US20030012837A1 - Process and device for coinjection molding multilayer products - Google Patents

Process and device for coinjection molding multilayer products Download PDF

Info

Publication number
US20030012837A1
US20030012837A1 US10/241,538 US24153802A US2003012837A1 US 20030012837 A1 US20030012837 A1 US 20030012837A1 US 24153802 A US24153802 A US 24153802A US 2003012837 A1 US2003012837 A1 US 2003012837A1
Authority
US
United States
Prior art keywords
injection
nozzles
nozzle
mold
points
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/241,538
Inventor
Dante Siano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Johnson Controls SpA
Original Assignee
Johnson Controls SpA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Johnson Controls SpA filed Critical Johnson Controls SpA
Priority to US10/241,538 priority Critical patent/US20030012837A1/en
Publication of US20030012837A1 publication Critical patent/US20030012837A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/16Making multilayered or multicoloured articles
    • B29C45/1642Making multilayered or multicoloured articles having a "sandwich" structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0025Preventing defects on the moulded article, e.g. weld lines, shrinkage marks
    • B29C2045/0032Preventing defects on the moulded article, e.g. weld lines, shrinkage marks sequential injection from multiple gates, e.g. to avoid weld lines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C2045/0093Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor of articles provided with an attaching element
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/16Making multilayered or multicoloured articles
    • B29C45/1642Making multilayered or multicoloured articles having a "sandwich" structure
    • B29C2045/1651Independent injection runners or nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/16Making multilayered or multicoloured articles
    • B29C45/1642Making multilayered or multicoloured articles having a "sandwich" structure
    • B29C2045/1654Making multilayered or multicoloured articles having a "sandwich" structure whereby the core material is penetrating through the skin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/30Vehicles, e.g. ships or aircraft, or body parts thereof
    • B29L2031/3005Body finishings
    • B29L2031/3014Door linings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31855Of addition polymer from unsaturated monomers

Definitions

  • the present invention relates to a process and a device for co-injection molding multi-layer elements and to the products thus obtained.
  • the invention relates to the production of elements provided with at least one part having, an external skin which covers an internal core material.
  • examples of such product are trim panels and trim elements of motor vehicles.
  • the European Patent N o 0579925 in the name of the applicant, describes a device for co-injection molding provided with independently heated hot channels and nozzles located in the wall of the mould.
  • the nozzles described may be either coaxial or side-by-side and they allow two or more materials to be injected successively into the same mould cavity from a plurality of points.
  • PCT application N o WO95/17291 in the name of the applicant, describes a process for co-injection of products with complex shapes. According to this process, the thickness of the mould is controlled according to the rheological properties of the material to be injected in order to obtain flow paths having substantially the some resistance and thus achieve homogenous distribution of the material inside the mould.
  • the materials are injected via nozzles of the type for sequential injection of two materials: in the preferred embodiment only one nozzle is used for a mould for a car panel.
  • a further aim of the invention is to provide a device to carry out the above described process.
  • the invention further relates to a device for co-injection moulding multi-layer products, according to claim 7.
  • a further object of the invention are the multi-layer products obtained by the process of the invention, according to claim 14.
  • the invention has several advantages over known processes. Lower injection pressures are required, therefore smaller and less expensive presses can be used. Also, the molding-cycle time is shorter than in prior art. Furthermore, junction lines between the flows of materials are avoided and the mould can have substantially constant thickness for the greater part of its extent, if this does not conflict with the design requirements. The constant thickness results in greater facility of design and less weight in the finished product.
  • Another advantage lies in being able to produce the fixing elements to assemble the panels onto the doors and the counter-panels or complementary panels (retainers and studs) out of core material alone, i.e. with a rigid material.
  • core material alone, i.e. with a rigid material.
  • very soft materials can be chosen for the skin layer, improving the ‘feel’ of the finished product.
  • FIG. 1 is a schematic sectional view of a device according to the invention.
  • FIG. 2 is a schematic plan view of the back of a vehicle interior panel on which are shown the injection points.
  • FIGS. 3 a - 3 c are enlarged schematic views of a detail of the device of FIG. 1 during the molding steps;
  • FIG. 4 is a block diagram of an embodiment according to the invention.
  • FIGS. 5 and 6 are schematic views of other products which can be obtained with the process according to the invention.
  • the present invention provides for a multi-point co-injection process of two or more materials in the same mould cavity, in which only one material is injected from at least one of the injection points, i.e. the feeding to that point is dedicated to a single material and there are no other materials delivered to that point.
  • at least one of the points (and one of the nozzles) for the injection of the first material is different and physically distinct from all the injection points of a second material (or of any further other material).
  • This differs from the known art, which provides to have injection points where two (or more) materials are fed, possibly successively, using one nozzle for two materials that are injected through the same hole of the nozzle or from two side-by-side holes on the same nozzle (or injector).
  • An “injection point” substantially corresponds to the mould area where the injection noble is located.
  • the device according to the invention there is an injection nozzle dedicated to only one material in at least one of the injection points.
  • the dedicated nozzle is connected to a means of feeding only one material and has single-material feeding lines.
  • all the nozzles are of the dedicated type; which means that all the nozzles for the first material are different from all the nozzles of the second material (and, in case, all said points of injection are different from those of further materials).
  • FIG. 1 shows the upper part of a mould 1 , provided with a cavity 2 and two injection nozzles 3 and 4 , which extend into the upper part of mould 1 .
  • Nozzles 3 and 4 have feeding channels 5 and 6 which can be heated by heating means 7 .
  • Means 7 are known per se in the art.
  • Nozzles 3 and 4 have rods 8 to control the feeding of the material into mold cavity 2 .
  • Rods 8 move axially in a way known per se in the art, e.g. by oleodynamic piston, from a partially withdrawn position for injecting material to a “nozzle closed” position where the tip of the rod is substantially aligned with the nozzle opening level.
  • nozzles 3 and 4 are both shown with rods lowered in is the ‘nozzle closed’ position.
  • the rods 8 are only partially shown for a batter clarity of the drawing.
  • Both nozzle 3 and nozzle 4 are dedicated; i.e. they can inject only one type of material: in fact channels 5 and 6 are connected respectively to distributors 9 and 10 , which receive their respective material from two injection units on the same press (not shown). Generally, distributors 9 and 10 , too, are equipped with means of heating.
  • the space 21 in the upper part of mold 1 is for an extraction plate (not shown) that operates in a known way the knockouts for the molded piece.
  • the nozzles 3 and 4 may be located on the closing face of the mold immediately next to the mold cavity.
  • the nozzles are located in the mold cavity on the portion of the mold corresponding to the side of the molded piece which will not be visible when the product is in use; e.g. in the case of vehicle interior panels the nozzle side would be that which faces the bodywork on the assembled product.
  • the latter nozzle arrangement is particularly useful inasmuch as it allows the injection pressure to be reduced.
  • this arrangement is useful when the product is not to be painted or covered, because there are different materials around nozzles 3 and 4 in the finished product. In fact, the skin material is injected by nozzle 3 and the core material by nozzle 4 , the surface of the panel will thus have a discontinuity in the skin around 4 .
  • FIG. 2 shows the reciprocal position of two groups of nozzles for the co-injection of a vehicle trim panel 11 .
  • panel 11 is comprising a handle integral with the rest of the panel body and has a particularly complex shape.
  • Reference numbers 12 identify gas injection points to inject gas during the molding of the panel.
  • the gas is injected to create some “hollow” sectors to make the panel lighter and to avoid any draw after the molding.
  • the injection of gas during injection molding is a known technique for the skilled person.
  • each of the various nozzles is calculated bearing in mind the thickness and geometry of the mold cavity and the rheology of the materials injected.
  • the distance between a skin nozzle and a core noble should be such as to prevent excessive cooling of the skin material already injected at the center of the section of the product.
  • the distance between two adjacent nozzles for skin and core must be such as to allow the skin material to reach and extend beyond the core injection point in a sufficiently fluid state so that it can be driven and distributed in the mold by the core material when it is injected.
  • Means of heating one or more parts of the mold can also be provided to facilitate the flow of the materials throughout the cavity.
  • the ‘retainers’ and ‘studs’ which allow the panel to be mounted on the door are shown as 13 and 13 a respectively.
  • the retainers are brackets and the studs are pivots which project from the panel in pre-fixed positions.
  • These brackets or retainers can be molded as a single piece with the panel by means of a slide valve mechanism actuated by a jack 14 (FIG. 1) which closes a part of the mould related to retainers or studs during the injection of the skin material.
  • FIGS. 3 a - 3 c show the operation of the mechanism during molding to form a retainer.
  • the mechanism comprises a slide valve 21 which is moved by jack 14 (FIG. 1) in a way known in the art, to close at will the portion of the mould corresponding to retainer 13 and to isolate it from mold cavity 2 .
  • the upper and lower parts of the mold 1 are referred to as 1 a and 1 b respectively.
  • the slide valve is closed during the injection of the skin material, preventing material P from entering into cavity 15 .
  • the second step of the process (FIG. 3 b ) provides for the opening of the slide valve to allow cavity 15 to fill up with core material C.
  • the slide valve is brought to the FIG.
  • FIG. 3 b position when the material C reaches the area of cavity 15 .
  • the last step is shown in FIG. 3 c and occurs when molding has been completed. This step entails the further withdrawal of the slide valve to clear the overhang of the retainer and allow the panel to be removed from the mold.
  • the slide valve also has the function of expelling the stud to facilitate the removal of the panel from the mold.
  • FIG. 4 shows a schematic embodiment to implement the process of the invention.
  • an electronic processing means 22 e.g. a pic unit
  • Means 22 is connected with sensors 23 or other means of detecting the advance of the material front in mold 1 and sending a correspondent signal when the material has reached a pre-selected point. These sensors are preferably transducers.
  • the unit 22 is also connected to press 24 to detect the height of the screws, and to nozzles 3 and 4 to trigger their operation when required.
  • the process according to the invention operates in the following manner.
  • a predetermined amount of skin material is injected through injection nozzles 3 a - 3 c.
  • the amount of material injected is substantially that required for the skin on the molded product and it extends inside the mold until it reaches and covers the areas where the nozzles for injecting the core material 4 a - 4 g are located.
  • the core material is injected through core nozzles 4 a - 4 g.
  • the skin material is pushed and distributed around the mould by the core material injected through its related nozzles 4 a - 4 g, which, as shown are more than the skin nozzles.
  • At least the skin nozzles are operated in cascade according to a timing controlled by the travel height of the screws in the injection press, in this way the junction lines between different flows arriving from different nozzles are more easily avoided because the flow from each nozzle merges into the initial flow once that flow passes the noble position.
  • nozzle 3 b is not activated until the skin material flow P from nozzle 3 a has already reached—and preferably passed—noble 3 b, and so on for all the nozzles.
  • nozzle 3 a operates from screw height 150 to height 98 ; 3 b from height 100 to height 58 : 3 c from height 60 to height 10 (end of travel height).
  • Nozzles 4 a - 4 g are operated in a similar way and as a function of the reciprocal position i.e. out of (e.g.) seven nozzles there can be two branching “sequences”.
  • some core nozzles are operated before some of the skin nozzles, depending on their position in the mold.
  • the skin nozzle e.g. 3 a
  • the core nozzle e.g. 4 b
  • the core nozzle e.g. 4 c
  • the skin to core ratio was about 50/50 (by weight) and the injection temperature was 220-230° C. for the skin and 190° C. for the core.
  • FIG. 5 shows three nozzles; the center nozzle 16 is dedicated to injecting only skin material A while the side injectors 17 are two-material co-injection type to feeding either A or B.
  • Two slide-valve mechanisms or similar means of temporarily closing the portion 20 and 20 a of the mold are in place at 18 and 19 and are activated before the injection of the material A from the nozzle 16 .
  • Material A fills the central portion of the mold completely and the side portion 20 and 20 a partially.
  • the slider are removed and the material B is injected by nozzle 17 .
  • FIG. 6 The piece shown in FIG. 6 is obtained similarly.
  • two side injectors 17 to co-inject A and B and the central nozzles 16 and 16 ′ dedicated for the injection of A and B respectively.

Abstract

Multilayer products, such as vehicle trim panels, provided with an external skin layer and an internal core layer are co-injection molded by injecting external material (P) through a first plurality of points of injection (3 a-3 c) and injecting the core material (C) through a second plurality of points of injection (4 a-4 g), the points and nozzles of injection of one material being physically distinct from those of the other material.

Description

    TECHNICAL FIELD
  • The present invention relates to a process and a device for co-injection molding multi-layer elements and to the products thus obtained. [0001]
  • In particular, the invention relates to the production of elements provided with at least one part having, an external skin which covers an internal core material. Examples of such product are trim panels and trim elements of motor vehicles. [0002]
  • BACKGROUND ART
  • To obtain products of a type similar to those described above co-injection processes are already known which provide for the sequential injection of two or more materials from a single injector nozzle. In these processes a preset amount of skin material is initially injected into the mould, followed by one injection of core material and then another injection of skin material. [0003]
  • The European Patent N[0004] o0579925, in the name of the applicant, describes a device for co-injection molding provided with independently heated hot channels and nozzles located in the wall of the mould. The nozzles described may be either coaxial or side-by-side and they allow two or more materials to be injected successively into the same mould cavity from a plurality of points. PCT application NoWO95/17291, in the name of the applicant, describes a process for co-injection of products with complex shapes. According to this process, the thickness of the mould is controlled according to the rheological properties of the material to be injected in order to obtain flow paths having substantially the some resistance and thus achieve homogenous distribution of the material inside the mould. The materials are injected via nozzles of the type for sequential injection of two materials: in the preferred embodiment only one nozzle is used for a mould for a car panel.
  • These processes allow products with complex shapes, such as car panels with integral compartments, handles and grilles for loudspeakers, to be produced with a uniform external skin and an internal structural core. However, these processes require high injection pressures, which in turn mean large presses, flash on the molding, materials that are particularly fluid, or a greater thickness of moulds, with their related costs. [0005]
  • SUMMARY OF THE INVENTOR
  • It is an aim of the invention to solve the aforementioned problems and to provide a simple and economical process for co-injection molding of two or more materials to give products having at least in part an external skin and an internal core. [0006]
  • A further aim of the invention is to provide a device to carry out the above described process. [0007]
  • Such aims are achieved by the present invention which relates to a process for co-injection molding of multi-layer according to [0008] claim 7. According to a preferred aspect of the invention, only one material is injected at each point of injection and the materials are preferably cascade injected.
  • The invention further relates to a device for co-injection moulding multi-layer products, according to [0009] claim 7.
  • A further object of the invention are the multi-layer products obtained by the process of the invention, according to [0010] claim 14.
  • The invention has several advantages over known processes. Lower injection pressures are required, therefore smaller and less expensive presses can be used. Also, the molding-cycle time is shorter than in prior art. Furthermore, junction lines between the flows of materials are avoided and the mould can have substantially constant thickness for the greater part of its extent, if this does not conflict with the design requirements. The constant thickness results in greater facility of design and less weight in the finished product. [0011]
  • Another advantage lies in being able to produce the fixing elements to assemble the panels onto the doors and the counter-panels or complementary panels (retainers and studs) out of core material alone, i.e. with a rigid material. Thus, very soft materials can be chosen for the skin layer, improving the ‘feel’ of the finished product.[0012]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The invention will now be described in more detail with reference to the attached drawings, which are by way of example and not limiting the scope of the patent and in which: [0013]
  • FIG. 1 is a schematic sectional view of a device according to the invention; [0014]
  • FIG. 2 is a schematic plan view of the back of a vehicle interior panel on which are shown the injection points. [0015]
  • FIGS. 3[0016] a-3 c are enlarged schematic views of a detail of the device of FIG. 1 during the molding steps;
  • FIG. 4 is a block diagram of an embodiment according to the invention; [0017]
  • FIGS. 5 and 6 are schematic views of other products which can be obtained with the process according to the invention.[0018]
  • BEST MODE OF CARRYING OUT THE INVENTION
  • The present invention provides for a multi-point co-injection process of two or more materials in the same mould cavity, in which only one material is injected from at least one of the injection points, i.e. the feeding to that point is dedicated to a single material and there are no other materials delivered to that point. In other words, at least one of the points (and one of the nozzles) for the injection of the first material is different and physically distinct from all the injection points of a second material (or of any further other material). This differs from the known art, which provides to have injection points where two (or more) materials are fed, possibly successively, using one nozzle for two materials that are injected through the same hole of the nozzle or from two side-by-side holes on the same nozzle (or injector). An “injection point” substantially corresponds to the mould area where the injection noble is located. [0019]
  • In the device according to the invention, there is an injection nozzle dedicated to only one material in at least one of the injection points. As a result, the dedicated nozzle is connected to a means of feeding only one material and has single-material feeding lines. [0020]
  • Preferably, all the nozzles are of the dedicated type; which means that all the nozzles for the first material are different from all the nozzles of the second material (and, in case, all said points of injection are different from those of further materials). [0021]
  • FIG. 1 shows the upper part of a mould [0022] 1, provided with a cavity 2 and two injection nozzles 3 and 4, which extend into the upper part of mould 1. Nozzles 3 and 4 have feeding channels 5 and 6 which can be heated by heating means 7. Means 7 are known per se in the art. Nozzles 3 and 4 have rods 8 to control the feeding of the material into mold cavity 2. Rods 8 move axially in a way known per se in the art, e.g. by oleodynamic piston, from a partially withdrawn position for injecting material to a “nozzle closed” position where the tip of the rod is substantially aligned with the nozzle opening level. In FIG. 1 nozzles 3 and 4 are both shown with rods lowered in is the ‘nozzle closed’ position. The rods 8 are only partially shown for a batter clarity of the drawing.
  • Both [0023] nozzle 3 and nozzle 4 are dedicated; i.e. they can inject only one type of material: in fact channels 5 and 6 are connected respectively to distributors 9 and 10, which receive their respective material from two injection units on the same press (not shown). Generally, distributors 9 and 10, too, are equipped with means of heating. The space 21 in the upper part of mold 1 is for an extraction plate (not shown) that operates in a known way the knockouts for the molded piece.
  • The [0024] nozzles 3 and 4 may be located on the closing face of the mold immediately next to the mold cavity. In another embodiment, the nozzles are located in the mold cavity on the portion of the mold corresponding to the side of the molded piece which will not be visible when the product is in use; e.g. in the case of vehicle interior panels the nozzle side would be that which faces the bodywork on the assembled product. The latter nozzle arrangement is particularly useful inasmuch as it allows the injection pressure to be reduced. Furthermore, this arrangement is useful when the product is not to be painted or covered, because there are different materials around nozzles 3 and 4 in the finished product. In fact, the skin material is injected by nozzle 3 and the core material by nozzle 4, the surface of the panel will thus have a discontinuity in the skin around 4.
  • The nozzles for the injection of the two materials are located relatively close to each other to give co-injection of the two materials. Preferably there is a first plurality of nozzles (at least two nozzles) dedicated to the first material and a second plurality (two or more nozzles) dedicated to the second material (and so on for other further materials if any): FIG. 2 shows the reciprocal position of two groups of nozzles for the co-injection of a [0025] vehicle trim panel 11. As shown, panel 11 is comprising a handle integral with the rest of the panel body and has a particularly complex shape. The injection points for the two materials of skin and core are shown with reference numbers 3 a-3 c for the skin nozzle and 4 a-4 g for the core nozzles. Reference numbers 12 identify gas injection points to inject gas during the molding of the panel. The gas is injected to create some “hollow” sectors to make the panel lighter and to avoid any draw after the molding. The injection of gas during injection molding is a known technique for the skilled person.
  • The location of each of the various nozzles is calculated bearing in mind the thickness and geometry of the mold cavity and the rheology of the materials injected. In particular, the distance between a skin nozzle and a core noble should be such as to prevent excessive cooling of the skin material already injected at the center of the section of the product. In particular, the distance between two adjacent nozzles for skin and core must be such as to allow the skin material to reach and extend beyond the core injection point in a sufficiently fluid state so that it can be driven and distributed in the mold by the core material when it is injected. [0026]
  • According to a preferred embodiment there are more core nozzles than skin nozzles. [0027]
  • Means of heating one or more parts of the mold can also be provided to facilitate the flow of the materials throughout the cavity. [0028]
  • The ‘retainers’ and ‘studs’ which allow the panel to be mounted on the door are shown as [0029] 13 and 13 a respectively. Substantially, the retainers are brackets and the studs are pivots which project from the panel in pre-fixed positions. These brackets or retainers can be molded as a single piece with the panel by means of a slide valve mechanism actuated by a jack 14 (FIG. 1) which closes a part of the mould related to retainers or studs during the injection of the skin material.
  • FIGS. 3[0030] a-3 c show the operation of the mechanism during molding to form a retainer. The mechanism comprises a slide valve 21 which is moved by jack 14 (FIG. 1) in a way known in the art, to close at will the portion of the mould corresponding to retainer 13 and to isolate it from mold cavity 2. The upper and lower parts of the mold 1 are referred to as 1 a and 1 b respectively. According to the invention, the slide valve is closed during the injection of the skin material, preventing material P from entering into cavity 15. The second step of the process (FIG. 3b) provides for the opening of the slide valve to allow cavity 15 to fill up with core material C. The slide valve is brought to the FIG. 3b position when the material C reaches the area of cavity 15. The last step is shown in FIG. 3c and occurs when molding has been completed. This step entails the further withdrawal of the slide valve to clear the overhang of the retainer and allow the panel to be removed from the mold.
  • In the case of the stud, the slide valve also has the function of expelling the stud to facilitate the removal of the panel from the mold. [0031]
  • An oleodynamic system directly connected to the press is used to control the operation of the various nozzles. FIG. 4 shows a schematic embodiment to implement the process of the invention. In this embodiment there is provided an electronic processing means [0032] 22 (e.g. a pic unit) to control the operation of nozzles 3 and 4. Means 22 is connected with sensors 23 or other means of detecting the advance of the material front in mold 1 and sending a correspondent signal when the material has reached a pre-selected point. These sensors are preferably transducers. The unit 22 is also connected to press 24 to detect the height of the screws, and to nozzles 3 and 4 to trigger their operation when required. The process according to the invention operates in the following manner.
  • Initially, a predetermined amount of skin material is injected through [0033] injection nozzles 3 a-3 c. The amount of material injected is substantially that required for the skin on the molded product and it extends inside the mold until it reaches and covers the areas where the nozzles for injecting the core material 4 a-4 g are located. Then the core material is injected through core nozzles 4 a-4 g. The skin material is pushed and distributed around the mould by the core material injected through its related nozzles 4 a-4 g, which, as shown are more than the skin nozzles.
  • Preferably, at least the skin nozzles are operated in cascade according to a timing controlled by the travel height of the screws in the injection press, in this way the junction lines between different flows arriving from different nozzles are more easily avoided because the flow from each nozzle merges into the initial flow once that flow passes the noble position. This means that [0034] nozzle 3 b is not activated until the skin material flow P from nozzle 3 a has already reached—and preferably passed—noble 3 b, and so on for all the nozzles.
  • According to an embodiment of the invention there is a short overlapping time between the operation of one nozzle and operation of the next: e.g. nozzle [0035] 3 a operates from screw height 150 to height 98; 3 b from height 100 to height 58: 3 c from height 60 to height 10 (end of travel height). Nozzles 4 a-4 g are operated in a similar way and as a function of the reciprocal position i.e. out of (e.g.) seven nozzles there can be two branching “sequences”. In this case, unlike what was said above for the method which provides for first all the skin nozzles and then all the core nozzles to be operated, some core nozzles are operated before some of the skin nozzles, depending on their position in the mold. In other words, where there are two adjacent nozzles, the skin nozzle (e.g. 3 a) is activated before the core nozzle (e.g. 4 b); where there are two different, non adjacent nozzles, the core nozzle (e.g. 4 c) may be activated before the skin nozzle (e.g. 3 b).
  • An example of a door panel co-injected according to the present invention is described. [0036]
  • EXAMPLE
  • A door panel similar in shape and nozzle-distribution to that shown in FIG. 2 and described above, was produced using a twin-injector press. The skin material was a thermoplastic elastomer TPO based, type VSR 561/2 (MFI=5 at 230° C.; 2.16 kg−ASTM 1238L) produced by REAP (Milano-Italy) and the core was polypropylene filled with wood flour type CR (MFI=5 a 190° C.; 2.16 kg−ASTM 1238L) also produced by REAP. The skin to core ratio was about 50/50 (by weight) and the injection temperature was 220-230° C. for the skin and 190° C. for the core. [0037]
  • The injection times were controlled on the basis of the press screw travel to give the sequential injection described above. Retainers and studs were produced by using slide-valve techniques to obtain retaining elements that were comprised substantially of core material only. A door panel was produced with on external surface skin) distributed evenly over the entire surface except for the injection points and the retaining brackets and pivots ([0038] retainers 13 and studs 13 a). There were no junction lines on the skin.
  • The mechanisms described above can be used to produce a molded product with a structure similar to that shown in FIGS. 5 and 6. In both cases a slide-valve mechanism in combination with a group of nozzles according to the invention produced a moldings of the type shown. FIG. 5 shows three nozzles; the [0039] center nozzle 16 is dedicated to injecting only skin material A while the side injectors 17 are two-material co-injection type to feeding either A or B. Two slide-valve mechanisms or similar means of temporarily closing the portion 20 and 20 a of the mold are in place at 18 and 19 and are activated before the injection of the material A from the nozzle 16. Material A fills the central portion of the mold completely and the side portion 20 and 20 a partially. Next, the slider are removed and the material B is injected by nozzle 17.
  • The piece shown in FIG. 6 is obtained similarly. In FIG. 6 are shown two [0040] side injectors 17 to co-inject A and B, and the central nozzles 16 and 16′ dedicated for the injection of A and B respectively.

Claims (16)

1. A process of co-injection molding multi-layer products, in which two or more materials (P,C; A,B) are injected from a plurality of injection points (3 a-3 c; 4 a-4 g) into the cavity (2) of a mold (1), characterized in that at least one of the said injection points only one of said materials is injected.
2. A process according to claim 1, further comprising the steps of:
injecting a first material (P) through a first plurality of injection points (3 a-3 c) and injecting a second material (C) through a second plurality of injection points (4 a-4 g), the injection points of said second plurality being distinct from the injection points of said first plurality.
3. A process according to claim 1 or 2, wherein said first (P) and/or said second (C) material is cascade injected.
4. A process according to any previous claim, further comprising the steps of injecting a first material (P) from at least one first nozzle (3 a); detecting when the said first material reaches pre-set positions and generating a corresponding signal; injecting a second material from at least one second nozzle (4 b) on the basis of said signal or signals.
5. A process according to any previous claim, wherein one of the materials injected (P) is prevented from flowing into pre-set zones (15) of the said mold.
6. A process of co-injection molding a trim panel for motor-vehicle integral with retainers (13), studs (13 a) and similar means of assembly, characterized by maintaining closed the portion of the mold (15) corresponding to the said means of assembly during the skin material injection step and allowing the entry into the said portions of the mold substantially to only the core material.
7. A device for co-injection molding multi-layer products consisting of two or more materials, comprising a plurality of nozzles (3 a-3 c; 4 a-4 g) located in a corresponding plurality of distinct points on the same cavity (2) of a mold (1), characterized by at least one of the said nozzles being provided with means (5-10) of feeding only one of the said materials (P, C).
8. A device according to claim 7, comprising at least one first nozzle (3) dedicated to the injection of a first material (P) and at least one second nozzle (4) dedicated to the injection of a second material (C).
9. A device according to claim 8, comprising a first plurality of nozzles (3 a-3 c) for injecting said first material (P) and a second plurality of nozzles (4 a-4 g) for injecting said second material and means (22,23) for controlling in sequence the injection of the said first or second material from the corresponding plurality of nozzles (3 a-3 c; 4 a-4 g).
10. A device according to claim 8 or 9, further comprising sensor means (23) for detecting when said first material (P) reaches preset positions and for generating a corresponding signal; and means of data processing (22) for receiving the said signal and for controlling the injection of said second material (C) from at least one second nozzle (4) on the basis of said signal or signals.
11. A device according to any claim 7 to 10, wherein said nozzles (3,4) are provided with feeding channels (5,6) which extend through the wall of said mold (1) and with means (7) for heating the said channels.
12. A device according to any claim 7 to 11, further comprising mechanisms (14,21; 18,19) for the temporary closure of pre-set portions (15; 20,20 a) of the said mold cavity (2).
13. A device according to claim 12, wherein said cavity is a cavity for an interior panel for motor vehicles and said preset portions are corresponding to means (13,13 a) for the assembly of said panel.
14. A multi-layer product comprising at least one portion provided with one external skin layer and one or more internal core layers, as obtainable with the process according to any of the claims from 1 to 6 and characterized by having a plurality of points of injection, at least one of the said points being dedicated to only one of the said materials.
15. A multi-layer product according to claim 14, comprising some portions (13,13 a) substantially consisting of core material alone.
16. A multi-layer product comprising at least one portion provided with an external -skin layer and one or more internal core layers, characterized by comprising means of panel assembly such as retainers and studs made of core material.
US10/241,538 1998-04-07 2002-09-12 Process and device for coinjection molding multilayer products Abandoned US20030012837A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/241,538 US20030012837A1 (en) 1998-04-07 2002-09-12 Process and device for coinjection molding multilayer products

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP98830210.5 1998-04-07
EP98830210A EP0949053A1 (en) 1998-04-07 1998-04-07 Process and device for coinjection of multilayer products
US09/647,785 US6475413B1 (en) 1998-04-07 1999-04-06 Process and device for co-injection molding multilayer products
US10/241,538 US20030012837A1 (en) 1998-04-07 2002-09-12 Process and device for coinjection molding multilayer products

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/647,785 Division US6475413B1 (en) 1998-04-07 1999-04-06 Process and device for co-injection molding multilayer products

Publications (1)

Publication Number Publication Date
US20030012837A1 true US20030012837A1 (en) 2003-01-16

Family

ID=8236610

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/647,785 Expired - Fee Related US6475413B1 (en) 1998-04-07 1999-04-06 Process and device for co-injection molding multilayer products
US10/241,538 Abandoned US20030012837A1 (en) 1998-04-07 2002-09-12 Process and device for coinjection molding multilayer products

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/647,785 Expired - Fee Related US6475413B1 (en) 1998-04-07 1999-04-06 Process and device for co-injection molding multilayer products

Country Status (4)

Country Link
US (2) US6475413B1 (en)
EP (2) EP0949053A1 (en)
AU (1) AU3813099A (en)
WO (1) WO1999051416A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005068152A2 (en) * 2004-01-03 2005-07-28 Johnson Controls Technology Company Vehicle component and method for making a vehicle component
US20060216479A1 (en) * 2005-03-22 2006-09-28 Lear Corporation Two-shot, co-injected trim panel
US20070278708A1 (en) * 2006-05-31 2007-12-06 Graham Packaging Company, Lp Controlling delivery of polymer material in a sequential injection molding process
US20110047878A1 (en) * 2009-08-28 2011-03-03 Raisoni Jayprakash U Multilayer window lift rail, and apparatus and method for making the same
US8715547B2 (en) 2011-02-24 2014-05-06 Mold-Masters (2007) Limited Closed loop control of auxiliary injection unit
US20190273901A1 (en) * 2018-03-01 2019-09-05 Motorola Mobility Llc Selectively applying color to an image

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60139605D1 (en) 2000-02-24 2009-10-01 Conix Corp Multi-component injection molding process with liquid injection for articles with weld lines and articles produced therewith
US6843954B2 (en) 2000-02-24 2005-01-18 Conix Corporation Injection molding techniques utilizing fluid channels
US6998174B2 (en) 2000-02-24 2006-02-14 Conix Corporation Integrated co-injection molded vehicle components and methods of making the same
JP4553512B2 (en) * 2000-04-28 2010-09-29 三菱エンジニアリングプラスチックス株式会社 Injection molding method for molded product having hollow part
US20030211307A1 (en) * 2001-02-23 2003-11-13 Porter Marshall Ray Low-density injection-molded body components
FR2824136B1 (en) * 2001-04-27 2003-05-30 Schlumberger Ind Sa METHOD OF MANUFACTURING A VOLUMETRIC LIQUID METER OF THE OSCILLATING PISTON TYPE
WO2005021231A2 (en) * 2003-08-25 2005-03-10 Johnson Controls Technology Company Multi-component injection moulding of a trim panel
DE102005026790B4 (en) * 2005-06-10 2016-06-09 Bayerische Motoren Werke Aktiengesellschaft Injection molding process for producing a flat plastic part
FR2901504B1 (en) * 2006-05-29 2012-10-26 Plastigray METHOD FOR MANUFACTURING AN INJECTED PART, DEVICE FOR CARRYING OUT SAID METHOD, AND PART OBTAINED
WO2007149021A1 (en) 2006-06-21 2007-12-27 Flexiject Co-Injection Ab Method for injection moulding of products in thermoplast with stepwise opening of different parts of the mould cavity, and tool for practizing the method
WO2010054188A1 (en) * 2008-11-10 2010-05-14 Illinois Tool Works Inc. Co-injection molding process and parts formed thereby
DE102009055157A1 (en) * 2009-12-22 2011-06-30 ElringKlinger AG, 72581 A method for producing a main body of an oil pan and produced by such a process base body of an oil pan
CA2864907C (en) * 2012-02-24 2016-09-27 The Procter & Gamble Company High thermal conductivity co-injection molding system
US9802347B2 (en) 2015-02-02 2017-10-31 Colgate-Palmolive Company Method of forming an oral care implement
EP3878622A1 (en) * 2020-03-10 2021-09-15 Adval Tech Holding AG Tool for injection moulding, uses thereof and parts produced with such a tool

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3873656A (en) * 1967-12-15 1975-03-25 Ici Ltd Production of laminar articles
GB1339445A (en) * 1970-11-30 1973-12-05 Ici Ltd Production of laminar articles
GB1339444A (en) * 1970-11-30 1973-12-05 Ici Ltd Production of laminar articles
US4275030A (en) * 1978-05-10 1981-06-23 Pedro Mares Injection molding articles of more than one resin component
US4385025A (en) * 1979-10-22 1983-05-24 Barry Wright Corporation Method of coinjection molding of thermoplastic and thermoplastic elastomer
DE3711079A1 (en) * 1987-04-02 1988-10-13 Battenfeld Gmbh Process and device for injection-moulding moulded parts from at least two different plastic components
JP2622876B2 (en) * 1989-02-03 1997-06-25 豊田合成株式会社 Plastic molding method
CA2030286C (en) * 1990-11-19 2000-11-21 Jobst Ulrich Gellert Injection molding nozzle having tapered heating element adjacent the bore
DE4110445C2 (en) * 1991-03-26 1994-10-27 Mannesmann Ag Method and device for producing decor-coated plastic molded parts
JPH04318383A (en) * 1991-04-17 1992-11-09 Fuji Photo Film Co Ltd Magnetic tape cassette and production thereof
US5799385A (en) * 1991-12-10 1998-09-01 Commer S.P.A. Process for the manufacture of trim panels for motorvehicles
IT1254989B (en) 1992-06-23 1995-10-11 Dante Siano DEVICE FOR COINJECTION IN DIFFERENT POINTS OF A MOLD
JPH06312437A (en) * 1993-04-28 1994-11-08 Toyoda Gosei Co Ltd Sandwich molded product having attaching seat and molding thereof
JP3036332B2 (en) * 1993-10-22 2000-04-24 豊田合成株式会社 Mold equipment for sandwich molding
DE69517471T2 (en) * 1994-06-06 2001-03-08 Husky Injection Molding Injection molding process with opposite gates
JPH08118387A (en) * 1994-09-01 1996-05-14 Sumitomo Chem Co Ltd Manufacture of thermoplastic molded body
JP3274942B2 (en) * 1994-12-22 2002-04-15 株式会社日本製鋼所 Composite molding method and injection molding machine
DE19518963C2 (en) * 1995-05-23 1998-04-09 Eldra Kunststofftechnik Gmbh Method and device for injection molding hollow-blown plastic bodies
CN1158740A (en) 1996-10-23 1997-09-10 向薇 Stone-dissolving medicine

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005068152A3 (en) * 2004-01-03 2005-11-10 Johnson Controls Tech Co Vehicle component and method for making a vehicle component
US20090295011A1 (en) * 2004-01-03 2009-12-03 Johnson Controls Technology Company Vehicle component and method for making a vehicle component
US8506003B2 (en) 2004-01-03 2013-08-13 Johnson Controls Technology Company Vehicle component and method for making a vehicle component
WO2005068152A2 (en) * 2004-01-03 2005-07-28 Johnson Controls Technology Company Vehicle component and method for making a vehicle component
US20060216479A1 (en) * 2005-03-22 2006-09-28 Lear Corporation Two-shot, co-injected trim panel
US20110212204A1 (en) * 2006-05-31 2011-09-01 Graham Packaging Company, Lp Controlling delivery of polymer material in a sequential injection molding process
US20070278708A1 (en) * 2006-05-31 2007-12-06 Graham Packaging Company, Lp Controlling delivery of polymer material in a sequential injection molding process
WO2007140447A1 (en) * 2006-05-31 2007-12-06 Graham Packaging Company, Lp Controlling delivery of polymer material in a sequential injection molding process
US7651644B2 (en) 2006-05-31 2010-01-26 Graham Packaging Company, Lp Controlling delivery of polymer material in a sequential injection molding process
US20100109181A1 (en) * 2006-05-31 2010-05-06 Graham Packaging Company, Lp Controlling delivery of polymer material in a sequential injection molding process
US7892462B2 (en) 2006-05-31 2011-02-22 Graham Packaging Company, Llp Controlling delivery of polymer material in a sequential injection molding process
US8118581B2 (en) 2006-05-31 2012-02-21 Graham Packaging Company, Lp Injection molding apparatus for delivering multiple shots of materials to a plurality of mold cavities
WO2011025815A2 (en) * 2009-08-28 2011-03-03 Inteva Products Llc Multilayer window lift rail, and apparatus and method for making the same
WO2011025815A3 (en) * 2009-08-28 2011-06-23 Inteva Products Llc Multilayer window lift rail, and apparatus and method for making the same
US20110047878A1 (en) * 2009-08-28 2011-03-03 Raisoni Jayprakash U Multilayer window lift rail, and apparatus and method for making the same
US8844198B2 (en) 2009-08-28 2014-09-30 Inteva Products, Llc Multilayer window lift rail, and apparatus and method for making the same
US8715547B2 (en) 2011-02-24 2014-05-06 Mold-Masters (2007) Limited Closed loop control of auxiliary injection unit
US8940202B2 (en) 2011-02-24 2015-01-27 Mold-Masters (2007) Limited Closed loop control of auxiliary injection unit
US9186833B2 (en) 2011-02-24 2015-11-17 Mold-Masters (2007) Limited Closed loop control of auxiliary injection unit
US20190273901A1 (en) * 2018-03-01 2019-09-05 Motorola Mobility Llc Selectively applying color to an image

Also Published As

Publication number Publication date
EP0949053A1 (en) 1999-10-13
AU3813099A (en) 1999-10-25
EP1069979A1 (en) 2001-01-24
US6475413B1 (en) 2002-11-05
WO1999051416A1 (en) 1999-10-14

Similar Documents

Publication Publication Date Title
US6475413B1 (en) Process and device for co-injection molding multilayer products
EP0688652B1 (en) Opposed gating injection method
US5799385A (en) Process for the manufacture of trim panels for motorvehicles
US4389358A (en) Method and apparatus for making an integral structural cellular and non-cellular plastic or resinous article with a smooth outer surface
US7422426B2 (en) Injection molding method and injection molding apparatus
KR100281929B1 (en) Method and apparatus for simultaneous injection molding of articles with complex shapes
US6780365B2 (en) Process for preparing composite molded articles by multicomponent injection molding
US5762855A (en) Method of using a sequential fill valve gated injection molding system
KR0180045B1 (en) Process for producing molded article made of synthetic resin
US20060286351A1 (en) Load bearing panelm member and method for forming a load bearing panel member
JPH06254895A (en) Injection molding method
JP2001287237A (en) Method for injection-molding laminated molding
EP1263574B1 (en) Method of making integrated co-injection molded vehicle components
US6838034B2 (en) Multi-part sequential valve gating
DE102004033139A1 (en) Plastic laminar moulding comprises a carrier element and a foam injection moulded surface layer, with an intermediate functional layer
JPH07205197A (en) Method and device for injection molding multilayer article
EP2035206B1 (en) Method for injection moulding of products in thermoplast with stepwise opening of different parts of the mould cavity, and tool for practizing the method
JPH07290485A (en) Method and mold for molding resin molded product
JP2660863B2 (en) Method and apparatus for manufacturing thick hollow molded products
JPH05269794A (en) Injection molding machine for sandwich molding
KR20080077141A (en) Multilayer injection molding apparatus, and method for producing laminated resin molded product using said multilayer injection molding apparatus
JP2987782B2 (en) Hollow injection molding method
JPH03284915A (en) Manufacture of hollow resin molded item
JP3213137B2 (en) Gas injection molding method and apparatus
Mascia The Co-injection Technology: a New Way for Producing Parts in the Automotive Industry

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION