US20040053775A1 - Combinatorial approach to chiral reagents or catalysts having amine or amino alcohol ligands - Google Patents

Combinatorial approach to chiral reagents or catalysts having amine or amino alcohol ligands Download PDF

Info

Publication number
US20040053775A1
US20040053775A1 US10/633,760 US63376003A US2004053775A1 US 20040053775 A1 US20040053775 A1 US 20040053775A1 US 63376003 A US63376003 A US 63376003A US 2004053775 A1 US2004053775 A1 US 2004053775A1
Authority
US
United States
Prior art keywords
amino
process according
chiral
group
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/633,760
Other languages
English (en)
Inventor
Nicos Petasis
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Southern California USC
Original Assignee
University of Southern California USC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Southern California USC filed Critical University of Southern California USC
Priority to US10/633,760 priority Critical patent/US20040053775A1/en
Publication of US20040053775A1 publication Critical patent/US20040053775A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2204Organic complexes the ligands containing oxygen or sulfur as complexing atoms
    • B01J31/2208Oxygen, e.g. acetylacetonates
    • B01J31/2226Anionic ligands, i.e. the overall ligand carries at least one formal negative charge
    • B01J31/2243At least one oxygen and one nitrogen atom present as complexing atoms in an at least bidentate or bridging ligand
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1805Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2204Organic complexes the ligands containing oxygen or sulfur as complexing atoms
    • B01J31/2208Oxygen, e.g. acetylacetonates
    • B01J31/2226Anionic ligands, i.e. the overall ligand carries at least one formal negative charge
    • B01J31/223At least two oxygen atoms present in one at least bidentate or bridging ligand
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B53/00Asymmetric syntheses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C215/00Compounds containing amino and hydroxy groups bound to the same carbon skeleton
    • C07C215/02Compounds containing amino and hydroxy groups bound to the same carbon skeleton having hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton
    • C07C215/22Compounds containing amino and hydroxy groups bound to the same carbon skeleton having hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being unsaturated
    • C07C215/28Compounds containing amino and hydroxy groups bound to the same carbon skeleton having hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being unsaturated and containing six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C215/00Compounds containing amino and hydroxy groups bound to the same carbon skeleton
    • C07C215/02Compounds containing amino and hydroxy groups bound to the same carbon skeleton having hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton
    • C07C215/22Compounds containing amino and hydroxy groups bound to the same carbon skeleton having hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being unsaturated
    • C07C215/28Compounds containing amino and hydroxy groups bound to the same carbon skeleton having hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being unsaturated and containing six-membered aromatic rings
    • C07C215/30Compounds containing amino and hydroxy groups bound to the same carbon skeleton having hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being unsaturated and containing six-membered aromatic rings containing hydroxy groups and carbon atoms of six-membered aromatic rings bound to the same carbon atom of the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C215/00Compounds containing amino and hydroxy groups bound to the same carbon skeleton
    • C07C215/46Compounds containing amino and hydroxy groups bound to the same carbon skeleton having hydroxy groups bound to carbon atoms of at least one six-membered aromatic ring and amino groups bound to acyclic carbon atoms or to carbon atoms of rings other than six-membered aromatic rings of the same carbon skeleton
    • C07C215/48Compounds containing amino and hydroxy groups bound to the same carbon skeleton having hydroxy groups bound to carbon atoms of at least one six-membered aromatic ring and amino groups bound to acyclic carbon atoms or to carbon atoms of rings other than six-membered aromatic rings of the same carbon skeleton with amino groups linked to the six-membered aromatic ring, or to the condensed ring system containing that ring, by carbon chains not further substituted by hydroxy groups
    • C07C215/50Compounds containing amino and hydroxy groups bound to the same carbon skeleton having hydroxy groups bound to carbon atoms of at least one six-membered aromatic ring and amino groups bound to acyclic carbon atoms or to carbon atoms of rings other than six-membered aromatic rings of the same carbon skeleton with amino groups linked to the six-membered aromatic ring, or to the condensed ring system containing that ring, by carbon chains not further substituted by hydroxy groups with amino groups and the six-membered aromatic ring, or the condensed ring system containing that ring, bound to the same carbon atom of the carbon chain
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C229/00Compounds containing amino and carboxyl groups bound to the same carbon skeleton
    • C07C229/02Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton
    • C07C229/34Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton containing six-membered aromatic rings
    • C07C229/36Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton containing six-membered aromatic rings with at least one amino group and one carboxyl group bound to the same carbon atom of the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/34Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D307/38Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D307/52Radicals substituted by nitrogen atoms not forming part of a nitro radical
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/06Dipeptides
    • C07K5/06008Dipeptides with the first amino acid being neutral
    • C07K5/06017Dipeptides with the first amino acid being neutral and aliphatic
    • C07K5/06026Dipeptides with the first amino acid being neutral and aliphatic the side chain containing 0 or 1 carbon atom, i.e. Gly or Ala
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00718Type of compounds synthesised
    • B01J2219/0072Organic compounds
    • B01J2219/00738Organic catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00718Type of compounds synthesised
    • B01J2219/00745Inorganic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00718Type of compounds synthesised
    • B01J2219/00745Inorganic compounds
    • B01J2219/00747Catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/10Complexes comprising metals of Group I (IA or IB) as the central metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/20Complexes comprising metals of Group II (IIA or IIB) as the central metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/30Complexes comprising metals of Group III (IIIA or IIIB) as the central metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/40Complexes comprising metals of Group IV (IVA or IVB) as the central metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/84Metals of the iron group
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/07Optical isomers
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B30/00Methods of screening libraries
    • C40B30/08Methods of screening libraries by measuring catalytic activity
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B40/00Libraries per se, e.g. arrays, mixtures
    • C40B40/18Libraries containing only inorganic compounds or inorganic materials

Definitions

  • This invention relates to the fields of organic synthesis, asymmetric synthesis, catalysis, combinatorial catalysis, organoboron chemistry, combinatorial chemistry and medicinal chemistry. More specifically, the invention relates to methods for preparing chiral amine or amino alcohols used to prepare chiral reagents or catalysts which can be used for the synthesis of many other molecules.
  • the present invention Rather than rely on the identification of a globally effective catalyst system, the present invention allows the facile construction of stereochemically pure amine or amino alcohol ligands that are subsequently used to form chiral reagents or catalysts. These can be prepared either individually or as combinatorial libraries and can be used to easily identify the most suitable catalyst for a given transformation.
  • a key feature of the present invention is the construction of amine or amino alcohol ligands in one or two steps and in high enantiomeric and diastereomeric purity.
  • This invention relates to a practical and effective method for the stereocontrolled synthesis of amines or amino alcohols for the preparation of a large variety of chiral catalysts for asymmetric synthesis.
  • This process involves the one-step combination of certain organoboron derivatives, including organoboronic acids, organoboronates and organoborates with primary or secondary amines and certain carbonyl derivatives, such as ⁇ -keto acids, ⁇ -hydroxy aldehydes or carbohydrates.
  • This process constitutes a three-component reaction and is suitable for the rapid generation of combinatorial libraries of amine or amino alcohols.
  • These products can be converted to chiral reagents or catalysts via a subsequent reaction with an appropriate reagent, which can be present as a fourth component or can be used in a follow-up step.
  • An organoboron derivative as defined herein, comprises a compound having a boron atom connected to at least one alkyl, allyl, alkenyl, aryl, allenyl or alkynyl group.
  • Alkyl groups of the present invention include straight-chained, branched and cyclic alkyl radicals containing up to about 20 carbons. Suitable alkyl groups may be saturated or unsaturated. Further, an alkyl may also be substituted one or more times on one or more carbons with substituents selected from the group consisting of C1-C6 alkyl, C3-C6 heterocycle, aryl, halo, hydroxy, amino, alkoxy and sulfonyl. Additionally, an alkyl group may contain up to 10 heteroatoms or heteroatom substituents. Suitable heteroatoms include nitrogen, oxygen, sulfur and phosphorous.
  • Aryl groups of the present invention include aryl radicals which may contain up to 10 heteroatoms.
  • An aryl group may also be optionally substituted one or more times with an aryl group or a lower alkyl group and it may be also fused to other aryl or cycloalkyl rings.
  • Suitable aryl groups include, for example, phenyl, naphthyl, tolyl, imidazolyl, pyridyl, pyrroyl, thienyl, pyrimidyl, thiazolyl and furyl groups.
  • combinatorial library refers to a set of compounds that are made by the same process, by varying one or more of the reagents.
  • Combinatorial libraries may be made as mixtures of compounds, or as individual pure compounds, generally depending on the methods used for identifying active compounds. Where the active compound may be easily identified and distinguished from other compounds present by physical and/or chemical characteristics, it may be preferred to provide the library as a large mixture of compounds.
  • Large combinatorial libraries may also be prepared by massively parallel synthesis of individual compounds, in which case compounds are typically identified by their position within an array. Intermediate between these two strategies is “deconvolution”, in which the library is prepared as a set of sub-pools, each having a known element and a random element.
  • each sub-pool might be prepared from only a single amine (where each sub-pool contains a different amine), but a mixture of different carbonyl derivatives (or organoboron reagents).
  • a sub-pool is identified as having desired activity, it is resynthesized as a set of individual compounds (each compound having been present in the original active sub-pool), and tested again to identify the compounds responsible for the activity of the sub-pool.
  • Metal means any metal, metal derivative, or metal substitute useful for performing the a reaction in order to synthesize a reagant or catalyst. Examples include, but are not limited to B, Li, Mg, Al, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Zr, Mo, Ru, Rh, Pd, Ag, Re, Os, Ir, Pt, La, Ce and Yb.
  • the first step of this invention involves a novel synthesis of a chiral amine or amino alcohol ligand and the second step involves the conversion of this amine or amino alcohol to a chiral reagent or catalyst.
  • the first step is based on the use of organoboron compounds in a C—C bond forming reaction where the electrophile is derived from a carbonyl and an amine and the product is a new substituted amine.
  • organoboron compounds in a C—C bond forming reaction where the electrophile is derived from a carbonyl and an amine and the product is a new substituted amine.
  • One aspect of the invention is a process for generating chiral amine derivatives of formula (1) or a combinatorial library of molecules of formula (1), by combining compounds (2), (3) and (4):
  • R 1 and R 2 are each independently selected from the group consisting of alkyl, cycloalkyl, aryl, heteroaryl, acyl, carboxy, carboxamido, trialkylsilyl, aryldialkylsilyl, diarylalkylsilyl, triarylsilyl, phosphinyl, and —YR, where Y is selected from the group consisting of —O—, —NR a —, —S—, —SO—, and —SO 2 —, and R and R a are each independently selected from the group consisting of hydrogen, alkyl, aryl, heteroaryl, and acyl, or R 1 and R 2 together form a methylene bridge of 2 to 20 carbon atoms; and where R 3 and R 4 are each independently selected from the group consisting of hydrogen, hydroxy, alkoxy, aryloxy, heteroaryloxy, carboxy, amino, alkylamino, dialkylamino, acylamin
  • compounds of formula (1) can be subsequently easily transformed to new derivatives.
  • removing groups R 1 and R 2 can provide primary amines, while joining two or more groups will result in the formation of cyclic or polycyclic amines.
  • the multicomponent nature of the process described in this invention allows the direct and rapid generation of combinatorial libraries of individual products or mixtures of products, by varying the desired substituents.
  • Such libraries can be generated either in solution or in the solid phase, upon attachment of one substituent onto a solid support.
  • one may couple the amine component (2) to a substrate through either R 1 or R 2 , and react the immobilized amine to a mixture of different organoboron compounds (3), where R 5 is a variety of different groups) and individual or mixed carbonyl compounds (4) to produce a mixture of bound products (1).
  • the carbonyl compound may be immobilized, and a mixture of organoboron compounds and diverse amines added.
  • Combinatorial libraries may be generated either as individual compounds or as mixtures of compounds.
  • an organoboron compound of formula (8) is combined with a preformed iminium derivative (5), aminol (6), or aminal (7), prepared by the combination of an amine (2) and a carbonyl compound (3), or by other methods:
  • R 5 is selected from the group consisting of alkyl, cycloalkyl, aryl, heteroaryl, alkenyl, alkynyl and allenyl
  • R 6 , R 7 and R 8 are selected from the group consisting of hydroxy, alkoxy, aryloxy, heteroaryloxy, chloro, bromo, fluoro, iodo, carboxy, amino, alkylamino, dialkylamino, acylamino, carboxamido, thio, alkylthio, arylthio, acylthio, alkyl, cycloalkyl, aryl, and heteroaryl, or together form a methylene bridge of 3 to 7 atoms
  • X is a positive counter ion
  • n is 0 or 1.
  • the reaction may be promoted by the addition of a silyl derivative SiR 9 R 10 R 11 R 12 , where R 9 is selected from the groups consisting of: chloro, bromo, iodo, alcoxy, acyloxy, triflate, alkylsulfonate or arylsulfonate, while substituents R 10 , R 11 and R 12 are selected from the groups consisting of: alkyl, cycloalkyl, aryl, alkoxy, aryloxy or chloro.
  • a preferred R 5 is an alkenyl or aryl group leading to the formation of geometrically and isomerically pure allylamines or benzylamines (2), respectively.
  • reaction can proceed directly in a variety of solvents, including water, alcohols, ethers, hydrocarbons, chlorinated hydrocarbons and acetonitrile.
  • the stereochemistry of the product in these reactions can be controlled by the use of a chiral amine, a chiral carbonyl compound or a chiral organoboron derivative (L. Deloux et al., Chem. Rev. (1993) 93:763).
  • the use of chiral amines or similar amino alcohol or amino acid derivatives can give products with a high degree of diastereocontrol (up to 99.5% de). Removal of the chiral group substituent can give the free amino acid with a high enantiomeric excess (up to 99.5% ee).
  • organoboron compounds that can be used in this manner include compounds (4) that have R 5 selected from the group consisting of alkyl, allyl, cycloalkyl, aryl, heteroaryl, alkenyl, alkynyl and allenyl, including substituted and isomerically pure derivatives.
  • the boron substituents R 6 and R 7 which do not appear in the product (10), are selected from the groups consisting of: hydroxy, alkoxy, aryloxy, heteroaryloxy, chloro, bromo, fluoro, iodo, carboxy, amino, alkylamino, dialkylamino, acylamino, carboxamido, thio, alkylthio, arylthio, acylthio, alkyl, cycloalkyl, aryl, heteroaryl, including substituted and isomerically pure derivatives.
  • Groups R 6 and R 7 may be connected together to form a bridge of 3 to 7 atoms.
  • Substituents R 3 in compound (9) are selected from the group consisting of hydrogen, hydroxyl, alkoxy, amino, alkylamino, dialkylamino, hydroxyamino, alkyl, cycloalkyl, aryl, hetero aryl, including substituted and isomerically pure derivatives.
  • Substituents R 4 in compound (9) are selected from the group consisting of hydrogen, carboxy, alkyl, cycloalkyl, aryl., hetero aryl, including substituted and isomerically pure derivatives.
  • Substituents R 1 and R 2 in amine (2) are selected from the groups consisting of: alkyl, cycloalkyl, aryl, heteroaryl, hydroxy, alkoxy, aryloxy, heteroaryloxy, acyl, carboxy, amino, alkylamino, dialkylamino, acylamino, carboxamido, alkylthio, arylthio, acylthio, trialkylsilyl, aryldialkylsilyl, diarylalkylsilyl, triarylsilyl, phosphinyl, alkylsulfonyl or arylsulfonyl, including substituted and isomerically pure derivatives.
  • Groups R 1 and R 2 may be connected together to form a bridge of 2 to 20 atoms.
  • the reactants are combined in approximately equimolar amounts in the solvent, and maintained at a temperature between about 0° C. and the reflux temperature of the solvent, preferably between about 25° C. and about 65° C., until the reaction is complete.
  • the course of the reaction may be followed by any standard method, including thin-layer chromatography, GC and HPLC. In general, the reaction is conducted for about 1 to about 72 hours, preferably about 12 to about 24 hours.
  • Product isolation usually gives fairly pure products without the need for chromatography or distillation.
  • the products (10) of the invention can be subsequently transformed to produce new derivatives.
  • R 3 is hydroxyl
  • removing groups R 1 and R 2 can provide primary amino acids, while joining two or more groups will result in the formation of cyclic or polycyclic derivatives.
  • a number of amine components (2) can be used which include R 1 and R 2 groups that can be easily removed in subsequent reactions.
  • benzylamine derivatives can be cleaved by hydrogenation, while others, such as the di(p-anisyl)methylamino group or the trityl group, can be removed under acidic conditions which prevent facile racemization.
  • the multicomponent nature of the process described in this invention allows the direct and rapid generation of combinatorial libraries of the products, by varying the desired substituents.
  • Such libraries can be generated either in solution or in the solid phase, upon attachment of one substituent onto a solid support.
  • at least one of the, groups R 1 through R 7 is a polymeric material.
  • the dicarbonyl compound may be immobilized, and a mixture of organoboron compounds and diverse amines added.
  • Combinatorial libraries may be generated either as individual compounds or as mixtures of compounds.
  • Substituents R 1 and R 2 in the amino acid component (13) are selected from the group consisting of alkyl, cycloalkyl, aryl, hetero aryl, hydroxy, alkoxy, aryloxy, heteroaryloxy, acyl, carboxy, amino, alkylamino, dialkylamino, acylamino, carboxamido, alkyl thio, arylthio, acylthio, trialkylsilyl, aryldialkylsilyl, diarylalkylsilyl, triarylsilyl, phosphinyl, alkylsulfonyl and arylsulfonyl, including substituted and isomerically pure derivatives.
  • Groups R 1 and R 2 may also be connected to other amino acid units (peptides) or may be connected together to form a bridge of 2 to 20 atoms.
  • Groups R 8 and R 9 are selected from the group consisting of alkyl, cycloalkyl, aryl, hetero aryl, acyl and carboxy, including substituted and isomerically pure derivatives.
  • Groups R 8 and R 9 may be connected together or with other groups in (13), (9), or (4) to form a bridge of 3 to 7 atoms.
  • Substituents R 3 and R 4 in compound (9) are each independently selected from the group consisting of hydrogen, hydroxy, alkoxy, aryloxy, heteroaryloxy, carboxy, amino, alkylamino, dialkylamino, acylamino, carboxamido, thio, alkylthio, arylthio, acylthio, alkyl, cycloalkyl, aryl, and heteroaryl.
  • the boron substitutent R 5 in (4) is selected from the group consisting of alkyl, cycloalkyl, aryl, heteroaryl, alkenyl, alkynyl and allenyl.
  • the boron substituents R 6 and R 7 which do not appear in the products, are selected from the group consisting of hydroxy, alkoxy, aryloxy, heteroaryloxy, chloro, bromo, fluoro, iodo, carboxy, amino, alkylamino, dialkylamino, acylamino, carboxamido, thio, alkylthio, arylthio, acylthio, alkyl, cycloalkyl, aryl and heteroaryl, including substituted and isomerically pure derivatives.
  • Groups R 1 and R 2 in the amine component (2) are selected from the groups consisting of: alkyl, cycloalkyl, aryl, hetero aryl, hydroxy, alkoxy, aryloxy, heteroaryloxy, acyl, carboxy, amino, alkylamino, dialkylamino, acylamino, carboxamido, alkyl thio, arylthio, acylthio, trialkylsilyl, aryldialkylsilyl, diarylalkylsilyl, triarylsilyl, phosphinyl, alkylsulfonyl or arylsulfonyl, including substituted and isomerically pure derivatives.
  • Groups R 1 and R 2 may be connected together to form a bridge of 2 to 20 atoms.
  • Groups R 3 in compound (18) are selected from the group consisting of hydrogen, alkyl, cycloalkyl, aryl, and heteroaryl.
  • Groups R 3 in compound (18) have at least one carbon atom and are attached to a group XH, where X is selected from a group consisting of —O—, —NR a —, —S—, and R a is independently selected from the group consisting of hydrogen, alkyl, aryl, heteroaryl, acyl, hydroxy, alkoxy, aryloxy, heteroaryloxy, amino, alkylamino, dialkylamino, and acylamino.
  • the boron substitutent R 5 in compound (4) is selected from the group consisting of alkyl, cycloalkyl, aryl, heteroaryl, alkenyl, alkynyl and allenyl.
  • the boron substituents R 6 and R 7 which do not appear in the products, are selected from the groups consisting of: hydroxy, alkoxy, aryloxy, heteroaryloxy, chloro, bromo, fluoro, iodo, carboxy, amino, alkylamino, dialkylamino, acylamino, carboxamido, thio, alkylthio, arylthio, acylthio, alkyl, cycloalkyl, aryl, heteroaryl, including substituted and isomerically pure derivatives.
  • Groups R 6 and R 7 may be connected together to form a bridge of 3 to 7 atoms.
  • an amine (2) and an organoboron compound (4) are reacted with 1-amino carbonyl derivatives (20) to give directly 1,2-diamines (21).
  • Groups R 1 and R 2 in the amine component (2) are selected from the groups consisting of: alkyl, cycloalkyl, aryl, hetero aryl, hydroxy, alkoxy, aryloxy, heteroaryloxy, acyl, carboxy, amino, alkylamino, dialkylamino, acylamino, carboxamido, alkyl thio, arylthio, acylthio, trialkylsilyl, aryldialkylsilyl, diarylalkylsilyl, triarylsilyl, phosphinyl, alkylsulfonyl or arylsulfonyl, including substituted and isomerically pure derivatives.
  • Groups R 1 and R 2 may be connected together to form a bridge of 2 to 20 atoms.
  • Groups R 3 , R 4 and R 8 in compound (20) are selected from the group consisting of hydrogen, alkyl, cycloalkyl, aryl, and heteroaryl.
  • Groups R 9 and R 10 in compound (20) are selected from the group consisting of alkyl, cycloalkyl, aryl, hetero aryl, hydroxy, alkoxy, aryloxy, heteroaryloxy, acyl, carboxy, amino, alkylamino, dialkylamino, acylamino, carboxamido, alkyl thio, arylthio, acylthio, trialkylsilyl, aryldialkylsilyl, diarylalkylsilyl, triarylsilyl, phosphinyl, alkylsulfonyl and arylsulfonyl, including substituted and isomerically pure derivatives.
  • Groups R 9 and R 10 may be connected with other groups in compounds (2), (20) or (4) to form a bridge of 2 to 20 atoms.
  • the boron substitutent R 5 in compound (4) is selected from the group consisting of alkyl, cycloalkyl, aryl, heteroaryl, alkenyl, alkynyl and allenyl.
  • the boron substituents R 6 and R 7 which do not appear in the products, are selected from the group consisting of hydroxy, alkoxy, aryloxy, heteroaryloxy, chloro, bromo, fluoro, iodo, carboxy, amino, alkylamino, dialkylamino, acylamino, carboxamido, thio, alkylthio, arylthio, acylthio, alkyl, cycloalkyl, aryl and heteroaryl, including substituted and isomerically pure derivatives.
  • Groups R 6 and R 7 may be connected together to form a bridge of 3 to 7 atoms.
  • the products (21) of the invention can be subsequently transformed to produce new derivatives.
  • removing groups R 1 and R 2 can provide primary amines, while joining two or more groups will result in the formation of cyclic or polycyclic derivatives.
  • a number of amine components (2) can be used which include R 1 and R 2 groups that can be easily removed in subsequent reactions.
  • benzylamine derivatives can be cleaved by hydrogenation, while others, such as the di(p-anisyl)methylamino group or the trityl group, can be removed under acidic conditions which prevent facile racemization.
  • an amine (2) and an organoboron compound are reacted with an ⁇ -hydroxy carbonyl derivative (22) to give 1,2-amino alcohols (23).
  • Compounds (22) can also exist in a hemiacetal form, and can include carbohydrate derivatives.
  • the use of chiral derivatives (22) can form products (23) with a very high degree of diastereocontrol (up to greater than 99.5% de) and enantiocontrol diastereocontrol (up to greater than 99.5% ee).
  • Groups R 1 and R 2 in the amine component (2) are selected from the group consisting of alkyl, cycloalkyl, aryl, hetero aryl, hydroxy, alkoxy, aryloxy, heteroaryloxy, acyl, carboxy, amino, alkylamino, dialkylamino, acylamino, carboxamido, alkyl thio, arylthio, acylthio, trialkylsilyl, aryldialkylsilyl, diarylalkylsilyl, triarylsilyl, phosphinyl, alkylsulfonyl and arylsulfonyl, including substituted and isomerically pure derivatives.
  • Groups R 1 and R 2 may be connected with other groups in compounds (2), (22) or (4) to form a bridge of 2 to 20 atoms.
  • Groups R 3 , R 4 and R 8 in compound (22) are selected from the group consisting of hydrogen, alkyl, cycloalkyl, aryl, and heteroaryl.
  • the boron substitutent R 5 in compound (4) is selected from the group consisting of alkyl, cycloalkyl, aryl, heteroaryl, alkenyl, alkynyl and allenyl.
  • the boron substituents R 6 and R 7 which do not appear in the products, are selected from the groups consisting of: hydroxy, alkoxy, aryloxy, heteroaryloxy, chloro, bromo, fluoro, iodo, carboxy, amino, alkylamino, dialkylamino, acylamino, carboxamido, thio, alkylthio, arylthio, acylthio, alkyl, cycloalkyl, aryl, heteroaryl, including substituted and isomerically pure derivatives.
  • Groups R 6 and R 7 may be connected together to form a bridge of 3 to 7 atoms.
  • the products (23) of the invention can be subsequently transformed to produce new derivatives.
  • removing groups R 1 and R 2 can provide primary amines, while joining two or more groups will result in the formation of cyclic or polycyclic derivatives.
  • a number of amine components (2) can be used which include R 1 and R 2 groups that can be easily removed in subsequent reactions.
  • benzylamine derivatives can be cleaved by hydrogenation, while others, such as the di(p-anisyl)methylamino group or the trityl group, can be removed under acidic conditions which prevent facile racemization.
  • R 5 in the organoboron component, such as alkenyl or activated aryl or heteroaryl, followed by oxidative cleavage gives new products where the R 5 is a carbonyl group (aldehyde, ketone or carboxylic acid).
  • carbonyl components (22) having a group R 4 or R 8 consisting of a carbon atom attached to a hydroxyl group, as with many carbohydrate derivatives, followed by oxidative diol cleavage can produce new variations of compounds of the general formula (10).
  • the second step of this invention involves the reaction of a ligand derived from the first step, for example a compound of formula (1), (10), (11), (12), (14), (15), (16), (17), (19), (21), or (23) with a compound (24) of the general formula M(L)n to give a new chiral reagent or catalyst that contains one or more bonds among M and a heteroatom of the ligand.
  • a ligand derived from the first step for example a compound of formula (1), (10), (11), (12), (14), (15), (16), (17), (19), (21), or (23) with a compound (24) of the general formula M(L)n to give a new chiral reagent or catalyst that contains one or more bonds among M and a heteroatom of the ligand.
  • the atom M in formula (24) is selected from a group consisting of Li, Mg, B, Al, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Zr, Mo, Ru, Rh, Pd, Ag, Re, Os, Ir, Pt, La, Ce, Yb;
  • L is a ligand selected from a group consisting of chloro, bromo, iodo, fluoro, oxo, hydroxy, hydroperoxy, alkoxy, aryloxy, acyloxy, acetoacetyl, carboxy, nitro, amino, alkylamino, dialkylamino, azido, carbonyl, alkyl, alkenyl, dienyl, aryl, triflate, arylsulfonyl; where n is a number selected from 0-6; and where all ligands L are the same or different.
  • Typical reagents of formula (24) include, but are not limited to: ZnBr 2 , Ti(OR 4 ), Zr(OR) 4 , YbCl 3 , CrCl 2 , WOCl 4 , FeCl 2 , RuCl 2 , CoCl 2 , NiCl 2 , PdCl 2 , CuCl 2 , ZnCl 2 , AgOTf, BCl 3 , AlCl 3 etc.
  • the chiral reagents or catalysts derived during the second step of this invention can be used in a large number of synthetic processes for the preparation of a large variety chiral products. These include: alkylations, aldol reactions, additions of nucleophiles to aldehydes or ketones, additions of nucleophiles to imine derivatives, Diels-Alder reactions, cycloadditions, cyclopropanations, aziridinations, carbonyl reductions, alkene hydrogenations, epoxidations, epoxide opening, etc.
  • Combinatorial catalysis The facile synthesis of chiral ligands and chiral catalysts with this invention, allows the rapid preparation of large numbers of variants in the form of combinatorial libraries of catalysts. Such libraries can then be used to identify the optimum catalyst for any particular synthetic transformation. Following the screening of the library of catalysts, the most effective one can be easily prepared in large quantities for scale-up.
  • organoboron compounds particularly boronic acids and boronates
  • nucleophilic components for amino acid and amine synthesis is a new concept which offers a number of distinct features, including the following:
  • Organoboronic acids are often crystalline, easy to prepare and easy to handle compounds that are stable in air and water. They are also non toxic and non hazardous. Although the synthesis and reactivity of these molecules has been studied extensively, the present method is the first successful example of their utilization in the synthesis of amines and amino acids.
  • the present method is highly versatile, allowing a high degree of structural variation in all of the reacting components.
  • the process is also a multi-component reaction, allowing the one-pot construction of amine derivatives from several readily available building blocks. For these reasons, this method is easily applicable to the solid or liquid phase combinatorial synthesis.
  • the stereochemical control of the reaction can be accomplished not only with the use of chiral amine and carbonyl components but also with chiral organoboron derivatives.
  • An advantage of boron-based auxiliaries is that they can be easily introduced and can be efficiently recycled after the reaction, thus making this method especially attractive for large scale applications.
  • the present invention involving a one-step stereocontrolled synthesis of amino alcohols from readily available starting materials, opens the way for the development of a practical combinatorial catalyst synthesis involving these well-established ligands.
  • the invention allows the preparation of potentially large libraries of chiral catalysts with novel structures that may be used to identify the most effective system for a particular asymmetric transformation.
US10/633,760 1998-10-23 2003-08-04 Combinatorial approach to chiral reagents or catalysts having amine or amino alcohol ligands Abandoned US20040053775A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/633,760 US20040053775A1 (en) 1998-10-23 2003-08-04 Combinatorial approach to chiral reagents or catalysts having amine or amino alcohol ligands

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US10548998P 1998-10-23 1998-10-23
US09/425,498 US6602817B1 (en) 1998-10-23 1999-10-22 Combination approach to chiral reagents or catalysts having amine or amino alcohol ligands
US10/633,760 US20040053775A1 (en) 1998-10-23 2003-08-04 Combinatorial approach to chiral reagents or catalysts having amine or amino alcohol ligands

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/425,498 Division US6602817B1 (en) 1996-06-28 1999-10-22 Combination approach to chiral reagents or catalysts having amine or amino alcohol ligands

Publications (1)

Publication Number Publication Date
US20040053775A1 true US20040053775A1 (en) 2004-03-18

Family

ID=22306137

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/425,498 Expired - Lifetime US6602817B1 (en) 1996-06-28 1999-10-22 Combination approach to chiral reagents or catalysts having amine or amino alcohol ligands
US10/633,760 Abandoned US20040053775A1 (en) 1998-10-23 2003-08-04 Combinatorial approach to chiral reagents or catalysts having amine or amino alcohol ligands

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/425,498 Expired - Lifetime US6602817B1 (en) 1996-06-28 1999-10-22 Combination approach to chiral reagents or catalysts having amine or amino alcohol ligands

Country Status (3)

Country Link
US (2) US6602817B1 (US20040053775A1-20040318-C00015.png)
AU (1) AU1321700A (US20040053775A1-20040318-C00015.png)
WO (1) WO2000024510A1 (US20040053775A1-20040318-C00015.png)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7462746B2 (en) * 1996-06-28 2008-12-09 University Of Southern California Amino polyols and amino sugars
US6602817B1 (en) * 1998-10-23 2003-08-05 University Of Southern California Combination approach to chiral reagents or catalysts having amine or amino alcohol ligands
MXPA02007915A (es) 2000-02-16 2005-06-20 Brigham & Womens Hospital Mediador de lipido activado por aspirina.
AUPR868201A0 (en) * 2001-11-05 2001-11-29 Thorlock International Limited Q-factor switching method and apparatus for detecting nuclear quadrupole and nuclear magnetic resonance signals
US6927294B1 (en) 2002-03-08 2005-08-09 University Of Southern California Nitrogen-containing heterocycles
US7902257B2 (en) 2002-04-01 2011-03-08 University Of Southern California Trihydroxy polyunsaturated eicosanoid
US7582785B2 (en) * 2002-04-01 2009-09-01 University Of Southern California Trihydroxy polyunsaturated eicosanoid derivatives
EP1528909A4 (en) 2002-04-01 2006-05-24 Univ Southern California POLYINSATURATED TRIHYDROXYL EICOSANOIDS
US6946542B2 (en) * 2002-04-01 2005-09-20 University Of Southern California Amino amides, peptides and peptidomimetics
US8481772B2 (en) 2002-04-01 2013-07-09 University Of Southern California Trihydroxy polyunsaturated eicosanoid derivatives
US7759395B2 (en) * 2002-08-12 2010-07-20 The Brigham And Women's Hospital, Inc. Use of docosatrienes, resolvins and their stable analogs in the treatment of airway diseases and asthma
CA2495260C (en) * 2002-08-12 2012-05-29 Brigham And Women's Hospital Resolvins: biotemplates for novel therapeutic interventions
DE10306202A1 (de) 2003-02-13 2004-08-26 Grünenthal GmbH Arzneimittel enthaltend substituierte 2-Aryl-Aminoessigsäure-Verbindungen und/oder substituierte 2-Heteroaryl-Aminoessigsäure-Verbindungen
DE10306203A1 (de) 2003-02-13 2004-08-26 Grünenthal GmbH Arzneimittel enthaltend substituierte 2-Heteroaryl-Aminoessigsäure-Verbindungen
WO2004078143A2 (en) * 2003-03-05 2004-09-16 The Brigham And Women's Hospital Inc. Methods for identification and uses of anti-inflammatory receptors for eicosapentaenoic acid analogs
US7420000B2 (en) 2003-09-10 2008-09-02 University Of Southern California Amino phosphonate and amino bis-phosphonate derivatives
US20050238589A1 (en) * 2004-04-14 2005-10-27 Van Dyke Thomas E Methods and compositions for preventing or treating periodontal diseases
KR100609992B1 (ko) 2004-06-09 2006-08-08 한국화학연구원 전자 주개-기능화된 아미노디올 화합물 및 이를 제조하는방법
US20060100127A1 (en) 2004-11-11 2006-05-11 Meier Ingrid K N,N-dialkylpolyhydroxyalkylamines
KR100591486B1 (ko) 2005-02-01 2006-06-21 한국화학연구원 전자 주개로 기능화된 삼차 아민을 포함하는 디올 화합물및 이를 제조하는 방법
KR100627625B1 (ko) 2005-02-14 2006-09-25 한국화학연구원 삼차 아민을 포함하는 디올 화합물 및 이를 수용액 중에서제조하는 방법
US8273792B2 (en) 2005-10-03 2012-09-25 The Brigham And Women's Hospital, Inc. Anti-inflammatory actions of neuroprotectin D1/protectin D1 and it's natural stereoisomers
JP2009515991A (ja) * 2005-11-18 2009-04-16 トラスティーズ オブ ボストン ユニバーシティ レゾルビンを使用する骨喪失の処置および防止
US7592344B2 (en) * 2005-11-30 2009-09-22 Solvay Pharmaceuticals Gmbh NK1 and NK2-antagonists and compositions and methods of using the same
CN102584801B (zh) * 2011-01-06 2015-02-18 中国科学院上海有机化学研究所 Hiv逆转录酶抑制剂依法韦伦类化合物的一锅法不对称合成工艺
US20130274144A1 (en) * 2011-08-29 2013-10-17 The Board Of Trustees Of The University Of Illiois Compounds, reactions, and screening methods
CN102718783B (zh) * 2012-07-12 2014-05-21 罗梅 一种手性化合物
CN102924489A (zh) * 2012-11-01 2013-02-13 罗梅 一种手性锌配合物的合成方法
CN102936204B (zh) * 2012-11-25 2014-04-02 罗梅 一种手性化合物
CN102977127A (zh) * 2012-12-19 2013-03-20 罗梅 一种手性化合物
CN103962166B (zh) * 2013-02-06 2016-12-28 中国科学院大连化学物理研究所 一种负载型Pd催化剂及其应用

Citations (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4442099A (en) * 1981-11-27 1984-04-10 Research Corporation Leukotriene analogues
US4567290A (en) * 1981-11-27 1986-01-28 Research Corporation Leukotriene analogues
US4710521A (en) * 1986-07-25 1987-12-01 The Celotex Corporation Catalyst mixtures for polyisocyanurate foam
US4759880A (en) * 1984-09-27 1988-07-26 Research Corporation Alkanoarachidonic acids
US5087790A (en) * 1991-06-12 1992-02-11 University Of Southern California Method for olefination of carbonyl compounds using titanocene derivatives
US5136501A (en) * 1989-05-26 1992-08-04 Reuters Limited Anonymous matching system
US5177046A (en) * 1991-09-20 1993-01-05 Air Products And Chemicals, Inc. Amine-boron adducts as reduced odor catalyst compositions for the production of polyurethanes
US5594732A (en) * 1995-03-03 1997-01-14 Intecom, Incorporated Bridging and signalling subsystems and methods for private and hybrid communications systems including multimedia systems
US5752238A (en) * 1994-11-03 1998-05-12 Intel Corporation Consumer-driven electronic information pricing mechanism
US5756789A (en) * 1995-06-08 1998-05-26 Texaco, Inc. Synthesis of metal--containing aluminophosphates with layered structure
US5842040A (en) * 1996-06-18 1998-11-24 Storage Technology Corporation Policy caching method and apparatus for use in a communication device based on contents of one data unit in a subset of related data units
US5845265A (en) * 1995-04-26 1998-12-01 Mercexchange, L.L.C. Consignment nodes
US5870717A (en) * 1995-11-13 1999-02-09 International Business Machines Corporation System for ordering items over computer network using an electronic catalog
US5878423A (en) * 1997-04-21 1999-03-02 Bellsouth Corporation Dynamically processing an index to create an ordered set of questions
US5878400A (en) * 1996-06-17 1999-03-02 Trilogy Development Group, Inc. Method and apparatus for pricing products in multi-level product and organizational groups
US5890138A (en) * 1996-08-26 1999-03-30 Bid.Com International Inc. Computer auction system
US5896379A (en) * 1996-08-26 1999-04-20 Motorola, Inc. Network node for packet switching with selective data processing and method therefor
US5946467A (en) * 1996-09-20 1999-08-31 Novell, Inc. Application-level, persistent packeting apparatus and method
US6030715A (en) * 1997-10-09 2000-02-29 The University Of Southern California Azlactone-related dopants in the emissive layer of an OLED
US6030917A (en) * 1996-07-23 2000-02-29 Symyx Technologies, Inc. Combinatorial synthesis and analysis of organometallic compounds and catalysts
US6069109A (en) * 1998-07-01 2000-05-30 Union Carbide Chemicals & Plastics Technology Corporation Process for the production of half-sandwich transition metal based catalyst precursors
US6232467B1 (en) * 1996-06-28 2001-05-15 University Of Southern California Method for the synthesis of amines and amino acids with organoboron derivatives
US6259699B1 (en) * 1997-12-30 2001-07-10 Nexabit Networks, Llc System architecture for and method of processing packets and/or cells in a common switch
US6272474B1 (en) * 1999-02-08 2001-08-07 Crisostomo B. Garcia Method for monitoring and trading stocks via the internet displaying bid/ask trade bars
US6336105B1 (en) * 1998-11-16 2002-01-01 Trade Access Inc. System and method for representing data and providing electronic non-repudiation in a negotiations system
US6336138B1 (en) * 1998-08-25 2002-01-01 Hewlett-Packard Company Template-driven approach for generating models on network services
US6377937B1 (en) * 1998-05-28 2002-04-23 Paskowitz Associates Method and system for more effective communication of characteristics data for products and services
US6397212B1 (en) * 1999-03-04 2002-05-28 Peter Biffar Self-learning and self-personalizing knowledge search engine that delivers holistic results
US6415270B1 (en) * 1999-09-03 2002-07-02 Omnihub, Inc. Multiple auction coordination method and system
US6427132B1 (en) * 1999-08-31 2002-07-30 Accenture Llp System, method and article of manufacture for demonstrating E-commerce capabilities via a simulation on a network
US6602817B1 (en) * 1998-10-23 2003-08-05 University Of Southern California Combination approach to chiral reagents or catalysts having amine or amino alcohol ligands
US20030236423A1 (en) * 2002-04-01 2003-12-25 Petasis Nicos A. Trihydroxy polyunsaturated eicosanoids

Patent Citations (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4442099A (en) * 1981-11-27 1984-04-10 Research Corporation Leukotriene analogues
US4567290A (en) * 1981-11-27 1986-01-28 Research Corporation Leukotriene analogues
US4759880A (en) * 1984-09-27 1988-07-26 Research Corporation Alkanoarachidonic acids
US4710521A (en) * 1986-07-25 1987-12-01 The Celotex Corporation Catalyst mixtures for polyisocyanurate foam
US5136501A (en) * 1989-05-26 1992-08-04 Reuters Limited Anonymous matching system
US5087790A (en) * 1991-06-12 1992-02-11 University Of Southern California Method for olefination of carbonyl compounds using titanocene derivatives
US5177046A (en) * 1991-09-20 1993-01-05 Air Products And Chemicals, Inc. Amine-boron adducts as reduced odor catalyst compositions for the production of polyurethanes
US5752238A (en) * 1994-11-03 1998-05-12 Intel Corporation Consumer-driven electronic information pricing mechanism
US5594732A (en) * 1995-03-03 1997-01-14 Intecom, Incorporated Bridging and signalling subsystems and methods for private and hybrid communications systems including multimedia systems
US5845265A (en) * 1995-04-26 1998-12-01 Mercexchange, L.L.C. Consignment nodes
US5756789A (en) * 1995-06-08 1998-05-26 Texaco, Inc. Synthesis of metal--containing aluminophosphates with layered structure
US5870717A (en) * 1995-11-13 1999-02-09 International Business Machines Corporation System for ordering items over computer network using an electronic catalog
US5878400A (en) * 1996-06-17 1999-03-02 Trilogy Development Group, Inc. Method and apparatus for pricing products in multi-level product and organizational groups
US5842040A (en) * 1996-06-18 1998-11-24 Storage Technology Corporation Policy caching method and apparatus for use in a communication device based on contents of one data unit in a subset of related data units
US6232467B1 (en) * 1996-06-28 2001-05-15 University Of Southern California Method for the synthesis of amines and amino acids with organoboron derivatives
US6030917A (en) * 1996-07-23 2000-02-29 Symyx Technologies, Inc. Combinatorial synthesis and analysis of organometallic compounds and catalysts
US5896379A (en) * 1996-08-26 1999-04-20 Motorola, Inc. Network node for packet switching with selective data processing and method therefor
US5890138A (en) * 1996-08-26 1999-03-30 Bid.Com International Inc. Computer auction system
US5946467A (en) * 1996-09-20 1999-08-31 Novell, Inc. Application-level, persistent packeting apparatus and method
US5878423A (en) * 1997-04-21 1999-03-02 Bellsouth Corporation Dynamically processing an index to create an ordered set of questions
US6030715A (en) * 1997-10-09 2000-02-29 The University Of Southern California Azlactone-related dopants in the emissive layer of an OLED
US6259699B1 (en) * 1997-12-30 2001-07-10 Nexabit Networks, Llc System architecture for and method of processing packets and/or cells in a common switch
US6377937B1 (en) * 1998-05-28 2002-04-23 Paskowitz Associates Method and system for more effective communication of characteristics data for products and services
US6069109A (en) * 1998-07-01 2000-05-30 Union Carbide Chemicals & Plastics Technology Corporation Process for the production of half-sandwich transition metal based catalyst precursors
US6336138B1 (en) * 1998-08-25 2002-01-01 Hewlett-Packard Company Template-driven approach for generating models on network services
US6602817B1 (en) * 1998-10-23 2003-08-05 University Of Southern California Combination approach to chiral reagents or catalysts having amine or amino alcohol ligands
US6336105B1 (en) * 1998-11-16 2002-01-01 Trade Access Inc. System and method for representing data and providing electronic non-repudiation in a negotiations system
US6272474B1 (en) * 1999-02-08 2001-08-07 Crisostomo B. Garcia Method for monitoring and trading stocks via the internet displaying bid/ask trade bars
US6397212B1 (en) * 1999-03-04 2002-05-28 Peter Biffar Self-learning and self-personalizing knowledge search engine that delivers holistic results
US6427132B1 (en) * 1999-08-31 2002-07-30 Accenture Llp System, method and article of manufacture for demonstrating E-commerce capabilities via a simulation on a network
US6415270B1 (en) * 1999-09-03 2002-07-02 Omnihub, Inc. Multiple auction coordination method and system
US20030236423A1 (en) * 2002-04-01 2003-12-25 Petasis Nicos A. Trihydroxy polyunsaturated eicosanoids

Also Published As

Publication number Publication date
WO2000024510A1 (en) 2000-05-04
US6602817B1 (en) 2003-08-05
AU1321700A (en) 2000-05-15

Similar Documents

Publication Publication Date Title
US6602817B1 (en) Combination approach to chiral reagents or catalysts having amine or amino alcohol ligands
CA2259203C (en) Method for the synthesis of amines and amino acids with organoboron derivatives
James et al. Palladium‐Catalyzed Decarboxylative Asymmetric Allylic Alkylation: Development, Mechanistic Understanding and Recent Advances
Trost et al. Catalytic asymmetric allylic alkylation employing heteroatom nucleophiles: a powerful method for C–X bond formation
US20140046065A1 (en) Process for preparing amines from alcohols and ammonia
EP2855494B1 (en) Iron catalysts with unsymmetrical pnn'p ligands
US20110319636A1 (en) Method for preparation of amides from alcohols and amines by extrusion of hydrogen
Liu et al. Organocatalyzed kinetic resolution of α-functionalized ketones: the malonate unit leads the way
Yao et al. Chiral dihydroxytetraphenylene-catalyzed enantioselective conjugate addition of boronic acids to β-enaminones
EP2773611B1 (en) Method for producing optically active -hydroxy- -aminocarboxylic acid ester
JP2014040457A (ja) ホスホロアミド化合物及び光学活性アルコールの製造方法
CN115160162B (zh) 一种α氨基β酮酸酯的不对称氢化方法
JP3547590B2 (ja) 不斉ジルコニウム触媒
WO2008095678A1 (en) Process for the preparation of optically active 2-amino-1-phenylethanols
EP0901996B1 (en) Process for producing optically active amines
JP4277068B2 (ja) ホモアリルアミン化合物の製法
JP2003261490A (ja) 新規キラルジルコニウム触媒とそれを用いた光学活性アンチα−メチル−β−アミノカルボニル化合物の製造方法
JPH08311001A (ja) 光学活性アミンの製造方法
JP2001039940A (ja) α−アミノハロメチルケトン誘導体の製造方法
JPH08310981A (ja) 光学活性アルコールの製造方法
CN109081785B (zh) 一种含氟甘氨酸酯衍生物的合成方法
JP2003160549A (ja) 光学活性β−アリールアミドの合成法
JP4732180B2 (ja) 1,3−アミノアルコール誘導体の立体選択的製造方法
WO2023086016A2 (en) Methods of alkene functionalisation
Wang et al. Synthesis of Planar‐Chiral [2.2] Paracyclophane‐Based Oxazole‐Pyrimidine Ligands and Application in Nickel‐Catalyzed 1, 2‐Reduction of α, β‐Unsaturated Ketones

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION