US20030168008A1 - Plasma processing device - Google Patents
Plasma processing device Download PDFInfo
- Publication number
- US20030168008A1 US20030168008A1 US10/276,721 US27672102A US2003168008A1 US 20030168008 A1 US20030168008 A1 US 20030168008A1 US 27672102 A US27672102 A US 27672102A US 2003168008 A1 US2003168008 A1 US 2003168008A1
- Authority
- US
- United States
- Prior art keywords
- microwave
- processing apparatus
- plasma
- plasma processing
- dielectric member
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000012545 processing Methods 0.000 title claims abstract description 226
- 239000004020 conductor Substances 0.000 claims description 90
- 238000000034 method Methods 0.000 claims description 61
- 230000008569 process Effects 0.000 claims description 60
- 239000000758 substrate Substances 0.000 claims description 59
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 16
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 14
- 230000005855 radiation Effects 0.000 claims description 11
- 238000004891 communication Methods 0.000 claims description 9
- 239000000203 mixture Substances 0.000 claims description 4
- 230000002093 peripheral effect Effects 0.000 claims description 4
- 239000004809 Teflon Substances 0.000 claims description 3
- 229920006362 TeflonĀ® Polymers 0.000 claims description 3
- 230000007423 decrease Effects 0.000 claims 6
- 229910052814 silicon oxide Inorganic materials 0.000 claims 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims 4
- 229910052710 silicon Inorganic materials 0.000 claims 4
- 239000010703 silicon Substances 0.000 claims 4
- 239000012780 transparent material Substances 0.000 claims 2
- 230000008859 change Effects 0.000 abstract description 11
- 230000015572 biosynthetic process Effects 0.000 abstract description 5
- 239000007789 gas Substances 0.000 description 93
- 238000010276 construction Methods 0.000 description 63
- 238000010586 diagram Methods 0.000 description 25
- 239000004065 semiconductor Substances 0.000 description 20
- 238000004519 manufacturing process Methods 0.000 description 17
- 229910052593 corundum Inorganic materials 0.000 description 10
- 229910001845 yogo sapphire Inorganic materials 0.000 description 10
- 230000005284 excitation Effects 0.000 description 9
- 230000002159 abnormal effect Effects 0.000 description 7
- 238000012546 transfer Methods 0.000 description 7
- 239000000498 cooling water Substances 0.000 description 6
- 239000006227 byproduct Substances 0.000 description 5
- 238000001816 cooling Methods 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 230000009467 reduction Effects 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 4
- 229910052681 coesite Inorganic materials 0.000 description 4
- 238000011109 contamination Methods 0.000 description 4
- 229910052906 cristobalite Inorganic materials 0.000 description 4
- 238000001513 hot isostatic pressing Methods 0.000 description 4
- 239000004973 liquid crystal related substance Substances 0.000 description 4
- 239000000377 silicon dioxide Substances 0.000 description 4
- 229910052682 stishovite Inorganic materials 0.000 description 4
- 229910052905 tridymite Inorganic materials 0.000 description 4
- 229910052581 Si3N4 Inorganic materials 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 238000000151 deposition Methods 0.000 description 3
- 230000008021 deposition Effects 0.000 description 3
- 239000003989 dielectric material Substances 0.000 description 3
- 239000011261 inert gas Substances 0.000 description 3
- 238000004544 sputter deposition Methods 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- 229910000838 Al alloy Inorganic materials 0.000 description 2
- XPDWGBQVDMORPB-UHFFFAOYSA-N Fluoroform Chemical compound FC(F)F XPDWGBQVDMORPB-UHFFFAOYSA-N 0.000 description 2
- 229910003910 SiCl4 Inorganic materials 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000010355 oscillation Effects 0.000 description 2
- 230000033116 oxidation-reduction process Effects 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- 230000010287 polarization Effects 0.000 description 2
- 230000000644 propagated effect Effects 0.000 description 2
- 238000005086 pumping Methods 0.000 description 2
- FDNAPBUWERUEDA-UHFFFAOYSA-N silicon tetrachloride Chemical compound Cl[Si](Cl)(Cl)Cl FDNAPBUWERUEDA-UHFFFAOYSA-N 0.000 description 2
- 101150012619 FCS1 gene Proteins 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910001566 austenite Inorganic materials 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000005587 bubbling Effects 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 238000005108 dry cleaning Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000001546 nitrifying effect Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 1
- 238000001020 plasma etching Methods 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32009—Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
- H01J37/32192—Microwave generated discharge
- H01J37/32211—Means for coupling power to the plasma
- H01J37/3222—Antennas
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32009—Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
- H01J37/32192—Microwave generated discharge
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32009—Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
- H01J37/32192—Microwave generated discharge
- H01J37/32211—Means for coupling power to the plasma
- H01J37/32229—Waveguides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32431—Constructional details of the reactor
- H01J37/3244—Gas supply means
Definitions
- the present invention is generally related to a plasma processing apparatus, and more particularly, to a microwave plasma processing apparatus.
- Plasma processing and plasma processing apparatuses are an indispensable technology for fabricating ultrafine semiconductor devices these days called deep submicron devices or deep subquarter micron devices characterized by a gate length of near 0.1 ā m or less, and for fabricating ultra high-resolution flat-panel display devices including liquid crystal display devices.
- Such a conventional plasma processing device has several inherent problems associated with its high electron temperature, in that the semiconductor devices formed on the substrate sustain damage and that significant metal contamination is caused as a result of sputtering of a chamber wall.
- a microwave plasma processing apparatus that uses high-density plasma excited by a microwave electric field, in place of a direct-current magnetic field.
- a plasma processing apparatus that causes excitation of plasma by radiating a microwave into a processing vessel from a planar antenna (radial line slot antenna) having a number of slots disposed so as to form a uniform microwave, such that the microwave electric field causes ionization of a gas in a vacuum vessel.
- planar antenna radial line slot antenna
- the microwave electric field causes ionization of a gas in a vacuum vessel.
- the microwave plasma thus formed is characterized by low electron temperature, and damaging or metal contamination of the substrate is avoided. Further, it is possible to form uniform plasma over a large surface area, and it can be easily applied to the fabrication process of a semiconductor device using a large diameter semiconductor substrate and a large size liquid crystal display device.
- FIGS. 1A and 1B show the construction of a conventional microwave plasma processing apparatus 100 having such a radial line slot antenna, wherein FIG. 1A shows the microwave plasma processing apparatus in a cross-sectional view while FIG. 1B shows the construction of the radial line slot antenna.
- the microwave plasma processing apparatus 100 has a processing chamber 101 evacuated from plural evacuation ports 116 , and a stage 115 is formed for holding a substrate 114 to be processed.
- a ring-shaped space 101 A is formed around the stage 115 , and the plural evacuation ports 116 are formed in communication with the foregoing space 101 A at a uniform interval, and hence in axial symmetry with regard to the substrate. Thereby, it becomes possible to evacuate the processing chamber 101 uniformly through the space 101 A and the evacuation ports 116 .
- a shower plate 103 of plate-like form at the location corresponding to the substrate 114 on the stage 115 as a part of the outer wall of the processing chamber 101 , and the shower plate 103 is sealed with respect to the processing chamber 101 via a seal ring 109 , wherein the shower plate 103 is formed of a dielectric material of small loss and includes a large number of apertures 107 . Further, a cover plate 102 also of a dielectric material of small loss is provided on the outer side of the shower plate 103 , and the cover plate 102 is sealed with respect to the shower plate 103 via another seal ring 108 .
- the shower plate 103 is formed with a passage 104 for a plasma gas on the top surface thereof, and each of the plural apertures 107 are formed in communication with the foregoing plasma gas passage 104 . Further, there is formed a plasma gas supply passage 108 in the interior of the shower plate 103 in communication with a plasma gas supply port 105 provided on the outer wall of the processing vessel 101 .
- the plasma gas of Ar, Kr or the like supplied to the foregoing plasma gas supply port 105 is supplied to the foregoing apertures 107 from the supply passage 108 via the passage 104 and is released into a space 101 B underneath the shower plate 103 in the processing vessel 101 from the apertures 107 with substantially uniform concentration.
- a radial line slot antenna 110 having a radiation surface shown in FIG. 1B on the outer side of the cover plate 102 with a separation of 4-5 mm from the cover plate 102 .
- the radial line slot antenna 110 is connected to an external microwave source (not shown) via a coaxial waveguide 110 A and causes excitation of the plasma gas released into the space 101 B by the microwave from the microwave source. It should be noted that the gap between the cover plate 102 and the radiation surface of the radial line slot antenna 110 is filled with air.
- the radial line slot antenna 110 is formed of a flat disk-like antenna body 110 B connected to an outer waveguide of the coaxial waveguide 110 A and a radiation plate 110 C is provided on the mouth of the antenna body 110 B, wherein the radiation plate 110 C is formed with a number of slots 110 a and slots 110 b wherein slots 110 b are formed in a direction crossing the slots 110 a perpendicularly as represented in FIG. 1B. Further, a retardation plate 110 D of a dielectric film of uniform thickness is inserted between the antenna body 110 B and the radiation plate 110 C.
- the microwave supplied from the coaxial waveguide 110 spreads between the disk-like antenna body 110 B and the radiation plate 110 C as it is propagated in the outward radial directions, wherein there occurs a compression of wavelength as a result of the action of the retardation plate 110 D.
- the slots 110 a and 110 b in concentric relationship in correspondence to the wavelength of the radially propagating microwave so as to cross perpendicularly with each other, it becomes possible to emit a plane wave having a circular polarization state in a direction substantially perpendicular to the radiation plate 110 C.
- a conductor structure 111 in the processing vessel 101 between the shower plate 103 and the substrate 114 wherein the conductor structure 111 is formed with a number of nozzles 113 supplied with a processing gas from an external processing gas source (not shown) via a processing gas passage 112 formed in the processing vessel 101 , and each of the nozzles 113 releases the processing gas supplied thereto into a space 101 C between the conductive structure 111 and the substrate 114 .
- the conductive structure 111 is formed with openings between adjacent nozzles 113 with a size such that the plasma formed in the space 101 B passes efficiently from the space 101 B to the space 101 C by way of diffusion.
- An impedance matching structure is generally provided between a microwave antenna and a waveguide connected to the microwave antenna to inject a weak microwave signal received by the microwave antenna into the waveguide without loss.
- high-power microwaves are provided to the radial line slot antenna 110 through the waveguide, and additionally, reflective microwaves reflected by the plasma formed in the processing vessel 101 are also superimposed on the high-power microwaves in the antenna 110 and the waveguide.
- the impedance matching of the power supply unit connecting the waveguide and the antenna body 110 is much more important than usual.
- Another and more specific object of the present invention is to provide a plasma processing apparatus having a microwave antenna, forming plasma in the processing vessel by providing microwaves from the microwave antenna to the processing vessel through the microwave transparent window, and processing the substrate in the plasma, in which the efficiency of supplying microwaves from the microwave waveguide to the microwave antenna is increased, and the abnormal discharge problem due to the mismatching of impedance at the joint unit between the microwave waveguide and the microwave antenna is eliminated.
- Yet another object of the present invention is to provide a plasma processing apparatus, comprising, a processing vessel defined by an outer wall and having a stage for holding a substrate to be processed, an evacuation system coupled to said processing vessel, a microwave transparent window provided on said processing vessel as a part of said outer wall, and opposite said substrate held on said stage, a plasma gas supplying part for supplying plasma gas to said processing vessel, a microwave antenna provided on said processing vessel in correspondence to said microwave, and a microwave power source electrically coupled to said microwave antenna, wherein said microwave antenna comprising a coaxial waveguide connected to said microwave power source, said coaxial waveguide having an inner conductor core and an outer conductor tube surrounding said inner conductor core, and an antenna body provided to a point of said coaxial waveguide, said antenna body further comprising a first conductor surface forming a microwave radiation surface coupled with said microwave transparent window, and a second conductor surface opposite said first conductor surface via a dielectric plate, said second conductor surface being connected to said first conductor surface at a peripheral part of said microwave
- Another object of the present invention is to provide a plasma processing apparatus, comprising, a processing vessel defined by an outer wall and having a stage for holding a substrate to be processed, an evacuation system coupled to said processing vessel, a microwave transparent window provided on said processing vessel as a part of said outer wall, opposite said substrate held on said stage, a plasma gas supplying part for supplying plasma gas to said processing vessel, a microwave antenna provided on said processing vessel in correspondence to said microwave, and a microwave power source electrically coupled to said microwave antenna, wherein said microwave antenna comprising a coaxial waveguide connected to said microwave power source, said coaxial waveguide having an inner conductor core and an outer conductor tube surrounding said inner conductor core, and an antenna body provided to a point of said coaxial waveguide, said antenna body further comprising a first conductor surface forming microwave a radiation surface coupled with said microwave transparent window and a second conductor surface opposite said first conductor surface via a dielectric plate, said second conductor surface being connected to said first conductor surface at a peripheral part of said dielectric plate
- the rapid change in impedance by the joint unit between the microwave waveguide and the microwave antenna is avoided.
- microwaves reflected by the joint unit are efficiently reduced.
- the reflective waves are reduced, abnormal discharge at the joint unit and consequent damage on the antenna caused by the abnormal discharge is avoided.
- the reduction in the reflective waves stabilizes the supply of microwaves to the processing vessel through the microwave transparent window, and makes it possible to form stable plasma in the processing vessel as desired.
- FIGS. 1A and 1B are diagrams showing the construction of a conventional microwave plasma processing apparatus that uses a radial line slot antenna
- FIGS. 2A and 2B are diagrams showing the construction of a microwave plasma processing apparatus according to a first embodiment of the present invention
- FIGS. 3A and 3B are diagrams showing the construction of the joint between a coaxial waveguide and a radial line slot antenna of the apparatus of FIG. 2;
- FIG. 4 is a graph showing the effect of eliminating reflection by the construction of FIG. 3;
- FIG. 5 is a graph showing the reflection coefficient measured for the microwave plasma formed in the plasma processing apparatus of FIGS. 2A and 2B using the power supplying structure of FIG. 3;
- FIG. 6 is a diagram showing the construction of the process gas supplying structure of the microwave plasma processing apparatus shown in FIG. 2A;
- FIG. 7 is a diagram showing the construction of the microwave power source coupled to the microwave plasma processing apparatus of FIG. 2A;
- FIG. 8 is a diagram showing the construction of a microwave supplying structure according to a variation of the present embodiment.
- FIG. 9 is a diagram showing the construction of a microwave supplying structure according to a second embodiment of the present invention.
- FIG. 10 is a diagram showing a variation of the microwave supplying structure of FIG. 9;
- FIG. 11 is a diagram showing another variation of the microwave supplying structure of FIG. 9;
- FIG. 12 is a diagram showing another variation of the microwave supplying structure of FIG. 9;
- FIG. 13 is a diagram showing yet another variation of the microwave supplying structure of FIG. 9;
- FIG. 14 is a diagram showing yet another variation of the microwave supplying structure of FIG. 9;
- FIG. 15 is a diagram showing the construction of microwave plasma processing apparatus according to a third embodiment of the present invention.
- FIG. 16 is a diagram showing the construction of microwave plasma processing apparatus according to a fourth embodiment of the present invention.
- FIG. 17 is a diagram showing the construction of microwave plasma processing apparatus according to a fifth embodiment of the present invention.
- FIG. 18 is a diagram showing the construction of a semiconductor fabrication apparatus according to a sixth embodiment of the present invention, using the microwave plasma processing apparatus of FIGS. 2A and 2B;
- FIG. 19 is a diagram showing the construction of an exhaustion system of the semiconductor fabrication apparatus of FIGS. 18A and 18B;
- FIG. 20 is a diagram showing the construction of a screw molecular pump used for the exhaustion system of FIG. 19;
- FIG. 21 is a diagram showing the construction of a gradational lead screw pump used for the exhaustion system of FIG. 19;
- FIG. 22 is a diagram showing the construction of a gas supplying system used for the processing unit of FIG. 19.
- FIG. 23 is a diagram showing the construction of a current control apparatus used for the gas supplying system of FIG. 22.
- FIGS. 2A and 2B are diagrams showing the construction of a microwave plasma processing apparatus 10 according to a first embodiment of the present invention.
- the microwave plasma processing apparatus 10 includes a processing vessel 11 and a stage 13 provided in the processing vessel 11 for holding a substrate 12 to be processed by an electrostatic chuck, wherein the stage 13 is preferably formed of AlN or Al 2 O 3 by a hot isostatic pressing (HIP) process.
- the processing vessel 11 there are formed two or three evacuation ports 11 a in a space 11 A surrounding the stage 13 with an equal distance, and hence with an axial symmetry with respect to the substrate 12 on the stage 13 .
- the processing vessel 11 is evacuated to a low pressure via the evacuation ports 11 a by a gradational lead screw pump.
- the processing vessel 11 is preferably formed of an austenite stainless steel containing Al, and there is formed a protective film of aluminum oxide on the inner wall surface by an oxidizing process. Further, there is formed a disk-shaped shower plate 14 of dense Al 2 O 3 , formed by a HIP process, in the part of the outer wall of the processing vessel 11 corresponding to the substrate 12 as a part of the outer wall, wherein the shower plate 14 includes a large number of nozzle apertures 14 A.
- the Al 2 O 3 shower plate 14 thus formed by the HIP process is formed by using an Y 2 O 3 additive and has porosity of 0.03% or less. This means that the Al 2 O 3 shower plate is substantially free from pores or pinholes and has a very large, while not so large as that of AlN, thermal conductivity for a ceramic of 30W/m ā K.
- the shower plate 14 is mounted on the processing vessel 11 and sealed thereto via a seal ring 11 s , and a cover plate 15 of dense Al 2 O 3 formed also by an HIP process is provided on the shower plate 14 and sealed thereto via a seal ring lit.
- the shower plate 14 is formed with a depression 14 B communicating with each of the nozzle apertures 14 A and serving as a plasma gas passage, a side thereof formed by the cover plate 15 .
- the depression 14 B also communicates with another plasma gas passage 14 C formed in the interior of the shower plate 14 in communication with a plasma gas inlet 11 p formed on the outer wall of the processing vessel 11 .
- the shower plate 14 is held by an extending part 11 b formed on the inner wall of the processing vessel 11 , wherein the extending part 11 b is formed with a round surface,at the part holding the shower plate 14 so as to suppress electric discharge.
- plasma gas such as Ar or Kr supplied to the plasma gas inlet 11 p is supplied to a space 11 B underneath the shower plate 14 uniformly via the apertures 14 A after being passed through the passage 14 C and the depression 14 B in the shower plate 14 .
- a radial line slot antenna 20 formed,of a disk-shaped slot plate 16 formed with a number of slots 16 a and 16 b shown in FIG. 3B in intimate contact with the cover plate 15 , a disk-shaped antenna body 17 holding the slot plate 16 , and a retardation plate 18 of a dielectric material of low loss such as Al 2 O 3 , SiO 2 or Si 3 N 4 sandwiched between the slot plate 16 and the antenna body 17 .
- the radial line slot antenna 20 is mounted on the processing vessel 11 and sealed thereto by way of a seal ring 11 u , and a microwave of 2.45 GHz or 8.3 GHz frequency is fed to the radial line slot antenna 20 from an external microwave source (not shown) via a coaxial waveguide 21 .
- the microwave thus supplied is radiated into the interior of the processing vessel from the slots 16 a and 16 b in the slot plate 16 via the cover plate 15 and the shower plate 14 .
- the microwaves cause excitation of plasma in the plasma gas supplied from the apertures 14 A in the space 11 B underneath the shower plate 14 .
- the cover plate 15 and the shower plate 14 are formed of Al 2 O 3 and function as an efficient microwave-transmitting window.
- the plasma gas is held at a pressure of about 6666 Pa-13332 Pa (about 50-100 Torr) in the foregoing passages 14 A- 14 C.
- the microwave plasma processing apparatus 10 of the present embodiment has a ring-shaped groove 11 g in a part of the processing vessel 11 so as to be adjacent to the slot plate 16 .
- the pressure in the gap formed between the slot plate 16 and the cover plate 15 is reduced and the radial line slot antenna 20 is urged firmly upon the cover plate 15 by the atmospheric pressure.
- a gap includes not only the slots 16 a and 16 b formed in the slot plate 16 but also a gap formed for various other reasons. It should be noted further that such a gap is sealed by the seal ring 11 u provided between the radial line slot antenna 20 and the processing vessel 11 .
- an outer waveguide 21 A of the coaxial waveguide 21 A is connected to the disk-shaped antenna body 17 while a center conductor 21 B is connected to the slot plate 16 via an opening formed in the retardation plate 18 .
- the microwave fed to the coaxial waveguide 21 A is propagated in the outer radial directions between the antenna body 17 and the slot plate 16 and is emitted from the slots 16 a and 16 b.
- FIG. 2B shows the slots 16 a and 16 b formed in the slot plate 16 .
- the slots 16 a are arranged concentrically, and the slots 16 b , each corresponding to a slot 16 a and being perpendicular to the corresponding slot 16 a , are also arranged concentrically.
- the slots 16 a and 16 b are formed with an interval corresponding to the wavelength of the microwave compressed by the retardation plate 18 in the radial direction of the slot plate 16 , and as a result, the microwave is radiated from the slot plate 16 in the form of a near plane wave. Because the slots 16 a and the slots 16 b are formed in a mutually perpendicular relationship, the microwave thus radiated forms a circularly polarized wave including two perpendicular polarization components.
- a cooling block 19 formed with a cooling water passage 19 A on the antenna body 17 , and the heat accumulated in the shower plate 14 is absorbed via the radial line slot antenna 20 by cooling the cooling block 19 with cooling water in the cooling water passage 19 A.
- the cooling water passage 19 A is formed on the cooling block 19 in a spiral form, and cooling water having a controlled oxidation-reduction potential is supplied thereto, wherein the control of the oxidation reduction potential is achieved by eliminating oxygen dissolved in the cooling water by way of bubbling of an H 2 gas.
- a process gas supply structure 31 in the processing vessel 11 between the shower plate 14 and the substrate 12 on the stage 13 wherein the process gas supply structure 31 has gas passages 31 A arranged in a lattice shape and releases a process gas supplied from a process gas inlet port 11 r provided in the outer wall of the processing vessel 11 through a large number of process gas nozzle apertures 31 B (see FIG. 4).
- desired uniform substrate processing is achieved in a space 11 C between the process gas supply structure 31 and the substrate 12 .
- Such substrate processing includes plasma oxidation processing, plasma nitridation processing, plasma oxynitridation processing, and plasma CVD processing.
- a reactive ion etching of the substrate 12 by supplying a readily decomposing fluorocarbon gas such as C 4 F 8 , C 5 F 8 or C 4 F 6 or an etching-gas containing F or Cl from the process gas supply structure 31 to the space 11 C and further by applying a high-frequency voltage to the stage 13 from a high-frequency power source 13 A.
- a readily decomposing fluorocarbon gas such as C 4 F 8 , C 5 F 8 or C 4 F 6 or an etching-gas containing F or Cl from the process gas supply structure 31 to the space 11 C and further by applying a high-frequency voltage to the stage 13 from a high-frequency power source 13 A.
- the microwave plasma processing apparatus 10 of the present embodiment it is possible to avoid deposition of reaction byproducts on the inner wall of the processing vessel by heating the outer wall of the processing vessel 11 to a temperature of about 150Ā° C. Thereby, the microwave plasma processing apparatus 10 can be operated constantly and with reliability, by merely conducting a dry cleaning process once a day or so.
- a taper unit 21 Bt of the center conductor 21 B is formed at the joint/power supplying unit that connects the coaxial waveguide 21 to the radial line slot antenna 20 , so that the radius or the cross sectional area of the center conductor 21 B gradually increases towards the slot plate 16 .
- the rapid change in impedance caused by the joint/power supply unit is smoothed by forming such a taper structure, which results in a great reduction of reflective waves caused by the rapid change in impedance.
- FIG. 3A is an expanded diagram showing in detail the construction of the joint/microwave supplying unit between the coaxial waveguide 21 and the radial line slot antenna 20 of the plasma processing apparatus 10 of FIG. 2A.
- the slots 16 a and 16 b formed on the slot plate 16 are not shown to simplify the drawing.
- the inner conductor 21 B has a circular cross section having a diameter of 16.9 mm.
- a 4 mm-thick alumina plate having a relative permittivity of 10.1 is formed between the slot plate 16 and the antenna body 17 as the retardation plate 18 .
- the outer waveguide 21 A defines a cylindrical space having a circular cross section having an inner diameter of 38.8 mm in which the inner conductor 21 B is provided.
- the cross sectional area of the inner conductor 21 B is gradually increased from 7 mm above the joint between the inner conductor 21 B and the slot plate 16 to the joint.
- the inner conductor 21 B has a circular cross section of a diameter of 23 mm at the joint.
- FIG. 4 shows the reflective ratio of microwave provided to the antenna 20 through the waveguide 21 in the case where the radial line slot antenna 20 and the waveguide 21 are used as shown in FIG. 3A, and the parameter āaā shown in FIG. 3A is set at 6.4 mm.
- the reflective ratio is indicated by āā¢ā.
- ā*ā shown in FIG. 4 indicates a reflective ratio of the construction shown in FIG. 3B to which the taper units 21 At and 21 Bt are not provided.
- the reflective microwave includes not only the microwave reflected by the joint/supplying unit between the waveguide 21 the radial line antenna 20 , but also the microwave reflected by the plasma.
- the reflective ratio is about ā 2 dB regardless of a frequency, which means about 80% of the microwave is reflectively returned to the waveguide 21 and the microwave source connected to the waveguide 21 .
- the reflective ratio depends on the frequency of the microwave.
- the reflective ratio becomes the minimum ā 23 dB (about 14%) in the neighborhood of 2.4 GHz at which the plasma is excited.
- FIG. 5 shows a microwave reflection factor measured by a power monitor provided between the waveguide 21 and the microwave source in the case of the antenna construction shown in FIG. 3A under the following condition: the inner pressure in the processing vessel being set at 133 Pa (about 1 Torr), Ar and 0 2 being supplied from the shower plate 14 at a flux of 690 SCCM and 23 SCCM, respectively, and microwaves of a frequency 2.45 GHz and a power of 1.6 kW is supplied from the waveguide 21 to the radial line slot antenna 20 .
- the reflective factor includes not only the reflection of microwave by the joint between the waveguide 21 and the antenna 20 , but also the reflection by the plasma formed under the shower plate 14 in the processing vessel 11 .
- the reflective ratio is about 80% (the factor of reflection ā 0.8), but in the case of the joint construction of FIG. 3A, the reflective ratio is reduced to about 30% (the factor of reflection ā 0.3) and substantially constant. Since the reflection ratio at the joint unit between the coaxial waveguide 21 and the radial line antenna 20 is about 14% as shown in FIG. 4, the reflective ratio of about 30% as shown in FIG. 5 includes the reflection by the plasma.
- FIG. 6 is a bottom view showing the construction of the process gas supply structure 31 of FIG. 2A.
- the process gas supply structure 31 is formed by a conductive body such as an Al alloy containing Mg or a stainless steel added with Al.
- the lattice shaped gas passage 31 A is connected to the process gas inlet port 11 r at a process gas supply port 31 R and releases the process gas uniformly into the foregoing space 11 C from the process gas nozzle apertures 31 B formed at the bottom surface. Further, openings 31 C are formed in the process gas supply structure 31 between the adjacent process gas passages 31 A for passing the plasma or the process gas contained in the plasma therethrough.
- the process gas supply structure 31 is formed of an Al alloy containing Mg, it is preferable to form a fluoride film on the surface thereof.
- the process gas supplying structure 31 is formed of a stainless steel added with Al, it is preferable to form a passivation film of aluminum oxide on the surface thereof.
- the energy of incident plasma is low because of the low electron temperature of the excited plasma, and the problem of metal contamination of the substrate 12 by the sputtering of the process gas supply structure 31 is avoided.
- the lattice shaped process gas passages 31 A and the process gas nozzle apertures 31 B are formed so as to encompass an area slightly larger than the substrate 12 represented in FIG. 4 by a broken line.
- the process gas supply structure 31 can form a shunting plane of the microwaves by setting the interval between the lattice shaped process gas passages 31 A shorter than the microwave wavelength.
- the microwave excitation.of plasma takes place only in the space 11 B, and there occurs excitation of the process gas in the space 11 C including the surface of the substrate 12 by the plasma that has caused diffusion from the excitation space 11 B.
- such a construction can prevent the substrate from being exposed directly to the microwave at the time of ignition of the plasma, and thus, damaging of the substrate by the microwave is avoided.
- the supply of the process gas is controlled uniformly by the process gas supply structure 31 , and the problem of excessive dissociation of the process gas on the surface of the substrate 12 is eliminated.
- the microwave plasma processing apparatus 10 is effective for fabricating various semiconductor devices of different generations characterized by different design rules.
- FIG. 7 shows the schematic construction of the microwave source connected to the coaxial waveguide 21 of FIG. 2A.
- the coaxial waveguide is connected to an edge of the waveguide extending from an oscillation part 25 including therein a magnetron 25 A oscillating at the frequency of 2.45 GHz or 8.3 GHz via an isolator 24 , a power monitor 23 and a tuner 22 in this order.
- the microwave formed by the oscillator 25 is supplied to the radial line slot antenna 20 , and the microwave reflected back from the high-density plasma formed in the plasma processing apparatus 10 is returned again to the radial line slot antenna 20 after conducting an impedance adjustment by the tuner 22 .
- the isolator 24 is an element having directivity and functions so as to protect the magnetron 25 A in the oscillation part 25 from the reflection wave.
- the rapid change in impedance caused by the joint is reduced by forming the taper units 21 At and 21 Bt at the joint, or the power supplying unit, between the coaxial waveguide 21 and the radial line slot antenna 20 .
- the reflection of microwaves caused by the rapid change in impedance is suppressed, which makes the supplying of microwaves from the coaxial waveguide 21 to the antenna 20 stable.
- the distance between the shower plate 14 exposed to the heat caused by the plasma and the cooling unit is reduced substantially, compared with the conventional microwave plasma processing apparatus of FIGS. 1A and 1B.
- a material such as Al 2 O 3 having a small dielectric loss and also a small thermal conductivity for the microwave transmission window in place of AlN, which is characterized by large dielectric loss.
- the efficiency of plasma processing and hence the processing rate are improved while simultaneously suppressing the temperature rise of the shower plate.
- the gas including the reaction byproduct formed in the space 11 C as a result of the substrate processing forms a stable gas flow to the space 11 A at the outer surrounding area because of the reduced distance between the shower plate 14 and the substrate 12 facing the shower plate 14 , and the byproduct is removed from the space 11 C quickly.
- the temperature of the outer wall of the processing vessel 11 to be about 150Ā° C., it becomes possible to substantially eliminate the deposition of the reaction byproduct on the inner wall of the processing vessel 11 , and the processing apparatus 10 quickly becomes ready for the next process.
- FIG. 9 shows the construction of the joint/supplying unit between the coaxial waveguide 21 and the radial line antenna 20 according to a second embodiment of the present invention.
- portions previously described are referred to by the same reference numerals, and their description will be omitted.
- the outer waveguide 21 A constructing the coaxial waveguide 21 and the body 17 of the radial line antenna 20 are connected perpendicularly to each other forming the joint/supplying unit that is perpendicularly bent.
- the inner conductor 21 B is also connected to the slot plate 16 perpendicularly.
- the retardation plate 18 is made of Al 2 O 3 having a high relative permittivity, and a ring-shaped member 18 A made of SiO 2 , for example, is formed between the outer waveguide 21 A and the inner conductor 21 B so that an end of the member 18 A contacts the retardation plate 18 .
- the impedance changes stepwise, and the reflective waves are reduced.
- the length of the member 18 A can be optimized based on the property of the antenna structure of the coaxial waveguide 21 and the antenna 20 .
- the second edge face opposing the first edge face in contact with the retardation plate 18 is exposed to air.
- the ring-shaped member 18 A may be made of sintered mixture of SiO 2 and Si 3 N 4 having different permittivity, and the mixture ratio of SiO 2 and Si 3 N 4 in the ring-shaped member 18 A may be controlled so that the permittivity continuously increases from the first edge face to the second edge face.
- FIG. 12 shows the construction of the joint unit between the coaxial waveguide 21 and the radial line antenna 20 according to another variation of the present embodiment.
- portions previously described are referred to by the same reference numeral, and their description will be omitted.
- the second edge face of the ring-shaped member 18 A is considered to be a taper surface, and the thickness of the ring-shaped member 18 A is linearly increased toward the retardation plate 18 .
- the impedance of the joint/supplying unit increases continuously toward the retardation plate 18 , and reflection caused by the rapid change in impedance is reduced, which results in an efficient and stable supply of microwaves.
- the ring-shaped member 18 A may be coupled with the construction of FIG. 3A having taper surfaces 21 At and 21 Bt.
- the ring-shaped member 18 A is not limited to that of FIG. 9, but may be any construction of FIGS. 9 through 13.
- FIG. 15 is a diagram showing the construction of a plasma processing apparatus 10 A according to a third embodiment of the present invention.
- the parts described earlier are referred to by the same reference numerals, and their description is omitted.
- the shower plate 14 is removed, and a plurality of plasma gas inlets 11 P are formed, preferably in symmetry, in communication with the gas passage lip in the processing vessel 11 .
- the construction is simplified, and the fabrication cost can be reduced substantially.
- the reflection of microwaves is reduced by forming the taper surfaces 21 At and 21 Bt in the joint/supplying unit between the radial line slot antenna 20 and the coaxial waveguide 21 , which results in an increase in the power supplying efficiency, a reduction in abnormal discharge caused by the reflective waves, and an increased stability of the plasma formation.
- the construction of the joint unit is not limited to that shown in FIG. 3A, and any construction of FIGS. 8 through 14 can be used.
- FIG. 16 is a diagram showing the construction of a microwave plasma processing apparatus 10 B according to a fourth embodiment of the present invention.
- parts that have been previously described are referred to by the same numerals, and their description will be omitted.
- the process gas supply structure 31 is removed. Additionally, the entire face of the extending part 11 b holding the shower plate 14 is rounded out.
- the plasma processing apparatus 10 B thus constructed cannot perform film-forming or etching by supplying a process gas besides the plasma gas since the lower shower plate 31 is removed.
- the plasma processing apparatus 10 B can form an oxidized layer, a nitrified layer, or an oxidized-nitrified layer by supplying an oxidizing gas or a nitrifying gas from the shower plate 14 together with the plasma gas.
- the reflection of microwaves is reduced by forming the taper surfaces 21 At and 21 Bt in the joint/supplying unit between the radial line slot antenna 20 and the coaxial waveguide 21 , which results in an increase in the power supplying efficiency, a reduction in abnormal discharge caused by the reflective waves, and an increased stability of the plasma formation.
- the construction of the joint unit is not limited to that shown in FIG. 3A, and any construction of FIGS. 8 through 14 can be used.
- the joint/supplying structure according to the present invention is not limited to the plasma processing apparatus 10 of FIG. 2A or its variation, and is applicable to the plasma processing apparatus 100 using a conventional radial line slot antenna previously described by referring to FIGS. 1A and 1B.
- FIG. 17 shows the construction of a plasma processing apparatus 100 A according to a fifth embodiment of the present invention using the joint/supplying structure of the present invention.
- the parts previously described are referred to by the same numerals, and their description will be omitted.
- the plasma processing apparatus 100 A has substantially the same construction as the conventional plasma processing apparatus 100 , but is different in that the plasma processing apparatus 100 A includes taper surfaces similar to the taper surfaces 21 At and 21 Bt in the joint unit between the coaxial waveguide 110 A and the radial slot antenna body 110 B or the slot plate 110 D.
- the reflection of microwaves is reduced by forming the taper surfaces in the joint/supplying unit between the coaxial waveguide 110 A and the radial line slot antenna, which results in an increase in the power supplying efficiency, a reduction in abnormal discharge caused by the reflective waves, and an increased stability of the plasma formation.
- the construction of the joint unit is not limited to that shown in FIG. 3A, and any construction of FIGS. 8 through 14 can be used.
- FIG. 18 is a cross sectional view showing the entire construction of a semiconductor fabrication apparatus 40 according to a sixth embodiment,of the present invention including the microwave plasma processing apparatus 10 of FIGS. 2A and 2B.
- the semiconductor fabrication apparatus 40 includes a vacuum transfer room 401 provided with a robot 405 having a transportation arm 415 , and the microwave plasma processing apparatus 10 is formed on the top face of the vacuum transfer room 401 .
- the stage 13 can be moved up and down by a cylinder 406 covered by a bellows 410 .
- the substrate 12 is set or taken out by the transportation arm 415 .
- the substrate 12 is shut off from the vacuum transfer room 401 by a seal 410 A and processed as desired.
- a load lock room 402 having a stage 418 to hold a stack of substrates is provided at another position on the upper side of the vacuum transfer room 401 .
- the load rock room 402 is shut off from the vacuum transfer room 401 by a seal 417 .
- the substrate stack 404 descends to the vacuum transfer room 401 , and the transportation arm 415 picks up a substrate from the substrate stack 404 or returns a processed substrate thereto.
- FIG. 19 shows the construction of an exhaustion system of the process unit A.
- each exhaustion port 11 a of the processing vessel 11 is connected to a duct D 1 , and a gas in the processing vessel 11 is exhausted by screw molecular pumps P 1 and P 2 , each having a construction as shown in FIGS. 14A and 14B, provided in the duct D 1 .
- the screw molecular pumps P 1 and P 2 are connected, at their exhaustion side, to an exhaustion line D 2 commonly provided to the other processing units B and C of the semiconductor fabrication apparatus 40 .
- the exhaustion line D 2 is connected to an exhaustion line D 3 commonly provided to the other semiconductor fabrication apparatuses via an intermediate booster pump P 3 .
- FIG. 20A shows the construction of the screw molecular pumps P 1 and P 2 .
- the screw molecular pump has a cylindrical body 51 and a pump inlet at an end part of the body 51 and a pump outlet on the sidewall of the body 51 near the bottom part.
- a rotor 52 shown in FIG. 20B In the body 51 , there is provided a rotor 52 shown in FIG. 20B, and a gradational lead screw 52 A is formed on the rotor 52 .
- the gradational lead screw 52 A has a construction in which there is a large pitch formed at the pump inlet part and the pitch is decreased toward the outlet. Associated with this, the lead angle of the screw is decreased gradually from the inlet side toward the outlet side. Further, the volume of the pump chamber is decreased gradually from the inlet side toward the outlet side.
- the screw molecular pump of FIG. 20A includes a motor 53 provided in the rotor 52 , an angle detector 54 detecting the angular position of the rotor 52 and a magnet 55 cooperating with the angle detector 54 , wherein the rotor 52 is urged toward the outlet side by an electromagnet mechanism 56 .
- Such a screw molecular pump has a simple construction and is operable over a wide pressure range from the atmospheric pressure to several millitorrs with small electric power consumption. Further, the screw pump can obtain a pumping speed reaching 320 mL/min, which is larger than the pumping speed of conventional turbo molecular pumps.
- FIG. 21 shows the construction of a gradational lead screw pump (GLSP) 60 used for the intermediate booster pump P 3 for evacuating the screw pumps P 1 and P 2 in the construction of FIG. 19.
- GLSP gradational lead screw pump
- the gradational lead screw pump includes, in a pump body 61 having an inlet 61 A at an end and outlets 63 A and 63 B at another end, a pair of screw rotors 62 A and 62 B each changing a screw pitch thereof gradually from an inlet side to an outlet side as shown in FIG. 20B, in a meshing relationship of the screws, wherein the rotors 62 A and 62 B are driven by a motor 64 via gears 63 A and 63 B.
- the gradational lead screw pump 60 of such a construction is operable over a wide pressure range from ordinary pressure to a low pressure of as much as 10 ā 4 Torr, and can achieve a flow rate reaching 2,500 L/min.
- the back pump P 4 can operate at the most efficient pressure range by exhausting the exhausted gas from the other semiconductor fabrication apparatus, which results in a substantially reduced power consumption.
- FIG. 22 shows the construction of the gas supplying system cooperating with each of the processing units A-C in the semiconductor fabrication apparatus 40 of FIG. 18.
- the semiconductor fabrication apparatus 40 avoids deposition of reaction byproduct formed associated with the substrate processing on the processing vessel 11 of the microwave plasma processing apparatus 10 by maintaining the processing vessel 11 at a temperature of about 150Ā° C.
- the processing unit of FIG. 19 has a feature that the memory or hysteresis of the preceding processing can be erased completely without conducting a specific cleaning process.
- one or two gases selected fro N 2 , Kr, Ar, H 2 , NF 3 , C 4 F 8 , CHF 3 , O 2 , CO, HBr, SiCl 4 and the like are supplied to the plasma gas inlet port lip provided on the processing vessel 11 in communication with the shower plate 14 through the first and/or second flow rate control apparatuses FCS 1 and FCS 2 , and one or more gases selected from N 2 , Kr, Ar, H 2 , NF 3 , C 4 F 8 , CHF 3 , O 2 , CO, HBr, SiCl 4 and the like, are supplied to the process gas inlet port 11 r communicating with the process gas supply structure 30 via the third through seventh flow rate control apparatuses FCS 3 -FCS 7 .
- the semiconductor fabrication apparatus 40 it is noted that not only the plasma processing apparatus 10 but also the plasma processing apparatuses according to the modifications thereof, or the plasma processing apparatuses 10 A and 10 B according to other embodiments can also be used.
- the rapid change in impedance caused by the joint between the coaxial waveguide providing microwaves and the microwave antenna radiating the microwaves in the processing vessel of the plasma processing apparatus is reduced.
- the reflection of microwaves caused by the rapid change in impedance is suppressed, which results in forming stable microwave plasma in the processing vessel.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Computer Hardware Design (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Plasma Technology (AREA)
- Drying Of Semiconductors (AREA)
- Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Glass Compositions (AREA)
Abstract
In a microwave plasma processing apparatus, the reflection of microwave by the joint unit between the microwave supplying waveguide and the microwave antenna is reduced by providing a taper surface or a member having a medium permittivity between the microwave supplying waveguide and the microwave antenna so as to moderate an impedance change. Accordingly, the efficiency of power supplying is improved, and reduced discharge ensures stable formation of plasma.
Description
- The present invention is generally related to a plasma processing apparatus, and more particularly, to a microwave plasma processing apparatus.
- Plasma processing and plasma processing apparatuses are an indispensable technology for fabricating ultrafine semiconductor devices these days called deep submicron devices or deep subquarter micron devices characterized by a gate length of near 0.1 Ī¼m or less, and for fabricating ultra high-resolution flat-panel display devices including liquid crystal display devices.
- Conventionally, various plasma excitation methods have been used in plasma processing apparatuses used for fabrication of semiconductor devices and liquid crystal display devices. Particularly, a parallel-plate type high-frequency excitation plasma processing apparatus or an induction-coupled plasma processing apparatus are commonly used. However, such conventional plasma processing apparatuses have a drawback of non-uniform plasma formation in that the region of high electron density is limited, and it has been difficult to conduct a uniform process over the entire substrate surface with a high processing rate, and hence with high throughput. This problem becomes particularly acute when processing a large diameter substrate. Further, such a conventional plasma processing device has several inherent problems associated with its high electron temperature, in that the semiconductor devices formed on the substrate sustain damage and that significant metal contamination is caused as a result of sputtering of a chamber wall. Thus, there are increasing difficulties for such conventional plasma processing apparatuses to meet the stringent demand of further device miniaturization and further improvement of productivity in manufacturing semiconductor devices and liquid crystal display devices.
- Meanwhile, there are proposals of a microwave plasma processing apparatus that uses high-density plasma excited by a microwave electric field, in place of a direct-current magnetic field. For example, there is a proposal of a plasma processing apparatus that causes excitation of plasma by radiating a microwave into a processing vessel from a planar antenna (radial line slot antenna) having a number of slots disposed so as to form a uniform microwave, such that the microwave electric field causes ionization of a gas in a vacuum vessel. (See for example Japanese Laid-Open Patent Application 9-63793). In the microwave plasma thus excited, it is possible to realize a high plasma density over a wide area right underneath the antenna, and it becomes possible to conduct uniform plasma processing in a short duration. The microwave plasma thus formed is characterized by low electron temperature, and damaging or metal contamination of the substrate is avoided. Further, it is possible to form uniform plasma over a large surface area, and it can be easily applied to the fabrication process of a semiconductor device using a large diameter semiconductor substrate and a large size liquid crystal display device.
- FIGS. 1A and 1B show the construction of a conventional microwave
plasma processing apparatus 100 having such a radial line slot antenna, wherein FIG. 1A shows the microwave plasma processing apparatus in a cross-sectional view while FIG. 1B shows the construction of the radial line slot antenna. - Referring to FIG. 1A, the microwave
plasma processing apparatus 100 has aprocessing chamber 101 evacuated fromplural evacuation ports 116, and astage 115 is formed for holding asubstrate 114 to be processed. In order to realize uniform evacuation in theprocessing chamber 101, a ring-shaped space 101A is formed around thestage 115, and theplural evacuation ports 116 are formed in communication with theforegoing space 101A at a uniform interval, and hence in axial symmetry with regard to the substrate. Thereby, it becomes possible to evacuate theprocessing chamber 101 uniformly through thespace 101A and theevacuation ports 116. - On the
processing chamber 101, there is formed ashower plate 103 of plate-like form at the location corresponding to thesubstrate 114 on thestage 115 as a part of the outer wall of theprocessing chamber 101, and theshower plate 103 is sealed with respect to theprocessing chamber 101 via aseal ring 109, wherein theshower plate 103 is formed of a dielectric material of small loss and includes a large number ofapertures 107. Further, acover plate 102 also of a dielectric material of small loss is provided on the outer side of theshower plate 103, and thecover plate 102 is sealed with respect to theshower plate 103 via anotherseal ring 108. - The
shower plate 103 is formed with apassage 104 for a plasma gas on the top surface thereof, and each of theplural apertures 107 are formed in communication with the foregoingplasma gas passage 104. Further, there is formed a plasmagas supply passage 108 in the interior of theshower plate 103 in communication with a plasmagas supply port 105 provided on the outer wall of theprocessing vessel 101. Thus, the plasma gas of Ar, Kr or the like supplied to the foregoing plasmagas supply port 105 is supplied to theforegoing apertures 107 from thesupply passage 108 via thepassage 104 and is released into aspace 101B underneath theshower plate 103 in theprocessing vessel 101 from theapertures 107 with substantially uniform concentration. - On the
processing vessel 101, there is provided a radial line slot antenna 110 having a radiation surface shown in FIG. 1B on the outer side of thecover plate 102 with a separation of 4-5 mm from thecover plate 102. The radial line slot antenna 110 is connected to an external microwave source (not shown) via acoaxial waveguide 110A and causes excitation of the plasma gas released into thespace 101B by the microwave from the microwave source. It should be noted that the gap between thecover plate 102 and the radiation surface of the radial line slot antenna 110 is filled with air. - The radial line slot antenna110 is formed of a flat disk-
like antenna body 110B connected to an outer waveguide of thecoaxial waveguide 110A and aradiation plate 110C is provided on the mouth of theantenna body 110B, wherein theradiation plate 110C is formed with a number ofslots 110 a andslots 110 b whereinslots 110 b are formed in a direction crossing theslots 110 a perpendicularly as represented in FIG. 1B. Further, aretardation plate 110D of a dielectric film of uniform thickness is inserted between theantenna body 110B and theradiation plate 110C. - In the radial line slot antenna110 of such a construction, the microwave supplied from the coaxial waveguide 110 spreads between the disk-
like antenna body 110B and theradiation plate 110C as it is propagated in the outward radial directions, wherein there occurs a compression of wavelength as a result of the action of theretardation plate 110D. Thus, by forming theslots radiation plate 110C. - By using such a radial line slot antenna110, uniform plasma is formed in the
space 101B underneath theshower plate 103. The high-density plasma thus formed is characterized by a low electron temperature and thus no damage is caused to thesubstrate 114 and no metal contamination occurs due to sputtering of the vessel wall of theprocessing vessel 101. - In the plasma processing apparatus of FIG. 1, it should further be noted that there is provided a
conductor structure 111 in theprocessing vessel 101 between theshower plate 103 and thesubstrate 114, wherein theconductor structure 111 is formed with a number ofnozzles 113 supplied with a processing gas from an external processing gas source (not shown) via aprocessing gas passage 112 formed in theprocessing vessel 101, and each of thenozzles 113 releases the processing gas supplied thereto into aspace 101C between theconductive structure 111 and thesubstrate 114. It should be noted that theconductive structure 111 is formed with openings betweenadjacent nozzles 113 with a size such that the plasma formed in thespace 101B passes efficiently from thespace 101B to thespace 101C by way of diffusion. - Thus, in the case wherein a processing gas is released into the
space 101C from theconductive structure 111 via thenozzles 113, the processing gas is excited by the high-density plasma formed in thespace 101B and uniform plasma processing is conducted on thesubstrate 114 efficiently and at a high rate, without damaging the substrate or the devices on the substrate, and without contaminating the substrate. Further, it should be noted that the microwaves emitted from the radial line slot antenna 110 are blocked by theconductive structure 111 and there is no possibility of such microwaves causing damage to thesubstrate 114. - By the way, it is necessary in the case of the
plasma processing apparatus 100 to efficiently supply high-power microwaves formed by a microwave source (not shown) to the radial line slot antenna 110. - An impedance matching structure is generally provided between a microwave antenna and a waveguide connected to the microwave antenna to inject a weak microwave signal received by the microwave antenna into the waveguide without loss. Meanwhile, in the case of the
plasma processing apparatus 100 of FIG. 1, high-power microwaves are provided to the radial line slot antenna 110 through the waveguide, and additionally, reflective microwaves reflected by the plasma formed in theprocessing vessel 101 are also superimposed on the high-power microwaves in the antenna 110 and the waveguide. There is a possibility of abnormal discharge being caused in the radial line slot antenna 110 and the coaxial waveguide due to inappropriate impedance matching between the antenna body 110 and the waveguide. Accordingly, the impedance matching of the power supply unit connecting the waveguide and the antenna body 110 is much more important than usual. - Accordingly, it is an object of the present invention to provide a novel and useful plasma processing apparatus wherein the foregoing problems are eliminated.
- Another and more specific object of the present invention is to provide a plasma processing apparatus having a microwave antenna, forming plasma in the processing vessel by providing microwaves from the microwave antenna to the processing vessel through the microwave transparent window, and processing the substrate in the plasma, in which the efficiency of supplying microwaves from the microwave waveguide to the microwave antenna is increased, and the abnormal discharge problem due to the mismatching of impedance at the joint unit between the microwave waveguide and the microwave antenna is eliminated.
- Yet another object of the present invention is to provide a plasma processing apparatus, comprising, a processing vessel defined by an outer wall and having a stage for holding a substrate to be processed, an evacuation system coupled to said processing vessel, a microwave transparent window provided on said processing vessel as a part of said outer wall, and opposite said substrate held on said stage, a plasma gas supplying part for supplying plasma gas to said processing vessel, a microwave antenna provided on said processing vessel in correspondence to said microwave, and a microwave power source electrically coupled to said microwave antenna, wherein said microwave antenna comprising a coaxial waveguide connected to said microwave power source, said coaxial waveguide having an inner conductor core and an outer conductor tube surrounding said inner conductor core, and an antenna body provided to a point of said coaxial waveguide, said antenna body further comprising a first conductor surface forming a microwave radiation surface coupled with said microwave transparent window, and a second conductor surface opposite said first conductor surface via a dielectric plate, said second conductor surface being connected to said first conductor surface at a peripheral part of said dielectric plate, said inner conductor core is connected to said first conductor surface by a first joint unit, said outer conductor tube is connected to said second conductor surface by a second joint unit, said first joint unit forms a first taper unit in which an outer diameter of said inner conductor core increases toward said first conductor surface, and said second joint unit forms a second taper unit in which an inner diameter of said outer conductor tube increases toward said first conductor surface.
- Another object of the present invention is to provide a plasma processing apparatus, comprising, a processing vessel defined by an outer wall and having a stage for holding a substrate to be processed, an evacuation system coupled to said processing vessel, a microwave transparent window provided on said processing vessel as a part of said outer wall, opposite said substrate held on said stage, a plasma gas supplying part for supplying plasma gas to said processing vessel, a microwave antenna provided on said processing vessel in correspondence to said microwave, and a microwave power source electrically coupled to said microwave antenna, wherein said microwave antenna comprising a coaxial waveguide connected to said microwave power source, said coaxial waveguide having an inner conductor core and an outer conductor tube surrounding said inner conductor core, and an antenna body provided to a point of said coaxial waveguide, said antenna body further comprising a first conductor surface forming microwave a radiation surface coupled with said microwave transparent window and a second conductor surface opposite said first conductor surface via a dielectric plate, said second conductor surface being connected to said first conductor surface at a peripheral part of said dielectric plate, said inner conductor core is connected to said first conductor surface by a first joint unit, said outer conductor tube is connected to said second conductor surface by a second joint unit, a dielectric member is provided in a space between said inner conductor core and said outer conductor tube, defined by a first edge face and a second edge face opposing said first edge face, said first edge face being adjacent to said dielectric plate, a permittivity of said dielectric member being lower than a permittivity of said dielectric plate and higher than a permittivity of air.
- According to the present invention, the rapid change in impedance by the joint unit between the microwave waveguide and the microwave antenna is avoided. As a result, microwaves reflected by the joint unit are efficiently reduced. As the reflective waves are reduced, abnormal discharge at the joint unit and consequent damage on the antenna caused by the abnormal discharge is avoided. Additionally, the reduction in the reflective waves stabilizes the supply of microwaves to the processing vessel through the microwave transparent window, and makes it possible to form stable plasma in the processing vessel as desired.
- Other features and advantages of the present invention will become more apparent from the following best mode for implementing the invention when read in conjunction with the accompanying drawings.
- FIGS. 1A and 1B are diagrams showing the construction of a conventional microwave plasma processing apparatus that uses a radial line slot antenna;
- FIGS. 2A and 2B are diagrams showing the construction of a microwave plasma processing apparatus according to a first embodiment of the present invention;
- FIGS. 3A and 3B are diagrams showing the construction of the joint between a coaxial waveguide and a radial line slot antenna of the apparatus of FIG. 2;
- FIG. 4 is a graph showing the effect of eliminating reflection by the construction of FIG. 3;
- FIG. 5 is a graph showing the reflection coefficient measured for the microwave plasma formed in the plasma processing apparatus of FIGS. 2A and 2B using the power supplying structure of FIG. 3;
- FIG. 6 is a diagram showing the construction of the process gas supplying structure of the microwave plasma processing apparatus shown in FIG. 2A;
- FIG. 7 is a diagram showing the construction of the microwave power source coupled to the microwave plasma processing apparatus of FIG. 2A;
- FIG. 8 is a diagram showing the construction of a microwave supplying structure according to a variation of the present embodiment;
- FIG. 9 is a diagram showing the construction of a microwave supplying structure according to a second embodiment of the present invention;
- FIG. 10 is a diagram showing a variation of the microwave supplying structure of FIG. 9;
- FIG. 11 is a diagram showing another variation of the microwave supplying structure of FIG. 9;
- FIG. 12 is a diagram showing another variation of the microwave supplying structure of FIG. 9;
- FIG. 13 is a diagram showing yet another variation of the microwave supplying structure of FIG. 9;
- FIG. 14 is a diagram showing yet another variation of the microwave supplying structure of FIG. 9;
- FIG. 15 is a diagram showing the construction of microwave plasma processing apparatus according to a third embodiment of the present invention;
- FIG. 16 is a diagram showing the construction of microwave plasma processing apparatus according to a fourth embodiment of the present invention;
- FIG. 17 is a diagram showing the construction of microwave plasma processing apparatus according to a fifth embodiment of the present invention;
- FIG. 18 is a diagram showing the construction of a semiconductor fabrication apparatus according to a sixth embodiment of the present invention, using the microwave plasma processing apparatus of FIGS. 2A and 2B;
- FIG. 19 is a diagram showing the construction of an exhaustion system of the semiconductor fabrication apparatus of FIGS. 18A and 18B;
- FIG. 20 is a diagram showing the construction of a screw molecular pump used for the exhaustion system of FIG. 19;
- FIG. 21 is a diagram showing the construction of a gradational lead screw pump used for the exhaustion system of FIG. 19;
- FIG. 22 is a diagram showing the construction of a gas supplying system used for the processing unit of FIG. 19; and
- FIG. 23 is a diagram showing the construction of a current control apparatus used for the gas supplying system of FIG. 22.
- Preferred embodiments of the present invention will be described below.
- [First Embodiment]
- FIGS. 2A and 2B are diagrams showing the construction of a microwave
plasma processing apparatus 10 according to a first embodiment of the present invention. - Referring to FIG. 2A, the microwave
plasma processing apparatus 10 includes aprocessing vessel 11 and astage 13 provided in theprocessing vessel 11 for holding asubstrate 12 to be processed by an electrostatic chuck, wherein thestage 13 is preferably formed of AlN or Al2O3 by a hot isostatic pressing (HIP) process. In theprocessing vessel 11, there are formed two or threeevacuation ports 11 a in aspace 11A surrounding thestage 13 with an equal distance, and hence with an axial symmetry with respect to thesubstrate 12 on thestage 13. Theprocessing vessel 11 is evacuated to a low pressure via theevacuation ports 11 a by a gradational lead screw pump. - The
processing vessel 11 is preferably formed of an austenite stainless steel containing Al, and there is formed a protective film of aluminum oxide on the inner wall surface by an oxidizing process. Further, there is formed a disk-shapedshower plate 14 of dense Al2O3, formed by a HIP process, in the part of the outer wall of theprocessing vessel 11 corresponding to thesubstrate 12 as a part of the outer wall, wherein theshower plate 14 includes a large number ofnozzle apertures 14A. The Al2O3 shower plate 14 thus formed by the HIP process is formed by using an Y2O3 additive and has porosity of 0.03% or less. This means that the Al2O3 shower plate is substantially free from pores or pinholes and has a very large, while not so large as that of AlN, thermal conductivity for a ceramic of 30W/mĀ·K. - The
shower plate 14 is mounted on theprocessing vessel 11 and sealed thereto via aseal ring 11 s, and acover plate 15 of dense Al2O3 formed also by an HIP process is provided on theshower plate 14 and sealed thereto via a seal ring lit. Theshower plate 14 is formed with adepression 14B communicating with each of thenozzle apertures 14A and serving as a plasma gas passage, a side thereof formed by thecover plate 15. Thedepression 14B also communicates with anotherplasma gas passage 14C formed in the interior of theshower plate 14 in communication with aplasma gas inlet 11 p formed on the outer wall of theprocessing vessel 11. - The
shower plate 14 is held by an extendingpart 11 b formed on the inner wall of theprocessing vessel 11, wherein the extendingpart 11 b is formed with a round surface,at the part holding theshower plate 14 so as to suppress electric discharge. - Thus, plasma gas such as Ar or Kr supplied to the
plasma gas inlet 11 p is supplied to aspace 11B underneath theshower plate 14 uniformly via theapertures 14A after being passed through thepassage 14C and thedepression 14B in theshower plate 14. - On the
cover plate 15, there is provided a radialline slot antenna 20 formed,of a disk-shapedslot plate 16 formed with a number ofslots cover plate 15, a disk-shapedantenna body 17 holding theslot plate 16, and aretardation plate 18 of a dielectric material of low loss such as Al2O3, SiO2 or Si3N4 sandwiched between theslot plate 16 and theantenna body 17. The radialline slot antenna 20 is mounted on theprocessing vessel 11 and sealed thereto by way of aseal ring 11 u, and a microwave of 2.45 GHz or 8.3 GHz frequency is fed to the radialline slot antenna 20 from an external microwave source (not shown) via acoaxial waveguide 21. The microwave thus supplied is radiated into the interior of the processing vessel from theslots slot plate 16 via thecover plate 15 and theshower plate 14. Thereby, the microwaves cause excitation of plasma in the plasma gas supplied from theapertures 14A in thespace 11B underneath theshower plate 14. It should be noted that thecover plate 15 and theshower plate 14 are formed of Al2O3 and function as an efficient microwave-transmitting window. In order to avoid plasma excitation in theplasma gas passages 14A-14C, the plasma gas is held at a pressure of about 6666 Pa-13332 Pa (about 50-100 Torr) in the foregoingpassages 14A-14C. - In order to improve intimate contact between the radial
line slot antenna 20 and thecover plate 15, the microwaveplasma processing apparatus 10 of the present embodiment has a ring-shapedgroove 11 g in a part of theprocessing vessel 11 so as to be adjacent to theslot plate 16. By evacuating thegroove 11 g via anevacuation port 11G communicating therewith, the pressure in the gap formed between theslot plate 16 and thecover plate 15 is reduced and the radialline slot antenna 20 is urged firmly upon thecover plate 15 by the atmospheric pressure. It is noted that such a gap includes not only theslots slot plate 16 but also a gap formed for various other reasons. It should be noted further that such a gap is sealed by theseal ring 11 u provided between the radialline slot antenna 20 and theprocessing vessel 11. - By filling the gap between the
slot plate 16 and thecover plate 15 with an inert gas of small molecular weight via theevacuation port 11G and thegroove 11 g, heat transfer from thecover plate 15 to theslot plate 16 is facilitated. It is preferable to use He for such an inert gas in view of large thermal conductivity and large ionization energy. In the case wherein the gap is filled with He, it is preferable to set the pressure to about 0.8 a tm. In the construction of FIG. 3, there is provided avalve 11V on theevacuation port 11G for the evacuation of the groove 15 g and filling of the inert gas into the groove 15 g. - It is noted that an
outer waveguide 21A of thecoaxial waveguide 21A is connected to the disk-shapedantenna body 17 while acenter conductor 21B is connected to theslot plate 16 via an opening formed in theretardation plate 18. Thus, the microwave fed to thecoaxial waveguide 21A is propagated in the outer radial directions between theantenna body 17 and theslot plate 16 and is emitted from theslots - FIG. 2B shows the
slots slot plate 16. - Referring to FIG. 2B, the
slots 16 a are arranged concentrically, and theslots 16 b, each corresponding to aslot 16 a and being perpendicular to thecorresponding slot 16 a, are also arranged concentrically. Theslots retardation plate 18 in the radial direction of theslot plate 16, and as a result, the microwave is radiated from theslot plate 16 in the form of a near plane wave. Because theslots 16 a and theslots 16 b are formed in a mutually perpendicular relationship, the microwave thus radiated forms a circularly polarized wave including two perpendicular polarization components. - In the
plasma processing apparatus 10 of FIG. 2A, there is provided acooling block 19 formed with a coolingwater passage 19A on theantenna body 17, and the heat accumulated in theshower plate 14 is absorbed via the radialline slot antenna 20 by cooling thecooling block 19 with cooling water in the coolingwater passage 19A. The coolingwater passage 19A is formed on thecooling block 19 in a spiral form, and cooling water having a controlled oxidation-reduction potential is supplied thereto, wherein the control of the oxidation reduction potential is achieved by eliminating oxygen dissolved in the cooling water by way of bubbling of an H2 gas. - In the microwave
plasma processing apparatus 10 of FIG. 2A, there is further provided a processgas supply structure 31 in theprocessing vessel 11 between theshower plate 14 and thesubstrate 12 on thestage 13, wherein the processgas supply structure 31 hasgas passages 31A arranged in a lattice shape and releases a process gas supplied from a processgas inlet port 11 r provided in the outer wall of theprocessing vessel 11 through a large number of processgas nozzle apertures 31B (see FIG. 4). Thereby, desired uniform substrate processing is achieved in aspace 11C between the processgas supply structure 31 and thesubstrate 12. Such substrate processing includes plasma oxidation processing, plasma nitridation processing, plasma oxynitridation processing, and plasma CVD processing. Further, it is possible to conduct a reactive ion etching of thesubstrate 12 by supplying a readily decomposing fluorocarbon gas such as C4F8, C5F8 or C4F6 or an etching-gas containing F or Cl from the processgas supply structure 31 to thespace 11C and further by applying a high-frequency voltage to thestage 13 from a high-frequency power source 13A. - In the microwave
plasma processing apparatus 10 of the present embodiment, it is possible to avoid deposition of reaction byproducts on the inner wall of the processing vessel by heating the outer wall of theprocessing vessel 11 to a temperature of about 150Ā° C. Thereby, the microwaveplasma processing apparatus 10 can be operated constantly and with reliability, by merely conducting a dry cleaning process once a day or so. - In the case of the
plasma processing apparatus 10 of FIG. 2A, a taper unit 21Bt of thecenter conductor 21B is formed at the joint/power supplying unit that connects thecoaxial waveguide 21 to the radialline slot antenna 20, so that the radius or the cross sectional area of thecenter conductor 21B gradually increases towards theslot plate 16. Thus, the rapid change in impedance caused by the joint/power supply unit is smoothed by forming such a taper structure, which results in a great reduction of reflective waves caused by the rapid change in impedance. - FIG. 3A is an expanded diagram showing in detail the construction of the joint/microwave supplying unit between the
coaxial waveguide 21 and the radialline slot antenna 20 of theplasma processing apparatus 10 of FIG. 2A. Theslots slot plate 16 are not shown to simplify the drawing. - Referring to FIG. 3A, the
inner conductor 21B has a circular cross section having a diameter of 16.9 mm. A 4 mm-thick alumina plate having a relative permittivity of 10.1 is formed between theslot plate 16 and theantenna body 17 as theretardation plate 18. Theouter waveguide 21A defines a cylindrical space having a circular cross section having an inner diameter of 38.8 mm in which theinner conductor 21B is provided. - As shown in FIG. 3A, the cross sectional area of the
inner conductor 21B is gradually increased from 7 mm above the joint between theinner conductor 21B and theslot plate 16 to the joint. As a result, theinner conductor 21B has a circular cross section of a diameter of 23 mm at the joint. Additionally, theantenna body 17 is provided with a taper surface 21At corresponding to the taper surface 21Bt thus formed, the taper surface 21At starting from theposition 10 mm (the thickness of theretardation plate 18 4 mm+the thickness of theantenna body 17 6 mm=10 mm) above the joint of theinner conductor 21B and theslot plate 16. - FIG. 4 shows the reflective ratio of microwave provided to the
antenna 20 through thewaveguide 21 in the case where the radialline slot antenna 20 and thewaveguide 21 are used as shown in FIG. 3A, and the parameter āaā shown in FIG. 3A is set at 6.4 mm. In FIG. 4, the reflective ratio is indicated by āā¢ā. In addition, ā*ā shown in FIG. 4 indicates a reflective ratio of the construction shown in FIG. 3B to which the taper units 21At and 21Bt are not provided. - Referring to FIG. 4, the reflective microwave includes not only the microwave reflected by the joint/supplying unit between the
waveguide 21 theradial line antenna 20, but also the microwave reflected by the plasma. In the case of the construction of FIG. 3B, the reflective ratio is about ā2 dB regardless of a frequency, which means about 80% of the microwave is reflectively returned to thewaveguide 21 and the microwave source connected to thewaveguide 21. - To the contrary, in the case of the construction of FIG. 3A to which the taper surfaces21At and 21Bt are provided, the reflective ratio depends on the frequency of the microwave. The reflective ratio becomes the minimum ā23 dB (about 14%) in the neighborhood of 2.4 GHz at which the plasma is excited.
- FIG. 5 shows a microwave reflection factor measured by a power monitor provided between the
waveguide 21 and the microwave source in the case of the antenna construction shown in FIG. 3A under the following condition: the inner pressure in the processing vessel being set at 133 Pa (about 1 Torr), Ar and 0 2 being supplied from theshower plate 14 at a flux of 690 SCCM and 23 SCCM, respectively, and microwaves of a frequency 2.45 GHz and a power of 1.6 kW is supplied from thewaveguide 21 to the radialline slot antenna 20. Accordingly, the reflective factor includes not only the reflection of microwave by the joint between thewaveguide 21 and theantenna 20, but also the reflection by the plasma formed under theshower plate 14 in theprocessing vessel 11. - Referring to FIG. 5, it is noted that in the case of the joint construction of FIG. 3B, the reflective ratio is about 80% (the factor of reflection ā0.8), but in the case of the joint construction of FIG. 3A, the reflective ratio is reduced to about 30% (the factor of reflection ā0.3) and substantially constant. Since the reflection ratio at the joint unit between the
coaxial waveguide 21 and theradial line antenna 20 is about 14% as shown in FIG. 4, the reflective ratio of about 30% as shown in FIG. 5 includes the reflection by the plasma. - FIG. 6 is a bottom view showing the construction of the process
gas supply structure 31 of FIG. 2A. - Referring to FIG. 6, the process
gas supply structure 31 is formed by a conductive body such as an Al alloy containing Mg or a stainless steel added with Al. The lattice shapedgas passage 31A is connected to the processgas inlet port 11 r at a processgas supply port 31R and releases the process gas uniformly into the foregoingspace 11C from the processgas nozzle apertures 31B formed at the bottom surface. Further,openings 31C are formed in the processgas supply structure 31 between the adjacentprocess gas passages 31A for passing the plasma or the process gas contained in the plasma therethrough. In the case wherein the processgas supply structure 31 is formed of an Al alloy containing Mg, it is preferable to form a fluoride film on the surface thereof. In the case wherein the processgas supplying structure 31 is formed of a stainless steel added with Al, it is preferable to form a passivation film of aluminum oxide on the surface thereof. In theplasma processing apparatus 10 of the present invention, the energy of incident plasma is low because of the low electron temperature of the excited plasma, and the problem of metal contamination of thesubstrate 12 by the sputtering of the processgas supply structure 31 is avoided. Further, it is possible to form the processgas supply structure 31 by a ceramic such as alumina. - The lattice shaped
process gas passages 31A and the processgas nozzle apertures 31B are formed so as to encompass an area slightly larger than thesubstrate 12 represented in FIG. 4 by a broken line. By providing the processgas supply structure 31 between theshower plate 14 and thesubstrate 12, the process gas is excited by the plasma and uniform processing becomes possible by using such plasma excited process gas. - In the case of forming the process
gas supply structure 31 by a conductor such as a metal, the processgas supply structure 31 can form a shunting plane of the microwaves by setting the interval between the lattice shapedprocess gas passages 31A shorter than the microwave wavelength. In such a case, the microwave excitation.of plasma takes place only in thespace 11B, and there occurs excitation of the process gas in thespace 11C including the surface of thesubstrate 12 by the plasma that has caused diffusion from theexcitation space 11B. Further, such a construction can prevent the substrate from being exposed directly to the microwave at the time of ignition of the plasma, and thus, damaging of the substrate by the microwave is avoided. - In the microwave
plasma processing apparatus 10 of the present embodiment, the supply of the process gas is controlled uniformly by the processgas supply structure 31, and the problem of excessive dissociation of the process gas on the surface of thesubstrate 12 is eliminated. Thus, it becomes possible to conduct the desired substrate processing even in the case wherein there is formed a structure of large aspect ratio on the surface of thesubstrate 12 up to the very bottom of the high aspect ratio structure. This means that the microwaveplasma processing apparatus 10 is effective for fabricating various semiconductor devices of different generations characterized by different design rules. - FIG. 7 shows the schematic construction of the microwave source connected to the
coaxial waveguide 21 of FIG. 2A. - Referring to FIG. 7, the coaxial waveguide is connected to an edge of the waveguide extending from an
oscillation part 25 including therein amagnetron 25A oscillating at the frequency of 2.45 GHz or 8.3 GHz via anisolator 24, apower monitor 23 and atuner 22 in this order. Thus, the microwave formed by theoscillator 25 is supplied to the radialline slot antenna 20, and the microwave reflected back from the high-density plasma formed in theplasma processing apparatus 10 is returned again to the radialline slot antenna 20 after conducting an impedance adjustment by thetuner 22. Further, theisolator 24 is an element having directivity and functions so as to protect themagnetron 25A in theoscillation part 25 from the reflection wave. - In the microwave
plasma processing apparatus 10 of the present embodiment, the rapid change in impedance caused by the joint is reduced by forming the taper units 21At and 21Bt at the joint, or the power supplying unit, between thecoaxial waveguide 21 and the radialline slot antenna 20. As a result, the reflection of microwaves caused by the rapid change in impedance is suppressed, which makes the supplying of microwaves from thecoaxial waveguide 21 to theantenna 20 stable. - In addition, in the microwave
plasma processing apparatus 10 according to the present embodiment, as shown in a variation shown in FIG. 8, it is possible to replace the taper faces 21At and 21Bt with round faces 21Ar and 21Br, respectively. The change in impedance caused by the joint is further reduced by forming the round faces, which results in further efficient suppressing of the reflective wave. - In the microwave
plasma processing apparatus 10 of the present embodiment, the distance between theshower plate 14 exposed to the heat caused by the plasma and the cooling unit is reduced substantially, compared with the conventional microwave plasma processing apparatus of FIGS. 1A and 1B. As a result, it becomes possible to use a material such as Al2O3 having a small dielectric loss and also a small thermal conductivity for the microwave transmission window in place of AlN, which is characterized by large dielectric loss. Thereby, the efficiency of plasma processing and hence the processing rate are improved while simultaneously suppressing the temperature rise of the shower plate. - In the microwave
plasma processing apparatus 10 of the present embodiment, it is further noted that the gas including the reaction byproduct formed in thespace 11C as a result of the substrate processing forms a stable gas flow to thespace 11A at the outer surrounding area because of the reduced distance between theshower plate 14 and thesubstrate 12 facing theshower plate 14, and the byproduct is removed from thespace 11C quickly. By maintaining the temperature of the outer wall of theprocessing vessel 11 to be about 150Ā° C., it becomes possible to substantially eliminate the deposition of the reaction byproduct on the inner wall of theprocessing vessel 11, and theprocessing apparatus 10 quickly becomes ready for the next process. - By the way, in the above description of the present embodiment, specific dimensions are mentioned, but the present invention is not limited to such dimensions.
- [Second Embodiment]
- FIG. 9 shows the construction of the joint/supplying unit between the
coaxial waveguide 21 and theradial line antenna 20 according to a second embodiment of the present invention. In FIG. 9, portions previously described are referred to by the same reference numerals, and their description will be omitted. - Referring to FIG. 9, the
outer waveguide 21A constructing thecoaxial waveguide 21 and thebody 17 of theradial line antenna 20 are connected perpendicularly to each other forming the joint/supplying unit that is perpendicularly bent. Theinner conductor 21B is also connected to theslot plate 16 perpendicularly. - Meanwhile, in the construction of FIG. 9, the
retardation plate 18 is made of Al2O3 having a high relative permittivity, and a ring-shapedmember 18A made of SiO2, for example, is formed between theouter waveguide 21A and theinner conductor 21B so that an end of themember 18A contacts theretardation plate 18. - Because of this construction, the impedance changes stepwise, and the reflective waves are reduced. The length of the
member 18A can be optimized based on the property of the antenna structure of thecoaxial waveguide 21 and theantenna 20. - In the embodiment of FIG. 9, the second edge face opposing the first edge face in contact with the
retardation plate 18 is exposed to air. As is shown in FIG. 10, it is possible, however, to provide another ring-shapedmember 18B made of Teflon, for example, having smaller relative permittivity on the second face of the ring-shapedmember 18A and to increase the number of steps in the impedance change at the joint unit. - Further, as is shown in FIG. 11, the ring-shaped
member 18A may be made of sintered mixture of SiO2 and Si3N4 having different permittivity, and the mixture ratio of SiO2 and Si3N4 in the ring-shapedmember 18A may be controlled so that the permittivity continuously increases from the first edge face to the second edge face. - FIG. 12 shows the construction of the joint unit between the
coaxial waveguide 21 and theradial line antenna 20 according to another variation of the present embodiment. In FIG. 12, portions previously described are referred to by the same reference numeral, and their description will be omitted. - Referring to FIG. 12, in this variation, the second edge face of the ring-shaped
member 18A is considered to be a taper surface, and the thickness of the ring-shapedmember 18A is linearly increased toward theretardation plate 18. - Using this construction, in the case where the ring-shaped
member 18A is made of the same material as theretardation plate 18 such as Al2O3, the impedance of the joint/supplying unit increases continuously toward theretardation plate 18, and reflection caused by the rapid change in impedance is reduced, which results in an efficient and stable supply of microwaves. - In addition, as is shown in FIG. 13, in a variation it is also possible to make the taper face of the ring-shaped
member 18A a curved surface so that the thickness of the ring-shapedmember 18A changes non-linearly to the property of the joint/supplying unit. For example, it is possible to increase the thickness of the ring-shapedmember 18A exponentially. - Further, as is shown in FIG. 14, the ring-shaped
member 18A may be coupled with the construction of FIG. 3A having taper surfaces 21At and 21Bt. In this case, the ring-shapedmember 18A is not limited to that of FIG. 9, but may be any construction of FIGS. 9 through 13. - [Third Embodiment]
- FIG. 15 is a diagram showing the construction of a
plasma processing apparatus 10A according to a third embodiment of the present invention. In FIG. 15, the parts described earlier are referred to by the same reference numerals, and their description is omitted. - Referring to FIG. 15, in the
plasma processing apparatus 10A, theshower plate 14 is removed, and a plurality of plasma gas inlets 11P are formed, preferably in symmetry, in communication with the gas passage lip in theprocessing vessel 11. In theplasma processing apparatus 10A according to the present embodiment, the construction is simplified, and the fabrication cost can be reduced substantially. - In the
plasma processing apparatus 10A thus constructed, the reflection of microwaves is reduced by forming the taper surfaces 21At and 21Bt in the joint/supplying unit between the radialline slot antenna 20 and thecoaxial waveguide 21, which results in an increase in the power supplying efficiency, a reduction in abnormal discharge caused by the reflective waves, and an increased stability of the plasma formation. In the present embodiment, the construction of the joint unit is not limited to that shown in FIG. 3A, and any construction of FIGS. 8 through 14 can be used. - [Fourth Embodiment]
- FIG. 16 is a diagram showing the construction of a microwave
plasma processing apparatus 10B according to a fourth embodiment of the present invention. In FIG. 16, parts that have been previously described are referred to by the same numerals, and their description will be omitted. - Referring to FIG. 16, in the construction of the microwave
plasma processing apparatus 10B, the processgas supply structure 31 is removed. Additionally, the entire face of the extendingpart 11 b holding theshower plate 14 is rounded out. - The
plasma processing apparatus 10B thus constructed cannot perform film-forming or etching by supplying a process gas besides the plasma gas since thelower shower plate 31 is removed. Theplasma processing apparatus 10B, however, can form an oxidized layer, a nitrified layer, or an oxidized-nitrified layer by supplying an oxidizing gas or a nitrifying gas from theshower plate 14 together with the plasma gas. - In the
plasma processing apparatus 10B thus constructed, the reflection of microwaves is reduced by forming the taper surfaces 21At and 21Bt in the joint/supplying unit between the radialline slot antenna 20 and thecoaxial waveguide 21, which results in an increase in the power supplying efficiency, a reduction in abnormal discharge caused by the reflective waves, and an increased stability of the plasma formation. In the present embodiment, the construction of the joint unit is not limited to that shown in FIG. 3A, and any construction of FIGS. 8 through 14 can be used. - [Fifth Embodiment]
- The joint/supplying structure according to the present invention is not limited to the
plasma processing apparatus 10 of FIG. 2A or its variation, and is applicable to theplasma processing apparatus 100 using a conventional radial line slot antenna previously described by referring to FIGS. 1A and 1B. - FIG. 17 shows the construction of a
plasma processing apparatus 100A according to a fifth embodiment of the present invention using the joint/supplying structure of the present invention. In FIG. 17, the parts previously described are referred to by the same numerals, and their description will be omitted. - Referring to FIG. 17, the
plasma processing apparatus 100A has substantially the same construction as the conventionalplasma processing apparatus 100, but is different in that theplasma processing apparatus 100A includes taper surfaces similar to the taper surfaces 21At and 21Bt in the joint unit between thecoaxial waveguide 110A and the radialslot antenna body 110B or theslot plate 110D. - In the present embodiment, the reflection of microwaves is reduced by forming the taper surfaces in the joint/supplying unit between the
coaxial waveguide 110A and the radial line slot antenna, which results in an increase in the power supplying efficiency, a reduction in abnormal discharge caused by the reflective waves, and an increased stability of the plasma formation. In the present embodiment, the construction of the joint unit is not limited to that shown in FIG. 3A, and any construction of FIGS. 8 through 14 can be used. - [Sixth Embodiment]
- FIG. 18 is a cross sectional view showing the entire construction of a
semiconductor fabrication apparatus 40 according to a sixth embodiment,of the present invention including the microwaveplasma processing apparatus 10 of FIGS. 2A and 2B. - Referring to FIG. 18, the
semiconductor fabrication apparatus 40 includes avacuum transfer room 401 provided with arobot 405 having atransportation arm 415, and the microwaveplasma processing apparatus 10 is formed on the top face of thevacuum transfer room 401. In this case, thestage 13 can be moved up and down by acylinder 406 covered by abellows 410. When thestage 13 descends to the end, thesubstrate 12 is set or taken out by thetransportation arm 415. When thestage 13 ascends to the end, thesubstrate 12 is shut off from thevacuum transfer room 401 by aseal 410A and processed as desired. - A
load lock room 402 having astage 418 to hold a stack of substrates, is provided at another position on the upper side of thevacuum transfer room 401. When thestage 418 ascends to the end, theload rock room 402 is shut off from thevacuum transfer room 401 by aseal 417. Meanwhile, when thestage 418 descends to the end, thesubstrate stack 404 descends to thevacuum transfer room 401, and thetransportation arm 415 picks up a substrate from thesubstrate stack 404 or returns a processed substrate thereto. - In the case of
semiconductor fabrication apparatus 40 thus constructed, since a substrate is loaded and unloaded vertically, and not through a side wall, an axially symmetry plasma is formed in theprocessing vessel 11, and a gas in the processing vessel is exhausted through a plurality of exhaustion ports provided in an axial symmetry by a plurality of pumps. Accordingly, thesemiconductor fabrication apparatus 40 can guarantee uniform plasma processing. - FIG. 19 shows the construction of an exhaustion system of the process unit A.
- Referring to FIG. 19, in the process unit A, each
exhaustion port 11 a of theprocessing vessel 11 is connected to a duct D1, and a gas in theprocessing vessel 11 is exhausted by screw molecular pumps P1 and P2, each having a construction as shown in FIGS. 14A and 14B, provided in the duct D1. The screw molecular pumps P1 and P2 are connected, at their exhaustion side, to an exhaustion line D2 commonly provided to the other processing units B and C of thesemiconductor fabrication apparatus 40. The exhaustion line D2 is connected to an exhaustion line D3 commonly provided to the other semiconductor fabrication apparatuses via an intermediate booster pump P3. - FIG. 20A shows the construction of the screw molecular pumps P1 and P2.
- Referring to FIG. 20A, the screw molecular pump has a
cylindrical body 51 and a pump inlet at an end part of thebody 51 and a pump outlet on the sidewall of thebody 51 near the bottom part. In thebody 51, there is provided arotor 52 shown in FIG. 20B, and a gradationallead screw 52A is formed on therotor 52. It should be noted that the gradationallead screw 52A has a construction in which there is a large pitch formed at the pump inlet part and the pitch is decreased toward the outlet. Associated with this, the lead angle of the screw is decreased gradually from the inlet side toward the outlet side. Further, the volume of the pump chamber is decreased gradually from the inlet side toward the outlet side. - Further, the screw molecular pump of FIG. 20A includes a
motor 53 provided in therotor 52, anangle detector 54 detecting the angular position of therotor 52 and a magnet 55 cooperating with theangle detector 54, wherein therotor 52 is urged toward the outlet side by anelectromagnet mechanism 56. - Such a screw molecular pump has a simple construction and is operable over a wide pressure range from the atmospheric pressure to several millitorrs with small electric power consumption. Further, the screw pump can obtain a pumping speed reaching 320 mL/min, which is larger than the pumping speed of conventional turbo molecular pumps.
- FIG. 21 shows the construction of a gradational lead screw pump (GLSP)60 used for the intermediate booster pump P3 for evacuating the screw pumps P1 and P2 in the construction of FIG. 19.
- Referring to FIG. 21, the gradational lead screw pump includes, in a
pump body 61 having aninlet 61A at an end andoutlets screw rotors rotors motor 64 viagears - The gradational
lead screw pump 60 of such a construction is operable over a wide pressure range from ordinary pressure to a low pressure of as much as 10ā4 Torr, and can achieve a flow rate reaching 2,500 L/min. - In the construction of FIG. 19, in which the semiconductor fabrication apparatus is evacuated by the common back pump P4 via the intermediate booster pump P3, the back pump P4 is operated in the most efficient pressure range, and the electric power consumption is reduced substantially.
- In the construction of FIG. 19, the back pump P4 can operate at the most efficient pressure range by exhausting the exhausted gas from the other semiconductor fabrication apparatus, which results in a substantially reduced power consumption.
- FIG. 22 shows the construction of the gas supplying system cooperating with each of the processing units A-C in the
semiconductor fabrication apparatus 40 of FIG. 18. - As explained before, the
semiconductor fabrication apparatus 40 avoids deposition of reaction byproduct formed associated with the substrate processing on theprocessing vessel 11 of the microwaveplasma processing apparatus 10 by maintaining theprocessing vessel 11 at a temperature of about 150Ā° C. Thus, the processing unit of FIG. 19 has a feature that the memory or hysteresis of the preceding processing can be erased completely without conducting a specific cleaning process. - Thus, by using the processing unit of FIG. 19, it becomes possible to conduct different substrate processing one after another by switching the plasma gas and/or process gas. For this, however, it is necessary to provide a gas supply system that can switch the process gas quickly.
- Referring to FIG. 22, one or two gases selected fro N2, Kr, Ar, H2, NF3, C4F8, CHF3, O2, CO, HBr, SiCl4 and the like, are supplied to the plasma gas inlet port lip provided on the
processing vessel 11 in communication with theshower plate 14 through the first and/or second flow rate control apparatuses FCS1 and FCS2, and one or more gases selected from N2, Kr, Ar, H2, NF3, C4F8, CHF3, O2, CO, HBr, SiCl4 and the like, are supplied to the processgas inlet port 11 r communicating with the process gas supply structure 30 via the third through seventh flow rate control apparatuses FCS3-FCS7. - By using a flow rate control apparatus as shown in FIG. 23, having a construction-in which a
control valve 71, amanometer 72, astop valve 73 and anorifice 74 are formed consecutively on astraight tube 70 and by controlling the pressure P2 at the downstream side of theorifice 74 to be equal to or smaller than one-half the pressure P1 at the upstream side of the stop valve 73 (P1ā§2P2), it becomes possible to supply the process gas instantaneously with a predetermined flow rate. This is because there is no dead space in the flow rate control apparatus in which flow rate control is not possible. - Thus, by using the flow control apparatus of FIG. 23 in the gas supply system of FIG. 22, it becomes possible to switch the plasma gas or process gas instantaneously depending on the type of the substrate processing to be conducted in the processing unit.
- In the
semiconductor fabrication apparatus 40, it is noted that not only theplasma processing apparatus 10 but also the plasma processing apparatuses according to the modifications thereof, or theplasma processing apparatuses - Further, the present invention is not limited to the specific embodiments noted above but various variations and modifications may be made within the scope of the invention set forth in claims.
- Industrial Applicability
- According to the present invention, in the microwave plasma processing apparatus, the rapid change in impedance caused by the joint between the coaxial waveguide providing microwaves and the microwave antenna radiating the microwaves in the processing vessel of the plasma processing apparatus is reduced. As a result, the reflection of microwaves caused by the rapid change in impedance is suppressed, which results in forming stable microwave plasma in the processing vessel.
Claims (35)
1. A plasma processing apparatus, comprising:
a processing vessel defined by an outer wall and having a stage for holding a substrate to be processed;
an evacuation system coupled to said processing vessel;
a microwave transparent window provided on said processing vessel as a part of said outer wall, and opposite said substrate held on said stage;
a plasma gas supplying part for supplying plasma gas to said processing vessel;
a microwave antenna provided on said processing vessel in correspondence to said microwave; and
a microwave power source electrically coupled to said microwave antenna,
wherein
said microwave antenna comprising
a coaxial waveguide connected to said microwave power source, said coaxial waveguide having an inner conductor core and an outer conductor tube surrounding said inner conductor core, and
an antenna body provided to a point of said coaxial waveguide;
said antenna body further comprising
a first conductor surface forming a microwave radiation surface coupled with said microwave transparent window, and
a second conductor surface opposite said first conductor surface via a dielectric plate, said second conductor surface being connected to said first conductor surface at a peripheral part of said dielectric plate;
said inner conductor core is connected to said first conductor surface by a first joint unit;
said outer conductor tube is connected to said second conductor surface by a second joint unit;
said first joint unit forms a first taper unit in which an outer diameter of said inner conductor core increases toward said first conductor surface; and
said second joint unit forms a second taper unit in which an inner diameter of said outer conductor tube increases toward said first conductor surface.
2. The microwave plasma processing apparatus as claimed in claim 1 , wherein the distance between an outer surface of said inner conductor core and an inner surface of said outer conductor tube increases toward said first conductor surface.
3. The microwave plasma processing apparatus as claimed in claim 1 , wherein
said first taper unit is defined by a first curved surface; and
said second taper unit is defined by a second curved surface.
4. The microwave plasma processing apparatus as claimed in claim 1 , further comprising a dielectric member provided in a space between said inner conductor core and said outer conductor tube, defined by a first edge face and a second edge face opposing said first edge face, said first edge face being adjacent to said dielectric plate, a permittivity of said dielectric member being lower than a permittivity of said dielectric plate and higher than a permittivity of air.
5. The microwave plasma processing apparatus as claimed in claim 4 , wherein composition of said dielectric member is changed from said first edge face to said second edge face.
6. The microwave plasma processing apparatus as claimed in claim 4 , wherein
said dielectric plate is made of either alumina, silicon oxide, silicon oxynitrided, or silicon nitrided; and
said dielectric member is made of silicon oxide.
7. The microwave plasma processing apparatus as claimed in claim 4 , further comprising another dielectric member in a space between said inner conductor core and said outer conductor tube, adjacent to said second edge face of said dielectric member, a permittivity of said other dielectric member being lower than a permittivity of said dielectric member and higher than a permittivity of air.
8. The microwave plasma processing apparatus as claimed in claim 7 , wherein said dielectric member is made of silicon oxide, and said other dielectric member is made of Teflon.
9. The microwave plasma processing apparatus as claimed in claim 4 , wherein
said second edge face of said dielectric member forms a taper surface; and
an outer diameter of said dielectric member decreases as a distance from said first edge face increases.
10. The microwave plasma processing apparatus as claimed in claim 9 , wherein an outer diameter of said dielectric member linearly decreases as a distance from said first edge face increases.
11. The microwave plasma processing apparatus as claimed in claim 9 , wherein an outer diameter of said dielectric member exponentially decreases as a distance from said first edge face increases.
12. The microwave plasma processing apparatus as claimed in claim 1 , wherein said plasma gas supplying part further comprises a plasma gas passage connectable to a plasma gas source, said plasma gas passage being made of a microwave-transparent material, and a shower plate having a plurality of openings in communication with said plasma gas passage, provided in an interior of said microwave transparent window in intimate contact.
13. The microwave plasma processing apparatus as claimed in claim 12 , wherein said shower plate is made of alumina.
14. The microwave plasma processing apparatus as claimed in claim 1 , wherein said plasma gas supplying part is provided in an outer wall of said processing vessel.
15. The microwave plasma processing apparatus as claimed in claim 14 , wherein said plasma gas supplying part is tubes provided in said outer wall of said processing vessel.
16. The plasma processing apparatus as claimed in claim 1 , wherein said microwave antenna is provided so that said first conductor surface touches said microwave transparent window.
17. The plasma processing apparatus as claimed in claim 1 , wherein said microwave antenna is provided so that said first conductor surface is spaced from said microwave transparent window.
18. The plasma processing apparatus as claimed in claim 1 , wherein
a processing gas source is provided between said substrate and said plasma gas supplying part, in said processing vessel, said processing gas supplying part opposing to said substrate;
a first opening through which plasma formed in said processing vessel passes and a second opening through which processing gas is provided; and
said second opening is in communication with a processing gas passage connected to a processing gas source, formed in said processing gas supplying source.
19. A plasma processing apparatus, comprising:
a processing vessel defined by an outer wall and having a stage for holding a substrate to be processed;
an evacuation system coupled to said processing vessel;
a microwave transparent window provided on said processing vessel as a part of said outer wall, opposite said substrate held on said stage;
a plasma gas supplying part for supplying plasma gas to said processing vessel;
a microwave antenna provided on said processing vessel in correspondence to said microwave; and
a microwave power source electrically coupled to said microwave antenna,
wherein
said microwave antenna comprising
a coaxial waveguide connected to said microwave power source, said coaxial waveguide having an inner conductor core and an outer conductor tube surrounding said inner conductor core, and
an antenna body provided to a point of said coaxial waveguide;
said antenna body further comprising
a first conductor surface forming a microwave radiation surface coupled with said microwave transparent window, and
a second conductor surface opposite said first conductor surface via a dielectric plate, said second conductor surface being connected to said first conductor surface at a peripheral part of said dielectric plate;
said inner conductor core is connected to said first conductor surface by a first joint unit;
said outer conductor tube is connected to said second conductor surface by a second joint unit;
a dielectric member is provided in a space between said inner conductor core and said outer conductor tube, defined by a first edge face and a second edge face opposing said first edge face, said first edge face being adjacent to said dielectric plate, a permittivity of said dielectric member being lower than a permittivity of said dielectric plate and higher than a permittivity of air.
20. The plasma processing apparatus as claimed in claim 19 , wherein said inner conductor core is connected substantially perpendicularly to said first conductor surface in said first joint unit.
21. The plasma processing apparatus as claimed in claim 19 , wherein, in said second joint unit, said outer conductor core is connected substantially perpendicularly to said second conductor surface.
22. The plasma processing apparatus as claimed in claim 19 , wherein composition of said dielectric member changes from said first edge face to said second edge face.
23. The plasma processing apparatus as claimed in claim 19 , wherein
said dielectric plate is made of either alumina, silicon oxide, silicon oxynitridated, or silicon nitridated; and
said dielectric member is made of silicon oxide.
24. The plasma processing apparatus as claimed in claim 21 , wherein, in a space between said inner conductor core and said outer waveguide, another dielectric member having a permittivity lower than a permittivity of said dielectric member and higher than a permittivity of air is provided adjacent to said second edge face of said dielectric member.
25. The plasma processing apparatus as claimed in claim 24 , wherein said dielectric member is made of silicon oxide, and said other dielectric member is made of Teflon.
26. The plasma processing apparatus as claimed in claim 21 , wherein said second edge face of said dielectric member forms a taper surface, and an outer diameter of said dielectric member decreases as a distance from said first edge face increases.
27. The plasma processing apparatus as claimed in claim 26 , wherein an outer diameter of said dielectric member decreases linearly as a distance from said first edge face increases.
28. The plasma processing apparatus as claimed in claim 26 , wherein an outer diameter of said dielectric member decreases exponentially as a distance from said first edge face increases.
29. The plasma processing apparatus as claimed in claim 19 , wherein said plasma gas supplying part is provided with a plasma gas passage connectible to a plasma gas source, made of a microwave transparent material, and a shower plate having a plurality of openings in communication with said plasma gas passage.
30. The plasma processing apparatus as claimed in claim 29 , wherein said microwave transparent window and said shower plate are made of alumina.
31. The plasma processing apparatus as claimed in claim 19 , wherein said plasma gas supplying part is provided in an outer wall of said processing vessel.
32. The plasma processing apparatus as claimed in claim 31 , wherein said plasma gas supplying part is tubes provided in said processing vessel.
33. The plasma processing apparatus as claimed in claim 19 , wherein said microwave antenna is provided so that said first conductor surface touches said microwave transparent window.
34. The plasma processing apparatus as claimed in claim 19 , wherein said microwave antenna is provided so that said first conductor surface separates from said microwave transparent window.
35. The plasma processing apparatus as claimed in claim 19 , wherein a process gas supplying part is provided between said substrate and said plasma gas supplying part in said processing vessel, said process gas supplying part opposing to said substrate;
a first opening through which plasma gas formed in said processing vessel passes and a second opening through which process gas is supplied are formed in said process gas supplying part; and
said second opening is connected to a process gas passage formed in said process gas supplying part and connected to a process gas source.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/337,026 US7670454B2 (en) | 2001-03-28 | 2006-01-23 | Plasma processing apparatus |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001-094271 | 2001-03-28 | ||
JP2001094271A JP4727057B2 (en) | 2001-03-28 | 2001-03-28 | Plasma processing equipment |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2002/003109 A-371-Of-International WO2002080250A1 (en) | 2001-03-28 | 2002-03-28 | Plasma processing device |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/337,026 Division US7670454B2 (en) | 2001-03-28 | 2006-01-23 | Plasma processing apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
US20030168008A1 true US20030168008A1 (en) | 2003-09-11 |
Family
ID=18948496
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/276,721 Abandoned US20030168008A1 (en) | 2001-03-28 | 2002-03-28 | Plasma processing device |
US11/337,026 Expired - Fee Related US7670454B2 (en) | 2001-03-28 | 2006-01-23 | Plasma processing apparatus |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/337,026 Expired - Fee Related US7670454B2 (en) | 2001-03-28 | 2006-01-23 | Plasma processing apparatus |
Country Status (9)
Country | Link |
---|---|
US (2) | US20030168008A1 (en) |
EP (1) | EP1376669B1 (en) |
JP (1) | JP4727057B2 (en) |
KR (1) | KR100486673B1 (en) |
CN (1) | CN1298027C (en) |
AT (1) | ATE362197T1 (en) |
DE (1) | DE60220039T2 (en) |
IL (1) | IL153155A0 (en) |
WO (1) | WO2002080250A1 (en) |
Cited By (274)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030136516A1 (en) * | 2002-01-22 | 2003-07-24 | Hong-Seub Kim | Gas diffussion plate for use in ICP etcher |
US20040168769A1 (en) * | 2002-05-10 | 2004-09-02 | Takaaki Matsuoka | Plasma processing equipment and plasma processing method |
US20050173069A1 (en) * | 2004-02-07 | 2005-08-11 | Samsung Electronics Co., Ltd. | Plasma generating apparatus and plasma processing apparatus |
US20070095284A1 (en) * | 2004-06-04 | 2007-05-03 | Iizuka Hachishiro | Gas treating device and film forming device |
EP1806776A1 (en) * | 2004-10-05 | 2007-07-11 | Tokyo Electron Ltd. | Plasma film forming method and plasma film forming device |
US20090029066A1 (en) * | 2007-07-25 | 2009-01-29 | Tokyo Electron Limited | Film forming method for a semiconductor |
US20090163013A1 (en) * | 2007-12-21 | 2009-06-25 | Hynix Semiconductor Inc. | Method for Forming Gate of Non-Volatile Memory Device |
US20100252412A1 (en) * | 2007-10-04 | 2010-10-07 | Tokyo Electron Limited | Plasma processing apparatus and method for adjusting plasma density distribution |
US20100317188A1 (en) * | 2003-08-15 | 2010-12-16 | Tokyo Electon Limited | Fluorine doped carbon films produced by modification by radicals |
US20110143551A1 (en) * | 2008-04-28 | 2011-06-16 | Christophe Borean | Device and process for chemical vapor phase treatment |
US20110303364A1 (en) * | 2009-01-21 | 2011-12-15 | Tokyo Electron Limited | Plasma processing apparatus |
US20120180953A1 (en) * | 2009-09-30 | 2012-07-19 | Tokyo Electron Limited | Plasma processing apparatus and wave retardation plate used therein |
US20180166258A1 (en) * | 2016-12-14 | 2018-06-14 | Asm Ip Holding B.V. | Substrate processing apparatus |
KR20180064490A (en) * | 2015-10-05 | 2018-06-14 | ģ¬ģ“ė ģģģė¼ ķķ ė¼ķė¦¬ź¹ģģ¹ ģė¤ģ¤ķøė¦¬ģ ė ė¼ ė ģøė„“ģø ģ ģė ķøė”ėė ģ ė§ģ“ķ¬ė” ģ¹ė° | Base device for generating plasma with coaxial applicator |
US10074521B2 (en) * | 2009-09-10 | 2018-09-11 | Lam Research Corporation | Replaceable upper chamber parts of plasma processing apparatus |
US20190006152A1 (en) * | 2017-06-30 | 2019-01-03 | Tokyo Electron Limited | Plasma generating unit and plasma processing apparatus |
US10720331B2 (en) | 2016-11-01 | 2020-07-21 | ASM IP Holdings, B.V. | Methods for forming a transition metal nitride film on a substrate by atomic layer deposition and related semiconductor device structures |
US10767789B2 (en) | 2018-07-16 | 2020-09-08 | Asm Ip Holding B.V. | Diaphragm valves, valve components, and methods for forming valve components |
US10784102B2 (en) | 2016-12-22 | 2020-09-22 | Asm Ip Holding B.V. | Method of forming a structure on a substrate |
US10787741B2 (en) | 2014-08-21 | 2020-09-29 | Asm Ip Holding B.V. | Method and system for in situ formation of gas-phase compounds |
US10797133B2 (en) | 2018-06-21 | 2020-10-06 | Asm Ip Holding B.V. | Method for depositing a phosphorus doped silicon arsenide film and related semiconductor device structures |
US10804098B2 (en) | 2009-08-14 | 2020-10-13 | Asm Ip Holding B.V. | Systems and methods for thin-film deposition of metal oxides using excited nitrogen-oxygen species |
US10818758B2 (en) | 2018-11-16 | 2020-10-27 | Asm Ip Holding B.V. | Methods for forming a metal silicate film on a substrate in a reaction chamber and related semiconductor device structures |
US10829852B2 (en) | 2018-08-16 | 2020-11-10 | Asm Ip Holding B.V. | Gas distribution device for a wafer processing apparatus |
US10832903B2 (en) | 2011-10-28 | 2020-11-10 | Asm Ip Holding B.V. | Process feed management for semiconductor substrate processing |
US10844486B2 (en) | 2009-04-06 | 2020-11-24 | Asm Ip Holding B.V. | Semiconductor processing reactor and components thereof |
US10847371B2 (en) | 2018-03-27 | 2020-11-24 | Asm Ip Holding B.V. | Method of forming an electrode on a substrate and a semiconductor device structure including an electrode |
US10847366B2 (en) | 2018-11-16 | 2020-11-24 | Asm Ip Holding B.V. | Methods for depositing a transition metal chalcogenide film on a substrate by a cyclical deposition process |
US10844484B2 (en) | 2017-09-22 | 2020-11-24 | Asm Ip Holding B.V. | Apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods |
US10851456B2 (en) | 2016-04-21 | 2020-12-01 | Asm Ip Holding B.V. | Deposition of metal borides |
US10858737B2 (en) | 2014-07-28 | 2020-12-08 | Asm Ip Holding B.V. | Showerhead assembly and components thereof |
US10867788B2 (en) | 2016-12-28 | 2020-12-15 | Asm Ip Holding B.V. | Method of forming a structure on a substrate |
US10867786B2 (en) | 2018-03-30 | 2020-12-15 | Asm Ip Holding B.V. | Substrate processing method |
US10865475B2 (en) | 2016-04-21 | 2020-12-15 | Asm Ip Holding B.V. | Deposition of metal borides and silicides |
US10872771B2 (en) | 2018-01-16 | 2020-12-22 | Asm Ip Holding B. V. | Method for depositing a material film on a substrate within a reaction chamber by a cyclical deposition process and related device structures |
US10886123B2 (en) | 2017-06-02 | 2021-01-05 | Asm Ip Holding B.V. | Methods for forming low temperature semiconductor layers and related semiconductor device structures |
US10883175B2 (en) | 2018-08-09 | 2021-01-05 | Asm Ip Holding B.V. | Vertical furnace for processing substrates and a liner for use therein |
US10892156B2 (en) | 2017-05-08 | 2021-01-12 | Asm Ip Holding B.V. | Methods for forming a silicon nitride film on a substrate and related semiconductor device structures |
US10896820B2 (en) | 2018-02-14 | 2021-01-19 | Asm Ip Holding B.V. | Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process |
US10910262B2 (en) | 2017-11-16 | 2021-02-02 | Asm Ip Holding B.V. | Method of selectively depositing a capping layer structure on a semiconductor device structure |
US10914004B2 (en) | 2018-06-29 | 2021-02-09 | Asm Ip Holding B.V. | Thin-film deposition method and manufacturing method of semiconductor device |
US10923344B2 (en) | 2017-10-30 | 2021-02-16 | Asm Ip Holding B.V. | Methods for forming a semiconductor structure and related semiconductor structures |
US10928731B2 (en) | 2017-09-21 | 2021-02-23 | Asm Ip Holding B.V. | Method of sequential infiltration synthesis treatment of infiltrateable material and structures and devices formed using same |
US10934619B2 (en) | 2016-11-15 | 2021-03-02 | Asm Ip Holding B.V. | Gas supply unit and substrate processing apparatus including the gas supply unit |
US10943771B2 (en) | 2016-10-26 | 2021-03-09 | Asm Ip Holding B.V. | Methods for thermally calibrating reaction chambers |
US10941490B2 (en) | 2014-10-07 | 2021-03-09 | Asm Ip Holding B.V. | Multiple temperature range susceptor, assembly, reactor and system including the susceptor, and methods of using the same |
US10950432B2 (en) | 2017-04-25 | 2021-03-16 | Asm Ip Holding B.V. | Method of depositing thin film and method of manufacturing semiconductor device |
USD913980S1 (en) | 2018-02-01 | 2021-03-23 | Asm Ip Holding B.V. | Gas supply plate for semiconductor manufacturing apparatus |
US10975470B2 (en) | 2018-02-23 | 2021-04-13 | Asm Ip Holding B.V. | Apparatus for detecting or monitoring for a chemical precursor in a high temperature environment |
US11001925B2 (en) | 2016-12-19 | 2021-05-11 | Asm Ip Holding B.V. | Substrate processing apparatus |
US11004977B2 (en) | 2017-07-19 | 2021-05-11 | Asm Ip Holding B.V. | Method for depositing a group IV semiconductor and related semiconductor device structures |
US11018047B2 (en) | 2018-01-25 | 2021-05-25 | Asm Ip Holding B.V. | Hybrid lift pin |
US11018002B2 (en) | 2017-07-19 | 2021-05-25 | Asm Ip Holding B.V. | Method for selectively depositing a Group IV semiconductor and related semiconductor device structures |
US11015245B2 (en) | 2014-03-19 | 2021-05-25 | Asm Ip Holding B.V. | Gas-phase reactor and system having exhaust plenum and components thereof |
US11024523B2 (en) | 2018-09-11 | 2021-06-01 | Asm Ip Holding B.V. | Substrate processing apparatus and method |
US11022879B2 (en) | 2017-11-24 | 2021-06-01 | Asm Ip Holding B.V. | Method of forming an enhanced unexposed photoresist layer |
US11031242B2 (en) | 2018-11-07 | 2021-06-08 | Asm Ip Holding B.V. | Methods for depositing a boron doped silicon germanium film |
USD922229S1 (en) | 2019-06-05 | 2021-06-15 | Asm Ip Holding B.V. | Device for controlling a temperature of a gas supply unit |
US11049751B2 (en) | 2018-09-14 | 2021-06-29 | Asm Ip Holding B.V. | Cassette supply system to store and handle cassettes and processing apparatus equipped therewith |
US11056344B2 (en) | 2017-08-30 | 2021-07-06 | Asm Ip Holding B.V. | Layer forming method |
US11056567B2 (en) | 2018-05-11 | 2021-07-06 | Asm Ip Holding B.V. | Method of forming a doped metal carbide film on a substrate and related semiconductor device structures |
US11053591B2 (en) | 2018-08-06 | 2021-07-06 | Asm Ip Holding B.V. | Multi-port gas injection system and reactor system including same |
US11069510B2 (en) | 2017-08-30 | 2021-07-20 | Asm Ip Holding B.V. | Substrate processing apparatus |
US11081345B2 (en) | 2018-02-06 | 2021-08-03 | Asm Ip Holding B.V. | Method of post-deposition treatment for silicon oxide film |
US11087997B2 (en) | 2018-10-31 | 2021-08-10 | Asm Ip Holding B.V. | Substrate processing apparatus for processing substrates |
US11088002B2 (en) | 2018-03-29 | 2021-08-10 | Asm Ip Holding B.V. | Substrate rack and a substrate processing system and method |
US11094582B2 (en) | 2016-07-08 | 2021-08-17 | Asm Ip Holding B.V. | Selective deposition method to form air gaps |
US11094546B2 (en) | 2017-10-05 | 2021-08-17 | Asm Ip Holding B.V. | Method for selectively depositing a metallic film on a substrate |
US11101370B2 (en) | 2016-05-02 | 2021-08-24 | Asm Ip Holding B.V. | Method of forming a germanium oxynitride film |
US11107676B2 (en) | 2016-07-28 | 2021-08-31 | Asm Ip Holding B.V. | Method and apparatus for filling a gap |
US11114283B2 (en) | 2018-03-16 | 2021-09-07 | Asm Ip Holding B.V. | Reactor, system including the reactor, and methods of manufacturing and using same |
US11114294B2 (en) | 2019-03-08 | 2021-09-07 | Asm Ip Holding B.V. | Structure including SiOC layer and method of forming same |
USD930782S1 (en) | 2019-08-22 | 2021-09-14 | Asm Ip Holding B.V. | Gas distributor |
US11127589B2 (en) | 2019-02-01 | 2021-09-21 | Asm Ip Holding B.V. | Method of topology-selective film formation of silicon oxide |
US11127617B2 (en) | 2017-11-27 | 2021-09-21 | Asm Ip Holding B.V. | Storage device for storing wafer cassettes for use with a batch furnace |
USD931978S1 (en) | 2019-06-27 | 2021-09-28 | Asm Ip Holding B.V. | Showerhead vacuum transport |
US11139191B2 (en) | 2017-08-09 | 2021-10-05 | Asm Ip Holding B.V. | Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith |
US11139308B2 (en) | 2015-12-29 | 2021-10-05 | Asm Ip Holding B.V. | Atomic layer deposition of III-V compounds to form V-NAND devices |
US11158513B2 (en) | 2018-12-13 | 2021-10-26 | Asm Ip Holding B.V. | Methods for forming a rhenium-containing film on a substrate by a cyclical deposition process and related semiconductor device structures |
US11164955B2 (en) | 2017-07-18 | 2021-11-02 | Asm Ip Holding B.V. | Methods for forming a semiconductor device structure and related semiconductor device structures |
US11168395B2 (en) | 2018-06-29 | 2021-11-09 | Asm Ip Holding B.V. | Temperature-controlled flange and reactor system including same |
USD935572S1 (en) | 2019-05-24 | 2021-11-09 | Asm Ip Holding B.V. | Gas channel plate |
US11171025B2 (en) | 2019-01-22 | 2021-11-09 | Asm Ip Holding B.V. | Substrate processing device |
US11205585B2 (en) | 2016-07-28 | 2021-12-21 | Asm Ip Holding B.V. | Substrate processing apparatus and method of operating the same |
US11217444B2 (en) | 2018-11-30 | 2022-01-04 | Asm Ip Holding B.V. | Method for forming an ultraviolet radiation responsive metal oxide-containing film |
USD940837S1 (en) | 2019-08-22 | 2022-01-11 | Asm Ip Holding B.V. | Electrode |
US11227789B2 (en) | 2019-02-20 | 2022-01-18 | Asm Ip Holding B.V. | Method and apparatus for filling a recess formed within a substrate surface |
US11227782B2 (en) | 2019-07-31 | 2022-01-18 | Asm Ip Holding B.V. | Vertical batch furnace assembly |
US11232963B2 (en) | 2018-10-03 | 2022-01-25 | Asm Ip Holding B.V. | Substrate processing apparatus and method |
US11230766B2 (en) | 2018-03-29 | 2022-01-25 | Asm Ip Holding B.V. | Substrate processing apparatus and method |
US11233133B2 (en) | 2015-10-21 | 2022-01-25 | Asm Ip Holding B.V. | NbMC layers |
US11242598B2 (en) | 2015-06-26 | 2022-02-08 | Asm Ip Holding B.V. | Structures including metal carbide material, devices including the structures, and methods of forming same |
US11251040B2 (en) | 2019-02-20 | 2022-02-15 | Asm Ip Holding B.V. | Cyclical deposition method including treatment step and apparatus for same |
US11251068B2 (en) | 2018-10-19 | 2022-02-15 | Asm Ip Holding B.V. | Substrate processing apparatus and substrate processing method |
USD944946S1 (en) | 2019-06-14 | 2022-03-01 | Asm Ip Holding B.V. | Shower plate |
US11270899B2 (en) | 2018-06-04 | 2022-03-08 | Asm Ip Holding B.V. | Wafer handling chamber with moisture reduction |
US11274369B2 (en) | 2018-09-11 | 2022-03-15 | Asm Ip Holding B.V. | Thin film deposition method |
US11282698B2 (en) | 2019-07-19 | 2022-03-22 | Asm Ip Holding B.V. | Method of forming topology-controlled amorphous carbon polymer film |
US11286562B2 (en) | 2018-06-08 | 2022-03-29 | Asm Ip Holding B.V. | Gas-phase chemical reactor and method of using same |
US11286558B2 (en) | 2019-08-23 | 2022-03-29 | Asm Ip Holding B.V. | Methods for depositing a molybdenum nitride film on a surface of a substrate by a cyclical deposition process and related semiconductor device structures including a molybdenum nitride film |
US11289326B2 (en) | 2019-05-07 | 2022-03-29 | Asm Ip Holding B.V. | Method for reforming amorphous carbon polymer film |
US11295980B2 (en) | 2017-08-30 | 2022-04-05 | Asm Ip Holding B.V. | Methods for depositing a molybdenum metal film over a dielectric surface of a substrate by a cyclical deposition process and related semiconductor device structures |
USD947913S1 (en) | 2019-05-17 | 2022-04-05 | Asm Ip Holding B.V. | Susceptor shaft |
USD948463S1 (en) | 2018-10-24 | 2022-04-12 | Asm Ip Holding B.V. | Susceptor for semiconductor substrate supporting apparatus |
US11306395B2 (en) | 2017-06-28 | 2022-04-19 | Asm Ip Holding B.V. | Methods for depositing a transition metal nitride film on a substrate by atomic layer deposition and related deposition apparatus |
USD949319S1 (en) | 2019-08-22 | 2022-04-19 | Asm Ip Holding B.V. | Exhaust duct |
US11315794B2 (en) | 2019-10-21 | 2022-04-26 | Asm Ip Holding B.V. | Apparatus and methods for selectively etching films |
US11339476B2 (en) | 2019-10-08 | 2022-05-24 | Asm Ip Holding B.V. | Substrate processing device having connection plates, substrate processing method |
US11342216B2 (en) | 2019-02-20 | 2022-05-24 | Asm Ip Holding B.V. | Cyclical deposition method and apparatus for filling a recess formed within a substrate surface |
US11345999B2 (en) | 2019-06-06 | 2022-05-31 | Asm Ip Holding B.V. | Method of using a gas-phase reactor system including analyzing exhausted gas |
US11355338B2 (en) | 2019-05-10 | 2022-06-07 | Asm Ip Holding B.V. | Method of depositing material onto a surface and structure formed according to the method |
US11361990B2 (en) | 2018-05-28 | 2022-06-14 | Asm Ip Holding B.V. | Substrate processing method and device manufactured by using the same |
US11374112B2 (en) | 2017-07-19 | 2022-06-28 | Asm Ip Holding B.V. | Method for depositing a group IV semiconductor and related semiconductor device structures |
US11378337B2 (en) | 2019-03-28 | 2022-07-05 | Asm Ip Holding B.V. | Door opener and substrate processing apparatus provided therewith |
US11387120B2 (en) | 2017-09-28 | 2022-07-12 | Asm Ip Holding B.V. | Chemical dispensing apparatus and methods for dispensing a chemical to a reaction chamber |
US11390946B2 (en) | 2019-01-17 | 2022-07-19 | Asm Ip Holding B.V. | Methods of forming a transition metal containing film on a substrate by a cyclical deposition process |
US11390950B2 (en) | 2017-01-10 | 2022-07-19 | Asm Ip Holding B.V. | Reactor system and method to reduce residue buildup during a film deposition process |
US11390945B2 (en) | 2019-07-03 | 2022-07-19 | Asm Ip Holding B.V. | Temperature control assembly for substrate processing apparatus and method of using same |
US11393690B2 (en) | 2018-01-19 | 2022-07-19 | Asm Ip Holding B.V. | Deposition method |
US11401605B2 (en) | 2019-11-26 | 2022-08-02 | Asm Ip Holding B.V. | Substrate processing apparatus |
US11410851B2 (en) | 2017-02-15 | 2022-08-09 | Asm Ip Holding B.V. | Methods for forming a metallic film on a substrate by cyclical deposition and related semiconductor device structures |
US11417545B2 (en) | 2017-08-08 | 2022-08-16 | Asm Ip Holding B.V. | Radiation shield |
US11414760B2 (en) | 2018-10-08 | 2022-08-16 | Asm Ip Holding B.V. | Substrate support unit, thin film deposition apparatus including the same, and substrate processing apparatus including the same |
US11424119B2 (en) | 2019-03-08 | 2022-08-23 | Asm Ip Holding B.V. | Method for selective deposition of silicon nitride layer and structure including selectively-deposited silicon nitride layer |
US11430640B2 (en) | 2019-07-30 | 2022-08-30 | Asm Ip Holding B.V. | Substrate processing apparatus |
US11430674B2 (en) | 2018-08-22 | 2022-08-30 | Asm Ip Holding B.V. | Sensor array, apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods |
US11437241B2 (en) | 2020-04-08 | 2022-09-06 | Asm Ip Holding B.V. | Apparatus and methods for selectively etching silicon oxide films |
US11443926B2 (en) | 2019-07-30 | 2022-09-13 | Asm Ip Holding B.V. | Substrate processing apparatus |
US11447864B2 (en) | 2019-04-19 | 2022-09-20 | Asm Ip Holding B.V. | Layer forming method and apparatus |
US11447861B2 (en) | 2016-12-15 | 2022-09-20 | Asm Ip Holding B.V. | Sequential infiltration synthesis apparatus and a method of forming a patterned structure |
USD965044S1 (en) | 2019-08-19 | 2022-09-27 | Asm Ip Holding B.V. | Susceptor shaft |
US11453943B2 (en) | 2016-05-25 | 2022-09-27 | Asm Ip Holding B.V. | Method for forming carbon-containing silicon/metal oxide or nitride film by ALD using silicon precursor and hydrocarbon precursor |
USD965524S1 (en) | 2019-08-19 | 2022-10-04 | Asm Ip Holding B.V. | Susceptor support |
US11469098B2 (en) | 2018-05-08 | 2022-10-11 | Asm Ip Holding B.V. | Methods for depositing an oxide film on a substrate by a cyclical deposition process and related device structures |
US11473195B2 (en) | 2018-03-01 | 2022-10-18 | Asm Ip Holding B.V. | Semiconductor processing apparatus and a method for processing a substrate |
US11476109B2 (en) | 2019-06-11 | 2022-10-18 | Asm Ip Holding B.V. | Method of forming an electronic structure using reforming gas, system for performing the method, and structure formed using the method |
US11482418B2 (en) | 2018-02-20 | 2022-10-25 | Asm Ip Holding B.V. | Substrate processing method and apparatus |
US11482533B2 (en) | 2019-02-20 | 2022-10-25 | Asm Ip Holding B.V. | Apparatus and methods for plug fill deposition in 3-D NAND applications |
US11482412B2 (en) | 2018-01-19 | 2022-10-25 | Asm Ip Holding B.V. | Method for depositing a gap-fill layer by plasma-assisted deposition |
US11488819B2 (en) | 2018-12-04 | 2022-11-01 | Asm Ip Holding B.V. | Method of cleaning substrate processing apparatus |
US11488854B2 (en) | 2020-03-11 | 2022-11-01 | Asm Ip Holding B.V. | Substrate handling device with adjustable joints |
US11495459B2 (en) | 2019-09-04 | 2022-11-08 | Asm Ip Holding B.V. | Methods for selective deposition using a sacrificial capping layer |
US11492703B2 (en) | 2018-06-27 | 2022-11-08 | Asm Ip Holding B.V. | Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material |
US11501956B2 (en) | 2012-10-12 | 2022-11-15 | Asm Ip Holding B.V. | Semiconductor reaction chamber showerhead |
US11499222B2 (en) | 2018-06-27 | 2022-11-15 | Asm Ip Holding B.V. | Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material |
US11499226B2 (en) | 2018-11-02 | 2022-11-15 | Asm Ip Holding B.V. | Substrate supporting unit and a substrate processing device including the same |
US11501968B2 (en) | 2019-11-15 | 2022-11-15 | Asm Ip Holding B.V. | Method for providing a semiconductor device with silicon filled gaps |
US11515188B2 (en) | 2019-05-16 | 2022-11-29 | Asm Ip Holding B.V. | Wafer boat handling device, vertical batch furnace and method |
US11515187B2 (en) | 2020-05-01 | 2022-11-29 | Asm Ip Holding B.V. | Fast FOUP swapping with a FOUP handler |
US11521851B2 (en) | 2020-02-03 | 2022-12-06 | Asm Ip Holding B.V. | Method of forming structures including a vanadium or indium layer |
US11527403B2 (en) | 2019-12-19 | 2022-12-13 | Asm Ip Holding B.V. | Methods for filling a gap feature on a substrate surface and related semiconductor structures |
US11527400B2 (en) | 2019-08-23 | 2022-12-13 | Asm Ip Holding B.V. | Method for depositing silicon oxide film having improved quality by peald using bis(diethylamino)silane |
US11530876B2 (en) | 2020-04-24 | 2022-12-20 | Asm Ip Holding B.V. | Vertical batch furnace assembly comprising a cooling gas supply |
US11532757B2 (en) | 2016-10-27 | 2022-12-20 | Asm Ip Holding B.V. | Deposition of charge trapping layers |
US11530483B2 (en) | 2018-06-21 | 2022-12-20 | Asm Ip Holding B.V. | Substrate processing system |
US11551912B2 (en) | 2020-01-20 | 2023-01-10 | Asm Ip Holding B.V. | Method of forming thin film and method of modifying surface of thin film |
US11551925B2 (en) | 2019-04-01 | 2023-01-10 | Asm Ip Holding B.V. | Method for manufacturing a semiconductor device |
USD975665S1 (en) | 2019-05-17 | 2023-01-17 | Asm Ip Holding B.V. | Susceptor shaft |
US11557474B2 (en) | 2019-07-29 | 2023-01-17 | Asm Ip Holding B.V. | Methods for selective deposition utilizing n-type dopants and/or alternative dopants to achieve high dopant incorporation |
US11562901B2 (en) | 2019-09-25 | 2023-01-24 | Asm Ip Holding B.V. | Substrate processing method |
US11572620B2 (en) | 2018-11-06 | 2023-02-07 | Asm Ip Holding B.V. | Methods for selectively depositing an amorphous silicon film on a substrate |
US11581186B2 (en) | 2016-12-15 | 2023-02-14 | Asm Ip Holding B.V. | Sequential infiltration synthesis apparatus |
US11587815B2 (en) | 2019-07-31 | 2023-02-21 | Asm Ip Holding B.V. | Vertical batch furnace assembly |
US11587814B2 (en) | 2019-07-31 | 2023-02-21 | Asm Ip Holding B.V. | Vertical batch furnace assembly |
US11587821B2 (en) | 2017-08-08 | 2023-02-21 | Asm Ip Holding B.V. | Substrate lift mechanism and reactor including same |
US11594450B2 (en) | 2019-08-22 | 2023-02-28 | Asm Ip Holding B.V. | Method for forming a structure with a hole |
USD979506S1 (en) | 2019-08-22 | 2023-02-28 | Asm Ip Holding B.V. | Insulator |
US11594600B2 (en) | 2019-11-05 | 2023-02-28 | Asm Ip Holding B.V. | Structures with doped semiconductor layers and methods and systems for forming same |
USD980813S1 (en) | 2021-05-11 | 2023-03-14 | Asm Ip Holding B.V. | Gas flow control plate for substrate processing apparatus |
USD980814S1 (en) | 2021-05-11 | 2023-03-14 | Asm Ip Holding B.V. | Gas distributor for substrate processing apparatus |
US11605528B2 (en) | 2019-07-09 | 2023-03-14 | Asm Ip Holding B.V. | Plasma device using coaxial waveguide, and substrate treatment method |
US11610775B2 (en) | 2016-07-28 | 2023-03-21 | Asm Ip Holding B.V. | Method and apparatus for filling a gap |
US11610774B2 (en) | 2019-10-02 | 2023-03-21 | Asm Ip Holding B.V. | Methods for forming a topographically selective silicon oxide film by a cyclical plasma-enhanced deposition process |
US11615970B2 (en) | 2019-07-17 | 2023-03-28 | Asm Ip Holding B.V. | Radical assist ignition plasma system and method |
USD981973S1 (en) | 2021-05-11 | 2023-03-28 | Asm Ip Holding B.V. | Reactor wall for substrate processing apparatus |
US11626308B2 (en) | 2020-05-13 | 2023-04-11 | Asm Ip Holding B.V. | Laser alignment fixture for a reactor system |
US11626316B2 (en) | 2019-11-20 | 2023-04-11 | Asm Ip Holding B.V. | Method of depositing carbon-containing material on a surface of a substrate, structure formed using the method, and system for forming the structure |
US11629406B2 (en) | 2018-03-09 | 2023-04-18 | Asm Ip Holding B.V. | Semiconductor processing apparatus comprising one or more pyrometers for measuring a temperature of a substrate during transfer of the substrate |
US11629407B2 (en) | 2019-02-22 | 2023-04-18 | Asm Ip Holding B.V. | Substrate processing apparatus and method for processing substrates |
US11637011B2 (en) | 2019-10-16 | 2023-04-25 | Asm Ip Holding B.V. | Method of topology-selective film formation of silicon oxide |
US11637014B2 (en) | 2019-10-17 | 2023-04-25 | Asm Ip Holding B.V. | Methods for selective deposition of doped semiconductor material |
US11639811B2 (en) | 2017-11-27 | 2023-05-02 | Asm Ip Holding B.V. | Apparatus including a clean mini environment |
US11639548B2 (en) | 2019-08-21 | 2023-05-02 | Asm Ip Holding B.V. | Film-forming material mixed-gas forming device and film forming device |
US11644758B2 (en) | 2020-07-17 | 2023-05-09 | Asm Ip Holding B.V. | Structures and methods for use in photolithography |
US11646184B2 (en) | 2019-11-29 | 2023-05-09 | Asm Ip Holding B.V. | Substrate processing apparatus |
US11643724B2 (en) | 2019-07-18 | 2023-05-09 | Asm Ip Holding B.V. | Method of forming structures using a neutral beam |
US11646205B2 (en) | 2019-10-29 | 2023-05-09 | Asm Ip Holding B.V. | Methods of selectively forming n-type doped material on a surface, systems for selectively forming n-type doped material, and structures formed using same |
US11646197B2 (en) | 2018-07-03 | 2023-05-09 | Asm Ip Holding B.V. | Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition |
US11646204B2 (en) | 2020-06-24 | 2023-05-09 | Asm Ip Holding B.V. | Method for forming a layer provided with silicon |
US11649546B2 (en) | 2016-07-08 | 2023-05-16 | Asm Ip Holding B.V. | Organic reactants for atomic layer deposition |
US11658029B2 (en) | 2018-12-14 | 2023-05-23 | Asm Ip Holding B.V. | Method of forming a device structure using selective deposition of gallium nitride and system for same |
US11658030B2 (en) | 2017-03-29 | 2023-05-23 | Asm Ip Holding B.V. | Method for forming doped metal oxide films on a substrate by cyclical deposition and related semiconductor device structures |
US11658035B2 (en) | 2020-06-30 | 2023-05-23 | Asm Ip Holding B.V. | Substrate processing method |
US11664267B2 (en) | 2019-07-10 | 2023-05-30 | Asm Ip Holding B.V. | Substrate support assembly and substrate processing device including the same |
US11664245B2 (en) | 2019-07-16 | 2023-05-30 | Asm Ip Holding B.V. | Substrate processing device |
US11664199B2 (en) | 2018-10-19 | 2023-05-30 | Asm Ip Holding B.V. | Substrate processing apparatus and substrate processing method |
US11674220B2 (en) | 2020-07-20 | 2023-06-13 | Asm Ip Holding B.V. | Method for depositing molybdenum layers using an underlayer |
US11676812B2 (en) | 2016-02-19 | 2023-06-13 | Asm Ip Holding B.V. | Method for forming silicon nitride film selectively on top/bottom portions |
US11680839B2 (en) | 2019-08-05 | 2023-06-20 | Asm Ip Holding B.V. | Liquid level sensor for a chemical source vessel |
US11685991B2 (en) | 2018-02-14 | 2023-06-27 | Asm Ip Holding B.V. | Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process |
USD990534S1 (en) | 2020-09-11 | 2023-06-27 | Asm Ip Holding B.V. | Weighted lift pin |
USD990441S1 (en) | 2021-09-07 | 2023-06-27 | Asm Ip Holding B.V. | Gas flow control plate |
US11688603B2 (en) | 2019-07-17 | 2023-06-27 | Asm Ip Holding B.V. | Methods of forming silicon germanium structures |
US11705333B2 (en) | 2020-05-21 | 2023-07-18 | Asm Ip Holding B.V. | Structures including multiple carbon layers and methods of forming and using same |
US11718913B2 (en) | 2018-06-04 | 2023-08-08 | Asm Ip Holding B.V. | Gas distribution system and reactor system including same |
US11725277B2 (en) | 2011-07-20 | 2023-08-15 | Asm Ip Holding B.V. | Pressure transmitter for a semiconductor processing environment |
US11725280B2 (en) | 2020-08-26 | 2023-08-15 | Asm Ip Holding B.V. | Method for forming metal silicon oxide and metal silicon oxynitride layers |
US11735422B2 (en) | 2019-10-10 | 2023-08-22 | Asm Ip Holding B.V. | Method of forming a photoresist underlayer and structure including same |
US11742189B2 (en) | 2015-03-12 | 2023-08-29 | Asm Ip Holding B.V. | Multi-zone reactor, system including the reactor, and method of using the same |
US11742198B2 (en) | 2019-03-08 | 2023-08-29 | Asm Ip Holding B.V. | Structure including SiOCN layer and method of forming same |
US11767589B2 (en) | 2020-05-29 | 2023-09-26 | Asm Ip Holding B.V. | Substrate processing device |
US11769682B2 (en) | 2017-08-09 | 2023-09-26 | Asm Ip Holding B.V. | Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith |
US11776846B2 (en) | 2020-02-07 | 2023-10-03 | Asm Ip Holding B.V. | Methods for depositing gap filling fluids and related systems and devices |
US11781243B2 (en) | 2020-02-17 | 2023-10-10 | Asm Ip Holding B.V. | Method for depositing low temperature phosphorous-doped silicon |
US11781221B2 (en) | 2019-05-07 | 2023-10-10 | Asm Ip Holding B.V. | Chemical source vessel with dip tube |
US11804364B2 (en) | 2020-05-19 | 2023-10-31 | Asm Ip Holding B.V. | Substrate processing apparatus |
US11802338B2 (en) | 2017-07-26 | 2023-10-31 | Asm Ip Holding B.V. | Chemical treatment, deposition and/or infiltration apparatus and method for using the same |
US11810788B2 (en) | 2016-11-01 | 2023-11-07 | Asm Ip Holding B.V. | Methods for forming a transition metal niobium nitride film on a substrate by atomic layer deposition and related semiconductor device structures |
US11814747B2 (en) | 2019-04-24 | 2023-11-14 | Asm Ip Holding B.V. | Gas-phase reactor system-with a reaction chamber, a solid precursor source vessel, a gas distribution system, and a flange assembly |
US11823866B2 (en) | 2020-04-02 | 2023-11-21 | Asm Ip Holding B.V. | Thin film forming method |
US11823876B2 (en) | 2019-09-05 | 2023-11-21 | Asm Ip Holding B.V. | Substrate processing apparatus |
US11821078B2 (en) | 2020-04-15 | 2023-11-21 | Asm Ip Holding B.V. | Method for forming precoat film and method for forming silicon-containing film |
US11828707B2 (en) | 2020-02-04 | 2023-11-28 | Asm Ip Holding B.V. | Method and apparatus for transmittance measurements of large articles |
US11827981B2 (en) | 2020-10-14 | 2023-11-28 | Asm Ip Holding B.V. | Method of depositing material on stepped structure |
US11830738B2 (en) | 2020-04-03 | 2023-11-28 | Asm Ip Holding B.V. | Method for forming barrier layer and method for manufacturing semiconductor device |
US11830730B2 (en) | 2017-08-29 | 2023-11-28 | Asm Ip Holding B.V. | Layer forming method and apparatus |
US11840761B2 (en) | 2019-12-04 | 2023-12-12 | Asm Ip Holding B.V. | Substrate processing apparatus |
US11848200B2 (en) | 2017-05-08 | 2023-12-19 | Asm Ip Holding B.V. | Methods for selectively forming a silicon nitride film on a substrate and related semiconductor device structures |
US11876356B2 (en) | 2020-03-11 | 2024-01-16 | Asm Ip Holding B.V. | Lockout tagout assembly and system and method of using same |
US11873557B2 (en) | 2020-10-22 | 2024-01-16 | Asm Ip Holding B.V. | Method of depositing vanadium metal |
US11887857B2 (en) | 2020-04-24 | 2024-01-30 | Asm Ip Holding B.V. | Methods and systems for depositing a layer comprising vanadium, nitrogen, and a further element |
USD1012873S1 (en) | 2020-09-24 | 2024-01-30 | Asm Ip Holding B.V. | Electrode for semiconductor processing apparatus |
US11885020B2 (en) | 2020-12-22 | 2024-01-30 | Asm Ip Holding B.V. | Transition metal deposition method |
US11885013B2 (en) | 2019-12-17 | 2024-01-30 | Asm Ip Holding B.V. | Method of forming vanadium nitride layer and structure including the vanadium nitride layer |
US11885023B2 (en) | 2018-10-01 | 2024-01-30 | Asm Ip Holding B.V. | Substrate retaining apparatus, system including the apparatus, and method of using same |
US11891696B2 (en) | 2020-11-30 | 2024-02-06 | Asm Ip Holding B.V. | Injector configured for arrangement within a reaction chamber of a substrate processing apparatus |
US11898243B2 (en) | 2020-04-24 | 2024-02-13 | Asm Ip Holding B.V. | Method of forming vanadium nitride-containing layer |
US11901179B2 (en) | 2020-10-28 | 2024-02-13 | Asm Ip Holding B.V. | Method and device for depositing silicon onto substrates |
US11915929B2 (en) | 2019-11-26 | 2024-02-27 | Asm Ip Holding B.V. | Methods for selectively forming a target film on a substrate comprising a first dielectric surface and a second metallic surface |
US11923181B2 (en) | 2019-11-29 | 2024-03-05 | Asm Ip Holding B.V. | Substrate processing apparatus for minimizing the effect of a filling gas during substrate processing |
US11923190B2 (en) | 2018-07-03 | 2024-03-05 | Asm Ip Holding B.V. | Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition |
US11929251B2 (en) | 2019-12-02 | 2024-03-12 | Asm Ip Holding B.V. | Substrate processing apparatus having electrostatic chuck and substrate processing method |
US11946137B2 (en) | 2020-12-16 | 2024-04-02 | Asm Ip Holding B.V. | Runout and wobble measurement fixtures |
US11959168B2 (en) | 2020-04-29 | 2024-04-16 | Asm Ip Holding B.V. | Solid source precursor vessel |
US11961741B2 (en) | 2020-03-12 | 2024-04-16 | Asm Ip Holding B.V. | Method for fabricating layer structure having target topological profile |
US11967488B2 (en) | 2013-02-01 | 2024-04-23 | Asm Ip Holding B.V. | Method for treatment of deposition reactor |
USD1023959S1 (en) | 2021-05-11 | 2024-04-23 | Asm Ip Holding B.V. | Electrode for substrate processing apparatus |
US11976359B2 (en) | 2020-01-06 | 2024-05-07 | Asm Ip Holding B.V. | Gas supply assembly, components thereof, and reactor system including same |
US11987881B2 (en) | 2020-05-22 | 2024-05-21 | Asm Ip Holding B.V. | Apparatus for depositing thin films using hydrogen peroxide |
US11986868B2 (en) | 2020-02-28 | 2024-05-21 | Asm Ip Holding B.V. | System dedicated for parts cleaning |
US11996289B2 (en) | 2020-04-16 | 2024-05-28 | Asm Ip Holding B.V. | Methods of forming structures including silicon germanium and silicon layers, devices formed using the methods, and systems for performing the methods |
US11993843B2 (en) | 2017-08-31 | 2024-05-28 | Asm Ip Holding B.V. | Substrate processing apparatus |
US11996309B2 (en) | 2019-05-16 | 2024-05-28 | Asm Ip Holding B.V. | Wafer boat handling device, vertical batch furnace and method |
US11996292B2 (en) | 2019-10-25 | 2024-05-28 | Asm Ip Holding B.V. | Methods for filling a gap feature on a substrate surface and related semiconductor structures |
US11993847B2 (en) | 2020-01-08 | 2024-05-28 | Asm Ip Holding B.V. | Injector |
US12009224B2 (en) | 2020-09-29 | 2024-06-11 | Asm Ip Holding B.V. | Apparatus and method for etching metal nitrides |
US12009241B2 (en) | 2019-10-14 | 2024-06-11 | Asm Ip Holding B.V. | Vertical batch furnace assembly with detector to detect cassette |
US12006572B2 (en) | 2019-10-08 | 2024-06-11 | Asm Ip Holding B.V. | Reactor system including a gas distribution assembly for use with activated species and method of using same |
US12020934B2 (en) | 2020-07-08 | 2024-06-25 | Asm Ip Holding B.V. | Substrate processing method |
US12025484B2 (en) | 2018-05-08 | 2024-07-02 | Asm Ip Holding B.V. | Thin film forming method |
US12027365B2 (en) | 2020-11-24 | 2024-07-02 | Asm Ip Holding B.V. | Methods for filling a gap and related systems and devices |
US12033885B2 (en) | 2020-01-06 | 2024-07-09 | Asm Ip Holding B.V. | Channeled lift pin |
US12040200B2 (en) | 2017-06-20 | 2024-07-16 | Asm Ip Holding B.V. | Semiconductor processing apparatus and methods for calibrating a semiconductor processing apparatus |
US12040177B2 (en) | 2020-08-18 | 2024-07-16 | Asm Ip Holding B.V. | Methods for forming a laminate film by cyclical plasma-enhanced deposition processes |
US12040199B2 (en) | 2018-11-28 | 2024-07-16 | Asm Ip Holding B.V. | Substrate processing apparatus for processing substrates |
US12051602B2 (en) | 2020-05-04 | 2024-07-30 | Asm Ip Holding B.V. | Substrate processing system for processing substrates with an electronics module located behind a door in a front wall of the substrate processing system |
US12051567B2 (en) | 2020-10-07 | 2024-07-30 | Asm Ip Holding B.V. | Gas supply unit and substrate processing apparatus including gas supply unit |
US12057314B2 (en) | 2020-05-15 | 2024-08-06 | Asm Ip Holding B.V. | Methods for silicon germanium uniformity control using multiple precursors |
US12074022B2 (en) | 2020-08-27 | 2024-08-27 | Asm Ip Holding B.V. | Method and system for forming patterned structures using multiple patterning process |
US12087586B2 (en) | 2020-04-15 | 2024-09-10 | Asm Ip Holding B.V. | Method of forming chromium nitride layer and structure including the chromium nitride layer |
US12106944B2 (en) | 2020-06-02 | 2024-10-01 | Asm Ip Holding B.V. | Rotating substrate support |
US12107005B2 (en) | 2020-10-06 | 2024-10-01 | Asm Ip Holding B.V. | Deposition method and an apparatus for depositing a silicon-containing material |
US12112940B2 (en) | 2019-07-19 | 2024-10-08 | Asm Ip Holding B.V. | Method of forming topology-controlled amorphous carbon polymer film |
US12125700B2 (en) | 2021-01-13 | 2024-10-22 | Asm Ip Holding B.V. | Method of forming high aspect ratio features |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100780199B1 (en) * | 2003-08-15 | 2007-11-27 | ėź²½ ģė ķøė” ģ£¼ģķģ¬ | Semiconductor device and method for manufacturing thereof |
JP4344886B2 (en) * | 2004-09-06 | 2009-10-14 | ę±äŗ¬ćØć¬ćÆććć³ę Ŗå¼ä¼ē¤¾ | Plasma processing equipment |
KR100798416B1 (en) | 2005-07-21 | 2008-01-28 | ķģėķźµ ģ°ķķė „ėØ | Plasma processing apparatus |
JP4852997B2 (en) * | 2005-11-25 | 2012-01-11 | ę±äŗ¬ćØć¬ćÆććć³ę Ŗå¼ä¼ē¤¾ | Microwave introduction apparatus and plasma processing apparatus |
JP2007335346A (en) * | 2006-06-19 | 2007-12-27 | Tokyo Electron Ltd | Microwave introduction device, and plasma processing device |
JP2008235611A (en) * | 2007-03-21 | 2008-10-02 | Tohoku Univ | Plasma processing equipment and method for processing plasma |
KR100795037B1 (en) * | 2007-08-14 | 2008-01-15 | ģ”ź·ģ°½ | Zero-pharse harmonic reduction device having protection function of overload |
JP5421551B2 (en) * | 2008-06-11 | 2014-02-19 | ę±äŗ¬ćØć¬ćÆććć³ę Ŗå¼ä¼ē¤¾ | Plasma processing apparatus and plasma processing method |
KR101019103B1 (en) * | 2008-11-18 | 2011-03-07 | ģ£¼ģķģ¬ ģ¼ģ“ģØķ | Atmospheric pressure plasma generating device and atmospheric pressure plasma device for treating the surface having the same |
WO2011025143A2 (en) * | 2009-08-24 | 2011-03-03 | ķźµźø°ģ“ź³¼ķģ§ģģ°źµ¬ģ | Microwave antenna for generating plasma |
CN103155718B (en) * | 2010-09-06 | 2016-09-28 | Emdę Ŗå¼ä¼ē¤¾ | Plasma treatment appts |
KR101513579B1 (en) | 2011-08-11 | 2015-04-20 | ģøė©ģ¤ ģ£¼ģķģ¬ | Apparatus for treating a substrate |
JP5839937B2 (en) * | 2011-10-31 | 2016-01-06 | äøč±éå·„ę„ę Ŗå¼ä¼ē¤¾ | Vacuum processing equipment |
JP5793170B2 (en) * | 2013-09-30 | 2015-10-14 | ę Ŗå¼ä¼ē¤¾ę„ē«å½éé»ę° | Semiconductor device manufacturing method, substrate processing apparatus, and program |
JP5805227B2 (en) * | 2014-01-28 | 2015-11-04 | ę±äŗ¬ćØć¬ćÆććć³ę Ŗå¼ä¼ē¤¾ | Plasma processing equipment |
US9530621B2 (en) * | 2014-05-28 | 2016-12-27 | Tokyo Electron Limited | Integrated induction coil and microwave antenna as an all-planar source |
CN109599248B (en) * | 2018-11-30 | 2021-05-25 | äøå½å·„ēØē©ēē ē©¶é¢åŗēØēµåå¦ē ē©¶ę | 1.8T compact type low-power-consumption strong-field direct-current magnet |
KR20210127620A (en) | 2020-04-13 | 2021-10-22 | ģģ“ģģ¤ģ ģģ“ķ¼ ķė© ė¹.ėøģ“. | method of forming a nitrogen-containing carbon film and system for performing the method |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5024716A (en) * | 1988-01-20 | 1991-06-18 | Canon Kabushiki Kaisha | Plasma processing apparatus for etching, ashing and film-formation |
US5698036A (en) * | 1995-05-26 | 1997-12-16 | Tokyo Electron Limited | Plasma processing apparatus |
US6311638B1 (en) * | 1999-02-10 | 2001-11-06 | Tokyo Electron Limited | Plasma processing method and apparatus |
US6322662B1 (en) * | 1999-02-01 | 2001-11-27 | Tokyo Electron Limited | Plasma treatment system |
US6830652B1 (en) * | 1999-05-26 | 2004-12-14 | Tokyo Electron Limited | Microwave plasma processing apparatus |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0754759B2 (en) * | 1987-04-27 | 1995-06-07 | ę„ę¬é»äæ”é»č©±ę Ŗå¼ä¼ē¤¾ | Plasma processing method and apparatus, and mode converter for plasma processing apparatus |
JPH03191072A (en) * | 1989-12-21 | 1991-08-21 | Canon Inc | Microwave plasma treating device |
JP3056772B2 (en) * | 1990-08-20 | 2000-06-26 | ę Ŗå¼ä¼ē¤¾ę„ē«č£½ä½ę | Plasma control method, plasma processing method and apparatus therefor |
JPH0963793A (en) | 1995-08-25 | 1997-03-07 | Tokyo Electron Ltd | Plasma processing device |
JPH09148097A (en) * | 1995-11-22 | 1997-06-06 | Hitachi Ltd | Plasma producing device, manufacture of semiconductor element using it, and semiconductor element |
US6358324B1 (en) | 1999-04-27 | 2002-03-19 | Tokyo Electron Limited | Microwave plasma processing apparatus having a vacuum pump located under a susceptor |
-
2001
- 2001-03-28 JP JP2001094271A patent/JP4727057B2/en not_active Expired - Fee Related
-
2002
- 2002-03-28 EP EP02708711A patent/EP1376669B1/en not_active Expired - Lifetime
- 2002-03-28 WO PCT/JP2002/003109 patent/WO2002080250A1/en active IP Right Grant
- 2002-03-28 CN CNB028009185A patent/CN1298027C/en not_active Expired - Fee Related
- 2002-03-28 AT AT02708711T patent/ATE362197T1/en not_active IP Right Cessation
- 2002-03-28 DE DE60220039T patent/DE60220039T2/en not_active Expired - Lifetime
- 2002-03-28 IL IL15315502A patent/IL153155A0/en unknown
- 2002-03-28 KR KR10-2002-7016001A patent/KR100486673B1/en not_active IP Right Cessation
- 2002-03-28 US US10/276,721 patent/US20030168008A1/en not_active Abandoned
-
2006
- 2006-01-23 US US11/337,026 patent/US7670454B2/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5024716A (en) * | 1988-01-20 | 1991-06-18 | Canon Kabushiki Kaisha | Plasma processing apparatus for etching, ashing and film-formation |
US5698036A (en) * | 1995-05-26 | 1997-12-16 | Tokyo Electron Limited | Plasma processing apparatus |
US6322662B1 (en) * | 1999-02-01 | 2001-11-27 | Tokyo Electron Limited | Plasma treatment system |
US6311638B1 (en) * | 1999-02-10 | 2001-11-06 | Tokyo Electron Limited | Plasma processing method and apparatus |
US6830652B1 (en) * | 1999-05-26 | 2004-12-14 | Tokyo Electron Limited | Microwave plasma processing apparatus |
Cited By (342)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7156950B2 (en) * | 2002-01-22 | 2007-01-02 | Jusung Engineering Co., Ltd | Gas diffusion plate for use in ICP etcher |
US20030136516A1 (en) * | 2002-01-22 | 2003-07-24 | Hong-Seub Kim | Gas diffussion plate for use in ICP etcher |
US20040168769A1 (en) * | 2002-05-10 | 2004-09-02 | Takaaki Matsuoka | Plasma processing equipment and plasma processing method |
US20100317188A1 (en) * | 2003-08-15 | 2010-12-16 | Tokyo Electon Limited | Fluorine doped carbon films produced by modification by radicals |
US8119518B2 (en) | 2003-08-15 | 2012-02-21 | Tokyo Electron Limited | Noble metal barrier for fluorine-doped carbon films |
US20050173069A1 (en) * | 2004-02-07 | 2005-08-11 | Samsung Electronics Co., Ltd. | Plasma generating apparatus and plasma processing apparatus |
US20070095284A1 (en) * | 2004-06-04 | 2007-05-03 | Iizuka Hachishiro | Gas treating device and film forming device |
EP1806776A1 (en) * | 2004-10-05 | 2007-07-11 | Tokyo Electron Ltd. | Plasma film forming method and plasma film forming device |
US20080311313A1 (en) * | 2004-10-05 | 2008-12-18 | Tokyo Electron Limited | Film Forming Method and Film Forming Apparatus |
EP1806776A4 (en) * | 2004-10-05 | 2009-04-08 | Tokyo Electron Ltd | Plasma film forming method and plasma film forming device |
US8197913B2 (en) * | 2007-07-25 | 2012-06-12 | Tokyo Electron Limited | Film forming method for a semiconductor |
US20090029066A1 (en) * | 2007-07-25 | 2009-01-29 | Tokyo Electron Limited | Film forming method for a semiconductor |
US20100252412A1 (en) * | 2007-10-04 | 2010-10-07 | Tokyo Electron Limited | Plasma processing apparatus and method for adjusting plasma density distribution |
KR101176063B1 (en) * | 2007-10-04 | 2012-08-24 | ėģæģė ķøė” ź°ė¶ģķ¤ź°ģ“ģ¤ | Plasma processing apparatus and method for adjusting plasma density distribution |
US8273210B2 (en) * | 2007-10-04 | 2012-09-25 | Tokyo Electron Limited | Plasma processing apparatus and method for adjusting plasma density distribution |
US20090163013A1 (en) * | 2007-12-21 | 2009-06-25 | Hynix Semiconductor Inc. | Method for Forming Gate of Non-Volatile Memory Device |
US20110143551A1 (en) * | 2008-04-28 | 2011-06-16 | Christophe Borean | Device and process for chemical vapor phase treatment |
US8967081B2 (en) * | 2008-04-28 | 2015-03-03 | Altatech Semiconductor | Device and process for chemical vapor phase treatment |
US20110303364A1 (en) * | 2009-01-21 | 2011-12-15 | Tokyo Electron Limited | Plasma processing apparatus |
US9105450B2 (en) * | 2009-01-21 | 2015-08-11 | Tohoku University | Plasma processing apparatus |
US10844486B2 (en) | 2009-04-06 | 2020-11-24 | Asm Ip Holding B.V. | Semiconductor processing reactor and components thereof |
US10804098B2 (en) | 2009-08-14 | 2020-10-13 | Asm Ip Holding B.V. | Systems and methods for thin-film deposition of metal oxides using excited nitrogen-oxygen species |
US10074521B2 (en) * | 2009-09-10 | 2018-09-11 | Lam Research Corporation | Replaceable upper chamber parts of plasma processing apparatus |
US20120180953A1 (en) * | 2009-09-30 | 2012-07-19 | Tokyo Electron Limited | Plasma processing apparatus and wave retardation plate used therein |
US11725277B2 (en) | 2011-07-20 | 2023-08-15 | Asm Ip Holding B.V. | Pressure transmitter for a semiconductor processing environment |
US10832903B2 (en) | 2011-10-28 | 2020-11-10 | Asm Ip Holding B.V. | Process feed management for semiconductor substrate processing |
US11501956B2 (en) | 2012-10-12 | 2022-11-15 | Asm Ip Holding B.V. | Semiconductor reaction chamber showerhead |
US11967488B2 (en) | 2013-02-01 | 2024-04-23 | Asm Ip Holding B.V. | Method for treatment of deposition reactor |
US11015245B2 (en) | 2014-03-19 | 2021-05-25 | Asm Ip Holding B.V. | Gas-phase reactor and system having exhaust plenum and components thereof |
US10858737B2 (en) | 2014-07-28 | 2020-12-08 | Asm Ip Holding B.V. | Showerhead assembly and components thereof |
US10787741B2 (en) | 2014-08-21 | 2020-09-29 | Asm Ip Holding B.V. | Method and system for in situ formation of gas-phase compounds |
US11795545B2 (en) | 2014-10-07 | 2023-10-24 | Asm Ip Holding B.V. | Multiple temperature range susceptor, assembly, reactor and system including the susceptor, and methods of using the same |
US10941490B2 (en) | 2014-10-07 | 2021-03-09 | Asm Ip Holding B.V. | Multiple temperature range susceptor, assembly, reactor and system including the susceptor, and methods of using the same |
US11742189B2 (en) | 2015-03-12 | 2023-08-29 | Asm Ip Holding B.V. | Multi-zone reactor, system including the reactor, and method of using the same |
US11242598B2 (en) | 2015-06-26 | 2022-02-08 | Asm Ip Holding B.V. | Structures including metal carbide material, devices including the structures, and methods of forming same |
KR20180064490A (en) * | 2015-10-05 | 2018-06-14 | ģ¬ģ“ė ģģģė¼ ķķ ė¼ķė¦¬ź¹ģģ¹ ģė¤ģ¤ķøė¦¬ģ ė ė¼ ė ģøė„“ģø ģ ģė ķøė”ėė ģ ė§ģ“ķ¬ė” ģ¹ė° | Base device for generating plasma with coaxial applicator |
US11120972B2 (en) * | 2015-10-05 | 2021-09-14 | Sairem Societe Pour L'application Industrielle De La Recherche En Electronique Et Micro Ondes | Elementary device for producing a plasma, having a coaxial applicator |
KR102635753B1 (en) * | 2015-10-05 | 2024-02-14 | ģ¬ģ“ė ģģģė¼ ķķ ė¼ķė¦¬ź¹ģģ¹ ģė¤ģ¤ķøė¦¬ģ ė ė¼ ė ģøė„“ģø ģ ģė ķøė”ėė ģ ė§ģ“ķ¬ė” ģ¹ė° | Basic device for generating plasma with a coaxial applicator |
US11233133B2 (en) | 2015-10-21 | 2022-01-25 | Asm Ip Holding B.V. | NbMC layers |
US11139308B2 (en) | 2015-12-29 | 2021-10-05 | Asm Ip Holding B.V. | Atomic layer deposition of III-V compounds to form V-NAND devices |
US11956977B2 (en) | 2015-12-29 | 2024-04-09 | Asm Ip Holding B.V. | Atomic layer deposition of III-V compounds to form V-NAND devices |
US11676812B2 (en) | 2016-02-19 | 2023-06-13 | Asm Ip Holding B.V. | Method for forming silicon nitride film selectively on top/bottom portions |
US10851456B2 (en) | 2016-04-21 | 2020-12-01 | Asm Ip Holding B.V. | Deposition of metal borides |
US10865475B2 (en) | 2016-04-21 | 2020-12-15 | Asm Ip Holding B.V. | Deposition of metal borides and silicides |
US11101370B2 (en) | 2016-05-02 | 2021-08-24 | Asm Ip Holding B.V. | Method of forming a germanium oxynitride film |
US11453943B2 (en) | 2016-05-25 | 2022-09-27 | Asm Ip Holding B.V. | Method for forming carbon-containing silicon/metal oxide or nitride film by ALD using silicon precursor and hydrocarbon precursor |
US11094582B2 (en) | 2016-07-08 | 2021-08-17 | Asm Ip Holding B.V. | Selective deposition method to form air gaps |
US11749562B2 (en) | 2016-07-08 | 2023-09-05 | Asm Ip Holding B.V. | Selective deposition method to form air gaps |
US11649546B2 (en) | 2016-07-08 | 2023-05-16 | Asm Ip Holding B.V. | Organic reactants for atomic layer deposition |
US11205585B2 (en) | 2016-07-28 | 2021-12-21 | Asm Ip Holding B.V. | Substrate processing apparatus and method of operating the same |
US11694892B2 (en) | 2016-07-28 | 2023-07-04 | Asm Ip Holding B.V. | Method and apparatus for filling a gap |
US11107676B2 (en) | 2016-07-28 | 2021-08-31 | Asm Ip Holding B.V. | Method and apparatus for filling a gap |
US11610775B2 (en) | 2016-07-28 | 2023-03-21 | Asm Ip Holding B.V. | Method and apparatus for filling a gap |
US10943771B2 (en) | 2016-10-26 | 2021-03-09 | Asm Ip Holding B.V. | Methods for thermally calibrating reaction chambers |
US11532757B2 (en) | 2016-10-27 | 2022-12-20 | Asm Ip Holding B.V. | Deposition of charge trapping layers |
US10720331B2 (en) | 2016-11-01 | 2020-07-21 | ASM IP Holdings, B.V. | Methods for forming a transition metal nitride film on a substrate by atomic layer deposition and related semiconductor device structures |
US11810788B2 (en) | 2016-11-01 | 2023-11-07 | Asm Ip Holding B.V. | Methods for forming a transition metal niobium nitride film on a substrate by atomic layer deposition and related semiconductor device structures |
US11396702B2 (en) | 2016-11-15 | 2022-07-26 | Asm Ip Holding B.V. | Gas supply unit and substrate processing apparatus including the gas supply unit |
US10934619B2 (en) | 2016-11-15 | 2021-03-02 | Asm Ip Holding B.V. | Gas supply unit and substrate processing apparatus including the gas supply unit |
US11222772B2 (en) * | 2016-12-14 | 2022-01-11 | Asm Ip Holding B.V. | Substrate processing apparatus |
US20180166258A1 (en) * | 2016-12-14 | 2018-06-14 | Asm Ip Holding B.V. | Substrate processing apparatus |
US11851755B2 (en) | 2016-12-15 | 2023-12-26 | Asm Ip Holding B.V. | Sequential infiltration synthesis apparatus and a method of forming a patterned structure |
US11581186B2 (en) | 2016-12-15 | 2023-02-14 | Asm Ip Holding B.V. | Sequential infiltration synthesis apparatus |
US11970766B2 (en) | 2016-12-15 | 2024-04-30 | Asm Ip Holding B.V. | Sequential infiltration synthesis apparatus |
US11447861B2 (en) | 2016-12-15 | 2022-09-20 | Asm Ip Holding B.V. | Sequential infiltration synthesis apparatus and a method of forming a patterned structure |
US12000042B2 (en) | 2016-12-15 | 2024-06-04 | Asm Ip Holding B.V. | Sequential infiltration synthesis apparatus and a method of forming a patterned structure |
US11001925B2 (en) | 2016-12-19 | 2021-05-11 | Asm Ip Holding B.V. | Substrate processing apparatus |
US10784102B2 (en) | 2016-12-22 | 2020-09-22 | Asm Ip Holding B.V. | Method of forming a structure on a substrate |
US11251035B2 (en) | 2016-12-22 | 2022-02-15 | Asm Ip Holding B.V. | Method of forming a structure on a substrate |
US10867788B2 (en) | 2016-12-28 | 2020-12-15 | Asm Ip Holding B.V. | Method of forming a structure on a substrate |
US11390950B2 (en) | 2017-01-10 | 2022-07-19 | Asm Ip Holding B.V. | Reactor system and method to reduce residue buildup during a film deposition process |
US12043899B2 (en) | 2017-01-10 | 2024-07-23 | Asm Ip Holding B.V. | Reactor system and method to reduce residue buildup during a film deposition process |
US12106965B2 (en) | 2017-02-15 | 2024-10-01 | Asm Ip Holding B.V. | Methods for forming a metallic film on a substrate by cyclical deposition and related semiconductor device structures |
US11410851B2 (en) | 2017-02-15 | 2022-08-09 | Asm Ip Holding B.V. | Methods for forming a metallic film on a substrate by cyclical deposition and related semiconductor device structures |
US11658030B2 (en) | 2017-03-29 | 2023-05-23 | Asm Ip Holding B.V. | Method for forming doped metal oxide films on a substrate by cyclical deposition and related semiconductor device structures |
US10950432B2 (en) | 2017-04-25 | 2021-03-16 | Asm Ip Holding B.V. | Method of depositing thin film and method of manufacturing semiconductor device |
US10892156B2 (en) | 2017-05-08 | 2021-01-12 | Asm Ip Holding B.V. | Methods for forming a silicon nitride film on a substrate and related semiconductor device structures |
US11848200B2 (en) | 2017-05-08 | 2023-12-19 | Asm Ip Holding B.V. | Methods for selectively forming a silicon nitride film on a substrate and related semiconductor device structures |
US10886123B2 (en) | 2017-06-02 | 2021-01-05 | Asm Ip Holding B.V. | Methods for forming low temperature semiconductor layers and related semiconductor device structures |
US12040200B2 (en) | 2017-06-20 | 2024-07-16 | Asm Ip Holding B.V. | Semiconductor processing apparatus and methods for calibrating a semiconductor processing apparatus |
US11976361B2 (en) | 2017-06-28 | 2024-05-07 | Asm Ip Holding B.V. | Methods for depositing a transition metal nitride film on a substrate by atomic layer deposition and related deposition apparatus |
US11306395B2 (en) | 2017-06-28 | 2022-04-19 | Asm Ip Holding B.V. | Methods for depositing a transition metal nitride film on a substrate by atomic layer deposition and related deposition apparatus |
US20190006152A1 (en) * | 2017-06-30 | 2019-01-03 | Tokyo Electron Limited | Plasma generating unit and plasma processing apparatus |
US10923323B2 (en) * | 2017-06-30 | 2021-02-16 | Tokyo Electron Limited | Plasma generating unit and plasma processing apparatus |
US11164955B2 (en) | 2017-07-18 | 2021-11-02 | Asm Ip Holding B.V. | Methods for forming a semiconductor device structure and related semiconductor device structures |
US11695054B2 (en) | 2017-07-18 | 2023-07-04 | Asm Ip Holding B.V. | Methods for forming a semiconductor device structure and related semiconductor device structures |
US11018002B2 (en) | 2017-07-19 | 2021-05-25 | Asm Ip Holding B.V. | Method for selectively depositing a Group IV semiconductor and related semiconductor device structures |
US11374112B2 (en) | 2017-07-19 | 2022-06-28 | Asm Ip Holding B.V. | Method for depositing a group IV semiconductor and related semiconductor device structures |
US11004977B2 (en) | 2017-07-19 | 2021-05-11 | Asm Ip Holding B.V. | Method for depositing a group IV semiconductor and related semiconductor device structures |
US11802338B2 (en) | 2017-07-26 | 2023-10-31 | Asm Ip Holding B.V. | Chemical treatment, deposition and/or infiltration apparatus and method for using the same |
US11587821B2 (en) | 2017-08-08 | 2023-02-21 | Asm Ip Holding B.V. | Substrate lift mechanism and reactor including same |
US11417545B2 (en) | 2017-08-08 | 2022-08-16 | Asm Ip Holding B.V. | Radiation shield |
US11139191B2 (en) | 2017-08-09 | 2021-10-05 | Asm Ip Holding B.V. | Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith |
US11769682B2 (en) | 2017-08-09 | 2023-09-26 | Asm Ip Holding B.V. | Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith |
US11830730B2 (en) | 2017-08-29 | 2023-11-28 | Asm Ip Holding B.V. | Layer forming method and apparatus |
US11295980B2 (en) | 2017-08-30 | 2022-04-05 | Asm Ip Holding B.V. | Methods for depositing a molybdenum metal film over a dielectric surface of a substrate by a cyclical deposition process and related semiconductor device structures |
US11056344B2 (en) | 2017-08-30 | 2021-07-06 | Asm Ip Holding B.V. | Layer forming method |
US11581220B2 (en) | 2017-08-30 | 2023-02-14 | Asm Ip Holding B.V. | Methods for depositing a molybdenum metal film over a dielectric surface of a substrate by a cyclical deposition process and related semiconductor device structures |
US11069510B2 (en) | 2017-08-30 | 2021-07-20 | Asm Ip Holding B.V. | Substrate processing apparatus |
US11993843B2 (en) | 2017-08-31 | 2024-05-28 | Asm Ip Holding B.V. | Substrate processing apparatus |
US10928731B2 (en) | 2017-09-21 | 2021-02-23 | Asm Ip Holding B.V. | Method of sequential infiltration synthesis treatment of infiltrateable material and structures and devices formed using same |
US10844484B2 (en) | 2017-09-22 | 2020-11-24 | Asm Ip Holding B.V. | Apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods |
US11387120B2 (en) | 2017-09-28 | 2022-07-12 | Asm Ip Holding B.V. | Chemical dispensing apparatus and methods for dispensing a chemical to a reaction chamber |
US11094546B2 (en) | 2017-10-05 | 2021-08-17 | Asm Ip Holding B.V. | Method for selectively depositing a metallic film on a substrate |
US12033861B2 (en) | 2017-10-05 | 2024-07-09 | Asm Ip Holding B.V. | Method for selectively depositing a metallic film on a substrate |
US12040184B2 (en) | 2017-10-30 | 2024-07-16 | Asm Ip Holding B.V. | Methods for forming a semiconductor structure and related semiconductor structures |
US10923344B2 (en) | 2017-10-30 | 2021-02-16 | Asm Ip Holding B.V. | Methods for forming a semiconductor structure and related semiconductor structures |
US10910262B2 (en) | 2017-11-16 | 2021-02-02 | Asm Ip Holding B.V. | Method of selectively depositing a capping layer structure on a semiconductor device structure |
US11022879B2 (en) | 2017-11-24 | 2021-06-01 | Asm Ip Holding B.V. | Method of forming an enhanced unexposed photoresist layer |
US11682572B2 (en) | 2017-11-27 | 2023-06-20 | Asm Ip Holdings B.V. | Storage device for storing wafer cassettes for use with a batch furnace |
US11639811B2 (en) | 2017-11-27 | 2023-05-02 | Asm Ip Holding B.V. | Apparatus including a clean mini environment |
US11127617B2 (en) | 2017-11-27 | 2021-09-21 | Asm Ip Holding B.V. | Storage device for storing wafer cassettes for use with a batch furnace |
US10872771B2 (en) | 2018-01-16 | 2020-12-22 | Asm Ip Holding B. V. | Method for depositing a material film on a substrate within a reaction chamber by a cyclical deposition process and related device structures |
US11501973B2 (en) | 2018-01-16 | 2022-11-15 | Asm Ip Holding B.V. | Method for depositing a material film on a substrate within a reaction chamber by a cyclical deposition process and related device structures |
US11482412B2 (en) | 2018-01-19 | 2022-10-25 | Asm Ip Holding B.V. | Method for depositing a gap-fill layer by plasma-assisted deposition |
US12119228B2 (en) | 2018-01-19 | 2024-10-15 | Asm Ip Holding B.V. | Deposition method |
US11393690B2 (en) | 2018-01-19 | 2022-07-19 | Asm Ip Holding B.V. | Deposition method |
US11972944B2 (en) | 2018-01-19 | 2024-04-30 | Asm Ip Holding B.V. | Method for depositing a gap-fill layer by plasma-assisted deposition |
US11018047B2 (en) | 2018-01-25 | 2021-05-25 | Asm Ip Holding B.V. | Hybrid lift pin |
USD913980S1 (en) | 2018-02-01 | 2021-03-23 | Asm Ip Holding B.V. | Gas supply plate for semiconductor manufacturing apparatus |
US11735414B2 (en) | 2018-02-06 | 2023-08-22 | Asm Ip Holding B.V. | Method of post-deposition treatment for silicon oxide film |
US11081345B2 (en) | 2018-02-06 | 2021-08-03 | Asm Ip Holding B.V. | Method of post-deposition treatment for silicon oxide film |
US10896820B2 (en) | 2018-02-14 | 2021-01-19 | Asm Ip Holding B.V. | Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process |
US11685991B2 (en) | 2018-02-14 | 2023-06-27 | Asm Ip Holding B.V. | Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process |
US11387106B2 (en) | 2018-02-14 | 2022-07-12 | Asm Ip Holding B.V. | Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process |
US11482418B2 (en) | 2018-02-20 | 2022-10-25 | Asm Ip Holding B.V. | Substrate processing method and apparatus |
US11939673B2 (en) | 2018-02-23 | 2024-03-26 | Asm Ip Holding B.V. | Apparatus for detecting or monitoring for a chemical precursor in a high temperature environment |
US10975470B2 (en) | 2018-02-23 | 2021-04-13 | Asm Ip Holding B.V. | Apparatus for detecting or monitoring for a chemical precursor in a high temperature environment |
US11473195B2 (en) | 2018-03-01 | 2022-10-18 | Asm Ip Holding B.V. | Semiconductor processing apparatus and a method for processing a substrate |
US11629406B2 (en) | 2018-03-09 | 2023-04-18 | Asm Ip Holding B.V. | Semiconductor processing apparatus comprising one or more pyrometers for measuring a temperature of a substrate during transfer of the substrate |
US11114283B2 (en) | 2018-03-16 | 2021-09-07 | Asm Ip Holding B.V. | Reactor, system including the reactor, and methods of manufacturing and using same |
US12020938B2 (en) | 2018-03-27 | 2024-06-25 | Asm Ip Holding B.V. | Method of forming an electrode on a substrate and a semiconductor device structure including an electrode |
US10847371B2 (en) | 2018-03-27 | 2020-11-24 | Asm Ip Holding B.V. | Method of forming an electrode on a substrate and a semiconductor device structure including an electrode |
US11398382B2 (en) | 2018-03-27 | 2022-07-26 | Asm Ip Holding B.V. | Method of forming an electrode on a substrate and a semiconductor device structure including an electrode |
US11230766B2 (en) | 2018-03-29 | 2022-01-25 | Asm Ip Holding B.V. | Substrate processing apparatus and method |
US11088002B2 (en) | 2018-03-29 | 2021-08-10 | Asm Ip Holding B.V. | Substrate rack and a substrate processing system and method |
US10867786B2 (en) | 2018-03-30 | 2020-12-15 | Asm Ip Holding B.V. | Substrate processing method |
US11469098B2 (en) | 2018-05-08 | 2022-10-11 | Asm Ip Holding B.V. | Methods for depositing an oxide film on a substrate by a cyclical deposition process and related device structures |
US12025484B2 (en) | 2018-05-08 | 2024-07-02 | Asm Ip Holding B.V. | Thin film forming method |
US11056567B2 (en) | 2018-05-11 | 2021-07-06 | Asm Ip Holding B.V. | Method of forming a doped metal carbide film on a substrate and related semiconductor device structures |
US11361990B2 (en) | 2018-05-28 | 2022-06-14 | Asm Ip Holding B.V. | Substrate processing method and device manufactured by using the same |
US11908733B2 (en) | 2018-05-28 | 2024-02-20 | Asm Ip Holding B.V. | Substrate processing method and device manufactured by using the same |
US11718913B2 (en) | 2018-06-04 | 2023-08-08 | Asm Ip Holding B.V. | Gas distribution system and reactor system including same |
US11837483B2 (en) | 2018-06-04 | 2023-12-05 | Asm Ip Holding B.V. | Wafer handling chamber with moisture reduction |
US11270899B2 (en) | 2018-06-04 | 2022-03-08 | Asm Ip Holding B.V. | Wafer handling chamber with moisture reduction |
US11286562B2 (en) | 2018-06-08 | 2022-03-29 | Asm Ip Holding B.V. | Gas-phase chemical reactor and method of using same |
US10797133B2 (en) | 2018-06-21 | 2020-10-06 | Asm Ip Holding B.V. | Method for depositing a phosphorus doped silicon arsenide film and related semiconductor device structures |
US11296189B2 (en) | 2018-06-21 | 2022-04-05 | Asm Ip Holding B.V. | Method for depositing a phosphorus doped silicon arsenide film and related semiconductor device structures |
US11530483B2 (en) | 2018-06-21 | 2022-12-20 | Asm Ip Holding B.V. | Substrate processing system |
US11814715B2 (en) | 2018-06-27 | 2023-11-14 | Asm Ip Holding B.V. | Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material |
US11952658B2 (en) | 2018-06-27 | 2024-04-09 | Asm Ip Holding B.V. | Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material |
US11499222B2 (en) | 2018-06-27 | 2022-11-15 | Asm Ip Holding B.V. | Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material |
US11492703B2 (en) | 2018-06-27 | 2022-11-08 | Asm Ip Holding B.V. | Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material |
US11168395B2 (en) | 2018-06-29 | 2021-11-09 | Asm Ip Holding B.V. | Temperature-controlled flange and reactor system including same |
US10914004B2 (en) | 2018-06-29 | 2021-02-09 | Asm Ip Holding B.V. | Thin-film deposition method and manufacturing method of semiconductor device |
US11923190B2 (en) | 2018-07-03 | 2024-03-05 | Asm Ip Holding B.V. | Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition |
US11646197B2 (en) | 2018-07-03 | 2023-05-09 | Asm Ip Holding B.V. | Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition |
US10767789B2 (en) | 2018-07-16 | 2020-09-08 | Asm Ip Holding B.V. | Diaphragm valves, valve components, and methods for forming valve components |
US11053591B2 (en) | 2018-08-06 | 2021-07-06 | Asm Ip Holding B.V. | Multi-port gas injection system and reactor system including same |
US10883175B2 (en) | 2018-08-09 | 2021-01-05 | Asm Ip Holding B.V. | Vertical furnace for processing substrates and a liner for use therein |
US10829852B2 (en) | 2018-08-16 | 2020-11-10 | Asm Ip Holding B.V. | Gas distribution device for a wafer processing apparatus |
US11430674B2 (en) | 2018-08-22 | 2022-08-30 | Asm Ip Holding B.V. | Sensor array, apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods |
US11804388B2 (en) | 2018-09-11 | 2023-10-31 | Asm Ip Holding B.V. | Substrate processing apparatus and method |
US11024523B2 (en) | 2018-09-11 | 2021-06-01 | Asm Ip Holding B.V. | Substrate processing apparatus and method |
US11274369B2 (en) | 2018-09-11 | 2022-03-15 | Asm Ip Holding B.V. | Thin film deposition method |
US11049751B2 (en) | 2018-09-14 | 2021-06-29 | Asm Ip Holding B.V. | Cassette supply system to store and handle cassettes and processing apparatus equipped therewith |
US11885023B2 (en) | 2018-10-01 | 2024-01-30 | Asm Ip Holding B.V. | Substrate retaining apparatus, system including the apparatus, and method of using same |
US11232963B2 (en) | 2018-10-03 | 2022-01-25 | Asm Ip Holding B.V. | Substrate processing apparatus and method |
US11414760B2 (en) | 2018-10-08 | 2022-08-16 | Asm Ip Holding B.V. | Substrate support unit, thin film deposition apparatus including the same, and substrate processing apparatus including the same |
US11251068B2 (en) | 2018-10-19 | 2022-02-15 | Asm Ip Holding B.V. | Substrate processing apparatus and substrate processing method |
US11664199B2 (en) | 2018-10-19 | 2023-05-30 | Asm Ip Holding B.V. | Substrate processing apparatus and substrate processing method |
USD948463S1 (en) | 2018-10-24 | 2022-04-12 | Asm Ip Holding B.V. | Susceptor for semiconductor substrate supporting apparatus |
US11735445B2 (en) | 2018-10-31 | 2023-08-22 | Asm Ip Holding B.V. | Substrate processing apparatus for processing substrates |
US11087997B2 (en) | 2018-10-31 | 2021-08-10 | Asm Ip Holding B.V. | Substrate processing apparatus for processing substrates |
US11499226B2 (en) | 2018-11-02 | 2022-11-15 | Asm Ip Holding B.V. | Substrate supporting unit and a substrate processing device including the same |
US11866823B2 (en) | 2018-11-02 | 2024-01-09 | Asm Ip Holding B.V. | Substrate supporting unit and a substrate processing device including the same |
US11572620B2 (en) | 2018-11-06 | 2023-02-07 | Asm Ip Holding B.V. | Methods for selectively depositing an amorphous silicon film on a substrate |
US11031242B2 (en) | 2018-11-07 | 2021-06-08 | Asm Ip Holding B.V. | Methods for depositing a boron doped silicon germanium film |
US11244825B2 (en) | 2018-11-16 | 2022-02-08 | Asm Ip Holding B.V. | Methods for depositing a transition metal chalcogenide film on a substrate by a cyclical deposition process |
US11411088B2 (en) | 2018-11-16 | 2022-08-09 | Asm Ip Holding B.V. | Methods for forming a metal silicate film on a substrate in a reaction chamber and related semiconductor device structures |
US11798999B2 (en) | 2018-11-16 | 2023-10-24 | Asm Ip Holding B.V. | Methods for forming a metal silicate film on a substrate in a reaction chamber and related semiconductor device structures |
US10847366B2 (en) | 2018-11-16 | 2020-11-24 | Asm Ip Holding B.V. | Methods for depositing a transition metal chalcogenide film on a substrate by a cyclical deposition process |
US10818758B2 (en) | 2018-11-16 | 2020-10-27 | Asm Ip Holding B.V. | Methods for forming a metal silicate film on a substrate in a reaction chamber and related semiconductor device structures |
US12040199B2 (en) | 2018-11-28 | 2024-07-16 | Asm Ip Holding B.V. | Substrate processing apparatus for processing substrates |
US11217444B2 (en) | 2018-11-30 | 2022-01-04 | Asm Ip Holding B.V. | Method for forming an ultraviolet radiation responsive metal oxide-containing film |
US11488819B2 (en) | 2018-12-04 | 2022-11-01 | Asm Ip Holding B.V. | Method of cleaning substrate processing apparatus |
US11158513B2 (en) | 2018-12-13 | 2021-10-26 | Asm Ip Holding B.V. | Methods for forming a rhenium-containing film on a substrate by a cyclical deposition process and related semiconductor device structures |
US11769670B2 (en) | 2018-12-13 | 2023-09-26 | Asm Ip Holding B.V. | Methods for forming a rhenium-containing film on a substrate by a cyclical deposition process and related semiconductor device structures |
US11658029B2 (en) | 2018-12-14 | 2023-05-23 | Asm Ip Holding B.V. | Method of forming a device structure using selective deposition of gallium nitride and system for same |
US11390946B2 (en) | 2019-01-17 | 2022-07-19 | Asm Ip Holding B.V. | Methods of forming a transition metal containing film on a substrate by a cyclical deposition process |
US11959171B2 (en) | 2019-01-17 | 2024-04-16 | Asm Ip Holding B.V. | Methods of forming a transition metal containing film on a substrate by a cyclical deposition process |
US11171025B2 (en) | 2019-01-22 | 2021-11-09 | Asm Ip Holding B.V. | Substrate processing device |
US11127589B2 (en) | 2019-02-01 | 2021-09-21 | Asm Ip Holding B.V. | Method of topology-selective film formation of silicon oxide |
US11342216B2 (en) | 2019-02-20 | 2022-05-24 | Asm Ip Holding B.V. | Cyclical deposition method and apparatus for filling a recess formed within a substrate surface |
US11615980B2 (en) | 2019-02-20 | 2023-03-28 | Asm Ip Holding B.V. | Method and apparatus for filling a recess formed within a substrate surface |
US11251040B2 (en) | 2019-02-20 | 2022-02-15 | Asm Ip Holding B.V. | Cyclical deposition method including treatment step and apparatus for same |
US11482533B2 (en) | 2019-02-20 | 2022-10-25 | Asm Ip Holding B.V. | Apparatus and methods for plug fill deposition in 3-D NAND applications |
US11798834B2 (en) | 2019-02-20 | 2023-10-24 | Asm Ip Holding B.V. | Cyclical deposition method and apparatus for filling a recess formed within a substrate surface |
US11227789B2 (en) | 2019-02-20 | 2022-01-18 | Asm Ip Holding B.V. | Method and apparatus for filling a recess formed within a substrate surface |
US11629407B2 (en) | 2019-02-22 | 2023-04-18 | Asm Ip Holding B.V. | Substrate processing apparatus and method for processing substrates |
US11901175B2 (en) | 2019-03-08 | 2024-02-13 | Asm Ip Holding B.V. | Method for selective deposition of silicon nitride layer and structure including selectively-deposited silicon nitride layer |
US11424119B2 (en) | 2019-03-08 | 2022-08-23 | Asm Ip Holding B.V. | Method for selective deposition of silicon nitride layer and structure including selectively-deposited silicon nitride layer |
US11114294B2 (en) | 2019-03-08 | 2021-09-07 | Asm Ip Holding B.V. | Structure including SiOC layer and method of forming same |
US11742198B2 (en) | 2019-03-08 | 2023-08-29 | Asm Ip Holding B.V. | Structure including SiOCN layer and method of forming same |
US11378337B2 (en) | 2019-03-28 | 2022-07-05 | Asm Ip Holding B.V. | Door opener and substrate processing apparatus provided therewith |
US11551925B2 (en) | 2019-04-01 | 2023-01-10 | Asm Ip Holding B.V. | Method for manufacturing a semiconductor device |
US11447864B2 (en) | 2019-04-19 | 2022-09-20 | Asm Ip Holding B.V. | Layer forming method and apparatus |
US11814747B2 (en) | 2019-04-24 | 2023-11-14 | Asm Ip Holding B.V. | Gas-phase reactor system-with a reaction chamber, a solid precursor source vessel, a gas distribution system, and a flange assembly |
US11781221B2 (en) | 2019-05-07 | 2023-10-10 | Asm Ip Holding B.V. | Chemical source vessel with dip tube |
US11289326B2 (en) | 2019-05-07 | 2022-03-29 | Asm Ip Holding B.V. | Method for reforming amorphous carbon polymer film |
US11355338B2 (en) | 2019-05-10 | 2022-06-07 | Asm Ip Holding B.V. | Method of depositing material onto a surface and structure formed according to the method |
US11996309B2 (en) | 2019-05-16 | 2024-05-28 | Asm Ip Holding B.V. | Wafer boat handling device, vertical batch furnace and method |
US11515188B2 (en) | 2019-05-16 | 2022-11-29 | Asm Ip Holding B.V. | Wafer boat handling device, vertical batch furnace and method |
USD975665S1 (en) | 2019-05-17 | 2023-01-17 | Asm Ip Holding B.V. | Susceptor shaft |
USD947913S1 (en) | 2019-05-17 | 2022-04-05 | Asm Ip Holding B.V. | Susceptor shaft |
USD935572S1 (en) | 2019-05-24 | 2021-11-09 | Asm Ip Holding B.V. | Gas channel plate |
USD922229S1 (en) | 2019-06-05 | 2021-06-15 | Asm Ip Holding B.V. | Device for controlling a temperature of a gas supply unit |
US11345999B2 (en) | 2019-06-06 | 2022-05-31 | Asm Ip Holding B.V. | Method of using a gas-phase reactor system including analyzing exhausted gas |
US11453946B2 (en) | 2019-06-06 | 2022-09-27 | Asm Ip Holding B.V. | Gas-phase reactor system including a gas detector |
US11908684B2 (en) | 2019-06-11 | 2024-02-20 | Asm Ip Holding B.V. | Method of forming an electronic structure using reforming gas, system for performing the method, and structure formed using the method |
US11476109B2 (en) | 2019-06-11 | 2022-10-18 | Asm Ip Holding B.V. | Method of forming an electronic structure using reforming gas, system for performing the method, and structure formed using the method |
USD944946S1 (en) | 2019-06-14 | 2022-03-01 | Asm Ip Holding B.V. | Shower plate |
USD931978S1 (en) | 2019-06-27 | 2021-09-28 | Asm Ip Holding B.V. | Showerhead vacuum transport |
US11390945B2 (en) | 2019-07-03 | 2022-07-19 | Asm Ip Holding B.V. | Temperature control assembly for substrate processing apparatus and method of using same |
US11746414B2 (en) | 2019-07-03 | 2023-09-05 | Asm Ip Holding B.V. | Temperature control assembly for substrate processing apparatus and method of using same |
US11605528B2 (en) | 2019-07-09 | 2023-03-14 | Asm Ip Holding B.V. | Plasma device using coaxial waveguide, and substrate treatment method |
US11664267B2 (en) | 2019-07-10 | 2023-05-30 | Asm Ip Holding B.V. | Substrate support assembly and substrate processing device including the same |
US12107000B2 (en) | 2019-07-10 | 2024-10-01 | Asm Ip Holding B.V. | Substrate support assembly and substrate processing device including the same |
US11996304B2 (en) | 2019-07-16 | 2024-05-28 | Asm Ip Holding B.V. | Substrate processing device |
US11664245B2 (en) | 2019-07-16 | 2023-05-30 | Asm Ip Holding B.V. | Substrate processing device |
US11688603B2 (en) | 2019-07-17 | 2023-06-27 | Asm Ip Holding B.V. | Methods of forming silicon germanium structures |
US11615970B2 (en) | 2019-07-17 | 2023-03-28 | Asm Ip Holding B.V. | Radical assist ignition plasma system and method |
US11643724B2 (en) | 2019-07-18 | 2023-05-09 | Asm Ip Holding B.V. | Method of forming structures using a neutral beam |
US12112940B2 (en) | 2019-07-19 | 2024-10-08 | Asm Ip Holding B.V. | Method of forming topology-controlled amorphous carbon polymer film |
US11282698B2 (en) | 2019-07-19 | 2022-03-22 | Asm Ip Holding B.V. | Method of forming topology-controlled amorphous carbon polymer film |
US11557474B2 (en) | 2019-07-29 | 2023-01-17 | Asm Ip Holding B.V. | Methods for selective deposition utilizing n-type dopants and/or alternative dopants to achieve high dopant incorporation |
US11430640B2 (en) | 2019-07-30 | 2022-08-30 | Asm Ip Holding B.V. | Substrate processing apparatus |
US11443926B2 (en) | 2019-07-30 | 2022-09-13 | Asm Ip Holding B.V. | Substrate processing apparatus |
US11587815B2 (en) | 2019-07-31 | 2023-02-21 | Asm Ip Holding B.V. | Vertical batch furnace assembly |
US11587814B2 (en) | 2019-07-31 | 2023-02-21 | Asm Ip Holding B.V. | Vertical batch furnace assembly |
US11227782B2 (en) | 2019-07-31 | 2022-01-18 | Asm Ip Holding B.V. | Vertical batch furnace assembly |
US11876008B2 (en) | 2019-07-31 | 2024-01-16 | Asm Ip Holding B.V. | Vertical batch furnace assembly |
US11680839B2 (en) | 2019-08-05 | 2023-06-20 | Asm Ip Holding B.V. | Liquid level sensor for a chemical source vessel |
USD965044S1 (en) | 2019-08-19 | 2022-09-27 | Asm Ip Holding B.V. | Susceptor shaft |
USD965524S1 (en) | 2019-08-19 | 2022-10-04 | Asm Ip Holding B.V. | Susceptor support |
US11639548B2 (en) | 2019-08-21 | 2023-05-02 | Asm Ip Holding B.V. | Film-forming material mixed-gas forming device and film forming device |
USD930782S1 (en) | 2019-08-22 | 2021-09-14 | Asm Ip Holding B.V. | Gas distributor |
USD940837S1 (en) | 2019-08-22 | 2022-01-11 | Asm Ip Holding B.V. | Electrode |
US11594450B2 (en) | 2019-08-22 | 2023-02-28 | Asm Ip Holding B.V. | Method for forming a structure with a hole |
USD979506S1 (en) | 2019-08-22 | 2023-02-28 | Asm Ip Holding B.V. | Insulator |
USD949319S1 (en) | 2019-08-22 | 2022-04-19 | Asm Ip Holding B.V. | Exhaust duct |
US12040229B2 (en) | 2019-08-22 | 2024-07-16 | Asm Ip Holding B.V. | Method for forming a structure with a hole |
US12033849B2 (en) | 2019-08-23 | 2024-07-09 | Asm Ip Holding B.V. | Method for depositing silicon oxide film having improved quality by PEALD using bis(diethylamino)silane |
US11898242B2 (en) | 2019-08-23 | 2024-02-13 | Asm Ip Holding B.V. | Methods for forming a polycrystalline molybdenum film over a surface of a substrate and related structures including a polycrystalline molybdenum film |
US11527400B2 (en) | 2019-08-23 | 2022-12-13 | Asm Ip Holding B.V. | Method for depositing silicon oxide film having improved quality by peald using bis(diethylamino)silane |
US11286558B2 (en) | 2019-08-23 | 2022-03-29 | Asm Ip Holding B.V. | Methods for depositing a molybdenum nitride film on a surface of a substrate by a cyclical deposition process and related semiconductor device structures including a molybdenum nitride film |
US11827978B2 (en) | 2019-08-23 | 2023-11-28 | Asm Ip Holding B.V. | Methods for depositing a molybdenum nitride film on a surface of a substrate by a cyclical deposition process and related semiconductor device structures including a molybdenum nitride film |
US11495459B2 (en) | 2019-09-04 | 2022-11-08 | Asm Ip Holding B.V. | Methods for selective deposition using a sacrificial capping layer |
US11823876B2 (en) | 2019-09-05 | 2023-11-21 | Asm Ip Holding B.V. | Substrate processing apparatus |
US11562901B2 (en) | 2019-09-25 | 2023-01-24 | Asm Ip Holding B.V. | Substrate processing method |
US11610774B2 (en) | 2019-10-02 | 2023-03-21 | Asm Ip Holding B.V. | Methods for forming a topographically selective silicon oxide film by a cyclical plasma-enhanced deposition process |
US11339476B2 (en) | 2019-10-08 | 2022-05-24 | Asm Ip Holding B.V. | Substrate processing device having connection plates, substrate processing method |
US12006572B2 (en) | 2019-10-08 | 2024-06-11 | Asm Ip Holding B.V. | Reactor system including a gas distribution assembly for use with activated species and method of using same |
US11735422B2 (en) | 2019-10-10 | 2023-08-22 | Asm Ip Holding B.V. | Method of forming a photoresist underlayer and structure including same |
US12009241B2 (en) | 2019-10-14 | 2024-06-11 | Asm Ip Holding B.V. | Vertical batch furnace assembly with detector to detect cassette |
US11637011B2 (en) | 2019-10-16 | 2023-04-25 | Asm Ip Holding B.V. | Method of topology-selective film formation of silicon oxide |
US11637014B2 (en) | 2019-10-17 | 2023-04-25 | Asm Ip Holding B.V. | Methods for selective deposition of doped semiconductor material |
US11315794B2 (en) | 2019-10-21 | 2022-04-26 | Asm Ip Holding B.V. | Apparatus and methods for selectively etching films |
US11996292B2 (en) | 2019-10-25 | 2024-05-28 | Asm Ip Holding B.V. | Methods for filling a gap feature on a substrate surface and related semiconductor structures |
US11646205B2 (en) | 2019-10-29 | 2023-05-09 | Asm Ip Holding B.V. | Methods of selectively forming n-type doped material on a surface, systems for selectively forming n-type doped material, and structures formed using same |
US11594600B2 (en) | 2019-11-05 | 2023-02-28 | Asm Ip Holding B.V. | Structures with doped semiconductor layers and methods and systems for forming same |
US11501968B2 (en) | 2019-11-15 | 2022-11-15 | Asm Ip Holding B.V. | Method for providing a semiconductor device with silicon filled gaps |
US11626316B2 (en) | 2019-11-20 | 2023-04-11 | Asm Ip Holding B.V. | Method of depositing carbon-containing material on a surface of a substrate, structure formed using the method, and system for forming the structure |
US11401605B2 (en) | 2019-11-26 | 2022-08-02 | Asm Ip Holding B.V. | Substrate processing apparatus |
US11915929B2 (en) | 2019-11-26 | 2024-02-27 | Asm Ip Holding B.V. | Methods for selectively forming a target film on a substrate comprising a first dielectric surface and a second metallic surface |
US11923181B2 (en) | 2019-11-29 | 2024-03-05 | Asm Ip Holding B.V. | Substrate processing apparatus for minimizing the effect of a filling gas during substrate processing |
US11646184B2 (en) | 2019-11-29 | 2023-05-09 | Asm Ip Holding B.V. | Substrate processing apparatus |
US11929251B2 (en) | 2019-12-02 | 2024-03-12 | Asm Ip Holding B.V. | Substrate processing apparatus having electrostatic chuck and substrate processing method |
US11840761B2 (en) | 2019-12-04 | 2023-12-12 | Asm Ip Holding B.V. | Substrate processing apparatus |
US11885013B2 (en) | 2019-12-17 | 2024-01-30 | Asm Ip Holding B.V. | Method of forming vanadium nitride layer and structure including the vanadium nitride layer |
US11527403B2 (en) | 2019-12-19 | 2022-12-13 | Asm Ip Holding B.V. | Methods for filling a gap feature on a substrate surface and related semiconductor structures |
US12119220B2 (en) | 2019-12-19 | 2024-10-15 | Asm Ip Holding B.V. | Methods for filling a gap feature on a substrate surface and related semiconductor structures |
US12033885B2 (en) | 2020-01-06 | 2024-07-09 | Asm Ip Holding B.V. | Channeled lift pin |
US11976359B2 (en) | 2020-01-06 | 2024-05-07 | Asm Ip Holding B.V. | Gas supply assembly, components thereof, and reactor system including same |
US11993847B2 (en) | 2020-01-08 | 2024-05-28 | Asm Ip Holding B.V. | Injector |
US11551912B2 (en) | 2020-01-20 | 2023-01-10 | Asm Ip Holding B.V. | Method of forming thin film and method of modifying surface of thin film |
US11521851B2 (en) | 2020-02-03 | 2022-12-06 | Asm Ip Holding B.V. | Method of forming structures including a vanadium or indium layer |
US11828707B2 (en) | 2020-02-04 | 2023-11-28 | Asm Ip Holding B.V. | Method and apparatus for transmittance measurements of large articles |
US11776846B2 (en) | 2020-02-07 | 2023-10-03 | Asm Ip Holding B.V. | Methods for depositing gap filling fluids and related systems and devices |
US11781243B2 (en) | 2020-02-17 | 2023-10-10 | Asm Ip Holding B.V. | Method for depositing low temperature phosphorous-doped silicon |
US11986868B2 (en) | 2020-02-28 | 2024-05-21 | Asm Ip Holding B.V. | System dedicated for parts cleaning |
US11876356B2 (en) | 2020-03-11 | 2024-01-16 | Asm Ip Holding B.V. | Lockout tagout assembly and system and method of using same |
US11488854B2 (en) | 2020-03-11 | 2022-11-01 | Asm Ip Holding B.V. | Substrate handling device with adjustable joints |
US11837494B2 (en) | 2020-03-11 | 2023-12-05 | Asm Ip Holding B.V. | Substrate handling device with adjustable joints |
US11961741B2 (en) | 2020-03-12 | 2024-04-16 | Asm Ip Holding B.V. | Method for fabricating layer structure having target topological profile |
US11823866B2 (en) | 2020-04-02 | 2023-11-21 | Asm Ip Holding B.V. | Thin film forming method |
US11830738B2 (en) | 2020-04-03 | 2023-11-28 | Asm Ip Holding B.V. | Method for forming barrier layer and method for manufacturing semiconductor device |
US11437241B2 (en) | 2020-04-08 | 2022-09-06 | Asm Ip Holding B.V. | Apparatus and methods for selectively etching silicon oxide films |
US12087586B2 (en) | 2020-04-15 | 2024-09-10 | Asm Ip Holding B.V. | Method of forming chromium nitride layer and structure including the chromium nitride layer |
US11821078B2 (en) | 2020-04-15 | 2023-11-21 | Asm Ip Holding B.V. | Method for forming precoat film and method for forming silicon-containing film |
US11996289B2 (en) | 2020-04-16 | 2024-05-28 | Asm Ip Holding B.V. | Methods of forming structures including silicon germanium and silicon layers, devices formed using the methods, and systems for performing the methods |
US11898243B2 (en) | 2020-04-24 | 2024-02-13 | Asm Ip Holding B.V. | Method of forming vanadium nitride-containing layer |
US11887857B2 (en) | 2020-04-24 | 2024-01-30 | Asm Ip Holding B.V. | Methods and systems for depositing a layer comprising vanadium, nitrogen, and a further element |
US11530876B2 (en) | 2020-04-24 | 2022-12-20 | Asm Ip Holding B.V. | Vertical batch furnace assembly comprising a cooling gas supply |
US11959168B2 (en) | 2020-04-29 | 2024-04-16 | Asm Ip Holding B.V. | Solid source precursor vessel |
US11515187B2 (en) | 2020-05-01 | 2022-11-29 | Asm Ip Holding B.V. | Fast FOUP swapping with a FOUP handler |
US11798830B2 (en) | 2020-05-01 | 2023-10-24 | Asm Ip Holding B.V. | Fast FOUP swapping with a FOUP handler |
US12051602B2 (en) | 2020-05-04 | 2024-07-30 | Asm Ip Holding B.V. | Substrate processing system for processing substrates with an electronics module located behind a door in a front wall of the substrate processing system |
US11626308B2 (en) | 2020-05-13 | 2023-04-11 | Asm Ip Holding B.V. | Laser alignment fixture for a reactor system |
US12057314B2 (en) | 2020-05-15 | 2024-08-06 | Asm Ip Holding B.V. | Methods for silicon germanium uniformity control using multiple precursors |
US11804364B2 (en) | 2020-05-19 | 2023-10-31 | Asm Ip Holding B.V. | Substrate processing apparatus |
US11705333B2 (en) | 2020-05-21 | 2023-07-18 | Asm Ip Holding B.V. | Structures including multiple carbon layers and methods of forming and using same |
US11987881B2 (en) | 2020-05-22 | 2024-05-21 | Asm Ip Holding B.V. | Apparatus for depositing thin films using hydrogen peroxide |
US11767589B2 (en) | 2020-05-29 | 2023-09-26 | Asm Ip Holding B.V. | Substrate processing device |
US12106944B2 (en) | 2020-06-02 | 2024-10-01 | Asm Ip Holding B.V. | Rotating substrate support |
US11646204B2 (en) | 2020-06-24 | 2023-05-09 | Asm Ip Holding B.V. | Method for forming a layer provided with silicon |
US11658035B2 (en) | 2020-06-30 | 2023-05-23 | Asm Ip Holding B.V. | Substrate processing method |
US12020934B2 (en) | 2020-07-08 | 2024-06-25 | Asm Ip Holding B.V. | Substrate processing method |
US11644758B2 (en) | 2020-07-17 | 2023-05-09 | Asm Ip Holding B.V. | Structures and methods for use in photolithography |
US12055863B2 (en) | 2020-07-17 | 2024-08-06 | Asm Ip Holding B.V. | Structures and methods for use in photolithography |
US11674220B2 (en) | 2020-07-20 | 2023-06-13 | Asm Ip Holding B.V. | Method for depositing molybdenum layers using an underlayer |
US12040177B2 (en) | 2020-08-18 | 2024-07-16 | Asm Ip Holding B.V. | Methods for forming a laminate film by cyclical plasma-enhanced deposition processes |
US11725280B2 (en) | 2020-08-26 | 2023-08-15 | Asm Ip Holding B.V. | Method for forming metal silicon oxide and metal silicon oxynitride layers |
US12074022B2 (en) | 2020-08-27 | 2024-08-27 | Asm Ip Holding B.V. | Method and system for forming patterned structures using multiple patterning process |
USD990534S1 (en) | 2020-09-11 | 2023-06-27 | Asm Ip Holding B.V. | Weighted lift pin |
USD1012873S1 (en) | 2020-09-24 | 2024-01-30 | Asm Ip Holding B.V. | Electrode for semiconductor processing apparatus |
US12009224B2 (en) | 2020-09-29 | 2024-06-11 | Asm Ip Holding B.V. | Apparatus and method for etching metal nitrides |
US12107005B2 (en) | 2020-10-06 | 2024-10-01 | Asm Ip Holding B.V. | Deposition method and an apparatus for depositing a silicon-containing material |
US12051567B2 (en) | 2020-10-07 | 2024-07-30 | Asm Ip Holding B.V. | Gas supply unit and substrate processing apparatus including gas supply unit |
US11827981B2 (en) | 2020-10-14 | 2023-11-28 | Asm Ip Holding B.V. | Method of depositing material on stepped structure |
US11873557B2 (en) | 2020-10-22 | 2024-01-16 | Asm Ip Holding B.V. | Method of depositing vanadium metal |
US11901179B2 (en) | 2020-10-28 | 2024-02-13 | Asm Ip Holding B.V. | Method and device for depositing silicon onto substrates |
US12027365B2 (en) | 2020-11-24 | 2024-07-02 | Asm Ip Holding B.V. | Methods for filling a gap and related systems and devices |
US11891696B2 (en) | 2020-11-30 | 2024-02-06 | Asm Ip Holding B.V. | Injector configured for arrangement within a reaction chamber of a substrate processing apparatus |
US11946137B2 (en) | 2020-12-16 | 2024-04-02 | Asm Ip Holding B.V. | Runout and wobble measurement fixtures |
US11885020B2 (en) | 2020-12-22 | 2024-01-30 | Asm Ip Holding B.V. | Transition metal deposition method |
US12125700B2 (en) | 2021-01-13 | 2024-10-22 | Asm Ip Holding B.V. | Method of forming high aspect ratio features |
USD1023959S1 (en) | 2021-05-11 | 2024-04-23 | Asm Ip Holding B.V. | Electrode for substrate processing apparatus |
USD980814S1 (en) | 2021-05-11 | 2023-03-14 | Asm Ip Holding B.V. | Gas distributor for substrate processing apparatus |
USD981973S1 (en) | 2021-05-11 | 2023-03-28 | Asm Ip Holding B.V. | Reactor wall for substrate processing apparatus |
USD980813S1 (en) | 2021-05-11 | 2023-03-14 | Asm Ip Holding B.V. | Gas flow control plate for substrate processing apparatus |
USD990441S1 (en) | 2021-09-07 | 2023-06-27 | Asm Ip Holding B.V. | Gas flow control plate |
Also Published As
Publication number | Publication date |
---|---|
WO2002080250A1 (en) | 2002-10-10 |
EP1376669A1 (en) | 2004-01-02 |
DE60220039D1 (en) | 2007-06-21 |
CN1460285A (en) | 2003-12-03 |
KR20030004428A (en) | 2003-01-14 |
JP4727057B2 (en) | 2011-07-20 |
ATE362197T1 (en) | 2007-06-15 |
US7670454B2 (en) | 2010-03-02 |
CN1298027C (en) | 2007-01-31 |
JP2002299314A (en) | 2002-10-11 |
IL153155A0 (en) | 2003-06-24 |
EP1376669A4 (en) | 2006-01-04 |
US20060118241A1 (en) | 2006-06-08 |
EP1376669B1 (en) | 2007-05-09 |
KR100486673B1 (en) | 2005-05-03 |
DE60220039T2 (en) | 2008-01-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7670454B2 (en) | Plasma processing apparatus | |
US7097735B2 (en) | Plasma processing device | |
US7115184B2 (en) | Plasma processing device | |
US20040094094A1 (en) | Plasma processing device | |
US7083701B2 (en) | Device and method for plasma processing, and slow-wave plate | |
US20090229755A1 (en) | Plasma processing apparatus | |
US7513214B2 (en) | Plasma processing method and apparatus | |
US6677549B2 (en) | Plasma processing apparatus having permeable window covered with light shielding film | |
US20030148623A1 (en) | Plasma processing device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |