US20020179105A1 - Reduced ignition propensity smoking article - Google Patents

Reduced ignition propensity smoking article Download PDF

Info

Publication number
US20020179105A1
US20020179105A1 US09/795,054 US79505401A US2002179105A1 US 20020179105 A1 US20020179105 A1 US 20020179105A1 US 79505401 A US79505401 A US 79505401A US 2002179105 A1 US2002179105 A1 US 2002179105A1
Authority
US
United States
Prior art keywords
substance
smoking article
wrapper
burn rate
permeability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US09/795,054
Other languages
English (en)
Inventor
Michael Zawadzki
Arthur Ihrig
David Grider
Terry Jessup
David Williams
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lorillard Licensing Co LLC
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US09/795,054 priority Critical patent/US20020179105A1/en
Assigned to LORILLARD LICENSING COMPANY, LLC reassignment LORILLARD LICENSING COMPANY, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: IHRIG, ARTHUR M., ZAWADZKI, MICHAEL E., JESSUP, TERRY D., WILLIAMS, DAVID L., GRIDER, DAVID A.
Priority to ES01304017T priority patent/ES2346129T3/es
Priority to DE60142216T priority patent/DE60142216D1/de
Priority to EP01304017A priority patent/EP1234514B1/fr
Priority to AT01304017T priority patent/ATE468765T1/de
Priority to AU2002240293A priority patent/AU2002240293C1/en
Priority to NZ528529A priority patent/NZ528529A/en
Priority to PCT/US2002/003611 priority patent/WO2002067704A1/fr
Priority to CA002553414A priority patent/CA2553414C/fr
Priority to CA002442615A priority patent/CA2442615C/fr
Publication of US20020179105A1 publication Critical patent/US20020179105A1/en
Priority to US10/468,257 priority patent/US7247726B2/en
Priority to HK03100535.9A priority patent/HK1048420B/zh
Priority to US10/402,651 priority patent/US6837248B2/en
Priority to US10/973,713 priority patent/US7836898B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D409/04Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24DCIGARS; CIGARETTES; TOBACCO SMOKE FILTERS; MOUTHPIECES FOR CIGARS OR CIGARETTES; MANUFACTURE OF TOBACCO SMOKE FILTERS OR MOUTHPIECES
    • A24D1/00Cigars; Cigarettes
    • A24D1/02Cigars; Cigarettes with special covers
    • A24D1/025Cigars; Cigarettes with special covers the covers having material applied to defined areas, e.g. bands for reducing the ignition propensity
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D219/00Heterocyclic compounds containing acridine or hydrogenated acridine ring systems
    • C07D219/04Heterocyclic compounds containing acridine or hydrogenated acridine ring systems with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to carbon atoms of the ring system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D219/00Heterocyclic compounds containing acridine or hydrogenated acridine ring systems
    • C07D219/04Heterocyclic compounds containing acridine or hydrogenated acridine ring systems with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to carbon atoms of the ring system
    • C07D219/06Oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D411/00Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen and sulfur atoms as the only ring hetero atoms
    • C07D411/02Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen and sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D411/04Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen and sulfur atoms as the only ring hetero atoms containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/553Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having one nitrogen atom as the only ring hetero atom
    • C07F9/576Six-membered rings
    • C07F9/64Acridine or hydrogenated acridine ring systems

Definitions

  • the present invention relates generally to a wrapper for a smoking article to create a reduced ignition propensity (IP) smoking article and, more particularly, to a smoking article having the ability to freeburn in a static state and reduced IP.
  • IP ignition propensity
  • cigarettes may ignite fire-prone substrates if the article is laid or accidentally contacts the substrate. Therefore, a cigarette prepared from a wrapper, which diminishes the ability of the article to ignite a substrate, may have the desirable effect of reducing cigarette-initiated fires.
  • a wrapper that concurrently confers on the cigarette the ability to freeburn in a static state and reduced IP character allows a beneficial reduction in the tendency of the article to ignite fire-prone substrates while maintaining consumer acceptability.
  • a factor that manufacturers consider in preparing a smoking article having reduced IP is whether currently used processes and equipment will remain substantially unchanged.
  • One method for preparing a reduced IP paper involves the addition of elaborate equipment on a conventional papermaking machine. Cellulose fibers or particles suspended in water are sprayed from angular moving nozzles moving at an angle to a continuous forming moist web. This approach involves the coordinated angular movement of the spray nozzle and the about 400 feet per minute moving web to create spaced apart bands transverse to the web.
  • the above-mentioned technology suffers from a number of deficiencies that limit consumer acceptability, IP reduction, and ease of manufacture.
  • the technology requires expensive add-on equipment including a spray nozzle system and an associated slurry distribution system, pressure regulating system, and a means for carefully synchronizing the angular material distribution system with the underlying papermaking machine.
  • the reduced consumer acceptable properties of the prepared cigarettes are due to factors including reduced ability of the cigarette to freeburn in the static state, poor ash appearance, and variable taste profile.
  • Another technology involves adding discrete material regions to the dry web using organic solvent-based printing equipment.
  • Organic solvents and non-aqueous soluble solutes are used to make the discrete regions on the web.
  • the presence of organic solvents requires hoods to capture the solvent vapors and the corresponding further expenses.
  • One commercial product claiming to possess reduced IP is characterized by a tendency to extinguish when left burning in the static state—that is reduced freeburn.
  • the article displays a less desirable taste when relit after being extinguished.
  • the cigarette may possess the reduced IP, the reduced freeburn property decreases consumer acceptability of the article.
  • the present invention is directed to a smoking article having reduced IP.
  • the smoking article includes a tobacco column, a wrapper surrounding the tobacco column and, optionally, a filter element.
  • the wrapper has a base permeability, an untreated area and a least one discrete area treated with a composition to reduce the base permeability.
  • the discretely treated area interacts with a coal of a burning tobacco firecone as it advances to self-extinguish the smoking article if the smoking article is left on a surface or causes the cigarette not to ignite the surface.
  • NIST IP test the “cotton duck test”
  • a smoldering cigarette on a test assembly composed of a cellulosic fabric over a foam block. Variations of the test use fabrics of various weights and polyethylene sheet backing. A test failure occurs when the fabric ignites.
  • Another NIST IP test the “filter paper test”, involves placing a smoldering cigarette on a test assembly composed of layered filter paper sheets. Various forms of the test use 3, 10, and 15 layered filter paper sheets. A successful test result occurs when the cigarette self extinguishes before the whole tobacco column is consumed.
  • the composition of the treated area includes at least a permeability reducing substance.
  • Another substance in the treated are includes a burn rate retarding substance.
  • Yet another substance in the treated area includes a burn rate accelerating substance. Either the burn rate retarding substance or the burn rate accelerating substance or both preferably acts as an organoleptic enhancing substance. In this way a smoker's experience when smoking either the at least one treated area or the untreated area is substantially the same.
  • the composition of the treated area may include a filler component.
  • the applied amount of the permeability reducing substance, the burn rate retarding substance, and the burn rate accelerating substance is such as to give the desired freeburn character and IP reduction to a finished article made from the wrapper.
  • the quantity and the concentration of the applied composition will depend on factors including the absorbency of the web, polymer properties of the permeability reducing substance, whether the web is wet or dry, and the operating conditions of the application equipment.
  • the burn rate accelerating substance may be an alkali metal or alkali earth containing salt.
  • the burn rate accelerating substance may be an alkali metal salt of a carboxylic acid such as acetic acid, citric acid, malic acid, lactic acid, tartaric acid and the like.
  • the salt of the carboxylic acid is a salt of citric acid.
  • the alkali metal containing compound is preferably at least one of a sodium containing compound and a potassium containing compound.
  • the burn rate accelerating substance may be monoammonium phosphate.
  • the burn rate retarding substance may be a phosphate, preferably a phosphate of ammonium and more preferably a diammonium phosphate.
  • the permeability reducing substance may be a pore filling substance, a film forming substance or combination thereof.
  • the permeability reducing substance may be a polymer and, preferably, a polysaccharide.
  • the contemplated polysaccharides are starch, including various mixtures of amylose, amylopectin and dextrin, modified starch and starch derivatives.
  • the starch and starch derivatives may be water dispersible and, preferably, water soluble.
  • Other contemplated polysaccharides include cellulose, cellulose derivatives, chitosan, chitosan derivatives, chitin, chitin derivatives, alginate, alginate derivatives and combinations thereof. These polysaccharides are preferably water dispersible and, more preferably, are water-soluble.
  • the discretely treated area is a circumferential band about the body of the article.
  • the band has a sufficient width so as to deprive the coal of the burning tobacco firecone of oxygen from behind a char line of the wrapper when the smoking article is placed on a surface. That may be achieved by a band width typically of at least about 3 millimeters.
  • the discretely treated area includes at least two bands spaced sufficiently to reduce the IP of the smoking article.
  • the two bands preferably have a center-to-center spacing of between about 10 millimeters to about 30 millimeters.
  • the two bands may have a width of about 3 millimeters to about 10 millimeters.
  • a center-to-center spacing is preferably about 25 millimeters.
  • the discretely treated area preferably has a thickness and properties so a bobbin of the wrapper is useable in a commercially available smoking article manufacturing machine. Also, the discretely treated area is preferably visually substantially the same as the untreated area.
  • Still another aspect of the present invention is to provide a population of smoking articles having a reduced IP.
  • Each smoking article within the population includes a tobacco column, wrapper surrounding the tobacco column so that the smoking article includes an ignition end and a distal end, and at least one banded region, preferably at least two spaced apart banded regions, between the ignition end and the distal end having a combustion characteristic substantially different from that of an non-banded, untreated, region.
  • a distance from the ignition end to the at least one of the banded region of each smoking article may be sequentially related, random, or quasi-random within a selected population.
  • the selected population is a package of smoking articles and in another embodiment a grab sample of smoking articles.
  • the distance from the ignition end to the at least one of the banded regions of each smoking article are sequentially related, random, or quasi-random.
  • the IP of the selected population is between about 50 and about 100 percent for the population.
  • the invention also provides a method of making a wrapper, of making a smoking article having reduced IP, and a composition for application to a paper to make a wrapper and a smoking article.
  • FIG. 1 is a perspective view of a smoking article according an embodiment of the present invention.
  • FIG. 2 is an exploded view of the smoking article of FIG. 1;
  • FIG. 3 is a perspective view of a bobbin of wrapper that may be used to make the smoking article of FIG. 1;
  • FIG. 4 is a plan view of a wrapper as might be accumulated in a bobbin as shown in FIG. 3;
  • FIG. 5A is a schematic of a population of smoking articles having a substantially random distance from the ignition end to the at least one of the banded region of each smoking article within the population according an embodiment of the present invention
  • FIG. 5B is a schematic of a population of smoking articles having a quasi random distance from the ignition end to the at least one of the banded region of each smoking article within the population according an embodiment of the present invention
  • FIG. 5C is a schematic of a population of smoking articles having a sequentially related distance from the ignition end to the at least one of the banded region of each smoking article within the population according an embodiment of the present invention.
  • FIG. 6 is a schematic of a package of smoking articles of any of FIG. 1, FIG. 5A, FIG. 5B and FIG. 5C.
  • a smoking article 10 includes a tobacco column 12 surrounded by a wrapper 14 .
  • the smoking article 10 may, as an option, include a filter element 16 adjacent to the tobacco column 12 surrounded by the wrapper 14 .
  • FIG. 2 shows an exploded view of the smoking article 10 of FIG. 1 including certain aspects relating to the wrapper 14 , which is a modified cigarette paper.
  • wrapper 14 includes untreated areas 20 alternating with treated areas 22 .
  • Treated areas 22 include a combination of substances that interact with the wrapper 14 to create the reduced IP smoking article 10 .
  • At least one of the substances in treated area 22 includes a permeability reducing substance.
  • Another substance in treated area 22 includes a burn rate retarding substance.
  • Yet another substance in treated area 22 includes a burn rate accelerating substance.
  • another substance in the treated area includes filler.
  • the permeability reducing substance may be a polymer.
  • the polymer may be any one of a natural polymer, a derivative of a natural polymer, a synthetic polymer, and a combination of any of the preceding.
  • polysaccharides are suitable as permeability reducing substances.
  • the polysaccharides may be at least one of a starch, modified starch, starch derivative, cellulose, cellulose derivative, chitosan, chitosan derivative, chitin, chitin derivative, alginate, alginate derivative or a combination of any of the preceding. Any polysaccharide that suitably reduces the permeability of the wrapper would be appropriate for use as the permeability reducing substance.
  • starch, modified starch, starch derivatives, cellulose and cellulose derivatives would act particularly well as permeability reducing substances.
  • starch and starch derivatives work particularly well as the permeability reducing substance.
  • Water soluble and water dispersible starch, starch derivatives, cellulose and cellulose derivatives would be more desirable than nonaqueous solvents and dispersants.
  • Nonaqueous solvents may be harmful to workers, or environmentally regulated so that exhaust equipment that may be needed to capture organic solvent mists and vapors.
  • a permeability reducing substance may interact with the wrapper in a number of ways.
  • a permeability reducing substance may form a film on the wrapper 14 to reduce permeability by blocking pores in the wrapper 14 . That is, when the permeability reducing substance is applied to the wrapper 14 , a film is created that acts as a barrier to block the movement of gas through pores in the discretely treated area 22 .
  • a permeability reducing substance may act to fill pores and thereby reduce the porosity of the wrapper 14 .
  • a discretely treated area 22 possesses porosity or gas permeability less than that of the untreated area 20 of the wrapper 14 .
  • a permeability reducing substance may both form a film on the wrapper 14 and act to fill pores in the wrapper 14 so that a discretely treated area 22 possesses a porosity or gas permeability less than that of the untreated area 20 of the wrapper 14 .
  • the permeability in the discretely treated area 22 of wrapper 14 may be less than about 10 CU (CORESTA units, cm 3 /min/cm 2 at 1 kPa measuring pressure as substantially measured according to CORESTA [Cooperative Centre for Scientific Research Relative to Tobacco, Paris, France] Recommended Method N o 40: Determination of Air Permeability of Materials Used as Cigarette Paper, Filter Plug Wrap and Filter Joining Paper including Materials Having an Oriented Permeable Zone, October 1994, published in Bulletin 1994-3/4, the subject matter of which is incorporated herein by reference) and is preferably less than about 7 CU.
  • the band area, and optionally untreated area may contain a perforation zone produced by methods such as electrostatic and mechanical perforation and the like that are known to those skilled in the art.
  • Applicants have discovered the unexpected property that a banded area, possessing a perforation zone, may exhibit a relatively high apparent permeability while still conferring a reduced IP character on an article made from the thus treated paper.
  • the permeability of a perforated band may be less than about 60 CU.
  • a burn rate retarding substance includes any substance that reduces the smolder rate of materials such as paper, cloth and plastic, and may also increase their resistance to flaming combustion.
  • Phosphates have been found to work well and, in particular, phosphates of ammonium.
  • a particular preferred phosphate of ammonium is the diammonium phosphate (having synonyms such as diammonium hydrogenphosphate; DAP; diammonium hydrogenorthophosphate; phosphoric acid, diammonium salt; and ammonium hydrogen phosphate).
  • a burn rate retarding substance may have additional beneficial benefits including unexpected improved organoleptic properties discovered by applicants. To that end, applicants have found that consumers detect a more pleasing smoke taste when the burn rate retarding substance is present in the discretely treated area 22 in smoking article 10 according to the present invention.
  • a burn rate retarding substance also may cooperate with a permeability reducing substance in another unexpected synergistic manner. That is, the inclusion of a burn rate retarding substance may reduce the amount of a permeability reducing substance that may need to be applied to a discretely treated area 22 . This may have an impact on the manufacturability of a wrapper 14 according to the present invention by decreasing the amount of permeability reducing material needed to achieve IP reduction.
  • a burn rate accelerating substance includes any substance known to increase the rate at which the smolder process of such materials as paper, cloth and plastic takes place. Such a substance may contribute to the free burn of a smoking article 10 according to the present invention.
  • a reduced IP smoking article 10 self-extinguishes when placed onto a surface and continues to burn when the smoking article 10 is freely suspended such as within the holder of an ashtray or held without puffing. This latter attribute is known as “freeburn.”
  • a burn rate accelerating substance interacts with the wrapper 14 , the permeability reducing substance, and the burn rate retarding substance to create a discretely treated area 22 that works to maintain the balance between self-extinguishment and freeburn.
  • a burn rate accelerating substance may be a salt such as an alkali metal and an alkali earth metal containing salt and, preferably, one containing an alkali metal preferably sodium, potassium and sodium and potassium.
  • the salt may be a salt of a carboxylic acid such as acetic acid, citric acid, malic acid, lactic acid, tartaric acid and the like. In a particularly preferred embodiment, it is a salt of a citric acid.
  • the burn rate accelerating substance may be monoammonium phosphate.
  • a burn rate accelerating substance may have additional beneficial benefits including unexpected organoleptic enhancing abilities discovered by applicants.
  • applicants have found that consumers detect substantially no difference between smoking an untreated area 20 and a discretely treated area 22 in smoking article 10 according to the present invention. This removes the need for difficult to achieve gradations, such as described in U.S. Pat. No. 5,878,753, between a discretely treated area 22 and untreated areas 20 to maintain a substantially consistent organoleptic experience for the consumer.
  • a filler substance includes particulate materials such clay, chalk (calcium carbonate), and titanium oxide. Applicants believe that the presence of filler may be beneficial during the manufacture of discretely treated areas 22 by allowing the appearance, particularly the opacity, of discretely treated areas 22 to be carefully controlled so as to be substantially the same as the untreated region 20 .
  • a manufacturing of discretely treated areas 22 may be made by applying compositions that are applicable to the wrapper 14 when the wrapper 14 might be in a wet or dry state or a semi-wet state.
  • compositions that are applicable to the wrapper 14 when the wrapper 14 might be in a wet or dry state or a semi-wet state.
  • the quantity and the concentration of the applied composition will depend on factors including the absorbency of the web, properties of the permeability reducing substance, whether the web is wet or dry, and the operating conditions of the application equipment.
  • the composition may be applied by a number of known methods including spraying, stenciling, flexographic printing, gravure printing, and the like including both multiple-pass and single-pass processes.
  • the composition for affecting the discretely treated areas may be applied on one side of the base paper such that the formed band 22 faces the tobacco-side 12 after making article 10 from the banded paper.
  • the composition may be applied on both sides of the paper or applied such that the formed band 22 faces the outside or consumer-side after making article 10 from the banded paper.
  • Manufacturing of reduced IP smoking articles is preferably accomplished using a reel, or bobbin, length of wrapper 14 with discretely treated areas 22 and untreated areas 20 .
  • a bobbin of banded paper in a cigarette-making machine will provide a population of banded smoking articles having a reduced IP. That is, each smoking article within the population will include a tobacco column, wrapper surrounding said tobacco column so that the smoking article includes an ignition end and a distal end, and at least one banded region, preferably at least two spaced apart banded regions, between the ignition end and the distal end whereby the distance from the ignition end to the at least one of the banded region of each smoking article may be random (substantially as depicted in FIG.
  • the population may any population such as a grab sample and a package of cigarettes as depicted in FIG. 6.
  • IP tests incorporate a fixed burn-down distance in which the article is burned before being placed on the test substrate. In real-world ignition scenarios the article may burn down to any distance with respect to the ignition end of the article before contacting a substrate. Therefore, a sequentially related, random, or quasi-random band position will increase the probability that any individual member of the banded article population may prevent ignition of a prone substrate when the article is burned down to a random distance before substrate contact.
  • bands may be registered at a fixed distance with respect to the ignition end of article 10 .
  • the preferred embodiment of this invention is for the manufacture of reduced IP articles having a sequentially related, random, or quasi-random band position with respect to the ignition end of article 10 .
  • freeburn was measured by igniting a cigarette and placing the smoldering article horizontally in a holder. The article was allowed to statically smolder without the column or ember contacting a surface. A positive freeburn result occurred when the cigarette was consumed to the filter element.
  • Two banded wrappers were made by applying permeability reducing compositions on base paper A using gravure printing. About 60,000 cigarettes were made for each of a high band weight wrapper type, designated 1-C, a low band weight wrapper type, designated 1-B, and a conventional non-banded wrapper, designated 1-A, as a control. All cigarette types were tested for IP according to the NIST (10-sheet) filter paper IP test and freeburn.
  • Cigarette type 1-B was made from cigarette paper A gravure printed with a composition containing about 20.5 weight percent Flokote-64® starch (National Starch, Berkeley, Calif.), about 0.90 weight percent DAP (Rhodia, Cranbury, N.J.), about 8.40 weight percent citrate salt, and bout 70.17 weight percent tap water.
  • the citrate salt was a mixture of sodium citrate dihydrate (Fisher Scientific, Fair Lawn, N.J.) and potassium citrate monohydrate (Fisher Scientific, Fair Lawn, N.J.) in an about 1:2.8 weight/weight ratio.
  • the composition was heated at approximately 87° C. for about 15 minutes. The permeability in the banded region was measured as about 6 CU.
  • Cigarette type 1-C was made from cigarette paper A gravure printed with a composition containing about 27.21 weight percent Flokote-64® starch (National Starch, Berkeley, Calif.), about 1.20 weight percent DAP (Rhodia, Cranbury, N.J.), about 11.13 weight percent citrate salt, and about 60.46 weight percent tap water.
  • the citrate salt was a mixture of sodium citrate dihydrate (Fisher Scientific, Fair Lawn, N.J.) and potassium citrate monohydrate (Fisher Scientific, Fair Lawn, N.J.) in an about 1:2.8 weight/weight ratio.
  • the composition heated at approximately 87° C. for about 15 minutes. The permeability in the banded region was measured as about 4 CU.
  • Table 2 indicates IP and freeburn results for the control cigarette.
  • the results in Table 3 and Table 4 indicate that the reduced IP prototypes cigarettes were characterized as having significant IP reduction, relative to the control, while maintaining the ability to freeburn in the static state.
  • the smoke taste profile of cigarettes 1-B and 1-C were substantially the same as control cigarette 1-A in terms of taste when smoking within banded areas and smoking in the untreated, non-banded, areas.
  • the bands on 1-B and 1-C cigarettes were found to be nearly undetectable compared to the non-banded control article 1-A.
  • the appearance of the ash after the banded region was smoked through was substantially the same as the ash formed when the untreated, non-banded, region was smoked through.
  • the ash appearance of the reduced IP cigarettes, 1-B and 1-C was substantially the same as the control article 1-A. TABLE 2 IP and Freeburn Results for Control Cigarette 1-A. IP Pass (%) * Replicates Freeburn (%) Replicates 0 8 100 32
  • the various starch compositions were used to make a circumferential band, about 7 millimeters wide, around the body of a smoking article.
  • the circumferential band was positioned about 15 millimeters from the ignition end of the finished smoking article.
  • the smoking article was prepared using cigarette paper A, an about 63 millimeter tobacco column length, an about 21 millimeter cellulose acetate non-air diluted filter section, and a cigarette tobacco blend. TABLE 5 Starch Compositions Used.
  • a band was applied on the smoking article by hand using an aluminum printing plate, and the wet weight of added material was measured. The applied dry weights of banding materials were calculated and are reported in Table 6.
  • the hydrophobic derivatized starches (RediFilm-54®, RediFilm-250®, and 11527-2) gave low visibility bands when applied on the cigarettes.
  • the IP results indicate that derivatized starch products are effective IP reducing materials.
  • about 90 micrograms ( ⁇ g) would be the dry weight that forms a substantially about 100% effective, IP reducing, registered position band.
  • Cigarette type 3-A was made from cigarette paper A gravure printed with a composition containing about 16.4 weight percent RediFilm-54® starch (National Starch, Berkeley, Calif.) and about 83.6 weight percent tap water. The permeability in the banded region was measured as about 4 CU.
  • Cigarette type 3-B was made from cigarette paper A gravure printed with a composition containing about 18.18 weight percent Ethylex-2015® hydroxyethylated starch (A. E. Staley, Decatur, Ill.), about 1.01 weight percent DAP (Rhodia, Cranbury, N.J.), and about 80.81 weight percent tap water. The composition heated at approximately 87° C. for about 15 minutes.
  • Cigarette type 3-C was made from cigarette paper A gravure printed with a composition containing about 18.18 weight percent Ethylex-2065® hydroxyethylated starch (A. E. Staley, Decatur, Ill.), about 1.01 weight percent DAP (Rhodia, Cranbury, N.J.), and about 80.81 weight percent tap water. The composition was heated at approximately 87° C. for about 15 minutes.
  • Table 7 indicates IP and freeburn results for cigarettes 3-A, 3-B, and 3-C.
  • Cigarette IP was measured, using about 20 replicates, by the NIST (10-sheet) filter paper test. The freeburn character was measured using about 16 replicates. The IP results indicate that derivatized starch products are effective IP reducing materials in the present application in which band position is random on the individual articles in the population.
  • compositions containing varying Flokote-64® starch National Starch, Berkeley, Calif.
  • Compositions were prepared by combining an appropriate amount of starch powder in tap water as summarized in Table 8. The starch/water combination was heated at approximately 90° C. for about 10 minutes.
  • Cigarette types 4-A, 4-B, 4-C, 4-D, and 4-E were made from cigarette papers gravure printed with starch compositions as listed in Table 8 and 9. Gravure printing was performed using an about 8 millimeter band width and an about 25 millimeter center-to-center spacing.
  • Smoking articles were made using separate banded wrappers, an about 63 millimeter tobacco column length, an about 21 millimeter cellulose acetate non-air diluted filter section, and a cigarette tobacco blend. The cigarettes were made on a conventional cigarette-making machine.
  • Table 10 indicates IP and freeburn results for cigarette types 4-A, 4-B, 4-C, 4-D, and 4-E.
  • Cigarette IP was measured, using about 20 replicates, by the NIST (10-sheet) filter paper test. The freeburn character was measured using about 6 replicates. The results indicate that significant IP reduction occurs when the band permeability is reduced to less than about 6 CU.
  • the applied permeability reducing agent may be adjusted, such as controlling percent weight, viscosity or the like, to give an effective IP reducing band in the present application in which band position is random on the individual articles in the population.
  • the band region was characterized as possessing less taste strength and a slight paper-like taste relative to the untreated, non-banded, region.
  • compositions containing varying Flokote-64® starch (National Starch, Berkeley, Calif.) and DAP (Rhodia, Cranbury, N.J.) contents was prepared.
  • Compositions were prepared by combining an appropriate amount of starch powder and DAP in tap water as summarized in Table 11. The combinations were heated at approximately 90° C. for about 15 minutes.
  • Cigarette types 5-A through 5-L were made from cigarette papers gravure printed with starch compositions as listed in Table 11 and 12. All cigarette types had a band configuration of about 6 millimeter width and about 25 millimeter center-to-center spacing except types 5-I and 5-J which had a band configuration of about 8 millimeter width and about 25 millimeter center-to-center spacing.
  • Smoking articles were made using separate banded wrappers, an about 63 millimeter tobacco column length, an about 21 millimeter cellulose acetate non-air diluted filter section, and a cigarette tobacco blend. The cigarettes were made on a conventional cigarette-making machine. TABLE 11 Starch Compositions Used.
  • Composition Starch # (g) DAP (g) Water (mL) Composition* 5-1 900 0 4000 18.37% S 5-2 900 12.5 4000 18.27% S, 0.25% DAP 5-3 900 25 4000 18.32% S, 0.51% DAP 5-4 900 50 4000 18.18% S, 1.01% DAP 5-5 900 150 4000 17.82% S, 2.97% DAP 5-6 900 200 4000 17.65% S, 3.92% DAP 5-7 900 300 4000 17.31% S, 5.77% DAP 5-8 1000 0 4000 20.00% S 5-9 1040 150 4000 20.04% S, 2.89% DAP 5-10 1100 50 4000 21.36% S, 0.97% DAP 5-11 1250 50 4000 23.58% S, 0.94% DAP
  • Table 13 indicates IP and freeburn results for cigarette types 5-A through 5-L.
  • Cigarette IP was measured, using about 20 replicates, by the NIST (10-sheet) filter paper test. The freeburn character was measured using about 16 replicates. The results indicate that significant IP reduction occurs when the band permeability is less than about 6 CU, although for the present example freeburn was significantly lowered for the about 4 CU and about 3 CU band permeability samples.
  • Cigarette Type IP Pass (%)* Freeburn (%) 5-A 90 100 5-B 100 93.8 5-C 100 93.8 5-D 100 100 5-E 100 93.8 5-F 100 100 5-G 90 93.8 5-H 100 0 5-I 100 0 5-J 100 10 5-K 100 0 5-L 100 6.3
  • the band region was characterized as possessing less taste strength relative to the untreated, non-banded, region.
  • the presence of DAP eliminated the slight paper-like taste attributed to using a permeability reducing agent alone to form the banded region.
  • composition 5-4 (1.01 weight percent DAP) was sufficient to afford the maximal benefit of DAP presence.
  • Cigarette type 6-A was made from cigarette paper A gravure printed with a composition containing about 20.65 weight percent Flokote-64 starch (National Starch, Berkeley, Calif.), about 0.94 weight percent DAP (Rhodia, Cranbury, N.J.), 3.32 weight percent citrate salt, and about 75.09 weight percent tap water.
  • the citrate salt was a mixture of sodium citrate dihydrate (Fisher Scientific, Fair Lawn, N.J.) and potassium citrate monohydrate (Fisher Scientific, Fair Lawn, N.J.) in an about 1:2.8 weight/weight ratio.
  • the composition was heated at approximately 87° C. for about 15 minutes.
  • Cigarette type 6-B was made from cigarette paper A gravure printed with a composition containing about 21.36 weight percent Flokote-64® starch (National Starch, Berkeley, Calif.), about 0.97 weight percent DAP (Rhodia, Cranbury, N.J.), and about 77.67 weight percent tap water. The composition was heated approximately 87° C. for about 15 minutes.
  • Cigarette type 6-C was made from cigarette paper A gravure printed with a composition containing about 19.56 weight percent Flokote-64® starch (National Starch, Berkeley, Calif.), about 0.89 weight percent DAP (Rhodia, Cranbury, N.J.), about 8.44 weight percent citrate salt, and about 71.11 weight percent tap water.
  • the citrate salt was a mixture of sodium citrate dihydrate (Fisher Scientific, Fair Lawn, N.J.) and potassium citrate monohydrate (J. T. Baker, Phillipsburg, N.J.) in an about 1:2.8 weight/weight ratio.
  • the composition was heated at approximately 87° C. for about 15 minutes.
  • Table 14 indicates IP and freeburn results for cigarette types 6-A, 6-B, and 6-C.
  • Cigarette IP was measured, using about 20 replicates, by the NIST (10-sheet) filter paper test. The freeburn character was measured using about 64 replicates for article types 6-A and 6-B and about 16 replicates for article type 6-C.
  • Both the burn rate retarding substance (such as DAP) and the burn rate accelerating substance (such as sodium/potassium citrate salt) are beneficial band additives that influence the ability of the article to freeburn.
  • High levels of the permeability reducing substance (such as starch) deposited in the band may increase the IP pass rate of the cigarette (see Example 4), but will decrease the ability of the cigarette to freeburn particularly when combined with the burn rate retarding substance (see Example 5).
  • the burn rate accelerating substance (such as sodium/potassium citrate salt) is a beneficial band component because this burn promoter can be used to increase the ability of a heavily banded cigarette to freeburn while maintaining concurrent reduced IP character.
  • Cigarette type 7-A was made from cigarette paper A gravure printed with a composition containing about 18.18 weight percent Flokote-64® starch (National Starch, Berkeley, Calif.), about 1.01 weight percent monoammonium phosphate (Fisher Scientific, Fair Lawn, N.J.), and about 80.81 weight percent tap water. The composition was heated at approximately 87° for about 15 minutes.
  • Cigarette type 7-B was made from cigarette paper A gravure printed with a composition containing about 17.82 weight percent Flokote-64® starch (National Starch, Berkeley, Calif.), about 2.97 weight percent monoammonium phosphate (Fisher Scientific, Fair Lawn, N.J.), and about 79.21 weight percent tap water. The composition was heated at approximately 87° C. for about 15 minutes.
  • Table 15 indicates IP and freeburn results for cigarettes 7-A and 7-B.
  • Article IP was measured, using about 20 replicates, by the NIST (10-sheet) filter paper test.
  • the freeburn character was measured using about 16 replicates.
  • the IP results indicate that starch combined with monoammonium phosphate is an effective IP reducing material in the present application in which band position is random on the individual articles in the population.
  • One smoking articles was made using a banded wrapper, an about 63 millimeter tobacco column length, an about 21 millimeter cellulose acetate non-air diluted filter section, and cigarette tobacco blend.
  • the cigarette was made on a conventional cigarette-making machine.
  • Cigarette type 8-A was made from cigarette paper A gravure printed with a composition containing about 15.24 weight percent Flokote-64® starch (National Starch, Berkeley, Calif.), about 0.95 weight percent DAP (Rhodia, Carnbury, N.J.), about 7.62 weight percent microcrystalline cellulose (Aldrich, Milwaukee, Wis., Catalog #31,069-7), and about 76.19 weight percent tap water.
  • the starch/DAP composition heated at approximately 87° C. for about 15 minutes then the cellulose component was dispersed before printing.
  • the composition used to band article type 8-B contained about 14.61 weight percent Flokote-64® starch (National Starch, Berkeley, Calif.), about 0.97 weight percent DAP (Rhodia, Carnbury, N.J.), about 2.16 weight percent sodium citrate dihydrate (Fisher Scientific, Fair Lawn, N.J.), about 6.05 weight percent potassium citrate monohydrate (J. T. Baker, Phillipsburg, N.J.), about 4.40 weight percent colloidal cellulose (Aldrich, Milwaukee, Wis.; Catalog #43,524-4), and about 71.82 weight percent tap water.
  • the starch/DAP/citrate salt composition was heated at approximately 90° C. for about 20 minutes then the cellulose component was dispersed before applying the material to articles.
  • Cigarette type 8-B was hand banded with the starch/DAP/cellulose composition to give a circumferential band, about 7 millimeters wide, around the body of a smoking article.
  • the circumferential band was positioned about 20 millimeters from the ignition end of the finished article.
  • the smoking article was prepared using cigarette paper A, an about 72 millimeter tobacco column length, an about 25 millimeter cellulose acetate non-air diluted filter section, and a cigarette tobacco blend.
  • the fixed-position band of article type 8-B was applied on the smoking article by hand using an aluminum printing plate, and the wet weight of added material was measured.
  • the applied total dry weight of banding material was calculated to be about 1.4 milligrams.
  • Table 16 indicates IP and freeburn results for cigarettes 8-A and 8-B.
  • Cigarette IP was measured, using about 20 replicates for 8-A and 4 replicates for 8-B, by the NIST (10-sheet) filter paper test.
  • the freeburn character was measured using about 16 replicates for 8-A and 4 replicates for 8-B.
  • the IP results indicate that starch/DAP, or more preferably starch/DAP/citrate salt, combined with cellulose is an effective IP reducing material in the present application in which band position is either random or fixed on the individual articles in the population.
  • Cigarette types 9-A and 9-B were hand banded with compositions to give a circumferential band, about 7 millimeters wide, around the body of a smoking article.
  • the circumferential band was positioned about 20 millimeters from the ignition end of the finished article.
  • the smoking article was prepared using cigarette paper A, an about 72 millimeter tobacco column length, an about 25 millimeter cellulose acetate non-air diluted filter section, and a cigarette tobacco blend.
  • the fixed-position band of was applied on the smoking article by hand using an aluminum printing plate, and the wet weight of added material was measured.
  • the applied dry weights of banding materials were calculated and found to be about 1.4 milligrams (total dry material weight) for article type 9-A and about 0.82 milligrams (total dry material weight) for article type 9-B.
  • the composition used to band article type 9-A contained about 14.47 weight percent Flokote-64® starch (National Starch, Berkeley, Calif.), 0.96 weight percent DAP (Rhodia, Carnbury, N.J.), about 2.14 weight percent sodium citrate dihydrate (Fisher Scientific, Fair Lawn, N.J.), about 6.00 weight percent potassium citrate monohydrate (J. T. Baker, Phillipsburg, N.J.), about 5.30 weight percent calcium carbonate (Aldrich, Milwaukee, Wis.; Catalog #31,003-4), and about 71.14 weight percent tap water.
  • the starch/DAP/citrate salt composition was heated at approximately 90° C. for about 20 minutes then the calcium carbonate component was dispersed before applying the material to the articles.
  • the composition used to band article type 9-B contained about 14.56 weight percent Flokote-64® starch (National Starch, Berkeley, Calif.), 0.96 weight percent DAP (Rhodia, Carnbury, N.J.), about 2.15 weight percent sodium citrate dihydrate (Fisher Scientific, Fair Lawn, N.J.), about 6.04 weight percent potassium citrate monohydrate (J. T. Baker, Phillipsburg, N.J.), about 4.70 weight percent Kaolin clay (Aldrich, Milwaukee, Wis.; Catalog #22,883-4), and about 71.59 weight percent tap water.
  • the starch/DAP/citrate salt composition was heated at approximately 90° C. for about 20 minutes then the Kaolin clay component was dispersed before applying the material to the articles.
  • Table 17 indicates IP and freeburn results for cigarettes 9-A and 9-B.
  • Cigarette IP was measured, using about 4 replicates, by the NIST (10-sheet) filter paper test.
  • the freeburn character was measured using about 4 replicates.
  • the IP results indicate that starch/DAP/citrate salt combined with filler, such as calcium carbonate, clay, and the like, is an effective IP reducing material in the present application in which band position is fixed on the individual articles in the population.
  • article 9-B incorporates Kaolin clay as a band component, which appears to synergistically enhance the performance of the burn rate retarding substance and/or the permeability reducing substance.
  • article 9-A incorporates an alkali earth salt, calcium carbonate, known to act as paper burn rate accelerating substance, which may interact synergistically with the burn rate accelerating component.
  • the filler component may cooperate with the permeability reducing substance.
  • a series of base cigarette papers were banded with a composition containing Flokote-64® starch (National Starch, Berkeley, Calif.) and DAP (Rhodia, Cranbury, N.J.).
  • Smoking articles were made using separate banded wrappers, an about 63 millimeter tobacco column length, an about 21 millimeter cellulose acetate non-air diluted filter section, and a cigarette tobacco blend.
  • the cigarettes were made on a conventional cigarette-making machine.
  • Cigarette types were made from a series of cigarette papers, as listed in Table 18, gravure printed with a composition containing about 21.36 weight percent Flokote-64® starch (National Starch, Berkeley, Calif.), about 0.97 weight percent DAP (Rhodia, Cranbury, N.J.), and about 77.67 weight percent tap water. The composition was heated at approximately 87° C. for about 15 minutes. TABLE 18 Summary of Banded Cigarette IP and Freeburn Data. Cigarette Type Base Paper IP Pass (%)* Freeburn (%) 10-A A 100 34 10-B D 100 56.3 10-C B 100 57.0 10-D F 100 62.5 10-B G 80 100 10-F A** 100 43.8 10-G H 50 100
  • IP and freeburn data in Table 18 demonstrate that at constant applied band composition, and application method, results may vary depending on the structure of the base paper.
  • increasing the applied amount of the composition will increase IP pass rate for higher base paper permeability types (such as 10-E and 10-G).
  • the freeburn value may be increased by the incorporation of a burn rate accelerating substance in the band.
  • Article type 10-F used an about 18 CU base paper (A) electrostatically perforated, before band printing, to about 70 CU. After banding, the permeability in the band region was measured as about 57 CU. Article type 10-A, utilizing base paper A, had a measured band permeability of about 5 CU. Interestingly, article types 10-A and 10-F gave similar IP and freeburn results. This example demonstrates the unexpected result that perforation in the banded region, at the level applied, does not degrade the IP performance. Applicants fully anticipate higher levels of perforation may give similar results.
  • Smoke delivery is the quantity of various smoke components produced by the article during its consumption. For this example, carbon monoxide was used as a surrogate for all components delivered by the article.
  • An article manufactured from a paper containing a banded region of lower permeability than the non-banded region may display increased smoke delivery relative to the non-banded control article. The width, spacing, composition, and number of the bands may also affect smoke delivery changes.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Cigarettes, Filters, And Manufacturing Of Filters (AREA)
  • Cosmetics (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
US09/795,054 2001-02-26 2001-02-26 Reduced ignition propensity smoking article Abandoned US20020179105A1 (en)

Priority Applications (14)

Application Number Priority Date Filing Date Title
US09/795,054 US20020179105A1 (en) 2001-02-26 2001-02-26 Reduced ignition propensity smoking article
ES01304017T ES2346129T3 (es) 2001-02-26 2001-05-02 Articulo para fumar con tendencia reducida a la ignicion.
DE60142216T DE60142216D1 (de) 2001-02-26 2001-05-02 Rauchartikel mit herabgesetzter Zündungsneigung
EP01304017A EP1234514B1 (fr) 2001-02-26 2001-05-02 Article à fumer à tendance réduite à l'ignition
AT01304017T ATE468765T1 (de) 2001-02-26 2001-05-02 Rauchartikel mit herabgesetzter zündungsneigung
CA002442615A CA2442615C (fr) 2001-02-26 2002-02-05 Article a fumer a inflammabilite reduite
NZ528529A NZ528529A (en) 2001-02-26 2002-02-05 A reduced ignition propensity smoking article
AU2002240293A AU2002240293C1 (en) 2001-02-26 2002-02-05 A reduced ignition propensity smoking article
PCT/US2002/003611 WO2002067704A1 (fr) 2001-02-26 2002-02-05 Article a fumer a inflammabilite reduite
CA002553414A CA2553414C (fr) 2001-02-26 2002-02-05 Article a fumer a inflammabilite reduite
US10/468,257 US7247726B2 (en) 2001-02-26 2002-12-18 Compounds for generating chemiluminescence with a peroxidase
HK03100535.9A HK1048420B (zh) 2001-02-26 2003-01-22 具有降低的引火傾向的香烟製品
US10/402,651 US6837248B2 (en) 2001-02-26 2003-03-28 Reduced ignition propensity smoking article
US10/973,713 US7836898B2 (en) 2001-02-26 2004-10-26 Reduced ignition propensity smoking article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US09/795,054 US20020179105A1 (en) 2001-02-26 2001-02-26 Reduced ignition propensity smoking article

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/402,651 Continuation US6837248B2 (en) 2001-02-26 2003-03-28 Reduced ignition propensity smoking article

Publications (1)

Publication Number Publication Date
US20020179105A1 true US20020179105A1 (en) 2002-12-05

Family

ID=25164532

Family Applications (3)

Application Number Title Priority Date Filing Date
US09/795,054 Abandoned US20020179105A1 (en) 2001-02-26 2001-02-26 Reduced ignition propensity smoking article
US10/402,651 Expired - Lifetime US6837248B2 (en) 2001-02-26 2003-03-28 Reduced ignition propensity smoking article
US10/973,713 Expired - Fee Related US7836898B2 (en) 2001-02-26 2004-10-26 Reduced ignition propensity smoking article

Family Applications After (2)

Application Number Title Priority Date Filing Date
US10/402,651 Expired - Lifetime US6837248B2 (en) 2001-02-26 2003-03-28 Reduced ignition propensity smoking article
US10/973,713 Expired - Fee Related US7836898B2 (en) 2001-02-26 2004-10-26 Reduced ignition propensity smoking article

Country Status (10)

Country Link
US (3) US20020179105A1 (fr)
EP (1) EP1234514B1 (fr)
AT (1) ATE468765T1 (fr)
AU (1) AU2002240293C1 (fr)
CA (1) CA2442615C (fr)
DE (1) DE60142216D1 (fr)
ES (1) ES2346129T3 (fr)
HK (1) HK1048420B (fr)
NZ (1) NZ528529A (fr)
WO (1) WO2002067704A1 (fr)

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040007242A1 (en) * 2002-04-22 2004-01-15 Rothmans, Benson & Hedges Inc. Low ignition propensity cigarette having oxygen donor metal oxide in the cigarette wrapper
US20040182407A1 (en) * 2000-11-13 2004-09-23 Peterson Richard M. Process for producing smoking articles with reduced ignition proclivity characteristics and products made according to same
US20040231684A1 (en) * 2003-05-20 2004-11-25 Zawadzki Michael A. Smoking article and smoking article filter
US6854469B1 (en) 2001-06-27 2005-02-15 Lloyd Harmon Hancock Method for producing a reduced ignition propensity smoking article
US7047982B2 (en) 2003-05-16 2006-05-23 R.J. Reynolds Tobacco Company Method for registering pattern location on cigarette wrapping material
US20070137668A1 (en) * 2005-12-15 2007-06-21 Borschke August J Smoking articles and wrapping materials therefor
US20090120450A1 (en) * 2007-07-03 2009-05-14 Schweitzer-Mauduit International, Inc. Smoking Articles Having Reduced Ignition Proclivity Characteristics
US7677256B2 (en) 2001-08-14 2010-03-16 R.J. Reynolds Tobacco Company Wrapping materials for smoking articles
US20100191741A1 (en) * 2009-01-27 2010-07-29 Palo Alto Research Center Incorporated System And Method For Using Banded Topic Relevance And Time For Article Prioritization
US20110030709A1 (en) * 2009-08-07 2011-02-10 Sebastian Andries D Materials, Equipment, and Methods for Manufacturing Cigarettes
US8151806B2 (en) 2005-02-07 2012-04-10 Schweitzer-Mauduit International, Inc. Smoking articles having reduced analyte levels and process for making same
US8267096B2 (en) 2000-09-18 2012-09-18 Rothmans, Benson & Hedges, Inc. Low sidestream smoke cigarette with combustible paper
WO2012155687A1 (fr) * 2011-05-13 2012-11-22 民丰特种纸股份有限公司 Papier à cigarette qui présente une faible propension à se consumer et procédé de préparation de ce dernier
US8646464B2 (en) 2008-02-22 2014-02-11 Schweitzer-Mauduit International, Inc. Treated areas on a wrapper for reducing the ignition proclivity characteristics of a smoking article
US8701682B2 (en) 2009-07-30 2014-04-22 Philip Morris Usa Inc. Banded paper, smoking article and method
US8707967B2 (en) 2006-03-31 2014-04-29 Philip Morris Usa Inc. Banded papers, smoking articles and methods
AU2013200653B2 (en) * 2007-07-03 2014-10-02 Schweitzer-Mauduit International, Inc. Smoking articles having reduced ignition proclivity characteristics
DE102013106516B3 (de) * 2013-06-21 2014-10-09 Delfortgroup Ag Zigarettenpapier, das einer zigarette ein gleichmässiges zugprofil verleiht
US8863757B2 (en) 2002-01-23 2014-10-21 Schweitzer-Mauduit International, Inc. Smoking articles with reduced ignition proclivity characteristics
JP2015501153A (ja) * 2011-10-25 2015-01-15 ケーティー アンド ジー コーポレーション 低発火性シガレットペーパーのコーティング組成物およびこれを用いるシガレット
US9149068B2 (en) 2012-10-11 2015-10-06 Schweitzer-Mauduit International, Inc. Wrapper having reduced ignition proclivity characteristics
EP2337462B1 (fr) 2008-06-26 2016-03-02 KT & G Corporation Papier à cigarette revêtu de matières de revêtement à faible propension à l'inflammation et cigarette anti-feu revêtue de cette matière
US9302522B2 (en) 2010-12-13 2016-04-05 Altria Client Services Llc Process of preparing printing solution and making patterned cigarette wrappers
US20160198760A1 (en) * 2003-06-13 2016-07-14 Philip Morris Usa Inc. Cigarette wrapper with printed catalyst
US20160302474A1 (en) * 2013-12-11 2016-10-20 Schweitzer-Mauduit International, Inc. Wrappers for Smoking Articles
US9668516B2 (en) 2012-05-16 2017-06-06 Altria Client Services Llc Banded cigarette wrapper with opened-area bands
KR101820072B1 (ko) * 2010-05-20 2018-01-18 빠쁘뜨리 드 르망 연소성 저감 특성을 갖는 끽연 제품용 종이
US10375988B2 (en) 2010-12-13 2019-08-13 Altria Client Services Llc Cigarette wrapper with novel pattern
US10905154B2 (en) 2011-05-16 2021-02-02 Altria Client Services Llc Alternating patterns in cigarette wrapper, smoking article and method
US11064729B2 (en) 2012-05-16 2021-07-20 Altria Client Services Llc Cigarette wrapper with novel pattern
US11707082B2 (en) 2010-12-13 2023-07-25 Altria Client Services Llc Process of preparing printing solution and making patterned cigarette wrapper

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7275548B2 (en) * 2001-06-27 2007-10-02 R.J. Reynolds Tobacco Company Equipment for manufacturing cigarettes
US7073514B2 (en) * 2002-12-20 2006-07-11 R.J. Reynolds Tobacco Company Equipment and methods for manufacturing cigarettes
US7448390B2 (en) * 2003-05-16 2008-11-11 R.J. Reynolds Tobacco Company Equipment and methods for manufacturing cigarettes
US6929013B2 (en) * 2001-08-14 2005-08-16 R. J. Reynolds Tobacco Company Wrapping materials for smoking articles
US7237559B2 (en) * 2001-08-14 2007-07-03 R.J. Reynolds Tobacco Company Wrapping materials for smoking articles
US20040238136A1 (en) * 2003-05-16 2004-12-02 Pankaj Patel Materials and methods for manufacturing cigarettes
MY143467A (en) * 2002-03-15 2011-05-31 Rothmans Benson & Hedges Low sidestream smoke cigarette with combustible paper having a modified ash
CA2506302A1 (fr) 2002-11-25 2004-06-10 R.J. Reynolds Tobacco Company Materiaux d'emballage pour articles pour fumeurs
US6997190B2 (en) * 2002-11-25 2006-02-14 R.J. Reynolds Tobacco Company Wrapping materials for smoking articles
US7234471B2 (en) * 2003-10-09 2007-06-26 R. J. Reynolds Tobacco Company Cigarette and wrapping materials therefor
US7281540B2 (en) * 2002-12-20 2007-10-16 R.J. Reynolds Tobacco Company Equipment and methods for manufacturing cigarettes
US7276120B2 (en) * 2003-05-16 2007-10-02 R.J. Reynolds Tobacco Company Materials and methods for manufacturing cigarettes
US20050005947A1 (en) 2003-07-11 2005-01-13 Schweitzer-Mauduit International, Inc. Smoking articles having reduced carbon monoxide delivery
US7434585B2 (en) * 2003-11-13 2008-10-14 R. J. Reynolds Tobacco Company Equipment and methods for manufacturing cigarettes
US20050115575A1 (en) * 2003-12-01 2005-06-02 Seymour Sydney K. Cigarette paper testing apparatus and associated method
US7296578B2 (en) * 2004-03-04 2007-11-20 R.J. Reynolds Tobacco Company Equipment and methods for manufacturing cigarettes
US7600518B2 (en) 2005-04-19 2009-10-13 R. J. Reynolds Tobacco Company Smoking articles and wrapping materials therefor
US7767656B2 (en) * 2005-04-25 2010-08-03 Molly S Shoichet Blends of temperature sensitive and anionic polymers for drug delivery
US8646463B2 (en) * 2005-08-15 2014-02-11 Philip Morris Usa Inc. Gravure-printed, banded cigarette paper
BRPI0520618B1 (pt) * 2005-10-12 2012-12-11 material de embrulho de artigo de fumar, processo de produção do referido material e artigo de fumar.
US20070084475A1 (en) * 2005-10-14 2007-04-19 Oglesby Robert L Smoking articles and wrapping materials therefor
JP5676098B2 (ja) * 2006-03-31 2015-02-25 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム スリット縞状紙
ES2645221T3 (es) 2006-06-01 2017-12-04 Schweitzer-Mauduit International, Inc. Artículos de fumar en combustión al aire libre con características de tendencia reducida a la ignición
US20080216852A1 (en) * 2006-12-29 2008-09-11 Philip Morris Usa Inc. Banded cigarette paper with reduced ignition propensity
EP2617301A1 (fr) * 2007-05-24 2013-07-24 Philip Morris Products S.A. Article à fumer avec nouvelle enveloppe
AU2008256335B2 (en) * 2007-06-01 2013-07-25 Philip Morris Products S.A. Banded papers, smoking articles and methods
TWI441601B (zh) * 2007-06-28 2014-06-21 Philip Morris Products Sa 具有高白堊含量之圖案化包裝紙
TW200930311A (en) * 2007-08-23 2009-07-16 Philip Morris Prod Registered banded cigarette paper, cigarettes, and method of manufacture
EP2071965B1 (fr) * 2007-12-20 2010-11-17 Reemtsma Cigarettenfabriken GmbH Article à fumer avec des caractéristiques d'extinction améliorées
AT10415U1 (de) * 2008-02-14 2009-03-15 Delfortgroup Ag Zigarette
GB0903136D0 (en) * 2009-02-25 2009-04-08 British American Tobacco Co Smoking articles and method for manufacturing smoking articles
DE102010013669A1 (de) * 2010-04-01 2011-10-06 Delfortgroup Ag Perforiertes Zigarettenpapier
FR2970153B1 (fr) * 2011-01-07 2014-04-25 Republic Technologies Na Llc Papier a cigarette a combustion naturelle limitee amelioree
EP2683633A4 (fr) * 2011-03-08 2015-06-17 Lorillard Tobacco Co Compositions à changement de phase utilisées pour réduire la propension à l'allumage d'articles à fumer
GB2491356A (en) * 2011-05-31 2012-12-05 British American Tobacco Co A self-extinguishing smoking article
CN102423132B (zh) * 2011-08-15 2013-11-27 武汉力诚生物科技有限公司 植物多糖香烟过滤嘴及制备方法
CN102493280A (zh) 2011-12-02 2012-06-13 牡丹江恒丰纸业股份有限公司 一种具有阻燃带的卷烟纸的制造装置及制备方法
KR101404139B1 (ko) * 2012-07-26 2014-06-05 주식회사 케이티앤지 저발화성 궐련지 및 이를 이용하는 담배
EP2712510B1 (fr) * 2012-09-28 2016-03-02 Reemtsma Cigarettenfabriken GmbH Article à fumer
DE102015118595A1 (de) * 2015-10-30 2017-06-01 Axagarius Gmbh & Co. Kg Markiertes Filterpapier zum Einsatz als Prüfsubstrat bei stadardisierten Verfahren zur Beurteilung der Zündneigung von Zigaretten
US11033050B2 (en) * 2017-10-13 2021-06-15 Kombucha Biomaterials Llc Cigarette rolling papers formed from kombucha biofilms
CN109872356A (zh) * 2017-12-01 2019-06-11 贵州中烟工业有限责任公司 一种定量评价卷烟燃烧锥形态的方法
CN110487960B (zh) * 2018-05-15 2021-07-16 江苏警官学院 一种辨识卷烟品牌的方法及装置
NL2022211B1 (en) 2018-12-14 2020-07-03 B V Deli Htl Tabak Mij A hollow rod made from a homogenized tobacco material.
US11397175B2 (en) 2020-01-27 2022-07-26 RJ. Reynolds Tobacco Company Method and apparatus for the inspection of a paper web wound on a bobbin

Family Cites Families (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1999222A (en) * 1933-04-07 1935-04-30 Self Extinguishing Cigarette C Cigarette
US1996002A (en) 1933-05-25 1935-03-26 Seaman Stewart Elmer Decreasing inflammability of cigarettes
US2013508A (en) * 1933-05-25 1935-09-03 Seaman Stewart Elmer Difficultly flammable cigarette wrapper
US2216845A (en) 1936-09-28 1940-10-08 Du Pont Manufacture of paper
US2580568A (en) * 1950-05-16 1952-01-01 Ecusta Paper Corp Cigarette paper
US3911932A (en) 1974-07-31 1975-10-14 Philip Morris Inc Control of smoking delivery through cigarette paper porosity
US3911931A (en) * 1974-10-22 1975-10-14 Glamorise Foundations Brassiere with improved breast cup construction
GB1524211A (en) * 1975-01-09 1978-09-06 British American Tobacco Co Smoking articles
US4129134A (en) 1975-04-14 1978-12-12 Philip Morris Incorporated Smoking article
IE48028B1 (en) 1977-09-16 1984-09-05 Gallaher Ltd Smoking rod wrapper
US4506684A (en) 1978-08-02 1985-03-26 Philip Morris Incorporated Modified cellulosic smoking material and method for its preparation
US4452259A (en) * 1981-07-10 1984-06-05 Loews Theatres, Inc. Smoking articles having a reduced free burn time
US4450847A (en) 1982-04-07 1984-05-29 Olin Corporation Wrapper for smoking articles and method
US4420002A (en) 1982-04-07 1983-12-13 Olin Corp. Wrapper for smoking articles and method
US4453553A (en) 1983-01-24 1984-06-12 Cohn Charles C Treatment of cigarette paper
GB8302594D0 (en) 1983-01-31 1983-03-02 Gallaher Ltd Smoking rod wrapper
US4622983A (en) 1983-08-08 1986-11-18 Kimberly-Clark Corporation Reduced ignition proclivity smoking article wrapper and smoking article
US4615345A (en) * 1983-08-08 1986-10-07 Kimberly-Clark Corporation Wrapper constructions for self-extinguishing smoking articles
US4679575A (en) 1984-11-23 1987-07-14 Japan Tobacco Inc. Cigarette
EP0196775B1 (fr) 1985-02-28 1989-05-10 Gallaher Limited Encres d'impression et substrats imprimés avec ces encres
US4730628A (en) 1986-07-21 1988-03-15 R. J. Reynolds Tobacco Company Cigarette rods having segmented sections
AU609418B2 (en) 1986-08-27 1991-05-02 Gallaher Limited Smoking rod wrapper and compositions for their production
AU602834B2 (en) 1987-09-03 1990-10-25 British-American Tobacco Company Limited Smoking articles
US5143098A (en) 1989-06-12 1992-09-01 Philip Morris Incorporated Multiple layer cigarette paper for reducing sidestream smoke
US5062434A (en) 1989-09-22 1991-11-05 Brown & Williamson Tobacco Corporation Cigarette paper
US5152304A (en) 1989-10-31 1992-10-06 Philip Morris Incorporated Wrapper for a smoking article
NO177624C (no) 1989-10-31 1995-10-25 Philip Morris Prod Papirhylster for en rökeartikkel og anvendelse av dette
US5060674A (en) * 1990-01-12 1991-10-29 Kimberly-Clark Corporation Sidestream smoke reducing cigarette paper with improved physicals and improved sidestream odor/aroma
US5060675A (en) 1990-02-06 1991-10-29 R. J. Reynolds Tobacco Company Cigarette and paper wrapper therefor
US5154191A (en) 1990-04-26 1992-10-13 P. H. Glatfelter Company Wrappers for smoking articles, methods of making such wrappers and smoking articles made from such wrappers - case I
US5103844A (en) 1990-06-07 1992-04-14 R. J. Reynolds Tobacco Company Cigarette paper and cigarette incorporating same
US5170807A (en) 1990-07-20 1992-12-15 Kimberly Clark Corporation Method of producing a non-burning outer wrapper for use with smoking products
US5191906A (en) 1990-10-30 1993-03-09 Philip Morris Incorporated Process for making wrappers for smoking articles which modify the burn rate of the smoking article
ES2101723T3 (es) * 1990-11-16 1997-07-16 Philip Morris Prod Papel que tiene regiones transversales de gramaje variable.
US5263500A (en) 1991-04-12 1993-11-23 Philip Morris Incorporated Cigarette and wrapper with controlled puff count
US5247950A (en) 1991-07-02 1993-09-28 P. H. Glatfelter Company Control of static burning rate by use of binary burnign chemical combinations
US5263999A (en) 1991-09-10 1993-11-23 Philip Morris Incorporated Smoking article wrapper for controlling burn rate and method for making same
US5534114A (en) 1992-03-06 1996-07-09 Philip Morris Incorporated Method and apparatus for applying a material to a web
US5450863A (en) 1992-03-18 1995-09-19 Philip Morris Incorporated Smoking article wrapper and method for making same
GB9215184D0 (en) * 1992-07-17 1992-09-02 Alcan Int Ltd Intumescent systems
US5360516A (en) 1992-11-12 1994-11-01 Philip Morris Incorporated Application of fluidized material to a substrate using intermittent charges of compressed air
US5332472A (en) 1992-11-30 1994-07-26 Philip Morris Incorporated Application of fluidized material to a substrate using displacement transfer
US5342484A (en) 1993-03-16 1994-08-30 Philip Morris Incorporated Method and apparatus for making banded smoking article wrappers
US5820998A (en) 1994-03-08 1998-10-13 Schweitzer-Mauduit International, Inc. Coated paper and process for making the same
JP2947735B2 (ja) 1995-08-09 1999-09-13 三島製紙株式会社 水分散性シート並びにこれを用いたたばこ
US5997691A (en) 1996-07-09 1999-12-07 Philip Morris Incorporated Method and apparatus for applying a material to a web
US5878754A (en) 1997-03-10 1999-03-09 Schweitzer-Mauduit International, Inc. Smoking article wrapper for controlling ignition proclivity of a smoking article
US5878753A (en) * 1997-03-11 1999-03-09 Schweitzer-Mauduit International, Inc. Smoking article wrapper for controlling ignition proclivity of a smoking article without affecting smoking characteristics
US6020969A (en) 1997-07-11 2000-02-01 Philip Morris Incorporated Cigarette making machine including band inspection
US5966218A (en) 1997-07-11 1999-10-12 Philip Morris Incorporated Bobbin optical inspection system
CA2643087C (fr) * 2000-11-13 2014-01-21 Richard M. Peterson Procede de production de produits du tabac permettant de reduire le risque d'allumage, et produits fabriques selon ce procede

Cited By (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8267096B2 (en) 2000-09-18 2012-09-18 Rothmans, Benson & Hedges, Inc. Low sidestream smoke cigarette with combustible paper
US8678016B2 (en) 2000-09-18 2014-03-25 Rothmans, Benson & Hedges, Inc. Low sidestream smoke cigarette with combustible paper
US20040182407A1 (en) * 2000-11-13 2004-09-23 Peterson Richard M. Process for producing smoking articles with reduced ignition proclivity characteristics and products made according to same
US10258078B2 (en) 2000-11-13 2019-04-16 Schweitzer-Mauduit International, Inc. Process for producing smoking articles with reduced ignition proclivity characteristics and products made according to same
US6854469B1 (en) 2001-06-27 2005-02-15 Lloyd Harmon Hancock Method for producing a reduced ignition propensity smoking article
US7677256B2 (en) 2001-08-14 2010-03-16 R.J. Reynolds Tobacco Company Wrapping materials for smoking articles
US10028525B2 (en) 2002-01-23 2018-07-24 Schweitzer-Mauduit International, Inc. Smoking articles with reduced ignition proclivity characteristics
US8863757B2 (en) 2002-01-23 2014-10-21 Schweitzer-Mauduit International, Inc. Smoking articles with reduced ignition proclivity characteristics
US20040007242A1 (en) * 2002-04-22 2004-01-15 Rothmans, Benson & Hedges Inc. Low ignition propensity cigarette having oxygen donor metal oxide in the cigarette wrapper
US7775217B2 (en) 2003-05-16 2010-08-17 R. J. Reynolds Tobacco Company Methods and apparatus for manufacturing cigarettes
US7047982B2 (en) 2003-05-16 2006-05-23 R.J. Reynolds Tobacco Company Method for registering pattern location on cigarette wrapping material
US20040231684A1 (en) * 2003-05-20 2004-11-25 Zawadzki Michael A. Smoking article and smoking article filter
US20160198760A1 (en) * 2003-06-13 2016-07-14 Philip Morris Usa Inc. Cigarette wrapper with printed catalyst
US8151806B2 (en) 2005-02-07 2012-04-10 Schweitzer-Mauduit International, Inc. Smoking articles having reduced analyte levels and process for making same
US20070137668A1 (en) * 2005-12-15 2007-06-21 Borschke August J Smoking articles and wrapping materials therefor
US8925556B2 (en) 2006-03-31 2015-01-06 Philip Morris Usa Inc. Banded papers, smoking articles and methods
US8905043B2 (en) 2006-03-31 2014-12-09 Philip Morris Usa Inc. Banded papers, smoking articles and methods
US10485265B2 (en) 2006-03-31 2019-11-26 Philip Morris Usa Inc. Banded papers, smoking articles and methods
US10028524B2 (en) 2006-03-31 2018-07-24 Philip Morris Usa Inc. Banded papers, smoking articles and methods
US8707967B2 (en) 2006-03-31 2014-04-29 Philip Morris Usa Inc. Banded papers, smoking articles and methods
US8733370B2 (en) 2006-03-31 2014-05-27 Philip Morris Usa Inc. Banded papers, smoking articles and methods
US8833377B2 (en) 2006-03-31 2014-09-16 Philip Morris Usa Inc. Banded papers, smoking articles and methods
US8844540B2 (en) 2006-03-31 2014-09-30 Philip Morris Usa Inc. Banded papers, smoking articles and methods
US9161570B2 (en) 2006-03-31 2015-10-20 Philip Morris Usa Inc. Banded papers, smoking articles and methods
US8939156B2 (en) 2006-03-31 2015-01-27 Philip Morris Usa Inc. Banded papers, smoking articles and methods
US11547140B2 (en) 2006-03-31 2023-01-10 Philip Morris Usa Inc. Banded papers, smoking articles and methods
US10470489B2 (en) 2007-07-03 2019-11-12 Schweitzer-Maudult International, Inc. Smoking articles having reduced ignition proclivity characteristics
AU2013200653B2 (en) * 2007-07-03 2014-10-02 Schweitzer-Mauduit International, Inc. Smoking articles having reduced ignition proclivity characteristics
US20090120450A1 (en) * 2007-07-03 2009-05-14 Schweitzer-Mauduit International, Inc. Smoking Articles Having Reduced Ignition Proclivity Characteristics
US8646464B2 (en) 2008-02-22 2014-02-11 Schweitzer-Mauduit International, Inc. Treated areas on a wrapper for reducing the ignition proclivity characteristics of a smoking article
EP2337462B1 (fr) 2008-06-26 2016-03-02 KT & G Corporation Papier à cigarette revêtu de matières de revêtement à faible propension à l'inflammation et cigarette anti-feu revêtue de cette matière
US8452781B2 (en) * 2009-01-27 2013-05-28 Palo Alto Research Center Incorporated System and method for using banded topic relevance and time for article prioritization
US20100191741A1 (en) * 2009-01-27 2010-07-29 Palo Alto Research Center Incorporated System And Method For Using Banded Topic Relevance And Time For Article Prioritization
US8701682B2 (en) 2009-07-30 2014-04-22 Philip Morris Usa Inc. Banded paper, smoking article and method
US20110030709A1 (en) * 2009-08-07 2011-02-10 Sebastian Andries D Materials, Equipment, and Methods for Manufacturing Cigarettes
US9220297B2 (en) 2009-08-07 2015-12-29 R. J. Reynolds Tobacco Company Materials, equipment, and methods for manufacturing cigarettes
KR101820072B1 (ko) * 2010-05-20 2018-01-18 빠쁘뜨리 드 르망 연소성 저감 특성을 갖는 끽연 제품용 종이
US10375988B2 (en) 2010-12-13 2019-08-13 Altria Client Services Llc Cigarette wrapper with novel pattern
US11707082B2 (en) 2010-12-13 2023-07-25 Altria Client Services Llc Process of preparing printing solution and making patterned cigarette wrapper
US11602161B2 (en) 2010-12-13 2023-03-14 Altria Client Services Llc Cigarette wrapper with novel pattern
US9302522B2 (en) 2010-12-13 2016-04-05 Altria Client Services Llc Process of preparing printing solution and making patterned cigarette wrappers
AU2012255420B2 (en) * 2011-05-13 2016-03-31 Minfeng Special Paper Co. Ltd. Cigarette paper having low susceptibility to ignition and preparation method therefor
WO2012155687A1 (fr) * 2011-05-13 2012-11-22 民丰特种纸股份有限公司 Papier à cigarette qui présente une faible propension à se consumer et procédé de préparation de ce dernier
AU2012255420A1 (en) * 2011-05-13 2013-12-19 Minfeng Special Paper Co. Ltd. Cigarette paper having low susceptibility to ignition and preparation method therefor
US10905154B2 (en) 2011-05-16 2021-02-02 Altria Client Services Llc Alternating patterns in cigarette wrapper, smoking article and method
JP2015501153A (ja) * 2011-10-25 2015-01-15 ケーティー アンド ジー コーポレーション 低発火性シガレットペーパーのコーティング組成物およびこれを用いるシガレット
US9326545B2 (en) 2011-10-25 2016-05-03 Kt & G Corporation Coating composition of low ignition propensity cigarette paper and cigarette using the same
US10681935B2 (en) 2012-05-16 2020-06-16 Altria Client Services Llc Banded cigarette wrapper with opened-area bands
US11064729B2 (en) 2012-05-16 2021-07-20 Altria Client Services Llc Cigarette wrapper with novel pattern
US9668516B2 (en) 2012-05-16 2017-06-06 Altria Client Services Llc Banded cigarette wrapper with opened-area bands
US9149068B2 (en) 2012-10-11 2015-10-06 Schweitzer-Mauduit International, Inc. Wrapper having reduced ignition proclivity characteristics
JP2015533499A (ja) * 2012-10-11 2015-11-26 シュバイツァー モウドゥイ インターナショナル インコーポレイテッド 低減された着火傾向特性を有する巻装材
US9247769B2 (en) 2012-10-11 2016-02-02 Schweitzer-Mauduit International, Inc. Wrapper having reduced ignition proclivity characteristics
US10154687B2 (en) 2013-06-21 2018-12-18 Delfortgroup Ag Cigarette paper that gives a cigarette a uniform drawing profile
DE102013106516B3 (de) * 2013-06-21 2014-10-09 Delfortgroup Ag Zigarettenpapier, das einer zigarette ein gleichmässiges zugprofil verleiht
US10588341B2 (en) * 2013-12-11 2020-03-17 Schweitzer-Mauduit International, Inc. Wrappers for smoking articles
US20160302474A1 (en) * 2013-12-11 2016-10-20 Schweitzer-Mauduit International, Inc. Wrappers for Smoking Articles

Also Published As

Publication number Publication date
CA2442615C (fr) 2006-10-24
US20050056293A1 (en) 2005-03-17
ES2346129T3 (es) 2010-10-11
CA2442615A1 (fr) 2002-09-06
NZ528529A (en) 2006-08-31
US20030164173A1 (en) 2003-09-04
EP1234514A3 (fr) 2003-01-02
DE60142216D1 (de) 2010-07-08
HK1048420B (zh) 2011-01-28
AU2002240293C1 (en) 2009-01-08
AU2002240293B2 (en) 2008-10-09
ATE468765T1 (de) 2010-06-15
US7836898B2 (en) 2010-11-23
WO2002067704A1 (fr) 2002-09-06
EP1234514A2 (fr) 2002-08-28
EP1234514B1 (fr) 2010-05-26
US6837248B2 (en) 2005-01-04
HK1048420A1 (en) 2003-04-04

Similar Documents

Publication Publication Date Title
US6837248B2 (en) Reduced ignition propensity smoking article
AU2002240293A1 (en) A reduced ignition propensity smoking article
US20040123874A1 (en) Reduced ignition propensity smoking article with a polysaccharide treated wrapper
AU2008218307B2 (en) Wrappers for smoking articles having reduced diffusion leading to reduced ignition proclivity characteristics
US8151806B2 (en) Smoking articles having reduced analyte levels and process for making same
EP2031990B1 (fr) Articles à fumer brûlant à l'air libre ayant des caractéristiques de prédisposition à l'inflammation réduites
US9247769B2 (en) Wrapper having reduced ignition proclivity characteristics
EP2177663B1 (fr) Papier à rouler les cigarettes à extension de combustion lente
CA2553414C (fr) Article a fumer a inflammabilite reduite
WO2003005840A1 (fr) Papiers a enrouler auto-extinguibles et articles pour fumer
AU2002255923A1 (en) Reduced ignition propersity smoking article with a polysaccharide treated wrapper

Legal Events

Date Code Title Description
AS Assignment

Owner name: LORILLARD LICENSING COMPANY, LLC, NORTH CAROLINA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ZAWADZKI, MICHAEL E.;IHRIG, ARTHUR M.;GRIDER, DAVID A.;AND OTHERS;REEL/FRAME:011764/0326;SIGNING DATES FROM 20010411 TO 20010414

STCB Information on status: application discontinuation

Free format text: EXPRESSLY ABANDONED -- DURING PUBLICATION PROCESS