot actuator |
US20080262386A1 (en) * | 2007-04-21 | 2008-10-23 | Roche Diagnostics Operations, Inc. | Analytical system for detecting an analyte in a body fluid and disposable integrated puncturing and analyzing element |
US8328735B2 (en) | 2007-04-21 | 2012-12-11 | Roche Diagnostics Operations, Inc. | Analytical system for detecting an analyte in a body fluid and disposable integrated puncturing and analyzing element |
US8118826B2 (en) * | 2007-09-27 | 2012-02-21 | Swan Valley Medical, Incorporated | Method of performing a suprapubic transurethral cystostomy and associated procedures and apparatus therefor |
US20090088786A1 (en) * | 2007-09-27 | 2009-04-02 | Zook Ronald E | Method of Performing a Suprapubic Transurethral Cystostomy and Associated Procedures and Apparatus Therefor |
US9386944B2 (en) | 2008-04-11 | 2016-07-12 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for analyte detecting device |
US20110060245A1 (en) * | 2008-05-06 | 2011-03-10 | Gennadiy Konstantinovich Piletskiy | Device for measuring intracranial pressure in newborns and babies and a supporting member for said device |
US8029526B2 (en) | 2008-08-14 | 2011-10-04 | Abbott Diabetes Care Inc. | Cocking mechanism for lancing device |
US20100042131A1 (en) * | 2008-08-14 | 2010-02-18 | Abbott Diabetes Care Inc. | Cocking mechanism for lancing device |
US9375169B2 (en) | 2009-01-30 | 2016-06-28 | Sanofi-Aventis Deutschland Gmbh | Cam drive for managing disposable penetrating member actions with a single motor and motor and control system |
US9475044B2 (en) | 2009-08-20 | 2016-10-25 | Roche Diagnostics Operations, Inc. | Test strip with a shaped tip for skin straightening |
US20110046453A1 (en) * | 2009-08-20 | 2011-02-24 | Michael Keil | Test strip with a shaped tip for skin straightening |
US8061004B2 (en) | 2009-08-20 | 2011-11-22 | Roche Diagnostics Operations, Inc. | Method of manufacturing a test strip |
US8965476B2 (en) | 2010-04-16 | 2015-02-24 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
US9795747B2 (en) | 2010-06-02 | 2017-10-24 | Sanofi-Aventis Deutschland Gmbh | Methods and apparatus for lancet actuation |
WO2012059205A1 (en) * | 2010-11-04 | 2012-05-10 | Roche Diagnostics Gmbh | Safety lancet |
US10194938B2 (en) * | 2011-03-14 | 2019-02-05 | UnoMedical, AS | Inserter system with transport protection |
US20150157361A1 (en) * | 2011-03-14 | 2015-06-11 | Unomedical A/S | Inserter System with Transport Protection |
US11317944B2 (en) | 2011-03-14 | 2022-05-03 | Unomedical A/S | Inserter system with transport protection |
US9186099B2 (en) * | 2011-12-09 | 2015-11-17 | Arkray, Inc. | Lancet cartridge |
US20130165961A1 (en) * | 2011-12-09 | 2013-06-27 | Arkray, Inc. | Lancet cartridge |
JP2013121380A (en) * | 2011-12-09 | 2013-06-20 | Arkray Inc | Lancet cartridge |
EP2601890A1 (en) * | 2011-12-09 | 2013-06-12 | ARKRAY, Inc. | Lancet cartridge |
JP2013212288A (en) * | 2012-04-02 | 2013-10-17 | Nanbu Plastics Co Ltd | Puncturing utensil for blood sampling |
US10085681B2 (en) | 2012-04-11 | 2018-10-02 | Facet Technologies, Llc | Lancing device with moving pivot depth adjust |
WO2013192179A1 (en) * | 2012-06-18 | 2013-12-27 | Facet Technologies, Llc | Lancing device endcap with internal dial-driven depth adjust |
US11672451B2 (en) * | 2013-03-12 | 2023-06-13 | Ascensia Diabetes Care Holdings Ag | Lancing device |
US20190159709A1 (en) * | 2016-07-29 | 2019-05-30 | Seventh Sense Biosystems, Inc. | Delivering and/or receiving fluids |
US11771352B2 (en) | 2016-08-24 | 2023-10-03 | Becton, Dickinson And Company | Device for the attached flow of blood |
US11399755B2 (en) | 2016-08-24 | 2022-08-02 | Becton, Dickinson And Company | Device for obtaining a blood sample |
US12082932B2 (en) | 2016-08-24 | 2024-09-10 | Becton, Dickinson And Company | Device for obtaining a blood sample |
US20210137435A1 (en) * | 2019-11-13 | 2021-05-13 | Loop Medical Sa | Sample collection device, system and method for extracting and collecting a sample of a fluid of a user |
US12121353B2 (en) | 2023-06-08 | 2024-10-22 | Yourbio Health, Inc. | Systems and interfaces for blood sampling |
Also Published As
Publication number | Publication date |
---|---|
US20110237979A1 (en) | 2011-09-29 |
AU2003217403A1 (en) | 2004-07-22 |
WO2004058068A3 (en) | 2005-07-14 |
EP1578269B1 (en) | 2012-11-14 |
US7976477B2 (en) | 2011-07-12 |
EP1578269A1 (en) | 2005-09-28 |
US20040236251A1 (en) | 2004-11-25 |
US7736322B2 (en) | 2010-06-15 |
EP1581112A2 (en) | 2005-10-05 |
WO2004060159A1 (en) | 2004-07-22 |
US20080147107A1 (en) | 2008-06-19 |
WO2004058068A2 (en) | 2004-07-15 |
US9554741B2 (en) | 2017-01-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7976477B2 (en) | Precision depth control lancing tip | |
US7476202B2 (en) | Sampling devices and methods utilizing a horizontal capillary test strip | |
US7211052B2 (en) | Flexible test strip lancet device | |
US7264627B2 (en) | Wicking methods and structures for use in sampling bodily fluids | |
US9538941B2 (en) | Devices and methods for expression of bodily fluids from an incision | |
US7244264B2 (en) | Dual blade lancing test strip | |
US6783502B2 (en) | Integrated lancing and analytic device | |
EP1589873B1 (en) | Integrated lancing test strip | |
EP1399066B1 (en) | Devices for the expression of bodily fluids from an incision | |
EP1399065B1 (en) | Sampling devices and methods utilizing a stepped capillary passageway | |
WO2002100275A1 (en) | Sampling devices and methods for bodily fluids |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: AMIRA MEDICAL, INDIANA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ROE, STEVEN N.;WIEGEL, CHRIS;REEL/FRAME:013846/0818 Effective date: 20030305 |
|
AS | Assignment |
Owner name: ROCHE DIAGNOSTICS OPERATIONS, INC., INDIANA Free format text: CHANGE OF NAME;ASSIGNOR:AMIRA MEDICAL;REEL/FRAME:014746/0913 Effective date: 20031010 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
AS | Assignment |
Owner name: ROCHE DIABETES CARE, INC., INDIANA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ROCHE DIAGNOSTICS OPERATIONS, INC.;REEL/FRAME:036008/0670 Effective date: 20150302 |