US20040254628A1 - One-branch stent-graft for bifurcated lumens - Google Patents
One-branch stent-graft for bifurcated lumens Download PDFInfo
- Publication number
- US20040254628A1 US20040254628A1 US10/461,898 US46189803A US2004254628A1 US 20040254628 A1 US20040254628 A1 US 20040254628A1 US 46189803 A US46189803 A US 46189803A US 2004254628 A1 US2004254628 A1 US 2004254628A1
- Authority
- US
- United States
- Prior art keywords
- stent
- graft
- bifurcated
- bifurcation
- native
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/04—Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
- A61F2/06—Blood vessels
- A61F2/07—Stent-grafts
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/86—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
- A61F2/90—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/04—Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
- A61F2/06—Blood vessels
- A61F2002/065—Y-shaped blood vessels
- A61F2002/067—Y-shaped blood vessels modular
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/04—Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
- A61F2/06—Blood vessels
- A61F2/07—Stent-grafts
- A61F2002/075—Stent-grafts the stent being loosely attached to the graft material, e.g. by stitching
Definitions
- the present invention relates to a one-branch stent-graft for use in bifurcated body lumens. More specifically, the present invention relates to a stent graft including two branches, wherein a closure prevents fluid from flowing to one of the branches.
- a stent-graft (a stent with a graft layer lining or covering it) is typically used to provide a prosthetic intraluminal wall, e.g., in the case of a stenosis or aneurysm, to provide an unobstructed conduit for blood in the area of the stenosis or aneurysm.
- a stent-graft may be endoluminally deployed in a body lumen, a blood vessel for example, at the site of a stenosis or aneurysm by so-called “minimally invasive techniques” in which the stent-graft is compressed radially inwards and is delivered by a catheter to the site where it is required, through the patient's skin, or by a “cut down” technique at a location where the blood vessel concerned is accessible.
- minimally invasive techniques in which the stent-graft is compressed radially inwards and is delivered by a catheter to the site where it is required, through the patient's skin, or by a “cut down” technique at a location where the blood vessel concerned is accessible.
- a one branch design stent-graft is typically utilized at a native vessel bifurcation to direct fluid into only one of the branches of the bifurcation.
- an aorto-uni-iliac stent-graft provides an unobstructed conduit for blood to flow from the aorta through only one of the two iliacs.
- blood flows through the single branch stent-graft to the bifurcated vessel branch of the native bifurcation that contains the stent-graft, while blood is prevented from flowing to the other bifurcated branch of the native bifurcation.
- Typical single branch design stent-grafts have a tendency to work their way distally from the originally deployed position. It will be appreciated by a person skilled in the art that it is desirable to prevent stents from migrating out of position. In particular, where the site of desired application of the stent or prosthesis is a native vessel bifurcation, the distal migration associated with the use of the prior art prostheses constitutes a significant disadvantage.
- a stent-graft of this invention includes a bifurcated stent, i.e., an unbifurcated portion in fluid communication with two branches.
- the stent-graft further includes a graft that lines or covers at least part of the bifurcated stent.
- the graft of this stent graft defines a fluid passageway from the unbifurcated portion into one of the bifurcated stent branches.
- a closure which may be part of the graft, prevents fluid from flowing to the other of the branches.
- the stent-graft is preferably adapted for placement of the stent bifurcation adjacent the native bifurcation of a body lumen to resist distal migration of the stent-graft.
- One use of such stent-grafts is in bypassing abdominal aortic aneurysms where a femoral-femoral bypass is surgically installed to provide blood flow to the occluded iliac.
- a stent-graft is provided that is adapted for placement at a native vessel bifurcation.
- the stent-graft includes a bifurcated stent with a proximal portion adapted for placement in an unbifurcated region of the native bifurcation.
- proximal means the unbifurcated end of the stent or stent-graft, i.e., nearest to the heart when the bifurcated lumen is the abdominal aorta
- distal means the opposite, i.e., the bifurcated end of the stent or stent-graft.
- the bifurcated stent further includes two distal portions.
- the first distal portion is adapted to extend from the unbifurcated region of the native bifurcation into one of the bifurcated branches of the native bifurcation.
- the second distal portion extends toward and into the other bifurcated branch of the native bifurcation.
- a graft lining defines a fluid passage that extends from the proximal portion of the bifurcated stent to the first distal portion of the bifurcated stent.
- the graft lining is closed to the other of the bifurcated branches.
- a stent-graft adapted for placement at a native vessel bifurcation includes a bifurcated stent with a proximal portion adapted for placement in an unbifurcated region of the native bifurcation.
- the bifurcated stent further includes two distal portions. The first distal portion is adapted to extend from the unbifurcated region of the native bifurcation into one of the bifurcated branches of the native bifurcation. The second distal portion extends toward and into the other bifurcated branch of the native bifurcation.
- a graft lining or covering defines a fluid passage that extends from the proximal portion of the bifurcated stent to the distal portions of the bifurcated stent.
- An occluder device is adapted for placement in the second distal portion. The occluder prevents fluid passage through the second distal portion of the bifurcated stent-graft and to the second branch of the bifurcated lumen.
- a stent-graft is provided that is adapted for placement at a native vessel bifurcation.
- the stent-graft includes a straight bifurcated stent-graft and a tapered stent-graft.
- the straight bifurcated stent-graft includes a proximal portion adapted for placement in an unbifurcated region of the native bifurcation, and two distal portions.
- the first distal portion is adapted to extend from the unbifurcated region of the native bifurcation into one of the bifurcated branches of the native bifurcation.
- the second distal portion extends toward and into the other bifurcated branch of the native bifurcation.
- a graft lining or covering extends from the proximal portion of the straight bifurcated stent-graft to the distal portions of the straight bifurcated stent-graft.
- the tapered stent-graft includes a proximal tapered portion and a distal portion.
- the proximal portion is adapted for placement in the unbifurcated portion of the straight stent-graft and the distal portion is adapted for placement in the first distal portion of the straight stent-graft.
- a graft lining or covering extends from the proximal portion of the tapered stent-graft to the distal portion of the tapered stent-graft.
- the tapered stent-graft defines a fluid passage to the first distal portion of the straight bifurcated stent-graft, and is closed to fluid passage into the second distal portion of the straight bifurcated stent-graft by the graft lining or covering of the tapered stent-graft.
- FIG. 1A is a front view of a stent-graft including a bifurcated stent and a graft lining in accordance with one embodiment of the present invention
- FIG. 1B is a detail view of the bifurcated stent of FIG. 1A;
- FIG. 1C is a detail view of the graft lining of FIG. 1A;
- FIG. 2A is a front view of a stent-graft including a bifurcated stent, a graft lining, and an occluder device in accordance with another embodiment of the present invention
- FIG. 2B is a detail view of the bifurcated stent of FIG. 2A;
- FIG. 2C is a detail view of the graft lining of FIG. 2A;
- FIG. 2D is a detail view of the occluder device of FIG. 2A;
- FIG. 3A is a front view of a stent-graft including a straight bifurcated stent and graft and a tapered stent and graft in accordance with yet another embodiment of the present invention
- FIG. 3B is a detail view of the straight bifurcated stent and graft of FIG. 3A.
- FIG. 3C is a detail view of the tapered stent and graft of FIG. 3A.
- a stent-graft 10 is adapted for placement at a native vessel bifurcation.
- the stent-graft 10 includes a bifurcated stent 12 with a proximal portion 14 adapted for placement in an unbifurcated region of the native bifurcation.
- the bifurcated stent 12 further includes two distal portions 16 , 18 .
- the first distal portion 16 is adapted to extend from the unbifurcated region of the native bifurcation into one of the bifurcated branches of the native bifurcation.
- the second distal portion 18 extends toward the other bifurcated branch of the native bifurcation.
- a graft lining 20 defines a fluid passage that extends from the proximal portion 14 of the bifurcated stent 12 to the distal portion 16 of the bifurcated stent 12 .
- the graft lining 20 is adapted to extend to one of the bifurcated branches of the native bifurcation, but is closed to the other of the bifurcated branches.
- the stent-graft 10 is adapted for placement of the stent bifurcation 22 adjacent the native bifurcation.
- FIG. 1B is a detail view of the bifurcated stent 12 illustrated in FIG. 1A.
- the bifurcated stent 12 has a radially compressed configuration for introduction into a lumen, and a radially expanded configuration for deployment within the lumen.
- the bifurcated stent 12 is compressed radially inwards and is delivered by a catheter to the site where it is required through the patient's skin, or by a “cut down” technique in which the blood vessel concerned is exposed by minor surgical means at an accessible location thereof.
- the stent 12 is caused or allowed to re-expand to a predetermined diameter in the vessel and the catheter is withdrawn.
- FIG. 1C is a detail view of the graft lining 20 illustrated in FIG. 1A.
- the graft lining 20 is attached to an inside surface of the bifurcated stent 12 (as illustrated in FIG. 1A) by sewing, suturing, or bonding.
- the stent-graft 10 illustrated in FIG. 1A is juxtaposed or extends across a bifurcation in an artery or vein such as, for example, the bifurcation in the mammalian aortic artery into the common iliac arteries.
- a bifurcation is referred to throughout this specification as a native vessel bifurcation.
- AAA abdominal aortic aneurysm
- the stent-graft 10 is deployed such that the stent bifurcation 22 is placed adjacent the native vessel bifurcation.
- the first distal portion 16 extends into one of the bifurcated branches of the native bifurcation, while the second distal portion 18 extends toward and into the other bifurcated branch of the native bifurcation.
- the tapered shape of the graft lining 20 results in a fluid passage that extends from the proximal portion 14 of the bifurcated stent 12 to the first distal portion 16 of the bifurcated stent 12 .
- blood flows through the stent-graft 10 to the bifurcated vessel branch of the native bifurcation that contains the first distal portion 16 , while blood is prevented from flowing through the stent-graft 10 to the other bifurcated branch of the native bifurcation that contains the second distal portion 18 .
- the second distal portion 18 functions not as a fluid passageway, but as a structural member.
- the relationship among the first distal portion 16 , the stent bifurcation 22 , and the second distal portion 18 allows the stent graft 10 to straddle or span the native vessel bifurcation when deployed, placing the stent bifurcation 22 adjacent the native vessel bifurcation tending to prevent distal migration. Actual contact between the stent bifurcation 22 and the native vessel bifurcation may prevent the stent-graft 10 from working its way down away from its originally deployed position.
- the stent and graft may be formed of conventional materials, such as nitinol and ePTFE.
- another stent-graft 30 adapted for placement at a native vessel bifurcation, includes a bifurcated stent 32 with a proximal portion 34 adapted for placement in an unbifurcated region of the native bifurcation.
- the bifurcated stent 32 further includes two distal portions 36 and 38 .
- the first distal portion 36 is adapted to extend from the unbifurcated region of the native bifurcation into one of the bifurcated branches of the native bifurcation.
- the second distal portion 38 extends toward and into the other bifurcated branch of the native bifurcation.
- a graft lining or covering 40 (graft covering 40 is represented in FIG.
- the 2A defines a fluid passage that extends from the proximal portion 34 of the bifurcated stent 32 to the distal portions 36 and 38 of the bifurcated stent 32 .
- An occluder device 42 is adapted for placement in the second distal portion 38 .
- the occluder 42 prevents fluid passage through the second distal portion 38 and to one of the bifurcated branches of the native bifurcation.
- the stent-graft 30 is adapted for placement of the stent bifurcation 44 adjacent the native bifurcation.
- FIG. 2B is a detail view of the bifurcated stent 32 illustrated in FIG. 2A.
- the bifurcated stent 32 has a radially compressed configuration for introduction into a lumen, and a radially expanded configuration for deployment within the lumen.
- the bifurcated stent 32 is compressed radially inwards and is delivered by a catheter to the site where it is required through the patient's skin, or by a “cut down” technique in which the blood vessel concerned is exposed by minor surgical means.
- the stent 32 is caused or allowed to re-expand to a predetermined diameter in the vessel.
- FIG. 2C is a detail view of the graft lining or covering 40 illustrated in FIG. 2A.
- the graft lining or covering 40 may be attached to an inside surface of the bifurcated stent 32 , functioning as a lining.
- the graft lining or covering 40 may be attached to an outside surface of the bifurcated stent 32 (as illustrated in FIG. 2A), functioning as a covering.
- FIG. 2D is a detail view of one form of occluder useful in combination with stent graft 30 .
- an occluder device 42 comprising a closed, straight stent-graft, typically adapted for endoluminal delivery into the second distal portion 38 of the bifurcated stent 32 after the stent-graft 30 has been deployed and expanded.
- occluder device 42 Similar to the bifurcated stent 32 , occluder device 42 has a radially compressed configuration for introduction into a lumen, and a radially expanded configuration for deployment within the lumen.
- Occluder device 42 includes a stent 43 and a graft 44 , either lining or covering part or all of stent 43 (as illustrated in FIGS. 2A and 2D). Graft 43 , however, is closed at one end to occlude fluid flow through the occluder device 42 and thus through the second distal portion 38 of the stent-graft 30 .
- stent-graft 30 is juxtaposed or extends across a bifurcation in an artery or vein.
- Bifurcated stent 32 is deployed such that stent bifurcation 44 is placed near or adjacent the native vessel bifurcation.
- First distal portion 36 extends into one of the bifurcated branches of the native bifurcation, while the second distal portion 38 extends toward and into the other bifurcated branch of the native bifurcation.
- occluder device 42 is placed in the second distal portion 38 of the bifurcated stent 32 , so that graft 43 defines a closed fluid passage, by which occluder device 42 prevents fluid from flowing through second distal portion 38 of bifurcated stent 32 .
- Such a configuration results in a fluid passage that extends from proximal portion 34 of bifurcated stent 32 to first distal portion 36 of bifurcated stent 32 .
- second distal portion 38 of stent 34 functions not as a fluid passageway, but as a structural member.
- the relationship among the first distal portion 36 , the stent bifurcation 44 , and the second distal portion 38 allows stent-graft 30 to straddle or span the native vessel bifurcation when deployed, placing the stent bifurcation 44 adjacent the native vessel bifurcation.
- Such a configuration tends to resist distal migration.
- contact between the stent bifurcation 44 and the native vessel bifurcation prevents the stent-graft 30 from working its way down away from its originally deployed position.
- Stent-graft 50 adapted for placement at a native vessel bifurcation.
- Stent-graft 50 includes a straight bifurcated stent-graft 52 and a tapered stent-graft 54 .
- Straight bifurcated stent-graft 52 includes a proximal portion 56 adapted for placement in an unbifurcated region of the native bifurcation, and two distal portions 58 and 60 .
- First distal portion 58 is adapted to extend from the unbifurcated region of the native bifurcation into one of the bifurcated branches of the native bifurcation.
- Second bifurcation 60 extends toward and into the other bifurcated branch of the native bifurcation.
- a graft lining or covering 62 (graft covering 62 is represented in FIG. 3B) extends from proximal portion 56 of straight bifurcated stent-graft 52 to distal portions 58 and 60 of straight bifurcated stent-graft 52 .
- Tapered stent-graft 54 includes a proximal tapered portion 64 and a distal portion 66 .
- Distal portion 66 is adapted for placement, after the straight stent-graft 52 has been deployed and expanded, in proximal portion 56 and first distal portion 58 of straight bifurcated stent-graft 52 .
- a graft lining or covering 68 extends from proximal portion 64 of the tapered stent-graft 54 to distal portion 66 of tapered stent-graft 54 .
- Tapered stent-graft 54 defines a closed fluid passage to first distal portion 58 of straight bifurcated stent-graft 52 , and is closed to fluid passage into second distal portion 60 of straight bifurcated stent-graft 52 .
- FIGS. 3B and 3C are detail views of the straight bifurcated stent-graft 52 and the tapered stent-graft 54 , respectively, illustrated in FIG. 3A.
- Both stent-grafts 52 and 54 have a radially compressed configuration for introduction into a lumen, and a radially expanded configuration for deployment within the lumen.
- the stent-grafts 52 and 54 are compressed radially inwards and are delivered by a catheter to the site where it is required through the patient's skin, or by a “cut down” technique in which the blood vessel concerned is exposed by minor surgical means.
- the stent-grafts 52 and 54 are positioned at the correct location, the stent-grafts 52 and 54 are caused or allowed to re-expand to a predetermined diameter in the vessel.
- Graft linings or coverings 62 and 68 may be attached to an inside surface of each respective stent 52 and 54 , functioning as linings. Alternatively, graft linings or coverings 62 and 68 may be attached to an outside surface of each respective stent 52 and 54 (as illustrated in FIGS. 3A-3B), functioning as a covering.
- the stent-graft 50 illustrated in FIG. 3A is juxtaposed or extends across a bifurcation in an artery or vein.
- the straight bifurcated stent-graft 52 is deployed such that the stent bifurcation 70 is placed near or adjacent the native vessel bifurcation.
- the first distal portion 58 extends into one of the bifurcated branches of the native bifurcation, while the second distal portion 60 extends into the other bifurcated branch of the native bifurcation.
- the tapered stent-graft 54 is positioned such that the distal portion 66 is placed in proximal portion 56 and in first distal portion 58 of straight bifurcated stent-graft 52 .
- Graft lining or covering 68 of tapered stent-graft 54 defines a fluid passage that extends from proximal portion 56 of the straight bifurcated stent-graft 52 to first distal portion 58 of the straight bifurcated stent-graft 52 .
- blood flows through the stent graft 50 exclusively to the bifurcated vessel branch of the native bifurcation that contains the first distal portion 58 , while blood is prevented from flowing through the stent-graft 50 to the other bifurcated branch of the native bifurcation that contains second distal portion 60 .
- second distal portion 60 functions not as a fluid passageway, but as a structural member.
- the relationship among the first distal portion 58 , the stent bifurcation 70 , and the second distal portion 60 allows the stent-graft 50 to straddle or span the native vessel bifurcation when deployed, placing the stent bifurcation 70 adjacent the native vessel bifurcation to prevent distal migration of the device.
- Contact between the stent bifurcation 70 and the native vessel bifurcation may prevent stent-graft 50 from working its way down away from its originally deployed position.
Landscapes
- Health & Medical Sciences (AREA)
- Gastroenterology & Hepatology (AREA)
- Pulmonology (AREA)
- Cardiology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Transplantation (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Vascular Medicine (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Prostheses (AREA)
- Media Introduction/Drainage Providing Device (AREA)
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/461,898 US20040254628A1 (en) | 2003-06-13 | 2003-06-13 | One-branch stent-graft for bifurcated lumens |
JP2006533145A JP4729498B2 (ja) | 2003-06-13 | 2004-05-18 | 分岐管腔用一分枝型ステントグラフト |
AT04752443T ATE519450T1 (de) | 2003-06-13 | 2004-05-18 | Stent-graft mit einer abzweigung für abzweigende lumen |
EP04752443A EP1633282B1 (fr) | 2003-06-13 | 2004-05-18 | Stent greffe a une branche pour lumieres bifurquees |
PCT/US2004/015428 WO2005000166A1 (fr) | 2003-06-13 | 2004-05-18 | Stent greffe a une branche pour lumieres bifurquees |
CA2529008A CA2529008C (fr) | 2003-06-13 | 2004-05-18 | Stent greffe a une branche pour lumieres bifurquees |
US10/963,354 US7491231B2 (en) | 2003-06-13 | 2004-10-12 | One-branch stent-graft for bifurcated lumens |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/461,898 US20040254628A1 (en) | 2003-06-13 | 2003-06-13 | One-branch stent-graft for bifurcated lumens |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/963,354 Division US7491231B2 (en) | 2003-06-13 | 2004-10-12 | One-branch stent-graft for bifurcated lumens |
Publications (1)
Publication Number | Publication Date |
---|---|
US20040254628A1 true US20040254628A1 (en) | 2004-12-16 |
Family
ID=33511359
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/461,898 Abandoned US20040254628A1 (en) | 2003-06-13 | 2003-06-13 | One-branch stent-graft for bifurcated lumens |
US10/963,354 Expired - Fee Related US7491231B2 (en) | 2003-06-13 | 2004-10-12 | One-branch stent-graft for bifurcated lumens |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/963,354 Expired - Fee Related US7491231B2 (en) | 2003-06-13 | 2004-10-12 | One-branch stent-graft for bifurcated lumens |
Country Status (6)
Country | Link |
---|---|
US (2) | US20040254628A1 (fr) |
EP (1) | EP1633282B1 (fr) |
JP (1) | JP4729498B2 (fr) |
AT (1) | ATE519450T1 (fr) |
CA (1) | CA2529008C (fr) |
WO (1) | WO2005000166A1 (fr) |
Cited By (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070168018A1 (en) * | 2006-01-13 | 2007-07-19 | Aga Medical Corporation | Intravascular deliverable stent for reinforcement of abdominal aortic aneurysm |
US20080281399A1 (en) * | 2004-06-15 | 2008-11-13 | Williams A. Cook Australia Pty. Ltd. | Stent Graft With Internal Tube |
US20090125100A1 (en) * | 2007-11-13 | 2009-05-14 | Cook Incorporated | Intraluminal Bypass Prosthesis and Prosthesis Delivery and Deployment Kit |
US20100100168A1 (en) * | 2006-03-29 | 2010-04-22 | Chuter Timothy A M | Iliac leg extension stent graft |
US20110166592A1 (en) * | 2004-05-25 | 2011-07-07 | Chestnut Medical Technologies, Inc. | Flexible vascular occluding device |
US8066757B2 (en) | 2007-10-17 | 2011-11-29 | Mindframe, Inc. | Blood flow restoration and thrombus management methods |
US8088140B2 (en) | 2008-05-19 | 2012-01-03 | Mindframe, Inc. | Blood flow restorative and embolus removal methods |
US8394119B2 (en) | 2006-02-22 | 2013-03-12 | Covidien Lp | Stents having radiopaque mesh |
US8398701B2 (en) | 2004-05-25 | 2013-03-19 | Covidien Lp | Flexible vascular occluding device |
US8545514B2 (en) | 2008-04-11 | 2013-10-01 | Covidien Lp | Monorail neuro-microcatheter for delivery of medical devices to treat stroke, processes and products thereby |
US8585713B2 (en) | 2007-10-17 | 2013-11-19 | Covidien Lp | Expandable tip assembly for thrombus management |
US8617234B2 (en) | 2004-05-25 | 2013-12-31 | Covidien Lp | Flexible vascular occluding device |
US8623067B2 (en) | 2004-05-25 | 2014-01-07 | Covidien Lp | Methods and apparatus for luminal stenting |
US8679142B2 (en) | 2008-02-22 | 2014-03-25 | Covidien Lp | Methods and apparatus for flow restoration |
US8926680B2 (en) | 2007-11-12 | 2015-01-06 | Covidien Lp | Aneurysm neck bridging processes with revascularization systems methods and products thereby |
US9114001B2 (en) | 2012-10-30 | 2015-08-25 | Covidien Lp | Systems for attaining a predetermined porosity of a vascular device |
US9157174B2 (en) | 2013-02-05 | 2015-10-13 | Covidien Lp | Vascular device for aneurysm treatment and providing blood flow into a perforator vessel |
US9198687B2 (en) | 2007-10-17 | 2015-12-01 | Covidien Lp | Acute stroke revascularization/recanalization systems processes and products thereby |
US9220522B2 (en) | 2007-10-17 | 2015-12-29 | Covidien Lp | Embolus removal systems with baskets |
US9452070B2 (en) | 2012-10-31 | 2016-09-27 | Covidien Lp | Methods and systems for increasing a density of a region of a vascular device |
US9943427B2 (en) | 2012-11-06 | 2018-04-17 | Covidien Lp | Shaped occluding devices and methods of using the same |
US10004618B2 (en) | 2004-05-25 | 2018-06-26 | Covidien Lp | Methods and apparatus for luminal stenting |
US10123803B2 (en) | 2007-10-17 | 2018-11-13 | Covidien Lp | Methods of managing neurovascular obstructions |
US10470871B2 (en) | 2001-12-20 | 2019-11-12 | Trivascular, Inc. | Advanced endovascular graft |
US10722255B2 (en) | 2008-12-23 | 2020-07-28 | Covidien Lp | Systems and methods for removing obstructive matter from body lumens and treating vascular defects |
US20200246526A1 (en) * | 2017-02-22 | 2020-08-06 | Berlin Heart Gmbh | Device and method for connecting two blood vessel sections |
US11065136B2 (en) | 2018-02-08 | 2021-07-20 | Covidien Lp | Vascular expandable devices |
US11065009B2 (en) | 2018-02-08 | 2021-07-20 | Covidien Lp | Vascular expandable devices |
US11337714B2 (en) | 2007-10-17 | 2022-05-24 | Covidien Lp | Restoring blood flow and clot removal during acute ischemic stroke |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6290673B1 (en) | 1999-05-20 | 2001-09-18 | Conor Medsystems, Inc. | Expandable medical device delivery system and method |
US7370983B2 (en) * | 2000-03-02 | 2008-05-13 | Donnelly Corporation | Interior mirror assembly with display |
US8388679B2 (en) | 2007-01-19 | 2013-03-05 | Maquet Cardiovascular Llc | Single continuous piece prosthetic tubular aortic conduit and method for manufacturing the same |
WO2008107885A2 (fr) | 2007-03-05 | 2008-09-12 | Alon Shalev | Greffes endoluminales bifurquées de support expansibles à multiples composants et leurs procédés d'utilisation |
US8608792B2 (en) * | 2007-11-30 | 2013-12-17 | Scitech Produtos Medicos Ltda | Endoprosthesis and delivery system for delivering the endoprosthesis within a vessel of a patient |
EP2237828A4 (fr) * | 2008-01-07 | 2013-06-05 | Intersect Partners Llc | Nouveau type de système de cathéter à échange ptna rapide amélioré |
US20100063578A1 (en) * | 2008-09-05 | 2010-03-11 | Aga Medical Corporation | Bifurcated medical device for treating a target site and associated method |
CA2961767C (fr) | 2009-06-23 | 2018-08-14 | Endospan Ltd. | Protheses vasculaires utilisees pour le traitement des anevrismes |
US8696741B2 (en) | 2010-12-23 | 2014-04-15 | Maquet Cardiovascular Llc | Woven prosthesis and method for manufacturing the same |
EP2579811B1 (fr) | 2011-06-21 | 2016-03-16 | Endospan Ltd | Système endovasculaire comportant des endoprothèses se chevauchant circonférentiellement |
US9839510B2 (en) | 2011-08-28 | 2017-12-12 | Endospan Ltd. | Stent-grafts with post-deployment variable radial displacement |
WO2013065040A1 (fr) | 2011-10-30 | 2013-05-10 | Endospan Ltd. | Greffon-endoprothèse à trois colliers |
US9597204B2 (en) | 2011-12-04 | 2017-03-21 | Endospan Ltd. | Branched stent-graft system |
US9393101B2 (en) | 2012-04-12 | 2016-07-19 | Sanford Health | Visceral double-barreled main body stent graft and methods for use |
US9770350B2 (en) | 2012-05-15 | 2017-09-26 | Endospan Ltd. | Stent-graft with fixation elements that are radially confined for delivery |
CN107456297A (zh) | 2013-01-08 | 2017-12-12 | 恩多斯潘有限公司 | 在植入期间支架移植物迁移的最小化 |
US10603197B2 (en) | 2013-11-19 | 2020-03-31 | Endospan Ltd. | Stent system with radial-expansion locking |
WO2016098113A1 (fr) | 2014-12-18 | 2016-06-23 | Endospan Ltd. | Stent-greffe endovasculaire avec tube latéral résistant à la fatigue |
US10842606B2 (en) * | 2015-09-09 | 2020-11-24 | Frid Mind Technologies | Bifurcated 3D filter assembly for prevention of stroke |
US10034785B1 (en) | 2015-10-13 | 2018-07-31 | W. L. Gore & Associates, Inc. | Single site access aortic aneurysm repair method |
Citations (54)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3657744A (en) * | 1970-05-08 | 1972-04-25 | Univ Minnesota | Method for fixing prosthetic implants in a living body |
US4530113A (en) * | 1983-05-20 | 1985-07-23 | Intervascular, Inc. | Vascular grafts with cross-weave patterns |
US4731073A (en) * | 1981-02-13 | 1988-03-15 | Thoratec Laboratories Corporation | Arterial graft prosthesis |
US5360443A (en) * | 1990-06-11 | 1994-11-01 | Barone Hector D | Aortic graft for repairing an abdominal aortic aneurysm |
US5397345A (en) * | 1983-12-09 | 1995-03-14 | Endovascular Technologies, Inc. | Artificial graft and implantation method |
US5405379A (en) * | 1990-07-26 | 1995-04-11 | Lane; Rodney J. | Self expanding vascular endoprosthesis for aneurysms |
US5464449A (en) * | 1993-07-08 | 1995-11-07 | Thomas J. Fogarty | Internal graft prosthesis and delivery system |
US5476506A (en) * | 1994-02-08 | 1995-12-19 | Ethicon, Inc. | Bi-directional crimped graft |
US5628783A (en) * | 1991-04-11 | 1997-05-13 | Endovascular Technologies, Inc. | Bifurcated multicapsule intraluminal grafting system and method |
US5639278A (en) * | 1993-10-21 | 1997-06-17 | Corvita Corporation | Expandable supportive bifurcated endoluminal grafts |
US5665117A (en) * | 1995-11-27 | 1997-09-09 | Rhodes; Valentine J. | Endovascular prosthesis with improved sealing means for aneurysmal arterial disease and method of use |
US5676697A (en) * | 1996-07-29 | 1997-10-14 | Cardiovascular Dynamics, Inc. | Two-piece, bifurcated intraluminal graft for repair of aneurysm |
US5683449A (en) * | 1995-02-24 | 1997-11-04 | Marcade; Jean Paul | Modular bifurcated intraluminal grafts and methods for delivering and assembling same |
US5683450A (en) * | 1994-02-09 | 1997-11-04 | Boston Scientific Technology, Inc. | Bifurcated endoluminal prosthesis |
US5693088A (en) * | 1993-11-08 | 1997-12-02 | Lazarus; Harrison M. | Intraluminal vascular graft |
US5755773A (en) * | 1996-06-04 | 1998-05-26 | Medtronic, Inc. | Endoluminal prosthetic bifurcation shunt |
US5755735A (en) * | 1996-05-03 | 1998-05-26 | Medinol Ltd. | Bifurcated stent and method of making same |
US5782909A (en) * | 1993-08-05 | 1998-07-21 | Endovascular Technologies, Inc. | Multicapsule intraluminal grafting system and method |
US5800512A (en) * | 1996-01-22 | 1998-09-01 | Meadox Medicals, Inc. | PTFE vascular graft |
US5824037A (en) * | 1995-10-03 | 1998-10-20 | Medtronic, Inc. | Modular intraluminal prostheses construction and methods |
US5824036A (en) * | 1995-09-29 | 1998-10-20 | Datascope Corp | Stent for intraluminal grafts and device and methods for delivering and assembling same |
US5824039A (en) * | 1991-04-11 | 1998-10-20 | Endovascular Technologies, Inc. | Endovascular graft having bifurcation and apparatus and method for deploying the same |
US5843160A (en) * | 1996-04-01 | 1998-12-01 | Rhodes; Valentine J. | Prostheses for aneurysmal and/or occlusive disease at a bifurcation in a vessel, duct, or lumen |
US5851228A (en) * | 1995-06-01 | 1998-12-22 | Meadox Medicals, Inc. | Implantable intraluminal prosthesis |
US5876432A (en) * | 1994-04-01 | 1999-03-02 | Gore Enterprise Holdings, Inc. | Self-expandable helical intravascular stent and stent-graft |
US5904713A (en) * | 1997-07-14 | 1999-05-18 | Datascope Investment Corp. | Invertible bifurcated stent/graft and method of deployment |
US5984955A (en) * | 1997-09-11 | 1999-11-16 | Wisselink; Willem | System and method for endoluminal grafting of bifurcated or branched vessels |
US6033435A (en) * | 1997-11-03 | 2000-03-07 | Divysio Solutions Ulc | Bifurcated stent and method for the manufacture and delivery of same |
US6051020A (en) * | 1994-02-09 | 2000-04-18 | Boston Scientific Technology, Inc. | Bifurcated endoluminal prosthesis |
US6053939A (en) * | 1996-02-15 | 2000-04-25 | Vascular Graft Research Center Co., Ltd. | Artificial blood vessel |
US6080191A (en) * | 1992-06-18 | 2000-06-27 | American Biomed, Inc. | Method for making a stent |
US6086611A (en) * | 1997-09-25 | 2000-07-11 | Ave Connaught | Bifurcated stent |
US6099560A (en) * | 1994-11-03 | 2000-08-08 | Divysio Solutions Ltd. | Expandable bifurcated stent and method for delivery of same |
US6102938A (en) * | 1997-06-17 | 2000-08-15 | Medtronic Inc. | Endoluminal prosthetic bifurcation shunt |
US6129756A (en) * | 1998-03-16 | 2000-10-10 | Teramed, Inc. | Biluminal endovascular graft system |
US6156063A (en) * | 1997-02-20 | 2000-12-05 | Endologix, Inc. | Method of deploying bifurcated vascular graft |
US6159239A (en) * | 1998-08-14 | 2000-12-12 | Prodesco, Inc. | Woven stent/graft structure |
US6162246A (en) * | 1999-02-16 | 2000-12-19 | Barone; Hector Daniel | Aortic graft and method of treating abdominal aortic aneurysms |
US6200339B1 (en) * | 1999-02-23 | 2001-03-13 | Datascope Investment Corp. | Endovascular split-tube bifurcated graft prosthesis and an implantation method for such a prosthesis |
US6251133B1 (en) * | 1996-05-03 | 2001-06-26 | Medinol Ltd. | Bifurcated stent with improved side branch aperture and method of making same |
US6261316B1 (en) * | 1999-03-11 | 2001-07-17 | Endologix, Inc. | Single puncture bifurcation graft deployment system |
US6270525B1 (en) * | 1999-09-23 | 2001-08-07 | Cordis Corporation | Precursor stent gasket for receiving bilateral grafts having controlled contralateral guidewire access |
US6287335B1 (en) * | 1999-04-26 | 2001-09-11 | William J. Drasler | Intravascular folded tubular endoprosthesis |
US6290731B1 (en) * | 1998-03-30 | 2001-09-18 | Cordis Corporation | Aortic graft having a precursor gasket for repairing an abdominal aortic aneurysm |
US6306164B1 (en) * | 1997-09-05 | 2001-10-23 | C. R. Bard, Inc. | Short body endoprosthesis |
US6312462B1 (en) * | 1999-09-22 | 2001-11-06 | Impra, Inc. | Prosthesis for abdominal aortic aneurysm repair |
US6325819B1 (en) * | 1996-08-19 | 2001-12-04 | Cook Incorporated | Endovascular prosthetic device, an endovascular graft prothesis with such a device, and a method for repairing an abdominal aortic aneurysm |
US6334869B1 (en) * | 1995-10-30 | 2002-01-01 | World Medical Manufacturing Corporation | Endoluminal prosthesis |
US6344056B1 (en) * | 1999-12-29 | 2002-02-05 | Edwards Lifesciences Corp. | Vascular grafts for bridging a vessel side branch |
US6398807B1 (en) * | 2000-01-31 | 2002-06-04 | Scimed Life Systems, Inc. | Braided branching stent, method for treating a lumen therewith, and process for manufacture therefor |
US6409750B1 (en) * | 1999-02-01 | 2002-06-25 | Board Of Regents, The University Of Texas System | Woven bifurcated and trifurcated stents and methods for making the same |
US20020128703A1 (en) * | 1995-01-31 | 2002-09-12 | Ravenscroft Adrian C. | Method and apparatus for intraluminally implanting an endovascular aortic graft |
US6576009B2 (en) * | 1995-12-01 | 2003-06-10 | Medtronic Ave, Inc. | Bifurcated intraluminal prostheses construction and methods |
US6676699B2 (en) * | 2002-04-26 | 2004-01-13 | Medtronic Ave, Inc | Stent graft with integrated valve device and method |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5382261A (en) * | 1992-09-01 | 1995-01-17 | Expandable Grafts Partnership | Method and apparatus for occluding vessels |
EP0918496B1 (fr) * | 1996-03-13 | 2000-06-14 | Medtronic, Inc. | Prothese endoluminale pour des organes du corps humain a plusieurs lumieres et rameaux |
JP4138144B2 (ja) * | 1999-03-31 | 2008-08-20 | テルモ株式会社 | 管腔内留置物 |
US6648913B1 (en) * | 1999-06-07 | 2003-11-18 | Scimed Life Systems, Inc. | Guidewire-access modular intraluminal prosthesis with connecting section |
FR2797389B1 (fr) * | 1999-08-09 | 2001-11-30 | Novatech Inc | Prothese aortique bifurquee |
US6585758B1 (en) | 1999-11-16 | 2003-07-01 | Scimed Life Systems, Inc. | Multi-section filamentary endoluminal stent |
US6610087B1 (en) | 1999-11-16 | 2003-08-26 | Scimed Life Systems, Inc. | Endoluminal stent having a matched stiffness region and/or a stiffness gradient and methods for providing stent kink resistance |
US6325822B1 (en) | 2000-01-31 | 2001-12-04 | Scimed Life Systems, Inc. | Braided stent having tapered filaments |
US6652571B1 (en) | 2000-01-31 | 2003-11-25 | Scimed Life Systems, Inc. | Braided, branched, implantable device and processes for manufacture thereof |
US7101391B2 (en) | 2000-09-18 | 2006-09-05 | Inflow Dynamics Inc. | Primarily niobium stent |
AU2001286940A1 (en) * | 2000-09-22 | 2002-04-02 | Kensey Nash Corporation | Drug delivering prostheses and methods of use |
US6702847B2 (en) * | 2001-06-29 | 2004-03-09 | Scimed Life Systems, Inc. | Endoluminal device with indicator member for remote detection of endoleaks and/or changes in device morphology |
US20030074055A1 (en) * | 2001-10-17 | 2003-04-17 | Haverkost Patrick A. | Method and system for fixation of endoluminal devices |
WO2003045283A1 (fr) * | 2001-11-28 | 2003-06-05 | Aptus Endosystems, Inc. | Systeme de reparation endovasculaire d'un anevrisme |
US6752826B2 (en) | 2001-12-14 | 2004-06-22 | Thoratec Corporation | Layered stent-graft and methods of making the same |
US20030130725A1 (en) | 2002-01-08 | 2003-07-10 | Depalma Donald F. | Sealing prosthesis |
US7438721B2 (en) | 2003-04-25 | 2008-10-21 | Medtronic Vascular, Inc. | Universal modular stent graft assembly to accommodate flow to collateral branches |
US20040215328A1 (en) | 2003-04-25 | 2004-10-28 | Ronan Thornton | Bifurcated stent with concentric body portions |
-
2003
- 2003-06-13 US US10/461,898 patent/US20040254628A1/en not_active Abandoned
-
2004
- 2004-05-18 EP EP04752443A patent/EP1633282B1/fr not_active Expired - Lifetime
- 2004-05-18 WO PCT/US2004/015428 patent/WO2005000166A1/fr active Application Filing
- 2004-05-18 JP JP2006533145A patent/JP4729498B2/ja not_active Expired - Fee Related
- 2004-05-18 AT AT04752443T patent/ATE519450T1/de not_active IP Right Cessation
- 2004-05-18 CA CA2529008A patent/CA2529008C/fr not_active Expired - Fee Related
- 2004-10-12 US US10/963,354 patent/US7491231B2/en not_active Expired - Fee Related
Patent Citations (62)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3657744A (en) * | 1970-05-08 | 1972-04-25 | Univ Minnesota | Method for fixing prosthetic implants in a living body |
US4731073A (en) * | 1981-02-13 | 1988-03-15 | Thoratec Laboratories Corporation | Arterial graft prosthesis |
US4530113A (en) * | 1983-05-20 | 1985-07-23 | Intervascular, Inc. | Vascular grafts with cross-weave patterns |
US5397345A (en) * | 1983-12-09 | 1995-03-14 | Endovascular Technologies, Inc. | Artificial graft and implantation method |
US5522880A (en) * | 1990-06-11 | 1996-06-04 | Barone; Hector D. | Method for repairing an abdominal aortic aneurysm |
US5360443A (en) * | 1990-06-11 | 1994-11-01 | Barone Hector D | Aortic graft for repairing an abdominal aortic aneurysm |
US5405379A (en) * | 1990-07-26 | 1995-04-11 | Lane; Rodney J. | Self expanding vascular endoprosthesis for aneurysms |
US5769885A (en) * | 1991-04-11 | 1998-06-23 | Endovascular Technologies, Inc. | Bifurcated multicapsule intraluminal grafting system and method |
US5628783A (en) * | 1991-04-11 | 1997-05-13 | Endovascular Technologies, Inc. | Bifurcated multicapsule intraluminal grafting system and method |
US5824039A (en) * | 1991-04-11 | 1998-10-20 | Endovascular Technologies, Inc. | Endovascular graft having bifurcation and apparatus and method for deploying the same |
US6080191A (en) * | 1992-06-18 | 2000-06-27 | American Biomed, Inc. | Method for making a stent |
US5464449A (en) * | 1993-07-08 | 1995-11-07 | Thomas J. Fogarty | Internal graft prosthesis and delivery system |
US5782909A (en) * | 1993-08-05 | 1998-07-21 | Endovascular Technologies, Inc. | Multicapsule intraluminal grafting system and method |
US5639278A (en) * | 1993-10-21 | 1997-06-17 | Corvita Corporation | Expandable supportive bifurcated endoluminal grafts |
US5693088A (en) * | 1993-11-08 | 1997-12-02 | Lazarus; Harrison M. | Intraluminal vascular graft |
US5476506A (en) * | 1994-02-08 | 1995-12-19 | Ethicon, Inc. | Bi-directional crimped graft |
US5683450A (en) * | 1994-02-09 | 1997-11-04 | Boston Scientific Technology, Inc. | Bifurcated endoluminal prosthesis |
US5916263A (en) * | 1994-02-09 | 1999-06-29 | Boston Scientific Technology, Inc. | Bifurcated endoluminal prosthesis |
US5800508A (en) * | 1994-02-09 | 1998-09-01 | Boston Scientific Technology, Inc. | Bifurcated endoluminal prosthesis |
US6051020A (en) * | 1994-02-09 | 2000-04-18 | Boston Scientific Technology, Inc. | Bifurcated endoluminal prosthesis |
US5876432A (en) * | 1994-04-01 | 1999-03-02 | Gore Enterprise Holdings, Inc. | Self-expandable helical intravascular stent and stent-graft |
US6099560A (en) * | 1994-11-03 | 2000-08-08 | Divysio Solutions Ltd. | Expandable bifurcated stent and method for delivery of same |
US20020128703A1 (en) * | 1995-01-31 | 2002-09-12 | Ravenscroft Adrian C. | Method and apparatus for intraluminally implanting an endovascular aortic graft |
US6464721B1 (en) * | 1995-02-24 | 2002-10-15 | Endovascular Technologies, Inc. | Bifurcated graft with a superior extension |
US5683449A (en) * | 1995-02-24 | 1997-11-04 | Marcade; Jean Paul | Modular bifurcated intraluminal grafts and methods for delivering and assembling same |
US6416542B1 (en) * | 1995-02-24 | 2002-07-09 | Endovascular Technologies, Inc. | Modular bifurcated intraluminal grafts and methods for delivering and assembling same |
US5851228A (en) * | 1995-06-01 | 1998-12-22 | Meadox Medicals, Inc. | Implantable intraluminal prosthesis |
US5824036A (en) * | 1995-09-29 | 1998-10-20 | Datascope Corp | Stent for intraluminal grafts and device and methods for delivering and assembling same |
US5824037A (en) * | 1995-10-03 | 1998-10-20 | Medtronic, Inc. | Modular intraluminal prostheses construction and methods |
US6334869B1 (en) * | 1995-10-30 | 2002-01-01 | World Medical Manufacturing Corporation | Endoluminal prosthesis |
US5665117A (en) * | 1995-11-27 | 1997-09-09 | Rhodes; Valentine J. | Endovascular prosthesis with improved sealing means for aneurysmal arterial disease and method of use |
US6576009B2 (en) * | 1995-12-01 | 2003-06-10 | Medtronic Ave, Inc. | Bifurcated intraluminal prostheses construction and methods |
US6036724A (en) * | 1996-01-22 | 2000-03-14 | Meadox Medicals, Inc. | PTFE vascular graft and method of manufacture |
US5800512A (en) * | 1996-01-22 | 1998-09-01 | Meadox Medicals, Inc. | PTFE vascular graft |
US6053939A (en) * | 1996-02-15 | 2000-04-25 | Vascular Graft Research Center Co., Ltd. | Artificial blood vessel |
US5843160A (en) * | 1996-04-01 | 1998-12-01 | Rhodes; Valentine J. | Prostheses for aneurysmal and/or occlusive disease at a bifurcation in a vessel, duct, or lumen |
US6251133B1 (en) * | 1996-05-03 | 2001-06-26 | Medinol Ltd. | Bifurcated stent with improved side branch aperture and method of making same |
US5755735A (en) * | 1996-05-03 | 1998-05-26 | Medinol Ltd. | Bifurcated stent and method of making same |
US5755773A (en) * | 1996-06-04 | 1998-05-26 | Medtronic, Inc. | Endoluminal prosthetic bifurcation shunt |
US5676697A (en) * | 1996-07-29 | 1997-10-14 | Cardiovascular Dynamics, Inc. | Two-piece, bifurcated intraluminal graft for repair of aneurysm |
US6325819B1 (en) * | 1996-08-19 | 2001-12-04 | Cook Incorporated | Endovascular prosthetic device, an endovascular graft prothesis with such a device, and a method for repairing an abdominal aortic aneurysm |
US6156063A (en) * | 1997-02-20 | 2000-12-05 | Endologix, Inc. | Method of deploying bifurcated vascular graft |
US6102938A (en) * | 1997-06-17 | 2000-08-15 | Medtronic Inc. | Endoluminal prosthetic bifurcation shunt |
US5904713A (en) * | 1997-07-14 | 1999-05-18 | Datascope Investment Corp. | Invertible bifurcated stent/graft and method of deployment |
US6306164B1 (en) * | 1997-09-05 | 2001-10-23 | C. R. Bard, Inc. | Short body endoprosthesis |
US5984955A (en) * | 1997-09-11 | 1999-11-16 | Wisselink; Willem | System and method for endoluminal grafting of bifurcated or branched vessels |
US6428565B1 (en) * | 1997-09-11 | 2002-08-06 | Medtronic Ave, Inc. | System and method for edoluminal grafting of bifurcated or branched vessels |
US6086611A (en) * | 1997-09-25 | 2000-07-11 | Ave Connaught | Bifurcated stent |
US6033435A (en) * | 1997-11-03 | 2000-03-07 | Divysio Solutions Ulc | Bifurcated stent and method for the manufacture and delivery of same |
US6129756A (en) * | 1998-03-16 | 2000-10-10 | Teramed, Inc. | Biluminal endovascular graft system |
US6290731B1 (en) * | 1998-03-30 | 2001-09-18 | Cordis Corporation | Aortic graft having a precursor gasket for repairing an abdominal aortic aneurysm |
US6159239A (en) * | 1998-08-14 | 2000-12-12 | Prodesco, Inc. | Woven stent/graft structure |
US6409750B1 (en) * | 1999-02-01 | 2002-06-25 | Board Of Regents, The University Of Texas System | Woven bifurcated and trifurcated stents and methods for making the same |
US6162246A (en) * | 1999-02-16 | 2000-12-19 | Barone; Hector Daniel | Aortic graft and method of treating abdominal aortic aneurysms |
US6200339B1 (en) * | 1999-02-23 | 2001-03-13 | Datascope Investment Corp. | Endovascular split-tube bifurcated graft prosthesis and an implantation method for such a prosthesis |
US6261316B1 (en) * | 1999-03-11 | 2001-07-17 | Endologix, Inc. | Single puncture bifurcation graft deployment system |
US6287335B1 (en) * | 1999-04-26 | 2001-09-11 | William J. Drasler | Intravascular folded tubular endoprosthesis |
US6312462B1 (en) * | 1999-09-22 | 2001-11-06 | Impra, Inc. | Prosthesis for abdominal aortic aneurysm repair |
US6270525B1 (en) * | 1999-09-23 | 2001-08-07 | Cordis Corporation | Precursor stent gasket for receiving bilateral grafts having controlled contralateral guidewire access |
US6344056B1 (en) * | 1999-12-29 | 2002-02-05 | Edwards Lifesciences Corp. | Vascular grafts for bridging a vessel side branch |
US6398807B1 (en) * | 2000-01-31 | 2002-06-04 | Scimed Life Systems, Inc. | Braided branching stent, method for treating a lumen therewith, and process for manufacture therefor |
US6676699B2 (en) * | 2002-04-26 | 2004-01-13 | Medtronic Ave, Inc | Stent graft with integrated valve device and method |
Cited By (71)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11439497B2 (en) | 2001-12-20 | 2022-09-13 | Trivascular, Inc. | Advanced endovascular graft |
US10470871B2 (en) | 2001-12-20 | 2019-11-12 | Trivascular, Inc. | Advanced endovascular graft |
US9855047B2 (en) | 2004-05-25 | 2018-01-02 | Covidien Lp | Flexible vascular occluding device |
US9125659B2 (en) | 2004-05-25 | 2015-09-08 | Covidien Lp | Flexible vascular occluding device |
US20110166592A1 (en) * | 2004-05-25 | 2011-07-07 | Chestnut Medical Technologies, Inc. | Flexible vascular occluding device |
US11771433B2 (en) | 2004-05-25 | 2023-10-03 | Covidien Lp | Flexible vascular occluding device |
US12042411B2 (en) | 2004-05-25 | 2024-07-23 | Covidien Lp | Methods and apparatus for luminal stenting |
US9050205B2 (en) | 2004-05-25 | 2015-06-09 | Covidien Lp | Methods and apparatus for luminal stenting |
US10918389B2 (en) | 2004-05-25 | 2021-02-16 | Covidien Lp | Flexible vascular occluding device |
US8382825B2 (en) * | 2004-05-25 | 2013-02-26 | Covidien Lp | Flexible vascular occluding device |
US9393021B2 (en) | 2004-05-25 | 2016-07-19 | Covidien Lp | Flexible vascular occluding device |
US9801744B2 (en) | 2004-05-25 | 2017-10-31 | Covidien Lp | Methods and apparatus for luminal stenting |
US8398701B2 (en) | 2004-05-25 | 2013-03-19 | Covidien Lp | Flexible vascular occluding device |
US10765542B2 (en) | 2004-05-25 | 2020-09-08 | Covidien Lp | Methods and apparatus for luminal stenting |
US9295568B2 (en) | 2004-05-25 | 2016-03-29 | Covidien Lp | Methods and apparatus for luminal stenting |
US8617234B2 (en) | 2004-05-25 | 2013-12-31 | Covidien Lp | Flexible vascular occluding device |
US10004618B2 (en) | 2004-05-25 | 2018-06-26 | Covidien Lp | Methods and apparatus for luminal stenting |
US8623067B2 (en) | 2004-05-25 | 2014-01-07 | Covidien Lp | Methods and apparatus for luminal stenting |
US8628564B2 (en) | 2004-05-25 | 2014-01-14 | Covidien Lp | Methods and apparatus for luminal stenting |
US8394136B2 (en) * | 2004-06-15 | 2013-03-12 | William A. Cook Australia Pty. Ltd. | Stent graft with internal tube |
US20080281399A1 (en) * | 2004-06-15 | 2008-11-13 | Williams A. Cook Australia Pty. Ltd. | Stent Graft With Internal Tube |
US8900287B2 (en) * | 2006-01-13 | 2014-12-02 | Aga Medical Corporation | Intravascular deliverable stent for reinforcement of abdominal aortic aneurysm |
US20070168018A1 (en) * | 2006-01-13 | 2007-07-19 | Aga Medical Corporation | Intravascular deliverable stent for reinforcement of abdominal aortic aneurysm |
US9320590B2 (en) | 2006-02-22 | 2016-04-26 | Covidien Lp | Stents having radiopaque mesh |
US8394119B2 (en) | 2006-02-22 | 2013-03-12 | Covidien Lp | Stents having radiopaque mesh |
US9610181B2 (en) | 2006-02-22 | 2017-04-04 | Covidien Lp | Stents having radiopaque mesh |
US11382777B2 (en) | 2006-02-22 | 2022-07-12 | Covidien Lp | Stents having radiopaque mesh |
US10433988B2 (en) | 2006-02-22 | 2019-10-08 | Covidien Lp | Stents having radiopaque mesh |
US20100100168A1 (en) * | 2006-03-29 | 2010-04-22 | Chuter Timothy A M | Iliac leg extension stent graft |
US9358097B2 (en) * | 2006-03-29 | 2016-06-07 | The Cleveland Clinic Foundation | Iliac leg extension stent graft |
US9320532B2 (en) | 2007-10-17 | 2016-04-26 | Covidien Lp | Expandable tip assembly for thrombus management |
US8585713B2 (en) | 2007-10-17 | 2013-11-19 | Covidien Lp | Expandable tip assembly for thrombus management |
US9198687B2 (en) | 2007-10-17 | 2015-12-01 | Covidien Lp | Acute stroke revascularization/recanalization systems processes and products thereby |
US11786254B2 (en) | 2007-10-17 | 2023-10-17 | Covidien Lp | Methods of managing neurovascular obstructions |
US8066757B2 (en) | 2007-10-17 | 2011-11-29 | Mindframe, Inc. | Blood flow restoration and thrombus management methods |
US8070791B2 (en) | 2007-10-17 | 2011-12-06 | Mindframe, Inc. | Multiple layer embolus removal |
US11337714B2 (en) | 2007-10-17 | 2022-05-24 | Covidien Lp | Restoring blood flow and clot removal during acute ischemic stroke |
US9387098B2 (en) | 2007-10-17 | 2016-07-12 | Covidien Lp | Revascularization devices |
US8945143B2 (en) | 2007-10-17 | 2015-02-03 | Covidien Lp | Expandable tip assembly for thrombus management |
US8197493B2 (en) | 2007-10-17 | 2012-06-12 | Mindframe, Inc. | Method for providing progressive therapy for thrombus management |
US10835257B2 (en) | 2007-10-17 | 2020-11-17 | Covidien Lp | Methods of managing neurovascular obstructions |
US8945172B2 (en) | 2007-10-17 | 2015-02-03 | Covidien Lp | Devices for restoring blood flow and clot removal during acute ischemic stroke |
US8574262B2 (en) | 2007-10-17 | 2013-11-05 | Covidien Lp | Revascularization devices |
US9220522B2 (en) | 2007-10-17 | 2015-12-29 | Covidien Lp | Embolus removal systems with baskets |
US10413310B2 (en) | 2007-10-17 | 2019-09-17 | Covidien Lp | Restoring blood flow and clot removal during acute ischemic stroke |
US10123803B2 (en) | 2007-10-17 | 2018-11-13 | Covidien Lp | Methods of managing neurovascular obstructions |
US10016211B2 (en) | 2007-10-17 | 2018-07-10 | Covidien Lp | Expandable tip assembly for thrombus management |
US8926680B2 (en) | 2007-11-12 | 2015-01-06 | Covidien Lp | Aneurysm neck bridging processes with revascularization systems methods and products thereby |
US20090125100A1 (en) * | 2007-11-13 | 2009-05-14 | Cook Incorporated | Intraluminal Bypass Prosthesis and Prosthesis Delivery and Deployment Kit |
US11529156B2 (en) | 2008-02-22 | 2022-12-20 | Covidien Lp | Methods and apparatus for flow restoration |
US10456151B2 (en) | 2008-02-22 | 2019-10-29 | Covidien Lp | Methods and apparatus for flow restoration |
US8940003B2 (en) | 2008-02-22 | 2015-01-27 | Covidien Lp | Methods and apparatus for flow restoration |
US9161766B2 (en) | 2008-02-22 | 2015-10-20 | Covidien Lp | Methods and apparatus for flow restoration |
US8679142B2 (en) | 2008-02-22 | 2014-03-25 | Covidien Lp | Methods and apparatus for flow restoration |
US8545514B2 (en) | 2008-04-11 | 2013-10-01 | Covidien Lp | Monorail neuro-microcatheter for delivery of medical devices to treat stroke, processes and products thereby |
US8088140B2 (en) | 2008-05-19 | 2012-01-03 | Mindframe, Inc. | Blood flow restorative and embolus removal methods |
US10722255B2 (en) | 2008-12-23 | 2020-07-28 | Covidien Lp | Systems and methods for removing obstructive matter from body lumens and treating vascular defects |
US9907643B2 (en) | 2012-10-30 | 2018-03-06 | Covidien Lp | Systems for attaining a predetermined porosity of a vascular device |
US9301831B2 (en) | 2012-10-30 | 2016-04-05 | Covidien Lp | Methods for attaining a predetermined porosity of a vascular device |
US9114001B2 (en) | 2012-10-30 | 2015-08-25 | Covidien Lp | Systems for attaining a predetermined porosity of a vascular device |
US10206798B2 (en) | 2012-10-31 | 2019-02-19 | Covidien Lp | Methods and systems for increasing a density of a region of a vascular device |
US9452070B2 (en) | 2012-10-31 | 2016-09-27 | Covidien Lp | Methods and systems for increasing a density of a region of a vascular device |
US10952878B2 (en) | 2012-10-31 | 2021-03-23 | Covidien Lp | Methods and systems for increasing a density of a region of a vascular device |
US9943427B2 (en) | 2012-11-06 | 2018-04-17 | Covidien Lp | Shaped occluding devices and methods of using the same |
US9561122B2 (en) | 2013-02-05 | 2017-02-07 | Covidien Lp | Vascular device for aneurysm treatment and providing blood flow into a perforator vessel |
US9157174B2 (en) | 2013-02-05 | 2015-10-13 | Covidien Lp | Vascular device for aneurysm treatment and providing blood flow into a perforator vessel |
US20200246526A1 (en) * | 2017-02-22 | 2020-08-06 | Berlin Heart Gmbh | Device and method for connecting two blood vessel sections |
US11065009B2 (en) | 2018-02-08 | 2021-07-20 | Covidien Lp | Vascular expandable devices |
US11759342B2 (en) | 2018-02-08 | 2023-09-19 | Covidien Lp | Vascular expandable devices |
US11065136B2 (en) | 2018-02-08 | 2021-07-20 | Covidien Lp | Vascular expandable devices |
US11957357B2 (en) | 2018-02-08 | 2024-04-16 | Covidien Lp | Vascular expandable devices |
Also Published As
Publication number | Publication date |
---|---|
CA2529008C (fr) | 2013-08-20 |
ATE519450T1 (de) | 2011-08-15 |
JP4729498B2 (ja) | 2011-07-20 |
US7491231B2 (en) | 2009-02-17 |
EP1633282B1 (fr) | 2011-08-10 |
JP2007502196A (ja) | 2007-02-08 |
WO2005000166A1 (fr) | 2005-01-06 |
EP1633282A1 (fr) | 2006-03-15 |
CA2529008A1 (fr) | 2005-01-06 |
US20050049676A1 (en) | 2005-03-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7491231B2 (en) | One-branch stent-graft for bifurcated lumens | |
EP1878392B1 (fr) | Dispositif de réparation AAA avec port d'accès à un sac d'anévrisme | |
US8337546B2 (en) | Mobile external coupling for branch vessel connection | |
US9839542B2 (en) | Mobile external coupling for branch vessel connection | |
US8506622B2 (en) | Mobile external coupling for branch vessel connection | |
EP2051663B1 (fr) | Greffon d'endoprothèse | |
US8333800B2 (en) | Mobile external coupling with internal sealing cuff for branch vessel connection | |
CA2649705C (fr) | Greffon de stent bifurque double | |
JP5037500B2 (ja) | 側枝ステントグラフト | |
EP1356788A2 (fr) | Système modulaire pour réparer un anévrisme | |
US20110313512A1 (en) | Side Branch Stent Graft | |
US20110270379A1 (en) | Mobile External Coupling for Branch Vessel Connection | |
US20110218617A1 (en) | Endoluminal vascular prosthesis | |
JP6282898B2 (ja) | 腸骨動脈を治療するための血管内グラフト、および血管内グラフトの送出および展開方法 | |
US11219518B2 (en) | Oblique seam for reduced stent graft packing density in delivery system | |
US20210030526A1 (en) | Modular multibranch stent assembly and method | |
Chuter | 39 Therapeutic Options for Thoracoabdominal and Pararenal Aortic Aneurysms |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: SCIMED LIFE SYSTEMS, INC., MINNESOTA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:NAZZARO, PATRICE;KUJAWSKI, DENNIS;REEL/FRAME:014618/0788 Effective date: 20031017 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
AS | Assignment |
Owner name: ACACIA RESEARCH GROUP LLC, TEXAS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BOSTON SCIENTIFIC SCIMED, INC.;REEL/FRAME:030694/0461 Effective date: 20121220 |
|
AS | Assignment |
Owner name: LIFESHIELD SCIENCES LLC, TEXAS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ACACIA RESEARCH GROUP LLC;REEL/FRAME:030740/0225 Effective date: 20130515 |