KR102026836B1 - Novel lipase gene Lip-1420 derived from soil metagenome and use thereof - Google Patents

Novel lipase gene Lip-1420 derived from soil metagenome and use thereof Download PDF

Info

Publication number
KR102026836B1
KR102026836B1 KR1020180109055A KR20180109055A KR102026836B1 KR 102026836 B1 KR102026836 B1 KR 102026836B1 KR 1020180109055 A KR1020180109055 A KR 1020180109055A KR 20180109055 A KR20180109055 A KR 20180109055A KR 102026836 B1 KR102026836 B1 KR 102026836B1
Authority
KR
South Korea
Prior art keywords
lipase
lip
protein
transformant
dna
Prior art date
Application number
KR1020180109055A
Other languages
Korean (ko)
Inventor
황인택
임희경
김달례
Original Assignee
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국화학연구원 filed Critical 한국화학연구원
Priority to KR1020180109055A priority Critical patent/KR102026836B1/en
Application granted granted Critical
Publication of KR102026836B1 publication Critical patent/KR102026836B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/18Carboxylic ester hydrolases (3.1.1)
    • C12N9/20Triglyceride splitting, e.g. by means of lipase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

The present invention relates to a novel lipase gene Lip-1420 derived from a soil metagenome, and a use thereof. A transformant having Lip-1420-sub-ORF3, which is recombined from the novel lipase gene Lip-1420 derived from the soil metagenome, exhibits potent lipase activities against tributyrin, and furthermore, a novel lipase protein isolated and purified from the transformant also exhibits potent lipase activity, and a novel lipase protein may be mass-produced from the transformant. Accordingly, the novel lipase gene of the present invention, a vector comprising the same, and a transformant having the same may be beneficially used in an industrial mass-production of novel lipase proteins having potent activities.

Description

토양 메타게놈 유래 신규 리파아제 유전자 Lip-1420 및 이의 용도{Novel lipase gene Lip-1420 derived from soil metagenome and use thereof}New lipase gene Lip-1420 derived from soil metagenome and use thereof

본 발명은 토양 메타게놈 유래 신규 리파아제 유전자 Lip-1420 및 이의 용도에 관한 것이다.The present invention relates to a novel lipase gene Lip-1420 derived from soil metagenome and its use.

미생물로부터 생산된 단백질의 산업적 이용에 관한 연구는 지난 100여 년 동안 다양한 분야에서 광범위하게 수행되어 왔다. 이들 연구는 주로 배양 가능한 미생물에 대해 수행되었으며 이로부터 밝혀진 다양한 미생물 효소가 산업적으로 사용되고 있다. 그러나 최근의 분자 미생물학 연구는 자연계에 존재하는 미생물의 99% 이상이 전형적인 배지에서 배양되지 않는다는 것을 알게 되었다. 따라서 배양 가능한 다수의 미생물로부터 새로운 효소를 발견하려는 시도와는 달리 실제로 배양되어 동정된 적이 없는 대다수 미생물들의 유전자 재조합 발현을 통하여 새로운 효소 발견을 가능하게 한 것이 메타게놈(metagenome)이다. Research on the industrial use of proteins produced from microorganisms has been extensively performed in various fields for the last 100 years. These studies have been carried out mainly on cultureable microorganisms and various microbial enzymes found therefrom are being used industrially. However, recent molecular microbiology studies have found that more than 99% of the microorganisms in nature are not cultured in typical media. Therefore, unlike attempts to find new enzymes from a large number of cultureable microorganisms, it is a metanome that enables the discovery of new enzymes through the recombinant expression of most microorganisms that have not been identified and cultured.

메타게놈은 자연계에 존재하는 모든 미생물의 유전체를 통칭하는 것으로 정의되고, 자연계 시료로부터 미생물을 배양하지 않고 메타게놈을 분리한 후, 이들을 라이브러리로 작성하여 배양가능한 대장균에 도입하는 과정을 통해 분석할 수 있다. 이는 배양이 불가능했던 미생물로부터 유용 산물을 확보하기 위한 방법으로, 유전자의 유래가 되는 미생물에 대한 정보는 얻기가 어려우나 미생물의 산물과 유전자를 동시에 확보할 수 있는 장점이 있다. 미국 위스콘신 대학 연구팀이 처음으로 대형의 메타게놈을 성공적으로 분리하여 세균성 인위적 염색체(bacterial artificial chromosome, BAC) 벡터에 클로닝하여 메타게놈 라이브러리를 구축하였고, 이로부터 광범위한 항생물질 및 그의 생합성에 관련된 유전자들을 분리하였다(Gillespie et al., 2002, Appl. Environ. Microbiol. 68: 4301-4306; Rondon et al., 2000, Appl. Environ. Microbiol. 66: 2541-2547). TIGR (The Institute for Genomic Research) 연구팀에서도 해양 미생물의 총 미생물 메타게놈 라이브러리를 BAC 벡터에 구축하여 해양 생태계로부터 배양되지 않는 미생물의 유전자원 탐색을 시도하고 있다. 최근에는 다양한 메타게놈으로부터 리파아제를 생산 및 정제하고, 그 특성을 파악하고자 하는 연구가 진행되고 있다(Gupta et al., 2004, Appl. Microbiol. Biotechnol., 64:763-781). Metagenome is defined as the genome of all microorganisms existing in nature, and can be analyzed by separating metagenomes from natural samples without culturing the microorganisms, and preparing them into libraries and introducing them into cultivable Escherichia coli. have. This is a method for securing useful products from microorganisms that have not been cultured, but it is difficult to obtain information on the microorganism from which the gene is derived. A team of researchers from the University of Wisconsin, USA, for the first time successfully isolated a large metagenome and cloned it into a bacterial artificial chromosome (BAC) vector to build a metagenomic library from which a wide range of antibiotics and genes related to their biosynthesis were isolated. Gillespie et al., 2002, Appl. Environ. Microbiol. 68: 4301-4306; Rondon et al., 2000, Appl. Environ. Microbiol. 66: 2541-2547. The Institute for Genomic Research (TIGR) team is also building a total microbial metagenomic library of marine microorganisms in BAC vectors to explore the genetic resources of microorganisms that are not cultured from marine ecosystems. Recently, studies have been conducted to produce and purify lipases from various metagenomes and to characterize them (Gupta et al., 2004, Appl. Microbiol. Biotechnol., 64: 763-781).

리파아제(lipase)는 트리글리세라이드(triglyceride)의 에스테르 결합을 가수분해하는 효소로 많은 종류의 동식물과 미생물이 생산하는 것으로 알려져 있으며, 이에 대한 생화학적 특성 및 유전자에 대한 연구가 활발히 진행되고 있다. 또한, 높은 기질 특이성, 광학활성 특이성 및 위치 특이성 등의 고유한 특성을 갖고 있기 때문에 유지의 전환뿐만 아니라 수용액에서의 가수분해 및 유기용매 내에서의 (트랜스) 에스터화 반응을 통하여 다양한 정밀화학품, 세제, 식품, 화학 및 제약 산업 등에서 매우 유용하게 사용되며, 특히 광학활성 의약품의 생산에 유용한 효소로 알려져 있다. 최근에는 바이오디젤을 생산하는데 활용되기도 하는 리파아제는 다른 효소들에 비해 상대적으로 저렴하게 생산할 수 있으며 조효소를 필요로 하지 않아 산업적으로 큰 장점이 있기 때문에 생물의약분야에서 생체촉매로 널리 활용되면서 그 중요성이 더욱 부각되고 있다.Lipase is an enzyme that hydrolyzes ester bonds of triglycerides and is known to be produced by many kinds of animals and plants, and biochemical properties and genes have been actively studied. In addition, due to its unique characteristics such as high substrate specificity, optical activity specificity and position specificity, various fine chemicals and detergents are not only converted into oils and fats but also through hydrolysis in aqueous solution and (trans) esterification in organic solvents. It is very useful in food, chemical and pharmaceutical industries, and is particularly known as an enzyme useful for the production of optically active pharmaceuticals. Recently, lipase, which is used to produce biodiesel, is relatively cheaper than other enzymes and does not require coenzymes. Therefore, lipase is widely used as a biocatalyst in biopharmaceuticals because of its industrial advantages. It is getting more noticeable.

이에 본 발명자들은 신규한 리파아제 유전자를 국내 토양 메타게놈으로부터 분리한 후 이로부터 생산된 단백질이 우수한 리파아제 활성을 나타냄을 확인함으로써 본 발명을 완성하였다.Thus, the present inventors completed the present invention by separating the novel lipase gene from the domestic soil metagenome and confirming that the protein produced therefrom exhibits excellent lipase activity.

본 발명의 목적은 토양 메타게놈 유래 신규 리파아제 유전자 및 단백질, 상기 신규 리파아제 유전자를 포함하는 벡터, 이를 도입한 형질전환체, 및 이를 이용한 리파아제 단백질의 제조방법을 제공하는 것이다.An object of the present invention is to provide a new lipase gene and protein derived from soil metagenome, a vector comprising the new lipase gene, a transformant having the same, and a method for preparing a lipase protein using the same.

상기 목적을 달성하기 위하여, 본 발명은 서열번호 1의 아미노산 서열로 구성되는 리파아제 단백질을 제공한다.In order to achieve the above object, the present invention provides a lipase protein consisting of the amino acid sequence of SEQ ID NO: 1.

또한, 본 발명은 상기 리파아제 단백질을 암호화하는 유전자를 제공한다.The present invention also provides a gene encoding the lipase protein.

또한, 본 발명은 상기 유전자를 포함하는 재조합 벡터를 제공한다.The present invention also provides a recombinant vector comprising the gene.

또한, 본 발명은 상기 재조합 벡터를 숙주세포에 도입한 형질전환체를 제공한다.The present invention also provides a transformant in which the recombinant vector is introduced into a host cell.

또한, 본 발명은 1) 상기 형질전환체를 배양하는 단계; 2) 상기 배양된 형질전환체 또는 이의 배양 상등액으로부터 리파아제 단백질을 회수하는 단계를 포함하는 리파아제 단백질의 제조방법을 제공한다.In addition, the present invention 1) culturing the transformant; 2) provides a method for producing a lipase protein comprising the step of recovering the lipase protein from the cultured transformant or its culture supernatant.

본 발명에 따른 토양 메타게놈 유래 신규 리파아제 클론 Lip-1420으로부터 재조합한 유전자 Lip-1420-sub-ORF3을 도입한 형질전환체는 트리뷰티린(tributyrin)에 대한 강한 리파아제 활성을 나타내고, 상기 형질전환체로부터 분리 및 정제한 신규 리파아제 단백질 또한 강한 리파아제 활성을 나타내며, 상기 형질전환체로부터 신규 리파아제 단백질을 대량 생산할 수 있다. 따라서, 본 발명의 신규 리파아제 유전자, 이를 포함하는 벡터, 및 이를 도입한 형질전환체는 강한 활성을 갖는 신규 리파아제 단백질의 산업적 대량 생산에 유용하게 사용될 수 있다.A transformant incorporating the recombinant Lip-1420-sub-ORF3 gene from a new lipase clone Lip-1420 derived from soil metagenome according to the present invention exhibits strong lipase activity against tributyrin, The new lipase protein isolated and purified from also exhibits strong lipase activity and can mass produce new lipase proteins from the transformants. Therefore, the novel lipase gene of the present invention, a vector comprising the same, and a transformant having the same, can be usefully used for industrial mass production of a novel lipase protein having strong activity.

도 1은 Lip-1420의 서브클론을 도입한 대장균으로부터 분리한 플라스미드 DNA의 제한효소 Bam HI, Pst I, Eco RI, Xba I Sph I, Hind III, 및 Sma I에 대한 절단 양상을 확인한 도면(A), 및 Lip-1420의 서브클론을 도입한 대장균 중 리파아제 활성을 나타내는 콜로니들을 나타낸 도면(B)이다.
도 2는 Lip-1420-sub-ORF3 서열을 포함하는 플라스미드(pET21a(+)-ORF3-6H)의 구조를 도식화한 도면이다.
도 3은 Lip-1420-sub-ORF3이 도입된 대장균에서 신규 리파아제 단백질 발현을 확인한 도면이다.
도 4는 Lip-1420-sub-ORF3이 도입된 대장균에서 분리한 신규 리파아제 단백질을 FPLC로 정제하는 크로마토그램(A), FPLC를 통해 수득한 각 분획 내 신규 리파아제 단백질 발현을 확인한 도면(B), 및 분리 및 정제한 신규 리파아제 단백질을 담은 용기를 촬영한 사진(C)이다.
도 5는 Lip-1420-sub-ORF3이 도입된 대장균에서 분리한 신규 리파아제 단백질의 리파아제 활성을 확인한 도면이다.
1 is a diagram confirming the cleavage pattern for restriction enzymes Bam HI, Pst I, Eco RI, Xba I Sph I, Hind III, and Sma I of plasmid DNA isolated from E. coli introduced subclonal Lip-1420 ), And colonies showing lipase activity in Escherichia coli incorporating a subclone of Lip-1420 (B).
2 is a diagram showing the structure of a plasmid (pET21a (+)-ORF3-6H) comprising a Lip-1420-sub-ORF3 sequence.
3 is a diagram confirming the expression of a novel lipase protein in E. coli introduced Lip-1420-sub-ORF3.
4 is a chromatogram (A) for purification of a new lipase protein isolated from Escherichia coli introduced with Lip-1420-sub-ORF3 by FPLC, and confirming the expression of new lipase protein in each fraction obtained through FPLC (B), And a photograph (C) of a container containing the isolated and purified new lipase protein.
5 is a diagram confirming the lipase activity of the novel lipase protein isolated from Escherichia coli Lip-1420-sub-ORF3 introduced.

이하 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명은 서열번호 1의 아미노산 서열로 구성되는 리파아제 단백질을 제공한다.The present invention provides a lipase protein consisting of the amino acid sequence of SEQ ID NO: 1.

상기 리파아제 단백질, 이의 변이체 또는 이의 단편은 토양 메타게놈을 포함한 천연에서 분리하거나, 당업계의 통상적인 화학적 합성 방법(W. H. Freeman and Co., Proteins; structures and molecular principles, 1983)에 의해 합성될 수 있다. 구체적으로, 액상 펩타이드 합성법(Solution Phase Peptide synthesis), 고상 펩타이드 합성법(solid-phase peptide syntheses), 단편 응축법 및 F-moc 또는 T-BOC 화학법으로 합성될 수 있고, 더욱 구체적으로는 고상 펩타이드 합성법으로 합성될 수 있다.The lipase protein, variant thereof or fragment thereof may be isolated from nature, including soil metagenome, or synthesized by conventional chemical synthesis methods (WH Freeman and Co., Proteins; structures and molecular principles, 1983). . Specifically, it can be synthesized by liquid phase peptide synthesis (Solution Phase Peptide synthesis), solid-phase peptide syntheses, fragment condensation and F-moc or T-BOC chemistry, more specifically solid phase peptide synthesis Can be synthesized.

상기 리파아제 단백질은 단백질의 기능에 영향을 미치지 않는 범위 내에서, 아미노산 잔기의 결실, 삽입, 치환 또는 이들의 조합에 의해서 상이한 서열을 가지는 아미노산의 변이체일 수 있다. 분자의 활성을 전체적으로 변경시키지 않는 단백질 또는 펩타이드에서의 아미노산 교환은 당해 분야에 공지되어 있다. 경우에 따라서는 인산화(phosphorylation), 황화(sulfation), 아크릴화(acrylation), 당화(glycosylation), 메틸화(methylation) 또는 파네실화(farnesylation) 등으로 수식(modification)될 수 있다. 따라서, 본 발명은 상기 서열번호 1의 아미노산 서열로 구성되는 단백질과 실질적으로 동일한 아미노산 서열을 갖는 단백질, 이의 변이체 또는 단편을 포함할 수 있다. 상기 실질적으로 동일한 아미노산 서열을 갖는 단백질은 본 발명의 단백질과 80% 이상, 구체적으로 90% 이상, 더욱 구체적으로 95% 이상으로 상동성을 가질 수 있다.The lipase protein may be a variant of an amino acid having a different sequence by deletion, insertion, substitution, or a combination of amino acid residues within a range that does not affect the function of the protein. Amino acid exchange in proteins or peptides that do not alter the activity of the molecule as a whole is known in the art. In some cases, it may be modified by phosphorylation, sulfation, acrylation, glycosylation, methylation, or farnesylation. Accordingly, the present invention may include a protein, variant or fragment thereof having an amino acid sequence substantially the same as the protein consisting of the amino acid sequence of SEQ ID NO: 1. A protein having substantially the same amino acid sequence may have homology with at least 80%, specifically at least 90%, more specifically at least 95% of the proteins of the invention.

또한, 본 발명은 상기 리파아제 단백질을 암호화하는 유전자를 제공한다.The present invention also provides a gene encoding the lipase protein.

상기 유전자는 서열번호 2의 염기서열로 구성되는 것일 수 있고, 구체적으로 Lip-1420-sub-ORF3일 수 있다. 본 발명의 일 실시예에서, Lip-1420-sub-ORF3 유전자를 도출하여 GenBank에 등록하였다(MH628529).The gene may be composed of the nucleotide sequence of SEQ ID NO: 2, specifically Lip-1420-sub-ORF3. In one embodiment of the invention, Lip-1420-sub-ORF3 gene was derived and registered in GenBank (MH628529).

상기 리파아제 단백질을 암호화하는 유전자는 토양 메타게놈으로부터 유래된 것일 수 있다.The gene encoding the lipase protein may be derived from soil metagenome.

상기 리파아제 단백질을 암호화하는 유전자는 본 발명의 리파아제 단백질과 동등한 활성을 갖는 단백질을 암호화하는 범위 내에서, 하나 이상의 핵산 염기의 결실, 삽입, 치환 또는 이들의 조합에 의해서 상이한 서열을 가지는 변이체일 수 있다. 따라서, 본 발명은 상기 서열번호 2의 염기서열로 구성되는 유전자와 실질적으로 동일한 염기서열을 갖는 폴리뉴클레오티드, 이의 변이체 또는 단편을 포함할 수 있다. 상기 실질적으로 동일한 염기서열을 갖는 폴리뉴클레오티드는 본 발명의 유전자와 80% 이상, 구체적으로 90% 이상, 더욱 구체적으로 95% 이상으로 상동성을 가질 수 있다.The gene encoding the lipase protein may be a variant having a different sequence by deletion, insertion, substitution, or a combination of one or more nucleic acid bases within a range encoding a protein having an activity equivalent to that of the lipase protein of the present invention. . Accordingly, the present invention may include a polynucleotide having a nucleotide sequence substantially identical to a gene consisting of the nucleotide sequence of SEQ ID NO: 2, a variant or a fragment thereof. The polynucleotide having substantially the same base sequence may have homology with the gene of the present invention at least 80%, specifically at least 90%, more specifically at least 95%.

또한, 본 발명은 상기 유전자를 포함하는 재조합 벡터를 제공한다.The present invention also provides a recombinant vector comprising the gene.

본 명세서에서 사용된 용어, "벡터"는 세포 내로 전달하는 DNA 단편(들), 핵산 분자를 의미하며, 벡터는 DNA를 복제시키고, 숙주세포에서 독립적으로 재생산될 수 있다.As used herein, the term "vector" refers to DNA fragment (s), nucleic acid molecules that are delivered into a cell, and the vector can replicate DNA and be independently reproduced in a host cell.

본 명세서에서 사용된 용어, "재조합 벡터"는 특정 숙주세포에서 목적 단백질 또는 목적 RNA를 발현할 수 있는 벡터로, 유전자 삽입물이 발현되도록 작동가능하게 연결된 필수적인 조절요소를 포함하는 유전자 제작물을 의미한다.As used herein, the term “recombinant vector” refers to a gene construct that is capable of expressing a target protein or RNA of interest in a particular host cell and includes essential regulatory elements operably linked to express the gene insert.

본 명세서에서 사용된 용어 "작동가능하게 연결된(operably linked)"은 핵산의 발현을 조절하는 서열과 목적하는 단백질 또는 RNA를 암호화하는 핵산 서열이 기능적으로 연결(functional linkage)되어 있는 것을 의미한다. 예를 들어 프로모터와 단백질 또는 RNA를 코딩하는 핵산 서열이 작동가능하게 연결되어 암호화하는 핵산 서열의 발현에 영향을 미칠 수 있다. 재조합 벡터와의 작위적 연결은 당해 기술 분야에서 잘 알려진 유전자 재조합 기술을 이용하여 제조할 수 있으며, 부위-특이적 DNA 절단 및 연결은 당해 기술 분야에서 일반적으로 알려진 효소 등을 사용한다.As used herein, the term “operably linked” means that the sequence that regulates the expression of the nucleic acid and the nucleic acid sequence that encodes the protein or RNA of interest are functionally linked. For example, a promoter and a nucleic acid sequence encoding a protein or RNA can be operably linked to affect expression of the nucleic acid sequence encoding. Fractional linkage with recombinant vectors can be prepared using genetic recombination techniques well known in the art, and site-specific DNA cleavage and ligation employs enzymes or the like generally known in the art.

상기 재조합 벡터는 플라스미드 벡터, 코스미드(cosmid) 벡터, 포스미드(fosmid) 벡터, 박테리오파지 벡터 또는 바이러스 벡터일 수 있으나, 이에 제한되지 않는다.The recombinant vector may be a plasmid vector, a cosmid vector, a fosmid vector, a bacteriophage vector or a viral vector, but is not limited thereto.

본 발명의 일 실시예에서, 상기 재조합 벡터는 도 2의 도식화된 구조를 갖는 포스미드 벡터일 수 있다.In one embodiment of the invention, the recombinant vector may be a phosphid vector having the schematic structure of FIG.

상기 재조합 벡터는 프로모터(promoter), 오퍼레이터(operator), 개시코돈, 종결코돈, 폴리아데닐화 시그널 및 인핸서(enhancer)와 같은 발현 조절 서열을 포함할 수 있고, 막 표적화 또는 분비를 위한 시그널 서열 또는 리더 서열을 포함할 수 있으며, 목적에 따라 다양하게 제조될 수 있다.The recombinant vector may include expression control sequences such as promoters, operators, initiation codons, termination codons, polyadenylation signals, and enhancers, and signal sequences or leaders for membrane targeting or secretion. The sequence may be included and variously prepared according to the purpose.

상기 시그널 서열은 숙주세포가 에쉐리키아속(Escherichia) 균인 경우 PhoA 시그널 서열 또는 OmpA 시그널 서열 등을, 숙주세포가 바실러스속(Bacillus) 균인 경우 α-아밀라아제 시그널 서열 또는 서브틸리신(subtilicin) 시그널 서열 등을, 숙주세포가 효모인 경우에는 MFα 시그널 서열 또는 SUC2 시그널 서열 등을, 숙주세포가 동물세포인 경우에는 인슐린 시그널 서열, α-인터페론 시그널 서열, 또는 항체 분자 시그널 서열 등을 이용할 수 있으나, 이에 제한되지 않는다.The signal sequence may include a PhoA signal sequence or an OmpA signal sequence if the host cell is Escherichia, or an α-amylase signal sequence or a subtilicin signal sequence if the host cell is a Bacillus bacterium. If the host cell is a yeast, MFα signal sequence or SUC2 signal sequence, etc. If the host cell is an animal cell, an insulin signal sequence, α-interferon signal sequence, or an antibody molecule signal sequence, etc. may be used. It is not limited.

또한, 상기 재조합 벡터는 재조합 벡터를 함유하는 숙주 세포를 선별하기 위한 선택 마커를 포함할 수 있고, 복제 가능한 재조합 벡터인 경우 복제원점을 포함할 수 있다.In addition, the recombinant vector may include a selection marker for selecting a host cell containing the recombinant vector, and in the case of a replicable recombinant vector, may include an origin of replication.

본 발명의 일 실시예에서, 본 발명에 따른 리파아제 단백질을 암호화하는 유전자를 포함하는 재조합 벡터를 숙주세포에 도입한 형질전환체는 리파아제 단백질이 숙주세포에서 발현하면 그 활성을 나타내게 되므로, 숙주세포의 배양 배지에 트리뷰티린 등의 리파아제 기질을 첨가함으로써, 선택 마커 없이도 형질전환된 숙주세포의 선별이 가능하도록 할 수 있다.In one embodiment of the present invention, the transformant introduced into the host cell a recombinant vector containing the gene encoding the lipase protein according to the present invention is expressed when the lipase protein is expressed in the host cell, so that the host cell By adding a lipase substrate such as tributyrin to the culture medium, it is possible to select a transformed host cell without a selection marker.

또한, 상기 재조합 벡터는 발현물의 정제를 용이하게 하기 위한 서열을 포함할 수 있으며, 본 발명의 일 실시예에서, 히스티딘-택(His-taq)을 C-말단에 위치시켜 리파아제 단백질의 정제를 용이하게 하였다.In addition, the recombinant vector may include a sequence for facilitating purification of the expression, in one embodiment of the present invention, the histidine-tag (His-taq) is located at the C-terminal to facilitate the purification of lipase protein It was made.

또한, 본 발명은 상기 재조합 벡터를 숙주세포에 도입한 형질전환체를 제공한다.The present invention also provides a transformant in which the recombinant vector is introduced into a host cell.

본 명세서에서 사용된 용어, "형질전환"은 "도입"과 동등한 의미로 사용되며, 사용된 방법에 관계없이 외래 폴리뉴클레오티드를 숙주세포로 전달하는 것을 의미한다.As used herein, the term “transformation” is used in the same sense as “introduction” and means the delivery of a foreign polynucleotide to a host cell, regardless of the method used.

상기 숙주세포는 외래 유전자가 도입되어 외래 유전자의 형질을 나타낼 수 있는 능력을 가지는 세포로, 원핵세포 또는 진핵세포일 수 있고, 구체적으로, 상기 원핵세포는 대장균일 수 있다. The host cell is a cell having the ability to introduce a foreign gene to express the trait of the foreign gene, may be a prokaryotic cell or eukaryotic cell, specifically, the prokaryotic cell may be E. coli.

본 발명의 일 실시예에서, 상기 형질전환체는 BL21(DE3)/pET21a+ORF3-6H 균주일 수 있다.In one embodiment of the present invention, the transformant may be a BL21 (DE3) / pET21a + ORF3-6H strain.

상기 재조합 벡터를 숙주세포로 형질전환하는 방법은 재조합 벡터가 숙주세포 안으로 삽입되는 것이라면 특별히 제한되지는 않으며, 예를 들어, CaCl2 방법, 전기천공방법, 미세주입법 등 어느 것이나 가능하다.The method of transforming the recombinant vector into a host cell is not particularly limited as long as the recombinant vector is inserted into the host cell. For example, any one of CaCl 2 , electroporation, and microinjection may be used.

또한, 본 발명은 1) 상기 형질전환체를 배양하는 단계; 2) 상기 배양된 형질전환체 또는 이의 배양 상등액으로부터 리파아제 단백질을 회수하는 단계를 포함하는 리파아제 단백질의 제조방법을 제공한다.In addition, the present invention 1) culturing the transformant; 2) provides a method for producing a lipase protein comprising the step of recovering the lipase protein from the cultured transformant or its culture supernatant.

상기 단계 1)에서 형질전환체를 배양하는 단계는 LB(Luria broth) 배지에서 배양할 수 있고, 구체적으로 상기 형질전환체를 선별적으로 증식시킬 수 있는 항생제를 포함한 LB 배지에서 배양할 수 있다. 본 발명의 일 실시예에서, 상기 형질전환체는 암피실린을 포함하는 LB 배지에서 배양할 수 있다.The step of culturing the transformant in step 1) may be cultured in LB (Luria broth) medium, and specifically, the transformant may be cultured in LB medium containing an antibiotic capable of selectively propagating the transformant. In one embodiment of the present invention, the transformant may be cultured in LB medium containing ampicillin.

또한, 상기 단계 1)에서 형질전환체를 배양하는 단계는 리파아제 단백질 발현을 유도하는 IPTG(isopropyl-α-D-thiogalacto pyranoside) 등의 유도물질을 처리하여 배양할 수 있고, 구체적으로 IPTG를 최종농도가 0.01 내지 1 mM, 또는 0.05 내지 0.5 mM이 되도록 처리하여 배양할 수 있다.In addition, the step of culturing the transformant in step 1) may be cultured by treating an inducer such as IPTG (isopropyl-α-D-thiogalacto pyranoside) that induces lipase protein expression, specifically, the final concentration of IPTG May be cultured by treating 0.01 to 1 mM, or 0.05 to 0.5 mM.

상기 단계 2)에서 리파아제 단백질을 회수하는 단계는 당업계의 통상적인 방식으로 수행될 수 있다. 예를 들어 염석(황산암모늄 침전, 인산나트륨 침전 등), 용매 침전(아세톤, 에탄올 등을 이용한 단백질 분획 침전 등), 투석, 겔 여과, 이온 교환, 크로마토그래피 및 한외여과 등의 기법을 단독 또는 조합으로 적용하여 수행될 수 있으나, 이에 제한되는 것은 아니다.Recovering the lipase protein in step 2) may be performed in a conventional manner in the art. For example alone or in combination with techniques such as salting out (ammonium sulfate precipitation, sodium phosphate precipitation, etc.), solvent precipitation (eg, protein fraction precipitation using acetone, ethanol, etc.), dialysis, gel filtration, ion exchange, chromatography and ultrafiltration It may be performed by applying, but is not limited thereto.

상기 리파아제 단백질의 제조방법은, 단계 2)의 회수한 리파아제 단백질을 정제하는 단계를 더 포함하는 것일 수 있다.The method for preparing lipase protein may further include purifying the recovered lipase protein of step 2).

상기 리파아제 단백질을 정제하는 단계는 당업계의 통상적인 단백질 정제 방법으로 수행될 수 있고, 예를 들어 이온 교환 크로마토그래피, 겔-투과 크로마토그래피, 역상-고성능 액체 크로마토그래피(high performance liquid chromatography, HPLC), 프렙용 SDS-PAGE(sodium dodecyl sulfate-polyacrylamide gel electrophoresis) 및 친화성 컬럼 크로마토그래피 등의 방법으로 수행될 수 있으나, 이에 제한되는 것은 아니다. 본 발명의 일 실시예에서, 리파아제 단백질의 정제는 Ni-NTA 컬럼을 이용하여 수행될 수 있다.Purifying the lipase protein may be carried out by conventional protein purification methods in the art, for example, ion exchange chromatography, gel-permeation chromatography, reverse phase-high performance liquid chromatography (HPLC). It may be performed by a method such as sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and affinity column chromatography for preparation, but is not limited thereto. In one embodiment of the present invention, purification of the lipase protein may be performed using a Ni-NTA column.

본 발명의 구체적인 실시예에서, 본 발명자들은 토양 메타게놈 라이브러리를 제작하고, 이로부터 리파아제 활성을 갖는 52 종의 활성 클론을 선별하였으며, 이 중 가장 우수한 리파아제 활성을 갖는 Lip-1420 유전자를 도출하였고, 이를 이용하여 서브클론을 제작한 후, 삽입된 DNA의 크기가 작으면서 리파아제 활성은 강한 서브 클론 Lip-1420-sub를 선별하였다(도 1 참조). 상기 Lip-1420-sub의 염기 서열을 분석하여, 리파아제 활성을 갖는 ORF3을 도출하고, Lip-1420-sub-ORF3 유전자를 포함하는 재조합 벡터를 도입한 대장균 형질전환체를 제작하였다(도 2 참조). 또한, Lip-1420-sub-ORF3이 도입된 대장균 형질전환체로부터 리파아제 단백질 발현을 확인하고, 상기 단백질을 분리 및 정제하였으며, 상기 신규 리파아제 단백질이 트리뷰티린에 대한 가수분해 활성을 나타냄을 확인하였다(도 3 내지 5 참조). 따라서, 본 발명의 신규 리파아제 유전자, 이를 포함하는 벡터, 및 이를 도입한 형질전환체는 강한 활성을 갖는 신규 리파아제 단백질의 산업적 대량 생산에 유용하게 사용될 수 있다.In a specific embodiment of the present invention, the inventors constructed a soil metagenome library, and selected 52 active clones having lipase activity from which the Lip-1420 gene having the best lipase activity was derived. After the subclones were prepared using this, lipase activity was selected for strong subclonal Lip-1420-sub while the size of the inserted DNA was small (see FIG. 1). The nucleotide sequence of Lip-1420-sub was analyzed to derive an ORF3 having lipase activity, and an E. coli transformant having a recombinant vector containing Lip-1420-sub-ORF3 gene was introduced (see FIG. 2). . In addition, lipase protein expression was confirmed from E. coli transformants introduced with Lip-1420-sub-ORF3, the protein was isolated and purified, and the novel lipase protein exhibited hydrolytic activity against tributyrin. (See Figures 3-5). Therefore, the novel lipase gene of the present invention, a vector comprising the same, and a transformant having the same, can be usefully used for industrial mass production of a novel lipase protein having strong activity.

이하 본 발명을 실시예에 의해 상세히 설명한다.Hereinafter, the present invention will be described in detail by way of examples.

단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예에 의해서 한정되는 것은 아니다.However, the following examples are merely to illustrate the invention, but the content of the present invention is not limited by the following examples.

토양 메타게놈 DNA의 분리 및 분리된 DNA의 크기 확인Isolation of Soil Metagenomic DNA and Size Identification

충청남도 신성리 갈대 습지에서 채취한 토양을 메쉬 직경이 1.4 ㎜인 체에 걸러서 직경 1.5 ㎜ 이상의 입자와 식물 잔재물 등을 제거하였다. 상기 토양 시료 5 g을 15 ㎖ 완충용액(100 mM Tris-HCl, pH 8.0; 100 mM EDTA(Ethylenediaminetetraacetic acid), pH 8.0; 100 mM 인산염 나트륨(sodium-phosphate), pH 8.0; 1.5 M 염화나트륨; 및 1% CTAB(cetyl trimethylammonium bromide))에 현탁하였다. 상기 현탁액에 100 ㎎/㎖ 농도의 단백질 분해 효소 K(proteinase K, Sigma) 100 ㎕를 첨가한 후, 37℃ 진탕 배양기에서 150 rpm의 속도로 30분간 진탕하고, 20% SDS 1.5 ㎖를 첨가하여 잘 흔들어 섞어주었다. 상기 혼합물을 65℃ 항온수조에서 30분마다 한 번씩 섞어주면서 2시간 동안 유지하였다. 이후, 7,000 rpm에서 10분간 원심분리하여 상징액을 분리하였고, 동일한 부피의 클로로포름(chloroform)/이소아밀 알코올(isoamyl alcohol)(24:1)을 첨가하여 섞어준 후, 8,000 rpm에서 10분간 원심분리하여 DNA가 포함된 상징액만을 새 튜브로 옮겼다. 상징액 부피의 0.6 배에 해당하는 이소프로판올(isopropanol)을 첨가하여 섞어준 후, 11,000 rpm에서 10분간 원심분리하여 DNA 침전물을 얻었다. 상기 DNA 침전물을 70% 에탄올로 세척한 후 원심분리하여 에탄올을 제거하였다. 이로부터 얻은 침전물을 건조시키고, 0.5 ㎖의 TE 완충용액(10 mM Tris-HCl, 1 mM EDTA, pH 8.0)에 용해시킨 후, 4℃에 보관하였다.Soil collected from the reed marsh of Sinseong-ri, Chungcheongnam-do was filtered through a 1.4 mm mesh sieve to remove particles and plant residues of 1.5 mm or more in diameter. 5 g of the soil sample were taken in 15 ml buffer (100 mM Tris-HCl, pH 8.0; 100 mM EDTA (Ethylenediaminetetraacetic acid), pH 8.0; 100 mM sodium-phosphate, pH 8.0; 1.5 M sodium chloride; and 1 It was suspended in% CTAB (cetyl trimethylammonium bromide). 100 μl of proteinase K (Sigma) at a concentration of 100 mg / ml was added to the suspension, followed by shaking for 30 minutes at a speed of 150 rpm in a 37 ° C. shaking incubator, and adding 1.5 ml of 20% SDS. Shake and mix. The mixture was maintained for 2 hours while mixing once every 30 minutes in a 65 ℃ constant temperature water bath. Then, the supernatant was separated by centrifugation at 7,000 rpm for 10 minutes, and the same volume of chloroform / isoamyl alcohol (24: 1) was added and mixed, followed by centrifugation at 8,000 rpm for 10 minutes. Only supernatant containing DNA was transferred to a new tube. Isopropanol (isopropanol) corresponding to 0.6 times the volume of the supernatant was added and mixed, followed by centrifugation at 11,000 rpm for 10 minutes to obtain a DNA precipitate. The DNA precipitate was washed with 70% ethanol and then centrifuged to remove ethanol. The precipitate obtained therefrom was dried, dissolved in 0.5 ml of TE buffer (10 mM Tris-HCl, 1 mM EDTA, pH 8.0) and stored at 4 ° C.

분리된 DNA의 양과 크기 결정은 PFGE(pulsed field gel electrophoresis)로 확인하였다. PFGE는 6 V/㎝에서 120°의 고정각(fixed angle)으로 1 내지 6초의 교대시간(switch time) 조건에서 6시간 동안 수행하였고, 그 결과, 상기 토양 시료 1 g 당 약 1 내지 1.5 ㎍의 메타게놈 DNA가 분리되었음을 확인하였고, 분리된 DNA의 크기는 20 내지 100 kb 정도임을 확인하였다.The amount and size of the isolated DNA was confirmed by PFGE (pulsed field gel electrophoresis). PFGE was performed for 6 hours at a switch time of 1 to 6 seconds at a fixed angle of 120 ° at 6 V / cm. As a result, about 1 to 1.5 μg of the soil sample per 1 g. It was confirmed that the metagenome DNA was separated, and the size of the separated DNA was confirmed to be about 20 to 100 kb.

메타게놈 라이브러리의 작성Creating a Metagenome Library

상기 실시예 1에서 분리한 메타게놈을 이용하여 저융점 아가로스 겔(low melting point agarose gel)에서 전기영동을 한 후, 20 kb 이상의 DNA를 포함하는 아가로스 겔 블록(block)만을 회수하였다. 회수된 겔 블록에 겔레이즈(GeLase, Epicentre, 미국)를 처리하여 DNA를 순화하고, 휴믹산(humic acid) 등을 제거하였다. 순화된 DNA 조각의 양끝 말단을 DNA 말단-리페어(end-repair) 효소로 처리하여 무딘 말단(blunt end)을 갖는 20 kb 이상의 메타게놈 DNA를 얻었고, 이를 제한효소 Eco72I로 처리한 포스미드(fosmid) 벡터 pEpiFOS-5(Epicentre)에 결찰(ligation)시켰다. 상기 벡터를 상업적인 패키징 시스템(packaging extract, Epicentre)을 이용하여 대장균(Escherichia coli)에 도입한 후 50 ㎍/㎖의 클로람페니콜(chloramphenicol)이 첨가된 LB(Luria broth) 한천배지에서 자라는 형질전환체들을 선별하였다. 선별된 형질전환체들로부터 SDS-알칼리 용혈(alkali lysis) 방법으로 분리한 플라스미드 DNA를 제한효소 BamHI로 절단한 후 전기영동을 수행한 결과, 선별된 50 개의 형질전환체들 모두 재조합 플라스미드를 포함하고 있어 라이브러리가 잘 작성되었음을 확인하였으며, 삽입된 메타게놈 DNA의 평균 크기는 35 내지 40 kb임을 확인하였다. 상기 선별된 형질전환체들은 배지에 포함된 상태로 희석하여 -80℃에 보관하였다.After electrophoresis on a low melting point agarose gel using the metagenome isolated in Example 1, only an agarose gel block containing 20 kb or more of DNA was recovered. The recovered gel block was treated with gelase (GeLase, Epicentre, USA) to purify DNA, and remove humic acid. Both ends of the purified DNA fragment were treated with DNA end-repair enzymes to obtain more than 20 kb of metagenome DNA with blunt ends, which were treated with the restriction enzyme Eco 72I. ) The vector pEpiFOS-5 (Epicentre) was ligation. The vector was introduced into Escherichia coli using a commercial packaging extract (Epicentre), followed by screening for transformants that grew on LB (Luria broth) agar medium supplemented with 50 μg / ml chloramphenicol. It was. Plasmid DNA isolated from the selected transformants by SDS-alkali lysis was digested with restriction enzyme Bam HI and subjected to electrophoresis. As a result, all 50 transformants selected contained recombinant plasmids. It was confirmed that the library was well prepared, and the average size of the inserted metagenome DNA was confirmed to be 35 to 40 kb. The selected transformants were diluted in the medium and stored at -80 ° C.

실험예 1. 메타게놈 라이브러리로부터 리파아제 활성 클론의 선별Experimental Example 1. Selection of lipase active clone from metagenome library

상기 실시예 2에서 작성된 메타게놈 라이브러리로부터 리파아제 활성을 나타내는 클론을 선별하기 위하여, LB 한천배지에 50 ㎍/㎖의 클로람페니콜 및 1% 트리뷰티린(tributyrin)을 첨가하여 균질화시킨 후, 분주하여 굳히고, -80℃에 풀(Pool)로 보관되어 있는 라이브러리를 적절하게 희석하여 배지에 약 300 내지 400개의 콜로니가 배양될 수 있도록 일정량을 도말하였다. 이를 37℃에서 2일간 배양하여 콜로니 주위에 투명한 후광(halo)을 보이는 콜로니를 선발하였다. 선발된 활성 클론의 리파아제 활성을 상기 방법에 의해 재검정하여 최종적으로 52 종을 분리하였고, 이들을 -80℃에 보관하였다.In order to select clones showing lipase activity from the metagenome library prepared in Example 2, 50 μg / ml of chloramphenicol and 1% tributyrin were added to the LB agar medium to homogenize, and then aliquoted and solidified. The library stored as a pool at -80 ° C (Pool) was diluted appropriately so that an amount of about 300 to 400 colonies could be cultured in the medium. This was incubated at 37 ° C. for 2 days to select colonies showing a halo around the colonies. The lipase activity of the selected active clones was retested by the above method to finally isolate 52 species and stored them at -80 ° C.

리파아제 활성 클론(Lip-1420)으로부터 서브클론의 제작Construction of Subclones from Lipase-Activated Clones (Lip-1420)

상기 실험예 1에서 분리한 리파아제 활성을 보이는 52 종의 클론들 중 리파아제 활성이 가장 우수한 클론(Lip-1420)으로부터 2차로 서브클로닝을 실시하였다. Subcloning was performed secondly from the clone (Lip-1420) having the highest lipase activity among 52 clones showing lipase activity isolated in Experimental Example 1.

3-1. 서브클론의 제작을 위한 최적 제한효소의 도출3-1. Derivation of Optimal Restriction Enzyme for Construction of Subclone

Lip-1420의 플라스미드 DNA를 플라스미드 분리 키트(바이오니아, 대한민국)를 이용하여 대량으로 분리한 후, 이를 제한효소 Bam HI, Pst I, Eco RI, Xba I, Sph I, Hind III 또는 Sma I로 절단하여, 절단된 DNA를 아가로스 겔에 전기영동하여 절단 양상을 확인하였다.Plasmid DNA of Lip-1420 was isolated in large quantities using a plasmid separation kit (Bionia, South Korea), and then digested with restriction enzymes Bam HI, Pst I, Eco RI, Xba I, Sph I, Hind III or Sma I. The cleaved DNA was confirmed by electrophoresis on the agarose gel.

그 결과, Pst I를 사용했을 때 상기 DNA가 가장 여러 번 절단됨을 확인하여, 최적 제한효소로 Pst I를 도출하였다(도 1A).As a result, when Pst I was used, it was confirmed that the DNA was cut several times, and Pst I was derived as an optimal restriction enzyme (FIG.

3-2. Lip-1420으로부터 서브클론의 제작3-2. Preparation of Subclones from Lip-1420

상기 실시예 3-1에서 분리한 Lip-1420의 플라스미드 DNA를 제한효소 Pst I로 절단하여 삽입 DNA Lip-1420의 반응물을 만들고 37℃에서 2시간 동안 반응시켜 삽입 DNA를 순화시켰다. 벡터 DNA(pUC119) 250 ng/㎕을 제한효소 Pst I로 절단하여 반응물을 만들고 반응시킨 후, 벡터가 스스로 달라붙는 것을 방지하기 위하여 SAP(Shrimp alkaline phosphatase)를 처리하여 벡터 DNA를 순화하였다. 상기 순화된 Lip-1420 DNA 및 벡터 DNA(pUC119, Vieira and Messing, Methods Enzymol. 153: 3-11, 1987)를 완충용액(ligation buffer), ATP 및 리가아제(ligase)와 혼합하여 상온에서 2시간 동안 반응시킨 후, 4℃에서 밤새 반응시켜 서브클론을 제작하였다.The plasmid DNA of Lip-1420 isolated in Example 3-1 was digested with restriction enzyme Pst I to make a reaction of insert DNA Lip-1420, and reacted at 37 ° C. for 2 hours to purify the inserted DNA. 250 ng / μl of vector DNA (pUC119) was digested with restriction enzyme Pst I to make a reactant, and then purified by treating with alkaline alkaline phosphatase (SAP) to prevent the vector from sticking to itself. The purified Lip-1420 DNA and vector DNA (pUC119, Vieira and Messing, Methods Enzymol. 153: 3-11, 1987) were mixed with a buffer, ATP and ligase at room temperature for 2 hours. After the reaction, the reaction was overnight at 4 ° C. to produce a subclone.

실험예 2. Lip-1420의 서브클론 중 Lip-1420-sub의 도출Experimental Example 2 Derivation of Lip-1420-sub out of Lip-1420 Subclone

2-1. Lip-1420의 서브클론이 도입된 형질전환체의 제조 및 리파아제 활성 갖는 형질전환체의 선별2-1. Preparation of transformants into which subclone of Lip-1420 was introduced and screening of transformants with lipase activity

상기 실시예 3에서 제작한 서브클론을 상업용 수용성(competent) 대장균 세포 JM109 100 ㎕와 혼합한 후 얼음에서 20분간 방치하고, 42℃에서 45초간 열처리하여 서브클론을 세포 내로 도입한 후, 항생제가 첨가되지 않은 LB 배지 400 ㎕를 가하여 37℃에서 흔들며 45분 동안 배양하였다. 이로부터 형질전환체를 선별하기 위하여 상기 배양액을 1%의 트리뷰티린과 100 ㎍/㎖의 암피실린(ampicillin)이 함유된 LB 플레이트에 도말하여 37℃에서 16시간 동안 배양하였다. 배양된 플레이트로부터 트리뷰티린을 가수분해하여 강한 후광을 보이는 콜로니들을 선별하였다(도 1B).The subclone prepared in Example 3 was mixed with 100 μl of commercial E. coli cells JM109, and left on ice for 20 minutes, heat treated at 42 ° C. for 45 seconds to introduce the subclone into the cells, and then antibiotics were added. 400 μl of untreated LB medium was added thereto, followed by incubation at 37 ° C. for 45 minutes. In order to select transformants therefrom, the culture solution was plated on LB plates containing 1% tributyrin and 100 μg / ml ampicillin and incubated at 37 ° C. for 16 hours. Tributyrin was hydrolyzed from the cultured plates to select colonies showing a strong halo (FIG. 1B).

2-2. 선별된 형질전환체의 서브클론 도입 여부 검증2-2. Verification of introduction of subclones into selected transformants

상기 실험예 2-1에서 선별된 콜로니들에서 플라스미드 분리 키트(바이오니아)를 이용하여 플라스미드 DNA를 분리하고 제한효소 Pst I를 처리한 후, 절단된 DNA를 전기영동으로 확인하였다. 그 결과, Lip-1420의 DNA 절편과 동일한 크기의 DNA 절편이 확인되어 상기 형질전환체의 DNA에 Lip-1420의 서브클론이 잘 도입되었음을 확인하였다.In the colonies selected in Experimental Example 2-1, plasmid DNA was isolated using a plasmid separation kit (Bionia) and treated with restriction enzyme Pst I, and the cleaved DNA was confirmed by electrophoresis. As a result, a DNA fragment having the same size as the DNA fragment of Lip-1420 was confirmed, and it was confirmed that a subclone of Lip-1420 was well introduced into the DNA of the transformant.

2-3. 서브클론 중 Lip-1420-sub의 도출2-3. Derivation of Lip-1420-sub from Subclones

상기 실험예 2-1 및 2-2의 결과로부터 형질전환체에 도입된 서브클론의 삽입 DNA 사이즈가 가장 작으면서 리파아제 활성이 강한 서브클론을 선별하여, 염기서열을 분석하였으며, 크기가 5,513 bp임을 확인하였다. 선별된 상기 서브클론을 Lip-1420-sub로 명명하였다(서열번호 3).From the results of Experimental Examples 2-1 and 2-2, a subclonal having a small lipase activity with the smallest insertion DNA size of the subclones introduced into the transformant was selected, and the base sequence was analyzed to have a size of 5,513 bp. Confirmed. The selected subclones were named Lip-1420-sub (SEQ ID NO: 3).

실험예 3. Lip-1420-sub의 ORF 중 리파아제 활성을 갖는 ORF의 확인Experimental Example 3 Identification of ORF with Lipase Activity in ORF of Lip-1420-sub

3-1. Lip-1420-sub의 ORF 분석3-1. ORF analysis of Lip-1420-sub

상기 실험예 2-3에서 분석한 Lip-1420-sub의 염기서열로부터 개방형 해독틀(open reading frame, ORF)을 분석하였고, 여러 가지 ORF 중 500bp이상의 ORF는 4개임을 확인하였다(표 1). An open reading frame (ORF) was analyzed from the nucleotide sequence of Lip-1420-sub analyzed in Experimental Example 2-3, and it was confirmed that four ORFs of 500 bp or more among various ORFs (Table 1).

ORFORF 길이
(bp/aa)
Length
(bp / aa)
비교 대상 단백질Comparative protein
단백질 이름Protein name 균주명 (상동성%)Strain name (% homology) 참고 번호Reference number ORF1ORF1 1590 / 5291590/529 Protein of unknown functionProtein of unknown function Thiocapsa roseopersicina (48%) Thiocapsa roseopersicina (48%) SDW97003.1SDW97003.1 ORF2ORF2 1236 / 4111236/411 LLM class flavin-dependent oxidoreductaseLLM class flavin-dependent oxidoreductase Blastopirellula marina (50%) Blastopirellula marina (50%) WP_002655372.1WP_002655372.1 ORF3ORF3 885 / 294885/294 esterase/lipase proteinesterase / lipase protein uncultured organism (78%)uncultured organism (78%) AFQ30768.1AFQ30768.1 ORF4ORF4 825 / 274825/274 alpha/beta hydrolasealpha / beta hydrolase Pseudorhodoplanes sinuspersici (37%) Pseudorhodoplanes sinuspersici (37%) WP_086087576.1WP_086087576.1 ORF5ORF5 495 / 164495/164 PREDICTED: 3-hydroxyisobutyryl-CoA hydrolase, mitochondrial-likePREDICTED: 3-hydroxyisobutyryl-CoA hydrolase, mitochondrial-like Polistes dominula (26%) Polistes dominula (26%) XP_015178720.1XP_015178720.1

3-2. Lip-1420-sub의 ORF 중 리파아제 활성을 갖는 ORF의 확인3-2. Identification of ORFs with Lipase Activity in ORFs of Lip-1420-sub

상기 실험예 2에서 선별한 Lip-1420-sub 서브클론의 DNA를 분리하여 이를 주형으로 하고, 상기 실험예 3-1에서 분석한 4개의 ORF에 대한 프라이머를 제작하여(표 2), 중합효소 연쇄반응(polymerase chain reaction, PCR)을 수행하였다. PCR 반응은 5×PCR 완충용액 20 ㎕, N-용액 10 ㎕, 100 pM의 각 프라이머 2 ㎕, 주형 DNA 1 ㎕, pfu DNA 중합효소 1 ㎕ 및 멸균 증류수 64 ㎕를 혼합하여 총 부피 100 ㎕의 조성으로, 95℃에서 30초, 58℃에서 30초 및 72℃에서 40초의 사이클을 30회 반복하여 수행하였다(Thermal Cycler, Bio-Rad, 미국). pET21a(+) 벡터를 하기 표 2에 기재된 프라이머에 해당하는 제한효소로 각각 절단한 후, 각 PCR 산물을 연결하여 상업용 수용성 대장균 세포 JM109에 상기 실험예 2-1에 기재된 것과 동일한 방법으로 도입하였다. 각 형질전환체를 1% 트리뷰티린이 첨가된 LB 배지에 도말하고 37℃에서 2일간 배양하여 리파아제 활성을 조사하였다.DNA of Lip-1420-sub subclone selected in Experimental Example 2 was isolated and used as a template, and primers for the four ORFs analyzed in Experimental Example 3-1 were prepared (Table 2), and polymerase chains were prepared. A polymerase chain reaction (PCR) was performed. PCR reaction was performed by mixing 20 μl of 5 × PCR buffer solution, 10 μl of N-solution, 2 μl of each primer of 100 pM, 1 μl of template DNA, 1 μl of pfu DNA polymerase, and 64 μl of sterile distilled water. 30 cycles of 30 seconds at 95 ° C., 30 seconds at 58 ° C. and 40 seconds at 72 ° C. were repeated 30 times (Thermal Cycler, Bio-Rad, USA). Each pET21a (+) vector was digested with restriction enzymes corresponding to the primers listed in Table 2 below, and then each PCR product was linked to commercial water-soluble E. coli cells JM109 and introduced into the commercially available E. coli cell JM109 by the same method as described in Experiment 2-1. Each transformant was plated in LB medium added with 1% tributyrin and incubated at 37 ° C. for 2 days to examine lipase activity.

프라이머명Primer Name 서열(5'→3')Sequence (5 '→ 3') 제한효소Restriction enzyme 서열번호SEQ ID NO: ORF1 FORF1 F GCGTCAGGACATATGAGATGGCTATCTGCTCTGCGTCAGGACATATGAGATGGCTATCTGCTCT NdeINdeI 44 ORF1 RORF1 R GCGTCAGGTCTCGAGCAGTCCCAAGAGGTTGGTCGCGTCAGGTCTCGAGCAGTCCCAAGAGGTTGGTC XhoIXhoI 55 ORF2 FORF2 F GCGTCAGGCCATATGAAATTCTGGATGGATGTTTCATGCGTCAGGCCATATGAAATTCTGGATGGATGTTTCAT NdeINdeI 66 ORF2 RORF2 R GCGTCAGGTCTCGAGTGCGTGAGCTTCCGTCTGGCGTCAGGTCTCGAGTGCGTGAGCTTCCGTCTG XhoIXhoI 77 ORF3 FORF3 F GCGACAGGCCATATGAGTCAGATTCCGGCTGAGCGACAGGCCATATGAGTCAGATTCCGGCTGA NdeINdeI 88 ORF3 RORF3 R GCGTCAGGACTCGAGGTGTTTGAGATGTTTGTCGGCGTCAGGACTCGAGGTGTTTGAGATGTTTGTCG XhoIXhoI 99 ORF4 FORF4 F GCGACATCACATATGGCCTTACAAACCGACAGCGACATCACATATGGCCTTACAAACCGACA NdeINdeI 1010 ORF4 RORF4 R GCACTAGCAGTCGACGCGCTTGAGAAATTGGCTGAGCACTAGCAGTCGACGCGCTTGAGAAATTGGCTGA SalISalI 1111

그 결과, ORF3이 도입된 형질전환체만이 리파아제 활성을 나타내었다.As a result, only the transformants into which ORF3 was introduced showed lipase activity.

Lip-1420-sub-ORF3 플라스미드의 제작Construction of Lip-1420-sub-ORF3 Plasmid

상기 실험예 2에서 선별한 Lip-1420-sub 서브클론의 DNA를 분리하여 이를 주형으로 하고, 표 2의 ORF3에 해당하는 프라이머쌍(서열번호 8 및 9)을 이용하여 PCR을 수행하여 Lip-1420-sub의 ORF3 부위 및 제한효소 자리(NdeIXhoI)를 포함하는 플라스미드(pET21a(+)-ORF3-6H)를 제작하였다.Lip-1420-sub subclonal DNA selected in Experimental Example 2 was isolated and used as a template, and PCR was performed using primer pairs (SEQ ID NOs. 8 and 9) corresponding to ORF3 in Table 2 to Lip-1420. A plasmid (pET21a (+)-ORF3-6H) was prepared comprising an ORF3 site of -sub and restriction sites ( NdeI and XhoI ).

구체적으로, Lip-1420-sub의 DNA를 주형으로 하고, 표 2의 ORF3에 해당하는 프라이머쌍(서열번호 8 및 9)을 이용하여 상기 실험예 3-2에 기재된 것과 동일한 방법으로 PCR을 수행하였다. 증폭된 PCR 산물을 1.5%(w/v) 아가로스 겔 전기영동으로 분석하고, PCR 정제키트(바이오니아)를 사용하여 정제하였다. 정제된 DNA의 서열을 분석하고, 제한효소 NdeI 및 XhoI로 절단된 pET21a(+)에 결찰시켜 생성된 플라스미드를 pET21a(+)-Lip1420-6H로 명명하였다(도 2). Specifically, using the DNA of Lip-1420-sub as a template, PCR was performed in the same manner as described in Experiment 3-2 using primer pairs (SEQ ID NOs: 8 and 9) corresponding to ORF3 in Table 2. . The amplified PCR products were analyzed by 1.5% (w / v) agarose gel electrophoresis and purified using a PCR purification kit (Bionia). The sequence of the purified DNA was analyzed and plasmid generated by ligation into pET21a (+) digested with restriction enzymes Nde I and Xho I was named pET21a (+)-Lip1420-6H (FIG. 2).

신규 리파아제 단백질의 대량 생산Mass Production of New Lipase Proteins

5-1. 신규 리파아제 단백질의 발현 유도5-1. Induction of expression of new lipase protein

상기 실시예 4에서 제작한 플라스미드를 이용하여 대장균에 리파아제 단백질 발현을 유도하였다.Lipase protein expression was induced in E. coli using the plasmid prepared in Example 4.

구체적으로, 상기 플라스미드를 발현 숙주인 대장균 BL21(DE3)[F-omp T hsdSB(rB-mB-) gal dcm(DE3)](Stratagen, 미국)에 도입하고, LB 플레이트 상에 도말하였다. 새로운 배지에서 성장한 단일 콜로니를 채취하여 100 ㎍/㎖ 암피실린을 함유한 LB 배지 100 ㎖에 접종하고 37℃에서 배양하여, 600 nm에서의 흡광도가 0.6이 될 때까지 성장시켰다. 이를 다시 암피실린이 포함된 LB 배지 5,000 ㎖에 접종하고 37℃에서 흔들어 주면서 배양하여, 600 nm에서의 흡광도가 0.6이 될 때까지 성장시켰다. 이후, 1 mM IPTG(isopropyl-α-D-thiogalacto pyranoside, GibcoBRL, 미국)를 첨가하여 단백질 과발현을 유도하고, 20℃에서 16시간 동안 더 배양하였다.Specifically, the plasmid was introduced into the expression host E. coli BL21 (DE3) [F-omp T hsdS B (r B- m B- ) gal dcm (DE3)] (Stratagen, USA) and plated on LB plates. . Single colonies grown in fresh medium were harvested and inoculated into 100 mL of LB medium containing 100 μg / ml ampicillin and incubated at 37 ° C., until the absorbance at 600 nm was 0.6. This was inoculated again in 5,000 ml LB medium containing ampicillin and incubated with shaking at 37 ℃, it was grown until the absorbance at 600 nm was 0.6. Thereafter, 1 mM IPTG (isopropyl-α-D-thiogalacto pyranoside, GibcoBRL, USA) was added to induce protein overexpression and further incubated at 20 ° C. for 16 hours.

5-2. 발현된 신규 리파아제 단백질의 분리5-2. Isolation of Expressed New Lipase Proteins

상기 배양액을 6,000 ×g, 4℃에서 10분 동안 원심분리하여 상징액을 제거하고, 침전물을 차가운 완충용액(50 mM Tris-HCl, 1 mM EDTA, pH 8.0) 10 ㎖로 3 회 세척하였다. 이를 용해 완충용액(pH 7.0, 50 mM Tris-HCl, 200 mM 염화나트륨)에 재현탁 시킨 후 초음파 분쇄기(CosmoBio Co., LTD, 일본)로 파쇄하였다. 파쇄된 세포를 12,000 ×4℃에서 30분 동안 원심분리하여 상징액을 제거하여 침전된 단백질을 수득하였다. 상기 단백질을 램나이 샘플 완충용액(Laemmli sample buffer)과 혼합한 후, SDS-PAGE를 수행하고 쿠마시 브릴리언트 블루(Coomassie Brilliant Blue R250)로 염색하여 34 kDa의 리파아제 단백질이 존재함을 확인하였다(도 3). The culture solution was centrifuged at 6,000 × g, 4 ° C. for 10 minutes to remove the supernatant, and the precipitate was washed three times with 10 ml of cold buffer (50 mM Tris-HCl, 1 mM EDTA, pH 8.0). This was resuspended in lysis buffer (pH 7.0, 50 mM Tris-HCl, 200 mM sodium chloride) and then crushed with an ultrasonic grinder (CosmoBio Co., LTD, Japan). The crushed cells were centrifuged at 12,000 × 4 ° C. for 30 minutes to remove supernatant to obtain precipitated protein. The protein was mixed with Laemmli sample buffer, followed by SDS-PAGE and stained with Coomassie Brilliant Blue R250 to confirm the presence of 34 kDa lipase protein (FIG. 3).

5-3. 분리된 신규 리파아제 단백질의 정제5-3. Purification of Isolated New Lipase Proteins

금속이온 부착 컬럼을 이용하여 상기 실시예 5-1에서 분리한 리파아제 단백질을 정제하였다.The lipase protein isolated in Example 5-1 was purified using a metal ion attachment column.

구체적으로, Ni-NTA(nickel-nitrilotriacetic acid, QIAGEN, 독일)를 크로마토그래피 컬럼(bed volume, 15 ㎖, Millipore, 미국)에 첨가하여 컬럼을 니켈 이온으로 포화시키고, 황산염 형태의 50 mM 니켈 용액을 가하여 결합되지 않은 금속이온을 제거하였다. 상기 컬럼에 분리한 리파아제 단백질이 함유된 용액을 첨가하고, 완충용액(50 mM Tris-HCl, 0.15 M 염화나트륨, pH 7.4)으로 컬럼을 세척한 후, 연속적인 이미다졸(imidazole) 구배를 두고 상기 완충용액을 통과시켜 고속 단백질 액체 크로마토그래피(fast protein liquid chromatography, FPLC)로 정제하였고(도 4A), 정제된 리파아제 단백질을 각 분획으로 수득하였다. 각 분획을 이용하여 상기 실시예 7-2에 기재된 것과 동일한 방법으로 전기영동을 수행하여 34 kDa의 리파아제 단백질이 존재함을 확인하였다(도 4B). 상기와 같이 대량 생산된 리파아제 단백질을 상기 완충용액에 1 ㎎/㎖의 농도로 희석하여 용기에 담아 -70℃에 보관하였다(도 4C).Specifically, Ni-NTA (nickel-nitrilotriacetic acid (QIAGEN, Germany)) was added to a chromatography column (bed volume, 15 mL, Millipore, USA) to saturate the column with nickel ions, and a 50 mM nickel solution in the form of sulfate It was added to remove the unbound metal ion. A solution containing the separated lipase protein was added to the column, the column was washed with a buffer solution (50 mM Tris-HCl, 0.15 M sodium chloride, pH 7.4), and the buffer was placed in a continuous imidazole gradient. The solution was passed through and purified by fast protein liquid chromatography (FPLC) (FIG. 4A) and purified lipase protein was obtained in each fraction. Using each fraction, electrophoresis was performed in the same manner as described in Example 7-2 to confirm that 34 kDa lipase protein was present (FIG. 4B). As described above, the mass-produced lipase protein was diluted in the buffer solution at a concentration of 1 mg / ml and stored at -70 ° C in a container (FIG. 4C).

실험예 4. Lip-1420-sub-ORF3이 도입된 대장균의 세포 내 리파아제 단백질 발현 및 세포 외로의 분비 확인Experimental Example 4. Confirmation of Lipase Protein Expression and Extracellular Secretion of E. coli with Lip-1420-sub-ORF3

상기 실시예 5-1에서 제작한 Lip-1420-sub-ORF3이 도입된 대장균의 세포 내에 신규 리파아제 단백질이 발현되어 세포 외로 분비되는 지 여부를 SDS-PAGE 분석으로 확인하였다.It was confirmed by SDS-PAGE analysis whether the new lipase protein is expressed in the cells of Escherichia coli Lip-1420-sub-ORF3 prepared in Example 5-1 and secreted out of the cells.

구체적으로, 상기 Lip-1420-sub-ORF3이 도입된 대장균을 LB 액체배지에 2일간 현탁 배양하였다. 배양액을 14,000 rpm에서 원심분리하여 상징액을 분리한 후, 막 여과를 거쳐 여과된 균체 및 균체가 제거된 배양액을 수득하였다. 상기 균체는 10배로 농축하고, 상기 배양액은 농축하지 않은 상태로, 12% SDS-PAGE 분석을 통해 단백질의 발현을 확인하였다.Specifically, Escherichia coli into which Lip-1420-sub-ORF3 was introduced was suspended and cultured in LB liquid medium for 2 days. The culture solution was centrifuged at 14,000 rpm to separate the supernatant, and the filtered cells and the culture medium from which the cells were removed were obtained through membrane filtration. The cells were concentrated 10-fold, and the culture was not concentrated, and the expression of the protein was confirmed by 12% SDS-PAGE analysis.

그 결과, 예상되는 크기의 34 kDa 단백질이 pUC119 벡터만 가진 대장균에 비해 강하게 발현되었고 배지로도 잘 분비됨을 확인하였다.As a result, it was confirmed that the 34 kDa protein of the expected size was strongly expressed compared to E. coli having only the pUC119 vector and secreted well into the medium.

실험예 5. 신규 리파아제 단백질의 리파아제 활성 확인Experimental Example 5. Confirmation of the lipase activity of the novel lipase protein

상기 실시예 5-1에서 제작한 Lip-1420-sub-ORF3이 도입된 대장균에서 발현된 신규 리파아제 단백질의 리파아제 활성을 조사하였다.Lipase activity of the novel lipase protein expressed in Escherichia coli Lip-1420-sub-ORF3 prepared in Example 5-1 was examined.

구체적으로, LB 한천 배지에 1% 트리뷰티린을 첨가하여 균질화시킨 후 상기 실시예 5-3에서 정제한 신규 리파아제 단백질 40 ㎕를 직경 3 mm의 여지(paper disc) 위로 주입하여, 이를 37℃에서 5일 동안 배양하였다.Specifically, homogenized by adding 1% tributyrin to LB agar medium, 40 μl of the novel lipase protein purified in Example 5-3 was injected onto a paper disc of 3 mm in diameter, which was then heated at 37 ° C. Incubated for 5 days.

그 결과, 여지 위의 콜로니 주위에 투명한 후광을 보임을 확인하였으며(도 5), 이는 상기 신규 리파아제 단백질이 트리뷰티린을 가수분해하는 활성을 강하게 보임을 제시한다.As a result, it was confirmed that there was a transparent halo around the colonies above (FIG. 5), which suggests that the new lipase protein strongly exhibits the activity of hydrolyzing tributyrin.

<110> KOREA RESEARCH INSTITUTE OF CHEMICAL TECHNOLOGY <120> Novel lipase gene Lip-1420 derived from soil metagenome and use thereof <130> 2018P-08-001 <160> 11 <170> KoPatentIn 3.0 <210> 1 <211> 302 <212> PRT <213> Artificial Sequence <220> <223> lipase <400> 1 Met Ser Gln Ile Pro Ala Asp Leu Leu Glu Phe Met Glu Thr Leu Arg 1 5 10 15 Val Pro Lys Gly Val Asn Pro Ala Asp Met Leu Leu Arg Tyr Asp Ser 20 25 30 Leu Met Asn Gly Asn Pro Pro Pro Val Gly Ala Val His Asp Gly Val 35 40 45 Leu Leu His Glu Val Ala Gly Trp Arg Leu Thr Ala Asp Ile Ala Val 50 55 60 Pro Ser Gly Thr Gly Pro His Pro Val Leu Val Tyr Phe His Gly Gly 65 70 75 80 Gly Trp Thr Met Gly Ser Pro Lys Thr His Leu Arg Leu Gly Arg Glu 85 90 95 Phe Ala Ala Ala Gly Tyr Leu Thr Ile Asn Leu Asp Tyr Arg Arg Ala 100 105 110 Pro Lys Tyr Arg Phe Pro Ala Ala Phe Asp Asp Cys Val Phe Ala Thr 115 120 125 Arg Trp Ala Val Glu Asn Ala Ala Arg Tyr Gly Gly Asp Ala Lys Arg 130 135 140 Leu Ala Val Gly Gly Asp Ser Ala Gly Gly Asn Leu Ala Ala Ala Val 145 150 155 160 Leu Ala Glu Gly Thr Gln Lys Gly Gly Pro Lys Ile Ser Thr Gly Val 165 170 175 Leu Leu Tyr Gly Val Phe Asp Tyr His Gln Ala Met Thr Ser Leu Gly 180 185 190 Gly Thr Gly Pro Asn Thr Gln Phe Tyr Leu Pro Glu Asp Gln Tyr Glu 195 200 205 Ala Leu Arg Gln Asp Tyr Arg Val Ser Pro Phe Tyr Ala Cys Ala Lys 210 215 220 Phe Pro Pro Cys Tyr Ile Gly Val Gly Thr Lys Asp Pro Leu Leu Pro 225 230 235 240 Gln Ser Leu Glu Leu Ala Arg Ala Leu Gln Ala Ala Gly Ile Glu His 245 250 255 Asp Leu His Val Val Glu Gly Ala Pro His Ala Phe Phe Gln Leu Pro 260 265 270 Pro Leu Ser Ala Tyr Ser Glu Gly Tyr Arg Arg Ala Thr Ala Phe Leu 275 280 285 Asp Lys His Leu Lys His Leu Glu His His His His His His 290 295 300 <210> 2 <211> 909 <212> DNA <213> Artificial Sequence <220> <223> Lip-1420-sub-ORF3 <400> 2 atgagtcaga ttccggctga tctgcttgaa tttatggaaa ccctgcgcgt gcctaagggg 60 gtgaacccgg cggatatgct gctgcgctac gatagtctga tgaacggcaa tccgccgccc 120 gtgggcgctg tgcatgacgg ggtactgttg cacgaggtgg caggctggcg gctgaccgcc 180 gatattgccg tgccgtctgg tacgggacca cacccggtgt tggtttattt ccacggcggt 240 ggctggacga tggggagccc gaagactcat ctgcgcctcg gccgggagtt tgccgccgca 300 ggttatctca ccatcaacct cgattaccgc cgcgcgccca agtacagatt tcccgccgcc 360 tttgatgact gtgtgtttgc cacacggtgg gcggtggaga acgccgcgcg ctatggcgga 420 gatgccaagc gcttagccgt aggcggagac tcggcgggtg gcaatctggc ggccgcagtt 480 ttggcggaag gcacgcagaa aggcggacct aagatcagca ccggagtatt gctctacggc 540 gtcttcgact atcaccaagc catgacatct ctgggtggga ctggaccgaa cacgcaattc 600 tacctaccgg aagaccaata cgaggcgcta cgtcaggact atcgggttag cccgttctat 660 gcctgtgcga aattcccgcc gtgctatatc ggggtgggta cgaaggatcc gcttttgccg 720 caatcgttag aactagccag ggcattgcag gcggcaggaa ttgagcatga cctccacgtc 780 gtcgaaggcg cgccgcacgc cttcttccaa ctcccgccat tgtcggcgta tagcgaaggc 840 taccggcgag cgacggcgtt tctcgacaaa catctcaaac acctcgagca ccaccaccac 900 caccactga 909 <210> 3 <211> 5513 <212> DNA <213> Artificial Sequence <220> <223> Lip-1420-sub <400> 3 ggctaaatgt ttttctccct ttccgtccga tcgctaaagt gttgccaaaa gttcggcagg 60 cttgatgaat caagttggtt tgtgggtttt tcagcggttt gccaatgcag gtattgtgga 120 agcgcaggca ctttgtctgc cgtagtatgc tgtcaagctc taaactttag gtctttctca 180 gacgcaggct ccgcctctag cggttggcac ttgaatgtat cctgggagcg cgcccatctt 240 gggcgctttt cgggcgggcg ggacgcccgc gctcccagca ggggggaccc atccaactga 300 aaactgctat aggtctgccg tgtagcgatg gatctgccac tcctggggtt tgcgttccca 360 ggcagagcct gggaacgagg tcgacgactt gcgaaatacc cgagtgcgaa gtgctaggag 420 gaattggcgg gggaatgacg agcggcaagc cttcacgcgg cttagcgctt gagaaattgg 480 ctgactattt ctgctgtgcg ctgaggttgc tcgagcagca gcgcatgggc tgcgccgggt 540 acaagcgcag tctcggcgcc ggcgatgcct cctttaaaca cttcagcgag agccggcggg 600 gcaagcttgt cctcaccggc ccagacgatg agagtgggca cttgtatacg gaacaaacgc 660 tctttcaggc gcgggttgta cagatagggt ggtttccagc ccagccgggc tgcaaccatt 720 tgggctttgt agaagagcat gtaggcgtca gggggcatct ggtcggatac cgcgcccata 780 gccaactccg agttaggatc gcgaaagagc aactcgcgcg cctcgtgttg tccgccttcc 840 gctttcgggg ttacggtgta gaagaaattg ccaatccggg cttgcggagt cgagatgccg 900 agcggatcga tcagcaccaa tttgtctaag cggtgcgagt agcgggtggc gaattcagtc 960 gcaacccatc ctccgagaga actgccgact acactcacct tggccaattg cagcgcgtcg 1020 agcacatcga gacaaaagaa cactgcgtct tcaatggttt ccagatcatc gaacccttcg 1080 ctgtcagcgt agccaggcaa ggccggcgca tacagcgaga aggaggcagc taaggcatcg 1140 tggaaagtgg taaagccggc cttggcaggc agactataga tatcagccgc aagcccgtgc 1200 agatacaaca ggggtttgcc gttgccgcca cgtaggagtt ggattttttt accacgaatc 1260 gtcagggtgt cggtttgtaa ggccataaag agtgttgtcc tgtttgccaa gatgcggatg 1320 taagaacgtc ccgctgtgga gccttgatga atcaaggctc catggggaga ggcagcctct 1380 gcctgaactg aggttatgcg tgagcttccg tctgccgggt ttgcccacca gggagagcac 1440 cgaactcggc ttcggcgtac ttacgtacgt aggggaacac ttcgctggtg aggagttcca 1500 tatttttgcg cgtgagatga tcgggcaagc tgccgaactg ggggagcgcg aggatatggc 1560 cgaccttgaa ctccaggaca tatttgagca actgctcgcg cacggtttgc gggctgccga 1620 tgagtaccga accgccggcc tcgacatcat cccaactgcg ggcgtgacct aactgccagt 1680 ttgtcggcgc cttttcgccg ccgagagagt taatttcttg caggcgttgt aaagacttca 1740 gcgaggtata ccccggcggc atccaggtcc gcccttttcc agcgaagcct ttgatgagtt 1800 tatcgatgaa gtaccagacg tgttcctcgg cctcttgccg cgctttctgg tcggtctcgg 1860 ccacgtacat cggcaccagc cacccgagca tttccgggtt gtacgtcctg cccacccgcg 1920 cgacggtttg ctggaaaaag gccgcgttct ggcgaaacga atcaacgtgg gcataggtca 1980 gcgcggcgta gatgaacccg cgctcggcca ccagttccat ggtctcgacg ctgccgacac 2040 ccggaatcca gatcggcggg tggggcttct gtaccggccg cggccaggga ttgacgtact 2100 ggaactgaaa gtgtttaccg tcccacgaaa acggcccggg gtcggtccag gctttgacaa 2160 tcaggtcggt ggcctcacgg aatcgctctc gggcgaaagt gggattgatg ttgtaggaat 2220 aatattccgg cccgccgccg acgacaaagc ctgcgtcaaa cttgccgcga aacatgttgt 2280 cgagcatggc gaactcttcg gcgattttca gcggcacttc ataaagcggc agcccgttac 2340 ccaggaccat tacccgggcc tgctggatgc gttgcgacag cgcggcagca atcaagttcg 2400 gggaaggcat aatgccgtaa gcattttgat gatgctcgtt gatcaccacg ccatcgaagc 2460 ctagttgatc agcgtaggcg agttggttga tgtaacgatg atacacttct ggtccacgtt 2520 cgggatcgaa gagcgtgttc ggacaggtga cccaggcggt atcgtacttc tcggcaaaat 2580 catcgggcaa ataaggccac ggcatcagat gaaacatcca gaatttcatt gattttcccc 2640 ttacatgacg attcgtctgt ggtgtaccac atcaaggtaa ggttgcaaag agcaaagccg 2700 ctggcgtctt acgcgcttgc cgggtagaat ccgcgggaca cttctaccac aaagggggac 2760 gacacatgag tcagattccg gctgatctgc ttgaatttat ggaaaccctg cgcgtgccta 2820 agggggtgaa cccggcggat atgctgctgc gctacgatag tctgatgaac ggcaatccgc 2880 cgcccgtggg cgctgtgcat gacggggtac tgttgcacga ggtggcaggc tggcggctga 2940 ccgccgatat tgccgtgccg tctggtacgg gaccacaccc ggtgttggtt tatttccacg 3000 gcggtggctg gacgatgggg agcccgaaga ctcatctgcg cctcggccgg gagtttgccg 3060 ccgcaggtta tctcaccatc aacctcgatt accgccgcgc gcccaagtac agatttcccg 3120 ccgcctttga tgactgtgtg tttgccacac ggtgggcggt ggagaacgcc gcgcgctatg 3180 gcggagatgc caagcgctta gccgtaggcg gagactcggc gggtggcaat ctggcggccg 3240 cagttttggc ggaaggcacg cagaaaggcg gacctaagat cagcaccgga gtattgctct 3300 acggcgtctt cgactatcac caagccatga catctctggg tgggactgga ccgaacacgc 3360 aattctacct accggaagac caatacgagg cgctacgtca ggactatcgg gttagcccgt 3420 tctatgcctg tgcgaaattc ccgccgtgct atatcggggt gggtacgaag gatccgcttt 3480 tgccgcaatc gttagaacta gccagggcat tgcaggcggc aggaattgag catgacctcc 3540 acgtcgtcga aggcgcgccg cacgccttct tccaactccc gccattgtcg gcgtatagcg 3600 aaggctaccg gcgagcgacg gcgtttctcg acaaacatct caaacactga cgcgggcaaa 3660 agagcagggc acgcctgggg tgcccttttt ctcttgacag gcttcggttc gccgatgtag 3720 taataggggc gctggcgcga tagcagcact gcaaagccgg ctttccgtca ctgagagggc 3780 gacgggattc acggccggct ttcatcgccg cgcaggtgca acaaggcaaa gccggtgggc 3840 gggcctccgc cgaagcaggg cccggaggat gaaactaggg gtgaagtact actctccccc 3900 tctctcatag gaggttgtag tgatgagatg gctatctgct ctgtggctgc tgttgttgct 3960 ccccggccta gccatggctc agggccagca gtgcaccaac ttccaaccga ataggcagcc 4020 gttcttcggc gaacttcatc tgcacaccga gtactcggcg gacgcggcga ccctcgatac 4080 gcgcaacacg cccgccgatg cctaccgctt cgccaagggc gagaaactcg gactgccgcc 4140 ttttatcaat acgtgcaccg acagccagtg tgacagcggc ccacccaaca ccggcccggt 4200 ctcctcccac ttctactgtt tcccgccgga ccgctgcgag ttcaccgcca cacgcacgat 4260 tcagttcccg caaggccggg agctggactt cgcggcgatt acggaccacg ccgaatggtt 4320 cggcgagacc aacatctgct tctgggaaga gacggagacg tgtgaacagg atgcggactg 4380 caacccggga cagacgggac atatctgttt cggcaccaac ctgtcggcga gcgggcaagg 4440 gaagtgtgtc ccccgggggt atgcgagcga agactgtatc cttgcgcggg aggaactggc 4500 gaaactccac acggggttag ggaccgccct cttggccgcg tatgtcacga ctcccacgat 4560 aacacccgac ggcaccgtca ccgagccgca gcgtgccgcc ttctgtcagg cgccgggggc 4620 ggagggaaaa gacacgtgca tatttcaggc gcagaacgtc tggaagcaaa ttcagcaaga 4680 cgcggcgggc gcataccagc cgtgtcagtt cacctctttc gtcgcttacg agtacactgg 4740 gatgccgggg atgctgcggt gcagtaccga cggcgcaccc tgcttaacca atgccgactg 4800 caccggaggg cagagctgcg agacagaccc gaacggcggc gccaacaacc tccaccgcaa 4860 catcatcttc aagaacgccg acgtggtgga tctgccgatc acctacatgg aagcgccgac 4920 gagctgcggc cagggctcgc ctcagtgtaa cggcgcgctc gggtctcctc tgacgctgtt 4980 gcaagattta acgggtcaat gcggccccaa taccccgcat ccgcagtgcg acttcatttc 5040 aatcccgcat aattccaaca tcagcggcgg cgccatgttc gtgctgccgg agagcctgga 5100 cgaggccaca gtccgctccg acaaggagcg gctggtcgaa ctctttcaga tcaaaggcag 5160 ctcggagtgc cgcttttccg ctcaacaccc gggtgcgtgg gggaccattg atgagcagtg 5220 caacttcgaa aatatgaact tcggcaagct gaatgggaaa tatctcacgg accccgatcc 5280 cacaaccgtg tcaccccaga gttatgtccg gaacgcgtta aaggccggca tgcagtacga 5340 gaaagaccat ggggtcaatc ccttcaagct gggattcgtc ggcgccctcg acaaccataa 5400 cggcacgcct ggcgcgagcg aagcggtcca gtatgccaag accggggcgc atggcgactt 5460 gagctttgcc gtatcgggcc agatcttgaa cgagaccaac ctcttgggac tgc 5513 <210> 4 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> Lip-1420-sub-ORF1 forward <400> 4 gcgtcaggac atatgagatg gctatctgct ct 32 <210> 5 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> Lip-1420-sub-ORF1 reverse <400> 5 gcgtcaggtc tcgagcagtc ccaagaggtt ggtc 34 <210> 6 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> Lip-1420-sub-ORF2 forward <400> 6 gcgtcaggcc atatgaaatt ctggatggat gtttcat 37 <210> 7 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> Lip-1420-sub-ORF2 reverse <400> 7 gcgtcaggtc tcgagtgcgt gagcttccgt ctg 33 <210> 8 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> Lip-1420-sub-ORF3 forward <400> 8 gcgacaggcc atatgagtca gattccggct ga 32 <210> 9 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> Lip-1420-sub-ORF3 reverse <400> 9 gcgtcaggac tcgaggtgtt tgagatgttt gtcg 34 <210> 10 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> Lip-1420-sub-ORF4 forward <400> 10 gcgacatcac atatggcctt acaaaccgac a 31 <210> 11 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> Lip-1420-sub-ORF4 reverse <400> 11 gcactagcag tcgacgcgct tgagaaattg gctga 35 <110> KOREA RESEARCH INSTITUTE OF CHEMICAL TECHNOLOGY <120> Novel lipase gene Lip-1420 derived from soil metagenome and use          about <130> 2018P-08-001 <160> 11 <170> KoPatentIn 3.0 <210> 1 <211> 302 <212> PRT <213> Artificial Sequence <220> <223> lipase <400> 1 Met Ser Gln Ile Pro Ala Asp Leu Leu Glu Phe Met Glu Thr Leu Arg   1 5 10 15 Val Pro Lys Gly Val Asn Pro Ala Asp Met Leu Leu Arg Tyr Asp Ser              20 25 30 Leu Met Asn Gly Asn Pro Pro Pro Val Gly Ala Val His Asp Gly Val          35 40 45 Leu Leu His Glu Val Ala Gly Trp Arg Leu Thr Ala Asp Ile Ala Val      50 55 60 Pro Ser Gly Thr Gly Pro His Pro Val Leu Val Tyr Phe His Gly Gly  65 70 75 80 Gly Trp Thr Met Gly Ser Pro Lys Thr His Leu Arg Leu Gly Arg Glu                  85 90 95 Phe Ala Ala Ala Gly Tyr Leu Thr Ile Asn Leu Asp Tyr Arg Arg Ala             100 105 110 Pro Lys Tyr Arg Phe Pro Ala Ala Phe Asp Asp Cys Val Phe Ala Thr         115 120 125 Arg Trp Ala Val Glu Asn Ala Ala Arg Tyr Gly Gly Asp Ala Lys Arg     130 135 140 Leu Ala Val Gly Gly Asp Ser Ala Gly Gly Asn Leu Ala Ala Ala Val 145 150 155 160 Leu Ala Glu Gly Thr Gln Lys Gly Gly Pro Lys Ile Ser Thr Gly Val                 165 170 175 Leu Leu Tyr Gly Val Phe Asp Tyr His Gln Ala Met Thr Ser Leu Gly             180 185 190 Gly Thr Gly Pro Asn Thr Gln Phe Tyr Leu Pro Glu Asp Gln Tyr Glu         195 200 205 Ala Leu Arg Gln Asp Tyr Arg Val Ser Pro Phe Tyr Ala Cys Ala Lys     210 215 220 Phe Pro Pro Cys Tyr Ile Gly Val Gly Thr Lys Asp Pro Leu Leu Pro 225 230 235 240 Gln Ser Leu Glu Leu Ala Arg Ala Leu Gln Ala Ala Gly Ile Glu His                 245 250 255 Asp Leu His Val Val Glu Gly Ala Pro His Ala Phe Phe Gln Leu Pro             260 265 270 Pro Leu Ser Ala Tyr Ser Glu Gly Tyr Arg Arg Ala Thr Ala Phe Leu         275 280 285 Asp Lys His Leu Lys His Leu Glu His His His His His His     290 295 300 <210> 2 <211> 909 <212> DNA <213> Artificial Sequence <220> <223> Lip-1420-sub-ORF3 <400> 2 atgagtcaga ttccggctga tctgcttgaa tttatggaaa ccctgcgcgt gcctaagggg 60 gtgaacccgg cggatatgct gctgcgctac gatagtctga tgaacggcaa tccgccgccc 120 gtgggcgctg tgcatgacgg ggtactgttg cacgaggtgg caggctggcg gctgaccgcc 180 gatattgccg tgccgtctgg tacgggacca cacccggtgt tggtttattt ccacggcggt 240 ggctggacga tggggagccc gaagactcat ctgcgcctcg gccgggagtt tgccgccgca 300 ggttatctca ccatcaacct cgattaccgc cgcgcgccca agtacagatt tcccgccgcc 360 tttgatgact gtgtgtttgc cacacggtgg gcggtggaga acgccgcgcg ctatggcgga 420 gatgccaagc gcttagccgt aggcggagac tcggcgggtg gcaatctggc ggccgcagtt 480 ttggcggaag gcacgcagaa aggcggacct aagatcagca ccggagtatt gctctacggc 540 gtcttcgact atcaccaagc catgacatct ctgggtggga ctggaccgaa cacgcaattc 600 tacctaccgg aagaccaata cgaggcgcta cgtcaggact atcgggttag cccgttctat 660 gcctgtgcga aattcccgcc gtgctatatc ggggtgggta cgaaggatcc gcttttgccg 720 caatcgttag aactagccag ggcattgcag gcggcaggaa ttgagcatga cctccacgtc 780 gtcgaaggcg cgccgcacgc cttcttccaa ctcccgccat tgtcggcgta tagcgaaggc 840 taccggcgag cgacggcgtt tctcgacaaa catctcaaac acctcgagca ccaccaccac 900 caccactga 909 <210> 3 <211> 5513 <212> DNA <213> Artificial Sequence <220> <223> Lip-1420-sub <400> 3 ggctaaatgt ttttctccct ttccgtccga tcgctaaagt gttgccaaaa gttcggcagg 60 cttgatgaat caagttggtt tgtgggtttt tcagcggttt gccaatgcag gtattgtgga 120 agcgcaggca ctttgtctgc cgtagtatgc tgtcaagctc taaactttag gtctttctca 180 gacgcaggct ccgcctctag cggttggcac ttgaatgtat cctgggagcg cgcccatctt 240 gggcgctttt cgggcgggcg ggacgcccgc gctcccagca ggggggaccc atccaactga 300 aaactgctat aggtctgccg tgtagcgatg gatctgccac tcctggggtt tgcgttccca 360 ggcagagcct gggaacgagg tcgacgactt gcgaaatacc cgagtgcgaa gtgctaggag 420 gaattggcgg gggaatgacg agcggcaagc cttcacgcgg cttagcgctt gagaaattgg 480 ctgactattt ctgctgtgcg ctgaggttgc tcgagcagca gcgcatgggc tgcgccgggt 540 acaagcgcag tctcggcgcc ggcgatgcct cctttaaaca cttcagcgag agccggcggg 600 gcaagcttgt cctcaccggc ccagacgatg agagtgggca cttgtatacg gaacaaacgc 660 tctttcaggc gcgggttgta cagatagggt ggtttccagc ccagccgggc tgcaaccatt 720 tgggctttgt agaagagcat gtaggcgtca gggggcatct ggtcggatac cgcgcccata 780 gccaactccg agttaggatc gcgaaagagc aactcgcgcg cctcgtgttg tccgccttcc 840 gctttcgggg ttacggtgta gaagaaattg ccaatccggg cttgcggagt cgagatgccg 900 agcggatcga tcagcaccaa tttgtctaag cggtgcgagt agcgggtggc gaattcagtc 960 gcaacccatc ctccgagaga actgccgact acactcacct tggccaattg cagcgcgtcg 1020 agcacatcga gacaaaagaa cactgcgtct tcaatggttt ccagatcatc gaacccttcg 1080 ctgtcagcgt agccaggcaa ggccggcgca tacagcgaga aggaggcagc taaggcatcg 1140 tggaaagtgg taaagccggc cttggcaggc agactataga tatcagccgc aagcccgtgc 1200 agatacaaca ggggtttgcc gttgccgcca cgtaggagtt ggattttttt accacgaatc 1260 gtcagggtgt cggtttgtaa ggccataaag agtgttgtcc tgtttgccaa gatgcggatg 1320 taagaacgtc ccgctgtgga gccttgatga atcaaggctc catggggaga ggcagcctct 1380 gcctgaactg aggttatgcg tgagcttccg tctgccgggt ttgcccacca gggagagcac 1440 cgaactcggc ttcggcgtac ttacgtacgt aggggaacac ttcgctggtg aggagttcca 1500 tatttttgcg cgtgagatga tcgggcaagc tgccgaactg ggggagcgcg aggatatggc 1560 cgaccttgaa ctccaggaca tatttgagca actgctcgcg cacggtttgc gggctgccga 1620 tgagtaccga accgccggcc tcgacatcat cccaactgcg ggcgtgacct aactgccagt 1680 ttgtcggcgc cttttcgccg ccgagagagt taatttcttg caggcgttgt aaagacttca 1740 gcgaggtata ccccggcggc atccaggtcc gcccttttcc agcgaagcct ttgatgagtt 1800 tatcgatgaa gtaccagacg tgttcctcgg cctcttgccg cgctttctgg tcggtctcgg 1860 ccacgtacat cggcaccagc cacccgagca tttccgggtt gtacgtcctg cccacccgcg 1920 cgacggtttg ctggaaaaag gccgcgttct ggcgaaacga atcaacgtgg gcataggtca 1980 gcgcggcgta gatgaacccg cgctcggcca ccagttccat ggtctcgacg ctgccgacac 2040 ccggaatcca gatcggcggg tggggcttct gtaccggccg cggccaggga ttgacgtact 2100 ggaactgaaa gtgtttaccg tcccacgaaa acggcccggg gtcggtccag gctttgacaa 2160 tcaggtcggt ggcctcacgg aatcgctctc gggcgaaagt gggattgatg ttgtaggaat 2220 aatattccgg cccgccgccg acgacaaagc ctgcgtcaaa cttgccgcga aacatgttgt 2280 cgagcatggc gaactcttcg gcgattttca gcggcacttc ataaagcggc agcccgttac 2340 ccaggaccat tacccgggcc tgctggatgc gttgcgacag cgcggcagca atcaagttcg 2400 gggaaggcat aatgccgtaa gcattttgat gatgctcgtt gatcaccacg ccatcgaagc 2460 ctagttgatc agcgtaggcg agttggttga tgtaacgatg atacacttct ggtccacgtt 2520 cgggatcgaa gagcgtgttc ggacaggtga cccaggcggt atcgtacttc tcggcaaaat 2580 catcgggcaa ataaggccac ggcatcagat gaaacatcca gaatttcatt gattttcccc 2640 ttacatgacg attcgtctgt ggtgtaccac atcaaggtaa ggttgcaaag agcaaagccg 2700 ctggcgtctt acgcgcttgc cgggtagaat ccgcgggaca cttctaccac aaagggggac 2760 gacacatgag tcagattccg gctgatctgc ttgaatttat ggaaaccctg cgcgtgccta 2820 agggggtgaa cccggcggat atgctgctgc gctacgatag tctgatgaac ggcaatccgc 2880 cgcccgtggg cgctgtgcat gacggggtac tgttgcacga ggtggcaggc tggcggctga 2940 ccgccgatat tgccgtgccg tctggtacgg gaccacaccc ggtgttggtt tatttccacg 3000 gcggtggctg gacgatgggg agcccgaaga ctcatctgcg cctcggccgg gagtttgccg 3060 ccgcaggtta tctcaccatc aacctcgatt accgccgcgc gcccaagtac agatttcccg 3120 ccgcctttga tgactgtgtg tttgccacac ggtgggcggt ggagaacgcc gcgcgctatg 3180 gcggagatgc caagcgctta gccgtaggcg gagactcggc gggtggcaat ctggcggccg 3240 cagttttggc ggaaggcacg cagaaaggcg gacctaagat cagcaccgga gtattgctct 3300 acggcgtctt cgactatcac caagccatga catctctggg tgggactgga ccgaacacgc 3360 aattctacct accggaagac caatacgagg cgctacgtca ggactatcgg gttagcccgt 3420 tctatgcctg tgcgaaattc ccgccgtgct atatcggggt gggtacgaag gatccgcttt 3480 tgccgcaatc gttagaacta gccagggcat tgcaggcggc aggaattgag catgacctcc 3540 acgtcgtcga aggcgcgccg cacgccttct tccaactccc gccattgtcg gcgtatagcg 3600 aaggctaccg gcgagcgacg gcgtttctcg acaaacatct caaacactga cgcgggcaaa 3660 agagcagggc acgcctgggg tgcccttttt ctcttgacag gcttcggttc gccgatgtag 3720 taataggggc gctggcgcga tagcagcact gcaaagccgg ctttccgtca ctgagagggc 3780 gacgggattc acggccggct ttcatcgccg cgcaggtgca acaaggcaaa gccggtgggc 3840 gggcctccgc cgaagcaggg cccggaggat gaaactaggg gtgaagtact actctccccc 3900 tctctcatag gaggttgtag tgatgagatg gctatctgct ctgtggctgc tgttgttgct 3960 ccccggccta gccatggctc agggccagca gtgcaccaac ttccaaccga ataggcagcc 4020 gttcttcggc gaacttcatc tgcacaccga gtactcggcg gacgcggcga ccctcgatac 4080 gcgcaacacg cccgccgatg cctaccgctt cgccaagggc gagaaactcg gactgccgcc 4140 ttttatcaat acgtgcaccg acagccagtg tgacagcggc ccacccaaca ccggcccggt 4200 ctcctcccac ttctactgtt tcccgccgga ccgctgcgag ttcaccgcca cacgcacgat 4260 tcagttcccg caaggccggg agctggactt cgcggcgatt acggaccacg ccgaatggtt 4320 cggcgagacc aacatctgct tctgggaaga gacggagacg tgtgaacagg atgcggactg 4380 caacccggga cagacgggac atatctgttt cggcaccaac ctgtcggcga gcgggcaagg 4440 gaagtgtgtc ccccgggggt atgcgagcga agactgtatc cttgcgcggg aggaactggc 4500 gaaactccac acggggttag ggaccgccct cttggccgcg tatgtcacga ctcccacgat 4560 aacacccgac ggcaccgtca ccgagccgca gcgtgccgcc ttctgtcagg cgccgggggc 4620 ggagggaaaa gacacgtgca tatttcaggc gcagaacgtc tggaagcaaa ttcagcaaga 4680 cgcggcgggc gcataccagc cgtgtcagtt cacctctttc gtcgcttacg agtacactgg 4740 gatgccgggg atgctgcggt gcagtaccga cggcgcaccc tgcttaacca atgccgactg 4800 caccggaggg cagagctgcg agacagaccc gaacggcggc gccaacaacc tccaccgcaa 4860 catcatcttc aagaacgccg acgtggtgga tctgccgatc acctacatgg aagcgccgac 4920 gagctgcggc cagggctcgc ctcagtgtaa cggcgcgctc gggtctcctc tgacgctgtt 4980 gcaagattta acgggtcaat gcggccccaa taccccgcat ccgcagtgcg acttcatttc 5040 aatcccgcat aattccaaca tcagcggcgg cgccatgttc gtgctgccgg agagcctgga 5100 cgaggccaca gtccgctccg acaaggagcg gctggtcgaa ctctttcaga tcaaaggcag 5160 ctcggagtgc cgcttttccg ctcaacaccc gggtgcgtgg gggaccattg atgagcagtg 5220 caacttcgaa aatatgaact tcggcaagct gaatgggaaa tatctcacgg accccgatcc 5280 cacaaccgtg tcaccccaga gttatgtccg gaacgcgtta aaggccggca tgcagtacga 5340 gaaagaccat ggggtcaatc ccttcaagct gggattcgtc ggcgccctcg acaaccataa 5400 cggcacgcct ggcgcgagcg aagcggtcca gtatgccaag accggggcgc atggcgactt 5460 gagctttgcc gtatcgggcc agatcttgaa cgagaccaac ctcttgggac tgc 5513 <210> 4 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> Lip-1420-sub-ORF1 forward <400> 4 gcgtcaggac atatgagatg gctatctgct ct 32 <210> 5 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> Lip-1420-sub-ORF1 reverse <400> 5 gcgtcaggtc tcgagcagtc ccaagaggtt ggtc 34 <210> 6 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> Lip-1420-sub-ORF2 forward <400> 6 gcgtcaggcc atatgaaatt ctggatggat gtttcat 37 <210> 7 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> Lip-1420-sub-ORF2 reverse <400> 7 gcgtcaggtc tcgagtgcgt gagcttccgt ctg 33 <210> 8 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> Lip-1420-sub-ORF3 forward <400> 8 gcgacaggcc atatgagtca gattccggct ga 32 <210> 9 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> Lip-1420-sub-ORF3 reverse <400> 9 gcgtcaggac tcgaggtgtt tgagatgttt gtcg 34 <210> 10 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> Lip-1420-sub-ORF4 forward <400> 10 gcgacatcac atatggcctt acaaaccgac a 31 <210> 11 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> Lip-1420-sub-ORF4 reverse <400> 11 gcactagcag tcgacgcgct tgagaaattg gctga 35

Claims (9)

서열번호 1의 아미노산 서열로 구성되는 리파아제 단백질.
Lipase protein consisting of the amino acid sequence of SEQ ID NO: 1.
제1항의 리파아제 단백질을 암호화하는 유전자.
Gene encoding the lipase protein of claim 1.
제2항에 있어서, 상기 유전자는 서열번호 2의 염기서열로 구성되는, 유전자.
The gene of claim 2, wherein the gene consists of the nucleotide sequence of SEQ ID NO: 2. 4.
제2항 또는 제3항의 유전자를 포함하는 재조합 벡터.
A recombinant vector comprising the gene of claim 2 or 3.
제4항의 재조합 벡터를 숙주세포에 도입한 형질전환체.
A transformant, wherein the recombinant vector of claim 4 is introduced into a host cell.
제5항에 있어서, 상기 숙주세포는 원핵세포 또는 진핵세포인, 형질전환체.
The transformant of claim 5, wherein the host cell is a prokaryotic or eukaryotic cell.
제6항에 있어서, 상기 원핵세포는 대장균인, 형질전환체.
The transformant of claim 6, wherein the prokaryotic cell is Escherichia coli.
1) 제5항의 형질전환체를 배양하는 단계;
2) 상기 배양된 형질전환체 또는 이의 배양 상등액으로부터 리파아제 단백질을 회수하는 단계를 포함하는 리파아제 단백질의 제조방법.
1) culturing the transformant of claim 5;
2) A method for producing a lipase protein comprising recovering a lipase protein from the cultured transformant or its culture supernatant.
제8항에 있어서, 상기 단계 2)의 회수한 리파아제 단백질을 정제하는 단계를 더 포함하는, 리파아제 단백질의 제조방법.The method of claim 8, further comprising purifying the recovered lipase protein of step 2).
KR1020180109055A 2018-09-12 2018-09-12 Novel lipase gene Lip-1420 derived from soil metagenome and use thereof KR102026836B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180109055A KR102026836B1 (en) 2018-09-12 2018-09-12 Novel lipase gene Lip-1420 derived from soil metagenome and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180109055A KR102026836B1 (en) 2018-09-12 2018-09-12 Novel lipase gene Lip-1420 derived from soil metagenome and use thereof

Publications (1)

Publication Number Publication Date
KR102026836B1 true KR102026836B1 (en) 2019-09-30

Family

ID=68098152

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180109055A KR102026836B1 (en) 2018-09-12 2018-09-12 Novel lipase gene Lip-1420 derived from soil metagenome and use thereof

Country Status (1)

Country Link
KR (1) KR102026836B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102235833B1 (en) * 2019-12-05 2021-04-05 한국화학연구원 Novel triolein selective lipase gene Lip-1307 derived from soil metagenome and use thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060022339A (en) * 2004-09-07 2006-03-10 한국화학연구원 Novel lipase from soil metagenome and method for selectively partitioning lacemic ethyl 2-bromopropionate using same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060022339A (en) * 2004-09-07 2006-03-10 한국화학연구원 Novel lipase from soil metagenome and method for selectively partitioning lacemic ethyl 2-bromopropionate using same

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
GenBank: AEM45112.1 *
GenBank: AFQ30768.1 *
GenBank: JX067636.1 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102235833B1 (en) * 2019-12-05 2021-04-05 한국화학연구원 Novel triolein selective lipase gene Lip-1307 derived from soil metagenome and use thereof

Similar Documents

Publication Publication Date Title
CN109266630B (en) Lipase and application thereof in preparation of brivaracetam intermediate
CN109971734B (en) PH-insensitive high-temperature-tolerant HSL family lipid hydrolase and application thereof
KR100986161B1 (en) Novel gene encoding esterase derived from tidal flat metagenome and preparation method thereof
KR102026836B1 (en) Novel lipase gene Lip-1420 derived from soil metagenome and use thereof
KR101077913B1 (en) Novel gene encoding esterase derived from soil metagenome and the esterase
CN111057695B (en) Nitrilase and preparation method and application thereof
CN111139229B (en) Novel GDSL family lipid hydrolase EII-2 and encoding gene and application thereof
JP7011132B2 (en) New chitosanase CHI1, its coding gene and its use
CN110923223B (en) Novel nitrilase and application thereof
KR102088811B1 (en) Novel alkaline lipase/esterase gene Lip-1447 derived from soil metagenome and use thereof
CN114958804A (en) Neutral phytase mutant
CN110904077B (en) Low-temperature improved xylosidase mutant MutLK10 and preparation and application thereof
CN109517814B (en) Mutant of organophosphorus degrading enzyme and application thereof
KR102235833B1 (en) Novel triolein selective lipase gene Lip-1307 derived from soil metagenome and use thereof
CN110951711B (en) Esterase with activity of degrading chiral ester and coding gene and application thereof
CN111019921B (en) High-tolerance lipid hydrolase E93 and encoding gene and application thereof
CN107619832B (en) Chloronitrophenol compound oxidoreductase gene cluster cnpAB and application thereof
CN108018266B (en) Marine-derived superoxide dismutase and coding gene and application thereof
CN112662643A (en) Organophosphorus anhydrase, coding gene thereof and application of organophosphorus anhydrase in degradation of organophosphorus pesticides
KR101734935B1 (en) Novel lipolytic enzyme from metagenomic library and process for preparing the same
KR100613694B1 (en) Novel gene encoding lipase from soil metagenome
CN110904076B (en) Potassium chloride-resistant xylosidase mutant K317D and application thereof
KR20060022339A (en) Novel lipase from soil metagenome and method for selectively partitioning lacemic ethyl 2-bromopropionate using same
CN110862977B (en) Sodium chloride and potassium chloride resistant xylosidase mutant H328D and application thereof
CN112760306B (en) Family six ester hydrolase with high salinity, organic solvent and detergent tolerance, and coding gene and application thereof

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant