US20030219872A1 - Non-ribosomal peptide synthetases and associated biosynthetic genes - Google Patents

Non-ribosomal peptide synthetases and associated biosynthetic genes Download PDF

Info

Publication number
US20030219872A1
US20030219872A1 US10/402,842 US40284203A US2003219872A1 US 20030219872 A1 US20030219872 A1 US 20030219872A1 US 40284203 A US40284203 A US 40284203A US 2003219872 A1 US2003219872 A1 US 2003219872A1
Authority
US
United States
Prior art keywords
ala
leu
gly
val
arg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/402,842
Inventor
John Hucul
Nathan Magarvey
Michael Greenstein
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wyeth LLC
Original Assignee
Wyeth LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wyeth LLC filed Critical Wyeth LLC
Priority to US10/402,842 priority Critical patent/US20030219872A1/en
Assigned to WYETH reassignment WYETH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GREENSTEIN, MICHAEL, HUCUL, JOHN, MAGARVEY, NATHAN
Publication of US20030219872A1 publication Critical patent/US20030219872A1/en
Priority to US10/746,795 priority patent/US7195907B2/en
Priority to US11/357,566 priority patent/US7341861B2/en
Priority to US11/687,152 priority patent/US7709620B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/93Ligases (6)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide

Abstract

The present invention describes the identification of novel non-ribosomal peptide synthetases and associated biosynthetic genes from Streptomyces hygroscopicus. The present invention further provides methods for generating novel compounds, such as antibiotics, from these synthetases and associated genes.

Description

  • This application claims priority from U.S. Provisional Patent Application Serial No. 60/368,713 filed on Mar. 29, 2002, herein incorporated by reference in its entirety.[0001]
  • FIELD OF THE INVENTION
  • The present invention relates to non-ribosomal peptide synthetases and associated biosynthetic genes. The present invention further relates to methods for generating novel compounds, such as antibiotics, with these synthetases and associated genes. [0002]
  • BACKGROUND OF THE INVENTION
  • Bioactive molecules that are isolated from plants, bacteria, and fungi are often referred to as natural products. These molecules are synthesized by primary or secondary pathways within the organism or may even be degradation products of another molecule. Many of these molecules have shown a variety of therapeutic uses in humans and other animal species. One of the best known examples is taxol, which was originally isolated from the bark of the Pacific Yew tree. Taxol has been shown to have anti-cancer properties and is currently used in the treatment of breast cancer. Actinomycetes are prolific producers of bioactive small molecules. These molecules may be used chemically as immunosuppressants, antibiotics, and cancer therapeutics. Actinomycetes are Gram-positive bacteria that form long, thread-like branched filaments. The term actinomycetes is used to indicate organisms belonging to Actinomycetales, an Order of the domain Bacteria. The Actinomycetales are divided into 34 Families including Streptomyceteae, to which belongs the Genus Streptomyces (Bergey's Manual of Systematic Bacteriology, Second Edition, 2001; George M. Garrity, Editor-in-Chief, Springer Verlag, New York). [0003]
  • Natural products derived from microbial sources primarily belong to three metabolic families: peptides, polyketides, and terpenes. Peptide natural products can be further classified based on their mode of synthesis: ribosomal and non-ribosomal. Non-ribosomal peptides are synthesized on enzymatic thiotemplates termed non-ribosomal peptide synthetases (NRPS). The non-ribosomal peptides encompass a wide range of compounds having diverse activities including, but not limited to, immunosupressive (such as cyclosporin), surfactant (such as surfactin), siderophores (such as enterobactin), virulence factors (such as yersinabactin), antibacterial (such as penicillin and vancomycin), and anti-cancer (such as actinomycin and bleomycin) activities (Weber et al., Current Genomics 1994; 26:120-25; Ehmann et al., Proc. Nat. Acad. Sci. 2000; 97:2509-14; Gehring et al., Biochemistry 1998; 37:11637; Kallow et al., Biochemistry 1998; 37:5947-52; Trauger et al., Proc. Nat. Acad. Sci. 2000; 97:3112-17; Schauweker et al., J. Bacteriology 1999; 27:2468-74; and Shen et al., Bioorganic Chem 1999; 27:155-71). Non-ribosomal peptides typically range in size from 1-11 amino acids and are produced by a variety of microbes including cyanobacteria, actinomycetes and fungi. [0004]
  • In many cases the non-ribosomal peptides contain non-proteogenic amino acids such as norleucine, β-alanine, ornithine, etc., for which biogenesis pathways, which are secondary to primary metabolism, are required and are post-synthetically modified (e.g., hydroxylated or methylated) by tailoring enzymes. As used herein, the term “proteogenic” indicates that the amino acid can be incorporated into a protein in a cell through well-known metabolic pathways. The choice of including a (D)- or (L)-amino acid into a peptide of the present invention depends, in part, on the desired characteristics of the peptide. For example, the incorporation of one or more (D)-amino acids can confer increasing stability on the peptide in vitro or in vivo. As used herein, the term “amino acid equivalent” refers to compounds which depart from the structure of the naturally occurring amino acids, but which have substantially the structure of an amino acid, such that they can be substituted within a peptide that retains biological activity. Thus, for example, amino acid equivalents can include amino acids having side chain modifications and/or substitutions, and also include related organic acids, amides or the like. The term “amino acid” is intended to include amino acid equivalents. The term “residues” refers both to amino acids and amino acid equivalents. [0005]
  • The genes required to make a NRPS and the necessary tailoring enzymes have been shown in all cases to be localized to the chromosome of the producing microbe. NRPSs are modular in nature, where a module may be defined as a segment of the NRPS necessary to catalyze the activation of a specific amino acid and result in the incorporation of that amino acid into a non-ribosomal peptide. A minimal module contains three domains: (1) adenylation domains (about 60 kDa), responsible for selecting and activating an amino acid and transferring the aminoacyl adenylate to a peptidyl carrying center; (2) thiolation domains, also referred to as peptidyl carrier proteins (8-10 kDa), containing a serine residue which is post-translationally modified with a 4-phosphopantetheine group (Ppant) which acts as an acceptor for the aminoacyl adenylate; and (3) condensation domains (50-60 kDa) which catalyze peptide bond-forming chain-translocating steps between an upstream peptidyl-s-Ppant and the downstream aminoacyl-Ppant of the adjacent module (Doekel, S. and Marahiel, M. A. 2000; Chem. Biol. 7:373-384). This minimal module for chain extension is typically repeated within a synthetase and a co-linear relationship exists between the number of modules present and the number of amino acids in the final product with the order of the modules in the synthetase determining the order of the amino acids in the peptide. [0006]
  • There is a continuing need in the art to determine the genes encoding NRPS complexes. [0007]
  • SUMMARY OF THE INVENTION
  • The present invention provides the nucleic acid and amino acid sequences of a non-ribosomal peptide synthetase (NRPS) complex from [0008] Streptomyces hygroscopicus. The NRPS described herein is comprised of two components, designated mppA and mppB, and contains the sequences required for the biosynthesis of the peptide core of lipoglycopeptide antibiotic AC98.
  • The present invention also provides characterization of mppA and mppB, including the number of modules in each component and the functional domains contained within each module. In particular, mppA is comprised of three modules, each containing an adenylation, thiolation, and condensation domain, and mppB is comprised of two modules, two epimerization domains, and a partial module comprised only of a condensation domain and thiolation domain. [0009]
  • Further provided by the present invention are expression vectors comprising the genes encoding mppA and mppB, and host cells transfected with such mppA and/or mppB-encoding vectors. [0010]
  • The present invention also provides nucleic acid and amino acid sequences for several open reading frames (ORFs) encoding associated gene products that modify the amino acids of the core peptide post-biosynthesis, as well as host cells comprising the ORFs. [0011]
  • In yet a further embodiment, the present invention provides a method for producing the NRPS described herein, which method comprises culturing an NPRS-transformed host cell under conditions that provide for expression of mppA and mppB. [0012]
  • The present invention further provides a method of producing a cyclic peptide synthesized by of the NRPS comprised of mppA and mppB, which peptide is an antibiotic. In a preferred embodiment, the antibiotic is AC98. [0013]
  • Also provided by the present invention are methods of modifying the adenylation domains of NRPS in order to produce an antibiotic having a modified peptide core, and a method for evaluating the structural regions of the modified peptide.[0014]
  • BRIEF DESCRIPTION OF DRAWINGS
  • FIG. 1 depicts the chemical structures of the lipoglycopeptide antibiotic AC98. [0015]
  • FIG. 2 shows a representation of the NRPS complex from this [0016] Streptomyces hygroscopicus strain NS17 that is demonstrated to be the minimal biosynthetic machinery responsible for the biosynthesis of the peptide core of AC98.
  • FIG. 3 is a pictorial representation of the biosynthesis of the AC98 peptide core by the novel NRPS described herein. [0017]
  • FIGS. [0018] 4A-E depicts the two-dimensional representation of the binding pockets of adenylation domains within modules of the NRPS of the invention. Amino acid residues 235, 236, 239, 278, 299 & 301, are those that determine the specificity of the binding pocket. FIG. 4A shows the serine-specific binding pocket of the adenylation domain of module 1 within mppA. FIG. 4B shows the glycine-specific binding pocket of the adenylation domain of module 2 within mppA. FIG. 4C shows the phenylalanine-specific binding pocket of the adenylation domain of module 3 within mppA. FIG. 4D shows the tyrosine-specific binding pocket of the adenylation domain of module 1 within mppB. FIG. 4E shows the cyclo-arginine-specific binding pocket of the adenylation domain of module 2 within mppB.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The following definitions are The following definitions are provided for the full understanding of terms and abbreviations used in this specification. [0019]
  • The abbreviations in the specification correspond to units of measure, techniques, properties or compounds as follows: “min” means minutes, “h” means hour(s), “μL” means microliter(s), “mL” means milliliter(s), “mM” means millimolar, “M” means molar, “mmole” means millimole(s), “kb” means kilobase, “bp” means base pair(s), and “IU” means International Units. “Polymerase chain reaction” is abbreviated PCR; “Reverse transcriptase polymerase chain reaction” is abbreviated RT-PCR; “Estrogen receptor” is abbreviated ER; “DNA binding domain” is abbreviated DBD; “Ligand binding domain” is abbreviated LBD; “Untranslated region” is abbreviated UTR; “Sodium dodecyl sulfate” is abbreviated SDS; and “High Pressure Liquid Chromatography” is abbreviated HPLC. [0020]
  • [0021] Streptomyces hygroscopicus NS17 is a terrestrial actinomycete which produces a novel lipoglycopeptide antibiotic complex (AC98; See FIG. 1). This strain has been deposited with the Agricultural Research Service Culture Collection, 1815 North University St., Peoria, Ill. 61604, Deposit No. NRRL 30439. This antibiotic has been shown to be active against Gram-positive pathogens including, but not limited to, vancomycin resistant enterococci (VRE), methicillin resistant Staphlococcus aureus (MRSA) and Streptococcus pneumoniae. The present invention is based on the isolation of the genes encoding a novel NRPS complex from this Streptomyces strain that is demonstrated to be the minimal biosynthetic machinery responsible for the biosynthesis of the peptide core of AC98 (see FIG. 2).
  • A number of open reading frames (ORFs), that are predicted to play a role in the biosynthesis of AC98, have been isolated and characterized by sequence analysis. Sequence comparisons of specific ORFs indicate that the proteins that are encoded by the ORFs are tailoring enzymes that are involved in such modifications of the peptide core as glycosylation, methylation and acylation. Other ORFs putatively encode enzymes that may be involved in resistance. A detailed description of the NRPS and its function in biosynthesis of the AC98 peptide core is presented in FIG. 3. The genes required to make the NRPS and the necessary tailoring enzymes are localized to the chromosome of the producing microbe. [0022]
  • NRPS
  • The NRPS enzymes are generally composed of modules where a minimal module contains three domains, an adenylation domain, a thiolation domain, and a condensation domain. [0023]
  • The adenylation domain is typically about 60 kDa. The main function of this domain is to select and activate a specific amino acid as an aminoacyl adenylate. Based on its function, the adenylation domain regulates the sequence of the peptide being produced. Once charged (as an amino acyl adenylate moiety), the amino acid is transferred to a thiolation domain (peptidyl carrying center). [0024]
  • The second domain is the thiolation domain, also referred to as a peptidyl carrier protein. This domain is typically 8-10 kDa and contains a serine residue that is post-translationally modified with a 4-phosphopantetheine group. This group acts as an acceptor for the aminoacyl adenylate moiety on the amino acid. A nucleophilic reaction leads to the release of the aminoacyl adenylate and conjugation of the amino acid to thiolation domain via a thioester bond. [0025]
  • The third domain is the condensation domain. This domain is typically about 50-60 kDa in size. The main function of this domain is to catalyze the formation of a peptide bond between two amino acids. In this reaction an upstream tethered peptidyl group is translocated to the downstream aminoacyl-s-Ppant and linked to the amino acid by peptide bond formation. [0026]
  • This minimal module for chain extension is typically repeated within a synthetase. Additionally, and typically, a co-linear relationship exists between the number of modules present and the number of amino acids in the final product with the order of the modules in the synthetase determining the order of the amino acids in the peptide. This 1:1 relationship, with every amino acid in the product having one module within the enzyme, is referred to as the co-linearity rule. Examples have been found that violate this rule, and in such cases, the NRPS contains more modules than one would expect based on the number of amino acids incorporated in the peptide product (Challis et al., Chem. Biol. 2000;7:211-24). In some cases the minimal module also is supplemented with additional domains (epimerization, N- or C-methylation, or cyclization domain), with their position in the synthetase determining the substrate upon which they can act. In addition, it has been observed that NRPSs contain inter-domain spacers or linker regions. It has been proposed that these spacers may play a critical role in communication between domains, modules, and even entire synthetases. [0027]
  • There are highly conserved motifs in the catalytic domains of peptide synthetases including: 10 conserved motifs in the adenylation domain; 1 conserved motif in the thiolation domain; 7 conserved motifs in the condensation domain; 1 conserved motif in the thioesterase domain; 7 conserved motifs in the epimerization domains; and 3 conserved motifs in the N-methylation domains. These are detailed in Marahiel et al., Chemical Rev. 1997; 97:2651-73. In addition to modifications such as epimerization, methylation and cyclization during peptide synthesis, post-translational modifications including methylation, hydroxylation, oxidative cross-linking and glycosylation can occur (Walsh et al., Curr. Opin. Chem. Biol. 2001; 5:525-34). [0028]
  • In the present invention, a biosynthetic pathway containing the genes for a NRPS from [0029] Streptomyces hygroscopicus NS17 has been isolated and characterized (SEQ ID NO:1). The NRPS exists as two separate components that have been termed mppA and mppB. These components both are involved in the synthesis of the core of AC98.
  • MppA is composed of three minimal modules, where each module is comprised of an adenylation, thiolation, and condensation domain. MppA conjugates a serine amino acid to a glycine amino acid to produce a peptide. This peptide is then conjugated (through the glycine) to a phenylalanine amino acid. Each amino acid is incorporated into the peptide chain by a unique module. In one embodiment, mppA is about 295 kDa. In another embodiment, mppA is about 2747 amino acids in length. In one embodiment, mppA has an amino acid sequence as depicted in SEQ ID NO:2. In another embodiment, the mppA protein is encoded by a nucleic acid sequence as depicted in SEQ ID NO:3. After addition of the phenylalanine, the peptide chain is then transferred to the mppB component. [0030]
  • The specificity of each AC98 adenylation domain in the NRPS of the present invention was predicted based on the method described in Challis et al., Chem. Biol. 2000;7:211-24. [0031] Amino acid residues 235, 236, 239, 278, 299 & 301 lining the binding pocket of each adenylation domain were found to define domain specificity (the adenylation domains of mppA and mppB modules are depicted in FIG. 4) and, in turn, the order of amino acid incorporation into the growing AC98 peptide chain (See FIG. 3).
  • MppB is composed of 2 ½ modules and two epimerization domains. In other words, mppB is comprised of 2 complete minimal modules (as described above for mppA) and an additional condensation and thiolation domain (which constitutes the ½ module). The peptide chain synthesized by mppA is transferred to mppB where a tyrosine amino acid is added to the chain. Prior to the condensation domain, an epimerization enzyme alters the chirality of the tyrosine residue from an L-amino acid to a D-amino acid. The peptide chain is then transferred to a module where a first cycloarginine moiety is added to the peptide. The module which incorporates the first cycloarginine moiety into the peptide is then reused to incorporate a second cycloarginine moiety. A second epimerization domain then alters the chirality of the second cycloarginine from an L-amino acid to a D-amino acid. The terminal module of mppB is unique in that there is only one adenylation domain used for the addition of two cycloarginine residues to the peptide core. [0032]
  • In one embodiment, mppB is about 394 kDa. In another embodiment, mppB is about 3668 amino acids in length. In one embodiment, mppB has an amino acid sequence as depicted in SEQ ID NO:4. In another embodiment, the mppB protein is encoded by a nucleic acid sequence as depicted in SEQ ID NO: 5. After epimerization, the peptide sequence is then modified by tailoring enzymes including, but not limited to, glycosylation enzymes, methylation enzymes and acylation enzymes. [0033]
  • Tailoring Enzymes
  • After production of the core of the peptide, the sequence may then be modified by additional enzymes which are herein termed “tailoring enzymes”. These enzymes alter the amino acids in the compound without altering the number or the specific amino acids present within the compound. Such tailoring enzymes may include, but are not limited to, arginine cyclase, an O-mannosyltransferase, a phenylalanine C-methyltransferase, a first isovaleryl transferase, and a second isovaleryl transferase. [0034]
  • In the present invention, these tailoring enzymes have been determined to be ORFs present on the AC98 biosynthetic gene cluster and have been termed ORF1-ORF23. Sequence comparison of these ORFs with homologs provide preliminary information about the function of the enzymes. Table 1 below provides a correlation between the ORF, its location within SEQ ID NO: 1, and its proposed function. [0035]
  • The present invention permits specific changes to be made to the ORFs that encode the tailoring enzymes, either by site directed mutagenesis or replacement, to genetically modify the peptide core. The modifications may be made in a rational manner to improve the biological activity of the antibiotic produced by the bacterial strain or to direct synthesis of compounds that are structurally related to AC98. The invention also allows for the ORFs encoding tailoring enzymes to be isolated and used for biotransformation experiments to produce enzymes to modify and possibly improve other useful compounds. [0036]
  • The determination of the entire biosynthetic pathway of AC98 also enables one of ordinary skill in the art to clone and express the pathway into a heterologous organism. Any organism may be used; preferably a bacterial strain is used. The choice of organism is dependent upon the needs of the skilled artisan. For example, a strain that is amenable to genetic manipulation may be used in order to facilitate modification and production of AC98. [0037]
  • The present invention advantageously permits specific changes to be made to individual modules of NRPS, either by site directed mutagenesis or replacement, to genetically modify the peptide core. Additionally, the NRPS modules can be used to modify other NRPSs that direct the synthesis of other useful peptides through module swapping. For example, the module in NRPS that incorporates tyrosine into the peptide core of the antibiotic may be modified so as to incorporate a serine in its place. [0038]
    TABLE 1
    ORF Correlation
    Sequence Homolog Percent
    ORF Position (bp) No. Amino Acids Accession No.* Identity Proposed Function
    ORF1   77-1048 323 BAB69251 68% Acetyltransferase
    (SEQ ID NO:6) (SEQ ID NO:21) Pfam PF00583
    ORF2  1045-2460 471 BAB69250 61% ABC transporter
    (SEQ ID NO:7) (SEQ ID NO:22) Pfam PF01574
    ORF3  2495-3406 303 BAB69249 70% ABC transporter
    (SEQ ID NO 8) (SEQ ID NO:23) Pfam PF00528
    ORF4  3403-4293 296 BAB69248 67% ABC transporter
    (SEQ ID NO 9) (SEQ ID NO:24) Pfam PF00528
    ORF5  4359-5635 402 G75191 34% Mannosyltransferase
    (SEQ ID NO:10) (SEQ ID NO:25) Pfam PF00535
    ORF6  5822-7234 467 AE007470 20% Unknown
    (SEQ ID NO:11) (SEQ ID NO:26)
    ORF7  7293-8822 509 X91736 29% Unknown
    (SEQ ID NO:12) (SEQ ID NO:27)
    ORF8  9012-10025 318 X79146 27% methyltransferase
    (SEQ ID NO:13) (SEQ ID NO:28) Pfam PF00891
    ORF9 29319-30638 450 Z13972 32% D-aminoacyl hydrolase
    (SEQ ID NO:14) (SEQ ID NO:29) superfamily
    ORF10 30658-32010 450 BAB69335 29% efflux protein
    (SEQ ID NO:15) (SEQ ID NO:30)
    ORF11 32181-33407 408 AF263245 38% isovaleryl transferase
    (SEQ ID NO:16) (SEQ ID NO:31) Pfam PF01757
    ORF12  3422-34792 456 AF263245 31% isovaleryl transferase
    (SEQ ID NO:17) (SEQ ID NO:32) PfamPF01757
    ORF13 34905-35939 344 AJ271405 41% argenine cyclase
    (SEQ ID NO:18) (SEQ ID NO:33)
    ORF14 36386-37267 293 AF110468 31% Transaminase
    (SEQ ID NO:34) (SEQ ID NO:35)
    ORF15 37267-38514 415 AE001954 30% Transaminase
    (SEQ ID NO:36) (SEQ ID NO:37)
    ORF16 38547-40382 637 AL589164 34% Regulatory Protein
    (SEQ ID NO:38) (SEQ ID NO:39)
    ORF17 40444-40659 71 AL035654 69% cda-ORFX homolog
    (SEQ ID NO:40) SEQ ID NO:41)
    ORF18 42554-41100 484 AE005887 36% putative secreted protein
    (SEQ ID NO:42) (SEQ ID NO: 43)
    ORF19 44648-42936 570 AL939114 33% hypothetical protein
    (SEQ ID NO: (SEQ ID NO:45)
    44)
    ORF20 45435-44581 285 AE006014 44% ABC transporter
    (SEQ ID (SEQ ID NO:47)
    NO:46
    ORF21 45920-45504 138 AL356892 37% putative lipoprotein
    (SEQ ID (SEQ ID NO:49)
    NO:48
    ORF22 47181-45991 396 AL096872 35% two component sensor
    (SEQ ID (SEQ ID NO:51) kinase
    NO:50
    ORF23 47988-47308 226 AL132648 47% two component response
    (SEQ ID (SEQ ID NO:53) regulator
    NO:52
    mppA 10069-18309 2747 AL035640 N/A NRPS
    (SEQ ID (SEQ ID NO:2)
    NO:3)
    mppB 18309-29312 3668 AL035640 N/A NRPS
    (SEQ ID (SEQ ID NO:4)
    NO:5
  • Methods of Modifying Bacterial Proteins
  • The role of the proteins encoded by mppA, mppB, or ORF1-ORF23 may be evaluated using any method known in the art. For example, specific modifications to a protein sequence may be produced to alter the final product. Other non-limiting examples of studies that may be conducted with these proteins include (i) evaluation of the biological activity of a protein and (ii) manipulation of a synthetic pathway to alter the final product from bacteria. More detailed discussion of these proposed uses follows. [0039]
  • Genetic manipulations and expression of the proteins discussed herein may be conducted by any method known in the art. For example, the effect of point mutations may be evaluated. The mutations may be produced by any method known in the art. In one specific method the manipulations and protein expression may be conducted using a vector that comprises at least one Gram-negative and at least one Gram-positive origin of replication. The origins of replication allow for replication of the nucleic acid encoded by the vector, in either a Gram-negative or a Gram-positive cell line. In one embodiment, the vector comprises one Gram-negative and one Gram-positive origin of replication. Additionally, the vector comprises a multiple cloning site that allows for the insertion of a heterologous nucleic acid that may be replicated and transcribed by a host cell. [0040]
  • The most evolved mechanism of transfer of nucleic acids is conjugation. As used herein, the term “conjugation” refers to the direct transfer of nucleic acid from one prokaryotic cell to another via direct contact of cells. The origin of transfer is determined by a vector, so that both donor and recipient cells obtain copies of the vector. Transmissibility by conjugation is controlled by a set of genes in the tra region, which also has the ability to mobilize the transfer of chromosomes when the origin of transfer is integrated into them (Pansegrau et al., [0041] J. Mol. Biol., 239:623-663, 1994; Fong and Stanisich, J. Bact., 175:448-456, 1993).
  • Evaluation of the Biological Activity of a Protein
  • Evaluation of the mechanism of a protein and role the protein plays in the synthesis of a compound has traditionally been determined using sequence homology techniques. However, such techniques may not be accurate and better methods of evaluating novel proteins need to be developed. The vector described previously may be used to assess the biological activity of an unknown protein. The vector may be used to disrupt a protein, either by partial or complete removal of the gene encoding the protein, or by disruption of that gene. Evaluation of the products produced when the altered protein is present is useful in determining the function of the protein. [0042]
  • Manipulation of a Synthetic Pathway to Alter the Final Product
  • As discussed above, many compounds obtained from organisms have complex stereochemistries. These compounds are not amenable to production or manipulation by conventional synthetic methods. Therefore, new methods are needed to produce altered products. [0043]
  • Specific proteins within the biochemical pathway of the product may be modified to assess the activity of the compounds produced by these altered proteins and to determine which sections of the product are important for activity and function. [0044]
  • The present invention contemplates any method of altering any of the proteins of the present invention. More specifically, the invention contemplates any method that would insert amino acids, delete amino acids or replace amino acids in the proteins of the invention. Additionally, a whole domain in a module in mppA or mppB may be replaced. Therefore, for example, the acylation domain that incorporates tyrosine into the final product may be replaced with a domain that incorporates serine. The modifications may be performed at the nucleic acid level. These modifications are performed by standard techniques and are well known within the art. [0045]
  • Upon production of the nucleic acid encoding the modified protein, the protein can be expressed in a host cell. Then the host cell can be cultured under conditions that permit production of a product of the altered pathway. [0046]
  • Once the product is isolated, the activity of the product may be assessed using any method known in the art. The activity can be compared to the product of the non-modified biosynthetic pathway and to products produced by other modifications. Correlations may be drawn between specific alterations and activity. For example, it may be determined that an active residue at a specific position may increase activity. These types of correlations will allow one of ordinary skill to determine the most preferred product structure for specified activity. [0047]
  • The present invention also contemplates a method for using an intergeneric vector, described infra in the examples, to manipulate, modify, or isolate a protein involved in the synthesis of a specific product. For example, the vector of the present invention may be used to alter an enzyme which is involved in incorporation of an alanine residue into a peptide, so that a tyrosine residue is incorporated instead. The effect of this modification on peptide function may be then be evaluated for biological efficacy. In the above example, modifications to the enzyme may include, but are not limited to, removal of amino acids and/or sequences that specifically recognize alanine and/or incorporation of amino acids and/or sequences that specifically recognize tyrosine. [0048]
  • Therefore, in general terms, the vector of the present invention may be used to alter a gene sequence by insertion of nucleic acid sequences, deletion of nucleic acid sequences, or alteration of specific bases within a nucleic acid sequence to alter the sequence of a protein of interest; thereby producing a modified protein of interest. Preferably, the protein of interest is involved in the synthesis of a compound of interest. The method of modifying a protein comprises (i) transfecting a first bacterial cell with the vector of the present invention, (ii) culturing the first bacterial cell under conditions that allow for replication of the vector, (iii) conjugating the first bacterial cell with a second bacterial cell under conditions that allow for the direct transfer of the vector from the first bacterial cell to the second bacterial cell, and (iv) isolating the second bacterial cell transformed with the vector. In a preferred embodiment, the first cell is a Gram-negative bacterial cell and the second cell is a Gram-positive cell. [0049]
  • Molecular Biology
  • In accordance with the present invention there may be employed conventional molecular biology, microbiology, and recombinant DNA techniques within the skill of the art. Such techniques are explained fully in the literature. See, e.g., Sambrook, Fritsch & Maniatis, [0050] Molecular Cloning: A Laboratory Manual, Second Edition (1989) Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (herein “Sambrook et al., 1989”); DNA Cloning: A Practical Approach, Volumes I and II (D. N. Glover ed. 1985); Oligonucleotide Synthesis (M. J. Gait ed. 1984); Nucleic Acid Hybridization (B. D. Hames & S. J. Higgins eds. (1985)); Transcription And Translation (B. D. Hames & S. J. Higgins, eds. (1984)); Animal Cell Culture (R. I. Freshney, ed. (1986)); Immobilized Cells And Enzymes (IRL Press, (1986)); B. Perbal, A Practical Guide To Molecular Cloning (1984); F. M. Ausubel et al. (eds.), Current Protocols in Molecular Biology, John Wiley & Sons, Inc. (1994).
  • “Amplification” of DNA as used herein denotes the use of polyrnerase chain reaction (PCR) to increase the concentration of a particular DNA sequence within a mixture of DNA sequences. For a description of PCR see Saiki et al., Science 1988, 239:487. [0051]
  • A “nucleic acid molecule” refers to the phosphate ester polymeric form of ribonucleosides (adenosine, guanosine, uridine or cytidine; “RNA molecules”) or deoxyribonucleosides (deoxyadenosine, deoxyguanosine, deoxythymidine, or deoxycytidine; “DNA molecules”), or any phosphoester analogs thereof, such as phosphorothioates and thioesters, in either single stranded form, or a double-stranded helix. Double stranded DNA-DNA, DNA-RNA and RNA-RNA helices are possible. The term nucleic acid molecule, and in particular DNA or RNA molecule, refers only to the primary and secondary structure of the molecule, and does not limit it to any particular tertiary forms. Thus, this term includes double-stranded DNA found, inter alia, in linear (e.g., restriction fragments) or circular DNA molecules, plasmids, and chromosomes. In discussing the structure of particular double-stranded DNA molecules, sequences may be described herein according to the normal convention of giving only the sequence in the 5′ to 3′ direction along the non-transcribed strand of DNA (i.e., the strand having a sequence homologous to the mRNA). A “recombinant DNA molecule” is a DNA molecule that has undergone a molecular biological manipulation. [0052]
  • A “polynucleotide” or “nucleotide sequence” is a series of nucleotide bases (also called “nucleotides”) in a nucleic acid, such as DNA and RNA, and means any chain of two or more nucleotides. A nucleotide sequence typically carries genetic information, including the information used by cellular machinery to make proteins and enzymes. These terms include double or single stranded genomic and cDNA, RNA, any synthetic and genetically manipulated polynucleotide, and both sense and anti-sense polynucleotide (although only sense stands are being represented herein). This includes single- and double-stranded molecules, i.e., DNA-DNA, DNA-RNA and RNA-RNA hybrids, as well as “protein nucleic acids” (PNA) formed by conjugating bases to an amino acid backbone. This also includes nucleic acids containing modified bases, for example thio-uracil, thio-guanine and fluoro-uracil. [0053]
  • The nucleic acids herein may be flanked by natural regulatory (expression control) sequences, or may be associated with heterologous sequences, including promoters, internal ribosome entry sites (IRES) and other ribosome binding site sequences, enhancers, response elements, suppressors, signal sequences, polyadenylation sequences, introns, 5′- and 3′- non-coding regions, and the like. The nucleic acids may also be modified by many means known in the art. Non-limiting examples of such modifications include methylation, “caps”, substitution of one or more of the naturally occurring nucleotides with an analog, and internucleotide modifications such as, for example, those with uncharged linkages (e.g., methyl phosphonates, phosphotriesters, phosphoroamidates, carbamates, etc.) and with charged linkages (e.g., phosphorothioates, phosphorodithioates, etc.). Polynucleotides may contain one or more additional covalently linked moieties, such as, for example, proteins (e.g., nucleases, toxins, antibodies, signal peptides, poly-L-lysine, etc.), intercalators (e.g., acridine, psoralen, etc.), chelators (e.g., metals, radioactive metals, iron, oxidative metals, etc.), and alkylators. The polynucleotides may be derivatized by formation of a methyl or ethyl phosphotriester or an alkyl phosphoramidate linkage. Furthermore, the polynucleotides herein may also be modified with a label capable of providing a detectable signal, either directly or indirectly. Exemplary labels include radioisotopes, fluorescent molecules, biotin, and the like. [0054]
  • A “promoter” or “promoter sequence” is a DNA regulatory region capable of binding RNA polymerase in a cell and initiating transcription of a downstream (3′ direction) coding sequence. For purposes of defining the present invention, the promoter sequence is bounded at its 3′ terminus by the transcription initiation site and extends upstream (5′ direction) to include the minimum number of bases or elements necessary to initiate transcription at levels detectable above background. Within the promoter sequence will be found a transcription initiation site (conveniently defined for example, by mapping with nuclease S1), as well as protein binding domains (consensus sequences) responsible for the binding of RNA polymerase. The promoter may be operatively associated with other expression control sequences, including enhancer and repressor sequences. [0055]
  • A “coding sequence” or a sequence “encoding” an expression product, such as a RNA, polypeptide, protein, or enzyme, is a nucleotide sequence that, when expressed, results in the production of that RNA, polypeptide, protein, or enzyme, i.e., the nucleotide sequence encodes an amino acid sequence for that polypeptide, protein or enzyme. A coding sequence for a protein may include a start codon (usually ATG) and a stop codon. [0056]
  • The term “gene”, also called a “structural gene” means a DNA sequence that codes for or corresponds to a particular sequence of amino acids which comprise all or part of one or more proteins or enzymes, and may or may not include regulatory DNA sequences, such as promoter sequences, which determine for example the conditions under which the gene is expressed. Some genes, which are not structural genes, may be transcribed from DNA to RNA, but are not translated into an amino acid sequence. Other genes may function as regulators of structural genes or as regulators of DNA transcription. [0057]
  • A coding sequence is “under the control of” or “operatively associated with” expression control sequences in a cell when RNA polymerase transcribes the coding sequence into RNA, particularly MRNA, which is then trans-RNA spliced (if it contains introns) and translated into the protein encoded by the coding sequence. [0058]
  • The term “expression control sequence” refers to a promoter and any enhancer or suppression elements that combine to regulate the transcription of a coding sequence. In a preferred embodiment, the element is an origin of replication. [0059]
  • The terms “vector”, “cloning vector” and “expression vector” refer to the vehicle by which DNA can be introduced into a host cell, resulting in expression of the introduced sequence. In one embodiment, vectors comprise a promoter and one or more control elements (e.g., enhancer elements) that are heterologous to the introduced DNA but are recognized and used by the host cell. In another embodiment, the sequence that is introduced into the vector retains its natural promoter that may be recognized and expressed by the host cell (Bormann et al., J. Bacteriol 1996;178:1216-1218). [0060]
  • An “intergeneric vector” is a vector that permits intergeneric conjugation, i.e., utilizes a system of passing DNA from [0061] E. coli to actinomycetes directly (Keiser, T. et al., Practical Streptomyces Genetics (2000) John Innes Foundation, John Innes Centre (England)). Intergeneric conjugation has fewer manipulations than transformation.
  • Vectors typically comprise the DNA of a transmissible agent, into which foreign DNA is inserted. A common way to insert one segment of DNA into another segment of DNA involves the use of enzymes called restriction enzymes that cleave DNA at specific sites (specific groups of nucleotides) called restriction sites. A “cassette” refers to a DNA coding sequence or segment of DNA that codes for an expression product that can be inserted into a vector at defined restriction sites. The cassette restriction sites are designed to ensure insertion of the cassette in the proper reading frame. Generally, foreign DNA is inserted at one or more restriction sites of the vector DNA, and then is carried by the vector into a host cell along with the transmissible vector DNA. A segment or sequence of DNA having inserted or added DNA, such as an expression vector, can also be called a “DNA construct”. A common type of vector is a “plasmid”, which generally is a self-contained molecule of double-stranded DNA, usually of bacterial origin, that can readily accept additional (foreign) DNA and which can readily introduced into a suitable host cell. A plasmid vector often contains coding DNA and promoter DNA and has one or more restriction sites suitable for inserting foreign DNA. Coding DNA is a DNA sequence that encodes a particular amino acid sequence for a particular protein or enzyme. Promoter DNA is a DNA sequence which initiates, regulates, or otherwise mediates or controls the expression of the coding DNA. Promoter DNA and coding DNA may be from the same gene or from different genes, and may be from the same or different organisms. Recombinant cloning vectors will often include one or more replication systems for cloning or expression, one or more markers for selection in the host, e.g. antibiotic resistance, and one or more expression cassettes. Vector constructs may be produced using conventional molecular biology and recombinant DNA techniques within the skill of the art. Such techniques are explained fully in the literature. See, e.g., Sambrook, Fritsch & Maniatis, Molecular Cloning: A Laboratory Manual, Second Edition (1989) Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (herein “Sambrook et al., 1989”); DNA Cloning: A Practical Approach, Volumes I and II (D. N. Glover ed. 1985); F. M. Ausubel et al. (eds.), Current Protocols in Molecular Biology, John Wiley & Sons, Inc. (1994). [0062]
  • The terms “express” and “expression” mean allowing or causing the information in a gene or DNA sequence to become manifest, for example producing a protein by activating the cellular functions involved in transcription and translation of a corresponding gene or DNA sequence. A DNA sequence is expressed in or by a cell to form an “expression product” such as a protein. The expression product itself, e.g,. the resulting protein, may also be said to be “expressed” by the cell. An expression product can be characterized as intracellular, extracellular or secreted. The term “intracellular” means something that is inside a cell. The term “extracellular” means something that is outside a cell. A substance is “secreted” by a cell if it appears in significant measure outside the cell, from somewhere on or inside the cell. [0063]
  • The term “transfection” means the introduction of a foreign nucleic acid into a cell. The term “transformation” means the introduction of a “foreign” (i.e. extrinsic or extracellular) gene, DNA or RNA sequence to a cell, so that the host cell will express the introduced gene or sequence to produce a desired substance, typically a protein or enzyme coded by the introduced gene or sequence. The introduced gene or sequence may also be called a “cloned” or “foreign” gene or sequence, may include regulatory or control sequences, such as start, stop, promoter, signal, secretion, or other sequences used by a cells genetic machinery. The gene or sequence may include nonfunctional sequences or sequences with no known function. A host cell that receives and expresses introduced DNA or RNA has been “transformed” and is a “transformant” or a “clone.” The DNA or RNA introduced to a host cell can come from any source, including cells of the same genus or species as the host cell, or cells of a different genus or species. [0064]
  • The term “host cell” means any cell of any organism that is selected, modified, transformed, grown or used or manipulated in any way for the production of a substance by the cell. For example, a host cell may be one that is manipulated to express a particular gene, a DNA or RNA sequence, a protein or an enzyme. Host cells can further be used for screening or other assays that are described infra. Host cells may be cultured in vitro or one or more cells in a non-human animal (e.g., a transgenic animal or a transiently transfected animal). For the present invention, host cells include but are not limited to Streptomyces species and [0065] E. Coli.
  • The term “expression system” means a host cell and compatible vector under suitable conditions, e.g. for the expression of a protein coded for by foreign DNA carried by the vector and introduced to the host cell. In a specific embodiment, the host cell of the present invention is a Gram-negative or Gram-positive bacteria. These bacteria include, but are not limited to, [0066] E. coli and Streptomyces species. An example of a Streptomyces species that may be used includes, but is not limited to, Streptomyces hygroscopicus.
  • The term “heterologous” refers to a combination of elements not naturally occurring. For example, heterologous DNA refers to DNA not naturally located in the cell, or in a chromosomal site of the cell. Preferably, the heterologous DNA includes a gene foreign to the cell. For example, the present invention includes chimeric DNA molecules that comprise a DNA sequence and a heterologous DNA sequence which is not part of the DNA sequence. In this context, the heterologous DNA sequence refers to an DNA sequence that is not naturally located within the NRPS sequence. Alternatively, the heterologous DNA sequence may be naturally located within the NRPS sequence, but is found at a location in the NRPS sequence where it does not naturally occur. A heterologous expression regulatory element is such an element is operatively associated with a different gene than the one it is operatively associated with in nature. In the context of the present invention, a gene encoding a protein of interest is heterologous to the vector DNA in which it is inserted for cloning or expression, and it is heterologous to a host cell containing such a vector, in which it is expressed. [0067]
  • The terms “mutant” and “mutation” mean any detectable change in genetic material, e.g. DNA, or any process, mechanism, or result of such a change. This includes gene mutations, in which the structure (e.g. DNA sequence) of a gene is altered, any gene or DNA arising from any mutation process, and any expression product (e.g. protein or enzyme) expressed by a modified gene or DNA sequence. [0068]
  • The term “variant” may also be used to indicate a modified or altered gene, DNA sequence, enzyme, cell, etc., i.e., any kind of mutant. Two specific types of variants are “sequence-conservative variants”, a polynucleotide sequence where a change of one or more nucleotides in a given codon position results in no alteration in the amino acid encoded at that position, and “function-conservative variants”, where a given amino acid residue in a protein or enzyme has been changed without altering the overall conformation and function of the polypeptide. Amino acids with similar properties are well known in the art. Amino acids other than those indicated as conserved may differ in a protein or enzyme so that the percent protein or amino acid sequence similarity between any two proteins of similar function may vary and may be, for example, from 70% to 99% as determined according to an alignment scheme such as by the Clustal Method, wherein similarity is based on the algorithms available in MEGALIGN. A “function-conservative variant” also includes a polypeptide or enzyme which has at least 60% amino acid identity as determined by BLAST or FASTA alignments, preferably at least 75%, more preferably at least 85%, and most preferably at least 90%, and which has the same or substantially similar properties or functions as the native or parent protein or enzyme to which it is compared. [0069]
  • As used herein, the terms “homologous” and “homology” refer to the relationship between proteins that possess a “common evolutionary origin,” including proteins from superfamilies (e.g., the immunoglobulin superfamily) and homologous proteins from different species (e.g., myosin light chain, etc.) (Reeck et al., Cell 50:667, 1987). Such proteins (and their encoding genes) have sequence homology, as reflected by their sequence similarity, whether in terms of percent similarity or the presence of specific residues or motifs at conserved positions. [0070]
  • Accordingly, the term “sequence similarity” refers to the degree of identity or correspondence between nucleic acid or amino acid sequences of proteins that may or may not share a common evolutionary origin (see Reeck et al., supra). However, in common usage and in the instant application, the term “homologous,” when modified with an adverb such as “highly,” may refer to sequence similarity and may or may not relate to a common evolutionary origin. [0071]
  • In a specific embodiment, two DNA sequences are “substantially homologous” or “substantially similar” when at least about 80%, and most preferably at least about 90% or 95% of the nucleotides match over the defined length of the DNA sequences, as determined by sequence comparison algorithms, such as BLAST, FASTA, DNA Strider, etc. An example of such a sequence is an allelic or species variant of the specific genes of the invention. Sequences that are substantially homologous can be identified by comparing the sequences using standard software available in sequence data banks, or in a Southern hybridization experiment under, for example, stringent conditions as defined for that particular system. [0072]
  • Similarly, in a particular embodiment, two amino acid sequences are “substantially homologous” or “substantially similar” when greater than 80% of the amino acids are identical, or greater than about 90% are similar. Preferably, the amino acids are functionally identical. Preferably, the similar or homologous sequences are identified by alignment using, for example, the GCG (Genetics Computer Group, Program Manual for the GCG Package, [0073] Version 10, Madison, Wis.) pileup program, or any of the programs described above (BLAST, FASTA, etc.).
  • A nucleic acid molecule is “hybridizable” to another nucleic acid molecule, such as a cDNA, genomic DNA, or RNA, when a single stranded form of the nucleic acid molecule can anneal to the other nucleic acid molecule under the appropriate conditions of temperature and solution ionic strength (see Sambrook et al., supra). The conditions of temperature and ionic strength determine the “stringency” of the hybridization. For preliminary screening for homologous nucleic acids, low stringency hybridization conditions, corresponding to a T[0074] m (melting temperature) of 55° C., can be used, e.g., 5×SSC, 0.1% SDS, 0.25% milk, and no formamide; or 30% formamide, 5×SSC, 0.5% SDS). Moderate stringency hybridization conditions correspond to a higher Tm, e.g., 40% formamide, with 5× or 6×SCC. High stringency hybridization conditions correspond to the highest Tm, e.g., 50% formamide, 5× or 6×SCC. SCC is a 0.15M NaCl, 0.015M Na-citrate. Hybridization requires that the two nucleic acids contain complementary sequences, although depending on the stringency of the hybridization, mismatches between bases are possible. The appropriate stringency for hybridizing nucleic acids depends on the length of the nucleic acids and the degree of complementation, variables well known in the art. The greater the degree of similarity or homology between two nucleotide sequences, the greater the value of Tm for hybrids of nucleic acids having those sequences. The relative stability (corresponding to higher Tm) of nucleic acid hybridizations decreases in the following order: RNA:RNA, DNA:RNA, DNA:DNA. For hybrids of greater than 100 nucleotides in length, equations for calculating Tm have been derived (see Sambrook et al., supra, 9.50-9.51). For hybridization with shorter nucleic acids, i.e., oligonucleotides, the position of mismatches becomes more important, and the length of the oligonucleotide determines its specificity (see Sambrook et al., supra, 11.7-11.8). A minimum length for a hybridizable nucleic acid is at least about 10 nucleotides; preferably at least about 15 nucleotides; and more preferably the length is at least about 20 nucleotides.
  • In a specific embodiment, the term “standard hybridization conditions” refers to a T[0075] m of 55° C., and utilizes conditions as set forth above. In a preferred embodiment, the Tm is 60° C.; in a more preferred embodiment, the Tm is 65° C. In a specific embodiment, “high stringency” refers to hybridization and/or washing conditions at 68° C. in 0.2×SSC, at 42° C. in 50% formamide, 4×SSC, or under conditions that afford levels of hybridization equivalent to those observed under either of these two conditions.
  • Suitable hybridization conditions for oligonucleotides (e.g., for oligonucleotide probes or primers) are typically somewhat different than for full-length nucleic acids (e.g., full-length cDNA), because of the oligonucleotides' lower melting temperature. Because the melting temperature of oligonucleotides will depend on the length of the oligonucleotide sequences involved, suitable hybridization temperatures will vary depending upon the oligoncucleotide molecules used. Exemplary temperatures may be 37° C. (for 14-base oligonucleotides), 48° C. (for 17-base oligoncucleotides), 55° C. (for 20-base oligonucleotides) and 60° C. (for 23-base oligonucleotides). Exemplary suitable hybridization conditions for oligonucleotides include washing in 6×SSC/0.05% sodium pyrophosphate, or other conditions that afford equivalent levels of hybridization. [0076]
  • EXAMPLES
  • The present invention will be better understood by reference to the following Examples, which are provided as exemplary of the invention, and not by way of limitation. [0077]
  • Example 1
  • Identification and Cloning of the Non-Ribosomal Peptide Synthetase Complex Responsible for Antibiotic Production (AC98) in [0078] S. hygroscopicus
  • Methods
  • Isolation of genomic DNA from [0079] S. hygroscopicus. Streptomyces hygroscopicus strain designated NS17 was cultured by inoculation of 25 ml of sterile tryptone soya broth (TSB) (Oxoid, Ogdensberg, N.Y.) prepared by combining 30 g of TSB in 1 L of distilled water) with 100 μl of a frozen glycerol stock of NS17. Cultures were grown at 28° C. while shaking at 200 rpm for 2 days. Cells were harvested by centrifugation at 3000×g for 10 min, followed by resuspension of the pelleted cells in 2 ml lysis buffer (2% Triton X-200, 1% SDS, 100 mM NaCl, 10 mM Tris, pH 8.0, 1 mm EDTA) and vortexing. After vortexing, 2 ml of phenol/chloroform/isoamyl alcohol (25/24/1 v/v) was added and the suspension was vortexed again for about 1 min to ensure lysis. The sample was then centrifuged for 5 min at 3000×g and the aqueous phase was added to 2 volumes of 95% ethanol to precipitate the genomic DNA. The precipitate was collected by centrifugation or by spooling, washed once with 70% ethanol, and air dried. DNA was resuspended in 100 μl of TE buffer (10 mM Tris, 1 mM EDTA, pH 8.0).
  • Isolation of a peptide synthetase probe and Southern hybridization. Degenerate PCR primers were designed based on the highly conserved core motifs of peptide synthetase adenylation domains A3 and A8 (Marahiel et al., 1997). [0080]
    forward 5′-ACG/CTCG/CGGCT/ACGCACCGGCCIGCCG/CAAG-3′ (SEQ ID NO: 19)
    primer
    reverse
    5′AGCTCG/CAT/CG/CCGG/CTAGCCG/CCGG/CAT/CCTTG/CACCTG-3′ (SEQ ID NO: 20)
    primer
  • NS17 genomic DNA was used as a template to synthesize a fragment of about 800 bp in length by PCR using a Perkin Elmer DNA Thermal Cycler 480 (Boston, Mass.-30 cycles: 95° C.-1 min, 55° C.-1 min, 72° C.-1 min). This fragment was subjected to end sequencing using an Applied Biosystems, Inc. ABI3700 sequencer (Foster City, Calif.) to determine that it corresponded to a portion of peptide synthetase adenylation domain, and used to as a probe in Southern hybridization of NS17 genomic DNA under standard conditions (Sambrook et al., 1989). [0081]
  • Identification of a functional NS17peptide synthetase module. A 3 kb fragment containing a putative peptide synthetase module identified from the Southern hybridization was sequenced as described above for confirmation, and used in a biosynthetic assay to determine whether the putative peptide synthetase module was part of the AC98 biosynthetic cluster. Specifically, the method described under Example 2, below, was used to insertionally inactivate the putative peptide synthetase, which was then used to replace the endogenous peptide synthetase in [0082] S. hygroscopicus NS17, by homologous recombination. If the 3 kb fragment was part of the AC98 biosynthetic gene cluster, replacement of the endogenous gene with the insertionally inactivated 3 kb fragment would inhibit antibiotic production if the peptide synthetase encoded by 3 kb fragment is part of the AC98 biosynthetic cluster.
  • To evaluate antibiotic production, samples were removed from 50 ml cultures NS17 carrying the disrupted gene. Cultures were grown at 28° C. in PharmaMedia (Chrysalis PharmaMedia, N.J.:10 g/L PharmaMedia, 5 g/L CaCO[0083] 3, 40 g/L glucose) and were analyzed by HPLC. 20 μl aliquots were loaded onto a Waters 4 mm×50 mm YMC ods-a-column (Milford, Mass.) and eluted with a gradient of 10% acetonitrile/90% TFA (20%) in water to 34% acetonitrile/66% TFA in water over 15 minutes. AC98 related compounds were detected by UV-DAD at 226 nm. Chromatograms were compared to chromatograms of samples taken from a similarly treated culture of the parental strain.
  • Preparation and Screening of an NS17 Cosmid Library. Genomic DNA isolated from NS17 as described above was used for the construction of a cosmid library. Optimal conditions for partial digestion of the DNA by restriction enzymes, to produce DNA fragments of about 35 kb, was determined using published techniques (Sambrook et al., 1989). The digested DNA fragments were dephosphorylated with calf intestinal alkaline phosphatase (New England Biolabs, Beverly, Mass.) according to the protocol provided by the manufacturer, and ligated into the commercial vector, pWE 15 (Stratagene, La Jolla, Calif.) according to the manufacturer's instructions. Packaging of the ligated mixture was accomplished using Gigapack III XL packaging extract (Stratagene), and the resulting library was titered and amplified according to the manufacturer's instructions. [0084]
  • The cosmid library was screened using the 3 kb peptide synthetase fragment, identified as described above, according to standard colony hybridization protocols (Sambrook et al., 1989). One cosmid, designated pNWA117, was selected for further study. [0085]
  • Cosmid analysis and identification of ORFs 1-13. Cosmid pNWA117 was digested with EcoRI, subjected to agarose gel electrophoresis and used in a Southern hybridization with the 3 kb fragment, identified as described above, as a probe. Following confirmation that the pNWA117 contained the 3 kb fragment, the cosmid was sequenced (MWG Biotech, Highpoint, N.C.). [0086]
  • Nucleotide BLAST analysis (SeqWeb™, which uses Wisconsin [GCG]Package version 10) was performed to identify individual ORFs and their putative function, according to their homology with known sequences. Results are presented in Table 1. [0087]
  • Cosmid analysis and identification of ORFs 14-23. Genomic DNA downstream of pNWA117 was isolated from a cosmid library by using a fragment of DNA from ORF12 of the analyzed sequence to select cosmids containing stretches of genomic DNA encoding that region of AC98 biosynthetic pathway. This process is commonly referred to as chromosomal walking. One such cosmid, pNWA105, was selected after restriction analysis indicated that it contained approximately 12 Kb of DNA downstream of ORF13. Nucleotide BLAST analysis of sequence data obtained was performed to identify nine complete ORFs (ORF14, ORF15, ORF16, ORF17, ORF18, ORF19, ORF20, ORF21, and ORF22) and one partial ORF (ORF23) and their putative function in AC98 biosynthesis, according to their homology with known sequences. Results are presented in Table 1. [0088]
  • Results
  • Isolation of an NRPS in NC17 responsible for the production of AC98. Results from the experiments described above demonstrate that cosmid pNWA117 contains the genes encoding a NRPS required for the synthesis of the peptide core of the novel antibiotic complex AC98, which is produced by the terrestrial actinomycete [0089] Streptomyces hygroscopicus. pNWA117 also contains 13 additional ORFs proposed to be involved in the synthesis of the AC98 complex. PNWA105 contains at least 4 additional ORFs that are proposed to be involved in AC98 biosynthesis. The NRPS complex exists as two separate components, mppA and mppB. mppA is encoded within bp 10069 and 18309 of the sequence listed in SEQ ID. NO: 1, and is comprised of about 2747 amino acids (SEQ ID NO: 2). mppB is encoded within bp 18309 and 29312 of the sequence listed in SEQ ID NO: 1, and is comprised of about 3668 amino acids (SEQ ID NO: 3). Additional description and characterization of mppA and mppB is described infra, under the heading DETAILED DESCRIPTION.
  • Table 1 lists the 23 ORFs and corresponding SEQ ID NO's that were identified and determined to be tailoring enzymes involved in the production of the protein core of AC98 (column 1). [0090] Column 2 lists the bp position of each ORF according to the sequence contained within cosmid pNWA117 (SEQ ID NO: 1), along with the number of the amino acids encoded by each ORF (column 3). Column 4 identifies the public sequence with which each ORF is most homologous, according to BLAST analysis, and column 5 lists the proposed function of each polypeptide encoded by the individual ORFs based on the sequence homology.
  • Example 2
  • Preparation of an Intergeneric Vector [0091]
  • Materials
  • DNA restriction and modification enzymes and T4 DNA ligase were obtained from New England Biolabs. Plasmid DNA was isolated using commercial kits (Qiagen) and DNA fragments were purified using commercial kits (Tetra Link International). Competent [0092] E. coli cells were obtained from Stratagene. All were used according to manufacturer's specifications and with buffers and reagents supplied by the manufacturer. Streptomyces chromosomal DNA was prepared according to published protocols (Keisser et al. Practical Streptomyces Genetics, John Innes Centre, Norwich, England, 2000). Antibiotics were purchased from Sigma.
  • Methods
  • pNWA200 vector preparation. A purified PstI fragment containing oriT from the R plasmid, RP4, was ligated to pFD666 (Denis & Brzezinski, Gene, 111:115, 1992), which was then linearized by digestion with Pst1 and dephosphorylated with calf intestinal phosphatase. This ligation mixture was transformed into competent XL-10 [0093] E. coli cells (Stratagene) following manufacturer's directions. The transformed cells were then plated onto nutrient agar plates containing 50 μg/ml kanamycin and incubated at 37° C. for 1 day. The incubation resulted in about 150 colonies. The colonies were replica plated onto a second kanamycin containing agar plate covered by a positively charged nylon filter, and after 6 hours incubation, the nylon filter containing the embedded colonies was treated with 0.5M NaOH (in 1M NaCl) to lyse the bacteria and denature their DNA according to standard Southern blotting procedures (Southern et al., J Mol Biol., 98:503, 1975). The nylon filter was probed with a radioactively labeled 0.76 kb PstI fragment and one colony was selected on the basis of its hybridizing signal. The recombinant plasmid was then extracted from a fresh culture of the original hybridizing colony. Digestion of the plasmid with PstI produced two DNA fragments which electrophoresed to positions of 5.25 kb and 0.76 kb, corresponding to linear pFD666 (5.25 kb) and the 0.76 kb oriT containing Pst1 fragment. This recombinant vector replicated stably in E coli strains and did not show genetic rearrangement upon repeated subculturing and further isolation.
  • Example 3
  • Methods for the Modification of the NRPS AC98 Peptide Core [0094]
  • Based on the sequence data of mppA and mppB describe above, and available data defining the critical binding pocket features, i.e., amino acid residues in the adenylation domain that determine the specificity of the amino acid that is accepted by the domain, those skilled in the art will be able to modify any of the adenylation domains of the NRPS and change the primary amino acid sequence in the peptide core of AC98, thus, modifying the properties of the molecule. This Example provides two methods for modifying the peptide core. [0095]
  • Preparation of an engineered bacterial strain that produces AC98. Preparation of an AC98-producing host strain for use for the production of modified AC98 described by the methods below, is done according to the following steps: [0096]
  • 1. Clone a fragment of the adenylation domain from and NRPS of choice (e.g., using [0097] E. coli).
  • 2. Insert an antibiotic resistance determinant, such as apramycin, within the cloned fragment from [0098] step 1, above. This insertion inactivates adenylation domain after it is inserted into a host genome.
  • 3. Clone the construct in an intergeneric conjugation vector, such as pNWA200, which contains a second antibiotic resistance determinant, such as kanamycin. [0099]
  • 4. Introduce the vector containing the cloned construct into an AC98-producing strain. [0100]
  • 5. Select for a strain that has the construct integrated into the homologous region of the host's genomic DNA by screening for conjugates that are apramycin-resistant and kanamycin-sensitive. [0101]
  • 6. Confirm integration of the apramycin resistance determinant at the desired location by southern hybridization and fermentation. [0102]
  • Once the proper host strain is selected, the insertionally inactivated module in the host genome can be replaced by either the same module that has been modified by site-directed mutagenesis, or by a module that has an adenylation domain that specifies acceptance of a different amino acid. [0103]
  • Method 1
  • Modification of the adenylation domain for the production of modified AC98. The cloned module of choice, e.g., the adenylation domain, is modified by introducing nucleotide changes that will alter the codons that specify the incorporation of the amino acids critical to the biding pocket. The nucleotide changes can be introduced using any method known in the art, such as site-directed mutagenesis. For example, changing the triplet codon for Ser239 in the tyrosine binding pocket of mppB from TCC to TGG, and changing the triplet codon for Valine299 from GTC to ATC, would change the amino acids at those sites to tryptophan and isoleucine, respectively. According to published data, one would expect that these changes would alter the specificity of the module from tyrosine to phenylalanine (Stachelhaus et al., Chemistry and Biol. 1999; 6:493-505). [0104]
  • The mutated module is then introduced, by conjugation, into a host strain that has been modified, as outlined above, to be resistant to an antibiotic, such as apramycin. Selection for the presence of a recombinant strain is two-fold. First, exconjugates are selected that are able to grown in the presence of kanamycin and apramycin. These strains represent those that have taken up the vector construct. Second, clones are selected that have lost resistance to both kanamycin and apramycin. This indicates that the susceptible clones have lost the apramycin resistance due to homologous recombination between the insertionally inactivated host tyrosine domain and the site-directed mutant version of the tyrosine domain. This loss of resistance further indicates that the vector is no longer in the host strain, and the mutated version of the tyrosine domain (i.e., the one specific for phenylalanine) replaced the insertionally inactivated tyrosine domain of the host (engineered as described above). Southern hybridization is then performed to confirm the insertion of the correct construct. Fermentation of the strain will result in the production of modified AC98 products where the cyclic peptide core contains phenylalanine in place of tyrosine. [0105]
  • Method 2
  • Module replacement or swapping for the production of modified AC98. For this method, two regions of approximately 1 kb flanking the module selected for replacement are cloned by PCR (the [ ]arms[ ]). The two arms are engineered so that the ends closest to the module (i.e., the 3′ end on one arm and the 5′ arm on the other) have appropriate restriction sites for subsequent insertion of the module in the correct orientation between the flanking arms. Next, the module of choice for insertion from another peptide synthetase (e.g., the threonine module from the CDA NRPS of [0106] S. coelicolor) is amplified by PCR. This PCR product is also engineered to contain the appropriate restriction sites compatible with those present in the cloned arms, in order for insertion between the two arms. After ligation of the arms and the module, the construct is transferred to the intergeneric conjugation vector, and introduced into a antibiotic-resistant host strain (e.g., the apramycin-resistant strain as described above). Selection of the conjugates is then performed as described above for the mutated module method. Those strains expressing the threonine module from the CDA NRPS instead of the tyrosine module of the AC98 NRPS are identified as being the result of homologous recombination between the arms of the vector and the homologous regions on the host NRPS that flank the insertionally inactivated tyrosine module. Production of the modified AC98, where the cyclic peptide core contains threonine, is achieved by fermentation.
  • Appropriate steps should be taken to ensure maintenance of the integrity of the ORFs during the processes described above. For example, sequencing of all PCR products is preferred to confirm that no inadvertent mutations are introduced into the sequences that will be used for cloning. [0107]
  • In addition or as an alternative to the peptide synthetase module of the NRPS, tailoring enzymes, such as those indicated in Table 1, may also be modified according to these methods in order to produce antibiotic molecules having a modified peptide core. As one example, inactivation of a methyltransferase enzyme will result in an antibiotic lacking specific methyl groups, which then may be evaluated for improved antibiotic activity. [0108]
  • The present invention is not to be limited in scope by the specific embodiments described herein. Indeed, various modifications of the invention in addition to those described herein will become apparent to those skilled in the art from the foregoing description and the accompanying figures. Such modifications are intended to fall within the scope of the appended claims. [0109]
  • It is further to be understood that values are approximate, and are provided for description. [0110]
  • Patents, patent applications, publications, procedures, and the like are cited throughout this application, the disclosures of which are incorporated herein by reference in their entireties. [0111]
  • 1 53 1 47988 DNA Streptomyces hygroscopicus 1 agatcgcgtg tacgccgtcg ccgggatcat gcgtgcgccg tcgccaaggt gccggatttg 60 cggtaagtag tgggcgatgt ccgccacgcc gcgcccgcga cccgttctac ggccgttccg 120 ccccggagac ggccgctcgc tgctggcggc ctggtgccgc agcgccccgg acgatccgat 180 caccgccgcc cgcttccgga cgctgatcct gctcgacccc aatttcgacc cagaggggtt 240 acgggtggcc gatctcgacg ggcaggtggt gggcgccgtc tacgccgtgc gccgccgtac 300 cccgctggcc ggcaccgacc tggagccgga cgtcggctgg atcctgttct tcttcgtcga 360 tccgccgcac cgccgtacgg gcctcggccg ccggctgctc accgatgccc tcgactggct 420 gcgcggacac ggccgcaccc gggtcgactt cgccccgtac gccccccact acgtgctccc 480 cggcctggac cgggccgcgt acccggaggc cgcccggctg ctggcgagcc tcggcttccg 540 tccccgctac gaggccgcgg cgatggaccg cggcctggtc ggctaccgca tgccggacga 600 ggtacggcgg cacgaggcgg ccctgacggc gcgcggccac cgattcggca ccccgtccga 660 cgacgatctg gtggacctgc tcgggctggc cgaggagttc acccccgact gggcgcgggc 720 gatccggcag tgcctgaccg gcggcgcccc tctggaccgc atcgtcagcg cccgcgcacc 780 cgacgggcgg atggcgggct gggccatgca cggcgcgtac gacggtacgg ccgagcggtt 840 cggccccttc ggcgtacgga aggagctgcg cggcgccggt ctgggcaagg tgctgctgca 900 tctgacgctg gagcggatgc gggcgctcgg cgtgcacggg gcgtggttcc tgtggacggg 960 cgagcagagc ccggcggggc atctctaccg cgcgagcgga ttcaccacga cccggaggtt 1020 cacggtgctg cggtgggagg cgggatgagg cgccgtacat tcacggccgg ggccgcggcg 1080 ggggccgccc tgttggccgg ggccggatgc gacgcgcccg gtggcgccgg gcacggagac 1140 ggagagcacg gagacggaga cggcggtgac ggccggggca gcggcggccg tcgcggcgcc 1200 cccgtcaccc tgaccgtcct cacgcactac gcgagcgaac cgctcgcctc ggcgctgcaa 1260 accgtcgtcg acgcctggaa cgcgacgcac cggcgcatca cggtgcgcac ggccgcggtc 1320 aagttccccg atctgctgac gacttacatg gtgcggcagg ccgcgggcca gggcgccgac 1380 atcatccatc cgtactgcct gtggaccggc cagctggtgc gggccggagt actgcgcccg 1440 gtgccgccca cggccacgcg gcagatccgc cgggacttca ccccggcggc cgtggcggcg 1500 tcgtccgtgc acggcacgct ctacggctac cccacggagg tgcagaccta cgcgctctac 1560 tacaacaagc ggctgctgcg gcaggccggt atcgacggac cgccgggtac ctggcaggag 1620 ctggaggacg cggcgtaccg caccgcccgc cgcgaccgcc acggcaacat gctggtgcag 1680 ggcttcgggc tgtcacgggc cgacgatgcg agcgtcgtgg ggcagacgct ggccctgctg 1740 gccgcgcgcg gcggcacatt cctcacctcc gacggacggc ggaccgccat cggctcggcg 1800 gccgggcggg atgtgctcga cctggagcgc cggctcatcg accgcggcgc cgccgactcc 1860 ggtatctcgc tcctgagggc ctttccgtcc ggccaggtgg cgatggcgat caacgccggc 1920 tggtggacgg cgagtctgcg cggcgcgatg ggggcggact accgcgaggt cggggtggcg 1980 ccggtgccgg ggcccgcacc ggacgaccgc ggcacgctcg ccacgggctt cctgctcggc 2040 gtgaacgcga agagcagata tccgggggag gcctgggagt tcctgcactg gctcaacggt 2100 gtgcgggcgc cggccgcccg gccggggcgc agcgcgggag gaggcgtccc ggtgtccagg 2160 atgagcgcgc tccaggtgtc ggtcggttcg atgaccgggc gggcggacga tatgcgggcg 2220 ctgctgggag gcgacggcga gagggacgcc gacggccgtg gtggcggcga ccggaacctc 2280 ggccccttcc tggacgcgct gcgctacgcc gtcccggaac cgaacggtcc gcgcgcgcag 2340 caggccaaat cgctgctgcg caagaacatc gaggacgtct ggacgggccg ggcctcggtc 2400 gatgccgcgc tgcgcaccgc cggccggcag atcgaccagg aactgtcccg gccctactga 2460 gccactcccc catgtcgtcg agaggtggtg ccgaatggct tcagccggcg gtggtcccgt 2520 cagggcggcc cggcggcggc agaccgccgt cgcctatctg ttcctgaccc cggccctgct 2580 gttcttcgcg gtcttcctcg ccctgccgct gctgttcgcc gtgctgctcg cgcagtcgcg 2640 ctgggccggc ttcgacctcg ccgatatcga gccggtcggg atggccaact tcaccgacct 2700 cttcgcccgc ggctcgacct tcctgacgcc cgtcctcacc aatacgctgc tgtacgccgt 2760 cggcaccgtc gcgatcgccc tcatcggcgc gctcaccctc gcgacctgca tcgacaacct 2820 tcgtttccag gggctttggc ggaccctcta tttcctcccg atcgtgacga ccgtggtcgc 2880 cgtcggcaac gtatggaagt acatgtacgc accgggcggg ctgatcaacg gagtgctcaa 2940 cggtctgggt ctgcattccg tggcctttct ccaggacccc ggcacggcgc tgccgtccgt 3000 cgtcgtggtg caggcatggg cctccatggg aaccgcgatc ctgattctca ccgcgggcct 3060 gaagtcgatc cccgaggcct attacgaggc cgccgagctg gacggtgccg gcgccggcac 3120 cgttttccgg cgcatcaccc tgccgctgct ccggccgtcc ctgctcttcg tctgcatcac 3180 ccaattcatc accggattac agtcgttcgc cctgatcaat gtcatgacgg acgacggcgg 3240 accgggcgat gcgacgaatg tcgcggccct ggagatgtat cagcaggcgt tcaggtacgg 3300 cgactgggga atcgccagtg ccgccgcctt tgtgctgttc ctggtcattg tcgcgatcac 3360 ggtggggcag ctctggctgt tccgccggaa aggcggggaa tcgtgagccg gtccgctcgt 3420 cggcgcccgg gccgtcgccg cccctggggc tcgtacgccg tggtcgtcgc cggggccgcc 3480 ctcaccctcg tcccgttcct cgacatgctg ctgacctcgt tcaaggggcc cggcgaatac 3540 gggaaactcc cctaccgatt cctcccccag gcgttcgacc tttccaacta ccgtgccgcg 3600 atggagcagc tggatctgcc cctgcttttc cgcaacagcg tcatcgccac cgccgtcatc 3660 accggatcca tcctggtgac ctccgcgctc gccggatacg cgctggccaa gctgcgcttc 3720 cccggccggg aggtgatctt ccgcctggtc ctgtccacga tgatgttccc gccgttcctc 3780 ttcttcatcc cgcactttct gatcctggtg cactggcccg gcgccggcgg caacgacctg 3840 ctgggccgcg gcggggcggg cctcaccgtg agccttgcgg cgctggtcat gccgttcctc 3900 gtatccggtt tcgggatctt tctgatgcgg caattcatgg tctccatccc ggacgaactg 3960 ctggaggcgg cccgtatcga cggcgccggc gaattcgccc tctggtggcg catcgtgctg 4020 ccccagacga aaccggtggc ggtcaccctc gcgctgctca ccttcgtcaa cgcctggaac 4080 gaatacatct gggcgctgct gatctccacc gccaatccgc ggctgatgac gctgccggtg 4140 ggcatccaga tgctgcagag ctatctcgac cccgaccgta tggtcccggt catgatggcc 4200 ggcctggtgc tgagcatcct gccggtcctg ctgctcttcc tgctgctcca gaagcactac 4260 ctgcgcgggg tgatgctcag cggcctcaag tgacgtgcgt cctgggccga tgtggtcccg 4320 cggtgcaccc gccgaggttg acttctccgt aaaacatgat gagttccggt ttctcctggg 4380 ctgttgtggc aactgtggtg agagtttctg acccctcagg aggaaccatg gcttccgact 4440 cgtcgtcccc gacgccgatg ccggccgtgt cgttgatcgt gccgacgttc aacgaggcag 4500 cgaacattga tgagttgctc gacggcgtgt gtgcggcgat cccggcgggt ctggaggtcg 4560 aggtgctgtt cgtcgacgac tcgacggatg acacaccgga agtcatcgag aaggcggccg 4620 cgcgctgtcc gatgccggtg tcggtgctgc accgggaggt tcccgaaggg gggctcggcg 4680 gagcggtggt ggccgggatc gcccgtacga gtgcgccgtg gatcatggtg atggacgccg 4740 atctgcagca tccgccggag ctgctgccgc agttgatcga ggctggtgag cgcgcggcgg 4800 ccgagttggt ggtggccagc agatacgcgg agggcgggag ccgtggcggg ctggccggcg 4860 ggtaccgggt ggccgtgtcg ggggcgtcga ccgcgctgac caagtcgctg ttcccccggc 4920 tgctgcgcgg ggtctccgac ccgatgagcg ggtgcttcgc catccggcgg gaggcggtcg 4980 accgcgccgt acaggagggc gagacccggc aggaaggggg gctgcggccg ctcggctaca 5040 agattctgct ggagctcgcg gtgcgctgcc ggccgcgcgg ggtggtggag gtgccgtacg 5100 agttcgggga gcggttcgcc ggcgagtcga agtcgacggt gcgcgagggg ctgcggttcc 5160 tgcggcatct ggcggagctg cggaccagcg acaagcgggc ccggatggtg gccttcgggc 5220 tgatcggggt gtcgggcttc gtaccgaatc tgctggcgct gtgggcgctg accggtgcca 5280 cgaccctgca ttacgcggtg gcggaggtgc tggccaatca gctcggggtg ctgtggaact 5340 tcgccctgct ggacttcctg gtctaccgga gcgggaaacc ggggcgcggg gccggccggc 5400 tgctggggtt cgcggcgctc agcaacgcgg atctgctggc gcggatcccg ttgatgatgc 5460 tgttcgtgga gcaggccggg atggggccgg tgccggcgac cgtgatcagt ctcgtggtgg 5520 tgttcgcgct gcggttcctg ctggtcgaca cgttgatcta ccggcgcaag ggggcggctg 5580 ccaagcgcgc ggcggacgcg gcggtcaccg gcgggcaggg cgagcgcgct gcttagctga 5640 caaggcaaac tcgtggcggc ccgccccggc cggacagcag actccgagcg atgatctcgc 5700 cggattccac ctggacggac agaggcggag aaacgtgctg acagctcccg ttggtgtgga 5760 aacggatccg cgttcggcgg tacggccggc ccggcggccg gcggccgtcg tcgcgggcgc 5820 cgtgaccgtc gtgctgctcg ccctgtccga caggtacggc tacaacgtcg acgagctgta 5880 tttccggctg ctcggcgaac acggctgggc ctggggctac accgaccagc cgccgctggt 5940 gccggcgctg gtgcacgcca ccgcccaggt cctcggcgac tcggtgtggg cgatccgggt 6000 gccggcggcg ctgtgcgcag gggccgtggt gctgctcggg gcgctgatca ccgccgaact 6060 cggcggcacc cgccgggcac agactctttc cgccctgggt ctgggcagct cgttcctggt 6120 gctcagcgtc ggccacatca tggtgaccac caccctggac atgctcgcct gggccgcggt 6180 gctgctcttc gtcctgcggg cgctgctgcg ctcggagggc aagtggtggc tgtgggcggg 6240 ggtggtgctg ggcctggcgc tgtacgccaa gtacatcgtg gcgctgctgc cggtggcgct 6300 gctggccggg ctcgcgctgg tcggtccgcg gaaggtgttc cgtgaccggt ggctgtacgc 6360 ggggatcgcg ttggcgctgg ccatcggctc gccgaacctg atctaccagg ccacccatga 6420 cttcccgcag ctgcagatgg ccgatgcgct gggtgccacc gacggcccga tgaaccgggt 6480 catcttcgtg ccgagcctgg tgatcctgct cggtccggtg ctgaccgtgg tgtgggtcgc 6540 ggggctggtg aagctgctgc gtgacccggc atggcggccg gtgcgggcgc tggcaccggc 6600 gttcgtggtc ggggtggcgc tgaccctcta cggcggtggc cggcccgact acgtcggcgg 6660 gttcctgatc gggctgttcg cggccggggc ggtggccgcc gaccggtgga tggggcggcg 6720 tacgtcccgg cgggtgctgc tgtgcgccgg actggccgcc agtgcggtgc tccaggtgct 6780 gatggcgctg ccggtgctgc cgcagagctc cccgttcgtg ccgctgaaca acatctccct 6840 ggagagcgtc ggctggccgc ggctcgccga gcaggtgcgc acggcgtacg aggcgctgcc 6900 gcggcagcag cgggagcggg ccgtggtgct cgccgacaac ctcggggaga tcggcgcgct 6960 ggaccgctac gggcacgggc tgcccgcggt gttcagcggc cacaacgaac tgcacaagtg 7020 gggcccgccg ccggagcgcg ccgatgtggt ggtcgcggtg ggcgtgcccc ggtcccggct 7080 ggccgcgggg ttcacctcgt gcaccgtcgt gggacgggtc gacaacggcg tcggcgtcga 7140 gaacgccgag cagggcagac cgatcacggt gtgccacggc cgcaaggctt cctgggcccg 7200 actgtggccc tcctaccact acttgagcgg ctgatgtgcc cctgcacccc gggccgtgtg 7260 cgaatcgaca actcagcggg aagtgaggcg tgatgacgac atccctcgac agggattcca 7320 gggcggccgc ggccgggccg ggggtgttcc gcccggcgcc gatggcgtgg cggccggtcg 7380 ccgtggtggt ggccgcgctg gccgtgctgt tgttcgcctt cgccggcgaa tacggctacc 7440 acgccgacga gttgtacttc cggctgctcg gggtgcacgg cttcgcctgg ggctatgtgg 7500 accagccgcc gctgctgcca ctggccgtac ggacctcgat ggagatcttc ggcgacagca 7560 tgtgggcgat ccgggtgccc gccgtgctgt gcgcggcggc cgtgaccgcg ctcggcgcga 7620 tgatcgccgc cgagctgggc ggttcccggc gggcccagac gctgaccgcg ttcggggtgg 7680 ccacctcgac gatggtgctc agcttcggcc actggatcct caccaccagc ttcgacaccg 7740 tggcgtgggc cgcggtgctg ctgttcgtga tgcgggtgct gctgcgcggc gagagcaagt 7800 ggtggctgtg ggccggggtg gtggtcggtg tcgcgctgta cgccaagtac atcgtgctgc 7860 tgctgccggt ggcgctgctg gtggggctgg cgctggtcgg tccgcggaag gtcttccgcg 7920 acgggaagct gtacgcgggc acggcgctgg cgctggtcat cggctcgccg aacctgatct 7980 accaggccac ccatgacttc ccgcagctgc agatggcgga ggggctggcg ggcaccgacg 8040 gcgaggcgaa ccgcgccatg ttcgccacga acctgatcct gctgttcggc cccgcgctgt 8100 tcgtgctgtg catgatcggg ctggtcaagc tgttccgggt gccggagtgg aagcccgtac 8160 ggacactggc cgtcggctat ctcgcggcca ccgcggcgtc gtacctcatc gagggcggcc 8220 ggccggacta caccggcgga ctgctgatcg cgctgctggc cgccgggtgt gtgacggccg 8280 accggtgggc gggcgcccgc aagctgcggc tctcggtgct cgcggtctcg ctgacgctca 8340 gcaccgcggt gcagatgctg ctgtcgctgc cggtgatccc caagagctcg ctgcgcgact 8400 tccagatcgc cagcatggcg ctggagacgg tgggctggcc ccgtctggtc cagcagaccg 8460 aggcggccta ccgcgcactg ccggccgcgg accgcgaccg cgcgatcgtg ctcaccgaga 8520 acttcggcga ggcgggcgcc ctggaccact acgggcacgg gctgccgaag gtgtacagcg 8580 gccacaacga gctgtaccac tggggcccgc cgccgcagcg cgccgaggtg gtggtcgcgg 8640 tgggcatcga ccggaaccgg ctgtccgccg acttcaccag ctgcaaggtc gtcgaccaca 8700 tcgacaaccg cctgggcatc gacaatccgg aacagggcgt gccgatcacg gtgtgccacg 8760 gccccaagaa gccctggtcc gcgctgtggc cgacctaccg gcactacaac gcctatctgt 8820 agcgcgcctc tcgtccccca ccccgcggcc cggtccgaag caccttcgga ccgggccgtc 8880 cgccgacctg cttcgctgca cggtaaaagt cgtggatcag ccgcggagtt cacccgagac 8940 tggaaatcgc tggactgtgt acgcccatcc aatcgacttc cggacgaccc ctttcggggt 9000 ggaggcgtga tatgagtacc gaggtttccg aggcgcaggc gcgacgcgcc gtggcagaca 9060 tcttcaactc gacgctggct tcttcggcca tcggcgccgc gtgggagctc ggagctcttg 9120 acgagctgcg ggagaacggc aagttggatg tctccgattt cgccgtacgc catgatctgc 9180 acgagccggc ggtggtcggc atgttcaccg cgctggcgag tgtgggaatc gtgcggcgcg 9240 agggcgccac cgtcgtcgtc ggcccgtact tcgacgaggc caatcaccac cgttcactgt 9300 tccactggct caatcagggc agcggcgagc tcttccgccg catgccgcag gtgctgccga 9360 acgagaaccg cacaggaaag ttctaccagc gggacgcggg ggcgatcagc tacgcgtgcc 9420 gcgagatcag cgagcgctat ttcgacccgg cgttctgggc cgcggtcgac ggtctgggtt 9480 acacccccac caccgtcgcc gacctggggt ccggcagcgg tgagcggctg atccagatcg 9540 cccggcggtt ccccggcgtc cgcggcctcg gcgtggacat cgccgacggc gcgatcgcca 9600 tggcggagaa ggaggtggcc gccaagggat tcggcgacca gatctccttc gtgcggggcg 9660 acgcgcgcac catcgaccag gtctcggcgc gcggggaatt cgccgaggtc gatctgctca 9720 cctgcttcat gatggggcac gacttctggc cccgcgagaa ctgtgtgcag acgctgcgaa 9780 agctgcgcgc ggcattcccg aatgtgcgcc ggttcctgct cggcgacgcc acccgcaccg 9840 tcggtatccc cgaccgcgaa ctccccgtat tcaccctggg attcgagttc gggcacgaca 9900 tgatgggcgt ttacctgccg accctcgatg aatgggacgg ggtattcgaa gagggtggct 9960 ggcgctgtgt gaagaagcac gccatcgact cgctgtcggt ctccgtggtc ttcgaactcg 10020 agtaaccgca cacgcgcata tcgatcacgt cggcagaggg ggttttccat gggtgagtgg 10080 cgcgatcgcc gcctggacga attgttcgcc gagcaggccg cgagaacacc ggagcgtacc 10140 gcggtggtct tcgagggccg ggcggtgagt tatcgggaac tcgacgcccg cgccgagcgg 10200 ctggccgctg tgctggccgg ccgcggcgcg ggacccgagc ggttcatcgc gctgctgctg 10260 ccccgctccg ccgaactgat cgtggccatc ctcgccgtac tgaagtccgg cgccggatac 10320 atcccgatcg acccggagta cccggccgac cgcatcgcct acatcctcgg cgacgcgcgc 10380 ccggtggcga cgatcaccac cgccgaggtg cgggacggtc tgccggaccc ggacaccggc 10440 tccgggaccg actggctgat cctggacgag tccgggtacg agcaggagcc ggccggggcg 10500 cgcccgcagc ccgccccggc cgccccgcgg tccgcggaga accccgccta cgtcatctac 10560 acctccggct cgaccggccg gcccaagggc gtggtgatcc cgcacagcaa tgtgggacgg 10620 ctgctgtcgt ccaccgccca ctggtacggc ttcgacgagc aggacgtctg gccgctgttc 10680 cactccttcg ccttcgatgt ctcggtctgg gagatctggg gcgcgctgct gcacggcggc 10740 aagctggtcg tcgtcccgca tgccgtcacc cgcgccccgg ccgacttcct gcggctgctg 10800 gtcgaggaac gggtcaccgt cctgaaccag acgccttcgg cgttctacca gctgatggcc 10860 gccgaccggg agaaccccgc gctcggcgcc caactcgccc tgcgttatgt ggtgttcgcg 10920 ggtgaggcgc tggacctggg caagctcgcc gactggtacg agcggcacga tgaccgggcg 10980 ccgacgctgg tcaacatgta cggcatcacc gagaccaccg tgcactcctc gttcctcgca 11040 ctggacaagg agggcgcggc cggcgccacg ggcagcgccg tcggcgtcgc cctccccgac 11100 ctgaccttcc atgtcctcga cgaggacctg cggcccgtcc cggtcggcgc ggagggcgag 11160 ctgtatgtgg ccgggcccgg gctggcacgg aactacgcgg gccggccggg gctgaccgcg 11220 gagcgcttcg tggcctgccc gttcggcccg cccggggccc gtatgtaccg ctcgggcgac 11280 ctggtgcggc cgctgccgga cggcggcctc gaatacctgc ggcgcagcga cgaccaggtc 11340 aagatccgcg gtttccggat cgaactgggt gagatctcgc acgcactggc ccaggacccc 11400 tcggtcgacc aggccacggt ggtggtccgc gacgaggcgt cgggcgagcg caggctggtg 11460 gcgtacgtcg ttccggccgg ctccgcccgt cccaccccgt cccggctgcg tgccgcgctg 11520 gccacccgcc tgcccggcta catggtcccc accgccttcc acgtcatgcc ggccttcccg 11580 ctgaccgcca acggcaagct ggaccgcagg gcgctgcccg cgcccacccg ccaggacagc 11640 gtcgacgccg actacgccgc ccccgagggc gccaccgagg aggcgctggc cgccatctgg 11700 cgcgaggtgc tcggcgtcga acagatcggt gccgacgacg acttcttcga gctcggcggt 11760 gactcgctgt ccgtggtgcg ggcgctgtcg cggatgcgga ccggcctggg gctgcgcctg 11820 acggccgcgg agttcttcgc cacccccacc gtccgggcac tggccgcgcg ccgcgagcgg 11880 ggcacgatcg gcgcgccgga gcagataccg gccgcgccgc gtaccggcgc gctgccgctg 11940 tccttcaccc agcagcggtt ctggctcttc cacgaactcg accccggcga ggtcgagtac 12000 aacgtccact ccgcgctgcg gctgcgcggc accctcgacc tccccgcgct gcgcaccgcg 12060 ctcggcgggc tgatcgcccg ccatgagccg ctgcggacga ccgtggtctc cgacgacggc 12120 cgccccaccg cggtcatcgc cccgcccgag ggcttcccgg tcccgctcac cgtcgaggat 12180 ctctccgcgc tgaccggcga cgaccaggag gccgcccagc ggcgactgct ggccgaggag 12240 gtcgcccggc ccttcgacct ggccgccggc ccggtgctgc gggtgctggt gatccgccgc 12300 ggcgagcgcg atcacgccct ggtgatcggg gtgcatcacc tcgccaccga cggctggtcg 12360 atggggctgc tcaccgacga gctgagcgcg cgctacgacg ccgcgcgccg cggggtgccc 12420 gccgcgctgg agccgctgcc ggtccactac agcgactacg ccgcctggca gcgcgccacc 12480 gtggacgacg gccggctggt gccccagatc gactactggc gcgaccggct ggcggatgtg 12540 gcaccgctgc aactgcccac cgaccggccc cggcccgcgc tgaagacctc ggccggtgcg 12600 gcgcaccgct tcaccctcga ccgccggctg gtcgccgccc tcaaggagct gagcgccgcc 12660 catggcgcca cgctcttcat gaccctgacc gccgcgttgc aggtgctgct cgcccgctac 12720 tccggacagc aggacatcgc gctgggcacc gccgtctccg gccgggacca cccgcaggtg 12780 gagcggctgg tcggcgcgtt catcaacacc gtggtgctcc gctccgacgt gcgcggcgag 12840 ctgcccttcc acgaattcct cggggaggta cgggagacgg tgctgggcgc cttcgcgcac 12900 caggaccttc cgttcgaccg gctcgtggac gcgctgggcg ccgagcgcga cccgagccgt 12960 accccgctgg tccaggcgat gctgctgctg cagaacgccc cggccggtgc ggaggagttc 13020 gccgggctgc gcaccgagac cgtcgcgctg ccgcgcccgg ccgcgatctt cgacctgacg 13080 gtggactgca cggagcgggc cggggcgctg gaggtgatgg tcgagtacaa caccgatctg 13140 ttcgacgcga cgaccatcga gcggctctcg ggccatctgc gggtgctgct ggacgccgta 13200 tgcgcggcac cgcggcgcca ggtgcgcgat ctgccgctgc tgccggcggc cgaacgcgac 13260 acgctgctga ccggctggaa cgacaccgcc gccgcactgc cgacgacgct cggggtgcac 13320 cgccagttcg ccgagcgggc ccgcaccacc ccggacgcgc tcgccgtcac acactgcgga 13380 cagaccctca cctacgccca actcgacgcg cgcgccaacc agttggcgca ctacctgggc 13440 gctctcggcg tcggccgggg cacccccgtg gtgctgaacc tggcgcgcaa gccgcagctg 13500 atcgtggcga tgctcgcggt gctcaaggcc ggcggcgcgt acgtaccgac cgcgctggac 13560 accccggcgg cacggctcgg gcatctcctg gaggagaccg gcacccccgt gctgctgacc 13620 accgcgcggc aggccggagc gctgcccccg accgaggcga gcgtcatcga cctcgacgcg 13680 gccgggccgg acatcgcccg gcatccggag cacgaccccc aggtggcgac ccggcccgag 13740 gacctcgcgt acatcgtcta cacctccggg tccaccggcc gccccaaggg cgtcgcggtg 13800 ccgcacagcg cgctgaccga ctactgcgcc tggcacaacg acgcgctgga cgtcggcccc 13860 gaggaccgcg ggtcgtccgt ggtcggcctg gccttcgacg tcgcggtcgg cgaggtgtgg 13920 ccgtatctgt gcgcgggcgc ccgcgtggac cagcccgacc aggagacgct ggacgatccg 13980 acggcgctgg tggagtggtt cgccgagaac ggcaccacgg tcgcctatct gccgaccccg 14040 cgcatcgaat ccctgctgga cgtagcggcg atcaccacca cccggctgcg caccgtcctg 14100 gtcatcggcg actcgctgcg ccgcaggccg cagcccggac tgccgttcac cctgctcaac 14160 gcctacgggc ccgcggaggc gacggtggcc gccacccagg cggtggtcga gcccctggga 14220 cccgacgcgc ccgccgggct gccgtccatc ggcgccccgc tgtacaacac cgccgcctat 14280 gtcctcgacg accggctgtg cccggtcccc gtcggggtgc ccggcgagct gtacctcgcc 14340 ggcgcgggtc tggcgcaggg ctatcagggc cgccccgacc tgaccgcgga gcgcttcgtc 14400 ggctgcccct tcgggccgcc cggaacccgg atgtaccgca cgggtgacat cgtgcgatgg 14460 ctaccggacg gcaccctgga cttcctcggc cggatcgaca accaggtcaa actgcgcggc 14520 taccgcatcg aactcggcga gatcgagagc gtgctggccc gccgcgagga gctctcgcag 14580 gtgttcgtca cggtccgcga gccgtccccc ggccgccggt ccctggtcgc ctacctcgtc 14640 gccgaccggg gcaccgcgcc cgacccggag gagctcgccg gatacatcgc ctccgtactc 14700 ccggagtaca tggttccgtc ctccttcgta ctgctcgacg cgctgccgct gaccgcgaac 14760 ggcaagatcg accggcgggc gctgcccgag ccggagccgg ccggcggcga gggcgccgcg 14820 tatgtcgcgc ccggcaacga ggtcgaggag accctggccg ccatctgggc cgaggtgctc 14880 ggcgtcgaac gggtcggcgt gcaggacaac ttcttcgccc tcggcggcga ctcgatcagc 14940 ggtctgcaga ccgccgtacg ggcccgccgg gccgggctgc gactggcctc caaggacctc 15000 ttccagcgcc agaccatcgc ggcgctgagc cccgtggtga cggtggagcg gaccacggcg 15060 gacgccgacc ccgcaccgtc cgaccggccg accgcgccgt tcgcgctcag cggtctggac 15120 cgggtcggtg tggagcggct gaccgcggac ggcggcccgg ccgaggacgc ctacccgctg 15180 accccgatgc agagcgggct gctcttccac accctgatgc acgccgaacg cggcatgtac 15240 atcgagcagt tccacttcgc cctgcacagc atccgcgagc cggagctgct ggccaccgcc 15300 tggcagcggg tcgtcgaccg cacccctgtg ctccgtacgt cactggcctg ggacggcctc 15360 gccgaaccgc tccaggtcgt gcgcaccggc gtccggatac cggtggcaca gctcgactgg 15420 acggcactgg acgaggccgg acagcggcag gccctggagc ggtatctgac cgaggaccgc 15480 acgcgcgggc tcgatctgca caccgcgcca ctcgcccgga tcgccgtcgc ccgcctgggc 15540 ggcgaccagg tccggctggt gtggacgttc caccatctgc tgctggacgg ctggagcgtc 15600 gtacaggtgc tgtccgaggt gctcggcgag tacgccgcgc tcgccgacgg catcccgtac 15660 accccgcaac tgcggcacac ctacgccgag ttcgtcggcc agctggcggg gcaggaccac 15720 accgccgccg agaagtactg gcgtgccgcg ctcaccggcc gtgagtcgcc caccccgctg 15780 ccgtacgacc ggccgcgccc cgacgcccat caggccgccc ccgacgccga gctgaagctg 15840 cggctgccgg ccgcggtgac cggccgactg ggcaccgcgg cgaagcgggc cggggtgacg 15900 atgaacaccg tggtgcaggg cttgtgggcg ctgctgctgg cccgccacag cggtgagcgg 15960 gacgtactgt tcggcgccac ggtcgccggc cggcccgacg atctggcggg cgcggaatcg 16020 gtgatcggcc tgttcatcaa cacccttccg gtgcgcgtcg acgtcgatcc ggacgccggt 16080 ctgctgagct ggctgcgccg ggtgcaggac gagcaggccg aggcgcgcgc ccatgagcag 16140 gtctcgctcg cccaggtgca gggctgggcg ccggagcggg cgcacggcgg actgttcgac 16200 agcgtgctgg ccttcgagaa cttcccggcc gacctcggtc ccgccgggaa ctacgggctg 16260 cggctcgacg ccatcgaggc cagcaacacc tccaactacc cgctcaacgc catcgttcag 16320 ctcaacgaag agctgaccgt gctgctgcgc tacgacaccg cgctgttcga cgcggacacc 16380 gtggcgcggc tggccggcca tctgcacacg ctgctggagg agaccgccga gaaccccgac 16440 cgccgggtcg gcgagctgcc cctgctcacc gccgccgagc ggcacaccat cgtgcacacc 16500 tggaccgaca ccgcctcgga ctactcggtc gaccgccggc tggacgcggt catcgccgaa 16560 caggccgcgg cccggccgac cgcgatcgcc gtcgtcgacg gtgaacggca gctgagttac 16620 ggcgagttgg accgccgcgc caaccagctg gcacaccatc tgcgcgccgc gggcgtgggc 16680 cgggacgccc tcgtcgggat cgccgtcgag cgcagcgcgg aggtcgtcgt ggccatcctc 16740 ggcacgctca aggcgggcgc cgcgtatgtg ccgctcgacc ccgaattccc cgcgcagcgg 16800 ctcgccacca tgctgtccga gtcccggccc gcggtcctgc tcacccagga acacctgctg 16860 gcggggctgc cgccgacgga cgcccgggtg gtgtgcgtgg accgggacct ggcggccatc 16920 gaggcgcacc ccaccgccgc gccggtctcc ggcggcgacg ccggcgacct ggcctatgtc 16980 acctacacct cgggctccac cggccgcccc aagggcgtca tggtcgagca ccgctcgctg 17040 ttcaacatca tcaccgaggc cggacggctc tacgacctgg gccccgacag ccggatgctg 17100 cagttctaca caatgagctt cgacggcggc gtctgggagg tcttcctgac gctgaccgcc 17160 ggcgccaccc tcgtcatcgc ggaccccgag gcccgccaga gcccggccca cctcgccgag 17220 cagctgcgcg cggagtcgat caccgcgctg acgctgccgc ccgcggtggc ctcggtgctg 17280 gacgcggcct cgctgcccgg catacgcagc ctggggctcg ccggggatgt gctcgcgccc 17340 gaactcgccc gggagtgggc gcgggggcgc cggctgttca acatctacgg gcccagcgag 17400 gcgaccctgt ccgtcgccct gcaccgcgtc gaccccgggg ccgccgggcg ccaggtgccg 17460 ctcggaccgc cggtgcccaa cacccgtttc catgtgctcg acgagcggct ggccgtggtc 17520 ccggtcgggg tgaccggcga gctctacatc ggcggtgcgg gcctggcccg cggctacctg 17580 ggccgccccg acctgaccgc gcagcgcttc gtcgccgacc cgttcggacc gccgggatcc 17640 cgtctctacc gcaccggtga cctgatccgc tggaccccgc aggggcggct ggagttcgcc 17700 gggcgggtgg acaaccaggt caagatccgc ggctaccgtg tcgagcccgc cgaggtggag 17760 agcgcactgc tgcggcagcc cggcgtcgcg gaggcggtgg tgatcgcccg ggacgacgac 17820 accggccaca agcggctggt cgcctatgtc gtaccggacg ggagcggaac cgccccggaa 17880 cgcgccgccc tgctgcgcgc cctgggcggc caactccccg gctacatggt gccgtcggcc 17940 ctcgtcaccc tgcccgagct accgctcgga ccgaccggca aggtcgatgt gcgggcgctg 18000 ccggcaccgg atccggccgc cggcggcacc gccgaccgca tcccgccccg cacccccacg 18060 gaagaggcac tggccctcat ctgggtggag ctgctcgggc tcgaacacgt cggcgtcgag 18120 gacaacttct tcgacctcgg cggcgactcc atcaccagcc tgcggttgat gtcgcggatg 18180 ggcggcgcgt tcggtgtgga cgtctcaccc cgcgacttct tcgacgcccc caccatcgcc 18240 gcccttgccg agcgcctaga ggaaaagatc ctggcgcagt tggaagaagc cgtcggaggc 18300 ggcgccctat gaccagctct gcagcggacc agcccgacaa cccgaacacc accaccccgg 18360 cgtcgcgtgc cgagcgcacc gccgcgctgc cggcccatgt gcaggagctg ctgcgcgccc 18420 ggctggccgg ccgggccgcc gcgacgggcg gcgcggacac catcccgcgc atcgggcacg 18480 acggccccgt cgcgctctcg cccgcccagg aacgcctctg gtacctgcat gagctcgaac 18540 cggagagcaa cgagtacaac accctgcgcg tcctgcggct gcgcggcgac ctcgaccccg 18600 gcgcgctgtc cgcggcgctg agcgagatcg tcgcccggca cggcgcgctc cgcaccacct 18660 tcggctcccg cgaggggcac gccgagcaga ccgtgcatcc gcccgtaccg acaccgctgc 18720 cgctcgtcga cctgtcggcg gcggacgacg gcgagcggga cgacgcgctg cggaccctgc 18780 tgcagtacga ggcccggcgc cccttcgacc tgcgccgcgg cccggtgctg cgggcgcagc 18840 tgatccggct ggcggccgac gaccatgtcc tcgcgctggc cctgcatcac atcgtcaccg 18900 acggctggtc gatgggcgtg ctcaccggcg agctcaccgc ccactacgcc gcgacgctgc 18960 gcggtgcgcc cgccgtactg cccgaacttc cggtgagcta cctcgatgtc gccgtctggc 19020 agcgtgacca gctgagctcc gcgcggctgc gcgaggggct cgaccactgg cgccgggagc 19080 tggccgggct ggtcccgctc gatctgccga cgacctggca gcggccgccg gtccgcacca 19140 gcgccggagc gctgcactcc ttcgagatcc ccccggcggt cgccgcacgc cttcgggagc 19200 tgggccggga acagggcgcc acgctgttca tggcgctggt cgccgcggtc cagctgctgc 19260 tgtcgcgctg gtcggggcag cgggacatcg cggtgggcac cgccgcggcc gggcgcggcc 19320 ggaccgagac cgagaatctg atcggcttct tcgtcaacaa tctggtcctg cgctcccgga 19380 tcgatgagac gcggtcgttc accgagctgc tgcgggcggt acgcgcgacg gtcctggacg 19440 ccttcgccca cgaggatgtg ccgttccagc gggtcgtcga ggcgctgcat ccggagcgcg 19500 acctcagccg gccgccgctg gccgaggtcg cggtgaatct gcacaacacc ccgcggaccg 19560 acacggagct gcccgggctg cggatcgagg agatgccgcc gccggtgttc gcctccagca 19620 tggacctctc gttcgacttc accgagcgcg acgaccggct cgaagggcac ctcacctaca 19680 acaccgatct gttcgccgcg gacgccgccg cgcggatggc cgcgcagctg gtcaccctgc 19740 tcgaggacct cacccgccgg cccgcggtcc cggtggccgg gctggccgtg ctgccggccg 19800 ccgagcaccg tcgggtgacc gaggagtggc cgcactccgg gcccggccgg gagccgcgta 19860 ccgcaccgga gttgttcgcc gcgcaggtcg cgcggacccc tgatgcggat gcgctggtct 19920 ccgacgagga gacgctcagc tatgccgagc tggacggccg tatcaaccag tgggcgcggc 19980 tgctactggc ccggggtgcc gggccggaga cgctggtggc ggtggcgctg ccccgctccg 20040 cgcagatggt cacggcgatc ctggcgatcc agaagaccgg tgccgcctat ctgccgctgg 20100 acccgaagag ccccgcggaa cgcaaccggc tgatgatcga ggacgcccgc ccgctgctgg 20160 tgctgacctc ggccgggttc ggcgacggcg cggaactcgg cgcgcccgca ctgttcctgg 20220 acgacccgga cacccgcgcc gccgcaggcg agctgtccgc cggcccgctg gcggccgccg 20280 agctgcccgc cccgctgctg cccggccacc cggcctacgt catctacacc tccggttcca 20340 ccggccgccc caagggcgtg gtggtcaccc acaccggtgt gcacggcctc gtggcggcgc 20400 agtcggcgca cttccgtacc gggcacggcg cgcgggtgct gtcgttcgcc tcgctcggct 20460 tcgacgcggc cttctccgag ctgggcatgg cgctgctgtc cggcggtgcg ctggtcgtcg 20520 tcgaccagga gcggatcctg cccggacagc cgctggccga cgtgctggcc gagcaccggg 20580 tcacccatgt gacgctgccg cccagcgcgc tgtccgcgct gaccccgggg acgctgccga 20640 aggacctcac cctggtcgtg gccggcgagg cctgcccgcc cgcggtggcc cgcacctggt 20700 ccgcccatca ccgcatgatc aacgcctacg gccccaccga gtccacggtc tgcgccagca 20760 tgagcgccgc gctgaccccg gacaccgtca gcggcgactc ggtccccatc ggccgcccgc 20820 tctccggcgt ccgggtcagc gtcctggacg accggctgcg cccggtgccg gccggcgtcc 20880 ccggcgaggt gtatctctcc ggcgccgcgc tggcccgcgg ctacctcggg cggctcgcgc 20940 tgaccgcgga gcggttcgtc gccgacccgt acggtccgcc gggaagccgg atgtaccgca 21000 ccggcgaccg cgcccgctgg ctggccggcg gcgacctgga ctacctgggc cgcaccgacg 21060 accaggtcaa actgcgcggc ttccggatcg agctcggcga ggtcgaggcc gtactgtcgc 21120 gccacgacgg ggtcggcgcg gtggccgcca cggtgcacaa ggacgagcgg ggcacccgcc 21180 gcctggtggc gtacgtcgtc ccggcgcggg aggacgcggc cgacccggcg cggctgcgcg 21240 agttcgcccg cgaggtgctg cccgagcaca tggtgccctc ggtcttcgtg ccgctggacc 21300 ggctgccgct gaacgccaac ggcaaggtcg accggcgggc gctgcccgca cccgacatcc 21360 ggcgcgacga gggcagcgcc cgtatcgcgc cgcgcacccc ggcggaggag acgctggcgc 21420 gcatctggtc ggaggtgctg ggcgtcacgg acatcggcgt cgaggacaac ttcttcgacc 21480 tcggcggcga ctccatcctc agccttcagg tggtggcgcg ggcccgggcc gccggactgc 21540 ggctgaccgc caagcagacc ttcctgcggc agaccatcgc cgatctcgcc gccgacgccg 21600 tcgccgagac cgaccccgcc gcgcacggtg cggccaacga cggcccggtc accggcgagc 21660 tgccgctcac ccccatccag cactggttct tcaactccct cggcgacagc ctggagcagt 21720 tcaaccagtc gctgtatctg gagctggccg agggccccga cctcccggcg ctgcgcgccg 21780 cactggccgc gctgaccgaa cagcacgacg cactgcggct ccgcgccgta tccgaggacg 21840 ggcagtggcg gctgcaccac gcgcccgccg agaccggtca actcctcgaa cacctcgatc 21900 tgtccggcgt ctcgcccgac gagcaggacg ccgcgatggc ggccgccgtc gacgcggcgc 21960 agcgggactt ccggctgtcc gaggggccgc tgctgcgggc ccggctgttc accctcggcg 22020 acgcccggcc gccccggctg tacctcgtcg cgcaccacct cgtcatcgac ggcatgtcct 22080 ggcgcatcct gctggcggac ctggagaccg gctaccgcct ggcggcggac ggccggccga 22140 tcgacctggg gccccggacc acctcgttcc gcgactggtc gcgccggctg tcgcgccatg 22200 tcgcggacgg cggcctggac gccgaactgc cgtactggaa gggcgtacag gacgcggcgc 22260 gcgagaccgc cccgctcccc gtcgacaccg gcgggctccc cgaccgccag ggcgcccagg 22320 aggagcccgg cgagaacacc gccgggtcgg cccgcaccgt ctccgtacag ctgtccgccg 22380 cgggcaccga ggcgctgctg cggcaggtgc ccgaggccta ccgcacccag atcaacgacg 22440 tcctgctcag cgcgctgggc cgggtgctga ccgactgggc gggcggcgag cgggtgctga 22500 tcgccctgga gggccacggc cgcgaggagc tcttcgacga ggtggacctc acccgcaccg 22560 tcggctggtt caccaccctc ttcccggtcg ccctgcggat gccggccgac cgggactggg 22620 gaacggtcct caagagcgtc aaggaacagc tgcgggcggt gccccacaac ggactcggcc 22680 atggcgcgct gcgtcatctg gcagggccca actcccctct ggaggacggt ccggagcccg 22740 aggtcagctt caactacctc ggccagctgg acgtgtccgc cgaccgcacc ggcctcgccc 22800 gcgccatgct caccagcgag ggcgccgagc gggccgccgg ccagcaccgt gcgcagctgc 22860 tggagatcaa cggcgtggtc accggcggcc ggctggagtt ccactggacg tactcggtga 22920 accggcaccg cgcagagacc gtcgaacggc tcgccgcggg cttcatgacc gcgctggaag 22980 cgatcgtggc gcactgcgcc gcccccggtt ccggcggcgc caccccgtcc gacttcccgc 23040 tggccgccct cgaccaggcc accgtcgaca agatcgccgg cgacggccgc acggtcgagg 23100 acatctaccc gctcaccgcg atgcagagcg gcatgctctt ccacgcgctg agcgagtccg 23160 gacgcgaccc gtacaccggg cacttcggcg tccgcgtgga cggcatcacc gacccggggg 23220 cactggccgc ggcctggcag caggtcgtcg accggacccc cgccctgcgc accgccatcg 23280 tctggcagga cgtcgcggaa ccccttcagg tggtgcacgc ggccgcccgt gtgccggtca 23340 cccatcacga cctgcggtcc ctgaccgagc aggaacggca ggccgccctg gaccggctgt 23400 gggagcggcg cgaggagacc gtcatcgatc tcgccgtcgc gcccgcgctg cggctgaccc 23460 tcgtccggct caccgacagc gccgtccaga tgttctggac ctcgcaccac atcctgatgg 23520 acggctggag cttcgccggg ctgctgtcgg aggtgtgcgc ccagtacacc gcgctgaccg 23580 gcggcccccg cgtggcggcc ccggcccgcc gcccgtaccg cgactatgtc ggctggctgg 23640 ccgaacagga ccagccggcc gccgaggcgc actggcgctc ggtggtcgac gggttcacgg 23700 tgccgacgcc gctgccctac gaccggcagc cggtgaaggc acacggcacc cggtcctcgc 23760 gtgaggtgcg gctgcagctg tccgccgagc gctccgggcg gctgtccgag gccgcccggt 23820 cggcgcggct gaccgtcaac acgctggtgc agggcgcctg ggcgatcctg ctggcgcgct 23880 acggcggggt gcgcgacgtc tgcttcggca ccaccgtctc cggccgtccc gccaccctgc 23940 ccggcgccga gtcgatggcc gggctgttca tcaacaccgt gccggtacgg gcgaccatcg 24000 acggtgccgg tgccggcgac ggcgccgcca ccggcaccgt cgagtggctg cggcggctgc 24060 agagcgagca gctcgactcc cggcagcacg agcatgtctc gctggcgcag atccagcgct 24120 ggagcggcgt accggccggc accaacctct tcgacagcat cgtcgtcttc gagaactacc 24180 cctacgacag cgatgcggcc gccaagtacg ggctgaccct cggcacgttc cagggcgacg 24240 aggtcaccaa ctacgccctc accctgaccg cgtacgtggc cgacgagctg catctcaacc 24300 tcggctacga cccggatctg ttcgacgagg cgaccgtcga gcggatggcc gggcatctgg 24360 cgacgctgct cgacgccgtc gccgccgccc cgcacacccc ggtggacgac ctcccgctgc 24420 tcgatgcggc cgaacaccac cggcttctca ccgagtggaa cgacaccgcc gccggcttcc 24480 cgccgccgcg gccggtccat gagctcttcg ccgagcgggc cgcccgtacc ccggacgcgg 24540 tggcggtcag cgacgccacc cggcagctga ccttcgccga gctggagacc cgcgccaacc 24600 aactggcgca ccacctggcc ggtctgggcg tggcgcccgg cacgctggtc ggggtgtgcg 24660 ccgaccgcgg ggtggacgcc gtggtggcgc tgctgggcgt gctgcgggcc ggcggtgcct 24720 tcgtaccgct ggaccccgcc tatccggcgg agcggctcca ggtcatgctg gaggacgccg 24780 cggtgccggt cgtggtgacc gaggagcggc tgctggaccg gaccgccggg cacgacgcga 24840 cgacggtgtg cctggaccgc gatctgccgc tgctggagga gctgccggcc cgcccgccgt 24900 acaccgccgt ggcaccggac gacctggcgt atgtcgtcta tacgtcgggc accaccgggc 24960 gccccaaggg cgtgatggtc gagcaccggc acgtccacca catggtgcac gcctgggacc 25020 ggcgctacgg gctcgccgcg ctgcaaccgc gcgcgctgtc cgtctccagc atctccgtcg 25080 acctgttctt cagcgacttc ctgctctccg ccctcttcgg cggcacgatg gtgatctgtc 25140 cgcaggacgc cgtcgccgac caggtggcgc tgaccgatct gctgctcaag agccgggccc 25200 agctgatggt gacggtgccg acgctggccc gcgcggtggt cgccgagctc gcctggcgcg 25260 gtgtgacacc ggaggcgctg cgggtgctga tggtgggctc cgagggctgg ccggccgatg 25320 ccgcggccga gatcctggcc ggtctcgcgc cgggcacggt gctggtcaac gcgtacggat 25380 cgaccgagac cacggtcgac tccacggtct tccagctcgg ccgcgacccg ctgggcgacg 25440 ccgccttcgt accggtcggc aggccgctcg ccaacacccg gatctatgtg ctggacgagc 25500 ggatgcgccc ggttcccacc ggcgtcgtcg gcgagtgcta catcggcggc gacggagtgt 25560 cgcgcggcta tctgggccgc ccggagctga ccgccgagcg tttcctcgac gacccgttcg 25620 cgccggagcc gggcgcccgg atgtaccgga ccggtgacct cgcgcgctgg cgggccgacg 25680 gcaacctcga atgcctcggc cgggtcgacg accaggtcaa gatccgcggc ttccgggtgg 25740 aactcggcga ggtggaggcc gcgttggccc gccacccggc gatcgactcg gcggccgccg 25800 cgatccgcaa ggacgacggt gggccggccc gtctggtggg ctatgtcgtg cccgccgccg 25860 gccacacccc cgacctggcc gagctacggg ccttcgccgc cgaacggctg ccgtcgcccg 25920 ccgtccccac cgcgtacatg gtgctggacg cgctgccgat gacgccgagc ggcaccgtcg 25980 cccggcgtgc gctgccggcc ccggccgggg cgcaggacgc cgcccggccc tacaccgcgc 26040 cgggcagcgc caccgagctg ctgctctgcg gtatctggca ggaggtcctg ggcgtcgaac 26100 gggtcggcgt gcacgacaac ttcttcgacc tgggcggcga ctcgatcctc agcatccggg 26160 tcatctcccg gatccgggcc acgctgggcg tcgccccgtc gccccgccag ctcttcgaca 26220 ccccgacggt ggccggtctc gccgccaccc tcggccggga cgacccctcg gcggccgccg 26280 acgtccccct ggagccggcc gaccgcggcg caccgctgcc gctgtcgtcc gcccagcaac 26340 gccagtggtt cctgcacaac ttcgacccgg acagcagcga gtaccacatc gtcaccgggc 26400 tccggctcga cggtgatctg gacgtcgcgg cgctgcgagg ggccctgaac gggctcgtcg 26460 cccggcacga ggcgctgcgt accacctacg cggccaccgg cgagggcgcc gagcagatcg 26520 tgcaccccgc gggcgaggtg gtctgcgagc gtacggatct gtccgaggtg cccgaggacc 26580 agcgcgagga caccctgcgc gggcacatcg accgcgccgc cgcccggccg ttcggcctca 26640 ccgagggccc ggtcctgcgc gccgaactgt tccggctcgg cgcccgtgac catctgctgc 26700 tgctcgtcat ccaccacatc gccaccgacg gtgtctcgat gcaggtgctc accgaggagc 26760 tcggcgtcca ctacgccgcg gcgctcgacg gcacaccgcc cgccctgccg gcgctgccgg 26820 tctcctacgc cgactacgcg gcctggcagc gccggatgct gtccggcccg gcgctggacg 26880 gccatctcgc ctactggcag gagcggctgg ccggtgtccg gccgctggag ctgcccaccg 26940 accggccccg gccggcggtc cgcagctccg cgggccggat gctgctgatc gagatcgagc 27000 cgcgggtggc cgcgggcctc aaggaactgg cccgccgcca tgacgccacc ctgttcatgg 27060 cgctcaccgc ggcggtccag ctgctgctgg cccgctacac cggacagccg gacatcgtcg 27120 tgggcacccc ggccgccggc cggggccggc aagaactcga ggggctcgtc gggctgttcg 27180 tcaacacggt ggcgctgcgg tccaccgtcg acgagagcgg gaccttcgac gccttcctcg 27240 gtgcggtgcg cgacaccgtc ctcgaagcgt ttgtgcacga ggacgtgccg ttcgaccggc 27300 tggtcgaggt gctgcgaccg cgccgcgacc ccagccgtaa cgcactggtg gaggtgttcg 27360 tcggactgga gacggaccgg tcggcgccgc cggcgctgcc cggactgacg gtgaccgagg 27420 tcccgttcgt cagcggcgag gtcagccatg acctcagctt cgacttcgtc gacgggcccg 27480 acggcctgaa ggcggccatc ggctacagca ccgcgctgtt cgacgacggc accgtcgagc 27540 ggatggccgg ccagttccag gcgctgctcg ccgcggtcct ggaggaccat cgcgcgctcg 27600 ccgacatcgc acccgcggac gaggccgagg tgcggcggct cgccgaactg cggcaggccg 27660 cgccctcgga gcccgacgcg tcggaaaccg acggcgcgcc ggccgcctac cgcgcgcccg 27720 ggaccgctgc cgagcgggcc ctggcggaga tctgggccgc cgtgctgggg gtgccgcggg 27780 tcgggaccga cgacaacttc ttccagctgg gcggcgactc cctgctcagc atccaggcgg 27840 tgcagcggat gcggcaggcc ggcctggcgg tgaccaccaa ggatctgttc gtccaccaga 27900 gcatcgcccc gctggcggcc ctcgccgagg aacgggcggc ggaccggccg gaggcccccc 27960 aggcgcagca cgacgatgcc gggacggcgg gcgagatacc gctcaccccg atccagcgcg 28020 actacttcgc ggccgggccg ctcgccccgc accacttcac ccagtcggtg ttcctcgaac 28080 tgcacgccga tctcgacgag ccggcgctgc ggcacgcact ggccgcgctg atcggccacc 28140 acgacgccct gcggacccgc ttcgtacgcg aagacggcga ctggcggcag tacgccaccc 28200 cgccggagcc ggtggacatc ctgcgccggc acgacctgtc cgggctgccg gaggctcaac 28260 gggccgccgc catggacgag ttggcggcct cggccgacgc cgggctcgat ctggcggccg 28320 ggccgccggc cgcggcgctg ctgttcgtct tcgggcccgg ggagcggccg gcgctgttcg 28380 tgaccgcgca ccatctcgtc gtcgacggcg tctcctggcg gatcctgctg gaggacctgg 28440 aagccggcta cgtccaggcc cgcgacggga agccggtgtc cctgggcgcc aaaagcacct 28500 cgttcgggca gtgggcgcac cggctcgccc ggcacatcgc cgacggcggc ctcgccgagc 28560 aggccgccta ctggcaggcg ctgcccgacg gcaccgaggt cccgcacgac ggctcggggc 28620 ccgcggtggt ggagtccgtg cagaccgtca cggtggagct gccggaggac accagcgagg 28680 tgctgctgcg ccggtccgcc ggggtcttcc ggacccgctt ccacgaggtg ctgttcgccg 28740 cgctcgccgg caccctggcc cggtggacgg gcgaacgcca ggtcgtgttc gacaccgagg 28800 gccacggccg ggaggacctc ttcgacgacg tcgatctctc ccggaccgtc ggctggttca 28860 ccaccgagta ccccgtcgcc cttgaggtgg ccggcgaccg ggacgactgg ccggcgctca 28920 tcaggtcggt acgcggacag ctgcggtcgc tgcccggcaa cggcttcggt tacggcgcgc 28980 tgcggcatct gagcccggcc ggcaccccgg gtgccgcact cgccgaacgg gccccggccc 29040 aggtggtgtt caactaccac ggccaggccg acgaggcgca gcgcgcggcg gagagcgacc 29100 tctaccacgc gttcggcgac ccgatcggcc gggagcagcg gcccgacgag ctgaccgggc 29160 acccggtgga ggtggtgggc gccgtgcact ccgggcggct ccgcttcacc tggtacttct 29220 cgcgcaatgt tcatcacagg gccaccatcg acaaggtggc cgaggacttc gccgacgcgc 29280 tgcgcgccat cgcccggcac atcacggagc ggtgagccat ggaccacgaa agcctgcaca 29340 gcaccctgac cgaactggcg gcccgccatc gggtgcccgg cgcgcagctc gccgtcatcc 29400 acgaggggga acggttcctg gtgcacaccg gagtgtgtga caccgcctcc ggagcccccg 29460 tggagcggca caccgccttc cccgtcggct cgctgaccaa gccgttcacc gccgccctcg 29520 cgatgatcct ggtggccgac ggggacgtgg acctggacga gccgctgagg gggcagctgc 29580 cggagttcgg ggcgggcgaa ctcgtcaccc tccggcagtt gctcagccac acctcgggcc 29640 tgccctccga tgtgccggag ggcagcgacg aggccggcgg cggcgaccgt gcccgctggg 29700 tggcccggta ctgccgtacg gcggatctca cgcatgcgcc cgggacggtc ttctcgtact 29760 ccaacatcgg ctatgtcgtc gtgggccggc tcatcgaggc ggtcaccggc atgagctggc 29820 aggaggcgat cagcgcgatc ctgctcgaac ccctgggcac ccggcccgcg ttcgtcgtcg 29880 gagcccccgc cacccgtccg gtggccaccg ggcacgccgt ccaggcggtc cgcgaccggg 29940 tggtgccgat accggaccag gatcttcccg aggtcgagat gcccaacggg gcgctggcgc 30000 tgagcgccga ggacctggtc ggcttcgccc ggctgtactt cgccggctgc ccggaccctc 30060 agccgctgga ccgggcgacc gccgacgaca tgtgcttcga ccagctggcc tcgatcgcca 30120 tcggcccgta cggcatggcc gacggctggg gcctgggctg ggcgaggttc gacgacggtg 30180 cggcggacgt ctacggccac aacggcaccg gcgacggcac ctcctgtcat ctgcgcttcg 30240 acccggccaa cggctccgcg gtcgcgctga ccgccaacgc caacaccggc gcccagctgt 30300 gggacgccct ggtgccccgg ctgcgggcca tgggtctggc ggtcggcgac cgcccggcgc 30360 ccgagccgcc caccaccccg ccgccggtcc cggacgactg tccgggccgc tacaccaacg 30420 gcgacaccga gttcgtggtg cagcccggcg ccgacggcgg gctgctgctg agcttcggcg 30480 gggcgccgca ctcggagctg ctgtgctccc ccgatctgcg cttcaccatg cgggagctgg 30540 gcagcggtgc ccggtccccg ggccgcttcg tgaccgatcc cgccaccggg cggatcggct 30600 acctccagat caccgggcga ctcgcccccc gacgctgaga cagggacggc ccccgggatg 30660 accacggccc ccacggacgc ggagacggca cgcggcagcg cggccgtccc gctgtcccgc 30720 aaccgcgact acaacatcct gtggtccagc cagctgatgt ccgaactcgc catggagatg 30780 gccgcggtag ccgtgccgct gctgatcctc gcccggcacg gctcaccgct ccagctgggc 30840 ctggcctcct ccgcgatggc ggccgcgcac atgatctcgg tggtgccggc cggggtgatc 30900 gcggaccgct gggaccgccg ccggctgatg ctgggctgcc aggtgctacg ggtgctgggc 30960 atggtgagcc tggccggcgc gctgctgctg gaccggtacg cgttctggca tgtgctgctg 31020 gtcgtggtgc tggagggctt cctcggctcg gtcttcgacc ccgcggaaca tgccgcgctg 31080 ccccaggtgg tgccgcccga ccagctctcc acggcggtgg ccagaaacgc ggcgcgcccc 31140 tacatcgcca ccctcgtggg gccgggcgtc gccggtttcc tcttcagcgc cctgccgctc 31200 gggccgttcg cgaccaatgc ggtgatgttc gcgctgtcgt ccgtggcgct gtgctttctg 31260 cggctgcccc gggggcggtc cgccgtggtc cggaccggcg acgggcccga cagcgccgga 31320 gcggaccacg acaggccgga ccacgacgga cgggacgacg cgaacgacga cactgcgccg 31380 cggcccgggg gcgccgccca ggacttcgct gccggcttcc gctgggtgct ggggcagccg 31440 gtgatccgca ccacgatggc ctggatgatg atcacgaacc tggtcttcag ctcgctgctg 31500 atcgtgctgc tcgcgctctc gggcgaggac aaggtcggcg ccggtgagct gggtctgacg 31560 atggcctgct tcggcgccgg cggactgctc ggcgggctct tcgcggcccg gatgcacgcc 31620 gccgcccggc caccggtgat cctcctcggc ttcacctgga ccgccgccct gggcgccgcc 31680 ctgatggcgg tggtgcccac cggtctgccc cagggagcgc tgctcggcct gatggcgctc 31740 ttcgccccgc tcgccaacac caccgtgctg acctaccagt tgaccgtcac cccggacgag 31800 ctgcggggcc ggatgagcgg cgtcgccggg ttctgctcgg ggggcgccgg tgtcctgggg 31860 cccgcgctcg gcggtgcgct gacgggggcg gccggcgggg gcgtgacccc cgtactcatc 31920 tgcgccggct gcctggtcct ggtcgctgtc gcggccaccg cgagccccac gctgcggcgg 31980 tttcccgaca tcgcggaccg gcagccctga cctgctgcga cacggcccgt gaccggccaa 32040 cttaactcca cagtcaagga catggaacgc ccggacgaat ccgacgatgc tcgtgtatca 32100 actggagatt tccgcgcgtc ctcggtgcgg gggctggtgc ctgtccggcg gtgtgccgcg 32160 cggtcggcga aaggtcccgt atgcagaccc cccacacacc gagccaggca cagtcccagc 32220 cacggcaaaa gccgcagccg ccgtcgcagt cgcagtcgca gtcgcagccg aatctgaggt 32280 ccctgaccgg attacggttc ctgggcttat tacccgtctt cctcacccat gccgcgttcg 32340 agggcgtctt cagcgacgcg gacgtgagct ggggcttcct cgacgcgatg gggaacaccg 32400 gctatgccgc ggtctcgttc ttcttcgtgc tgagcggctt tgtgatcacc tggtcctacc 32460 gctcccgcga caccacccgc acgttctggc gccgacgcgc cttccgggtc ttccccaacc 32520 atctcgtggc ctatgtgttc gcgctggctc tgatgctcgc ggcgggcgcc gccttcgacg 32580 cccccgccct gatctcccag atgttcctgg tgcacgcatg ggtgcccgac ccgctgttca 32640 tcgacaccgg caacacggtg acctggtccc tcggggtcga tgtggtgttc tacgggctct 32700 tcccggtgct gctcgtgctg gtgaacaaga tcaagccaac ccgtttgtgg tactgggccg 32760 gtgctgccgt gctcatggtg atcgccatcc ccacagtggc gctgaccctg ctcccggaca 32820 ccccggccat gtcggtgggc gatgtctccc gcagccagta ctggttcacc tacttcttcc 32880 cgctctcccg aaccgtggag tgcgtgctgg gcatgctgat ggcgcggatc gtgctgtccg 32940 gcaagtggat aggcctgcgg gtgctgcccg cctcggccct ggtggtcgtg gggtatgtcg 33000 tcgcacagca actccccttc ctctaccggc tcagcgcggt gctgatcgtg ccgatcgtgc 33060 tgctcaccgc ctccgtggcg gtggccgacg ccgagggccg ggggaccccg ctcggcggca 33120 aggtcatggt ccggctcggt gaactctcct tcgccttcta cctcgtgcac caggcgctcc 33180 tggcgtacgg gcacatcctg atcagcccga agaacgccca gggcgaggtg ctgccccgta 33240 cctgggacac gcctggcggc atcgcggtga tcgtcctgtc gttcgtggtg tccctgggac 33300 tcgcgtggct gctgcacaac ggggtggaga agccggtgat gcgccgttgg tcccggtcca 33360 ggcgccgcgt cacccagcag ccgccggcaa aggtgccggc aacttagctg cgaagtgaaa 33420 cgtgtggagt gcgcgaaaga tctcggccaa actccggcgc aacgggggag taaggctgac 33480 cgctgccaga agtccgcgcg cgccgtggat gtccggtgcc ggcgaccacg cccggatcat 33540 ccatcagccg acagtggtgc ggccgccgtt gcggcgcacc gagccgcacc gcctgtcgcg 33600 catctggcga gaggtccgca tgcagacaag acaatccaac ccgaacctga gatccctgac 33660 cggtttgcgg ttcgtggcga tgctgccggt cttcctcacc catgcggcgt tcgagggcgt 33720 cttcagcgac gcgaaggtga gctggggctt cctcgacgcg atggggagca ccggctatat 33780 ggccgtctcg ttcttcttcg tgctcagcgg ctttgtgatc acgtggtcgt accggcccac 33840 cgacaccgcg cgcaagttct ggcgccggcg cttcttccgg gtcttcccca accacgtcgt 33900 gacctatgcg ctcgccctcg ggctgatcgc tgcggtgggg ctgagtgtcg gcgtactgcc 33960 ctcggtcacc cagctcttcc tcgtccagtc ctgggtgccc gacccggcgt tcaccgacac 34020 cggcaacagc gtgagctggt cgctcgcggt ggatgtggtg ttctacgcgc tcttcccggt 34080 gctgctcacg ctggtgaaca agatcaagcc gaatcggctc tggtactggg tcggtggctc 34140 cgtcatcggt gtggccgtgg taccggccat cgcgctcgcc gcgctcccga gcacccccga 34200 gatgccgctc ggcggggtgt ccgtcagcca gtactggttc acctacttct tcccgctctt 34260 ccggctgctg gagtgtgtgc tcggcatgct gatggcgcgg atcgtgctgt ccggcaagtg 34320 gatacgcctg cgggtgctgc ccgccgccgt cctcgtggtg atcgcgtact acttcgccca 34380 gcaggtcccg tacctctacc ggctgagtgc ggtgacggtg ctgccggtcg cgctgctgac 34440 ggcggcggcc gcggtggcgg actccgaggg ccggggcacc ctgttcggca gcaaggtcat 34500 ggtctggttc ggcgaactct ccttcgcctt ctacctgctg cacaacctcg tcctgaagta 34560 cggccatctg ctgctcggcc acaccgagga ggagggcgag ctggtgggcc acacctgggg 34620 cgtgcccgag ggaatcgccc tgatcgccgc cgccttcgcg gtgtccctgc tgctggcctg 34680 gctgctgcac aacggagtgg agaagcaggc gatgcgccgc tggtcccgac gcaagccggc 34740 tccagtggct gaagtaacca gtgggttcta tgcgaaggac ggggcaattt agctaggaag 34800 taaaggttat ggaacgggct gtcgaaagac ggcaagatct ccactgatca ggcgttcggc 34860 accggattcg atcaatcagg tgccctatct ggagggacgt gtacgtgctg acgctccacc 34920 tgcaggatga cgacgtcgcc gcgatcgacg ctgtggctga cgaactcagc cggcgatacg 34980 actccgtgga gtccacggag ttccaggccg agagccgcct ctacgcggac gagttgccac 35040 gtcgcgtgcg acgagcgctg cacgaatacc gcagcaccga gaagtccggc atcctggtcg 35100 tcaccggcct gcccgtggac gactcggcgc tcggggcgac cccggccgac cgccggcaca 35160 agccggtgcc gtccacgtca ctgcgccagg acatcgcctt ctacctcata gccaatctgc 35220 tgggcgaccc catcggctgg gccacccagc aggacggctt catcatgcat gacgtctacc 35280 ccgtccaggg cttcgagcac gaacagatcg gctggggcag cgaggagacg ctcacctggc 35340 acaccgagga cgccttccat ccgctgcgca cggactatct cggactgatg tgtctgcgca 35400 atccggacgg cgtcgagacc accgcctgcg atatcgccga tgtcgagatc gacgacgaga 35460 cccgggagac cctctcgcag gagcgcttcc ggatcctgcc ggacgacgcg caccgcatcc 35520 acggcaaggc cccgggggac gagagcgcac gcgagagtgc gctgcgtgag cgcagccggc 35580 agcgggtggc ctcggccctg gagtcgcccg acccggtggc cgtgctcttc ggggaccgcg 35640 acgacccgta tctgcggatc gacccgcact acatgcaggg cgtccagggc gagaccgagc 35700 agcgggcgct ggagaccatc ggcgccgcga tcgacgacgc catgtccggt gtcgtgctca 35760 gccccggtga catcgttttc atcgacaact accgcgtcgt ccacggacgt aagccgttcc 35820 gtgcccgctt cgacggtacg gaccgctggc tgcggcggct caacatcgcc cgggacctgc 35880 gcaagtcgcg cgaggccagg ctcgccgcca ccacccgcgt catctactga ccggctgccg 35940 ccgatcagtt agcgcaggca ccggccgaac caccgggcgc ctgcgcccag atcgcgccgc 36000 tcaacacacg gcaccgacgg ggaccgccgt catggcggtc ggccgctgtg tgcccatgcc 36060 ctcccgcatc tggggaaccc tttacgtctc tgcgaggtac ctgtgtccgg aacgcagcaa 36120 gtaaaagccg ctttggggga ttccgaaggt gacaccggaa acctcaccca actggagttc 36180 ctggctctga acagcgagtt caacatcgct gacggccacg cccggcaggc gctcacgccg 36240 ggccaaagca agatcgtcga cgatctgccg ctgctcttcg ccgagggcga gaagcggccc 36300 gtcgaagagc tcgaacgcga ggcgcaccac gccttcttca cctgccctcg gccagcacag 36360 ctacccctcg gcccccggcc gggtgctgag ctgctactcc tcctcggtcg cgatggagat 36420 cctctcccgc tcgctgtccg agacgatcga gtcggtggcc ctggtccacc cgaccttcga 36480 caacatcgcc gacctgctgc gcggcaacgg cctgaagctg gtgccgctgg cggaggaccc 36540 gctgcacggc gacgacctcg acgtgagcct gctgaagtcg gtgggctgtg tcttcctcac 36600 cacgcccaac aaccccaccg gcaaggtcgt ctcccgggag cggctgaccc ggctggccga 36660 gcagtgcgcc gagcacggcg tcatcctcgc gctggacacg tccttccgcg gcttcgacac 36720 ccgcgcccac tacgaccact acgaggtgct caacgccagt ggtgtgcgct gggtggtgat 36780 cgaggacacc ggcaagctgt ggccgaccct cgacctcaag gtcggcatgc tcgtccactc 36840 cgagaacctc gcgctgccgg tcgagaagat ctactccgac atcctgctcg gtgtctcccc 36900 gctgatcctc gcgatggtcc gccgcttctc cgaggacgcc gcggccggcg gtctggagga 36960 tctgcaccgc ttcatcgccg ccaaccgtgc catggtgcgc gcggaactcg ccggtctgcc 37020 gggcgtcacg gtccccgacc ccgacagccg ggccagcgtc gagcgggtcg ccatcgatga 37080 cctgacgggc acgcaggtct gggcgaagct gcgggagcac aacgtctacg cgctcccgtg 37140 ccgcccgttc cactgggcca acccgtccga gggtgaccac accctgcggc tcgcgctggc 37200 ccggtccacg gacccgctcg cccagtccgt gcgcgccctg cgccacgtgc tgaaacagcg 37260 ttgatgacgc ctgtcgcaga aggaggactc ccgcacggct ccgtgccctc gctgtcgcac 37320 acgcggcagt ggcggcccgg ggtcgtgcag gaggtcgccc cggccggcgt cctcgacctg 37380 ggccccggct acatcgagcc ggcactcctg cccgtacgcc tgctgcgggg cgcgtacgag 37440 caagcgctgg cggagtacgg cgccgcggcg ctgggctacg gtcacgaccc gggcgcgcag 37500 ccgctgcgcg accggctggc cgcccgcgcc gccgcggcgg acggcctccc ctgcgacccg 37560 gaccaggtgc tgctgacctc cggcacgtcc caggccctct atctgctggc gacctcgctc 37620 gcggccccgg gcgacacagt gctgacggag gagctctgtt acgacctggg acagcggata 37680 ttccgggact gctcactgcg gctccgccag gtcgccatgg acgggtcggg gatgctgccc 37740 gacgcgctgg accgcgccct gaccgagggc gcgcgagcgg gcgcgaaaac cgctttcgtc 37800 tacctcaccc ccacccacca caaccccacg ggccacacga tgccgctggc gcgccgccgc 37860 ctgctgctcg aagtggccgc ccggcacgat gtgctgatcg tggaggacga cgcctacacg 37920 gaactgtccc tgatccctga ccgcactccc ccgccctcgc tggccgccct ggccggctac 37980 cggcgggtgg tgcggctgtg cagcttctcc aagaccctcg gccccggact gcggctgggc 38040 tggctgctcg ccgaccggga actggccggc cggctggcca cgcacggcct gttcgtcagc 38100 gggggttcgc tcaaccacac cacctcgctc gccgtgagca ccctgctcgc gagcggcgcg 38160 tacgaccgtc atctcgacgc gttccgggcg cagttgcgtg ctcgtaggga cgcgctcgtg 38220 ggcgctctac gcgcgatgct ggacgacggg gtggagctgc gcaccccgga gggcggattc 38280 ttcctgtggc tgcgggccgg ggacggggcc gacgagcgtg agctgctcga cggcgccgcc 38340 cgggcgggcg tcaggatcgc cgccggatcg cgcttcggca caacccaggg ggccggcttg 38400 cgcctggcct tcagcttcaa cccgcccgcg ttactggagc aggccgccaa gcggctgacc 38460 accgcatggt ccggcagcac gccggacctc gagatcggag tgagatcgtg acgaccagca 38520 ccgggaccaa cggccggcac acggtggccg gtccaggcag cgccggtccc gtcgggtaca 38580 gcctgccgct ctcgccgacg ggcgagtcgg cgatgctcac accaccgccg tggcacttct 38640 ccggcgaggt cgtcatggtc gactaccgcg tcgacccgga cgcggcccga cggttcctgc 38700 cgccgggcct ggagccgggt gccgacccgg gcgccgcggc ggcggtgttc gcgacctggc 38760 agtggtgttc gcaggacgga gcggagctga ccgaccccgg tcgctgccag ttcggggagt 38820 tcctgatcct gctcagctgc gagttcgagg gccgtcccat ggcgcgctgc ccgtacgcct 38880 gggtggacca ggccgtgccc atgatgcgcg gctgggtgca ggggatgccc aagcagttcg 38940 gcgtgattca ccagagccgg cccgtcacgg tcggcaaggc gggctcccgg ctggcgcccg 39000 gcggtcgttt cgacggcgcg ctgtccgtgc acggacgacg cgtcgtggag gcctcggtca 39060 ccgtggacag gtcgacggac cagccgccgg cgctgcacga tgttcccctg gcgcacaccc 39120 tggtgttccc ggagtgggtg ccctccggcg gcgggccgcg accacggctg gtcgcctccg 39180 aggtaagcga tgtggaattc tccccgatct ggaccggatc gggtgatctc acgttctttg 39240 acggactggg ggatgatttc ggggcgctcg caccgttgga agtaggtagc ggccacgtgt 39300 tctcgtacgg ggagaccttg cacggcggcc ggctgctcag cgactactcg gtatcagaac 39360 gacatcagcc atgaccacgg gggacaaagt gctgaggatc cacttcacag ttgaggacat 39420 agcaaatacg cgcatgctgg cgaccctcgg gccgctggcc gagagcgctt tcgcgctcta 39480 tctgttcggc cgtaacggcg atgtcgcctt tcacgagtgg cgtcgcagtg tccgcgccga 39540 actcggcaag gacgcggccc gcttcacggc cttgtcccag cagttccgga ccctggagga 39600 attacctgcc gccttcgccg acgccttcac gccgggggcg gaccccgacc aggttccgtc 39660 cggcgaggac cggcgcggcg ccaggctgct ggccgacctg tgccgggtgg ccgtgctgcc 39720 gcactggagc ctgatccgca gtcatctcga cggtgcgcgc gagggctggg gcagggtggc 39780 catctcgcac ggtgtcgagc ggctgctggg ctccgtgcac cccaaggtcc gctggcgggc 39840 gccggtcctc gaactgcggc acgggcccaa ccgcgacatc catctggacg gtcgcgggtt 39900 gctgctgtgc ccgtcgttct tcctgtcgga gcagtcctgt tcgttcgtga cggcggtcgg 39960 caaggacgcc atgcccgccc ttgtcttccc cgtgaaggcc tcgtccaggg tggacatctg 40020 gggtacctcg gaacacgacg agcaggcgct gggcgcactg gtcgggcaca ccagggcggc 40080 cgccctggaa gcgctcgccg agggctgctc cacgggcgaa ctcgccgacc ggctggggat 40140 ctcgctggcc ggtgccagca agcatgccgc ggtgctgcga cgatccgggc tggtgaccac 40200 ctcccgtaac cgcaacaccg cgctgcacgc gctcacccct ctgggcaccg ccctgctccg 40260 cagcagcgac cgcttcatct cgccgcctac cgccccggta tcgcgcgtgc cggcgcaacg 40320 catgcggccc ttgcagctca acggcatcgg ccccggcacc aaccgggcgg cggtctgacc 40380 gcccccgcgg acggccaccg ccacgactta cggcacccct gacaggagag gacacgacag 40440 tgggcacaaa ccccttcgac gaccccgacg gccggtatct ggtgctggtc aacgaggaag 40500 accagcattc actctggccg gctttcgccg aggtgcccca gggctggacg gtggcgctcg 40560 cggaaaccga ccgtcagtcc gcgctcgact tcatcaccga gcactggacc gacatgcggc 40620 cgcgcagcct ggtgcgggcg atggaagagg cttagaccag ccttgccgta tcaggcgatt 40680 tctccgggac cggcggttct ttctcaaaga tcgctgccgg ccccggggaa gaagccccca 40740 cccgcccccg ccgtacggca gaattccggc cgcataatac gactcactat agggatctcc 40800 ggcatcagga ccatgccgat cccggccgcc cggtgctcat cggtggcgag cgggagccgg 40860 gcgacccatg cgcgggcgaa cgcgcccagg gcttcctggg cggtgcggcc ggacgccggg 40920 ggcggcggct ggggggtgcg ctcggcgagg ccggccagga cttcgcacac ggcccgcact 40980 tctgcctcgg ggccgcactc gcccgcgtac agacggacgt tgccctcgtg acggacgtgc 41040 gccccgacca gggacggggg gcacctggtc ggggctgtct gggggtgggg ggagtggggt 41100 cagagggcgt tcaggtcgac ggcggaggcg agggccaggt agccggcgtc gctggggtgg 41160 aggccgtcct gggagatgta gccggggcgg gggcggttgg ggttcgcggg gtcggtcagg 41220 acgcggtcgg cgtcgaggac ggcgtcgtag gtgtggctgg tgcggatcca gtggttgagc 41280 tgccggcgga tcttgtcacc ggcgggggtg gtgaagggga agacggcgct cctgaggggg 41340 aggatcgtca caccgatggc cttgataccg cgggcgtggg ccgcgcggac cagggcgcgg 41400 tggccgtcga tgagctgttg ggcggtcacc ggggggcggt tcctggtgca ggggtcgtcc 41460 tgctgggact gggcgaggtc attggcgccg aggtggatga agacggtgcg cagggcggcg 41520 cgatcgcgca gttccttggc gaagcgggcg gtgcccttct cgccgaagca gggggaatcg 41580 tgcagcaggg ggtcacccgc caggccggcg ttggtcattc cctgggggcg gccggcggcg 41640 atgaggcgtt cggcgagttt gtcggagaag cggttgtcgg tgtcggggct ggtgccgacg 41700 ccgtccatga gggagtcgcc gaagaccatg agggagtcgg ccgaacgggg cggctcctgg 41760 gtcacatcga cggccgtcag gtagtaccag gcgtgcgagg cacggcggtt gaagtcatcg 41820 gcggcggggc tgcgtagccg gtcgccgggg gcgcggtagg acgtggccgt ggtgaagcgg 41880 tgcatggtgg ccgggccggt gggggcggtg aagcgcaggg tgacggtgag tttttcgagg 41940 ttggcggtcg gcatggccac cgcgtcgctg acggtgtcgc ggcccgcggg gatggtgagg 42000 gcgggcgcat ggcggaaggt gagggtgcgt acggtgccgg ggcgcgcctt ggcctcgccg 42060 tcggacctgg cgacggtggc gccggcgatg tggaggggct tggtgccgta ggcgttggag 42120 aggcggatac ggagctcggg gccgccgacg ctgagccgga tcacctggcg cagggtctcg 42180 ttcttgaatc cctgccggga ccagttcggg gtgtcctccg tggcctcgtt cgtcgcctgc 42240 tgcatggcgg ctccccaggt ggctgtccac tggggggagt ggggggcggc gggggcggcc 42300 ttctcgctcc tgagggacgg gcgggcgggg gcgaacgccc cggtcagcgc cgcggtcagg 42360 gtcacggcca gggccacgga cagcgtcatg acgatcgtcg cggggagcga gcgcgggctc 42420 cccttcgtgg tgcggccggg tgcgggccgg ccggcctcgg gtgcgtcggc cgtgtgctgc 42480 tcggccgtgt gcgggtcggt ttcgtgccgg tcggtttcgg gtcggccggc tttgtgccgg 42540 ggccacagtc gcataggagt tcctcgggtc tgttcggatc gagtcggtgc ttcacccccg 42600 ttggctttgt gtgtgccggg gcgcttacgt cgggcgtcag cgctcggcgg cgggtgggcc 42660 gggtatcccc ggccgggtgg gcaggacgtt ggcctggccg aagtaggtgg ccaccgataa 42720 gaggatctcg ttggcgctgc gcagctcgtc caactcgttt tccagttccg cgatccggcg 42780 ctcggcctgc agcggccgtg tgtgccgggt gtggtcgacg gcgagcgtgt cgggggttcg 42840 gatggggtcg gtcatggcgt gttcctctct cgggggcacc ggtgccgcgc ggccccgaac 42900 ccgtcggcag ccgcggcgcc gacggggtcg gtgggtcagt cgcggccgaa gcggcggagt 42960 acgccggtca tgaagacgat ggccatcagg gccgcggaaa ccacgacggt caccgacggc 43020 tgcacggcgg ccagttcgct gctgtcgcgc agcgcgccca tgaagtcgaa gatcggcagt 43080 ccgttggcga cgctgtacca gagcggcagg tagaccgcct ggaagaggcg atgggtacgg 43140 ctgagcgtgc ccagggtgag ggccagggac gggatgaaca gggccccgcc gacccagccg 43200 gccagaccga accagtcggc ggcggccacc aggcggatca ggggaccgat gccggccacg 43260 gcggtgatgg tcaggcccgc ggcccattcg gcgaagaccc ggcggcgcac cgcggggtag 43320 gcgccgagca tgccgtcgac gtggtactcg tggcgctggg tgcccagccg cgaccagatc 43380 agcaccggcc agatccagga cagcggcagc atcacgcgga tgatgccgtg gatccccggg 43440 gaggagagcg cggcgatcat gaggaatgcg gcaccggtcc accaccacca gcgcacacct 43500 tgcagcagga tgcggacctc gccggcccag acgcgcaggg tcacggcgcc cggctccggg 43560 cgggtgcgca gcagcgtggc gacggtgggc cgggacgggg aagctccccc atggccctga 43620 acggacagcg gaggcgtccc cgggccgacc tcgtcgatga agaccggctg gacgacaccg 43680 tcggccgggg cctgctcggg ggtgcgcccc tggcccagcc aggttcgcgc ggggtcgaag 43740 cggccgaacc acagcgcggg gagcatggcg atcacgacgg cgatcagcag cagcgtcacc 43800 cggccgagga catagccggc ggtgggcgtg aagccgtccc aggtgaagag cccgaggggc 43860 ttgtcgaggt aggtcagacc gaggctgaac gcgccggtga catcgatgtg ctgggcgacc 43920 atgtcgtcat acatcgaccg gacgacgctg ttgacgccga tgccgtcgag gggcagaccg 43980 gggccctggc cggccgtcga gacgaccatc cagatgcaga accacaggat gttgcccagg 44040 ccggtgcgca gcagcggcag cgattcgaag aggagcgcga gggcggcggt cagcgcgacc 44100 agcggcagcg cgatgaggag gaagggctgc cagagggcga tcaggtcgat gtcgtgcgac 44160 tcgccgcggg ccagttgcat gaccagggcg gtgagcgcga gcaccacgag catggaggac 44220 agcagcatga ggttgctgag gaacttgccg agcatgtacg cggtggtgcg cagcggggtg 44280 gcggcgagca gctggccgac gcgggtgctg cggtcgcgtt cgatggagtt gcggacgatg 44340 tagaagccgc cgagggtgat ccacagaccg ctggccaggg ccgtcaccat gccgacgtag 44400 gcgctgttgt agatcccgcg gtgatcaccg atctgcatga tcatccattt ggcgtccgag 44460 tcgggcaccg ccacgtaacc gagggcgacg gccgcggcca ggatcacgac atacgcgggc 44520 cggcgtaccc ggtcgcggaa gtcggccacc gcaagaccgg tgagcatgcg catcattgcc 44580 tcacaccacc cgtgcctgga gcggccgttc gccgaagccc tgggcggccc ggccgccgtc 44640 gaccccacgg atgatggcga ggtaggcgtc ttccaggtcg ggcgtcagct ggacggcgcc 44700 ctcgtacggc agctcgcgcg agagcagccg gatacggacg ccctcggtcg tgcggaccag 44760 gcggctgacg gtgtactgcg cctgcaccgc cgctacggac gaggggtcga ccagcacctc 44820 ccacacctgg ccgtccaccg agcgcagcag gtcctcgggg gtgccgcggc gctgcagccg 44880 gccgccggcc atcaccgcga tgtcggaggc caccgactcg acgtcggaga cgatgtgggt 44940 ggagagcatc acgaccttgt cggccgccag atcgctgagc agattgcgga acctgacccg 45000 ctcctcgggg tccagccccg cggtcggctc gtccacgatg atcacctgcg ggtcggcgag 45060 cagcacctgg gcgatgccga cccggcgcag catgccgccg gagtacttgc ccaggggacg 45120 cttgaccgct tcggtgaggt tgacgagctc caggagctca tcgatacggg ccttggcggt 45180 cttggccgag acgcccttgg ccgccgccag atacctgagg aactcgcggg aggtcaggtt 45240 cgggtagacg ccgaagtcct gcgggaggta accgagggcc cggcgcagcg cgttgggctt 45300 ggcgaccgcg tcctctccgt ggaagaggac ctttccgctg gtgggccggg tgaccgtgga 45360 ggcgatccgc atgagggacg acttgccggc gccgttgggg cccagcaggc cgagcatgcc 45420 gggttccaga cgcatcgtca ggtcgtccac ggcgtgcttg ccgcccttgt agaccttggt 45480 gatgttgacg aggtcgagca cggtcagctc ttcccggtca ggtcggtctt ctcgccgtcc 45540 ttggtcaccg cgatgccctt ggggacctcg accttgaact tggcgtcgca gatcgcgata 45600 ccgctgcagc cggcgtcgat gtccagggtg tcgcccttga gggtccactt caggtgctcg 45660 gtgcccgcgg ccgagtcgaa ccagcgggtg accttgatgt ccttgcggtc ggcggcgacc 45720 accttggtgg cgacctcgtg cgtcgtcacc ttcagggact tgcccgagta cgtgaacgac 45780 ttcgattcgg gcttcgcctt cgaggcgtcc acggagcagc cggagaggcc gagggtggcg 45840 gcgacggccg ccaccgcgac gacgagtgtg gcgggccgct tcgagatggt gcctgagaac 45900 atcggttcct ccagagtcac ggggtggtgc actcctatga ggatcccggg cccgggcggc 45960 cggcacatct gccgatcggc agatatccgc tcagcggatg gcgggcgccg gcagcaggca 46020 cctgacccgc cacccgttct cgtacgggcc cgcctccagg gagccgccca gggcgctgac 46080 gcgttcgccg aggcccgcca ggcccgtacc gccgccctgc cgggtgccgg cggacgcccc 46140 cggccctgcg ttgtcggcga ccgagacctc cacggcccgg tcggcggtcc gtccggcgaa 46200 cacctggacc cggccggcct gcggcgcatg ccgacggaca ttggtcaacg attcaagtac 46260 cacccggtac gcggtgtcct cggcctcccg cgagagggtg ccggcgacct cgtcctccag 46320 ggacagcgcc acctcggcgg cggccatgga ggagaagcgg ccgacgagct cggggaggtc 46380 ggccaagccg tagagccggg tgggcggcgg ctcgccccac ttgcggccgt ccgcctcgcg 46440 cagcgtcgtc accgtctggt ccatggagtc cagcgcccgt agcccggcct tctcgatgcg 46500 ctgcagaagg gcgcggtgct cctcgggccc ggcgtcctcg ctgacttggg cggcctgggc 46560 ctccagaacg atgccggtca cctcgtgggc gacgaagtca tgcagatcgc gggcgacttc 46620 gaggcgctgt tcacggcgcg ccagcaccac ggcatacgcc cggcggttgt ccagcgaccg 46680 cagatagagc cccacacccg tcgcgcaggc cgccgggatc agggccagca aggccgcgaa 46740 gaccgattcc ttgagcccgg cggtgggggc gtgcagggtg aagcgcaggg gcagcaggat 46800 gacggctgcg ccggtcagcg gggcgacgat gcccacccgg gggctgggca catgacgtac 46860 cacccgctcc aggagaacga gcagcgcgac cgtctcgaac gggtaccaga ggatcaccag 46920 gccgggctgc ccgaagtagc cgacgtccgc ggcgagggag agcagcgcga cgccgcccgc 46980 cgcctgggcc agggagatcc ggccggtcgg ccaggcaagt atcgatacgg ccagcgtcaa 47040 tgcggccatg accgccagca gataggcgct cggtggcgct atgacggcgg gggcgagcat 47100 cattgccgcg gccaccccgc accaccggcg gcgcttttgc cggggaggaa cgtcgtaatc 47160 catgagggcg aggctacgca cattccccgg gttgcgcggc ggcaagcaca gcgcggaaat 47220 taccgcatct gccggacggc agatttccgc gggacggcat cggggtttct gccgggtggc 47280 gtgctgcccg atgccggccg cgggttttca ccccggggtc tgcccggtgg catatccgag 47340 ctcccaggcc cgcaccgcga ccccgacgcg attgcgtacc tgtagctttc gctgaatgct 47400 cgcgacatgg gtcttgaccg tgcccgcgga gatgaacaac tcgcgggcga tatcggaatt 47460 ggtcttgccc tcggcgacct tcccggcgat ctccacctcc cgctcggtca gcaccgagtc 47520 acggcggcgg gggcggcggc cggtcgtggg gccggtgaca tgctggagca gccggacagt 47580 gatcgacggg ctgatcaggc tgtcgccggc catcgccgcc cggaccgcct cgaccagcag 47640 cgtcggcccc gagcgcttga gcaggaaccc cgaggcgccg aagcgcagcg cggggtacac 47700 gtactcgtcc aggtcgaagg tcgtcaccac gacgacccgg accgggttgg ccgcggcggg 47760 gtcggccagc aggcgggtca cctccaggcc gtccatccgc ggcatccgga tgtcgaccag 47820 cgccacatcg ggtttgagcg tgcgccccat ctccaccgcg tccacgccgt ttgccgcctc 47880 gccgaccact tccatgtcgg gctggctctc cacgatgcgg cgtattccgc ggcggaccat 47940 ctcctggtcg tcggcgatca gcaagcgaat agtcacgggc aggaattc 47988 2 2747 PRT Streptomyces hygroscopicus 2 Met Gly Glu Trp Arg Asp Arg Arg Leu Asp Glu Leu Phe Ala Glu Gln 1 5 10 15 Ala Ala Arg Thr Pro Glu Arg Thr Ala Val Val Phe Glu Gly Arg Ala 20 25 30 Val Ser Tyr Arg Glu Leu Asp Ala Arg Ala Glu Arg Leu Ala Ala Val 35 40 45 Leu Ala Gly Arg Gly Ala Gly Pro Glu Arg Phe Ile Ala Leu Leu Leu 50 55 60 Pro Arg Ser Ala Glu Leu Ile Val Ala Ile Leu Ala Val Leu Lys Ser 65 70 75 80 Gly Ala Gly Tyr Ile Pro Ile Asp Pro Glu Tyr Pro Ala Asp Arg Ile 85 90 95 Ala Tyr Ile Leu Gly Asp Ala Arg Pro Val Ala Thr Ile Thr Thr Ala 100 105 110 Glu Val Arg Asp Gly Leu Pro Asp Pro Asp Thr Gly Ser Gly Thr Asp 115 120 125 Trp Leu Ile Leu Asp Glu Ser Gly Tyr Glu Gln Glu Pro Ala Gly Ala 130 135 140 Arg Pro Gln Pro Ala Pro Ala Ala Pro Arg Ser Ala Glu Asn Pro Ala 145 150 155 160 Tyr Val Ile Tyr Thr Ser Gly Ser Thr Gly Arg Pro Lys Gly Val Val 165 170 175 Ile Pro His Ser Asn Val Gly Arg Leu Leu Ser Ser Thr Ala His Trp 180 185 190 Tyr Gly Phe Asp Glu Gln Asp Val Trp Pro Leu Phe His Ser Phe Ala 195 200 205 Phe Asp Val Ser Val Trp Glu Ile Trp Gly Ala Leu Leu His Gly Gly 210 215 220 Lys Leu Val Val Val Pro His Ala Val Thr Arg Ala Pro Ala Asp Phe 225 230 235 240 Leu Arg Leu Leu Val Glu Glu Arg Val Thr Val Leu Asn Gln Thr Pro 245 250 255 Ser Ala Phe Tyr Gln Leu Met Ala Ala Asp Arg Glu Asn Pro Ala Leu 260 265 270 Gly Ala Gln Leu Ala Leu Arg Tyr Val Val Phe Ala Gly Glu Ala Leu 275 280 285 Asp Leu Gly Lys Leu Ala Asp Trp Tyr Glu Arg His Asp Asp Arg Ala 290 295 300 Pro Thr Leu Val Asn Met Tyr Gly Ile Thr Glu Thr Thr Val His Ser 305 310 315 320 Ser Phe Leu Ala Leu Asp Lys Glu Gly Ala Ala Gly Ala Thr Gly Ser 325 330 335 Ala Val Gly Val Ala Leu Pro Asp Leu Thr Phe His Val Leu Asp Glu 340 345 350 Asp Leu Arg Pro Val Pro Val Gly Ala Glu Gly Glu Leu Tyr Val Ala 355 360 365 Gly Pro Gly Leu Ala Arg Asn Tyr Ala Gly Arg Pro Gly Leu Thr Ala 370 375 380 Glu Arg Phe Val Ala Cys Pro Phe Gly Pro Pro Gly Ala Arg Met Tyr 385 390 395 400 Arg Ser Gly Asp Leu Val Arg Pro Leu Pro Asp Gly Gly Leu Glu Tyr 405 410 415 Leu Arg Arg Ser Asp Asp Gln Val Lys Ile Arg Gly Phe Arg Ile Glu 420 425 430 Leu Gly Glu Ile Ser His Ala Leu Ala Gln Asp Pro Ser Val Asp Gln 435 440 445 Ala Thr Val Val Val Arg Asp Glu Ala Ser Gly Glu Arg Arg Leu Val 450 455 460 Ala Tyr Val Val Pro Ala Gly Ser Ala Arg Pro Thr Pro Ser Arg Leu 465 470 475 480 Arg Ala Ala Leu Ala Thr Arg Leu Pro Gly Tyr Met Val Pro Thr Ala 485 490 495 Phe His Val Met Pro Ala Phe Pro Leu Thr Ala Asn Gly Lys Leu Asp 500 505 510 Arg Arg Ala Leu Pro Ala Pro Thr Arg Gln Asp Ser Val Asp Ala Asp 515 520 525 Tyr Ala Ala Pro Glu Gly Ala Thr Glu Glu Ala Leu Ala Ala Ile Trp 530 535 540 Arg Glu Val Leu Gly Val Glu Gln Ile Gly Ala Asp Asp Asp Phe Phe 545 550 555 560 Glu Leu Gly Gly Asp Ser Leu Ser Val Val Arg Ala Leu Ser Arg Met 565 570 575 Arg Thr Gly Leu Gly Leu Arg Leu Thr Ala Ala Glu Phe Phe Ala Thr 580 585 590 Pro Thr Val Arg Ala Leu Ala Ala Arg Arg Glu Arg Gly Thr Ile Gly 595 600 605 Ala Pro Glu Gln Ile Pro Ala Ala Pro Arg Thr Gly Ala Leu Pro Leu 610 615 620 Ser Phe Thr Gln Gln Arg Phe Trp Leu Phe His Glu Leu Asp Pro Gly 625 630 635 640 Glu Val Glu Tyr Asn Val His Ser Ala Leu Arg Leu Arg Gly Thr Leu 645 650 655 Asp Leu Pro Ala Leu Arg Thr Ala Leu Gly Gly Leu Ile Ala Arg His 660 665 670 Glu Pro Leu Arg Thr Thr Val Val Ser Asp Asp Gly Arg Pro Thr Ala 675 680 685 Val Ile Ala Pro Pro Glu Gly Phe Pro Val Pro Leu Thr Val Glu Asp 690 695 700 Leu Ser Ala Leu Thr Gly Asp Asp Gln Glu Ala Ala Gln Arg Arg Leu 705 710 715 720 Leu Ala Glu Glu Val Ala Arg Pro Phe Asp Leu Ala Ala Gly Pro Val 725 730 735 Leu Arg Val Leu Val Ile Arg Arg Gly Glu Arg Asp His Ala Leu Val 740 745 750 Ile Gly Val His His Leu Ala Thr Asp Gly Trp Ser Met Gly Leu Leu 755 760 765 Thr Asp Glu Leu Ser Ala Arg Tyr Asp Ala Ala Arg Arg Gly Val Pro 770 775 780 Ala Ala Leu Glu Pro Leu Pro Val His Tyr Ser Asp Tyr Ala Ala Trp 785 790 795 800 Gln Arg Ala Thr Val Asp Asp Gly Arg Leu Val Pro Gln Ile Asp Tyr 805 810 815 Trp Arg Asp Arg Leu Ala Asp Val Ala Pro Leu Gln Leu Pro Thr Asp 820 825 830 Arg Pro Arg Pro Ala Leu Lys Thr Ser Ala Gly Ala Ala His Arg Phe 835 840 845 Thr Leu Asp Arg Arg Leu Val Ala Ala Leu Lys Glu Leu Ser Ala Ala 850 855 860 His Gly Ala Thr Leu Phe Met Thr Leu Thr Ala Ala Leu Gln Val Leu 865 870 875 880 Leu Ala Arg Tyr Ser Gly Gln Gln Asp Ile Ala Leu Gly Thr Ala Val 885 890 895 Ser Gly Arg Asp His Pro Gln Val Glu Arg Leu Val Gly Ala Phe Ile 900 905 910 Asn Thr Val Val Leu Arg Ser Asp Val Arg Gly Glu Leu Pro Phe His 915 920 925 Glu Phe Leu Gly Glu Val Arg Glu Thr Val Leu Gly Ala Phe Ala His 930 935 940 Gln Asp Leu Pro Phe Asp Arg Leu Val Asp Ala Leu Gly Ala Glu Arg 945 950 955 960 Asp Pro Ser Arg Thr Pro Leu Val Gln Ala Met Leu Leu Leu Gln Asn 965 970 975 Ala Pro Ala Gly Ala Glu Glu Phe Ala Gly Leu Arg Thr Glu Thr Val 980 985 990 Ala Leu Pro Arg Pro Ala Ala Ile Phe Asp Leu Thr Val Asp Cys Thr 995 1000 1005 Glu Arg Ala Gly Ala Leu Glu Val Met Val Glu Tyr Asn Thr Asp 1010 1015 1020 Leu Phe Asp Ala Thr Thr Ile Glu Arg Leu Ser Gly His Leu Arg 1025 1030 1035 Val Leu Leu Asp Ala Val Cys Ala Ala Pro Arg Arg Gln Val Arg 1040 1045 1050 Asp Leu Pro Leu Leu Pro Ala Ala Glu Arg Asp Thr Leu Leu Thr 1055 1060 1065 Gly Trp Asn Asp Thr Ala Ala Ala Leu Pro Thr Thr Leu Gly Val 1070 1075 1080 His Arg Gln Phe Ala Glu Arg Ala Arg Thr Thr Pro Asp Ala Leu 1085 1090 1095 Ala Val Thr His Cys Gly Gln Thr Leu Thr Tyr Ala Gln Leu Asp 1100 1105 1110 Ala Arg Ala Asn Gln Leu Ala His Tyr Leu Gly Ala Leu Gly Val 1115 1120 1125 Gly Arg Gly Thr Pro Val Val Leu Asn Leu Ala Arg Lys Pro Gln 1130 1135 1140 Leu Ile Val Ala Met Leu Ala Val Leu Lys Ala Gly Gly Ala Tyr 1145 1150 1155 Val Pro Thr Ala Leu Asp Thr Pro Ala Ala Arg Leu Gly His Leu 1160 1165 1170 Leu Glu Glu Thr Gly Thr Pro Val Leu Leu Thr Thr Ala Arg Gln 1175 1180 1185 Ala Gly Ala Leu Pro Pro Thr Glu Ala Ser Val Ile Asp Leu Asp 1190 1195 1200 Ala Ala Gly Pro Asp Ile Ala Arg His Pro Glu His Asp Pro Gln 1205 1210 1215 Val Ala Thr Arg Pro Glu Asp Leu Ala Tyr Ile Val Tyr Thr Ser 1220 1225 1230 Gly Ser Thr Gly Arg Pro Lys Gly Val Ala Val Pro His Ser Ala 1235 1240 1245 Leu Thr Asp Tyr Cys Ala Trp His Asn Asp Ala Leu Asp Val Gly 1250 1255 1260 Pro Glu Asp Arg Gly Ser Ser Val Val Gly Leu Ala Phe Asp Val 1265 1270 1275 Ala Val Gly Glu Val Trp Pro Tyr Leu Cys Ala Gly Ala Arg Val 1280 1285 1290 Asp Gln Pro Asp Gln Glu Thr Leu Asp Asp Pro Thr Ala Leu Val 1295 1300 1305 Glu Trp Phe Ala Glu Asn Gly Thr Thr Val Ala Tyr Leu Pro Thr 1310 1315 1320 Pro Arg Ile Glu Ser Leu Leu Asp Val Ala Ala Ile Thr Thr Thr 1325 1330 1335 Arg Leu Arg Thr Val Leu Val Ile Gly Asp Ser Leu Arg Arg Arg 1340 1345 1350 Pro Gln Pro Gly Leu Pro Phe Thr Leu Leu Asn Ala Tyr Gly Pro 1355 1360 1365 Ala Glu Ala Thr Val Ala Ala Thr Gln Ala Val Val Glu Pro Leu 1370 1375 1380 Gly Pro Asp Ala Pro Ala Gly Leu Pro Ser Ile Gly Ala Pro Leu 1385 1390 1395 Tyr Asn Thr Ala Ala Tyr Val Leu Asp Asp Arg Leu Cys Pro Val 1400 1405 1410 Pro Val Gly Val Pro Gly Glu Leu Tyr Leu Ala Gly Ala Gly Leu 1415 1420 1425 Ala Gln Gly Tyr Gln Gly Arg Pro Asp Leu Thr Ala Glu Arg Phe 1430 1435 1440 Val Gly Cys Pro Phe Gly Pro Pro Gly Thr Arg Met Tyr Arg Thr 1445 1450 1455 Gly Asp Ile Val Arg Trp Leu Pro Asp Gly Thr Leu Asp Phe Leu 1460 1465 1470 Gly Arg Ile Asp Asn Gln Val Lys Leu Arg Gly Tyr Arg Ile Glu 1475 1480 1485 Leu Gly Glu Ile Glu Ser Val Leu Ala Arg Arg Glu Glu Leu Ser 1490 1495 1500 Gln Val Phe Val Thr Val Arg Glu Pro Ser Pro Gly Arg Arg Ser 1505 1510 1515 Leu Val Ala Tyr Leu Val Ala Asp Arg Gly Thr Ala Pro Asp Pro 1520 1525 1530 Glu Glu Leu Ala Gly Tyr Ile Ala Ser Val Leu Pro Glu Tyr Met 1535 1540 1545 Val Pro Ser Ser Phe Val Leu Leu Asp Ala Leu Pro Leu Thr Ala 1550 1555 1560 Asn Gly Lys Ile Asp Arg Arg Ala Leu Pro Glu Pro Glu Pro Ala 1565 1570 1575 Gly Gly Glu Gly Ala Ala Tyr Val Ala Pro Gly Asn Glu Val Glu 1580 1585 1590 Glu Thr Leu Ala Ala Ile Trp Ala Glu Val Leu Gly Val Glu Arg 1595 1600 1605 Val Gly Val Gln Asp Asn Phe Phe Ala Leu Gly Gly Asp Ser Ile 1610 1615 1620 Ser Gly Leu Gln Thr Ala Val Arg Ala Arg Arg Ala Gly Leu Arg 1625 1630 1635 Leu Ala Ser Lys Asp Leu Phe Gln Arg Gln Thr Ile Ala Ala Leu 1640 1645 1650 Ser Pro Val Val Thr Val Glu Arg Thr Thr Ala Asp Ala Asp Pro 1655 1660 1665 Ala Pro Ser Asp Arg Pro Thr Ala Pro Phe Ala Leu Ser Gly Leu 1670 1675 1680 Asp Arg Val Gly Val Glu Arg Leu Thr Ala Asp Gly Gly Pro Ala 1685 1690 1695 Glu Asp Ala Tyr Pro Leu Thr Pro Met Gln Ser Gly Leu Leu Phe 1700 1705 1710 His Thr Leu Met His Ala Glu Arg Gly Met Tyr Ile Glu Gln Phe 1715 1720 1725 His Phe Ala Leu His Ser Ile Arg Glu Pro Glu Leu Leu Ala Thr 1730 1735 1740 Ala Trp Gln Arg Val Val Asp Arg Thr Pro Val Leu Arg Thr Ser 1745 1750 1755 Leu Ala Trp Asp Gly Leu Ala Glu Pro Leu Gln Val Val Arg Thr 1760 1765 1770 Gly Val Arg Ile Pro Val Ala Gln Leu Asp Trp Thr Ala Leu Asp 1775 1780 1785 Glu Ala Gly Gln Arg Gln Ala Leu Glu Arg Tyr Leu Thr Glu Asp 1790 1795 1800 Arg Thr Arg Gly Leu Asp Leu His Thr Ala Pro Leu Ala Arg Ile 1805 1810 1815 Ala Val Ala Arg Leu Gly Gly Asp Gln Val Arg Leu Val Trp Thr 1820 1825 1830 Phe His His Leu Leu Leu Asp Gly Trp Ser Val Val Gln Val Leu 1835 1840 1845 Ser Glu Val Leu Gly Glu Tyr Ala Ala Leu Ala Asp Gly Ile Pro 1850 1855 1860 Tyr Thr Pro Gln Leu Arg His Thr Tyr Ala Glu Phe Val Gly Gln 1865 1870 1875 Leu Ala Gly Gln Asp His Thr Ala Ala Glu Lys Tyr Trp Arg Ala 1880 1885 1890 Ala Leu Thr Gly Arg Glu Ser Pro Thr Pro Leu Pro Tyr Asp Arg 1895 1900 1905 Pro Arg Pro Asp Ala His Gln Ala Ala Pro Asp Ala Glu Leu Lys 1910 1915 1920 Leu Arg Leu Pro Ala Ala Val Thr Gly Arg Leu Gly Thr Ala Ala 1925 1930 1935 Lys Arg Ala Gly Val Thr Met Asn Thr Val Val Gln Gly Leu Trp 1940 1945 1950 Ala Leu Leu Leu Ala Arg His Ser Gly Glu Arg Asp Val Leu Phe 1955 1960 1965 Gly Ala Thr Val Ala Gly Arg Pro Asp Asp Leu Ala Gly Ala Glu 1970 1975 1980 Ser Val Ile Gly Leu Phe Ile Asn Thr Leu Pro Val Arg Val Asp 1985 1990 1995 Val Asp Pro Asp Ala Gly Leu Leu Ser Trp Leu Arg Arg Val Gln 2000 2005 2010 Asp Glu Gln Ala Glu Ala Arg Ala His Glu Gln Val Ser Leu Ala 2015 2020 2025 Gln Val Gln Gly Trp Ala Pro Glu Arg Ala His Gly Gly Leu Phe 2030 2035 2040 Asp Ser Val Leu Ala Phe Glu Asn Phe Pro Ala Asp Leu Gly Pro 2045 2050 2055 Ala Gly Asn Tyr Gly Leu Arg Leu Asp Ala Ile Glu Ala Ser Asn 2060 2065 2070 Thr Ser Asn Tyr Pro Leu Asn Ala Ile Val Gln Leu Asn Glu Glu 2075 2080 2085 Leu Thr Val Leu Leu Arg Tyr Asp Thr Ala Leu Phe Asp Ala Asp 2090 2095 2100 Thr Val Ala Arg Leu Ala Gly His Leu His Thr Leu Leu Glu Glu 2105 2110 2115 Thr Ala Glu Asn Pro Asp Arg Arg Val Gly Glu Leu Pro Leu Leu 2120 2125 2130 Thr Ala Ala Glu Arg His Thr Ile Val His Thr Trp Thr Asp Thr 2135 2140 2145 Ala Ser Asp Tyr Ser Val Asp Arg Arg Leu Asp Ala Val Ile Ala 2150 2155 2160 Glu Gln Ala Ala Ala Arg Pro Thr Ala Ile Ala Val Val Asp Gly 2165 2170 2175 Glu Arg Gln Leu Ser Tyr Gly Glu Leu Asp Arg Arg Ala Asn Gln 2180 2185 2190 Leu Ala His His Leu Arg Ala Ala Gly Val Gly Arg Asp Ala Leu 2195 2200 2205 Val Gly Ile Ala Val Glu Arg Ser Ala Glu Val Val Val Ala Ile 2210 2215 2220 Leu Gly Thr Leu Lys Ala Gly Ala Ala Tyr Val Pro Leu Asp Pro 2225 2230 2235 Glu Phe Pro Ala Gln Arg Leu Ala Thr Met Leu Ser Glu Ser Arg 2240 2245 2250 Pro Ala Val Leu Leu Thr Gln Glu His Leu Leu Ala Gly Leu Pro 2255 2260 2265 Pro Thr Asp Ala Arg Val Val Cys Val Asp Arg Asp Leu Ala Ala 2270 2275 2280 Ile Glu Ala His Pro Thr Ala Ala Pro Val Ser Gly Gly Asp Ala 2285 2290 2295 Gly Asp Leu Ala Tyr Val Thr Tyr Thr Ser Gly Ser Thr Gly Arg 2300 2305 2310 Pro Lys Gly Val Met Val Glu His Arg Ser Leu Phe Asn Ile Ile 2315 2320 2325 Thr Glu Ala Gly Arg Leu Tyr Asp Leu Gly Pro Asp Ser Arg Met 2330 2335 2340 Leu Gln Phe Tyr Thr Met Ser Phe Asp Gly Gly Val Trp Glu Val 2345 2350 2355 Phe Leu Thr Leu Thr Ala Gly Ala Thr Leu Val Ile Ala Asp Pro 2360 2365 2370 Glu Ala Arg Gln Ser Pro Ala His Leu Ala Glu Gln Leu Arg Ala 2375 2380 2385 Glu Ser Ile Thr Ala Leu Thr Leu Pro Pro Ala Val Ala Ser Val 2390 2395 2400 Leu Asp Ala Ala Ser Leu Pro Gly Ile Arg Ser Leu Gly Leu Ala 2405 2410 2415 Gly Asp Val Leu Ala Pro Glu Leu Ala Arg Glu Trp Ala Arg Gly 2420 2425 2430 Arg Arg Leu Phe Asn Ile Tyr Gly Pro Ser Glu Ala Thr Leu Ser 2435 2440 2445 Val Ala Leu His Arg Val Asp Pro Gly Ala Ala Gly Arg Gln Val 2450 2455 2460 Pro Leu Gly Pro Pro Val Pro Asn Thr Arg Phe His Val Leu Asp 2465 2470 2475 Glu Arg Leu Ala Val Val Pro Val Gly Val Thr Gly Glu Leu Tyr 2480 2485 2490 Ile Gly Gly Ala Gly Leu Ala Arg Gly Tyr Leu Gly Arg Pro Asp 2495 2500 2505 Leu Thr Ala Gln Arg Phe Val Ala Asp Pro Phe Gly Pro Pro Gly 2510 2515 2520 Ser Arg Leu Tyr Arg Thr Gly Asp Leu Ile Arg Trp Thr Pro Gln 2525 2530 2535 Gly Arg Leu Glu Phe Ala Gly Arg Val Asp Asn Gln Val Lys Ile 2540 2545 2550 Arg Gly Tyr Arg Val Glu Pro Ala Glu Val Glu Ser Ala Leu Leu 2555 2560 2565 Arg Gln Pro Gly Val Ala Glu Ala Val Val Ile Ala Arg Asp Asp 2570 2575 2580 Asp Thr Gly His Lys Arg Leu Val Ala Tyr Val Val Pro Asp Gly 2585 2590 2595 Ser Gly Thr Ala Pro Glu Arg Ala Ala Leu Leu Arg Ala Leu Gly 2600 2605 2610 Gly Gln Leu Pro Gly Tyr Met Val Pro Ser Ala Leu Val Thr Leu 2615 2620 2625 Pro Glu Leu Pro Leu Gly Pro Thr Gly Lys Val Asp Val Arg Ala 2630 2635 2640 Leu Pro Ala Pro Asp Pro Ala Ala Gly Gly Thr Ala Asp Arg Ile 2645 2650 2655 Pro Pro Arg Thr Pro Thr Glu Glu Ala Leu Ala Leu Ile Trp Val 2660 2665 2670 Glu Leu Leu Gly Leu Glu His Val Gly Val Glu Asp Asn Phe Phe 2675 2680 2685 Asp Leu Gly Gly Asp Ser Ile Thr Ser Leu Arg Leu Met Ser Arg 2690 2695 2700 Met Gly Gly Ala Phe Gly Val Asp Val Ser Pro Arg Asp Phe Phe 2705 2710 2715 Asp Ala Pro Thr Ile Ala Ala Leu Ala Glu Arg Leu Glu Glu Lys 2720 2725 2730 Ile Leu Ala Gln Leu Glu Glu Ala Val Gly Gly Gly Ala Leu 2735 2740 2745 3 8244 DNA Streptomyces hygroscopicus 3 atgggtgagt ggcgcgatcg ccgcctggac gaattgttcg ccgagcaggc cgcgagaaca 60 ccggagcgta ccgcggtggt cttcgagggc cgggcggtga gttatcggga actcgacgcc 120 cgcgccgagc ggctggccgc tgtgctggcc ggccgcggcg cgggacccga gcggttcatc 180 gcgctgctgc tgccccgctc cgccgaactg atcgtggcca tcctcgccgt actgaagtcc 240 ggcgccggat acatcccgat cgacccggag tacccggccg accgcatcgc ctacatcctc 300 ggcgacgcgc gcccggtggc gacgatcacc accgccgagg tgcgggacgg tctgccggac 360 ccggacaccg gctccgggac cgactggctg atcctggacg agtccgggta cgagcaggag 420 ccggccgggg cgcgcccgca gcccgccccg gccgccccgc ggtccgcgga gaaccccgcc 480 tacgtcatct acacctccgg ctcgaccggc cggcccaagg gcgtggtgat cccgcacagc 540 aatgtgggac ggctgctgtc gtccaccgcc cactggtacg gcttcgacga gcaggacgtc 600 tggccgctgt tccactcctt cgccttcgat gtctcggtct gggagatctg gggcgcgctg 660 ctgcacggcg gcaagctggt cgtcgtcccg catgccgtca cccgcgcccc ggccgacttc 720 ctgcggctgc tggtcgagga acgggtcacc gtcctgaacc agacgccttc ggcgttctac 780 cagctgatgg ccgccgaccg ggagaacccc gcgctcggcg cccaactcgc cctgcgttat 840 gtggtgttcg cgggtgaggc gctggacctg ggcaagctcg ccgactggta cgagcggcac 900 gatgaccggg cgccgacgct ggtcaacatg tacggcatca ccgagaccac cgtgcactcc 960 tcgttcctcg cactggacaa ggagggcgcg gccggcgcca cgggcagcgc cgtcggcgtc 1020 gccctccccg acctgacctt ccatgtcctc gacgaggacc tgcggcccgt cccggtcggc 1080 gcggagggcg agctgtatgt ggccgggccc gggctggcac ggaactacgc gggccggccg 1140 gggctgaccg cggagcgctt cgtggcctgc ccgttcggcc cgcccggggc ccgtatgtac 1200 cgctcgggcg acctggtgcg gccgctgccg gacggcggcc tcgaatacct gcggcgcagc 1260 gacgaccagg tcaagatccg cggtttccgg atcgaactgg gtgagatctc gcacgcactg 1320 gcccaggacc cctcggtcga ccaggccacg gtggtggtcc gcgacgaggc gtcgggcgag 1380 cgcaggctgg tggcgtacgt cgttccggcc ggctccgccc gtcccacccc gtcccggctg 1440 cgtgccgcgc tggccacccg cctgcccggc tacatggtcc ccaccgcctt ccacgtcatg 1500 ccggccttcc cgctgaccgc caacggcaag ctggaccgca gggcgctgcc cgcgcccacc 1560 cgccaggaca gcgtcgacgc cgactacgcc gcccccgagg gcgccaccga ggaggcgctg 1620 gccgccatct ggcgcgaggt gctcggcgtc gaacagatcg gtgccgacga cgacttcttc 1680 gagctcggcg gtgactcgct gtccgtggtg cgggcgctgt cgcggatgcg gaccggcctg 1740 gggctgcgcc tgacggccgc ggagttcttc gccaccccca ccgtccgggc actggccgcg 1800 cgccgcgagc ggggcacgat cggcgcgccg gagcagatac cggccgcgcc gcgtaccggc 1860 gcgctgccgc tgtccttcac ccagcagcgg ttctggctct tccacgaact cgaccccggc 1920 gaggtcgagt acaacgtcca ctccgcgctg cggctgcgcg gcaccctcga cctccccgcg 1980 ctgcgcaccg cgctcggcgg gctgatcgcc cgccatgagc cgctgcggac gaccgtggtc 2040 tccgacgacg gccgccccac cgcggtcatc gccccgcccg agggcttccc ggtcccgctc 2100 accgtcgagg atctctccgc gctgaccggc gacgaccagg aggccgccca gcggcgactg 2160 ctggccgagg aggtcgcccg gcccttcgac ctggccgccg gcccggtgct gcgggtgctg 2220 gtgatccgcc gcggcgagcg cgatcacgcc ctggtgatcg gggtgcatca cctcgccacc 2280 gacggctggt cgatggggct gctcaccgac gagctgagcg cgcgctacga cgccgcgcgc 2340 cgcggggtgc ccgccgcgct ggagccgctg ccggtccact acagcgacta cgccgcctgg 2400 cagcgcgcca ccgtggacga cggccggctg gtgccccaga tcgactactg gcgcgaccgg 2460 ctggcggatg tggcaccgct gcaactgccc accgaccggc cccggcccgc gctgaagacc 2520 tcggccggtg cggcgcaccg cttcaccctc gaccgccggc tggtcgccgc cctcaaggag 2580 ctgagcgccg cccatggcgc cacgctcttc atgaccctga ccgccgcgtt gcaggtgctg 2640 ctcgcccgct actccggaca gcaggacatc gcgctgggca ccgccgtctc cggccgggac 2700 cacccgcagg tggagcggct ggtcggcgcg ttcatcaaca ccgtggtgct ccgctccgac 2760 gtgcgcggcg agctgccctt ccacgaattc ctcggggagg tacgggagac ggtgctgggc 2820 gccttcgcgc accaggacct tccgttcgac cggctcgtgg acgcgctggg cgccgagcgc 2880 gacccgagcc gtaccccgct ggtccaggcg atgctgctgc tgcagaacgc cccggccggt 2940 gcggaggagt tcgccgggct gcgcaccgag accgtcgcgc tgccgcgccc ggccgcgatc 3000 ttcgacctga cggtggactg cacggagcgg gccggggcgc tggaggtgat ggtcgagtac 3060 aacaccgatc tgttcgacgc gacgaccatc gagcggctct cgggccatct gcgggtgctg 3120 ctggacgccg tatgcgcggc accgcggcgc caggtgcgcg atctgccgct gctgccggcg 3180 gccgaacgcg acacgctgct gaccggctgg aacgacaccg ccgccgcact gccgacgacg 3240 ctcggggtgc accgccagtt cgccgagcgg gcccgcacca ccccggacgc gctcgccgtc 3300 acacactgcg gacagaccct cacctacgcc caactcgacg cgcgcgccaa ccagttggcg 3360 cactacctgg gcgctctcgg cgtcggccgg ggcacccccg tggtgctgaa cctggcgcgc 3420 aagccgcagc tgatcgtggc gatgctcgcg gtgctcaagg ccggcggcgc gtacgtaccg 3480 accgcgctgg acaccccggc ggcacggctc gggcatctcc tggaggagac cggcaccccc 3540 gtgctgctga ccaccgcgcg gcaggccgga gcgctgcccc cgaccgaggc gagcgtcatc 3600 gacctcgacg cggccgggcc ggacatcgcc cggcatccgg agcacgaccc ccaggtggcg 3660 acccggcccg aggacctcgc gtacatcgtc tacacctccg ggtccaccgg ccgccccaag 3720 ggcgtcgcgg tgccgcacag cgcgctgacc gactactgcg cctggcacaa cgacgcgctg 3780 gacgtcggcc ccgaggaccg cgggtcgtcc gtggtcggcc tggccttcga cgtcgcggtc 3840 ggcgaggtgt ggccgtatct gtgcgcgggc gcccgcgtgg accagcccga ccaggagacg 3900 ctggacgatc cgacggcgct ggtggagtgg ttcgccgaga acggcaccac ggtcgcctat 3960 ctgccgaccc cgcgcatcga atccctgctg gacgtagcgg cgatcaccac cacccggctg 4020 cgcaccgtcc tggtcatcgg cgactcgctg cgccgcaggc cgcagcccgg actgccgttc 4080 accctgctca acgcctacgg gcccgcggag gcgacggtgg ccgccaccca ggcggtggtc 4140 gagcccctgg gacccgacgc gcccgccggg ctgccgtcca tcggcgcccc gctgtacaac 4200 accgccgcct atgtcctcga cgaccggctg tgcccggtcc ccgtcggggt gcccggcgag 4260 ctgtacctcg ccggcgcggg tctggcgcag ggctatcagg gccgccccga cctgaccgcg 4320 gagcgcttcg tcggctgccc cttcgggccg cccggaaccc ggatgtaccg cacgggtgac 4380 atcgtgcgat ggctaccgga cggcaccctg gacttcctcg gccggatcga caaccaggtc 4440 aaactgcgcg gctaccgcat cgaactcggc gagatcgaga gcgtgctggc ccgccgcgag 4500 gagctctcgc aggtgttcgt cacggtccgc gagccgtccc ccggccgccg gtccctggtc 4560 gcctacctcg tcgccgaccg gggcaccgcg cccgacccgg aggagctcgc cggatacatc 4620 gcctccgtac tcccggagta catggttccg tcctccttcg tactgctcga cgcgctgccg 4680 ctgaccgcga acggcaagat cgaccggcgg gcgctgcccg agccggagcc ggccggcggc 4740 gagggcgccg cgtatgtcgc gcccggcaac gaggtcgagg agaccctggc cgccatctgg 4800 gccgaggtgc tcggcgtcga acgggtcggc gtgcaggaca acttcttcgc cctcggcggc 4860 gactcgatca gcggtctgca gaccgccgta cgggcccgcc gggccgggct gcgactggcc 4920 tccaaggacc tcttccagcg ccagaccatc gcggcgctga gccccgtggt gacggtggag 4980 cggaccacgg cggacgccga ccccgcaccg tccgaccggc cgaccgcgcc gttcgcgctc 5040 agcggtctgg accgggtcgg tgtggagcgg ctgaccgcgg acggcggccc ggccgaggac 5100 gcctacccgc tgaccccgat gcagagcggg ctgctcttcc acaccctgat gcacgccgaa 5160 cgcggcatgt acatcgagca gttccacttc gccctgcaca gcatccgcga gccggagctg 5220 ctggccaccg cctggcagcg ggtcgtcgac cgcacccctg tgctccgtac gtcactggcc 5280 tgggacggcc tcgccgaacc gctccaggtc gtgcgcaccg gcgtccggat accggtggca 5340 cagctcgact ggacggcact ggacgaggcc ggacagcggc aggccctgga gcggtatctg 5400 accgaggacc gcacgcgcgg gctcgatctg cacaccgcgc cactcgcccg gatcgccgtc 5460 gcccgcctgg gcggcgacca ggtccggctg gtgtggacgt tccaccatct gctgctggac 5520 ggctggagcg tcgtacaggt gctgtccgag gtgctcggcg agtacgccgc gctcgccgac 5580 ggcatcccgt acaccccgca actgcggcac acctacgccg agttcgtcgg ccagctggcg 5640 gggcaggacc acaccgccgc cgagaagtac tggcgtgccg cgctcaccgg ccgtgagtcg 5700 cccaccccgc tgccgtacga ccggccgcgc cccgacgccc atcaggccgc ccccgacgcc 5760 gagctgaagc tgcggctgcc ggccgcggtg accggccgac tgggcaccgc ggcgaagcgg 5820 gccggggtga cgatgaacac cgtggtgcag ggcttgtggg cgctgctgct ggcccgccac 5880 agcggtgagc gggacgtact gttcggcgcc acggtcgccg gccggcccga cgatctggcg 5940 ggcgcggaat cggtgatcgg cctgttcatc aacacccttc cggtgcgcgt cgacgtcgat 6000 ccggacgccg gtctgctgag ctggctgcgc cgggtgcagg acgagcaggc cgaggcgcgc 6060 gcccatgagc aggtctcgct cgcccaggtg cagggctggg cgccggagcg ggcgcacggc 6120 ggactgttcg acagcgtgct ggccttcgag aacttcccgg ccgacctcgg tcccgccggg 6180 aactacgggc tgcggctcga cgccatcgag gccagcaaca cctccaacta cccgctcaac 6240 gccatcgttc agctcaacga agagctgacc gtgctgctgc gctacgacac cgcgctgttc 6300 gacgcggaca ccgtggcgcg gctggccggc catctgcaca cgctgctgga ggagaccgcc 6360 gagaaccccg accgccgggt cggcgagctg cccctgctca ccgccgccga gcggcacacc 6420 atcgtgcaca cctggaccga caccgcctcg gactactcgg tcgaccgccg gctggacgcg 6480 gtcatcgccg aacaggccgc ggcccggccg accgcgatcg ccgtcgtcga cggtgaacgg 6540 cagctgagtt acggcgagtt ggaccgccgc gccaaccagc tggcacacca tctgcgcgcc 6600 gcgggcgtgg gccgggacgc cctcgtcggg atcgccgtcg agcgcagcgc ggaggtcgtc 6660 gtggccatcc tcggcacgct caaggcgggc gccgcgtatg tgccgctcga ccccgaattc 6720 cccgcgcagc ggctcgccac catgctgtcc gagtcccggc ccgcggtcct gctcacccag 6780 gaacacctgc tggcggggct gccgccgacg gacgcccggg tggtgtgcgt ggaccgggac 6840 ctggcggcca tcgaggcgca ccccaccgcc gcgccggtct ccggcggcga cgccggcgac 6900 ctggcctatg tcacctacac ctcgggctcc accggccgcc ccaagggcgt catggtcgag 6960 caccgctcgc tgttcaacat catcaccgag gccggacggc tctacgacct gggccccgac 7020 agccggatgc tgcagttcta cacaatgagc ttcgacggcg gcgtctggga ggtcttcctg 7080 acgctgaccg ccggcgccac cctcgtcatc gcggaccccg aggcccgcca gagcccggcc 7140 cacctcgccg agcagctgcg cgcggagtcg atcaccgcgc tgacgctgcc gcccgcggtg 7200 gcctcggtgc tggacgcggc ctcgctgccc ggcatacgca gcctggggct cgccggggat 7260 gtgctcgcgc ccgaactcgc ccgggagtgg gcgcgggggc gccggctgtt caacatctac 7320 gggcccagcg aggcgaccct gtccgtcgcc ctgcaccgcg tcgaccccgg ggccgccggg 7380 cgccaggtgc cgctcggacc gccggtgccc aacacccgtt tccatgtgct cgacgagcgg 7440 ctggccgtgg tcccggtcgg ggtgaccggc gagctctaca tcggcggtgc gggcctggcc 7500 cgcggctacc tgggccgccc cgacctgacc gcgcagcgct tcgtcgccga cccgttcgga 7560 ccgccgggat cccgtctcta ccgcaccggt gacctgatcc gctggacccc gcaggggcgg 7620 ctggagttcg ccgggcgggt ggacaaccag gtcaagatcc gcggctaccg tgtcgagccc 7680 gccgaggtgg agagcgcact gctgcggcag cccggcgtcg cggaggcggt ggtgatcgcc 7740 cgggacgacg acaccggcca caagcggctg gtcgcctatg tcgtaccgga cgggagcgga 7800 accgccccgg aacgcgccgc cctgctgcgc gccctgggcg gccaactccc cggctacatg 7860 gtgccgtcgg ccctcgtcac cctgcccgag ctaccgctcg gaccgaccgg caaggtcgat 7920 gtgcgggcgc tgccggcacc ggatccggcc gccggcggca ccgccgaccg catcccgccc 7980 cgcaccccca cggaagaggc actggccctc atctgggtgg agctgctcgg gctcgaacac 8040 gtcggcgtcg aggacaactt cttcgacctc ggcggcgact ccatcaccag cctgcggttg 8100 atgtcgcgga tgggcggcgc gttcggtgtg gacgtctcac cccgcgactt cttcgacgcc 8160 cccaccatcg ccgcccttgc cgagcgccta gaggaaaaga tcctggcgca gttggaagaa 8220 gccgtcggag gcggcgccct atga 8244 4 3668 PRT Streptomyces hygroscopicus 4 Met Thr Ser Ser Ala Ala Asp Gln Pro Asp Asn Pro Asn Thr Thr Thr 1 5 10 15 Pro Ala Ser Arg Ala Glu Arg Thr Ala Ala Leu Pro Ala His Val Gln 20 25 30 Glu Leu Leu Arg Ala Arg Leu Ala Gly Arg Ala Ala Ala Thr Gly Gly 35 40 45 Ala Asp Thr Ile Pro Arg Ile Gly His Asp Gly Pro Val Ala Leu Ser 50 55 60 Pro Ala Gln Glu Arg Leu Trp Tyr Leu His Glu Leu Glu Pro Glu Ser 65 70 75 80 Asn Glu Tyr Asn Thr Leu Arg Val Leu Arg Leu Arg Gly Asp Leu Asp 85 90 95 Pro Gly Ala Leu Ser Ala Ala Leu Ser Glu Ile Val Ala Arg His Gly 100 105 110 Ala Leu Arg Thr Thr Phe Gly Ser Arg Glu Gly His Ala Glu Gln Thr 115 120 125 Val His Pro Pro Val Pro Thr Pro Leu Pro Leu Val Asp Leu Ser Ala 130 135 140 Ala Asp Asp Gly Glu Arg Asp Asp Ala Leu Arg Thr Leu Leu Gln Tyr 145 150 155 160 Glu Ala Arg Arg Pro Phe Asp Leu Arg Arg Gly Pro Val Leu Arg Ala 165 170 175 Gln Leu Ile Arg Leu Ala Ala Asp Asp His Val Leu Ala Leu Ala Leu 180 185 190 His His Ile Val Thr Asp Gly Trp Ser Met Gly Val Leu Thr Gly Glu 195 200 205 Leu Thr Ala His Tyr Ala Ala Thr Leu Arg Gly Ala Pro Ala Val Leu 210 215 220 Pro Glu Leu Pro Val Ser Tyr Leu Asp Val Ala Val Trp Gln Arg Asp 225 230 235 240 Gln Leu Ser Ser Ala Arg Leu Arg Glu Gly Leu Asp His Trp Arg Arg 245 250 255 Glu Leu Ala Gly Leu Val Pro Leu Asp Leu Pro Thr Thr Trp Gln Arg 260 265 270 Pro Pro Val Arg Thr Ser Ala Gly Ala Leu His Ser Phe Glu Ile Pro 275 280 285 Pro Ala Val Ala Ala Arg Leu Arg Glu Leu Gly Arg Glu Gln Gly Ala 290 295 300 Thr Leu Phe Met Ala Leu Val Ala Ala Val Gln Leu Leu Leu Ser Arg 305 310 315 320 Trp Ser Gly Gln Arg Asp Ile Ala Val Gly Thr Ala Ala Ala Gly Arg 325 330 335 Gly Arg Thr Glu Thr Glu Asn Leu Ile Gly Phe Phe Val Asn Asn Leu 340 345 350 Val Leu Arg Ser Arg Ile Asp Glu Thr Arg Ser Phe Thr Glu Leu Leu 355 360 365 Arg Ala Val Arg Ala Thr Val Leu Asp Ala Phe Ala His Glu Asp Val 370 375 380 Pro Phe Gln Arg Val Val Glu Ala Leu His Pro Glu Arg Asp Leu Ser 385 390 395 400 Arg Pro Pro Leu Ala Glu Val Ala Val Asn Leu His Asn Thr Pro Arg 405 410 415 Thr Asp Thr Glu Leu Pro Gly Leu Arg Ile Glu Glu Met Pro Pro Pro 420 425 430 Val Phe Ala Ser Ser Met Asp Leu Ser Phe Asp Phe Thr Glu Arg Asp 435 440 445 Asp Arg Leu Glu Gly His Leu Thr Tyr Asn Thr Asp Leu Phe Ala Ala 450 455 460 Asp Ala Ala Ala Arg Met Ala Ala Gln Leu Val Thr Leu Leu Glu Asp 465 470 475 480 Leu Thr Arg Arg Pro Ala Val Pro Val Ala Gly Leu Ala Val Leu Pro 485 490 495 Ala Ala Glu His Arg Arg Val Thr Glu Glu Trp Pro His Ser Gly Pro 500 505 510 Gly Arg Glu Pro Arg Thr Ala Pro Glu Leu Phe Ala Ala Gln Val Ala 515 520 525 Arg Thr Pro Asp Ala Asp Ala Leu Val Ser Asp Glu Glu Thr Leu Ser 530 535 540 Tyr Ala Glu Leu Asp Gly Arg Ile Asn Gln Trp Ala Arg Leu Leu Leu 545 550 555 560 Ala Arg Gly Ala Gly Pro Glu Thr Leu Val Ala Val Ala Leu Pro Arg 565 570 575 Ser Ala Gln Met Val Thr Ala Ile Leu Ala Ile Gln Lys Thr Gly Ala 580 585 590 Ala Tyr Leu Pro Leu Asp Pro Lys Ser Pro Ala Glu Arg Asn Arg Leu 595 600 605 Met Ile Glu Asp Ala Arg Pro Leu Leu Val Leu Thr Ser Ala Gly Phe 610 615 620 Gly Asp Gly Ala Glu Leu Gly Ala Pro Ala Leu Phe Leu Asp Asp Pro 625 630 635 640 Asp Thr Arg Ala Ala Ala Gly Glu Leu Ser Ala Gly Pro Leu Ala Ala 645 650 655 Ala Glu Leu Pro Ala Pro Leu Leu Pro Gly His Pro Ala Tyr Val Ile 660 665 670 Tyr Thr Ser Gly Ser Thr Gly Arg Pro Lys Gly Val Val Val Thr His 675 680 685 Thr Gly Val His Gly Leu Val Ala Ala Gln Ser Ala His Phe Arg Thr 690 695 700 Gly His Gly Ala Arg Val Leu Ser Phe Ala Ser Leu Gly Phe Asp Ala 705 710 715 720 Ala Phe Ser Glu Leu Gly Met Ala Leu Leu Ser Gly Gly Ala Leu Val 725 730 735 Val Val Asp Gln Glu Arg Ile Leu Pro Gly Gln Pro Leu Ala Asp Val 740 745 750 Leu Ala Glu His Arg Val Thr His Val Thr Leu Pro Pro Ser Ala Leu 755 760 765 Ser Ala Leu Thr Pro Gly Thr Leu Pro Lys Asp Leu Thr Leu Val Val 770 775 780 Ala Gly Glu Ala Cys Pro Pro Ala Val Ala Arg Thr Trp Ser Ala His 785 790 795 800 His Arg Met Ile Asn Ala Tyr Gly Pro Thr Glu Ser Thr Val Cys Ala 805 810 815 Ser Met Ser Ala Ala Leu Thr Pro Asp Thr Val Ser Gly Asp Ser Val 820 825 830 Pro Ile Gly Arg Pro Leu Ser Gly Val Arg Val Ser Val Leu Asp Asp 835 840 845 Arg Leu Arg Pro Val Pro Ala Gly Val Pro Gly Glu Val Tyr Leu Ser 850 855 860 Gly Ala Ala Leu Ala Arg Gly Tyr Leu Gly Arg Leu Ala Leu Thr Ala 865 870 875 880 Glu Arg Phe Val Ala Asp Pro Tyr Gly Pro Pro Gly Ser Arg Met Tyr 885 890 895 Arg Thr Gly Asp Arg Ala Arg Trp Leu Ala Gly Gly Asp Leu Asp Tyr 900 905 910 Leu Gly Arg Thr Asp Asp Gln Val Lys Leu Arg Gly Phe Arg Ile Glu 915 920 925 Leu Gly Glu Val Glu Ala Val Leu Ser Arg His Asp Gly Val Gly Ala 930 935 940 Val Ala Ala Thr Val His Lys Asp Glu Arg Gly Thr Arg Arg Leu Val 945 950 955 960 Ala Tyr Val Val Pro Ala Arg Glu Asp Ala Ala Asp Pro Ala Arg Leu 965 970 975 Arg Glu Phe Ala Arg Glu Val Leu Pro Glu His Met Val Pro Ser Val 980 985 990 Phe Val Pro Leu Asp Arg Leu Pro Leu Asn Ala Asn Gly Lys Val Asp 995 1000 1005 Arg Arg Ala Leu Pro Ala Pro Asp Ile Arg Arg Asp Glu Gly Ser 1010 1015 1020 Ala Arg Ile Ala Pro Arg Thr Pro Ala Glu Glu Thr Leu Ala Arg 1025 1030 1035 Ile Trp Ser Glu Val Leu Gly Val Thr Asp Ile Gly Val Glu Asp 1040 1045 1050 Asn Phe Phe Asp Leu Gly Gly Asp Ser Ile Leu Ser Leu Gln Val 1055 1060 1065 Val Ala Arg Ala Arg Ala Ala Gly Leu Arg Leu Thr Ala Lys Gln 1070 1075 1080 Thr Phe Leu Arg Gln Thr Ile Ala Asp Leu Ala Ala Asp Ala Val 1085 1090 1095 Ala Glu Thr Asp Pro Ala Ala His Gly Ala Ala Asn Asp Gly Pro 1100 1105 1110 Val Thr Gly Glu Leu Pro Leu Thr Pro Ile Gln His Trp Phe Phe 1115 1120 1125 Asn Ser Leu Gly Asp Ser Leu Glu Gln Phe Asn Gln Ser Leu Tyr 1130 1135 1140 Leu Glu Leu Ala Glu Gly Pro Asp Leu Pro Ala Leu Arg Ala Ala 1145 1150 1155 Leu Ala Ala Leu Thr Glu Gln His Asp Ala Leu Arg Leu Arg Ala 1160 1165 1170 Val Ser Glu Asp Gly Gln Trp Arg Leu His His Ala Pro Ala Glu 1175 1180 1185 Thr Gly Gln Leu Leu Glu His Leu Asp Leu Ser Gly Val Ser Pro 1190 1195 1200 Asp Glu Gln Asp Ala Ala Met Ala Ala Ala Val Asp Ala Ala Gln 1205 1210 1215 Arg Asp Phe Arg Leu Ser Glu Gly Pro Leu Leu Arg Ala Arg Leu 1220 1225 1230 Phe Thr Leu Gly Asp Ala Arg Pro Pro Arg Leu Tyr Leu Val Ala 1235 1240 1245 His His Leu Val Ile Asp Gly Met Ser Trp Arg Ile Leu Leu Ala 1250 1255 1260 Asp Leu Glu Thr Gly Tyr Arg Leu Ala Ala Asp Gly Arg Pro Ile 1265 1270 1275 Asp Leu Gly Pro Arg Thr Thr Ser Phe Arg Asp Trp Ser Arg Arg 1280 1285 1290 Leu Ser Arg His Val Ala Asp Gly Gly Leu Asp Ala Glu Leu Pro 1295 1300 1305 Tyr Trp Lys Gly Val Gln Asp Ala Ala Arg Glu Thr Ala Pro Leu 1310 1315 1320 Pro Val Asp Thr Gly Gly Leu Pro Asp Arg Gln Gly Ala Gln Glu 1325 1330 1335 Glu Pro Gly Glu Asn Thr Ala Gly Ser Ala Arg Thr Val Ser Val 1340 1345 1350 Gln Leu Ser Ala Ala Gly Thr Glu Ala Leu Leu Arg Gln Val Pro 1355 1360 1365 Glu Ala Tyr Arg Thr Gln Ile Asn Asp Val Leu Leu Ser Ala Leu 1370 1375 1380 Gly Arg Val Leu Thr Asp Trp Ala Gly Gly Glu Arg Val Leu Ile 1385 1390 1395 Ala Leu Glu Gly His Gly Arg Glu Glu Leu Phe Asp Glu Val Asp 1400 1405 1410 Leu Thr Arg Thr Val Gly Trp Phe Thr Thr Leu Phe Pro Val Ala 1415 1420 1425 Leu Arg Met Pro Ala Asp Arg Asp Trp Gly Thr Val Leu Lys Ser 1430 1435 1440 Val Lys Glu Gln Leu Arg Ala Val Pro His Asn Gly Leu Gly His 1445 1450 1455 Gly Ala Leu Arg His Leu Ala Gly Pro Asn Ser Pro Leu Glu Asp 1460 1465 1470 Gly Pro Glu Pro Glu Val Ser Phe Asn Tyr Leu Gly Gln Leu Asp 1475 1480 1485 Val Ser Ala Asp Arg Thr Gly Leu Ala Arg Ala Met Leu Thr Ser 1490 1495 1500 Glu Gly Ala Glu Arg Ala Ala Gly Gln His Arg Ala Gln Leu Leu 1505 1510 1515 Glu Ile Asn Gly Val Val Thr Gly Gly Arg Leu Glu Phe His Trp 1520 1525 1530 Thr Tyr Ser Val Asn Arg His Arg Ala Glu Thr Val Glu Arg Leu 1535 1540 1545 Ala Ala Gly Phe Met Thr Ala Leu Glu Ala Ile Val Ala His Cys 1550 1555 1560 Ala Ala Pro Gly Ser Gly Gly Ala Thr Pro Ser Asp Phe Pro Leu 1565 1570 1575 Ala Ala Leu Asp Gln Ala Thr Val Asp Lys Ile Ala Gly Asp Gly 1580 1585 1590 Arg Thr Val Glu Asp Ile Tyr Pro Leu Thr Ala Met Gln Ser Gly 1595 1600 1605 Met Leu Phe His Ala Leu Ser Glu Ser Gly Arg Asp Pro Tyr Thr 1610 1615 1620 Gly His Phe Gly Val Arg Val Asp Gly Ile Thr Asp Pro Gly Ala 1625 1630 1635 Leu Ala Ala Ala Trp Gln Gln Val Val Asp Arg Thr Pro Ala Leu 1640 1645 1650 Arg Thr Ala Ile Val Trp Gln Asp Val Ala Glu Pro Leu Gln Val 1655 1660 1665 Val His Ala Ala Ala Arg Val Pro Val Thr His His Asp Leu Arg 1670 1675 1680 Ser Leu Thr Glu Gln Glu Arg Gln Ala Ala Leu Asp Arg Leu Trp 1685 1690 1695 Glu Arg Arg Glu Glu Thr Val Ile Asp Leu Ala Val Ala Pro Ala 1700 1705 1710 Leu Arg Leu Thr Leu Val Arg Leu Thr Asp Ser Ala Val Gln Met 1715 1720 1725 Phe Trp Thr Ser His His Ile Leu Met Asp Gly Trp Ser Phe Ala 1730 1735 1740 Gly Leu Leu Ser Glu Val Cys Ala Gln Tyr Thr Ala Leu Thr Gly 1745 1750 1755 Gly Pro Arg Val Ala Ala Pro Ala Arg Arg Pro Tyr Arg Asp Tyr 1760 1765 1770 Val Gly Trp Leu Ala Glu Gln Asp Gln Pro Ala Ala Glu Ala His 1775 1780 1785 Trp Arg Ser Val Val Asp Gly Phe Thr Val Pro Thr Pro Leu Pro 1790 1795 1800 Tyr Asp Arg Gln Pro Val Lys Ala His Gly Thr Arg Ser Ser Arg 1805 1810 1815 Glu Val Arg Leu Gln Leu Ser Ala Glu Arg Ser Gly Arg Leu Ser 1820 1825 1830 Glu Ala Ala Arg Ser Ala Arg Leu Thr Val Asn Thr Leu Val Gln 1835 1840 1845 Gly Ala Trp Ala Ile Leu Leu Ala Arg Tyr Gly Gly Val Arg Asp 1850 1855 1860 Val Cys Phe Gly Thr Thr Val Ser Gly Arg Pro Ala Thr Leu Pro 1865 1870 1875 Gly Ala Glu Ser Met Ala Gly Leu Phe Ile Asn Thr Val Pro Val 1880 1885 1890 Arg Ala Thr Ile Asp Gly Ala Gly Ala Gly Asp Gly Ala Ala Thr 1895 1900 1905 Gly Thr Val Glu Trp Leu Arg Arg Leu Gln Ser Glu Gln Leu Asp 1910 1915 1920 Ser Arg Gln His Glu His Val Ser Leu Ala Gln Ile Gln Arg Trp 1925 1930 1935 Ser Gly Val Pro Ala Gly Thr Asn Leu Phe Asp Ser Ile Val Val 1940 1945 1950 Phe Glu Asn Tyr Pro Tyr Asp Ser Asp Ala Ala Ala Lys Tyr Gly 1955 1960 1965 Leu Thr Leu Gly Thr Phe Gln Gly Asp Glu Val Thr Asn Tyr Ala 1970 1975 1980 Leu Thr Leu Thr Ala Tyr Val Ala Asp Glu Leu His Leu Asn Leu 1985 1990 1995 Gly Tyr Asp Pro Asp Leu Phe Asp Glu Ala Thr Val Glu Arg Met 2000 2005 2010 Ala Gly His Leu Ala Thr Leu Leu Asp Ala Val Ala Ala Ala Pro 2015 2020 2025 His Thr Pro Val Asp Asp Leu Pro Leu Leu Asp Ala Ala Glu His 2030 2035 2040 His Arg Leu Leu Thr Glu Trp Asn Asp Thr Ala Ala Gly Phe Pro 2045 2050 2055 Pro Pro Arg Pro Val His Glu Leu Phe Ala Glu Arg Ala Ala Arg 2060 2065 2070 Thr Pro Asp Ala Val Ala Val Ser Asp Ala Thr Arg Gln Leu Thr 2075 2080 2085 Phe Ala Glu Leu Glu Thr Arg Ala Asn Gln Leu Ala His His Leu 2090 2095 2100 Ala Gly Leu Gly Val Ala Pro Gly Thr Leu Val Gly Val Cys Ala 2105 2110 2115 Asp Arg Gly Val Asp Ala Val Val Ala Leu Leu Gly Val Leu Arg 2120 2125 2130 Ala Gly Gly Ala Phe Val Pro Leu Asp Pro Ala Tyr Pro Ala Glu 2135 2140 2145 Arg Leu Gln Val Met Leu Glu Asp Ala Ala Val Pro Val Val Val 2150 2155 2160 Thr Glu Glu Arg Leu Leu Asp Arg Thr Ala Gly His Asp Ala Thr 2165 2170 2175 Thr Val Cys Leu Asp Arg Asp Leu Pro Leu Leu Glu Glu Leu Pro 2180 2185 2190 Ala Arg Pro Pro Tyr Thr Ala Val Ala Pro Asp Asp Leu Ala Tyr 2195 2200 2205 Val Val Tyr Thr Ser Gly Thr Thr Gly Arg Pro Lys Gly Val Met 2210 2215 2220 Val Glu His Arg His Val His His Met Val His Ala Trp Asp Arg 2225 2230 2235 Arg Tyr Gly Leu Ala Ala Leu Gln Pro Arg Ala Leu Ser Val Ser 2240 2245 2250 Ser Ile Ser Val Asp Leu Phe Phe Ser Asp Phe Leu Leu Ser Ala 2255 2260 2265 Leu Phe Gly Gly Thr Met Val Ile Cys Pro Gln Asp Ala Val Ala 2270 2275 2280 Asp Gln Val Ala Leu Thr Asp Leu Leu Leu Lys Ser Arg Ala Gln 2285 2290 2295 Leu Met Val Thr Val Pro Thr Leu Ala Arg Ala Val Val Ala Glu 2300 2305 2310 Leu Ala Trp Arg Gly Val Thr Pro Glu Ala Leu Arg Val Leu Met 2315 2320 2325 Val Gly Ser Glu Gly Trp Pro Ala Asp Ala Ala Ala Glu Ile Leu 2330 2335 2340 Ala Gly Leu Ala Pro Gly Thr Val Leu Val Asn Ala Tyr Gly Ser 2345 2350 2355 Thr Glu Thr Thr Val Asp Ser Thr Val Phe Gln Leu Gly Arg Asp 2360 2365 2370 Pro Leu Gly Asp Ala Ala Phe Val Pro Val Gly Arg Pro Leu Ala 2375 2380 2385 Asn Thr Arg Ile Tyr Val Leu Asp Glu Arg Met Arg Pro Val Pro 2390 2395 2400 Thr Gly Val Val Gly Glu Cys Tyr Ile Gly Gly Asp Gly Val Ser 2405 2410 2415 Arg Gly Tyr Leu Gly Arg Pro Glu Leu Thr Ala Glu Arg Phe Leu 2420 2425 2430 Asp Asp Pro Phe Ala Pro Glu Pro Gly Ala Arg Met Tyr Arg Thr 2435 2440 2445 Gly Asp Leu Ala Arg Trp Arg Ala Asp Gly Asn Leu Glu Cys Leu 2450 2455 2460 Gly Arg Val Asp Asp Gln Val Lys Ile Arg Gly Phe Arg Val Glu 2465 2470 2475 Leu Gly Glu Val Glu Ala Ala Leu Ala Arg His Pro Ala Ile Asp 2480 2485 2490 Ser Ala Ala Ala Ala Ile Arg Lys Asp Asp Gly Gly Pro Ala Arg 2495 2500 2505 Leu Val Gly Tyr Val Val Pro Ala Ala Gly His Thr Pro Asp Leu 2510 2515 2520 Ala Glu Leu Arg Ala Phe Ala Ala Glu Arg Leu Pro Ser Pro Ala 2525 2530 2535 Val Pro Thr Ala Tyr Met Val Leu Asp Ala Leu Pro Met Thr Pro 2540 2545 2550 Ser Gly Thr Val Ala Arg Arg Ala Leu Pro Ala Pro Ala Gly Ala 2555 2560 2565 Gln Asp Ala Ala Arg Pro Tyr Thr Ala Pro Gly Ser Ala Thr Glu 2570 2575 2580 Leu Leu Leu Cys Gly Ile Trp Gln Glu Val Leu Gly Val Glu Arg 2585 2590 2595 Val Gly Val His Asp Asn Phe Phe Asp Leu Gly Gly Asp Ser Ile 2600 2605 2610 Leu Ser Ile Arg Val Ile Ser Arg Ile Arg Ala Thr Leu Gly Val 2615 2620 2625 Ala Pro Ser Pro Arg Gln Leu Phe Asp Thr Pro Thr Val Ala Gly 2630 2635 2640 Leu Ala Ala Thr Leu Gly Arg Asp Asp Pro Ser Ala Ala Ala Asp 2645 2650 2655 Val Pro Leu Glu Pro Ala Asp Arg Gly Ala Pro Leu Pro Leu Ser 2660 2665 2670 Ser Ala Gln Gln Arg Gln Trp Phe Leu His Asn Phe Asp Pro Asp 2675 2680 2685 Ser Ser Glu Tyr His Ile Val Thr Gly Leu Arg Leu Asp Gly Asp 2690 2695 2700 Leu Asp Val Ala Ala Leu Arg Gly Ala Leu Asn Gly Leu Val Ala 2705 2710 2715 Arg His Glu Ala Leu Arg Thr Thr Tyr Ala Ala Thr Gly Glu Gly 2720 2725 2730 Ala Glu Gln Ile Val His Pro Ala Gly Glu Val Val Cys Glu Arg 2735 2740 2745 Thr Asp Leu Ser Glu Val Pro Glu Asp Gln Arg Glu Asp Thr Leu 2750 2755 2760 Arg Gly His Ile Asp Arg Ala Ala Ala Arg Pro Phe Gly Leu Thr 2765 2770 2775 Glu Gly Pro Val Leu Arg Ala Glu Leu Phe Arg Leu Gly Ala Arg 2780 2785 2790 Asp His Leu Leu Leu Leu Val Ile His His Ile Ala Thr Asp Gly 2795 2800 2805 Val Ser Met Gln Val Leu Thr Glu Glu Leu Gly Val His Tyr Ala 2810 2815 2820 Ala Ala Leu Asp Gly Thr Pro Pro Ala Leu Pro Ala Leu Pro Val 2825 2830 2835 Ser Tyr Ala Asp Tyr Ala Ala Trp Gln Arg Arg Met Leu Ser Gly 2840 2845 2850 Pro Ala Leu Asp Gly His Leu Ala Tyr Trp Gln Glu Arg Leu Ala 2855 2860 2865 Gly Val Arg Pro Leu Glu Leu Pro Thr Asp Arg Pro Arg Pro Ala 2870 2875 2880 Val Arg Ser Ser Ala Gly Arg Met Leu Leu Ile Glu Ile Glu Pro 2885 2890 2895 Arg Val Ala Ala Gly Leu Lys Glu Leu Ala Arg Arg His Asp Ala 2900 2905 2910 Thr Leu Phe Met Ala Leu Thr Ala Ala Val Gln Leu Leu Leu Ala 2915 2920 2925 Arg Tyr Thr Gly Gln Pro Asp Ile Val Val Gly Thr Pro Ala Ala 2930 2935 2940 Gly Arg Gly Arg Gln Glu Leu Glu Gly Leu Val Gly Leu Phe Val 2945 2950 2955 Asn Thr Val Ala Leu Arg Ser Thr Val Asp Glu Ser Gly Thr Phe 2960 2965 2970 Asp Ala Phe Leu Gly Ala Val Arg Asp Thr Val Leu Glu Ala Phe 2975 2980 2985 Val His Glu Asp Val Pro Phe Asp Arg Leu Val Glu Val Leu Arg 2990 2995 3000 Pro Arg Arg Asp Pro Ser Arg Asn Ala Leu Val Glu Val Phe Val 3005 3010 3015 Gly Leu Glu Thr Asp Arg Ser Ala Pro Pro Ala Leu Pro Gly Leu 3020 3025 3030 Thr Val Thr Glu Val Pro Phe Val Ser Gly Glu Val Ser His Asp 3035 3040 3045 Leu Ser Phe Asp Phe Val Asp Gly Pro Asp Gly Leu Lys Ala Ala 3050 3055 3060 Ile Gly Tyr Ser Thr Ala Leu Phe Asp Asp Gly Thr Val Glu Arg 3065 3070 3075 Met Ala Gly Gln Phe Gln Ala Leu Leu Ala Ala Val Leu Glu Asp 3080 3085 3090 His Arg Ala Leu Ala Asp Ile Ala Pro Ala Asp Glu Ala Glu Val 3095 3100 3105 Arg Arg Leu Ala Glu Leu Arg Gln Ala Ala Pro Ser Glu Pro Asp 3110 3115 3120 Ala Ser Glu Thr Asp Gly Ala Pro Ala Ala Tyr Arg Ala Pro Gly 3125 3130 3135 Thr Ala Ala Glu Arg Ala Leu Ala Glu Ile Trp Ala Ala Val Leu 3140 3145 3150 Gly Val Pro Arg Val Gly Thr Asp Asp Asn Phe Phe Gln Leu Gly 3155 3160 3165 Gly Asp Ser Leu Leu Ser Ile Gln Ala Val Gln Arg Met Arg Gln 3170 3175 3180 Ala Gly Leu Ala Val Thr Thr Lys Asp Leu Phe Val His Gln Ser 3185 3190 3195 Ile Ala Pro Leu Ala Ala Leu Ala Glu Glu Arg Ala Ala Asp Arg 3200 3205 3210 Pro Glu Ala Pro Gln Ala Gln His Asp Asp Ala Gly Thr Ala Gly 3215 3220 3225 Glu Ile Pro Leu Thr Pro Ile Gln Arg Asp Tyr Phe Ala Ala Gly 3230 3235 3240 Pro Leu Ala Pro His His Phe Thr Gln Ser Val Phe Leu Glu Leu 3245 3250 3255 His Ala Asp Leu Asp Glu Pro Ala Leu Arg His Ala Leu Ala Ala 3260 3265 3270 Leu Ile Gly His His Asp Ala Leu Arg Thr Arg Phe Val Arg Glu 3275 3280 3285 Asp Gly Asp Trp Arg Gln Tyr Ala Thr Pro Pro Glu Pro Val Asp 3290 3295 3300 Ile Leu Arg Arg His Asp Leu Ser Gly Leu Pro Glu Ala Gln Arg 3305 3310 3315 Ala Ala Ala Met Asp Glu Leu Ala Ala Ser Ala Asp Ala Gly Leu 3320 3325 3330 Asp Leu Ala Ala Gly Pro Pro Ala Ala Ala Leu Leu Phe Val Phe 3335 3340 3345 Gly Pro Gly Glu Arg Pro Ala Leu Phe Val Thr Ala His His Leu 3350 3355 3360 Val Val Asp Gly Val Ser Trp Arg Ile Leu Leu Glu Asp Leu Glu 3365 3370 3375 Ala Gly Tyr Val Gln Ala Arg Asp Gly Lys Pro Val Ser Leu Gly 3380 3385 3390 Ala Lys Ser Thr Ser Phe Gly Gln Trp Ala His Arg Leu Ala Arg 3395 3400 3405 His Ile Ala Asp Gly Gly Leu Ala Glu Gln Ala Ala Tyr Trp Gln 3410 3415 3420 Ala Leu Pro Asp Gly Thr Glu Val Pro His Asp Gly Ser Gly Pro 3425 3430 3435 Ala Val Val Glu Ser Val Gln Thr Val Thr Val Glu Leu Pro Glu 3440 3445 3450 Asp Thr Ser Glu Val Leu Leu Arg Arg Ser Ala Gly Val Phe Arg 3455 3460 3465 Thr Arg Phe His Glu Val Leu Phe Ala Ala Leu Ala Gly Thr Leu 3470 3475 3480 Ala Arg Trp Thr Gly Glu Arg Gln Val Val Phe Asp Thr Glu Gly 3485 3490 3495 His Gly Arg Glu Asp Leu Phe Asp Asp Val Asp Leu Ser Arg Thr 3500 3505 3510 Val Gly Trp Phe Thr Thr Glu Tyr Pro Val Ala Leu Glu Val Ala 3515 3520 3525 Gly Asp Arg Asp Asp Trp Pro Ala Leu Ile Arg Ser Val Arg Gly 3530 3535 3540 Gln Leu Arg Ser Leu Pro Gly Asn Gly Phe Gly Tyr Gly Ala Leu 3545 3550 3555 Arg His Leu Ser Pro Ala Gly Thr Pro Gly Ala Ala Leu Ala Glu 3560 3565 3570 Arg Ala Pro Ala Gln Val Val Phe Asn Tyr His Gly Gln Ala Asp 3575 3580 3585 Glu Ala Gln Arg Ala Ala Glu Ser Asp Leu Tyr His Ala Phe Gly 3590 3595 3600 Asp Pro Ile Gly Arg Glu Gln Arg Pro Asp Glu Leu Thr Gly His 3605 3610 3615 Pro Val Glu Val Val Gly Ala Val His Ser Gly Arg Leu Arg Phe 3620 3625 3630 Thr Trp Tyr Phe Ser Arg Asn Val His His Arg Ala Thr Ile Asp 3635 3640 3645 Lys Val Ala Glu Asp Phe Ala Asp Ala Leu Arg Ala Ile Ala Arg 3650 3655 3660 His Ile Thr Glu Arg 3665 5 11007 DNA Streptomyces hygroscopicus 5 atgaccagct ctgcagcgga ccagcccgac aacccgaaca ccaccacccc ggcgtcgcgt 60 gccgagcgca ccgccgcgct gccggcccat gtgcaggagc tgctgcgcgc ccggctggcc 120 ggccgggccg ccgcgacggg cggcgcggac accatcccgc gcatcgggca cgacggcccc 180 gtcgcgctct cgcccgccca ggaacgcctc tggtacctgc atgagctcga accggagagc 240 aacgagtaca acaccctgcg cgtcctgcgg ctgcgcggcg acctcgaccc cggcgcgctg 300 tccgcggcgc tgagcgagat cgtcgcccgg cacggcgcgc tccgcaccac cttcggctcc 360 cgcgaggggc acgccgagca gaccgtgcat ccgcccgtac cgacaccgct gccgctcgtc 420 gacctgtcgg cggcggacga cggcgagcgg gacgacgcgc tgcggaccct gctgcagtac 480 gaggcccggc gccccttcga cctgcgccgc ggcccggtgc tgcgggcgca gctgatccgg 540 ctggcggccg acgaccatgt cctcgcgctg gccctgcatc acatcgtcac cgacggctgg 600 tcgatgggcg tgctcaccgg cgagctcacc gcccactacg ccgcgacgct gcgcggtgcg 660 cccgccgtac tgcccgaact tccggtgagc tacctcgatg tcgccgtctg gcagcgtgac 720 cagctgagct ccgcgcggct gcgcgagggg ctcgaccact ggcgccggga gctggccggg 780 ctggtcccgc tcgatctgcc gacgacctgg cagcggccgc cggtccgcac cagcgccgga 840 gcgctgcact ccttcgagat ccccccggcg gtcgccgcac gccttcggga gctgggccgg 900 gaacagggcg ccacgctgtt catggcgctg gtcgccgcgg tccagctgct gctgtcgcgc 960 tggtcggggc agcgggacat cgcggtgggc accgccgcgg ccgggcgcgg ccggaccgag 1020 accgagaatc tgatcggctt cttcgtcaac aatctggtcc tgcgctcccg gatcgatgag 1080 acgcggtcgt tcaccgagct gctgcgggcg gtacgcgcga cggtcctgga cgccttcgcc 1140 cacgaggatg tgccgttcca gcgggtcgtc gaggcgctgc atccggagcg cgacctcagc 1200 cggccgccgc tggccgaggt cgcggtgaat ctgcacaaca ccccgcggac cgacacggag 1260 ctgcccgggc tgcggatcga ggagatgccg ccgccggtgt tcgcctccag catggacctc 1320 tcgttcgact tcaccgagcg cgacgaccgg ctcgaagggc acctcaccta caacaccgat 1380 ctgttcgccg cggacgccgc cgcgcggatg gccgcgcagc tggtcaccct gctcgaggac 1440 ctcacccgcc ggcccgcggt cccggtggcc gggctggccg tgctgccggc cgccgagcac 1500 cgtcgggtga ccgaggagtg gccgcactcc gggcccggcc gggagccgcg taccgcaccg 1560 gagttgttcg ccgcgcaggt cgcgcggacc cctgatgcgg atgcgctggt ctccgacgag 1620 gagacgctca gctatgccga gctggacggc cgtatcaacc agtgggcgcg gctgctactg 1680 gcccggggtg ccgggccgga gacgctggtg gcggtggcgc tgccccgctc cgcgcagatg 1740 gtcacggcga tcctggcgat ccagaagacc ggtgccgcct atctgccgct ggacccgaag 1800 agccccgcgg aacgcaaccg gctgatgatc gaggacgccc gcccgctgct ggtgctgacc 1860 tcggccgggt tcggcgacgg cgcggaactc ggcgcgcccg cactgttcct ggacgacccg 1920 gacacccgcg ccgccgcagg cgagctgtcc gccggcccgc tggcggccgc cgagctgccc 1980 gccccgctgc tgcccggcca cccggcctac gtcatctaca cctccggttc caccggccgc 2040 cccaagggcg tggtggtcac ccacaccggt gtgcacggcc tcgtggcggc gcagtcggcg 2100 cacttccgta ccgggcacgg cgcgcgggtg ctgtcgttcg cctcgctcgg cttcgacgcg 2160 gccttctccg agctgggcat ggcgctgctg tccggcggtg cgctggtcgt cgtcgaccag 2220 gagcggatcc tgcccggaca gccgctggcc gacgtgctgg ccgagcaccg ggtcacccat 2280 gtgacgctgc cgcccagcgc gctgtccgcg ctgaccccgg ggacgctgcc gaaggacctc 2340 accctggtcg tggccggcga ggcctgcccg cccgcggtgg cccgcacctg gtccgcccat 2400 caccgcatga tcaacgccta cggccccacc gagtccacgg tctgcgccag catgagcgcc 2460 gcgctgaccc cggacaccgt cagcggcgac tcggtcccca tcggccgccc gctctccggc 2520 gtccgggtca gcgtcctgga cgaccggctg cgcccggtgc cggccggcgt ccccggcgag 2580 gtgtatctct ccggcgccgc gctggcccgc ggctacctcg ggcggctcgc gctgaccgcg 2640 gagcggttcg tcgccgaccc gtacggtccg ccgggaagcc ggatgtaccg caccggcgac 2700 cgcgcccgct ggctggccgg cggcgacctg gactacctgg gccgcaccga cgaccaggtc 2760 aaactgcgcg gcttccggat cgagctcggc gaggtcgagg ccgtactgtc gcgccacgac 2820 ggggtcggcg cggtggccgc cacggtgcac aaggacgagc ggggcacccg ccgcctggtg 2880 gcgtacgtcg tcccggcgcg ggaggacgcg gccgacccgg cgcggctgcg cgagttcgcc 2940 cgcgaggtgc tgcccgagca catggtgccc tcggtcttcg tgccgctgga ccggctgccg 3000 ctgaacgcca acggcaaggt cgaccggcgg gcgctgcccg cacccgacat ccggcgcgac 3060 gagggcagcg cccgtatcgc gccgcgcacc ccggcggagg agacgctggc gcgcatctgg 3120 tcggaggtgc tgggcgtcac ggacatcggc gtcgaggaca acttcttcga cctcggcggc 3180 gactccatcc tcagccttca ggtggtggcg cgggcccggg ccgccggact gcggctgacc 3240 gccaagcaga ccttcctgcg gcagaccatc gccgatctcg ccgccgacgc cgtcgccgag 3300 accgaccccg ccgcgcacgg tgcggccaac gacggcccgg tcaccggcga gctgccgctc 3360 acccccatcc agcactggtt cttcaactcc ctcggcgaca gcctggagca gttcaaccag 3420 tcgctgtatc tggagctggc cgagggcccc gacctcccgg cgctgcgcgc cgcactggcc 3480 gcgctgaccg aacagcacga cgcactgcgg ctccgcgccg tatccgagga cgggcagtgg 3540 cggctgcacc acgcgcccgc cgagaccggt caactcctcg aacacctcga tctgtccggc 3600 gtctcgcccg acgagcagga cgccgcgatg gcggccgccg tcgacgcggc gcagcgggac 3660 ttccggctgt ccgaggggcc gctgctgcgg gcccggctgt tcaccctcgg cgacgcccgg 3720 ccgccccggc tgtacctcgt cgcgcaccac ctcgtcatcg acggcatgtc ctggcgcatc 3780 ctgctggcgg acctggagac cggctaccgc ctggcggcgg acggccggcc gatcgacctg 3840 gggccccgga ccacctcgtt ccgcgactgg tcgcgccggc tgtcgcgcca tgtcgcggac 3900 ggcggcctgg acgccgaact gccgtactgg aagggcgtac aggacgcggc gcgcgagacc 3960 gccccgctcc ccgtcgacac cggcgggctc cccgaccgcc agggcgccca ggaggagccc 4020 ggcgagaaca ccgccgggtc ggcccgcacc gtctccgtac agctgtccgc cgcgggcacc 4080 gaggcgctgc tgcggcaggt gcccgaggcc taccgcaccc agatcaacga cgtcctgctc 4140 agcgcgctgg gccgggtgct gaccgactgg gcgggcggcg agcgggtgct gatcgccctg 4200 gagggccacg gccgcgagga gctcttcgac gaggtggacc tcacccgcac cgtcggctgg 4260 ttcaccaccc tcttcccggt cgccctgcgg atgccggccg accgggactg gggaacggtc 4320 ctcaagagcg tcaaggaaca gctgcgggcg gtgccccaca acggactcgg ccatggcgcg 4380 ctgcgtcatc tggcagggcc caactcccct ctggaggacg gtccggagcc cgaggtcagc 4440 ttcaactacc tcggccagct ggacgtgtcc gccgaccgca ccggcctcgc ccgcgccatg 4500 ctcaccagcg agggcgccga gcgggccgcc ggccagcacc gtgcgcagct gctggagatc 4560 aacggcgtgg tcaccggcgg ccggctggag ttccactgga cgtactcggt gaaccggcac 4620 cgcgcagaga ccgtcgaacg gctcgccgcg ggcttcatga ccgcgctgga agcgatcgtg 4680 gcgcactgcg ccgcccccgg ttccggcggc gccaccccgt ccgacttccc gctggccgcc 4740 ctcgaccagg ccaccgtcga caagatcgcc ggcgacggcc gcacggtcga ggacatctac 4800 ccgctcaccg cgatgcagag cggcatgctc ttccacgcgc tgagcgagtc cggacgcgac 4860 ccgtacaccg ggcacttcgg cgtccgcgtg gacggcatca ccgacccggg ggcactggcc 4920 gcggcctggc agcaggtcgt cgaccggacc cccgccctgc gcaccgccat cgtctggcag 4980 gacgtcgcgg aaccccttca ggtggtgcac gcggccgccc gtgtgccggt cacccatcac 5040 gacctgcggt ccctgaccga gcaggaacgg caggccgccc tggaccggct gtgggagcgg 5100 cgcgaggaga ccgtcatcga tctcgccgtc gcgcccgcgc tgcggctgac cctcgtccgg 5160 ctcaccgaca gcgccgtcca gatgttctgg acctcgcacc acatcctgat ggacggctgg 5220 agcttcgccg ggctgctgtc ggaggtgtgc gcccagtaca ccgcgctgac cggcggcccc 5280 cgcgtggcgg ccccggcccg ccgcccgtac cgcgactatg tcggctggct ggccgaacag 5340 gaccagccgg ccgccgaggc gcactggcgc tcggtggtcg acgggttcac ggtgccgacg 5400 ccgctgccct acgaccggca gccggtgaag gcacacggca cccggtcctc gcgtgaggtg 5460 cggctgcagc tgtccgccga gcgctccggg cggctgtccg aggccgcccg gtcggcgcgg 5520 ctgaccgtca acacgctggt gcagggcgcc tgggcgatcc tgctggcgcg ctacggcggg 5580 gtgcgcgacg tctgcttcgg caccaccgtc tccggccgtc ccgccaccct gcccggcgcc 5640 gagtcgatgg ccgggctgtt catcaacacc gtgccggtac gggcgaccat cgacggtgcc 5700 ggtgccggcg acggcgccgc caccggcacc gtcgagtggc tgcggcggct gcagagcgag 5760 cagctcgact cccggcagca cgagcatgtc tcgctggcgc agatccagcg ctggagcggc 5820 gtaccggccg gcaccaacct cttcgacagc atcgtcgtct tcgagaacta cccctacgac 5880 agcgatgcgg ccgccaagta cgggctgacc ctcggcacgt tccagggcga cgaggtcacc 5940 aactacgccc tcaccctgac cgcgtacgtg gccgacgagc tgcatctcaa cctcggctac 6000 gacccggatc tgttcgacga ggcgaccgtc gagcggatgg ccgggcatct ggcgacgctg 6060 ctcgacgccg tcgccgccgc cccgcacacc ccggtggacg acctcccgct gctcgatgcg 6120 gccgaacacc accggcttct caccgagtgg aacgacaccg ccgccggctt cccgccgccg 6180 cggccggtcc atgagctctt cgccgagcgg gccgcccgta ccccggacgc ggtggcggtc 6240 agcgacgcca cccggcagct gaccttcgcc gagctggaga cccgcgccaa ccaactggcg 6300 caccacctgg ccggtctggg cgtggcgccc ggcacgctgg tcggggtgtg cgccgaccgc 6360 ggggtggacg ccgtggtggc gctgctgggc gtgctgcggg ccggcggtgc cttcgtaccg 6420 ctggaccccg cctatccggc ggagcggctc caggtcatgc tggaggacgc cgcggtgccg 6480 gtcgtggtga ccgaggagcg gctgctggac cggaccgccg ggcacgacgc gacgacggtg 6540 tgcctggacc gcgatctgcc gctgctggag gagctgccgg cccgcccgcc gtacaccgcc 6600 gtggcaccgg acgacctggc gtatgtcgtc tatacgtcgg gcaccaccgg gcgccccaag 6660 ggcgtgatgg tcgagcaccg gcacgtccac cacatggtgc acgcctggga ccggcgctac 6720 gggctcgccg cgctgcaacc gcgcgcgctg tccgtctcca gcatctccgt cgacctgttc 6780 ttcagcgact tcctgctctc cgccctcttc ggcggcacga tggtgatctg tccgcaggac 6840 gccgtcgccg accaggtggc gctgaccgat ctgctgctca agagccgggc ccagctgatg 6900 gtgacggtgc cgacgctggc ccgcgcggtg gtcgccgagc tcgcctggcg cggtgtgaca 6960 ccggaggcgc tgcgggtgct gatggtgggc tccgagggct ggccggccga tgccgcggcc 7020 gagatcctgg ccggtctcgc gccgggcacg gtgctggtca acgcgtacgg atcgaccgag 7080 accacggtcg actccacggt cttccagctc ggccgcgacc cgctgggcga cgccgccttc 7140 gtaccggtcg gcaggccgct cgccaacacc cggatctatg tgctggacga gcggatgcgc 7200 ccggttccca ccggcgtcgt cggcgagtgc tacatcggcg gcgacggagt gtcgcgcggc 7260 tatctgggcc gcccggagct gaccgccgag cgtttcctcg acgacccgtt cgcgccggag 7320 ccgggcgccc ggatgtaccg gaccggtgac ctcgcgcgct ggcgggccga cggcaacctc 7380 gaatgcctcg gccgggtcga cgaccaggtc aagatccgcg gcttccgggt ggaactcggc 7440 gaggtggagg ccgcgttggc ccgccacccg gcgatcgact cggcggccgc cgcgatccgc 7500 aaggacgacg gtgggccggc ccgtctggtg ggctatgtcg tgcccgccgc cggccacacc 7560 cccgacctgg ccgagctacg ggccttcgcc gccgaacggc tgccgtcgcc cgccgtcccc 7620 accgcgtaca tggtgctgga cgcgctgccg atgacgccga gcggcaccgt cgcccggcgt 7680 gcgctgccgg ccccggccgg ggcgcaggac gccgcccggc cctacaccgc gccgggcagc 7740 gccaccgagc tgctgctctg cggtatctgg caggaggtcc tgggcgtcga acgggtcggc 7800 gtgcacgaca acttcttcga cctgggcggc gactcgatcc tcagcatccg ggtcatctcc 7860 cggatccggg ccacgctggg cgtcgccccg tcgccccgcc agctcttcga caccccgacg 7920 gtggccggtc tcgccgccac cctcggccgg gacgacccct cggcggccgc cgacgtcccc 7980 ctggagccgg ccgaccgcgg cgcaccgctg ccgctgtcgt ccgcccagca acgccagtgg 8040 ttcctgcaca acttcgaccc ggacagcagc gagtaccaca tcgtcaccgg gctccggctc 8100 gacggtgatc tggacgtcgc ggcgctgcga ggggccctga acgggctcgt cgcccggcac 8160 gaggcgctgc gtaccaccta cgcggccacc ggcgagggcg ccgagcagat cgtgcacccc 8220 gcgggcgagg tggtctgcga gcgtacggat ctgtccgagg tgcccgagga ccagcgcgag 8280 gacaccctgc gcgggcacat cgaccgcgcc gccgcccggc cgttcggcct caccgagggc 8340 ccggtcctgc gcgccgaact gttccggctc ggcgcccgtg accatctgct gctgctcgtc 8400 atccaccaca tcgccaccga cggtgtctcg atgcaggtgc tcaccgagga gctcggcgtc 8460 cactacgccg cggcgctcga cggcacaccg cccgccctgc cggcgctgcc ggtctcctac 8520 gccgactacg cggcctggca gcgccggatg ctgtccggcc cggcgctgga cggccatctc 8580 gcctactggc aggagcggct ggccggtgtc cggccgctgg agctgcccac cgaccggccc 8640 cggccggcgg tccgcagctc cgcgggccgg atgctgctga tcgagatcga gccgcgggtg 8700 gccgcgggcc tcaaggaact ggcccgccgc catgacgcca ccctgttcat ggcgctcacc 8760 gcggcggtcc agctgctgct ggcccgctac accggacagc cggacatcgt cgtgggcacc 8820 ccggccgccg gccggggccg gcaagaactc gaggggctcg tcgggctgtt cgtcaacacg 8880 gtggcgctgc ggtccaccgt cgacgagagc gggaccttcg acgccttcct cggtgcggtg 8940 cgcgacaccg tcctcgaagc gtttgtgcac gaggacgtgc cgttcgaccg gctggtcgag 9000 gtgctgcgac cgcgccgcga ccccagccgt aacgcactgg tggaggtgtt cgtcggactg 9060 gagacggacc ggtcggcgcc gccggcgctg cccggactga cggtgaccga ggtcccgttc 9120 gtcagcggcg aggtcagcca tgacctcagc ttcgacttcg tcgacgggcc cgacggcctg 9180 aaggcggcca tcggctacag caccgcgctg ttcgacgacg gcaccgtcga gcggatggcc 9240 ggccagttcc aggcgctgct cgccgcggtc ctggaggacc atcgcgcgct cgccgacatc 9300 gcacccgcgg acgaggccga ggtgcggcgg ctcgccgaac tgcggcaggc cgcgccctcg 9360 gagcccgacg cgtcggaaac cgacggcgcg ccggccgcct accgcgcgcc cgggaccgct 9420 gccgagcggg ccctggcgga gatctgggcc gccgtgctgg gggtgccgcg ggtcgggacc 9480 gacgacaact tcttccagct gggcggcgac tccctgctca gcatccaggc ggtgcagcgg 9540 atgcggcagg ccggcctggc ggtgaccacc aaggatctgt tcgtccacca gagcatcgcc 9600 ccgctggcgg ccctcgccga ggaacgggcg gcggaccggc cggaggcccc ccaggcgcag 9660 cacgacgatg ccgggacggc gggcgagata ccgctcaccc cgatccagcg cgactacttc 9720 gcggccgggc cgctcgcccc gcaccacttc acccagtcgg tgttcctcga actgcacgcc 9780 gatctcgacg agccggcgct gcggcacgca ctggccgcgc tgatcggcca ccacgacgcc 9840 ctgcggaccc gcttcgtacg cgaagacggc gactggcggc agtacgccac cccgccggag 9900 ccggtggaca tcctgcgccg gcacgacctg tccgggctgc cggaggctca acgggccgcc 9960 gccatggacg agttggcggc ctcggccgac gccgggctcg atctggcggc cgggccgccg 10020 gccgcggcgc tgctgttcgt cttcgggccc ggggagcggc cggcgctgtt cgtgaccgcg 10080 caccatctcg tcgtcgacgg cgtctcctgg cggatcctgc tggaggacct ggaagccggc 10140 tacgtccagg cccgcgacgg gaagccggtg tccctgggcg ccaaaagcac ctcgttcggg 10200 cagtgggcgc accggctcgc ccggcacatc gccgacggcg gcctcgccga gcaggccgcc 10260 tactggcagg cgctgcccga cggcaccgag gtcccgcacg acggctcggg gcccgcggtg 10320 gtggagtccg tgcagaccgt cacggtggag ctgccggagg acaccagcga ggtgctgctg 10380 cgccggtccg ccggggtctt ccggacccgc ttccacgagg tgctgttcgc cgcgctcgcc 10440 ggcaccctgg cccggtggac gggcgaacgc caggtcgtgt tcgacaccga gggccacggc 10500 cgggaggacc tcttcgacga cgtcgatctc tcccggaccg tcggctggtt caccaccgag 10560 taccccgtcg cccttgaggt ggccggcgac cgggacgact ggccggcgct catcaggtcg 10620 gtacgcggac agctgcggtc gctgcccggc aacggcttcg gttacggcgc gctgcggcat 10680 ctgagcccgg ccggcacccc gggtgccgca ctcgccgaac gggccccggc ccaggtggtg 10740 ttcaactacc acggccaggc cgacgaggcg cagcgcgcgg cggagagcga cctctaccac 10800 gcgttcggcg acccgatcgg ccgggagcag cggcccgacg agctgaccgg gcacccggtg 10860 gaggtggtgg gcgccgtgca ctccgggcgg ctccgcttca cctggtactt ctcgcgcaat 10920 gttcatcaca gggccaccat cgacaaggtg gccgaggact tcgccgacgc gctgcgcgcc 10980 atcgcccggc acatcacgga gcggtga 11007 6 972 DNA Streptomyces hygroscopicus 6 7 1416 DNA Streptomyces hygroscopicus 7 atgaggcgcc gtacattcac ggccggggcc gcggcggggg ccgccctgtt ggccggggcc 60 ggatgcgacg cgcccggtgg cgccgggcac ggagacggag agcacggaga cggagacggc 120 ggtgacggcc ggggcagcgg cggccgtcgc ggcgcccccg tcaccctgac cgtcctcacg 180 cactacgcga gcgaaccgct cgcctcggcg ctgcaaaccg tcgtcgacgc ctggaacgcg 240 acgcaccggc gcatcacggt gcgcacggcc gcggtcaagt tccccgatct gctgacgact 300 tacatggtgc ggcaggccgc gggccagggc gccgacatca tccatccgta ctgcctgtgg 360 accggccagc tggtgcgggc cggagtactg cgcccggtgc cgcccacggc cacgcggcag 420 atccgccggg acttcacccc ggcggccgtg gcggcgtcgt ccgtgcacgg cacgctctac 480 ggctacccca cggaggtgca gacctacgcg ctctactaca acaagcggct gctgcggcag 540 gccggtatcg acggaccgcc gggtacctgg caggagctgg aggacgcggc gtaccgcacc 600 gcccgccgcg accgccacgg caacatgctg gtgcagggct tcgggctgtc acgggccgac 660 gatgcgagcg tcgtggggca gacgctggcc ctgctggccg cgcgcggcgg cacattcctc 720 acctccgacg gacggcggac cgccatcggc tcggcggccg ggcgggatgt gctcgacctg 780 gagcgccggc tcatcgaccg cggcgccgcc gactccggta tctcgctcct gagggccttt 840 ccgtccggcc aggtggcgat ggcgatcaac gccggctggt ggacggcgag tctgcgcggc 900 gcgatggggg cggactaccg cgaggtcggg gtggcgccgg tgccggggcc cgcaccggac 960 gaccgcggca cgctcgccac gggcttcctg ctcggcgtga acgcgaagag cagatatccg 1020 ggggaggcct gggagttcct gcactggctc aacggtgtgc gggcgccggc cgcccggccg 1080 gggcgcagcg cgggaggagg cgtcccggtg tccaggatga gcgcgctcca ggtgtcggtc 1140 ggttcgatga ccgggcgggc ggacgatatg cgggcgctgc tgggaggcga cggcgagagg 1200 gacgccgacg gccgtggtgg cggcgaccgg aacctcggcc ccttcctgga cgcgctgcgc 1260 tacgccgtcc cggaaccgaa cggtccgcgc gcgcagcagg ccaaatcgct gctgcgcaag 1320 aacatcgagg acgtctggac gggccgggcc tcggtcgatg ccgcgctgcg caccgccggc 1380 cggcagatcg accaggaact gtcccggccc tactga 1416 8 912 DNA Streptomyces hygroscopicus 8 atggcttcag ccggcggtgg tcccgtcagg gcggcccggc ggcggcagac cgccgtcgcc 60 tatctgttcc tgaccccggc cctgctgttc ttcgcggtct tcctcgccct gccgctgctg 120 ttcgccgtgc tgctcgcgca gtcgcgctgg gccggcttcg acctcgccga tatcgagccg 180 gtcgggatgg ccaacttcac cgacctcttc gcccgcggct cgaccttcct gacgcccgtc 240 ctcaccaata cgctgctgta cgccgtcggc accgtcgcga tcgccctcat cggcgcgctc 300 accctcgcga cctgcatcga caaccttcgt ttccaggggc tttggcggac cctctatttc 360 ctcccgatcg tgacgaccgt ggtcgccgtc ggcaacgtat ggaagtacat gtacgcaccg 420 ggcgggctga tcaacggagt gctcaacggt ctgggtctgc attccgtggc ctttctccag 480 gaccccggca cggcgctgcc gtccgtcgtc gtggtgcagg catgggcctc catgggaacc 540 gcgatcctga ttctcaccgc gggcctgaag tcgatccccg aggcctatta cgaggccgcc 600 gagctggacg gtgccggcgc cggcaccgtt ttccggcgca tcaccctgcc gctgctccgg 660 ccgtccctgc tcttcgtctg catcacccaa ttcatcaccg gattacagtc gttcgccctg 720 atcaatgtca tgacggacga cggcggaccg ggcgatgcga cgaatgtcgc ggccctggag 780 atgtatcagc aggcgttcag gtacggcgac tggggaatcg ccagtgccgc cgcctttgtg 840 ctgttcctgg tcattgtcgc gatcacggtg gggcagctct ggctgttccg ccggaaaggc 900 ggggaatcgt ga 912 9 891 DNA Streptomyces hygroscopicus 9 gtgagccggt ccgctcgtcg gcgcccgggc cgtcgccgcc cctggggctc gtacgccgtg 60 gtcgtcgccg gggccgccct caccctcgtc ccgttcctcg acatgctgct gacctcgttc 120 aaggggcccg gcgaatacgg gaaactcccc taccgattcc tcccccaggc gttcgacctt 180 tccaactacc gtgccgcgat ggagcagctg gatctgcccc tgcttttccg caacagcgtc 240 atcgccaccg ccgtcatcac cggatccatc ctggtgacct ccgcgctcgc cggatacgcg 300 ctggccaagc tgcgcttccc cggccgggag gtgatcttcc gcctggtcct gtccacgatg 360 atgttcccgc cgttcctctt cttcatcccg cactttctga tcctggtgca ctggcccggc 420 gccggcggca acgacctgct gggccgcggc ggggcgggcc tcaccgtgag ccttgcggcg 480 ctggtcatgc cgttcctcgt atccggtttc gggatctttc tgatgcggca attcatggtc 540 tccatcccgg acgaactgct ggaggcggcc cgtatcgacg gcgccggcga attcgccctc 600 tggtggcgca tcgtgctgcc ccagacgaaa ccggtggcgg tcaccctcgc gctgctcacc 660 ttcgtcaacg cctggaacga atacatctgg gcgctgctga tctccaccgc caatccgcgg 720 ctgatgacgc tgccggtggg catccagatg ctgcagagct atctcgaccc cgaccgtatg 780 gtcccggtca tgatggccgg cctggtgctg agcatcctgc cggtcctgct gctcttcctg 840 ctgctccaga agcactacct gcgcggggtg atgctcagcg gcctcaagtg a 891 10 1278 DNA Streptomyces hygroscopicus 10 atgagttccg gtttctcctg ggctgttgtg gcaactgtgg tgagagtttc tgacccctca 60 ggaggaacca tggcttccga ctcgtcgtcc ccgacgccga tgccggccgt gtcgttgatc 120 gtgccgacgt tcaacgaggc agcgaacatt gatgagttgc tcgacggcgt gtgtgcggcg 180 atcccggcgg gtctggaggt cgaggtgctg ttcgtcgacg actcgacgga tgacacaccg 240 gaagtcatcg agaaggcggc cgcgcgctgt ccgatgccgg tgtcggtgct gcaccgggag 300 gttcccgaag gggggctcgg cggagcggtg gtggccggga tcgcccgtac gagtgcgccg 360 tggatcatgg tgatggacgc cgatctgcag catccgccgg agctgctgcc gcagttgatc 420 gaggctggtg agcgcgcggc ggccgagttg gtggtggcca gcagatacgc ggagggcggg 480 agccgtggcg ggctggccgg cgggtaccgg gtggccgtgt cgggggcgtc gaccgcgctg 540 accaagtcgc tgttcccccg gctgctgcgc ggggtctccg acccgatgag cgggtgcttc 600 gccatccggc gggaggcggt cgaccgcgcc gtacaggagg gcgagacccg gcaggaaggg 660 gggctgcggc cgctcggcta caagattctg ctggagctcg cggtgcgctg ccggccgcgc 720 ggggtggtgg aggtgccgta cgagttcggg gagcggttcg ccggcgagtc gaagtcgacg 780 gtgcgcgagg ggctgcggtt cctgcggcat ctggcggagc tgcggaccag cgacaagcgg 840 gcccggatgg tggccttcgg gctgatcggg gtgtcgggct tcgtaccgaa tctgctggcg 900 ctgtgggcgc tgaccggtgc cacgaccctg cattacgcgg tggcggaggt gctggccaat 960 cagctcgggg tgctgtggaa cttcgccctg ctggacttcc tggtctaccg gagcgggaaa 1020 ccggggcgcg gggccggccg gctgctgggg ttcgcggcgc tcagcaacgc ggatctgctg 1080 gcgcggatcc cgttgatgat gctgttcgtg gagcaggccg ggatggggcc ggtgccggcg 1140 accgtgatca gtctcgtggt ggtgttcgcg ctgcggttcc tgctggtcga cacgttgatc 1200 taccggcgca agggggcggc tgccaagcgc gcggcggacg cggcggtcac cggcgggcag 1260 ggcgagcgcg ctgcttag 1278 11 1413 DNA Streptomyces hygroscopicus 11 gtgaccgtcg tgctgctcgc cctgtccgac aggtacggct acaacgtcga cgagctgtat 60 ttccggctgc tcggcgaaca cggctgggcc tggggctaca ccgaccagcc gccgctggtg 120 ccggcgctgg tgcacgccac cgcccaggtc ctcggcgact cggtgtgggc gatccgggtg 180 ccggcggcgc tgtgcgcagg ggccgtggtg ctgctcgggg cgctgatcac cgccgaactc 240 ggcggcaccc gccgggcaca gactctttcc gccctgggtc tgggcagctc gttcctggtg 300 ctcagcgtcg gccacatcat ggtgaccacc accctggaca tgctcgcctg ggccgcggtg 360 ctgctcttcg tcctgcgggc gctgctgcgc tcggagggca agtggtggct gtgggcgggg 420 gtggtgctgg gcctggcgct gtacgccaag tacatcgtgg cgctgctgcc ggtggcgctg 480 ctggccgggc tcgcgctggt cggtccgcgg aaggtgttcc gtgaccggtg gctgtacgcg 540 gggatcgcgt tggcgctggc catcggctcg ccgaacctga tctaccaggc cacccatgac 600 ttcccgcagc tgcagatggc cgatgcgctg ggtgccaccg acggcccgat gaaccgggtc 660 atcttcgtgc cgagcctggt gatcctgctc ggtccggtgc tgaccgtggt gtgggtcgcg 720 gggctggtga agctgctgcg tgacccggca tggcggccgg tgcgggcgct ggcaccggcg 780 ttcgtggtcg gggtggcgct gaccctctac ggcggtggcc ggcccgacta cgtcggcggg 840 ttcctgatcg ggctgttcgc ggccggggcg gtggccgccg accggtggat ggggcggcgt 900 acgtcccggc gggtgctgct gtgcgccgga ctggccgcca gtgcggtgct ccaggtgctg 960 atggcgctgc cggtgctgcc gcagagctcc ccgttcgtgc cgctgaacaa catctccctg 1020 gagagcgtcg gctggccgcg gctcgccgag caggtgcgca cggcgtacga ggcgctgccg 1080 cggcagcagc gggagcgggc cgtggtgctc gccgacaacc tcggggagat cggcgcgctg 1140 gaccgctacg ggcacgggct gcccgcggtg ttcagcggcc acaacgaact gcacaagtgg 1200 ggcccgccgc cggagcgcgc cgatgtggtg gtcgcggtgg gcgtgccccg gtcccggctg 1260 gccgcggggt tcacctcgtg caccgtcgtg ggacgggtcg acaacggcgt cggcgtcgag 1320 aacgccgagc agggcagacc gatcacggtg tgccacggcc gcaaggcttc ctgggcccga 1380 ctgtggccct cctaccacta cttgagcggc tga 1413 12 1530 DNA Streptomyces hygroscopicus 12 atgacgacat ccctcgacag ggattccagg gcggccgcgg ccgggccggg ggtgttccgc 60 ccggcgccga tggcgtggcg gccggtcgcc gtggtggtgg ccgcgctggc cgtgctgttg 120 ttcgccttcg ccggcgaata cggctaccac gccgacgagt tgtacttccg gctgctcggg 180 gtgcacggct tcgcctgggg ctatgtggac cagccgccgc tgctgccact ggccgtacgg 240 acctcgatgg agatcttcgg cgacagcatg tgggcgatcc gggtgcccgc cgtgctgtgc 300 gcggcggccg tgaccgcgct cggcgcgatg atcgccgccg agctgggcgg ttcccggcgg 360 gcccagacgc tgaccgcgtt cggggtggcc acctcgacga tggtgctcag cttcggccac 420 tggatcctca ccaccagctt cgacaccgtg gcgtgggccg cggtgctgct gttcgtgatg 480 cgggtgctgc tgcgcggcga gagcaagtgg tggctgtggg ccggggtggt ggtcggtgtc 540 gcgctgtacg ccaagtacat cgtgctgctg ctgccggtgg cgctgctggt ggggctggcg 600 ctggtcggtc cgcggaaggt cttccgcgac gggaagctgt acgcgggcac ggcgctggcg 660 ctggtcatcg gctcgccgaa cctgatctac caggccaccc atgacttccc gcagctgcag 720 atggcggagg ggctggcggg caccgacggc gaggcgaacc gcgccatgtt cgccacgaac 780 ctgatcctgc tgttcggccc cgcgctgttc gtgctgtgca tgatcgggct ggtcaagctg 840 ttccgggtgc cggagtggaa gcccgtacgg acactggccg tcggctatct cgcggccacc 900 gcggcgtcgt acctcatcga gggcggccgg ccggactaca ccggcggact gctgatcgcg 960 ctgctggccg ccgggtgtgt gacggccgac cggtgggcgg gcgcccgcaa gctgcggctc 1020 tcggtgctcg cggtctcgct gacgctcagc accgcggtgc agatgctgct gtcgctgccg 1080 gtgatcccca agagctcgct gcgcgacttc cagatcgcca gcatggcgct ggagacggtg 1140 ggctggcccc gtctggtcca gcagaccgag gcggcctacc gcgcactgcc ggccgcggac 1200 cgcgaccgcg cgatcgtgct caccgagaac ttcggcgagg cgggcgccct ggaccactac 1260 gggcacgggc tgccgaaggt gtacagcggc cacaacgagc tgtaccactg gggcccgccg 1320 ccgcagcgcg ccgaggtggt ggtcgcggtg ggcatcgacc ggaaccggct gtccgccgac 1380 ttcaccagct gcaaggtcgt cgaccacatc gacaaccgcc tgggcatcga caatccggaa 1440 cagggcgtgc cgatcacggt gtgccacggc cccaagaagc cctggtccgc gctgtggccg 1500 acctaccggc actacaacgc ctatctgtag 1530 13 1014 DNA Streptomyces hygroscopicus 13 atgagtaccg aggtttccga ggcgcaggcg cgacgcgccg tggcagacat cttcaactcg 60 acgctggctt cttcggccat cggcgccgcg tgggagctcg gagctcttga cgagctgcgg 120 gagaacggca agttggatgt ctccgatttc gccgtacgcc atgatctgca cgagccggcg 180 gtggtcggca tgttcaccgc gctggcgagt gtgggaatcg tgcggcgcga gggcgccacc 240 gtcgtcgtcg gcccgtactt cgacgaggcc aatcaccacc gttcactgtt ccactggctc 300 aatcagggca gcggcgagct cttccgccgc atgccgcagg tgctgccgaa cgagaaccgc 360 acaggaaagt tctaccagcg ggacgcgggg gcgatcagct acgcgtgccg cgagatcagc 420 gagcgctatt tcgacccggc gttctgggcc gcggtcgacg gtctgggtta cacccccacc 480 accgtcgccg acctggggtc cggcagcggt gagcggctga tccagatcgc ccggcggttc 540 cccggcgtcc gcggcctcgg cgtggacatc gccgacggcg cgatcgccat ggcggagaag 600 gaggtggccg ccaagggatt cggcgaccag atctccttcg tgcggggcga cgcgcgcacc 660 atcgaccagg tctcggcgcg cggggaattc gccgaggtcg atctgctcac ctgcttcatg 720 atggggcacg acttctggcc ccgcgagaac tgtgtgcaga cgctgcgaaa gctgcgcgcg 780 gcattcccga atgtgcgccg gttcctgctc ggcgacgcca cccgcaccgt cggtatcccc 840 gaccgcgaac tccccgtatt caccctggga ttcgagttcg ggcacgacat gatgggcgtt 900 tacctgccga ccctcgatga atgggacggg gtattcgaag agggtggctg gcgctgtgtg 960 aagaagcacg ccatcgactc gctgtcggtc tccgtggtct tcgaactcga gtaa 1014 14 1320 DNA Streptomyces hygroscopicus 14 atggaccacg aaagcctgca cagcaccctg accgaactgg cggcccgcca tcgggtgccc 60 ggcgcgcagc tcgccgtcat ccacgagggg gaacggttcc tggtgcacac cggagtgtgt 120 gacaccgcct ccggagcccc cgtggagcgg cacaccgcct tccccgtcgg ctcgctgacc 180 aagccgttca ccgccgccct cgcgatgatc ctggtggccg acggggacgt ggacctggac 240 gagccgctga gggggcagct gccggagttc ggggcgggcg aactcgtcac cctccggcag 300 ttgctcagcc acacctcggg cctgccctcc gatgtgccgg agggcagcga cgaggccggc 360 ggcggcgacc gtgcccgctg ggtggcccgg tactgccgta cggcggatct cacgcatgcg 420 cccgggacgg tcttctcgta ctccaacatc ggctatgtcg tcgtgggccg gctcatcgag 480 gcggtcaccg gcatgagctg gcaggaggcg atcagcgcga tcctgctcga acccctgggc 540 acccggcccg cgttcgtcgt cggagccccc gccacccgtc cggtggccac cgggcacgcc 600 gtccaggcgg tccgcgaccg ggtggtgccg ataccggacc aggatcttcc cgaggtcgag 660 atgcccaacg gggcgctggc gctgagcgcc gaggacctgg tcggcttcgc ccggctgtac 720 ttcgccggct gcccggaccc tcagccgctg gaccgggcga ccgccgacga catgtgcttc 780 gaccagctgg cctcgatcgc catcggcccg tacggcatgg ccgacggctg gggcctgggc 840 tgggcgaggt tcgacgacgg tgcggcggac gtctacggcc acaacggcac cggcgacggc 900 acctcctgtc atctgcgctt cgacccggcc aacggctccg cggtcgcgct gaccgccaac 960 gccaacaccg gcgcccagct gtgggacgcc ctggtgcccc ggctgcgggc catgggtctg 1020 gcggtcggcg accgcccggc gcccgagccg cccaccaccc cgccgccggt cccggacgac 1080 tgtccgggcc gctacaccaa cggcgacacc gagttcgtgg tgcagcccgg cgccgacggc 1140 gggctgctgc tgagcttcgg cggggcgccg cactcggagc tgctgtgctc ccccgatctg 1200 cgcttcacca tgcgggagct gggcagcggt gcccggtccc cgggccgctt cgtgaccgat 1260 cccgccaccg ggcggatcgg ctacctccag atcaccgggc gactcgcccc ccgacgctga 1320 15 1353 DNA Streptomyces hygroscopicus 15 atgaccacgg cccccacgga cgcggagacg gcacgcggca gcgcggccgt cccgctgtcc 60 cgcaaccgcg actacaacat cctgtggtcc agccagctga tgtccgaact cgccatggag 120 atggccgcgg tagccgtgcc gctgctgatc ctcgcccggc acggctcacc gctccagctg 180 ggcctggcct cctccgcgat ggcggccgcg cacatgatct cggtggtgcc ggccggggtg 240 atcgcggacc gctgggaccg ccgccggctg atgctgggct gccaggtgct acgggtgctg 300 ggcatggtga gcctggccgg cgcgctgctg ctggaccggt acgcgttctg gcatgtgctg 360 ctggtcgtgg tgctggaggg cttcctcggc tcggtcttcg accccgcgga acatgccgcg 420 ctgccccagg tggtgccgcc cgaccagctc tccacggcgg tggccagaaa cgcggcgcgc 480 ccctacatcg ccaccctcgt ggggccgggc gtcgccggtt tcctcttcag cgccctgccg 540 ctcgggccgt tcgcgaccaa tgcggtgatg ttcgcgctgt cgtccgtggc gctgtgcttt 600 ctgcggctgc cccgggggcg gtccgccgtg gtccggaccg gcgacgggcc cgacagcgcc 660 ggagcggacc acgacaggcc ggaccacgac ggacgggacg acgcgaacga cgacactgcg 720 ccgcggcccg ggggcgccgc ccaggacttc gctgccggct tccgctgggt gctggggcag 780 ccggtgatcc gcaccacgat ggcctggatg atgatcacga acctggtctt cagctcgctg 840 ctgatcgtgc tgctcgcgct ctcgggcgag gacaaggtcg gcgccggtga gctgggtctg 900 acgatggcct gcttcggcgc cggcggactg ctcggcgggc tcttcgcggc ccggatgcac 960 gccgccgccc ggccaccggt gatcctcctc ggcttcacct ggaccgccgc cctgggcgcc 1020 gccctgatgg cggtggtgcc caccggtctg ccccagggag cgctgctcgg cctgatggcg 1080 ctcttcgccc cgctcgccaa caccaccgtg ctgacctacc agttgaccgt caccccggac 1140 gagctgcggg gccggatgag cggcgtcgcc gggttctgct cggggggcgc cggtgtcctg 1200 gggcccgcgc tcggcggtgc gctgacgggg gcggccggcg ggggcgtgac ccccgtactc 1260 atctgcgccg gctgcctggt cctggtcgct gtcgcggcca ccgcgagccc cacgctgcgg 1320 cggtttcccg acatcgcgga ccggcagccc tga 1353 16 1227 DNA Streptomyces hygroscopicus 16 atgcagaccc cccacacacc gagccaggca cagtcccagc cacggcaaaa gccgcagccg 60 ccgtcgcagt cgcagtcgca gtcgcagccg aatctgaggt ccctgaccgg attacggttc 120 ctgggcttat tacccgtctt cctcacccat gccgcgttcg agggcgtctt cagcgacgcg 180 gacgtgagct ggggcttcct cgacgcgatg gggaacaccg gctatgccgc ggtctcgttc 240 ttcttcgtgc tgagcggctt tgtgatcacc tggtcctacc gctcccgcga caccacccgc 300 acgttctggc gccgacgcgc cttccgggtc ttccccaacc atctcgtggc ctatgtgttc 360 gcgctggctc tgatgctcgc ggcgggcgcc gccttcgacg cccccgccct gatctcccag 420 atgttcctgg tgcacgcatg ggtgcccgac ccgctgttca tcgacaccgg caacacggtg 480 acctggtccc tcggggtcga tgtggtgttc tacgggctct tcccggtgct gctcgtgctg 540 gtgaacaaga tcaagccaac ccgtttgtgg tactgggccg gtgctgccgt gctcatggtg 600 atcgccatcc ccacagtggc gctgaccctg ctcccggaca ccccggccat gtcggtgggc 660 gatgtctccc gcagccagta ctggttcacc tacttcttcc cgctctcccg aaccgtggag 720 tgcgtgctgg gcatgctgat ggcgcggatc gtgctgtccg gcaagtggat aggcctgcgg 780 gtgctgcccg cctcggccct ggtggtcgtg gggtatgtcg tcgcacagca actccccttc 840 ctctaccggc tcagcgcggt gctgatcgtg ccgatcgtgc tgctcaccgc ctccgtggcg 900 gtggccgacg ccgagggccg ggggaccccg ctcggcggca aggtcatggt ccggctcggt 960 gaactctcct tcgccttcta cctcgtgcac caggcgctcc tggcgtacgg gcacatcctg 1020 atcagcccga agaacgccca gggcgaggtg ctgccccgta cctgggacac gcctggcggc 1080 atcgcggtga tcgtcctgtc gttcgtggtg tccctgggac tcgcgtggct gctgcacaac 1140 ggggtggaga agccggtgat gcgccgttgg tcccggtcca ggcgccgcgt cacccagcag 1200 ccgccggcaa aggtgccggc aacttag 1227 17 1371 DNA Streptomyces hygroscopicus 17 gtgtggagtg cgcgaaagat ctcggccaaa ctccggcgca acgggggagt aaggctgacc 60 gctgccagaa gtccgcgcgc gccgtggatg tccggtgccg gcgaccacgc ccggatcatc 120 catcagccga cagtggtgcg gccgccgttg cggcgcaccg agccgcaccg cctgtcgcgc 180 atctggcgag aggtccgcat gcagacaaga caatccaacc cgaacctgag atccctgacc 240 ggtttgcggt tcgtggcgat gctgccggtc ttcctcaccc atgcggcgtt cgagggcgtc 300 ttcagcgacg cgaaggtgag ctggggcttc ctcgacgcga tggggagcac cggctatatg 360 gccgtctcgt tcttcttcgt gctcagcggc tttgtgatca cgtggtcgta ccggcccacc 420 gacaccgcgc gcaagttctg gcgccggcgc ttcttccggg tcttccccaa ccacgtcgtg 480 acctatgcgc tcgccctcgg gctgatcgct gcggtggggc tgagtgtcgg cgtactgccc 540 tcggtcaccc agctcttcct cgtccagtcc tgggtgcccg acccggcgtt caccgacacc 600 ggcaacagcg tgagctggtc gctcgcggtg gatgtggtgt tctacgcgct cttcccggtg 660 ctgctcacgc tggtgaacaa gatcaagccg aatcggctct ggtactgggt cggtggctcc 720 gtcatcggtg tggccgtggt accggccatc gcgctcgccg cgctcccgag cacccccgag 780 atgccgctcg gcggggtgtc cgtcagccag tactggttca cctacttctt cccgctcttc 840 cggctgctgg agtgtgtgct cggcatgctg atggcgcgga tcgtgctgtc cggcaagtgg 900 atacgcctgc gggtgctgcc cgccgccgtc ctcgtggtga tcgcgtacta cttcgcccag 960 caggtcccgt acctctaccg gctgagtgcg gtgacggtgc tgccggtcgc gctgctgacg 1020 gcggcggccg cggtggcgga ctccgagggc cggggcaccc tgttcggcag caaggtcatg 1080 gtctggttcg gcgaactctc cttcgccttc tacctgctgc acaacctcgt cctgaagtac 1140 ggccatctgc tgctcggcca caccgaggag gagggcgagc tggtgggcca cacctggggc 1200 gtgcccgagg gaatcgccct gatcgccgcc gccttcgcgg tgtccctgct gctggcctgg 1260 ctgctgcaca acggagtgga gaagcaggcg atgcgccgct ggtcccgacg caagccggct 1320 ccagtggctg aagtaaccag tgggttctat gcgaaggacg gggcaattta g 1371 18 1026 DNA Streptomyces hygroscopicus 18 gtgctgacgc tccacctgca ggatgacgac gtcgccgcga tcgacgctgt ggctgacgaa 60 ctcagccggc gatacgactc cgtggagtcc acggagttcc aggccgagag ccgcctctac 120 gcggacgagt tgccacgtcg cgtgcgacga gcgctgcacg aataccgcag caccgagaag 180 tccggcatcc tggtcgtcac cggcctgccc gtggacgact cggcgctcgg ggcgaccccg 240 gccgaccgcc ggcacaagcc ggtgccgtcc acgtcactgc gccaggacat cgccttctac 300 ctcatagcca atctgctggg cgaccccatc ggctgggcca cccagcagga cggcttcatc 360 atgcatgacg tctaccccgt ccagggcttc gagcacgaac agatcggctg gggcagcgag 420 gagacgctca cctggcacac cgaggacgcc ttccatccgc tgcgcacgga ctatctcgga 480 ctgatgtgtc tgcgcaatcc ggacggcgtc gagaccaccg cctgcgatat cgccgatgtc 540 gagatcgacg acgagacccg ggagaccctc tcgcaggagc gcttccggat cctgccggac 600 gacgcgcacc gcatccacgg caaggccccg ggggacgaga gcgcacgcga gagtgcgctg 660 cgtgagcgca gccggcagcg ggtggcctcg gccctggagt cgcccgaccc ggtggccgtg 720 ctcttcgggg accgcgacga cccgtatctg cggatcgacc cgcactacat gcagggcgtc 780 cagggcgaga ccgagcagcg ggcgctggag accatcggcg ccgcgatcga cgacgccatg 840 tccggtgtcg tgctcagccc cggtgacatc gttttcatcg acaactaccg cgtcgtccac 900 ggacgtaagc cgttccgtgc ccgcttcgac ggtacggacc gctggctgcg gcggctcaac 960 atcgcccggg acctgcgcaa gtcgcgcgag gccaggctcg ccgccaccac ccgcgtcatc 1020 tactga 1026 19 28 DNA Artificial Sequence PCR primer 19 acstcsggcw cgcaccggcc ngccsaag 28 20 32 DNA Artificial Sequence PCR primer 20 agctcsaysc gstagccscg saycttsacc tg 32 21 323 PRT Streptomyces hygroscopicus 21 Met Ser Ala Thr Pro Arg Pro Arg Pro Val Leu Arg Pro Phe Arg Pro 1 5 10 15 Gly Asp Gly Arg Ser Leu Leu Ala Ala Trp Cys Arg Ser Ala Pro Asp 20 25 30 Asp Pro Ile Thr Ala Ala Arg Phe Arg Thr Leu Ile Leu Leu Asp Pro 35 40 45 Asn Phe Asp Pro Glu Gly Leu Arg Val Ala Asp Leu Asp Gly Gln Val 50 55 60 Val Gly Ala Val Tyr Ala Val Arg Arg Arg Thr Pro Leu Ala Gly Thr 65 70 75 80 Asp Leu Glu Pro Asp Val Gly Trp Ile Leu Phe Phe Phe Val Asp Pro 85 90 95 Pro His Arg Arg Thr Gly Leu Gly Arg Arg Leu Leu Thr Asp Ala Leu 100 105 110 Asp Trp Leu Arg Gly His Gly Arg Thr Arg Val Asp Phe Ala Pro Tyr 115 120 125 Ala Pro His Tyr Val Leu Pro Gly Leu Asp Arg Ala Ala Tyr Pro Glu 130 135 140 Ala Ala Arg Leu Leu Ala Ser Leu Gly Phe Arg Pro Arg Tyr Glu Ala 145 150 155 160 Ala Ala Met Asp Arg Gly Leu Val Gly Tyr Arg Met Pro Asp Glu Val 165 170 175 Arg Arg His Glu Ala Ala Leu Thr Ala Arg Gly His Arg Phe Gly Thr 180 185 190 Pro Ser Asp Asp Asp Leu Val Asp Leu Leu Gly Leu Ala Glu Glu Phe 195 200 205 Thr Pro Asp Trp Ala Arg Ala Ile Arg Gln Cys Leu Thr Gly Gly Ala 210 215 220 Pro Leu Asp Arg Ile Val Ser Ala Arg Ala Pro Asp Gly Arg Met Ala 225 230 235 240 Gly Trp Ala Met His Gly Ala Tyr Asp Gly Thr Ala Glu Arg Phe Gly 245 250 255 Pro Phe Gly Val Arg Lys Glu Leu Arg Gly Ala Gly Leu Gly Lys Val 260 265 270 Leu Leu His Leu Thr Leu Glu Arg Met Arg Ala Leu Gly Val His Gly 275 280 285 Ala Trp Phe Leu Trp Thr Gly Glu Gln Ser Pro Ala Gly His Leu Tyr 290 295 300 Arg Ala Ser Gly Phe Thr Thr Thr Arg Arg Phe Thr Val Leu Arg Trp 305 310 315 320 Glu Ala Gly 22 471 PRT Streptomyces hygroscopicus 22 Met Arg Arg Arg Thr Phe Thr Ala Gly Ala Ala Ala Gly Ala Ala Leu 1 5 10 15 Leu Ala Gly Ala Gly Cys Asp Ala Pro Gly Gly Ala Gly His Gly Asp 20 25 30 Gly Glu His Gly Asp Gly Asp Gly Gly Asp Gly Arg Gly Ser Gly Gly 35 40 45 Arg Arg Gly Ala Pro Val Thr Leu Thr Val Leu Thr His Tyr Ala Ser 50 55 60 Glu Pro Leu Ala Ser Ala Leu Gln Thr Val Val Asp Ala Trp Asn Ala 65 70 75 80 Thr His Arg Arg Ile Thr Val Arg Thr Ala Ala Val Lys Phe Pro Asp 85 90 95 Leu Leu Thr Thr Tyr Met Val Arg Gln Ala Ala Gly Gln Gly Ala Asp 100 105 110 Ile Ile His Pro Tyr Cys Leu Trp Thr Gly Gln Leu Val Arg Ala Gly 115 120 125 Val Leu Arg Pro Val Pro Pro Thr Ala Thr Arg Gln Ile Arg Arg Asp 130 135 140 Phe Thr Pro Ala Ala Val Ala Ala Ser Ser Val His Gly Thr Leu Tyr 145 150 155 160 Gly Tyr Pro Thr Glu Val Gln Thr Tyr Ala Leu Tyr Tyr Asn Lys Arg 165 170 175 Leu Leu Arg Gln Ala Gly Ile Asp Gly Pro Pro Gly Thr Trp Gln Glu 180 185 190 Leu Glu Asp Ala Ala Tyr Arg Thr Ala Arg Arg Asp Arg His Gly Asn 195 200 205 Met Leu Val Gln Gly Phe Gly Leu Ser Arg Ala Asp Asp Ala Ser Val 210 215 220 Val Gly Gln Thr Leu Ala Leu Leu Ala Ala Arg Gly Gly Thr Phe Leu 225 230 235 240 Thr Ser Asp Gly Arg Arg Thr Ala Ile Gly Ser Ala Ala Gly Arg Asp 245 250 255 Val Leu Asp Leu Glu Arg Arg Leu Ile Asp Arg Gly Ala Ala Asp Ser 260 265 270 Gly Ile Ser Leu Leu Arg Ala Phe Pro Ser Gly Gln Val Ala Met Ala 275 280 285 Ile Asn Ala Gly Trp Trp Thr Ala Ser Leu Arg Gly Ala Met Gly Ala 290 295 300 Asp Tyr Arg Glu Val Gly Val Ala Pro Val Pro Gly Pro Ala Pro Asp 305 310 315 320 Asp Arg Gly Thr Leu Ala Thr Gly Phe Leu Leu Gly Val Asn Ala Lys 325 330 335 Ser Arg Tyr Pro Gly Glu Ala Trp Glu Phe Leu His Trp Leu Asn Gly 340 345 350 Val Arg Ala Pro Ala Ala Arg Pro Gly Arg Ser Ala Gly Gly Gly Val 355 360 365 Pro Val Ser Arg Met Ser Ala Leu Gln Val Ser Val Gly Ser Met Thr 370 375 380 Gly Arg Ala Asp Asp Met Arg Ala Leu Leu Gly Gly Asp Gly Glu Arg 385 390 395 400 Asp Ala Asp Gly Arg Gly Gly Gly Asp Arg Asn Leu Gly Pro Phe Leu 405 410 415 Asp Ala Leu Arg Tyr Ala Val Pro Glu Pro Asn Gly Pro Arg Ala Gln 420 425 430 Gln Ala Lys Ser Leu Leu Arg Lys Asn Ile Glu Asp Val Trp Thr Gly 435 440 445 Arg Ala Ser Val Asp Ala Ala Leu Arg Thr Ala Gly Arg Gln Ile Asp 450 455 460 Gln Glu Leu Ser Arg Pro Tyr 465 470 23 303 PRT Streptomyces hygroscopicus 23 Met Ala Ser Ala Gly Gly Gly Pro Val Arg Ala Ala Arg Arg Arg Gln 1 5 10 15 Thr Ala Val Ala Tyr Leu Phe Leu Thr Pro Ala Leu Leu Phe Phe Ala 20 25 30 Val Phe Leu Ala Leu Pro Leu Leu Phe Ala Val Leu Leu Ala Gln Ser 35 40 45 Arg Trp Ala Gly Phe Asp Leu Ala Asp Ile Glu Pro Val Gly Met Ala 50 55 60 Asn Phe Thr Asp Leu Phe Ala Arg Gly Ser Thr Phe Leu Thr Pro Val 65 70 75 80 Leu Thr Asn Thr Leu Leu Tyr Ala Val Gly Thr Val Ala Ile Ala Leu 85 90 95 Ile Gly Ala Leu Thr Leu Ala Thr Cys Ile Asp Asn Leu Arg Phe Gln 100 105 110 Gly Leu Trp Arg Thr Leu Tyr Phe Leu Pro Ile Val Thr Thr Val Val 115 120 125 Ala Val Gly Asn Val Trp Lys Tyr Met Tyr Ala Pro Gly Gly Leu Ile 130 135 140 Asn Gly Val Leu Asn Gly Leu Gly Leu His Ser Val Ala Phe Leu Gln 145 150 155 160 Asp Pro Gly Thr Ala Leu Pro Ser Val Val Val Val Gln Ala Trp Ala 165 170 175 Ser Met Gly Thr Ala Ile Leu Ile Leu Thr Ala Gly Leu Lys Ser Ile 180 185 190 Pro Glu Ala Tyr Tyr Glu Ala Ala Glu Leu Asp Gly Ala Gly Ala Gly 195 200 205 Thr Val Phe Arg Arg Ile Thr Leu Pro Leu Leu Arg Pro Ser Leu Leu 210 215 220 Phe Val Cys Ile Thr Gln Phe Ile Thr Gly Leu Gln Ser Phe Ala Leu 225 230 235 240 Ile Asn Val Met Thr Asp Asp Gly Gly Pro Gly Asp Ala Thr Asn Val 245 250 255 Ala Ala Leu Glu Met Tyr Gln Gln Ala Phe Arg Tyr Gly Asp Trp Gly 260 265 270 Ile Ala Ser Ala Ala Ala Phe Val Leu Phe Leu Val Ile Val Ala Ile 275 280 285 Thr Val Gly Gln Leu Trp Leu Phe Arg Arg Lys Gly Gly Glu Ser 290 295 300 24 296 PRT Streptomyces hygroscopicus 24 Val Ser Arg Ser Ala Arg Arg Arg Pro Gly Arg Arg Arg Pro Trp Gly 1 5 10 15 Ser Tyr Ala Val Val Val Ala Gly Ala Ala Leu Thr Leu Val Pro Phe 20 25 30 Leu Asp Met Leu Leu Thr Ser Phe Lys Gly Pro Gly Glu Tyr Gly Lys 35 40 45 Leu Pro Tyr Arg Phe Leu Pro Gln Ala Phe Asp Leu Ser Asn Tyr Arg 50 55 60 Ala Ala Met Glu Gln Leu Asp Leu Pro Leu Leu Phe Arg Asn Ser Val 65 70 75 80 Ile Ala Thr Ala Val Ile Thr Gly Ser Ile Leu Val Thr Ser Ala Leu 85 90 95 Ala Gly Tyr Ala Leu Ala Lys Leu Arg Phe Pro Gly Arg Glu Val Ile 100 105 110 Phe Arg Leu Val Leu Ser Thr Met Met Phe Pro Pro Phe Leu Phe Phe 115 120 125 Ile Pro His Phe Leu Ile Leu Val His Trp Pro Gly Ala Gly Gly Asn 130 135 140 Asp Leu Leu Gly Arg Gly Gly Ala Gly Leu Thr Val Ser Leu Ala Ala 145 150 155 160 Leu Val Met Pro Phe Leu Val Ser Gly Phe Gly Ile Phe Leu Met Arg 165 170 175 Gln Phe Met Val Ser Ile Pro Asp Glu Leu Leu Glu Ala Ala Arg Ile 180 185 190 Asp Gly Ala Gly Glu Phe Ala Leu Trp Trp Arg Ile Val Leu Pro Gln 195 200 205 Thr Lys Pro Val Ala Val Thr Leu Ala Leu Leu Thr Phe Val Asn Ala 210 215 220 Trp Asn Glu Tyr Ile Trp Ala Leu Leu Ile Ser Thr Ala Asn Pro Arg 225 230 235 240 Leu Met Thr Leu Pro Val Gly Ile Gln Met Leu Gln Ser Tyr Leu Asp 245 250 255 Pro Asp Arg Met Val Pro Val Met Met Ala Gly Leu Val Leu Ser Ile 260 265 270 Leu Pro Val Leu Leu Leu Phe Leu Leu Leu Gln Lys His Tyr Leu Arg 275 280 285 Gly Val Met Leu Ser Gly Leu Lys 290 295 25 425 PRT Streptomyces hygroscopicus 25 Met Ser Ser Gly Phe Ser Trp Ala Val Val Ala Thr Val Val Arg Val 1 5 10 15 Ser Asp Pro Ser Gly Gly Thr Met Ala Ser Asp Ser Ser Ser Pro Thr 20 25 30 Pro Met Pro Ala Val Ser Leu Ile Val Pro Thr Phe Asn Glu Ala Ala 35 40 45 Asn Ile Asp Glu Leu Leu Asp Gly Val Cys Ala Ala Ile Pro Ala Gly 50 55 60 Leu Glu Val Glu Val Leu Phe Val Asp Asp Ser Thr Asp Asp Thr Pro 65 70 75 80 Glu Val Ile Glu Lys Ala Ala Ala Arg Cys Pro Met Pro Val Ser Val 85 90 95 Leu His Arg Glu Val Pro Glu Gly Gly Leu Gly Gly Ala Val Val Ala 100 105 110 Gly Ile Ala Arg Thr Ser Ala Pro Trp Ile Met Val Met Asp Ala Asp 115 120 125 Leu Gln His Pro Pro Glu Leu Leu Pro Gln Leu Ile Glu Ala Gly Glu 130 135 140 Arg Ala Ala Ala Glu Leu Val Val Ala Ser Arg Tyr Ala Glu Gly Gly 145 150 155 160 Ser Arg Gly Gly Leu Ala Gly Gly Tyr Arg Val Ala Val Ser Gly Ala 165 170 175 Ser Thr Ala Leu Thr Lys Ser Leu Phe Pro Arg Leu Leu Arg Gly Val 180 185 190 Ser Asp Pro Met Ser Gly Cys Phe Ala Ile Arg Arg Glu Ala Val Asp 195 200 205 Arg Ala Val Gln Glu Gly Glu Thr Arg Gln Glu Gly Gly Leu Arg Pro 210 215 220 Leu Gly Tyr Lys Ile Leu Leu Glu Leu Ala Val Arg Cys Arg Pro Arg 225 230 235 240 Gly Val Val Glu Val Pro Tyr Glu Phe Gly Glu Arg Phe Ala Gly Glu 245 250 255 Ser Lys Ser Thr Val Arg Glu Gly Leu Arg Phe Leu Arg His Leu Ala 260 265 270 Glu Leu Arg Thr Ser Asp Lys Arg Ala Arg Met Val Ala Phe Gly Leu 275 280 285 Ile Gly Val Ser Gly Phe Val Pro Asn Leu Leu Ala Leu Trp Ala Leu 290 295 300 Thr Gly Ala Thr Thr Leu His Tyr Ala Val Ala Glu Val Leu Ala Asn 305 310 315 320 Gln Leu Gly Val Leu Trp Asn Phe Ala Leu Leu Asp Phe Leu Val Tyr 325 330 335 Arg Ser Gly Lys Pro Gly Arg Gly Ala Gly Arg Leu Leu Gly Phe Ala 340 345 350 Ala Leu Ser Asn Ala Asp Leu Leu Ala Arg Ile Pro Leu Met Met Leu 355 360 365 Phe Val Glu Gln Ala Gly Met Gly Pro Val Pro Ala Thr Val Ile Ser 370 375 380 Leu Val Val Val Phe Ala Leu Arg Phe Leu Leu Val Asp Thr Leu Ile 385 390 395 400 Tyr Arg Arg Lys Gly Ala Ala Ala Lys Arg Ala Ala Asp Ala Ala Val 405 410 415 Thr Gly Gly Gln Gly Glu Arg Ala Ala 420 425 26 470 PRT Streptomyces hygroscopicus 26 Val Thr Val Val Leu Leu Ala Leu Ser Asp Arg Tyr Gly Tyr Asn Val 1 5 10 15 Asp Glu Leu Tyr Phe Arg Leu Leu Gly Glu His Gly Trp Ala Trp Gly 20 25 30 Tyr Thr Asp Gln Pro Pro Leu Val Pro Ala Leu Val His Ala Thr Ala 35 40 45 Gln Val Leu Gly Asp Ser Val Trp Ala Ile Arg Val Pro Ala Ala Leu 50 55 60 Cys Ala Gly Ala Val Val Leu Leu Gly Ala Leu Ile Thr Ala Glu Leu 65 70 75 80 Gly Gly Thr Arg Arg Ala Gln Thr Leu Ser Ala Leu Gly Leu Gly Ser 85 90 95 Ser Phe Leu Val Leu Ser Val Gly His Ile Met Val Thr Thr Thr Leu 100 105 110 Asp Met Leu Ala Trp Ala Ala Val Leu Leu Phe Val Leu Arg Ala Leu 115 120 125 Leu Arg Ser Glu Gly Lys Trp Trp Leu Trp Ala Gly Val Val Leu Gly 130 135 140 Leu Ala Leu Tyr Ala Lys Tyr Ile Val Ala Leu Leu Pro Val Ala Leu 145 150 155 160 Leu Ala Gly Leu Ala Leu Val Gly Pro Arg Lys Val Phe Arg Asp Arg 165 170 175 Trp Leu Tyr Ala Gly Ile Ala Leu Ala Leu Ala Ile Gly Ser Pro Asn 180 185 190 Leu Ile Tyr Gln Ala Thr His Asp Phe Pro Gln Leu Gln Met Ala Asp 195 200 205 Ala Leu Gly Ala Thr Asp Gly Pro Met Asn Arg Val Ile Phe Val Pro 210 215 220 Ser Leu Val Ile Leu Leu Gly Pro Val Leu Thr Val Val Trp Val Ala 225 230 235 240 Gly Leu Val Lys Leu Leu Arg Asp Pro Ala Trp Arg Pro Val Arg Ala 245 250 255 Leu Ala Pro Ala Phe Val Val Gly Val Ala Leu Thr Leu Tyr Gly Gly 260 265 270 Gly Arg Pro Asp Tyr Val Gly Gly Phe Leu Ile Gly Leu Phe Ala Ala 275 280 285 Gly Ala Val Ala Ala Asp Arg Trp Met Gly Arg Arg Thr Ser Arg Arg 290 295 300 Val Leu Leu Cys Ala Gly Leu Ala Ala Ser Ala Val Leu Gln Val Leu 305 310 315 320 Met Ala Leu Pro Val Leu Pro Gln Ser Ser Pro Phe Val Pro Leu Asn 325 330 335 Asn Ile Ser Leu Glu Ser Val Gly Trp Pro Arg Leu Ala Glu Gln Val 340 345 350 Arg Thr Ala Tyr Glu Ala Leu Pro Arg Gln Gln Arg Glu Arg Ala Val 355 360 365 Val Leu Ala Asp Asn Leu Gly Glu Ile Gly Ala Leu Asp Arg Tyr Gly 370 375 380 His Gly Leu Pro Ala Val Phe Ser Gly His Asn Glu Leu His Lys Trp 385 390 395 400 Gly Pro Pro Pro Glu Arg Ala Asp Val Val Val Ala Val Gly Val Pro 405 410 415 Arg Ser Arg Leu Ala Ala Gly Phe Thr Ser Cys Thr Val Val Gly Arg 420 425 430 Val Asp Asn Gly Val Gly Val Glu Asn Ala Glu Gln Gly Arg Pro Ile 435 440 445 Thr Val Cys His Gly Arg Lys Ala Ser Trp Ala Arg Leu Trp Pro Ser 450 455 460 Tyr His Tyr Leu Ser Gly 465 470 27 509 PRT Streptomyces hygroscopicus 27 Met Thr Thr Ser Leu Asp Arg Asp Ser Arg Ala Ala Ala Ala Gly Pro 1 5 10 15 Gly Val Phe Arg Pro Ala Pro Met Ala Trp Arg Pro Val Ala Val Val 20 25 30 Val Ala Ala Leu Ala Val Leu Leu Phe Ala Phe Ala Gly Glu Tyr Gly 35 40 45 Tyr His Ala Asp Glu Leu Tyr Phe Arg Leu Leu Gly Val His Gly Phe 50 55 60 Ala Trp Gly Tyr Val Asp Gln Pro Pro Leu Leu Pro Leu Ala Val Arg 65 70 75 80 Thr Ser Met Glu Ile Phe Gly Asp Ser Met Trp Ala Ile Arg Val Pro 85 90 95 Ala Val Leu Cys Ala Ala Ala Val Thr Ala Leu Gly Ala Met Ile Ala 100 105 110 Ala Glu Leu Gly Gly Ser Arg Arg Ala Gln Thr Leu Thr Ala Phe Gly 115 120 125 Val Ala Thr Ser Thr Met Val Leu Ser Phe Gly His Trp Ile Leu Thr 130 135 140 Thr Ser Phe Asp Thr Val Ala Trp Ala Ala Val Leu Leu Phe Val Met 145 150 155 160 Arg Val Leu Leu Arg Gly Glu Ser Lys Trp Trp Leu Trp Ala Gly Val 165 170 175 Val Val Gly Val Ala Leu Tyr Ala Lys Tyr Ile Val Leu Leu Leu Pro 180 185 190 Val Ala Leu Leu Val Gly Leu Ala Leu Val Gly Pro Arg Lys Val Phe 195 200 205 Arg Asp Gly Lys Leu Tyr Ala Gly Thr Ala Leu Ala Leu Val Ile Gly 210 215 220 Ser Pro Asn Leu Ile Tyr Gln Ala Thr His Asp Phe Pro Gln Leu Gln 225 230 235 240 Met Ala Glu Gly Leu Ala Gly Thr Asp Gly Glu Ala Asn Arg Ala Met 245 250 255 Phe Ala Thr Asn Leu Ile Leu Leu Phe Gly Pro Ala Leu Phe Val Leu 260 265 270 Cys Met Ile Gly Leu Val Lys Leu Phe Arg Val Pro Glu Trp Lys Pro 275 280 285 Val Arg Thr Leu Ala Val Gly Tyr Leu Ala Ala Thr Ala Ala Ser Tyr 290 295 300 Leu Ile Glu Gly Gly Arg Pro Asp Tyr Thr Gly Gly Leu Leu Ile Ala 305 310 315 320 Leu Leu Ala Ala Gly Cys Val Thr Ala Asp Arg Trp Ala Gly Ala Arg 325 330 335 Lys Leu Arg Leu Ser Val Leu Ala Val Ser Leu Thr Leu Ser Thr Ala 340 345 350 Val Gln Met Leu Leu Ser Leu Pro Val Ile Pro Lys Ser Ser Leu Arg 355 360 365 Asp Phe Gln Ile Ala Ser Met Ala Leu Glu Thr Val Gly Trp Pro Arg 370 375 380 Leu Val Gln Gln Thr Glu Ala Ala Tyr Arg Ala Leu Pro Ala Ala Asp 385 390 395 400 Arg Asp Arg Ala Ile Val Leu Thr Glu Asn Phe Gly Glu Ala Gly Ala 405 410 415 Leu Asp His Tyr Gly His Gly Leu Pro Lys Val Tyr Ser Gly His Asn 420 425 430 Glu Leu Tyr His Trp Gly Pro Pro Pro Gln Arg Ala Glu Val Val Val 435 440 445 Ala Val Gly Ile Asp Arg Asn Arg Leu Ser Ala Asp Phe Thr Ser Cys 450 455 460 Lys Val Val Asp His Ile Asp Asn Arg Leu Gly Ile Asp Asn Pro Glu 465 470 475 480 Gln Gly Val Pro Ile Thr Val Cys His Gly Pro Lys Lys Pro Trp Ser 485 490 495 Ala Leu Trp Pro Thr Tyr Arg His Tyr Asn Ala Tyr Leu 500 505 28 337 PRT Streptomyces hygroscopicus 28 Met Ser Thr Glu Val Ser Glu Ala Gln Ala Arg Arg Ala Val Ala Asp 1 5 10 15 Ile Phe Asn Ser Thr Leu Ala Ser Ser Ala Ile Gly Ala Ala Trp Glu 20 25 30 Leu Gly Ala Leu Asp Glu Leu Arg Glu Asn Gly Lys Leu Asp Val Ser 35 40 45 Asp Phe Ala Val Arg His Asp Leu His Glu Pro Ala Val Val Gly Met 50 55 60 Phe Thr Ala Leu Ala Ser Val Gly Ile Val Arg Arg Glu Gly Ala Thr 65 70 75 80 Val Val Val Gly Pro Tyr Phe Asp Glu Ala Asn His His Arg Ser Leu 85 90 95 Phe His Trp Leu Asn Gln Gly Ser Gly Glu Leu Phe Arg Arg Met Pro 100 105 110 Gln Val Leu Pro Asn Glu Asn Arg Thr Gly Lys Phe Tyr Gln Arg Asp 115 120 125 Ala Gly Ala Ile Ser Tyr Ala Cys Arg Glu Ile Ser Glu Arg Tyr Phe 130 135 140 Asp Pro Ala Phe Trp Ala Ala Val Asp Gly Leu Gly Tyr Thr Pro Thr 145 150 155 160 Thr Val Ala Asp Leu Gly Ser Gly Ser Gly Glu Arg Leu Ile Gln Ile 165 170 175 Ala Arg Arg Phe Pro Gly Val Arg Gly Leu Gly Val Asp Ile Ala Asp 180 185 190 Gly Ala Ile Ala Met Ala Glu Lys Glu Val Ala Ala Lys Gly Phe Gly 195 200 205 Asp Gln Ile Ser Phe Val Arg Gly Asp Ala Arg Thr Ile Asp Gln Val 210 215 220 Ser Ala Arg Gly Glu Phe Ala Glu Val Asp Leu Leu Thr Cys Phe Met 225 230 235 240 Met Gly His Asp Phe Trp Pro Arg Glu Asn Cys Val Gln Thr Leu Arg 245 250 255 Lys Leu Arg Ala Ala Phe Pro Asn Val Arg Arg Phe Leu Leu Gly Asp 260 265 270 Ala Thr Arg Thr Val Gly Ile Pro Asp Arg Glu Leu Pro Val Phe Thr 275 280 285 Leu Gly Phe Glu Phe Gly His Asp Met Met Gly Val Tyr Leu Pro Thr 290 295 300 Leu Asp Glu Trp Asp Gly Val Phe Glu Glu Gly Gly Trp Arg Cys Val 305 310 315 320 Lys Lys His Ala Ile Asp Ser Leu Ser Val Ser Val Val Phe Glu Leu 325 330 335 Glu 29 439 PRT Streptomyces hygroscopicus 29 Met Asp His Glu Ser Leu His Ser Thr Leu Thr Glu Leu Ala Ala Arg 1 5 10 15 His Arg Val Pro Gly Ala Gln Leu Ala Val Ile His Glu Gly Glu Arg 20 25 30 Phe Leu Val His Thr Gly Val Cys Asp Thr Ala Ser Gly Ala Pro Val 35 40 45 Glu Arg His Thr Ala Phe Pro Val Gly Ser Leu Thr Lys Pro Phe Thr 50 55 60 Ala Ala Leu Ala Met Ile Leu Val Ala Asp Gly Asp Val Asp Leu Asp 65 70 75 80 Glu Pro Leu Arg Gly Gln Leu Pro Glu Phe Gly Ala Gly Glu Leu Val 85 90 95 Thr Leu Arg Gln Leu Leu Ser His Thr Ser Gly Leu Pro Ser Asp Val 100 105 110 Pro Glu Gly Ser Asp Glu Ala Gly Gly Gly Asp Arg Ala Arg Trp Val 115 120 125 Ala Arg Tyr Cys Arg Thr Ala Asp Leu Thr His Ala Pro Gly Thr Val 130 135 140 Phe Ser Tyr Ser Asn Ile Gly Tyr Val Val Val Gly Arg Leu Ile Glu 145 150 155 160 Ala Val Thr Gly Met Ser Trp Gln Glu Ala Ile Ser Ala Ile Leu Leu 165 170 175 Glu Pro Leu Gly Thr Arg Pro Ala Phe Val Val Gly Ala Pro Ala Thr 180 185 190 Arg Pro Val Ala Thr Gly His Ala Val Gln Ala Val Arg Asp Arg Val 195 200 205 Val Pro Ile Pro Asp Gln Asp Leu Pro Glu Val Glu Met Pro Asn Gly 210 215 220 Ala Leu Ala Leu Ser Ala Glu Asp Leu Val Gly Phe Ala Arg Leu Tyr 225 230 235 240 Phe Ala Gly Cys Pro Asp Pro Gln Pro Leu Asp Arg Ala Thr Ala Asp 245 250 255 Asp Met Cys Phe Asp Gln Leu Ala Ser Ile Ala Ile Gly Pro Tyr Gly 260 265 270 Met Ala Asp Gly Trp Gly Leu Gly Trp Ala Arg Phe Asp Asp Gly Ala 275 280 285 Ala Asp Val Tyr Gly His Asn Gly Thr Gly Asp Gly Thr Ser Cys His 290 295 300 Leu Arg Phe Asp Pro Ala Asn Gly Ser Ala Val Ala Leu Thr Ala Asn 305 310 315 320 Ala Asn Thr Gly Ala Gln Leu Trp Asp Ala Leu Val Pro Arg Leu Arg 325 330 335 Ala Met Gly Leu Ala Val Gly Asp Arg Pro Ala Pro Glu Pro Pro Thr 340 345 350 Thr Pro Pro Pro Val Pro Asp Asp Cys Pro Gly Arg Tyr Thr Asn Gly 355 360 365 Asp Thr Glu Phe Val Val Gln Pro Gly Ala Asp Gly Gly Leu Leu Leu 370 375 380 Ser Phe Gly Gly Ala Pro His Ser Glu Leu Leu Cys Ser Pro Asp Leu 385 390 395 400 Arg Phe Thr Met Arg Glu Leu Gly Ser Gly Ala Arg Ser Pro Gly Arg 405 410 415 Phe Val Thr Asp Pro Ala Thr Gly Arg Ile Gly Tyr Leu Gln Ile Thr 420 425 430 Gly Arg Leu Ala Pro Arg Arg 435 30 450 PRT Streptomyces hygroscopicus 30 Met Thr Thr Ala Pro Thr Asp Ala Glu Thr Ala Arg Gly Ser Ala Ala 1 5 10 15 Val Pro Leu Ser Arg Asn Arg Asp Tyr Asn Ile Leu Trp Ser Ser Gln 20 25 30 Leu Met Ser Glu Leu Ala Met Glu Met Ala Ala Val Ala Val Pro Leu 35 40 45 Leu Ile Leu Ala Arg His Gly Ser Pro Leu Gln Leu Gly Leu Ala Ser 50 55 60 Ser Ala Met Ala Ala Ala His Met Ile Ser Val Val Pro Ala Gly Val 65 70 75 80 Ile Ala Asp Arg Trp Asp Arg Arg Arg Leu Met Leu Gly Cys Gln Val 85 90 95 Leu Arg Val Leu Gly Met Val Ser Leu Ala Gly Ala Leu Leu Leu Asp 100 105 110 Arg Tyr Ala Phe Trp His Val Leu Leu Val Val Val Leu Glu Gly Phe 115 120 125 Leu Gly Ser Val Phe Asp Pro Ala Glu His Ala Ala Leu Pro Gln Val 130 135 140 Val Pro Pro Asp Gln Leu Ser Thr Ala Val Ala Arg Asn Ala Ala Arg 145 150 155 160 Pro Tyr Ile Ala Thr Leu Val Gly Pro Gly Val Ala Gly Phe Leu Phe 165 170 175 Ser Ala Leu Pro Leu Gly Pro Phe Ala Thr Asn Ala Val Met Phe Ala 180 185 190 Leu Ser Ser Val Ala Leu Cys Phe Leu Arg Leu Pro Arg Gly Arg Ser 195 200 205 Ala Val Val Arg Thr Gly Asp Gly Pro Asp Ser Ala Gly Ala Asp His 210 215 220 Asp Arg Pro Asp His Asp Gly Arg Asp Asp Ala Asn Asp Asp Thr Ala 225 230 235 240 Pro Arg Pro Gly Gly Ala Ala Gln Asp Phe Ala Ala Gly Phe Arg Trp 245 250 255 Val Leu Gly Gln Pro Val Ile Arg Thr Thr Met Ala Trp Met Met Ile 260 265 270 Thr Asn Leu Val Phe Ser Ser Leu Leu Ile Val Leu Leu Ala Leu Ser 275 280 285 Gly Glu Asp Lys Val Gly Ala Gly Glu Leu Gly Leu Thr Met Ala Cys 290 295 300 Phe Gly Ala Gly Gly Leu Leu Gly Gly Leu Phe Ala Ala Arg Met His 305 310 315 320 Ala Ala Ala Arg Pro Pro Val Ile Leu Leu Gly Phe Thr Trp Thr Ala 325 330 335 Ala Leu Gly Ala Ala Leu Met Ala Val Val Pro Thr Gly Leu Pro Gln 340 345 350 Gly Ala Leu Leu Gly Leu Met Ala Leu Phe Ala Pro Leu Ala Asn Thr 355 360 365 Thr Val Leu Thr Tyr Gln Leu Thr Val Thr Pro Asp Glu Leu Arg Gly 370 375 380 Arg Met Ser Gly Val Ala Gly Phe Cys Ser Gly Gly Ala Gly Val Leu 385 390 395 400 Gly Pro Ala Leu Gly Gly Ala Leu Thr Gly Ala Ala Gly Gly Gly Val 405 410 415 Thr Pro Val Leu Ile Cys Ala Gly Cys Leu Val Leu Val Ala Val Ala 420 425 430 Ala Thr Ala Ser Pro Thr Leu Arg Arg Phe Pro Asp Ile Ala Asp Arg 435 440 445 Gln Pro 450 31 408 PRT Streptomyces hygroscopicus 31 Met Gln Thr Pro His Thr Pro Ser Gln Ala Gln Ser Gln Pro Arg Gln 1 5 10 15 Lys Pro Gln Pro Pro Ser Gln Ser Gln Ser Gln Ser Gln Pro Asn Leu 20 25 30 Arg Ser Leu Thr Gly Leu Arg Phe Leu Gly Leu Leu Pro Val Phe Leu 35 40 45 Thr His Ala Ala Phe Glu Gly Val Phe Ser Asp Ala Asp Val Ser Trp 50 55 60 Gly Phe Leu Asp Ala Met Gly Asn Thr Gly Tyr Ala Ala Val Ser Phe 65 70 75 80 Phe Phe Val Leu Ser Gly Phe Val Ile Thr Trp Ser Tyr Arg Ser Arg 85 90 95 Asp Thr Thr Arg Thr Phe Trp Arg Arg Arg Ala Phe Arg Val Phe Pro 100 105 110 Asn His Leu Val Ala Tyr Val Phe Ala Leu Ala Leu Met Leu Ala Ala 115 120 125 Gly Ala Ala Phe Asp Ala Pro Ala Leu Ile Ser Gln Met Phe Leu Val 130 135 140 His Ala Trp Val Pro Asp Pro Leu Phe Ile Asp Thr Gly Asn Thr Val 145 150 155 160 Thr Trp Ser Leu Gly Val Asp Val Val Phe Tyr Gly Leu Phe Pro Val 165 170 175 Leu Leu Val Leu Val Asn Lys Ile Lys Pro Thr Arg Leu Trp Tyr Trp 180 185 190 Ala Gly Ala Ala Val Leu Met Val Ile Ala Ile Pro Thr Val Ala Leu 195 200 205 Thr Leu Leu Pro Asp Thr Pro Ala Met Ser Val Gly Asp Val Ser Arg 210 215 220 Ser Gln Tyr Trp Phe Thr Tyr Phe Phe Pro Leu Ser Arg Thr Val Glu 225 230 235 240 Cys Val Leu Gly Met Leu Met Ala Arg Ile Val Leu Ser Gly Lys Trp 245 250 255 Ile Gly Leu Arg Val Leu Pro Ala Ser Ala Leu Val Val Val Gly Tyr 260 265 270 Val Val Ala Gln Gln Leu Pro Phe Leu Tyr Arg Leu Ser Ala Val Leu 275 280 285 Ile Val Pro Ile Val Leu Leu Thr Ala Ser Val Ala Val Ala Asp Ala 290 295 300 Glu Gly Arg Gly Thr Pro Leu Gly Gly Lys Val Met Val Arg Leu Gly 305 310 315 320 Glu Leu Ser Phe Ala Phe Tyr Leu Val His Gln Ala Leu Leu Ala Tyr 325 330 335 Gly His Ile Leu Ile Ser Pro Lys Asn Ala Gln Gly Glu Val Leu Pro 340 345 350 Arg Thr Trp Asp Thr Pro Gly Gly Ile Ala Val Ile Val Leu Ser Phe 355 360 365 Val Val Ser Leu Gly Leu Ala Trp Leu Leu His Asn Gly Val Glu Lys 370 375 380 Pro Val Met Arg Arg Trp Ser Arg Ser Arg Arg Arg Val Thr Gln Gln 385 390 395 400 Pro Pro Ala Lys Val Pro Ala Thr 405 32 456 PRT Streptomyces hygroscopicus 32 Val Trp Ser Ala Arg Lys Ile Ser Ala Lys Leu Arg Arg Asn Gly Gly 1 5 10 15 Val Arg Leu Thr Ala Ala Arg Ser Pro Arg Ala Pro Trp Met Ser Gly 20 25 30 Ala Gly Asp His Ala Arg Ile Ile His Gln Pro Thr Val Val Arg Pro 35 40 45 Pro Leu Arg Arg Thr Glu Pro His Arg Leu Ser Arg Ile Trp Arg Glu 50 55 60 Val Arg Met Gln Thr Arg Gln Ser Asn Pro Asn Leu Arg Ser Leu Thr 65 70 75 80 Gly Leu Arg Phe Val Ala Met Leu Pro Val Phe Leu Thr His Ala Ala 85 90 95 Phe Glu Gly Val Phe Ser Asp Ala Lys Val Ser Trp Gly Phe Leu Asp 100 105 110 Ala Met Gly Ser Thr Gly Tyr Met Ala Val Ser Phe Phe Phe Val Leu 115 120 125 Ser Gly Phe Val Ile Thr Trp Ser Tyr Arg Pro Thr Asp Thr Ala Arg 130 135 140 Lys Phe Trp Arg Arg Arg Phe Phe Arg Val Phe Pro Asn His Val Val 145 150 155 160 Thr Tyr Ala Leu Ala Leu Gly Leu Ile Ala Ala Val Gly Leu Ser Val 165 170 175 Gly Val Leu Pro Ser Val Thr Gln Leu Phe Leu Val Gln Ser Trp Val 180 185 190 Pro Asp Pro Ala Phe Thr Asp Thr Gly Asn Ser Val Ser Trp Ser Leu 195 200 205 Ala Val Asp Val Val Phe Tyr Ala Leu Phe Pro Val Leu Leu Thr Leu 210 215 220 Val Asn Lys Ile Lys Pro Asn Arg Leu Trp Tyr Trp Val Gly Gly Ser 225 230 235 240 Val Ile Gly Val Ala Val Val Pro Ala Ile Ala Leu Ala Ala Leu Pro 245 250 255 Ser Thr Pro Glu Met Pro Leu Gly Gly Val Ser Val Ser Gln Tyr Trp 260 265 270 Phe Thr Tyr Phe Phe Pro Leu Phe Arg Leu Leu Glu Cys Val Leu Gly 275 280 285 Met Leu Met Ala Arg Ile Val Leu Ser Gly Lys Trp Ile Arg Leu Arg 290 295 300 Val Leu Pro Ala Ala Val Leu Val Val Ile Ala Tyr Tyr Phe Ala Gln 305 310 315 320 Gln Val Pro Tyr Leu Tyr Arg Leu Ser Ala Val Thr Val Leu Pro Val 325 330 335 Ala Leu Leu Thr Ala Ala Ala Ala Val Ala Asp Ser Glu Gly Arg Gly 340 345 350 Thr Leu Phe Gly Ser Lys Val Met Val Trp Phe Gly Glu Leu Ser Phe 355 360 365 Ala Phe Tyr Leu Leu His Asn Leu Val Leu Lys Tyr Gly His Leu Leu 370 375 380 Leu Gly His Thr Glu Glu Glu Gly Glu Leu Val Gly His Thr Trp Gly 385 390 395 400 Val Pro Glu Gly Ile Ala Leu Ile Ala Ala Ala Phe Ala Val Ser Leu 405 410 415 Leu Leu Ala Trp Leu Leu His Asn Gly Val Glu Lys Gln Ala Met Arg 420 425 430 Arg Trp Ser Arg Arg Lys Pro Ala Pro Val Ala Glu Val Thr Ser Gly 435 440 445 Phe Tyr Ala Lys Asp Gly Ala Ile 450 455 33 341 PRT Streptomyces hygroscopicus 33 Val Leu Thr Leu His Leu Gln Asp Asp Asp Val Ala Ala Ile Asp Ala 1 5 10 15 Val Ala Asp Glu Leu Ser Arg Arg Tyr Asp Ser Val Glu Ser Thr Glu 20 25 30 Phe Gln Ala Glu Ser Arg Leu Tyr Ala Asp Glu Leu Pro Arg Arg Val 35 40 45 Arg Arg Ala Leu His Glu Tyr Arg Ser Thr Glu Lys Ser Gly Ile Leu 50 55 60 Val Val Thr Gly Leu Pro Val Asp Asp Ser Ala Leu Gly Ala Thr Pro 65 70 75 80 Ala Asp Arg Arg His Lys Pro Val Pro Ser Thr Ser Leu Arg Gln Asp 85 90 95 Ile Ala Phe Tyr Leu Ile Ala Asn Leu Leu Gly Asp Pro Ile Gly Trp 100 105 110 Ala Thr Gln Gln Asp Gly Phe Ile Met His Asp Val Tyr Pro Val Gln 115 120 125 Gly Phe Glu His Glu Gln Ile Gly Trp Gly Ser Glu Glu Thr Leu Thr 130 135 140 Trp His Thr Glu Asp Ala Phe His Pro Leu Arg Thr Asp Tyr Leu Gly 145 150 155 160 Leu Met Cys Leu Arg Asn Pro Asp Gly Val Glu Thr Thr Ala Cys Asp 165 170 175 Ile Ala Asp Val Glu Ile Asp Asp Glu Thr Arg Glu Thr Leu Ser Gln 180 185 190 Glu Arg Phe Arg Ile Leu Pro Asp Asp Ala His Arg Ile His Gly Lys 195 200 205 Ala Pro Gly Asp Glu Ser Ala Arg Glu Ser Ala Leu Arg Glu Arg Ser 210 215 220 Arg Gln Arg Val Ala Ser Ala Leu Glu Ser Pro Asp Pro Val Ala Val 225 230 235 240 Leu Phe Gly Asp Arg Asp Asp Pro Tyr Leu Arg Ile Asp Pro His Tyr 245 250 255 Met Gln Gly Val Gln Gly Glu Thr Glu Gln Arg Ala Leu Glu Thr Ile 260 265 270 Gly Ala Ala Ile Asp Asp Ala Met Ser Gly Val Val Leu Ser Pro Gly 275 280 285 Asp Ile Val Phe Ile Asp Asn Tyr Arg Val Val His Gly Arg Lys Pro 290 295 300 Phe Arg Ala Arg Phe Asp Gly Thr Asp Arg Trp Leu Arg Arg Leu Asn 305 310 315 320 Ile Ala Arg Asp Leu Arg Lys Ser Arg Glu Ala Arg Leu Ala Ala Thr 325 330 335 Thr Arg Val Ile Tyr 340 34 882 DNA Streptomyces hygroscopicus 34 gtgctgagct gctactcctc ctcggtcgcg atggagatcc tctcccgctc gctgtccgag 60 acgatcgagt cggtggccct ggtccacccg accttcgaca acatcgccga cctgctgcgc 120 ggcaacggcc tgaagctggt gccgctggcg gaggacccgc tgcacggcga cgacctcgac 180 gtgagcctgc tgaagtcggt gggctgtgtc ttcctcacca cgcccaacaa ccccaccggc 240 aaggtcgtct cccgggagcg gctgacccgg ctggccgagc agtgcgccga gcacggcgtc 300 atcctcgcgc tggacacgtc cttccgcggc ttcgacaccc gcgcccacta cgaccactac 360 gaggtgctca acgccagtgg tgtgcgctgg gtggtgatcg aggacaccgg caagctgtgg 420 ccgaccctcg acctcaaggt cggcatgctc gtccactccg agaacctcgc gctgccggtc 480 gagaagatct actccgacat cctgctcggt gtctccccgc tgatcctcgc gatggtccgc 540 cgcttctccg aggacgccgc ggccggcggt ctggaggatc tgcaccgctt catcgccgcc 600 aaccgtgcca tggtgcgcgc ggaactcgcc ggtctgccgg gcgtcacggt ccccgacccc 660 gacagccggg ccagcgtcga gcgggtcgcc atcgatgacc tgacgggcac gcaggtctgg 720 gcgaagctgc gggagcacaa cgtctacgcg ctcccgtgcc gcccgttcca ctgggccaac 780 ccgtccgagg gtgaccacac cctgcggctc gcgctggccc ggtccacgga cccgctcgcc 840 cagtccgtgc gcgccctgcg ccacgtgctg aaacagcgtt ga 882 35 293 PRT Streptomyces hygroscopicus 35 Val Leu Ser Cys Tyr Ser Ser Ser Val Ala Met Glu Ile Leu Ser Arg 1 5 10 15 Ser Leu Ser Glu Thr Ile Glu Ser Val Ala Leu Val His Pro Thr Phe 20 25 30 Asp Asn Ile Ala Asp Leu Leu Arg Gly Asn Gly Leu Lys Leu Val Pro 35 40 45 Leu Ala Glu Asp Pro Leu His Gly Asp Asp Leu Asp Val Ser Leu Leu 50 55 60 Lys Ser Val Gly Cys Val Phe Leu Thr Thr Pro Asn Asn Pro Thr Gly 65 70 75 80 Lys Val Val Ser Arg Glu Arg Leu Thr Arg Leu Ala Glu Gln Cys Ala 85 90 95 Glu His Gly Val Ile Leu Ala Leu Asp Thr Ser Phe Arg Gly Phe Asp 100 105 110 Thr Arg Ala His Tyr Asp His Tyr Glu Val Leu Asn Ala Ser Gly Val 115 120 125 Arg Trp Val Val Ile Glu Asp Thr Gly Lys Leu Trp Pro Thr Leu Asp 130 135 140 Leu Lys Val Gly Met Leu Val His Ser Glu Asn Leu Ala Leu Pro Val 145 150 155 160 Glu Lys Ile Tyr Ser Asp Ile Leu Leu Gly Val Ser Pro Leu Ile Leu 165 170 175 Ala Met Val Arg Arg Phe Ser Glu Asp Ala Ala Ala Gly Gly Leu Glu 180 185 190 Asp Leu His Arg Phe Ile Ala Ala Asn Arg Ala Met Val Arg Ala Glu 195 200 205 Leu Ala Gly Leu Pro Gly Val Thr Val Pro Asp Pro Asp Ser Arg Ala 210 215 220 Ser Val Glu Arg Val Ala Ile Asp Asp Leu Thr Gly Thr Gln Val Trp 225 230 235 240 Ala Lys Leu Arg Glu His Asn Val Tyr Ala Leu Pro Cys Arg Pro Phe 245 250 255 His Trp Ala Asn Pro Ser Glu Gly Asp His Thr Leu Arg Leu Ala Leu 260 265 270 Ala Arg Ser Thr Asp Pro Leu Ala Gln Ser Val Arg Ala Leu Arg His 275 280 285 Val Leu Lys Gln Arg 290 36 1248 DNA Streptomyces hygroscopicus 36 atgacgcctg tcgcagaagg aggactcccg cacggctccg tgccctcgct gtcgcacacg 60 cggcagtggc ggcccggggt cgtgcaggag gtcgccccgg ccggcgtcct cgacctgggc 120 cccggctaca tcgagccggc actcctgccc gtacgcctgc tgcggggcgc gtacgagcaa 180 gcgctggcgg agtacggcgc cgcggcgctg ggctacggtc acgacccggg cgcgcagccg 240 ctgcgcgacc ggctggccgc ccgcgccgcc gcggcggacg gcctcccctg cgacccggac 300 caggtgctgc tgacctccgg cacgtcccag gccctctatc tgctggcgac ctcgctcgcg 360 gccccgggcg acacagtgct gacggaggag ctctgttacg acctgggaca gcggatattc 420 cgggactgct cactgcggct ccgccaggtc gccatggacg ggtcggggat gctgcccgac 480 gcgctggacc gcgccctgac cgagggcgcg cgagcgggcg cgaaaaccgc tttcgtctac 540 ctcaccccca cccaccacaa ccccacgggc cacacgatgc cgctggcgcg ccgccgcctg 600 ctgctcgaag tggccgcccg gcacgatgtg ctgatcgtgg aggacgacgc ctacacggaa 660 ctgtccctga tccctgaccg cactcccccg ccctcgctgg ccgccctggc cggctaccgg 720 cgggtggtgc ggctgtgcag cttctccaag accctcggcc ccggactgcg gctgggctgg 780 ctgctcgccg accgggaact ggccggccgg ctggccacgc acggcctgtt cgtcagcggg 840 ggttcgctca accacaccac ctcgctcgcc gtgagcaccc tgctcgcgag cggcgcgtac 900 gaccgtcatc tcgacgcgtt ccgggcgcag ttgcgtgctc gtagggacgc gctcgtgggc 960 gctctacgcg cgatgctgga cgacggggtg gagctgcgca ccccggaggg cggattcttc 1020 ctgtggctgc gggccgggga cggggccgac gagcgtgagc tgctcgacgg cgccgcccgg 1080 gcgggcgtca ggatcgccgc cggatcgcgc ttcggcacaa cccagggggc cggcttgcgc 1140 ctggccttca gcttcaaccc gcccgcgtta ctggagcagg ccgccaagcg gctgaccacc 1200 gcatggtccg gcagcacgcc ggacctcgag atcggagtga gatcgtga 1248 37 400 PRT Streptomyces hygroscopicus 37 Met Thr Pro Val Ala Glu Gly Gly Leu Pro His Gly Ser Val Pro Ser 1 5 10 15 Leu Ser His Thr Arg Gln Trp Arg Pro Gly Val Val Gln Glu Val Ala 20 25 30 Pro Ala Gly Val Leu Asp Leu Gly Pro Gly Tyr Ile Glu Pro Ala Leu 35 40 45 Leu Pro Val Arg Leu Leu Arg Gly Ala Tyr Glu Gln Ala Leu Ala Glu 50 55 60 Tyr Gly Ala Ala Ala Leu Gly Tyr Gly His Asp Pro Gly Ala Gln Pro 65 70 75 80 Leu Arg Asp Arg Leu Ala Ala Arg Ala Ala Ala Ala Asp Gly Leu Pro 85 90 95 Cys Asp Pro Asp Gln Val Leu Leu Thr Ser Gly Thr Ser Gln Ala Leu 100 105 110 Tyr Leu Leu Ala Thr Ser Leu Ala Ala Pro Gly Asp Thr Val Leu Thr 115 120 125 Glu Glu Leu Cys Tyr Asp Leu Gly Gln Arg Ile Phe Arg Asp Cys Ser 130 135 140 Leu Arg Leu Arg Gln Val Ala Met Asp Gly Ser Gly Met Leu Pro Asp 145 150 155 160 Ala Leu Asp Arg Ala Leu Thr Glu Gly Ala Arg Ala Gly Ala Lys Thr 165 170 175 Ala Phe Val Tyr Leu Thr Pro Thr His His Asn Pro Thr Gly His Thr 180 185 190 Met Pro Leu Ala Arg Arg Arg Leu Leu Leu Glu Val Ala Ala Arg His 195 200 205 Asp Val Leu Ile Val Glu Asp Asp Ala Tyr Thr Glu Leu Ser Leu Ile 210 215 220 Pro Asp Arg Thr Pro Pro Pro Ser Leu Ala Ala Leu Ala Gly Tyr Arg 225 230 235 240 Arg Val Val Arg Leu Cys Ser Phe Ser Lys Thr Leu Gly Pro Gly Leu 245 250 255 Arg Leu Gly Trp Leu Leu Ala Asp Arg Glu Leu Ala Gly Arg Leu Ala 260 265 270 Thr His Gly Leu Phe Val Ser Gly Gly Ser Leu Asn His Thr Thr Ser 275 280 285 Leu Ala Val Ser Thr Leu Leu Ala Ser Gly Ala Tyr Asp Arg His Leu 290 295 300 Asp Ala Phe Arg Ala Gln Leu Arg Ala Arg Arg Asp Ala Leu Val Gly 305 310 315 320 Ala Leu Arg Ala Met Leu Asp Asp Gly Val Glu Leu Arg Thr Pro Glu 325 330 335 Gly Gly Phe Phe Leu Trp Leu Arg Ala Gly Asp Gly Ala Asp Glu Arg 340 345 350 Glu Leu Leu Asp Gly Ala Ala Arg Ala Gly Val Arg Ile Ala Ala Gly 355 360 365 Ser Arg Phe Gly Thr Thr Gln Gly Ala Gly Leu Arg Leu Ala Phe Ser 370 375 380 Phe Asn Pro Pro Ala Leu Leu Glu Gln Ala Ala Lys Arg Leu Thr Thr 385 390 395 400 38 1836 DNA Streptomyces hygroscopicus 38 gtggccggtc caggcagcgc cggtcccgtc gggtacagcc tgccgctctc gccgacgggc 60 gagtcggcga tgctcacacc accgccgtgg cacttctccg gcgaggtcgt catggtcgac 120 taccgcgtcg acccggacgc ggcccgacgg ttcctgccgc cgggcctgga gccgggtgcc 180 gacccgggcg ccgcggcggc ggtgttcgcg acctggcagt ggtgttcgca ggacggagcg 240 gagctgaccg accccggtcg ctgccagttc ggggagttcc tgatcctgct cagctgcgag 300 ttcgagggcc gtcccatggc gcgctgcccg tacgcctggg tggaccaggc cgtgcccatg 360 atgcgcggct gggtgcaggg gatgcccaag cagttcggcg tgattcacca gagccggccc 420 gtcacggtcg gcaaggcggg ctcccggctg gcgcccggcg gtcgtttcga cggcgcgctg 480 tccgtgcacg gacgacgcgt cgtggaggcc tcggtcaccg tggacaggtc gacggaccag 540 ccgccggcgc tgcacgatgt tcccctggcg cacaccctgg tgttcccgga gtgggtgccc 600 tccggcggcg ggccgcgacc acggctggtc gcctccgagg taagcgatgt ggaattctcc 660 ccgatctgga ccggatcggg tgatctcacg ttctttgacg gactggggga tgatttcggg 720 gcgctcgcac cgttggaagt aggtagcagg ccacgtgttc tcgtacgggg agaccttgca 780 cggcggccgg ctgctcagcg actactcggt atcagaacga catcagccat gaccacgggg 840 gacaaagtgc tgaggatcca cttcacagtt gaggacatag caaatacgcg catgctggcg 900 accctcgggc cgctggccga gagcgctttc gcgctctatc tgttcggccg taacggcgat 960 gtcgcctttc acgagtggcg tcgcagtgtc cgcgccgaac tcggcaagga cgcggcccgc 1020 ttcacggcct tgtcccagca gttccggacc ctggaggaat tacctgccgc cttcgccgac 1080 gccttcacgc cgggggcgga ccccgaccag gttccgtccg gcgaggaccg gcgcggcgcc 1140 aggctgctgg ccgacctgtg ccgggtggcc gtgctgccgc actggagcct gatccgcagt 1200 catctcgacg gtgcgcgcga gggctggggc agggtggcca tctcgcacgg tgtcgagcgg 1260 ctgctgggct ccgtgcaccc caaggtccgc tggcgggcgc cggtcctcga actgcggcac 1320 gggcccaacc gcgacatcca tctggacggt cgcgggttgc tgctgtgccc gtcgttcttc 1380 ctgtcggagc agtcctgttc gttcgtgacg gcggtcggca aggacgccat gcccgccctt 1440 gtcttccccg tgaaggcctc gtccagggtg gacatctggg gtacctcgga acacgacgag 1500 caggcgctgg gcgcactggt cgggcacacc agggcggccg ccctggaagc gctcgccgag 1560 ggctgctcca cgggcgaact cgccgaccgg ctggggatct cgctggccgg tgccagcaag 1620 catgccgcgg tgctgcgacg atccgggctg gtgaccacct cccgtaaccg caacaccgcg 1680 ctgcacgcgc tcacccctct gggcaccgcc ctgctccgca gcagcgaccg cttcatctcg 1740 ccgcctaccg ccccggtatc gcgcgtgccg gcgcaacgca tgcggccctt gcagctcaac 1800 ggcatcggcc ccggcaccaa ccgggcggcg gtctga 1836 39 611 PRT Streptomyces hygroscopicus 39 Val Ala Gly Pro Gly Ser Ala Gly Pro Val Gly Tyr Ser Leu Pro Leu 1 5 10 15 Ser Pro Thr Gly Glu Ser Ala Met Leu Thr Pro Pro Pro Trp His Phe 20 25 30 Ser Gly Glu Val Val Met Val Asp Tyr Arg Val Asp Pro Asp Ala Ala 35 40 45 Arg Arg Phe Leu Pro Pro Gly Leu Glu Pro Gly Ala Asp Pro Gly Ala 50 55 60 Ala Ala Ala Val Phe Ala Thr Trp Gln Trp Cys Ser Gln Asp Gly Ala 65 70 75 80 Glu Leu Thr Asp Pro Gly Arg Cys Gln Phe Gly Glu Phe Leu Ile Leu 85 90 95 Leu Ser Cys Glu Phe Glu Gly Arg Pro Met Ala Arg Cys Pro Tyr Ala 100 105 110 Trp Val Asp Gln Ala Val Pro Met Met Arg Gly Trp Val Gln Gly Met 115 120 125 Pro Lys Gln Phe Gly Val Ile His Gln Ser Arg Pro Val Thr Val Gly 130 135 140 Lys Ala Gly Ser Arg Leu Ala Pro Gly Gly Arg Phe Asp Gly Ala Leu 145 150 155 160 Ser Val His Gly Arg Arg Val Val Glu Ala Ser Val Thr Val Asp Arg 165 170 175 Ser Thr Asp Gln Pro Pro Ala Leu His Asp Val Pro Leu Ala His Thr 180 185 190 Leu Val Phe Pro Glu Trp Val Pro Ser Gly Gly Gly Pro Arg Pro Arg 195 200 205 Leu Val Ala Ser Glu Val Ser Asp Val Glu Phe Ser Pro Ile Trp Thr 210 215 220 Gly Ser Gly Asp Leu Thr Phe Phe Asp Gly Leu Gly Asp Asp Phe Gly 225 230 235 240 Ala Leu Ala Pro Leu Glu Val Gly Ser Arg Pro Arg Val Leu Val Arg 245 250 255 Gly Asp Leu Ala Arg Arg Pro Ala Ala Gln Arg Leu Leu Gly Ile Arg 260 265 270 Thr Thr Ser Ala Met Thr Thr Gly Asp Lys Val Leu Arg Ile His Phe 275 280 285 Thr Val Glu Asp Ile Ala Asn Thr Arg Met Leu Ala Thr Leu Gly Pro 290 295 300 Leu Ala Glu Ser Ala Phe Ala Leu Tyr Leu Phe Gly Arg Asn Gly Asp 305 310 315 320 Val Ala Phe His Glu Trp Arg Arg Ser Val Arg Ala Glu Leu Gly Lys 325 330 335 Asp Ala Ala Arg Phe Thr Ala Leu Ser Gln Gln Phe Arg Thr Leu Glu 340 345 350 Glu Leu Pro Ala Ala Phe Ala Asp Ala Phe Thr Pro Gly Ala Asp Pro 355 360 365 Asp Gln Val Pro Ser Gly Glu Asp Arg Arg Gly Ala Arg Leu Leu Ala 370 375 380 Asp Leu Cys Arg Val Ala Val Leu Pro His Trp Ser Leu Ile Arg Ser 385 390 395 400 His Leu Asp Gly Ala Arg Glu Gly Trp Gly Arg Val Ala Ile Ser His 405 410 415 Gly Val Glu Arg Leu Leu Gly Ser Val His Pro Lys Val Arg Trp Arg 420 425 430 Ala Pro Val Leu Glu Leu Arg His Gly Pro Asn Arg Asp Ile His Leu 435 440 445 Asp Gly Arg Gly Leu Leu Leu Cys Pro Ser Phe Phe Leu Ser Glu Gln 450 455 460 Ser Cys Ser Phe Val Thr Ala Val Gly Lys Asp Ala Met Pro Ala Leu 465 470 475 480 Val Phe Pro Val Lys Ala Ser Ser Arg Val Asp Ile Trp Gly Thr Ser 485 490 495 Glu His Asp Glu Gln Ala Leu Gly Ala Leu Val Gly His Thr Arg Ala 500 505 510 Ala Ala Leu Glu Ala Leu Ala Glu Gly Cys Ser Thr Gly Glu Leu Ala 515 520 525 Asp Arg Leu Gly Ile Ser Leu Ala Gly Ala Ser Lys His Ala Ala Val 530 535 540 Leu Arg Arg Ser Gly Leu Val Thr Thr Ser Arg Asn Arg Asn Thr Ala 545 550 555 560 Leu His Ala Leu Thr Pro Leu Gly Thr Ala Leu Leu Arg Ser Ser Asp 565 570 575 Arg Phe Ile Ser Pro Pro Thr Ala Pro Val Ser Arg Val Pro Ala Gln 580 585 590 Arg Met Arg Pro Leu Gln Leu Asn Gly Ile Gly Pro Gly Thr Asn Arg 595 600 605 Ala Ala Val 610 40 216 DNA Streptomyces hygroscopicus 40 gtgggcacaa accccttcga cgaccccgac ggccggtatc tggtgctggt caacgaggaa 60 gaccagcatt cactctggcc ggctttcgcc gaggtgcccc agggctggac ggtggcgctc 120 gcggaaaccg accgtcagtc cgcgctcgac ttcatcaccg agcactggac cgacatgcgg 180 ccgcgcagcc tggtgcgggc gatggaagag gcttag 216 41 71 PRT Streptomyces hygroscopicus 41 Val Gly Thr Asn Pro Phe Asp Asp Pro Asp Gly Arg Tyr Leu Val Leu 1 5 10 15 Val Asn Glu Glu Asp Gln His Ser Leu Trp Pro Ala Phe Ala Glu Val 20 25 30 Pro Gln Gly Trp Thr Val Ala Leu Ala Glu Thr Asp Arg Gln Ser Ala 35 40 45 Leu Asp Phe Ile Thr Glu His Trp Thr Asp Met Arg Pro Arg Ser Leu 50 55 60 Val Arg Ala Met Glu Glu Ala 65 70 42 1454 DNA Streptomyces hygroscopicus 42 cagagggcgt tcaggtcgac ggcggaggcg agggccaggt agccggcgtc gctggggtgg 60 aggccgtcct gggagatgta gccggggcgg gggcggttgg ggttcgcggg gtcggtcagg 120 acgcggtcgg cgtcgaggac ggcgtcgtag gtgtggctgg tgcggatcca gtggttgagc 180 tgccggcgga tcttgtcacc ggcgggggtg gtgaagggga agacggcgct cctgaggggg 240 aggatcgtca caccgatggc cttgataccg cgggcgtggg ccgcgcggac cagggcgcgg 300 tggccgtcga tgagctgttg ggcggtcacc ggggggcggt tcctggtgca ggggtcgtcc 360 tgctgggact gggcgaggtc attggcgccg aggtggatga agacggtgcg cagggcggcg 420 cgatcgcgca gttccttggc gaagcgggcg gtgcccttct cgccgaagca gggggaatcg 480 tgcagcaggg ggtcacccgc caggccggcg ttggtcattc cctgggggcg gccggcggcg 540 atgaggcgtt cggcgagttt gtcggagaag cggttgtcgg tgtcggggct ggtgccgacg 600 ccgtccatga gggagtcgcc gaagaccatg agggagtcgg ccgaacgggg cggctcctgg 660 gtcacatcga cggccgtcag gtagtaccag gcgtgcgagg cacggcggtt gaagtcatcg 720 gcggcggggc tgcgtagccg gtcgccgggg gcgcggtagg acgtggccgt ggtgaagcgg 780 tgcatggtgg ccgggccggt gggggcggtg aagcgcaggg tgacggtgag tttttcgagg 840 ttggcggtcg gcatggccac cgcgtcgctg acggtgtcgc ggcccgcggg gatggtgagg 900 gcgggcgcat ggcggaaggt gagggtgcgt acggtgccgg ggcgcgcctt ggcctcgccg 960 tcggacctgg cgacggtggc gccggcgatg tggaggggct tggtgccgta ggcgttggag 1020 aggcggatac ggagctcggg gccgccgacg ctgagccgga tcacctggcg cagggtctcg 1080 ttcttgaatc cctgccggga ccagttcggg gtgtcctccg tggcctcgtt cgtcgcctgc 1140 tgcatggcgg ctccccaggt ggctgtccac tggggggagt ggggggcggc gggggcggcc 1200 ttctcgctcc tgagggacgg gcgggcgggg gcgaacgccc cggtcagcgc cgcggtcagg 1260 gtcacggcca gggccacgga cagcgtcatg acgatcgtcg cggggagcga gcgcgggctc 1320 cccttcgtgg tgcggccggg tgcgggccgg ccggcctcgg gtgcgtcggc cgtgtgctgc 1380 tcggccgtgt gcgggtcggt ttcgtgccgg tcggtttcgg gtcggccggc tttgtgccgg 1440 ggccacagtc gcat 1454 43 484 PRT Streptomyces hygroscopicus 43 Met Arg Leu Trp Pro Arg His Lys Ala Gly Arg Pro Glu Thr Asp Arg 1 5 10 15 His Glu Thr Asp Pro His Thr Ala Glu Gln His Thr Ala Asp Ala Pro 20 25 30 Glu Ala Gly Arg Pro Ala Pro Gly Arg Thr Thr Lys Gly Ser Pro Arg 35 40 45 Ser Leu Pro Ala Thr Ile Val Met Thr Leu Ser Val Ala Leu Ala Val 50 55 60 Thr Leu Thr Ala Ala Leu Thr Gly Ala Phe Ala Pro Ala Arg Pro Ser 65 70 75 80 Leu Arg Ser Glu Lys Ala Ala Pro Ala Ala Pro His Ser Pro Gln Trp 85 90 95 Thr Ala Thr Trp Gly Ala Ala Met Gln Gln Ala Thr Asn Glu Ala Thr 100 105 110 Glu Asp Thr Pro Asn Trp Ser Arg Gln Gly Phe Lys Asn Glu Thr Leu 115 120 125 Arg Gln Val Ile Arg Leu Ser Val Gly Gly Pro Glu Leu Arg Ile Arg 130 135 140 Leu Ser Asn Ala Tyr Gly Thr Lys Pro Leu His Ile Ala Gly Ala Thr 145 150 155 160 Val Ala Arg Ser Asp Gly Glu Ala Lys Ala Arg Pro Gly Thr Val Arg 165 170 175 Thr Leu Thr Phe Arg His Ala Pro Ala Leu Thr Ile Pro Ala Gly Arg 180 185 190 Asp Thr Val Ser Asp Ala Val Ala Met Pro Thr Ala Asn Leu Glu Lys 195 200 205 Leu Thr Val Thr Leu Arg Phe Thr Ala Pro Thr Gly Pro Ala Thr Met 210 215 220 His Arg Phe Thr Thr Ala Thr Ser Tyr Arg Ala Pro Gly Asp Arg Leu 225 230 235 240 Arg Ser Pro Ala Ala Asp Asp Phe Asn Arg Arg Ala Ser His Ala Trp 245 250 255 Tyr Tyr Leu Thr Ala Val Asp Val Thr Gln Glu Pro Pro Arg Ser Ala 260 265 270 Asp Ser Leu Met Val Phe Gly Asp Ser Leu Met Asp Gly Val Gly Thr 275 280 285 Ser Pro Asp Thr Asp Asn Arg Phe Ser Asp Lys Leu Ala Glu Arg Leu 290 295 300 Ile Ala Ala Gly Arg Pro Gln Gly Met Thr Asn Ala Gly Leu Ala Gly 305 310 315 320 Asp Pro Leu Leu His Asp Ser Pro Cys Phe Gly Glu Lys Gly Thr Ala 325 330 335 Arg Phe Ala Lys Glu Leu Arg Asp Arg Ala Ala Leu Arg Thr Val Phe 340 345 350 Ile His Leu Gly Ala Asn Asp Leu Ala Gln Ser Gln Gln Asp Asp Pro 355 360 365 Cys Thr Arg Asn Arg Pro Pro Val Thr Ala Gln Gln Leu Ile Asp Gly 370 375 380 His Arg Ala Leu Val Arg Ala Ala His Ala Arg Gly Ile Lys Ala Ile 385 390 395 400 Gly Val Thr Ile Leu Pro Leu Arg Ser Ala Val Phe Pro Phe Thr Thr 405 410 415 Pro Ala Gly Asp Lys Ile Arg Arg Gln Leu Asn His Trp Ile Arg Thr 420 425 430 Ser His Thr Tyr Asp Ala Val Leu Asp Ala Asp Arg Val Leu Thr Asp 435 440 445 Pro Ala Asn Pro Asn Arg Pro Arg Pro Gly Tyr Ile Ser Gln Asp Gly 450 455 460 Leu His Pro Ser Asp Ala Gly Tyr Leu Ala Leu Ala Ser Ala Val Asp 465 470 475 480 Leu Asn Ala Leu 44 1713 DNA Streptomyces hygroscopicus 44 gtggggtcga cggcggccgg gccgcccagg gcttcggcga acggccgctc caggcacggg 60 tggtgtgagg caatgatgcg catgctcacc ggtcttgcgg tggccgactt ccgcgaccgg 120 gtacgccggc ccgcgtatgt cgtgatcctg gccgcggccg tcgccctcgg ttacgtggcg 180 gtgcccgact cggacgccaa atggatgatc atgcagatcg gtgatcaccg cgggatctac 240 aacagcgcct acgtcggcat ggtgacggcc ctggccagcg gtctgtggat caccctcggc 300 ggcttctaca tcgtccgcaa ctccatcgaa cgcgaccgca gcacccgcgt cggccagctg 360 ctcgccgcca ccccgctgcg caccaccgcg tacatgctcg gcaagttcct cagcaacctc 420 atgctgctgt cctccatgct cgtggtgctc gcgctcaccg ccctggtcat gcaactggcc 480 cgcggcgagt cgcacgacat cgacctgatc gccctctggc agcccttcct cctcatcgcg 540 ctgccgctgg tcgcgctgac cgccgccctc gcgctcctct tcgaatcgct gccgctgctg 600 cgcaccggcc tgggcaacat cctgtggttc tgcatctgga tggtcgtctc gacggccggc 660 cagggccccg gtctgcccct cgacggcatc ggcgtcaaca gcgtcgtccg gtcgatgtat 720 gacgacatgg tcgcccagca catcgatgtc accggcgcgt tcagcctcgg tctgacctac 780 ctcgacaagc ccctcgggct cttcacctgg gacggcttca cgcccaccgc cggctatgtc 840 ctcggccggg tgacgctgct gctgatcgcc gtcgtgatcg ccatgctccc cgcgctgtgg 900 ttcggccgct tcgaccccgc gcgaacctgg ctgggccagg ggcgcacccc cgagcaggcc 960 ccggccgacg gtgtcgtcca gccggtcttc atcgacgagg tcggcccggg gacgcctccg 1020 ctgtccgttc agggccatgg gggagcttcc ccgtcccggc ccaccgtcgc cacgctgctg 1080 cgcacccgcc cggagccggg cgccgtgacc ctgcgcgtct gggccggcga ggtccgcatc 1140 ctgctgcaag gtgtgcgctg gtggtggtgg accggtgccg cattcctcat gatcgccgcg 1200 ctctcctccc cggggatcca cggcatcatc cgcgtgatgc tgccgctgtc ctggatctgg 1260 ccggtgctga tctggtcgcg gctgggcacc cagcgccacg agtaccacgt cgacggcatg 1320 ctcggcgcct accccgcggt gcgccgccgg gtcttcgccg aatgggccgc gggcctgacc 1380 atcaccgccg tggccggcat cggtcccctg atccgcctgg tggccgccgc cgactggttc 1440 ggtctggccg gctgggtcgg cggggccctg ttcatcccgt ccctggccct caccctgggc 1500 acgctcagcc gtacccatcg cctcttccag gcggtctacc tgccgctctg gtacagcgtc 1560 gccaacggac tgccgatctt cgacttcatg ggcgcgctgc gcgacagcag cgaactggcc 1620 gccgtgcagc cgtcggtgac cgtcgtggtt tccgcggccc tgatggccat cgtcttcatg 1680 accggcgtac tccgccgctt cggccgcgac tga 1713 45 570 PRT Streptomyces hygroscopicus 45 Val Gly Ser Thr Ala Ala Gly Pro Pro Arg Ala Ser Ala Asn Gly Arg 1 5 10 15 Ser Arg His Gly Trp Cys Glu Ala Met Met Arg Met Leu Thr Gly Leu 20 25 30 Ala Val Ala Asp Phe Arg Asp Arg Val Arg Arg Pro Ala Tyr Val Val 35 40 45 Ile Leu Ala Ala Ala Val Ala Leu Gly Tyr Val Ala Val Pro Asp Ser 50 55 60 Asp Ala Lys Trp Met Ile Met Gln Ile Gly Asp His Arg Gly Ile Tyr 65 70 75 80 Asn Ser Ala Tyr Val Gly Met Val Thr Ala Leu Ala Ser Gly Leu Trp 85 90 95 Ile Thr Leu Gly Gly Phe Tyr Ile Val Arg Asn Ser Ile Glu Arg Asp 100 105 110 Arg Ser Thr Arg Val Gly Gln Leu Leu Ala Ala Thr Pro Leu Arg Thr 115 120 125 Thr Ala Tyr Met Leu Gly Lys Phe Leu Ser Asn Leu Met Leu Leu Ser 130 135 140 Ser Met Leu Val Val Leu Ala Leu Thr Ala Leu Val Met Gln Leu Ala 145 150 155 160 Arg Gly Glu Ser His Asp Ile Asp Leu Ile Ala Leu Trp Gln Pro Phe 165 170 175 Leu Leu Ile Ala Leu Pro Leu Val Ala Leu Thr Ala Ala Leu Ala Leu 180 185 190 Leu Phe Glu Ser Leu Pro Leu Leu Arg Thr Gly Leu Gly Asn Ile Leu 195 200 205 Trp Phe Cys Ile Trp Met Val Val Ser Thr Ala Gly Gln Gly Pro Gly 210 215 220 Leu Pro Leu Asp Gly Ile Gly Val Asn Ser Val Val Arg Ser Met Tyr 225 230 235 240 Asp Asp Met Val Ala Gln His Ile Asp Val Thr Gly Ala Phe Ser Leu 245 250 255 Gly Leu Thr Tyr Leu Asp Lys Pro Leu Gly Leu Phe Thr Trp Asp Gly 260 265 270 Phe Thr Pro Thr Ala Gly Tyr Val Leu Gly Arg Val Thr Leu Leu Leu 275 280 285 Ile Ala Val Val Ile Ala Met Leu Pro Ala Leu Trp Phe Gly Arg Phe 290 295 300 Asp Pro Ala Arg Thr Trp Leu Gly Gln Gly Arg Thr Pro Glu Gln Ala 305 310 315 320 Pro Ala Asp Gly Val Val Gln Pro Val Phe Ile Asp Glu Val Gly Pro 325 330 335 Gly Thr Pro Pro Leu Ser Val Gln Gly His Gly Gly Ala Ser Pro Ser 340 345 350 Arg Pro Thr Val Ala Thr Leu Leu Arg Thr Arg Pro Glu Pro Gly Ala 355 360 365 Val Thr Leu Arg Val Trp Ala Gly Glu Val Arg Ile Leu Leu Gln Gly 370 375 380 Val Arg Trp Trp Trp Trp Thr Gly Ala Ala Phe Leu Met Ile Ala Ala 385 390 395 400 Leu Ser Ser Pro Gly Ile His Gly Ile Ile Arg Val Met Leu Pro Leu 405 410 415 Ser Trp Ile Trp Pro Val Leu Ile Trp Ser Arg Leu Gly Thr Gln Arg 420 425 430 His Glu Tyr His Val Asp Gly Met Leu Gly Ala Tyr Pro Ala Val Arg 435 440 445 Arg Arg Val Phe Ala Glu Trp Ala Ala Gly Leu Thr Ile Thr Ala Val 450 455 460 Ala Gly Ile Gly Pro Leu Ile Arg Leu Val Ala Ala Ala Asp Trp Phe 465 470 475 480 Gly Leu Ala Gly Trp Val Gly Gly Ala Leu Phe Ile Pro Ser Leu Ala 485 490 495 Leu Thr Leu Gly Thr Leu Ser Arg Thr His Arg Leu Phe Gln Ala Val 500 505 510 Tyr Leu Pro Leu Trp Tyr Ser Val Ala Asn Gly Leu Pro Ile Phe Asp 515 520 525 Phe Met Gly Ala Leu Arg Asp Ser Ser Glu Leu Ala Ala Val Gln Pro 530 535 540 Ser Val Thr Val Val Val Ser Ala Ala Leu Met Ala Ile Val Phe Met 545 550 555 560 Thr Gly Val Leu Arg Arg Phe Gly Arg Asp 565 570 46 855 DNA Streptomyces hygroscopicus 46 atgcgtctgg aacccggcat gctcggcctg ctgggcccca acggcgccgg caagtcgtcc 60 ctcatgcgga tcgcctccac ggtcacccgg cccaccagcg gaaaggtcct cttccacgga 120 gaggacgcgg tcgccaagcc caacgcgctg cgccgggccc tcggttacct cccgcaggac 180 ttcggcgtct acccgaacct gacctcccgc gagttcctca ggtatctggc ggcggccaag 240 ggcgtctcgg ccaagaccgc caaggcccgt atcgatgagc tcctggagct cgtcaacctc 300 accgaagcgg tcaagcgtcc cctgggcaag tactccggcg gcatgctgcg ccgggtcggc 360 atcgcccagg tgctgctcgc cgacccgcag gtgatcatcg tggacgagcc gaccgcgggg 420 ctggaccccg aggagcgggt caggttccgc aatctgctca gcgatctggc ggccgacaag 480 gtcgtgatgc tctccaccca catcgtctcc gacgtcgagt cggtggcctc cgacatcgcg 540 gtgatggccg gcggccggct gcagcgccgc ggcacccccg aggacctgct gcgctcggtg 600 gacggccagg tgtgggaggt gctggtcgac ccctcgtccg tagcggcggt gcaggcgcag 660 tacaccgtca gccgcctggt ccgcacgacc gagggcgtcc gtatccggct gctctcgcgc 720 gagctgccgt acgagggcgc cgtccagctg acgcccgacc tggaagacgc ctacctcgcc 780 atcatccgtg gggtcgacgg cggccgggcc gcccagggct tcggcgaacg gccgctccag 840 gcacgggtgg tgtga 855 47 284 PRT Streptomyces hygroscopicus 47 Met Arg Leu Glu Pro Gly Met Leu Gly Leu Leu Gly Pro Asn Gly Ala 1 5 10 15 Gly Lys Ser Ser Leu Met Arg Ile Ala Ser Thr Val Thr Arg Pro Thr 20 25 30 Ser Gly Lys Val Leu Phe His Gly Glu Asp Ala Val Ala Lys Pro Asn 35 40 45 Ala Leu Arg Arg Ala Leu Gly Tyr Leu Pro Gln Asp Phe Gly Val Tyr 50 55 60 Pro Asn Leu Thr Ser Arg Glu Phe Leu Arg Tyr Leu Ala Ala Ala Lys 65 70 75 80 Gly Val Ser Ala Lys Thr Ala Lys Ala Arg Ile Asp Glu Leu Leu Glu 85 90 95 Leu Val Asn Leu Thr Glu Ala Val Lys Arg Pro Leu Gly Lys Tyr Ser 100 105 110 Gly Gly Met Leu Arg Arg Val Gly Ile Ala Gln Val Leu Leu Ala Asp 115 120 125 Pro Gln Val Ile Ile Val Asp Glu Pro Thr Ala Gly Leu Asp Pro Glu 130 135 140 Glu Arg Val Arg Phe Arg Asn Leu Leu Ser Asp Leu Ala Ala Asp Lys 145 150 155 160 Val Val Met Leu Ser Thr His Ile Val Ser Asp Val Glu Ser Val Ala 165 170 175 Ser Asp Ile Ala Val Met Ala Gly Gly Arg Leu Gln Arg Arg Gly Thr 180 185 190 Pro Glu Asp Leu Leu Arg Ser Val Asp Gly Gln Val Trp Glu Val Leu 195 200 205 Val Asp Pro Ser Ser Val Ala Ala Val Gln Ala Gln Tyr Thr Val Ser 210 215 220 Arg Leu Val Arg Thr Thr Glu Gly Val Arg Ile Arg Leu Leu Ser Arg 225 230 235 240 Glu Leu Pro Tyr Glu Gly Ala Val Gln Leu Thr Pro Asp Leu Glu Asp 245 250 255 Ala Tyr Leu Ala Ile Ile Arg Gly Val Asp Gly Gly Arg Ala Ala Gln 260 265 270 Gly Phe Gly Glu Arg Pro Leu Gln Ala Arg Val Val 275 280 48 417 DNA Streptomyces hygroscopicus 48 gtgactctgg aggaaccgat gttctcaggc accatctcga agcggcccgc cacactcgtc 60 gtcgcggtgg cggccgtcgc cgccaccctc ggcctctccg gctgctccgt ggacgcctcg 120 aaggcgaagc ccgaatcgaa gtcgttcacg tactcgggca agtccctgaa ggtgacgacg 180 cacgaggtcg ccaccaaggt ggtcgccgcc gaccgcaagg acatcaaggt cacccgctgg 240 ttcgactcgg ccgcgggcac cgagcacctg aagtggaccc tcaagggcga caccctggac 300 atcgacgccg gctgcagcgg tatcgcgatc tgcgacgcca agttcaaggt cgaggtcccc 360 aagggcatcg cggtgaccaa ggacggcgag aagaccgacc tgaccgggaa gagctga 417 49 138 PRT Streptomyces hygroscopicus 49 Val Thr Leu Glu Glu Pro Met Phe Ser Gly Thr Ile Ser Lys Arg Pro 1 5 10 15 Ala Thr Leu Val Val Ala Val Ala Ala Val Ala Ala Thr Leu Gly Leu 20 25 30 Ser Gly Cys Ser Val Asp Ala Ser Lys Ala Lys Pro Glu Ser Lys Ser 35 40 45 Phe Thr Tyr Ser Gly Lys Ser Leu Lys Val Thr Thr His Glu Val Ala 50 55 60 Thr Lys Val Val Ala Ala Asp Arg Lys Asp Ile Lys Val Thr Arg Trp 65 70 75 80 Phe Asp Ser Ala Ala Gly Thr Glu His Leu Lys Trp Thr Leu Lys Gly 85 90 95 Asp Thr Leu Asp Ile Asp Ala Gly Cys Ser Gly Ile Ala Ile Cys Asp 100 105 110 Ala Lys Phe Lys Val Glu Val Pro Lys Gly Ile Ala Val Thr Lys Asp 115 120 125 Gly Glu Lys Thr Asp Leu Thr Gly Lys Ser 130 135 50 1191 DNA Streptomyces hygroscopicus 50 gtgcgtagcc tcgccctcat ggattacgac gttcctcccc ggcaaaagcg ccgccggtgg 60 tgcggggtgg ccgcggcaat gatgctcgcc cccgccgtca tagcgccacc gagcgcctat 120 ctgctggcgg tcatggccgc attgacgctg gccgtatcga tacttgcctg gccgaccggc 180 cggatctccc tggcccaggc ggcgggcggc gtcgcgctgc tctccctcgc cgcggacgtc 240 ggctacttcg ggcagcccgg cctggtgatc ctctggtacc cgttcgagac ggtcgcgctg 300 ctcgttctcc tggagcgggt ggtacgtcat gtgcccagcc cccgggtggg catcgtcgcc 360 ccgctgaccg gcgcagccgt catcctgctg cccctgcgct tcaccctgca cgcccccacc 420 gccgggctca aggaatcggt cttcgcggcc ttgctggccc tgatcccggc ggcctgcgcg 480 acgggtgtgg ggctctatct gcggtcgctg gacaaccgcc gggcgtatgc cgtggtgctg 540 gcgcgccgtg aacagcgcct cgaagtcgcc cgcgatctgc atgacttcgt cgcccacgag 600 gtgaccggca tcgttctgga ggcccaggcc gcccaagtca gcgaggacgc cgggcccgag 660 gagcaccgcg cccttctgca gcgcatcgag aaggccgggc tacgggcgct ggactccatg 720 gaccagacgg tgacgacgct gcgcgaggcg gacggccgca agtggggcga gccgccgccc 780 acccggctct acggcttggc cgacctcccc gagctcgtcg gccgcttctc ctccatggcc 840 gccgccgagg tggcgctgtc cctggaggac gaggtcgccg gcaccctctc gcgggaggcc 900 gaggacaccg cgtaccgggt ggtacttgaa tcgttgacca atgtccgtcg gcatgcgccg 960 caggccggcc gggtccaggt gttcgccgga cggaccgccg accgggccgt ggaggtctcg 1020 gtcgccgaca acgcagggcc gggggcgtcc gccggcaccc ggcagggcgg cggtacgggc 1080 ctggcgggcc tcggcgaacg cgtcagcgcc ctgggcggct ccctggaggc gggcccgtac 1140 gagaacgggt ggcgggtcag gtgcctgctg ccggcgcccg ccatccgctg a 1191 51 396 PRT Streptomyces hygroscopicus 51 Val Arg Ser Leu Ala Leu Met Asp Tyr Asp Val Pro Pro Arg Gln Lys 1 5 10 15 Arg Arg Arg Trp Cys Gly Val Ala Ala Ala Met Met Leu Ala Pro Ala 20 25 30 Val Ile Ala Pro Pro Ser Ala Tyr Leu Leu Ala Val Met Ala Ala Leu 35 40 45 Thr Leu Ala Val Ser Ile Leu Ala Trp Pro Thr Gly Arg Ile Ser Leu 50 55 60 Ala Gln Ala Ala Gly Gly Val Ala Leu Leu Ser Leu Ala Ala Asp Val 65 70 75 80 Gly Tyr Phe Gly Gln Pro Gly Leu Val Ile Leu Trp Tyr Pro Phe Glu 85 90 95 Thr Val Ala Leu Leu Val Leu Leu Glu Arg Val Val Arg His Val Pro 100 105 110 Ser Pro Arg Val Gly Ile Val Ala Pro Leu Thr Gly Ala Ala Val Ile 115 120 125 Leu Leu Pro Leu Arg Phe Thr Leu His Ala Pro Thr Ala Gly Leu Lys 130 135 140 Glu Ser Val Phe Ala Ala Leu Leu Ala Leu Ile Pro Ala Ala Cys Ala 145 150 155 160 Thr Gly Val Gly Leu Tyr Leu Arg Ser Leu Asp Asn Arg Arg Ala Tyr 165 170 175 Ala Val Val Leu Ala Arg Arg Glu Gln Arg Leu Glu Val Ala Arg Asp 180 185 190 Leu His Asp Phe Val Ala His Glu Val Thr Gly Ile Val Leu Glu Ala 195 200 205 Gln Ala Ala Gln Val Ser Glu Asp Ala Gly Pro Glu Glu His Arg Ala 210 215 220 Leu Leu Gln Arg Ile Glu Lys Ala Gly Leu Arg Ala Leu Asp Ser Met 225 230 235 240 Asp Gln Thr Val Thr Thr Leu Arg Glu Ala Asp Gly Arg Lys Trp Gly 245 250 255 Glu Pro Pro Pro Thr Arg Leu Tyr Gly Leu Ala Asp Leu Pro Glu Leu 260 265 270 Val Gly Arg Phe Ser Ser Met Ala Ala Ala Glu Val Ala Leu Ser Leu 275 280 285 Glu Asp Glu Val Ala Gly Thr Leu Ser Arg Glu Ala Glu Asp Thr Ala 290 295 300 Tyr Arg Val Val Leu Glu Ser Leu Thr Asn Val Arg Arg His Ala Pro 305 310 315 320 Gln Ala Gly Arg Val Gln Val Phe Ala Gly Arg Thr Ala Asp Arg Ala 325 330 335 Val Glu Val Ser Val Ala Asp Asn Ala Gly Pro Gly Ala Ser Ala Gly 340 345 350 Thr Arg Gln Gly Gly Gly Thr Gly Leu Ala Gly Leu Gly Glu Arg Val 355 360 365 Ser Ala Leu Gly Gly Ser Leu Glu Ala Gly Pro Tyr Glu Asn Gly Trp 370 375 380 Arg Val Arg Cys Leu Leu Pro Ala Pro Ala Ile Arg 385 390 395 52 681 DNA Streptomyces hygroscopicus 52 gaattcctgc ccgtgactat tcgcttgctg atcgccgacg accaggagat ggtccgccgc 60 ggaatacgcc gcatcgtgga gagccagccc gacatggaag tggtcggcga ggcggcaaac 120 ggcgtggacg cggtggagat ggggcgcacg ctcaaacccg atgtggcgct ggtcgacatc 180 cggatgccgc ggatggacgg cctggaggtg acccgcctgc tggccgaccc cgccgcggcc 240 aacccggtcc gggtcgtcgt ggtgacgacc ttcgacctgg acgagtacgt gtaccccgcg 300 ctgcgcttcg gcgcctcggg gttcctgctc aagcgctcgg ggccgacgct gctggtcgag 360 gcggtccggg cggcgatggc cggcgacagc ctgatcagcc cgtcgatcac tgtccggctg 420 ctccagcatg tcaccggccc cacgaccggc cgccgccccc gccgccgtga ctcggtgctg 480 accgagcggg aggtggagat cgccgggaag gtcgccgagg gcaagaccaa ttccgatatc 540 gcccgcgagt tgttcatctc cgcgggcacg gtcaagaccc atgtcgcgag cattcagcga 600 aagctacagg tacgcaatcg cgtcggggtc gcggtgcggg cctgggagct cggatatgcc 660 accgggcaga ccccggggtg a 681 53 226 PRT Streptomyces hygroscopicus 53 Glu Phe Leu Pro Val Thr Ile Arg Leu Leu Ile Ala Asp Asp Gln Glu 1 5 10 15 Met Val Arg Arg Gly Ile Arg Arg Ile Val Glu Ser Gln Pro Asp Met 20 25 30 Glu Val Val Gly Glu Ala Ala Asn Gly Val Asp Ala Val Glu Met Gly 35 40 45 Arg Thr Leu Lys Pro Asp Val Ala Leu Val Asp Ile Arg Met Pro Arg 50 55 60 Met Asp Gly Leu Glu Val Thr Arg Leu Leu Ala Asp Pro Ala Ala Ala 65 70 75 80 Asn Pro Val Arg Val Val Val Val Thr Thr Phe Asp Leu Asp Glu Tyr 85 90 95 Val Tyr Pro Ala Leu Arg Phe Gly Ala Ser Gly Phe Leu Leu Lys Arg 100 105 110 Ser Gly Pro Thr Leu Leu Val Glu Ala Val Arg Ala Ala Met Ala Gly 115 120 125 Asp Ser Leu Ile Ser Pro Ser Ile Thr Val Arg Leu Leu Gln His Val 130 135 140 Thr Gly Pro Thr Thr Gly Arg Arg Pro Arg Arg Arg Asp Ser Val Leu 145 150 155 160 Thr Glu Arg Glu Val Glu Ile Ala Gly Lys Val Ala Glu Gly Lys Thr 165 170 175 Asn Ser Asp Ile Ala Arg Glu Leu Phe Ile Ser Ala Gly Thr Val Lys 180 185 190 Thr His Val Ala Ser Ile Gln Arg Lys Leu Gln Val Arg Asn Arg Val 195 200 205 Gly Val Ala Val Arg Ala Trp Glu Leu Gly Tyr Ala Thr Gly Gln Thr 210 215 220 Pro Gly 225

Claims (49)

What is claimed:
1. An non-ribosomal peptide synthetase (NRPS) complex from Streptomyces hygroscopicus, wherein the NRPS is encoded by a nucleic acid having a nucleotide sequence as set forth in SEQ ID NO: 1, and wherein the NRPS complex is comprised of mppA and mppB.
2. An NRPS according to claim 1, wherein mppA is encoded by a nucleotide sequence as set forth in SEQ ID NO:3.
3. An NRPS according to claim 1, wherein mppB is encoded by a nucleotide sequence as set forth in SEQ ID NO:5.
4. An NRPS according to claim 1, wherein each of the mppA and mppB comprises a plurality of modules, each of said modules comprising an (i) adenylation domain, (ii) thiolation domain, and (iii) condensation domain.
5. An isolated nucleic acid having a nucleotide sequence selected from the group consisting of:
(a) a nucleotide sequence that encodes a polypeptide having the amino acid sequence as set forth in any one of SEQ ID NOs: 2, 4, 21-33, 35, 37, 39, 41, 43, 45, 47, 49, 51, and 53;
(b) a nucleic acid sequence that hybridizes to a nucleotide sequence encoding a polypeptide having the amino acid sequence as set forth in any one of SEQ ID NOs: 2, 4, 21-33, 35, 37, 39, 41, 43, 45, 47, 49, 51, and 53, said hybridization being performed under stringent conditions;
(c) a nucleic acid sequence that encodes a polypeptide at least 90% homologous to the amino acid sequence set forth in any one of SEQ ID NOs: 2, 4, 21-33, 35, 37, 39, 41, 43, 45, 47, 49, 51, and 53; and
(d) an isolated nucleic acid fragment having a nucleotide sequence complementary to the nucleotide sequence of (a), (b) or (c).
6. An isolated nucleic acid of claim 5, wherein the nucleic acid has a nucleotide sequence selected from the group consisting of SEQ ID NOs: 1, 3, 5 6-18, 34, 36, 38, 40, 42, 44, 46, 48, 50, and 52.
7. An isolated nucleic acid according to claim 5, wherein the nucleic acid has a nucleotide sequence that is complementary to the sequence set forth in any one of SEQ ID NOs: 1, 3, 5, 6-18, 34, 36, 38, 40, 42, 44, 46, 48, 50, and 52.
8. An isolated nucleic aid according to claim 5, wherein the nucleic acid has a nucleotide sequence that hybridizes under high stringent conditions to the sequence set forth in any of SEQ ID NOs: 1, 3, 5, 6-18, 34, 36, 38, 40, 42, 44, 46, 48, 50, and 52, or a complement thereof.
9. A polypeptide comprising an amino acid sequence encoded by the nucleic acid of any one of claims 5, 6, 7, or 8.
10. A polypeptide comprising an amino acid sequence as set forth in any one of SEQ ID NOs: 2, 4, 21-33, 35, 37, 39, 41, 43, 45, 47, 49, 51, and 53.
11. A chimeric nucleic acid construct comprising a nucleic acid of any one of claims 5, 6, 7, or 8, wherein said nucleic acid is operatively operatively associated with an expression control sequence.
12. An expression vector comprising the nucleic acid of any one of claims 5, 6, 7, or 8, wherein the nucleic acid is operatively associated with an expression control sequence.
13. An expression vector comprising a nucleic acid sequence having a nucleotide sequence encoding a polypeptide having an amino acid sequence as set forth in SEQ ID NO: 2, wherein the nucleic acid sequence is operatively associated with an expression control sequence.
14. An expression vector comprising a nucleic acid sequence having a nucleotide sequence encoding a polypeptide having an amino acid sequence as set forth in SEQ ID NO: 4, wherein the nucleic acid sequence is operatively associated with an expression control sequence.
15. The expression vector according to claim 13, further comprising a second nucleic acid sequence having a nucleotide sequence encoding a polypeptide having an amino acid sequence as set forth in SEQ ID NO: 4, wherein said second nucleic acid sequence is operatively associated with an expression control sequence.
16. The expression vector of claim 15, further comprising a nucleic acid sequence having a nucleotide sequence encoding a polypeptide having an amino acid sequence as set forth in any one of SEQ ID NOs: 21-33, 35, 37, 39, 41, 43, 45, 46, 49, 51, and 53 wherein said nucleic acid sequence is operatively associated with an expression control sequence.
17. A host cell genetically modified to express the nucleic acid of any one of claims 5, 6, 7, or 8.
18. A host cell genetically modified to express the nucleic acid having a nucleotide sequence as depicted in SEQ ID NO. 1.
19. A host cell genetically modified to express the nucleic acid of claim 5.
20. A host cell comprising the expression vector of claim 12.
21. A host cell comprising the expression vector of claim 15.
22. The host cell of claim 21, further comprising nucleic acid sequences having nucleotide sequences encoding polypeptides having amino acid sequences as set forth in SEQ ID NOs: 21-33, 35, 37, 39, 41, 43, 45, 47, 49, 51, and 53.
23. The host cell of claim 22, wherein the nucleic acids have nucleotide sequences depicted in SEQ ID NOs: 6-18, 34, 36, 38, 40, 42, 44, 46, 48, 50, and 52.
24. A nucleic acid having a nucleotide sequence that encodes a polypeptide having the amino acid sequence as set forth in SEQ ID NO. 21.
25. A nucleic acid having a nucleotide sequence that encodes a polypeptide having the amino acid sequence as set forth in SEQ ID NO. 25.
26. A nucleic acid having a nucleotide sequence that encodes a polypeptide having the amino acid sequence as set forth in SEQ ID NO. 28.
27. A nucleic acid having a nucleotide sequence that encodes a polypeptide having the amino acid sequence as set forth in SEQ ID NO. 31.
28. A nucleic acid having a nucleotide sequence that encodes a polypeptide having the amino acid sequence as set forth in SEQ ID NO. 32.
29. A nucleic acid having a nucleotide sequence that encodes a polypeptide having the amino acid sequence as set forth in SEQ ID NO. 33.
30. An isolated nucleic acid of claim 24, wherein the nucleic acid has a nucleotide sequence as depicted in SEQ ID NO:6.
31. An isolated nucleic acid of claim 25, wherein the nucleic acid has a nucleotide sequence as depicted in SEQ ID NO:10.
32. An isolated nucleic acid of claim 26, wherein the nucleic acid has a nucleotide sequence as depicted in SEQ ID NO:13.
33. An isolated nucleic acid of claim 27, wherein the nucleic acid has a nucleotide sequence as depicted in SEQ ID NO:16.
34. An isolated nucleic acid of claim 28, wherein the nucleic acid has a nucleotide sequence as depicted in SEQ ID NO:17.
35. An isolated nucleic acid of claim 29, wherein the nucleic acid has a nucleotide sequence as depicted in SEQ ID NO:18.
36. A method for producing NRPS, which method comprises isolating NRPS produced by the host cell of claim 22, wherein NRPS is comprised of mppA and mppB, and wherein the host cell has been cultured under conditions that provide for expression of mppA and mppB.
37. A method of making a peptide, the method comprising culturing the host cell of claim 22 under conditions that provide for expression of the peptide.
38. The method of claim 37, wherein the peptide is an antibiotic.
39. The method of claim 38, wherein said antibiotic is a lipoglycopeptide antibiotic with activity against Gram-positive pathogens.
40. The method of claim 39, wherein said antibiotic has the structure as depicted in FIG. 1.
41. The method of claim 36, wherein the NRPS is modified, and wherein said modified NRPS comprises addition, removal or substitution of at least one amino acid.
42. The method of claim 36, wherein the NRPS is modified, and wherein said modified NRPS comprises replacement of an adenylation domain.
43. The method of claim 41, wherein the modified NRPS comprises a modification comprising addition, removal or substitution of at least one amino acid in the group selected from SEQ ID NOs: 25, 28, 31, 32 or 33, whereby the modification results in inactivation of an O-mannosyltransferase, a phenylalanine C-methyltransferase, a first isovaleryl transferase, a second isovaleryl transferase or an arginine cyclase.
44. A method for determining the structural requirement of peptide activity, the method comprising:
(a) producing a modified NRPS in a host cell using the method of claim 41,
(b) culturing the host cell under conditions that provide for expression of a modified peptide produced by the modified NRPS,
(c) comparing the activity of the modified peptide produced by the modified NRPS with activity of a peptide produced by a non-modified NRPS;
whereby a difference in the activity indicates that the modification in the modified peptide is part of the structural requirement of peptide activity.
45. A method for determining the structural requirement of peptide activity, the method comprising:
(a) producing a modified NRPS in a host cell using the method of claim 42,
(b) culturing the host cell under conditions that provide for expression of a modified peptide produced by the modified NRPS,
(c) comparing the activity of the modified peptide produced by the modified NRPS with activity of a peptide produced by a non-modified NRPS;
whereby a difference in the activity indicates that the modification in the modified peptide is part of the structural requirement of peptide activity.
46. The method of claim 43, wherein the modified NRPS comprises a modification comprising addition, removal or substitution of at least one amino acid in the group selected from SEQ ID NOs: 25, 28, 31, 32 or 33, whereby the modification results in inactivation of an O-mannosyltransferase, a phenylalanine C-methyltransferase, a first isovaleryl transferase, a second isovaleryl transferase or an arginine cyclase.
47. A modified antibiotic peptide produced from a modified NRPS of claim 41.
48. A modified antibiotic peptide produced from a modified NRPS of claim 42.
49. A modified antibiotic peptide produced from a modified NRPS of claim 43.
US10/402,842 2002-03-29 2003-03-28 Non-ribosomal peptide synthetases and associated biosynthetic genes Abandoned US20030219872A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US10/402,842 US20030219872A1 (en) 2002-03-29 2003-03-28 Non-ribosomal peptide synthetases and associated biosynthetic genes
US10/746,795 US7195907B2 (en) 2002-03-29 2003-12-23 Non-ribosomal peptide synthetases and associated biosynthetic genes
US11/357,566 US7341861B2 (en) 2002-03-29 2006-02-17 Non-ribosomal peptide synthetases and associated biosynthetic genes
US11/687,152 US7709620B2 (en) 2002-03-29 2007-03-16 Non-ribosomal peptide synthetases and associated biosynthetic genes

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US36871302P 2002-03-29 2002-03-29
US10/402,842 US20030219872A1 (en) 2002-03-29 2003-03-28 Non-ribosomal peptide synthetases and associated biosynthetic genes

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US10/746,795 Continuation-In-Part US7195907B2 (en) 2002-03-29 2003-12-23 Non-ribosomal peptide synthetases and associated biosynthetic genes
US11/357,566 Division US7341861B2 (en) 2002-03-29 2006-02-17 Non-ribosomal peptide synthetases and associated biosynthetic genes

Publications (1)

Publication Number Publication Date
US20030219872A1 true US20030219872A1 (en) 2003-11-27

Family

ID=28675531

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/402,842 Abandoned US20030219872A1 (en) 2002-03-29 2003-03-28 Non-ribosomal peptide synthetases and associated biosynthetic genes
US11/357,566 Expired - Fee Related US7341861B2 (en) 2002-03-29 2006-02-17 Non-ribosomal peptide synthetases and associated biosynthetic genes

Family Applications After (1)

Application Number Title Priority Date Filing Date
US11/357,566 Expired - Fee Related US7341861B2 (en) 2002-03-29 2006-02-17 Non-ribosomal peptide synthetases and associated biosynthetic genes

Country Status (3)

Country Link
US (2) US20030219872A1 (en)
AU (1) AU2003226143A1 (en)
WO (1) WO2003082909A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060057698A1 (en) * 2004-05-05 2006-03-16 Sherman David H Nucleic acids and polypeptides involved in the production of cryptophycin
US20080090277A1 (en) * 2006-07-28 2008-04-17 Sherman David H Nucleic acids and polypeptides involved in the production of cryptophycin

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112012021931A2 (en) * 2010-03-09 2016-05-31 Merck Canada Inc compound, pharmaceutical composition, method for treating a bacterial infection, and use of compound

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000020601A2 (en) * 1998-10-02 2000-04-13 Kosan Biosciences, Inc. Polyketide synthase enzymes and recombinant dna constructs therefor
US6927286B1 (en) 1999-01-06 2005-08-09 The Regents Of The University Of California Bleomycin gene cluster components and their uses
WO2002024736A1 (en) * 2000-09-21 2002-03-28 The University Of Queensland Polynucleotides and polypeptides associated with antibiotic biosynthesis and uses therefor
US7108998B2 (en) 2001-06-11 2006-09-19 Ecopia Biosciences Inc. Nucleic acid fragment encoding an NRPS for the biosynthesis of anthramycin
AU2002248692A1 (en) 2001-03-26 2002-10-08 The Regent Of The University Of California Leinamycin biosynthesis gene cluster and its components and their uses
US7630836B2 (en) 2001-05-30 2009-12-08 The Kitasato Institute Polynucleotides

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060057698A1 (en) * 2004-05-05 2006-03-16 Sherman David H Nucleic acids and polypeptides involved in the production of cryptophycin
US7229814B2 (en) 2004-05-05 2007-06-12 Regents Of The University Of Minnesota Nucleic acids and polypeptides involved in the production of cryptophycin
US20080050796A1 (en) * 2004-05-05 2008-02-28 Regents Of The University Of Minnesota, A Minnesota Corporation Nucleic Acids and Polypeptides Involved in the Production of Cryptophycin
US7662599B2 (en) 2004-05-05 2010-02-16 Regents Of The University Of Minnesota Nucleic acids and polypeptides involved in the production of cryptophycin
US20080090277A1 (en) * 2006-07-28 2008-04-17 Sherman David H Nucleic acids and polypeptides involved in the production of cryptophycin
US7566558B2 (en) 2006-07-28 2009-07-28 Regents Of The University Of Michigan Nucleic acids and polypeptides involved in the production of cryptophycin
US8313936B2 (en) 2006-07-28 2012-11-20 Regents Of The University Of Michigan Nucleic acids and polypeptides involved in the production of cryptophycin

Also Published As

Publication number Publication date
AU2003226143A1 (en) 2003-10-13
US20060269994A1 (en) 2006-11-30
WO2003082909A8 (en) 2004-12-16
US7341861B2 (en) 2008-03-11
WO2003082909A1 (en) 2003-10-09

Similar Documents

Publication Publication Date Title
CN1277843C (en) Comparative mycobacterial geneomics as a tool for identifying targets for the diagnosis, prophylaxis or treatment of mycobacterioses
DK2271666T3 (en) NRPS-PKS GROUP AND ITS MANIPULATION AND APPLICABILITY
CN1500146A (en) Genome of bifidobacterium
KR20100039443A (en) Compositions and methods relating to the daptomycin biosynthetic gene cluster
KR20080086517A (en) Lantibiotic biosynthetic gene clusters from a. garbadinensis and a. liguriae
KR20100049580A (en) Thiopeptide precursor protein, gene encoding it and uses thereof
CN101275141A (en) Biological synthesis gene cluster for Azintamide
KR20050074313A (en) Cephalosporin c acylases
CN101691575B (en) Biosynthetic gene cluster of sanglifehrin
CN101157929A (en) Safraninemycin biological synthesis gene cluster
US20030219872A1 (en) Non-ribosomal peptide synthetases and associated biosynthetic genes
US20020164747A1 (en) Gene cluster for ramoplanin biosynthesis
CN106676115B (en) 2 '-chloro Pentostatins and 2 '-amino -2'-deoxyadenosine biological synthesis gene cluster and its application
WO2002059322A9 (en) Compositions and methods relating to the daptomycin biosynthetic gene cluster
CN101063140B (en) Vancocin biological synthesis gene cluster
US20040147007A1 (en) Non-ribosomal peptide synthetases and associated biosynthetic genes
US20030068788A1 (en) Methods and compositions for making emamectin
CN101586112B (en) Gene cluster for biological synthesis of Nosiheptide
KR101189475B1 (en) Genes and proteins for biosynthesis of tricyclocompounds
JPH10512439A (en) Novel polypeptide
KR20050050146A (en) Genes and proteins for the biosynthesis of the glycopeptide antibiotic a40926
US20030064491A1 (en) Genes and proteins involved in the biosynthesis of enediyne ring structures
US20030077767A1 (en) Genes and proteins for the biosynthesis of anthramycin
KR102026836B1 (en) Novel lipase gene Lip-1420 derived from soil metagenome and use thereof
US20040091987A1 (en) Process for the overexpression of dehydrogenases

Legal Events

Date Code Title Description
AS Assignment

Owner name: WYETH, NEW JERSEY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HUCUL, JOHN;MAGARVEY, NATHAN;GREENSTEIN, MICHAEL;REEL/FRAME:014239/0857;SIGNING DATES FROM 20030501 TO 20030506

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION