US20020110922A1 - Vacuum loaded test strip and method of use - Google Patents
Vacuum loaded test strip and method of use Download PDFInfo
- Publication number
- US20020110922A1 US20020110922A1 US10/121,425 US12142502A US2002110922A1 US 20020110922 A1 US20020110922 A1 US 20020110922A1 US 12142502 A US12142502 A US 12142502A US 2002110922 A1 US2002110922 A1 US 2002110922A1
- Authority
- US
- United States
- Prior art keywords
- measurement area
- sample
- channel
- bladder
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000012360 testing method Methods 0.000 title description 8
- 238000000034 method Methods 0.000 title description 7
- 238000005259 measurement Methods 0.000 claims abstract description 104
- 210000004369 blood Anatomy 0.000 claims abstract description 30
- 239000008280 blood Substances 0.000 claims abstract description 30
- 239000013060 biological fluid Substances 0.000 claims abstract description 19
- 239000012491 analyte Substances 0.000 claims abstract description 13
- 230000003287 optical effect Effects 0.000 claims abstract description 11
- 230000000704 physical effect Effects 0.000 claims abstract 2
- 239000012530 fluid Substances 0.000 claims description 32
- PGOHTUIFYSHAQG-LJSDBVFPSA-N (2S)-6-amino-2-[[(2S)-5-amino-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-4-amino-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-5-amino-2-[[(2S)-5-amino-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S,3R)-2-[[(2S)-5-amino-2-[[(2S)-2-[[(2S)-2-[[(2S,3R)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-5-amino-2-[[(2S)-1-[(2S,3R)-2-[[(2S)-2-[[(2S)-2-[[(2R)-2-[[(2S)-2-[[(2S)-2-[[2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-1-[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-amino-4-methylsulfanylbutanoyl]amino]-3-(1H-indol-3-yl)propanoyl]amino]-5-carbamimidamidopentanoyl]amino]propanoyl]pyrrolidine-2-carbonyl]amino]-3-methylbutanoyl]amino]-4-methylpentanoyl]amino]-4-methylpentanoyl]amino]acetyl]amino]-3-hydroxypropanoyl]amino]-4-methylpentanoyl]amino]-3-sulfanylpropanoyl]amino]-4-methylsulfanylbutanoyl]amino]-5-carbamimidamidopentanoyl]amino]-3-hydroxybutanoyl]pyrrolidine-2-carbonyl]amino]-5-oxopentanoyl]amino]-3-hydroxypropanoyl]amino]-3-hydroxypropanoyl]amino]-3-(1H-imidazol-5-yl)propanoyl]amino]-4-methylpentanoyl]amino]-3-hydroxybutanoyl]amino]-3-(1H-indol-3-yl)propanoyl]amino]-5-carbamimidamidopentanoyl]amino]-5-oxopentanoyl]amino]-3-hydroxybutanoyl]amino]-3-hydroxypropanoyl]amino]-3-carboxypropanoyl]amino]-3-hydroxypropanoyl]amino]-5-oxopentanoyl]amino]-5-oxopentanoyl]amino]-3-phenylpropanoyl]amino]-5-carbamimidamidopentanoyl]amino]-3-methylbutanoyl]amino]-4-methylpentanoyl]amino]-4-oxobutanoyl]amino]-5-carbamimidamidopentanoyl]amino]-3-(1H-indol-3-yl)propanoyl]amino]-4-carboxybutanoyl]amino]-5-oxopentanoyl]amino]hexanoic acid Chemical compound CSCC[C@H](N)C(=O)N[C@@H](Cc1c[nH]c2ccccc12)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C)C(=O)N1CCC[C@H]1C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(=O)NCC(=O)N[C@@H](CO)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CS)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)O)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H](CO)C(=O)N[C@@H](Cc1cnc[nH]1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](Cc1c[nH]c2ccccc12)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](Cc1ccccc1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](Cc1c[nH]c2ccccc12)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCCCN)C(O)=O PGOHTUIFYSHAQG-LJSDBVFPSA-N 0.000 claims description 13
- 108010000499 Thromboplastin Proteins 0.000 claims description 13
- 102000002262 Thromboplastin Human genes 0.000 claims description 13
- 230000008859 change Effects 0.000 claims description 12
- 241000283690 Bos taurus Species 0.000 claims description 8
- 238000004891 communication Methods 0.000 claims description 6
- 230000023555 blood coagulation Effects 0.000 claims description 5
- 230000000694 effects Effects 0.000 claims description 5
- 239000000203 mixture Substances 0.000 claims description 5
- 108010094028 Prothrombin Proteins 0.000 claims description 4
- 102100027378 Prothrombin Human genes 0.000 claims description 4
- 230000005540 biological transmission Effects 0.000 claims description 4
- 229940039716 prothrombin Drugs 0.000 claims description 4
- 108010013773 recombinant FVIIa Proteins 0.000 claims description 4
- 239000003146 anticoagulant agent Substances 0.000 claims description 3
- 229940127219 anticoagulant drug Drugs 0.000 claims description 3
- 239000000463 material Substances 0.000 claims description 3
- 239000012528 membrane Substances 0.000 claims description 3
- 229920002492 poly(sulfone) Polymers 0.000 claims description 2
- 238000001914 filtration Methods 0.000 claims 1
- 239000003153 chemical reaction reagent Substances 0.000 abstract description 23
- 230000015271 coagulation Effects 0.000 abstract description 2
- 238000005345 coagulation Methods 0.000 abstract description 2
- 238000003556 assay Methods 0.000 description 12
- 239000007788 liquid Substances 0.000 description 9
- 206010039238 Rouleaux formation Diseases 0.000 description 6
- 230000009467 reduction Effects 0.000 description 6
- 230000005499 meniscus Effects 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 4
- 230000035602 clotting Effects 0.000 description 4
- 206010053567 Coagulopathies Diseases 0.000 description 3
- 229920004142 LEXAN™ Polymers 0.000 description 3
- 239000004418 Lexan Substances 0.000 description 3
- 239000002390 adhesive tape Substances 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 229920000728 polyester Polymers 0.000 description 3
- 229920006267 polyester film Polymers 0.000 description 3
- 230000002829 reductive effect Effects 0.000 description 3
- 229920001169 thermoplastic Polymers 0.000 description 3
- 239000004416 thermosoftening plastic Substances 0.000 description 3
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 210000004027 cell Anatomy 0.000 description 2
- 230000002706 hydrostatic effect Effects 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000010030 laminating Methods 0.000 description 2
- 230000033001 locomotion Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000007639 printing Methods 0.000 description 2
- 102000004169 proteins and genes Human genes 0.000 description 2
- 108090000623 proteins and genes Proteins 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 210000002966 serum Anatomy 0.000 description 2
- DWHCYDWXLJOFFO-UHFFFAOYSA-N 4-(5-phenylthiophen-2-yl)aniline Chemical compound C1=CC(N)=CC=C1C1=CC=C(C=2C=CC=CC=2)S1 DWHCYDWXLJOFFO-UHFFFAOYSA-N 0.000 description 1
- 102000015081 Blood Coagulation Factors Human genes 0.000 description 1
- 108010039209 Blood Coagulation Factors Proteins 0.000 description 1
- 108010014173 Factor X Proteins 0.000 description 1
- 108010071241 Factor XIIa Proteins 0.000 description 1
- 108010074860 Factor Xa Proteins 0.000 description 1
- 108010049003 Fibrinogen Proteins 0.000 description 1
- 102000008946 Fibrinogen Human genes 0.000 description 1
- 102000017011 Glycated Hemoglobin A Human genes 0.000 description 1
- 108010014663 Glycated Hemoglobin A Proteins 0.000 description 1
- 102000001554 Hemoglobins Human genes 0.000 description 1
- 108010054147 Hemoglobins Proteins 0.000 description 1
- HTTJABKRGRZYRN-UHFFFAOYSA-N Heparin Chemical compound OC1C(NC(=O)C)C(O)OC(COS(O)(=O)=O)C1OC1C(OS(O)(=O)=O)C(O)C(OC2C(C(OS(O)(=O)=O)C(OC3C(C(O)C(O)C(O3)C(O)=O)OS(O)(=O)=O)C(CO)O2)NS(O)(=O)=O)C(C(O)=O)O1 HTTJABKRGRZYRN-UHFFFAOYSA-N 0.000 description 1
- 208000007536 Thrombosis Diseases 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000000149 argon plasma sintering Methods 0.000 description 1
- 230000003190 augmentative effect Effects 0.000 description 1
- 229940006612 barium citrate Drugs 0.000 description 1
- PAVWOHWZXOQYDB-UHFFFAOYSA-H barium(2+);2-hydroxypropane-1,2,3-tricarboxylate Chemical compound [Ba+2].[Ba+2].[Ba+2].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O.[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O PAVWOHWZXOQYDB-UHFFFAOYSA-H 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000003114 blood coagulation factor Substances 0.000 description 1
- 210000001124 body fluid Anatomy 0.000 description 1
- 239000010839 body fluid Substances 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- 238000007398 colorimetric assay Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000000994 depressogenic effect Effects 0.000 description 1
- 238000002405 diagnostic procedure Methods 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 210000003743 erythrocyte Anatomy 0.000 description 1
- 229940012952 fibrinogen Drugs 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000005534 hematocrit Methods 0.000 description 1
- 230000002489 hematologic effect Effects 0.000 description 1
- 230000023597 hemostasis Effects 0.000 description 1
- 229960002897 heparin Drugs 0.000 description 1
- 229920000669 heparin Polymers 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000002329 infrared spectrum Methods 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 239000002991 molded plastic Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 238000013102 re-test Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 210000003296 saliva Anatomy 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 239000003053 toxin Substances 0.000 description 1
- 231100000765 toxin Toxicity 0.000 description 1
- 108700012359 toxins Proteins 0.000 description 1
- 239000012780 transparent material Substances 0.000 description 1
- 238000002211 ultraviolet spectrum Methods 0.000 description 1
- 210000002700 urine Anatomy 0.000 description 1
- 239000002821 viper venom Substances 0.000 description 1
- PJVWKTKQMONHTI-UHFFFAOYSA-N warfarin Chemical compound OC=1C2=CC=CC=C2OC(=O)C=1C(CC(=O)C)C1=CC=CC=C1 PJVWKTKQMONHTI-UHFFFAOYSA-N 0.000 description 1
- 229960005080 warfarin Drugs 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L3/00—Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
- B01L3/50—Containers for the purpose of retaining a material to be analysed, e.g. test tubes
- B01L3/502—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
- B01L3/5027—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L3/00—Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
- B01L3/50—Containers for the purpose of retaining a material to be analysed, e.g. test tubes
- B01L3/502—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
- B01L3/5027—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
- B01L3/502738—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by integrated valves
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/483—Physical analysis of biological material
- G01N33/487—Physical analysis of biological material of liquid biological material
- G01N33/49—Blood
- G01N33/4905—Determining clotting time of blood
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/52—Use of compounds or compositions for colorimetric, spectrophotometric or fluorometric investigation, e.g. use of reagent paper and including single- and multilayer analytical elements
- G01N33/525—Multi-layer analytical elements
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/5302—Apparatus specially adapted for immunological test procedures
- G01N33/5304—Reaction vessels, e.g. agglutination plates
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/543—Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
- G01N33/54366—Apparatus specially adapted for solid-phase testing
- G01N33/54386—Analytical elements
- G01N33/54387—Immunochromatographic test strips
- G01N33/54388—Immunochromatographic test strips based on lateral flow
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2200/00—Solutions for specific problems relating to chemical or physical laboratory apparatus
- B01L2200/06—Fluid handling related problems
- B01L2200/0621—Control of the sequence of chambers filled or emptied
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2200/00—Solutions for specific problems relating to chemical or physical laboratory apparatus
- B01L2200/12—Specific details about manufacturing devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/06—Auxiliary integrated devices, integrated components
- B01L2300/0681—Filter
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/08—Geometry, shape and general structure
- B01L2300/0809—Geometry, shape and general structure rectangular shaped
- B01L2300/0822—Slides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/08—Geometry, shape and general structure
- B01L2300/0809—Geometry, shape and general structure rectangular shaped
- B01L2300/0825—Test strips
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/08—Geometry, shape and general structure
- B01L2300/0861—Configuration of multiple channels and/or chambers in a single devices
- B01L2300/0864—Configuration of multiple channels and/or chambers in a single devices comprising only one inlet and multiple receiving wells, e.g. for separation, splitting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/08—Geometry, shape and general structure
- B01L2300/0861—Configuration of multiple channels and/or chambers in a single devices
- B01L2300/087—Multiple sequential chambers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/08—Geometry, shape and general structure
- B01L2300/0887—Laminated structure
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2400/00—Moving or stopping fluids
- B01L2400/04—Moving fluids with specific forces or mechanical means
- B01L2400/0403—Moving fluids with specific forces or mechanical means specific forces
- B01L2400/0406—Moving fluids with specific forces or mechanical means specific forces capillary forces
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2400/00—Moving or stopping fluids
- B01L2400/04—Moving fluids with specific forces or mechanical means
- B01L2400/0475—Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure
- B01L2400/0481—Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure squeezing of channels or chambers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2400/00—Moving or stopping fluids
- B01L2400/06—Valves, specific forms thereof
- B01L2400/0688—Valves, specific forms thereof surface tension valves, capillary stop, capillary break
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L3/00—Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
- B01L3/50—Containers for the purpose of retaining a material to be analysed, e.g. test tubes
- B01L3/502—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
- B01L3/5027—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
- B01L3/502723—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by venting arrangements
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/8483—Investigating reagent band
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2333/00—Assays involving biological materials from specific organisms or of a specific nature
- G01N2333/435—Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
- G01N2333/745—Assays involving non-enzymic blood coagulation factors
- G01N2333/7454—Tissue factor (tissue thromboplastin, Factor III)
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2333/00—Assays involving biological materials from specific organisms or of a specific nature
- G01N2333/90—Enzymes; Proenzymes
- G01N2333/914—Hydrolases (3)
- G01N2333/948—Hydrolases (3) acting on peptide bonds (3.4)
- G01N2333/95—Proteinases, i.e. endopeptidases (3.4.21-3.4.99)
- G01N2333/964—Proteinases, i.e. endopeptidases (3.4.21-3.4.99) derived from animal tissue
- G01N2333/96425—Proteinases, i.e. endopeptidases (3.4.21-3.4.99) derived from animal tissue from mammals
- G01N2333/96427—Proteinases, i.e. endopeptidases (3.4.21-3.4.99) derived from animal tissue from mammals in general
- G01N2333/9643—Proteinases, i.e. endopeptidases (3.4.21-3.4.99) derived from animal tissue from mammals in general with EC number
- G01N2333/96433—Serine endopeptidases (3.4.21)
- G01N2333/96441—Serine endopeptidases (3.4.21) with definite EC number
- G01N2333/96447—Factor VII (3.4.21.21)
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T436/00—Chemistry: analytical and immunological testing
- Y10T436/11—Automated chemical analysis
- Y10T436/112499—Automated chemical analysis with sample on test slide
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T436/00—Chemistry: analytical and immunological testing
- Y10T436/25—Chemistry: analytical and immunological testing including sample preparation
- Y10T436/25375—Liberation or purification of sample or separation of material from a sample [e.g., filtering, centrifuging, etc.]
Definitions
- This invention relates to a fluidic medical diagnostic device for measuring the concentration of an analyte in or a property of a biological fluid.
- a variety of medical diagnostic procedures involve tests on biological fluids, such as blood, urine, or. saliva, and are based on a change in a physical characteristic of such a fluid or an element of the fluid, such as blood serum.
- the characteristic can be an electrical, magnetic, fluidic; or optical property.
- optical property When an optical property is monitored, these procedures may make use of a transparent or translucent device to contain the biological fluid and a reagent.
- a change in light absorption of the fluid can be related to an analyte concentration in, or property of, the fluid.
- a light source is located adjacent to one surface of the device and a detector is adjacent to the opposite surface. The detector measures light transmitted through a fluid sample.
- the light source and detector can be on the same side of the device, in which case the detector measures light scattered and/or reflected by the sample.
- a reflector may be located at or adjacent to the opposite surface.
- References to “light” throughout this specification and the appended claims should be understood to include the infrared and ultraviolet spectra, as well as the visible. References to “absorption” are meant to refer to the reduction in intensity as a light beam passes through a medium; thus, it encompasses both “true” absorption and scattering.
- a transparent test device is described in Wells et al. W094/02850; published on Feb. 3, 1994.
- Their device comprises a sealed housing, which is transparent or translucent, impervious, and rigid or semi-rigid.
- An assay material is contained within the housing, together with one or more assay reagents at predetermined sites.
- the housing is opened and the sample introduced just before conducting the assay.
- the combination of assay reagents and analyte in the sample results in a change in optical properties, such as color, of selected reagents at the end of the assay.
- the results can be read visually or with an optical instrument.
- the indicator includes a “half-bulb cavity”, which is compressible.
- the bulb is compressed and released to form a suction that draws fluid from a source, through a half-tubular cavity that has an indicator imprinted on its wall.
- the only controls on fluid flow into the indicator are how much the bulb is compressed and how long the indicator inlet is immersed in the source, while the bulb is released.
- U.S. Pat. No. 3,640,267 issued on Feb. 8, 1972 to Hurtig et al., discloses a container for collecting samples of body fluid that includes a chamber that has resilient, collapsible walls. The walls are squeezed before the container inlet is placed into the fluid being collected. When released, the walls are restored to their uncollapsed condition, drawing fluid into and through the inlet. As with the Davis device, discussed above, control of fluid flow into the indicator is very limited.
- U.S. Pat. No. 4,088,448, issued on May 9, 1978 to Lilja et al. discloses a cuvette, which permits optical analysis of a sample mixed with a reagent.
- the reagent is coated on the walls of a cavity, which is then filled with a liquid sample.
- the sample mixes with the reagent to cause an optically-detectable change.
- a number of patents, discussed below, disclose devices for diluting and/or analyzing biological fluid samples. These devices include valve-like designs to control the flow of the sample.
- U.S. Pat. No. 4,426,451 issued on Jan. 17, 1984 to Columbus, discloses a multi-zone fluidic device that has pressure-actuatable means for controlling the flow of fluid between the zones. His device makes use of pressure balances on a liquid meniscus at the interface between a first zone and a second zone that has a different cross section. When both the first and second zones are at atmospheric pressure, surface tension creates a back pressure that stops the liquid meniscus from proceeding from the first zone to the second.
- the configuration of this interface or “stop junction” is such that the liquid flows into the second zone only upon application of an externally generated pressure to the liquid in the first zone that is sufficient to push the meniscus into the second zone.
- U.S. Pat. No. 4,868,129 issued on Sep. 19, 1989 to Gibbons et al., discloses that the back pressure in a stop junction can be overcome by hydrostatic pressure on the liquid in the first zone, for example by having a column of fluid in the first zone.
- U.S. Pat. No. 5,230,866 issued on Jul. 27, 1993 to Shartle et al., discloses a fluidic device with multiple stop junctions in which the surface tension-induced back pressure at the stop junction is augmented; for example, by trapping and compressing gas in the second zone. The compressed gas can then be vented before applying additional hydrostatic pressure to the first zone to cause fluid to flow into the second zone.
- rupture junctions By varying the back pressure of multiple stop junctions in parallel, “rupture junctions” can be formed, having lower maximum back pressure.
- U.S. Pat. No. 5,472,603, issued on Dec. 5, 1995 to Schembri discloses using centrifugal force to overcome the back pressure in a stop junction.
- the first zone is at atmospheric pressure plus a centrifugally generated pressure that is less than the pressure required to overcome the back pressure.
- the second zone is at atmospheric pressure.
- additional centrifugal pressure is applied to the first zone, overcoming the meniscus back pressure.
- the second zone remains at atmospheric pressure.
- U.S. Pat. No. 5,700,695 issued on Dec. 23, 1997 to Yassinzadeh et al., discloses an apparatus for collecting and manipulating a biological fluid that uses a “thermal pressure chamber” to provide the driving force for moving the sample through the apparatus.
- U.S. Pat. No. 5,736,404 issued on Apr. 7, 1998, to Yassinzadeh et al., discloses a method for determining the coagulation time of a blood sample that involves causing an end of the sample to oscillate within a passageway. The oscillating motion is caused by alternately increasing and decreasing the pressure on the sample.
- the present invention provides a fluidic diagnostic device for measuring an analyte concentration or property of a biological fluid.
- the device comprises
- a first layer and second layer at least one of which has a resilient region over at least part of its area, separated by an intermediate layer, in which cutouts in the intermediate layer form, with the first and second layers,
- a sample port for introducing a sample of the biological fluid into the device
- a first channel having a first end and a second end, to provide a fluidic path from the sample port at the first end through the first measurement area;
- a first bladder at the second end of the first channel comprising at least a part of the resilient region in at least the first or second layer and having a volume that is at least about equal to the combined volume of the first measurement area and first channel;
- the device comprises
- a first layer which has a resilient region over at least a part of its area, and a second layer, separated by an intermediate layer, in which recesses in a first surface of the intermediate layer form, with the first layer,
- a bladder at the second end of the channel, comprising at least a part of the resilient region in the first layer and having a volume that is at least about equal to the combined volume of the measurement area and channel;
- a stop junction in the channel between the measurement area and bladder that comprises two passages substantially normal to the first surface of the intermediate layer, each passage having a first end in fluid communication with the channel and a second end in fluid communication with a recess in a second surface of the intermediate layer, which recess provides fluid communication between the second ends of the passages.
- the device is particularly well adapted for measuring prothrombin time (PT time), with the biological fluid being whole blood and the measurement area having a composition that catalyzes the blood clotting cascade.
- PT time prothrombin time
- FIG. 1 is a plan view of a device of the present invention.
- FIG. 2 is an exploded view of the device of FIG. 1.
- FIG. 3 is a perspective view of the device of FIG. 1.
- FIG. 4 is a schematic of a meter for use with a device of this invention.
- FIG. 4A depicts an alternative embodiment of an element of the meter of FIG. 4.
- FIG. 5 is a graph of data that is used to determine PT time.
- FIG. 6 is a plan view of an alternative embodiment of a device of this invention.
- FIGS. 6A, 6B, and 6 C depict a time sequence during which a sample is admitted to the device of FIG. 6.
- FIG. 7 is a schematic of a device having multiple measurement areas in parallel, multiple stop junctions in parallel, and a single bladder.
- FIG. 8 is a schematic of a device having multiple measurement areas in series, with a single stop junction, a single bladder, and a filter over the sample port.
- FIG. 9 is a schematic of a device having multiple measurement areas and multiple stop junctions arranged in an alternating series, as well as multiple bladders.
- FIG. 10 is a schematic of a device that includes multiple measurement areas in parallel, a single bladder, and a single bypass channel.
- FIG. 11 is a schematic of a device having multiple measurement areas in series, multiple stop junctions in series, multiple bladders in series, and multiple bypass channels.
- FIG. 12 is an exploded view of an injection-molded device of this invention.
- This invention relates to a fluidic device for analyzing biological fluid.
- the device is of the type that relates a physical parameter of the fluid, or an element of the fluid, to an analyte concentration in the fluid or to a property of the fluid.
- physical parameters e.g., electrical, magnetic, fluidic, or optical
- the device includes a sample application area; a bladder, to create a suction force to draw the sample into the device; a measurement area, in which the sample may undergo a change in an optical parameter, such as light scattering; and a stop junction to precisely stop flow after filling the measurement area.
- the device is substantially transparent over the measurement area, so that the area can be illuminated by a light source on one side and the transmitted light measured on the opposite side.
- the measurement on the sample may be of a parameter that is not changing, but typically the sample undergoes a change in the measurement area, and the change in transmitted light is a measure of the analyte or fluid property of interest.
- light that is scattered from a fluid sample or light that passes through the sample and is reflected back through a second time (by a reflector on that opposite side) can be detected by a detector on the same side as the light source.
- This type of device is suitable for a variety of analytical tests of biological fluids, such as determining biochemical or hematological characteristics, or measuring the concentration in such fluids of proteins, hormones, carbohydrates, lipids, drugs, toxins, gases, electrolytes, etc.
- analytical tests of biological fluids, such as determining biochemical or hematological characteristics, or measuring the concentration in such fluids of proteins, hormones, carbohydrates, lipids, drugs, toxins, gases, electrolytes, etc.
- the procedures for performing these tests have been described in the literature. Among the tests, and where they are described, are the following:
- TPA Assay Mann, K. G., et al., Blood, 76, 755, (1990).; and Hartshorn, J. N. et al., Blood, 78, 833 (1991).
- APTT Activated Partial Thromboplastin Time Assay: Proctor, R. R. and Rapaport, S. I. Amer. J. Clin. Path, 36, 212 (1961); Brandt, J. T. and Triplett, D. A. Amer. J. Clin. Path., 76, 530 (1981); and Kelsey, P. R. Thromb. Haemost. 52, 172 (1984).
- HbAlc Assay (Glycosylated Hemoglobin Assay): Nicol, D. J. et al., Clin. Chem. 29, 1694 (1983).
- the present device is particularly well suited for measuring blood-clotting time—“prothrombin time” or “PT time”—and details regarding such a device appear below.
- the modifications needed to adapt the device for applications such as those listed above require no more than routine experimentation.
- FIG. 1 is a plan view of a device 10 of the present invention.
- FIG. 2 is an exploded view and FIG. 3 a perspective view of the device.
- Sample is applied to sample port 12 after bladder 14 has been compressed.
- the region of layer 26 and/or layer 28 that adjoins the cutout for bladder 14 must be resilient, to permit bladder 14 to be compressed.
- Polyester of about 0.1 mm thickness has suitable resilience and springiness.
- top layer 26 has a thickness of about 0.125 mm, bottom layer 28 about 0.100 mm.
- the volume of bladder 14 is preferably at least about equal to the combined volume of channel 16 and measurement area 18 . If measurement area 18 is to be illuminated from below, layer 28 must be transparent where it adjoins measurement area 18 .
- reagent 20 contains thromboplastin that is free of bulking reagents normally found in lyophilized reagents.
- stop junction 22 adjoins bladder 14 and measurement area 18 ; however, a continuation of channel 16 may be on either or both sides of stop junction 22 , separating the stop junction from measurement area 18 and/or bladder 14 .
- sample flow stops When the sample reaches stop junction 22 , sample flow stops.
- the principle of operation of stop junctions is described in U.S. Pat. No. 5,230,866, incorporated herein by reference.
- all the above elements are formed by cutouts in intermediate layer 24 , sandwiched between top layer 26 and bottom layer 28 .
- layer 24 is double-sided adhesive tape.
- Stop junction 22 is formed by an additional cutout in layer 26 and/or 28 , aligned with the cutout in layer 24 and sealed with sealing layer 30 and/or 32 .
- the stop junction comprises cutouts in both layers 26 and 28 , with sealing layers 30 and 32 .
- Each cutout for stop junction 22 is at least as wide as channel 16 .
- an optional filter 12 A to cover sample port 12 .
- the filter may separate out red blood cells from a whole blood sample and/or may contain a reagent to interact with the blood to provide additional information.
- a suitable filter comprises an anisotropic membrane, preferably a polysulfone membrane of the type available from Spectral Diagnostics, Inc., Toronto, Canada.
- Optional reflector 18 A may be on, or adjacent to, a surface of layer 26 and positioned over measurement area 18 . If the reflector is present, the device becomes a transflectance device.
- the method of using the strip of FIGS. 1, 2, and 3 can be understood with reference to a schematic of the elements of a meter shown in FIG. 4, which contemplates an automated meter. Alternatively, manual operation is also possible. (In that case, bladder 14 is manually depressed before sample is applied to sample port 12 , then released.)
- the first step the user performs is to turn on the meter, thereby energizing strip detector 40 , sample detector 42 , measurement system 44 , and optional heater 46 .
- the second step is to insert the strip.
- the strip is not transparent over at least a part of its area, so that an inserted strip will block the illumination by LED 40 a of detector 40 b .
- Detector 40 b thereby senses that a strip has been inserted and triggers bladder actuator 48 to compress bladder 14 .
- a meter display 50 then directs the user to apply a sample to sample port 12 as the third and last step the user must perform to initiate the measurement sequence.
- the empty sample port is reflective. When a sample is introduced into the sample port, it absorbs light from LED 42 a and thereby reduces the light that is reflected to detector 42 b . That reduction in light, in turn, signals actuator 48 to release bladder 14 .
- the resultant suction in channel 16 draws sample through measurement area 18 to stop junction 22 .
- Measurement system 44 includes an LED/detector pair (like 44 a and 44 b ) for each measurement area. Analysis of the transmitted light as a function of time (as described below) permits a calculation of the PT time, which is displayed on the meter display 50 .
- sample temperature is maintained at about 37° C. by heater 46 .
- the detector senses a sample in sample port 12 , simply by detecting a reduction in (specular) reflection of a light signal that is emitted by 42 a and detected by 42 b .
- a simple system cannot easily distinguish between a whole blood sample and some other liquid (e.g., blood serum) placed in the sample port in-error or, even, an object (e.g., a finger) that can approach sample port 12 and cause the system to erroneously conclude that a proper sample has been applied.
- another embodiment measures diffuse reflection from the sample port. This embodiment appears in FIG. 4A, which shows detector 42 b positioned normal to the plane of strip 10 . With the arrangement shown in FIG.
- the signal detected by 42 b increases abruptly, because of scattering in the blood sample, then decreases, because of rouleaux formation (discussed below).
- the detector system 42 is thus programmed to require that type of signal before causing actuator 48 to release bladder 14 .
- the delay of several seconds in releasing bladder 14 does not substantially affect the readings described below
- FIG. 5 depicts a typical “clot signature” curve in which the current from detector 44 b is plotted as a function of time.
- Blood is first detected in the measurement area by 44 b at time 1 .
- the blood fills the measurement area.
- the reduction in current during that time interval is due to light scattered by red cells and is thus an approximate measure of the hematocrit.
- sample has filled the measurement area and is at rest, its movement having been stopped by the stop junction.
- the red cells begin to stack up like coins (rouleaux formation).
- the rouleaux effect allows increasing light transmission through the sample (and less scattering) in the time interval between points 2 and 3 .
- clot formation ends rouleaux formation and transmission through the sample reaches a maximum.
- the PT time can be calculated from the interval B between points 1 and 3 or between 2 and 3 .
- blood changes state from liquid to a semi-solid gel, with a corresponding reduction in light transmission.
- the reduction in current C between the maximum 3 and endpoint 4 correlates with fibrinogen in the sample.
- the device pictured in FIG. 2 and described above is preferably formed by laminating thermoplastic sheets 26 and 28 to a thermoplastic intermediate layer 24 that has adhesive on both of its surfaces.
- the cutouts that form the elements shown in FIG. 1 may be formed, for example, by laser- or die-cutting of layers 24 , 26 , and 28 .
- the device can be formed of molded plastic.
- the surface of sheet 28 is hydrophilic. (Film 9962, available from 3M, St. Paul, Minn.) However, the surfaces do not need to be hydrophilic, because the sample fluid will fill the device without capillary forces.
- sheets 26 and 28 may be untreated polyester or other thermoplastic sheet, well known in the art.
- the device can be used in any orientation. Unlike capillary fill devices that have vent holes through which sample could leak, the present device vents through the sample port before sample is applied, which means that the part of the strip that is first inserted into the meter is without an opening, reducing the risk of contamination.
- FIG. 6 is a plan view of another embodiment of the device of the present invention, in which the device includes a bypass channel 52 that connects channel 16 with bladder 14 .
- the function and operation of the bypass channel can be understood by referring to FIGS. 6A, 6B, and 6 C which depict a time sequence during which a sample is drawn into device 10 for the measurement.
- FIG. 6A depicts the situation after a user has applied a sample to the strip, while bladder 14 is compressed. This can be accomplished by applying one or more drops of blood.
- FIG. 6B depicts the situation after the bladder is decompressed.
- the resulting reduced pressure in the inlet channel 16 draws the sample initially into the measurement area 18 .
- stop junction 22 the sample encounters a back pressure that causes it to stop and causes additional sample to be drawn into the bypass channel.
- FIG. 6C depicts the situation when a reading is taken. Sample is isolated and at rest in measurement area 18 . Excess sample and/or air has been drawn into bypass channel 52 .
- the bypass channel of FIG. 6 provides an important improvement over the operation of the “basic” strip of FIGS. 1 - 3 .
- stop junction 22 stops the flow of sample after it fills measurement area 18 .
- the stop junction accomplishes the flow stoppage as a result of surface tension acting on the meniscus at the leading edge of the fluid at an abrupt change in cross section of the flow channel.
- the pressure on the bladder side of the stop junction remains below atmospheric pressure while the pressure on the sample side remains open to atmosphere.
- there is an ambient pressure imbalance on the two sides The greater the imbalance, the greater the risk that the stop junction will leak and that sample will flow through the stop junction, interfering with rouleaux formation, and, consequently, providing inaccurate values of PT.
- bypass channel 52 minimizes that risk.
- the reduced pressure on the bladder side of the stop junction draws sample into the bypass channel (FIGS. 6B, 6C) until the ambient pressure is equalized at atmospheric pressure on both sides of the stop junction. Note that the (reduced) pressure on the bladder side is relatively uncontrolled.
- the bypass channel 52 by enabling the pressures on the two sides of the stop junction to equilibrate, permits the use of larger bladders that have greater suction. Larger bladders, in turn, provide more reliable operation of the system.
- the optional second and third measurement areas may contain, for example, reagents that neutralize the presence of interferents (such as heparin) in the blood, or that provide a built-in control on the PT measurement, or that measure another blood parameter (such as APPT)
- interferents such as heparin
- APPT another blood parameter
- FIG. 8 is a schematic illustration of an embodiment in which multiple measurement areas are “in series”, meaning that they fill sequentially.
- measurement areas 118 S, 218 S, and 318 S fill sequentially, through a single channel 116 S, until the sample reaches stop junction 122 S.
- a potential drawback of this design is that sample passing from one measurement area to the next may carry over reagent.
- FIG. 9 is a schematic of another embodiment of a device that is adapted for multiple sequential tests.
- stop junctions 122 T, 222 T, and 322 T permit a user to control the timing of sequential filling of measurement areas 118 T, 218 T, and 318 T.
- bladders 114 , 214 , and 314 are all compressed before a blood sample is applied to sample well 112 .
- Bladder 114 is then released to draw blood into measurement area 118 T to stop junction 122 T.
- bladder 214 is released to permit blood to break through stop junction 122 T and enter measurement area 218 T to stop junction 222 T.
- bladder 314 is decompressed, permitting sample to break through stop function 222 T and flow to stop junction 322 T.
- the device of FIG. 9 must be carefully formed, since the force drawing sample into the device—caused by decompressing a bladder—must be balanced against the opposing force—exerted by a stop junction. If the drawing force is too great, a stop junction may prematurely permit sample to pass; if it's too small, it will not draw the sample through a stop junction, when that is intended.
- FIG. 10 depicts a preferred embodiment of the present device. It is a parallel multi-channel device that includes bypass channel 152 P. Bypass channel 152 P serves a purpose in this device that is analogous to that served by bypass channel 52 in the device of FIG. 6, which was described above.
- Measurement area 118 P contains thromboplastin.
- measurement areas 218 P and 318 P contain controls, more preferably, the controls described below.
- Area 218 P contains thromboplastin, bovine eluate, and recombinant Factor VIIa.
- the composition is selected to normalize the clotting time of a blood sample by counteracting the effect of an anticoagulant, such as warfarin.
- Measurement area 318 P contains thromboplastin and bovine eluate alone, to partially overcome the effect of an anticoagulent. Thus, 3 measurements are made on the strip. PT time of the sample, the measurement of primary interest, is measured on area 118 P. However, that measurement is validated only when measurements on areas 218 P and 318 P yield results within a predetermined range.
- Extended stop junction 422 stops flow in all three measurement areas.
- FIG. 11 depicts a device that includes bypass channels 152 S and 252 S to permit timed filling of measurement areas 118 T and 218 T. Operation of the device of FIG. 11 is analogous to that of the device of FIG. 9, described above, with the following exception.
- First bypass channel 152 S has a region in which a reagent that causes clotting, such as thromboplastin, is coated. As a first measurement is made in reagent area 118 T, a clot forms in blood that had been drawn into bypass channel 152 S. Thus, when the second bladder is decompressed, blood is blocked from being drawn through bypass 152 S and instead is drawn though stop junction 122 T to measurement area 218 T and bypass channel 252 S.
- FIG. 12 is an exploded view of an injection-molded device 110 , including top layer 126 and bottom layer 128 sandwiching intermediate layer 124 .
- the intermediate layer has depressions in its top surface that form sample port 112 , channel 116 , measurement area 118 , and optional bypass channel 152 .
- Stop junction 122 passes through the thickness of intermediate layer 124 . Sample flow stops at the interface between stop junction 122 and channel A, which is formed by a depression in the bottom surface. Thus, the sample flows from sample port 112 through channel 116 to measurement area 118 into stop junction 122 .
- the principle of operation of the injection molded device is the same as described above. It provides greater flexibility in the design of the stop junction, as well as the other elements of the device, because a wide range of channel cross sections are feasible.
- the molded structure also provides more rigidity, although it is substantially more costly.
- a strip of this invention is made by first passing a double-sided adhesive tape (RX 675SLT, available from Scapa Tapes, Windsor, Conn.) sandwiched between two release liners into a laminating and rotary die-cutting converting system.
- RX 675SLT double-sided adhesive tape
- the pattern shown in FIG. 6, with the exception of the stop junction, is cut through the top release liner and tape, but not through the bottom release liner, which is then removed as waste, along with the cutouts from the tape.
- Polyester film treated to be hydrophilic (3M9962, available from 3M, St. Paul, Minn.) is laminated to the exposed bottom side of the tape.
- Reagent that is bubble-jet printed onto areas 118 P, 218 P, and 318 P is, respectively, thromboplastin; thromboplastin, bovine eluate, and recombinant Factor VIIa; and thromboplastin and bovine eluate alone.
- the bovine eluate (plasma barium citrate bovine eluate) is available from Haemotologic Technologies, Burlington, Vt.; and recombinant Factor VIIa from American Diagnostica, Greenwich, Conn.
- Measurements made on a whole blood sample using the strip of this Example yield a curve of the type shown in FIG. 5 for each of the measurement areas.
- the data from the curves for the controls are used to qualify the data from the curve for measurement area 118 P.
- the PT time can be determined more reliably than can be done with a strip having a single measurement area.
- the device of FIGS. 12 and 13 is formed by sandwiching middle layer 124 between top layer 126 and bottom layer 128 .
- the middle and bottom layers are injection molded polycarbonate (Lexan*121) and have thicknesses of 6.3 mm and 1.5 mm, respectively.
- Top layer 126 is made by die cutting 0.18 mm Lexan* 8010 sheet. The elements are ultrasonically welded after the reagent of Example 1 is applied to reagent area 118 .
- the Lexan* material is available from General Electric, Pittsfield, Mass.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Immunology (AREA)
- Engineering & Computer Science (AREA)
- Hematology (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Urology & Nephrology (AREA)
- General Health & Medical Sciences (AREA)
- Analytical Chemistry (AREA)
- Physics & Mathematics (AREA)
- Pathology (AREA)
- Food Science & Technology (AREA)
- Medicinal Chemistry (AREA)
- Biochemistry (AREA)
- General Physics & Mathematics (AREA)
- Microbiology (AREA)
- Cell Biology (AREA)
- Biotechnology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Dispersion Chemistry (AREA)
- Clinical Laboratory Science (AREA)
- Biophysics (AREA)
- Ecology (AREA)
- Veterinary Medicine (AREA)
- Medical Informatics (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Heart & Thoracic Surgery (AREA)
- Investigating Or Analysing Biological Materials (AREA)
- Infusion, Injection, And Reservoir Apparatuses (AREA)
- Optical Measuring Cells (AREA)
- Fluid-Pressure Circuits (AREA)
- Endoscopes (AREA)
- Examining Or Testing Airtightness (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- External Artificial Organs (AREA)
- Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
Abstract
A fluidic medical diagnostic device permits measurement of analyte concentration or a property of a biological fluid, particularly the coagulation time of blood. The device has at one end a sample port for introducing a sample and at the other end a bladder for drawing the sample to a measurement area. A channel carries the sample from the sample port to the measurement area, and a stop junction, between the measurement area and bladder, halts the sample flow. The desired measurement can be made by placing the device into a meter which measures a physical property of the sample—typically, optical transmittance—after it has interacted with a reagent in the measurement area.
Description
- This application claims the benefit of U.S. Provisional Application No. 60/093,421, filed Jul. 20, 1998
- 1. Field of the Invention
- This invention relates to a fluidic medical diagnostic device for measuring the concentration of an analyte in or a property of a biological fluid.
- 2. Description of the Related Art
- A variety of medical diagnostic procedures involve tests on biological fluids, such as blood, urine, or. saliva, and are based on a change in a physical characteristic of such a fluid or an element of the fluid, such as blood serum. The characteristic can be an electrical, magnetic, fluidic; or optical property. When an optical property is monitored, these procedures may make use of a transparent or translucent device to contain the biological fluid and a reagent. A change in light absorption of the fluid can be related to an analyte concentration in, or property of, the fluid. Typically, a light source is located adjacent to one surface of the device and a detector is adjacent to the opposite surface. The detector measures light transmitted through a fluid sample. Alternatively, the light source and detector can be on the same side of the device, in which case the detector measures light scattered and/or reflected by the sample. Finally, a reflector may be located at or adjacent to the opposite surface. A device of this latter type, in which light is first transmitted through the sample area, then reflected through a second time, is called a “transflectance” device. References to “light” throughout this specification and the appended claims should be understood to include the infrared and ultraviolet spectra, as well as the visible. References to “absorption” are meant to refer to the reduction in intensity as a light beam passes through a medium; thus, it encompasses both “true” absorption and scattering.
- An example of a transparent test device is described in Wells et al. W094/02850; published on Feb. 3, 1994. Their device comprises a sealed housing, which is transparent or translucent, impervious, and rigid or semi-rigid. An assay material is contained within the housing, together with one or more assay reagents at predetermined sites. The housing is opened and the sample introduced just before conducting the assay. The combination of assay reagents and analyte in the sample results in a change in optical properties, such as color, of selected reagents at the end of the assay. The results can be read visually or with an optical instrument.
- U.S. Pat. No. 3,620,676, issued on Nov. 16, 1971 to Davis, discloses a calorimetric indicator for liquids. The indicator includes a “half-bulb cavity”, which is compressible. The bulb is compressed and released to form a suction that draws fluid from a source, through a half-tubular cavity that has an indicator imprinted on its wall. The only controls on fluid flow into the indicator are how much the bulb is compressed and how long the indicator inlet is immersed in the source, while the bulb is released.
- U.S. Pat. No. 3,640,267, issued on Feb. 8, 1972 to Hurtig et al., discloses a container for collecting samples of body fluid that includes a chamber that has resilient, collapsible walls. The walls are squeezed before the container inlet is placed into the fluid being collected. When released, the walls are restored to their uncollapsed condition, drawing fluid into and through the inlet. As with the Davis device, discussed above, control of fluid flow into the indicator is very limited.
- U.S. Pat. No. 4,088,448, issued on May 9, 1978 to Lilja et al., discloses a cuvette, which permits optical analysis of a sample mixed with a reagent. The reagent is coated on the walls of a cavity, which is then filled with a liquid sample. The sample mixes with the reagent to cause an optically-detectable change.
- A number of patents, discussed below, disclose devices for diluting and/or analyzing biological fluid samples. These devices include valve-like designs to control the flow of the sample.
- U.S. Pat. No. 4,426,451, issued on Jan. 17, 1984 to Columbus, discloses a multi-zone fluidic device that has pressure-actuatable means for controlling the flow of fluid between the zones. His device makes use of pressure balances on a liquid meniscus at the interface between a first zone and a second zone that has a different cross section. When both the first and second zones are at atmospheric pressure, surface tension creates a back pressure that stops the liquid meniscus from proceeding from the first zone to the second. The configuration of this interface or “stop junction” is such that the liquid flows into the second zone only upon application of an externally generated pressure to the liquid in the first zone that is sufficient to push the meniscus into the second zone.
- U.S. Pat. No. 4,868,129, issued on Sep. 19, 1989 to Gibbons et al., discloses that the back pressure in a stop junction can be overcome by hydrostatic pressure on the liquid in the first zone, for example by having a column of fluid in the first zone.
- U.S. Pat. No. 5,230,866, issued on Jul. 27, 1993 to Shartle et al., discloses a fluidic device with multiple stop junctions in which the surface tension-induced back pressure at the stop junction is augmented; for example, by trapping and compressing gas in the second zone. The compressed gas can then be vented before applying additional hydrostatic pressure to the first zone to cause fluid to flow into the second zone. By varying the back pressure of multiple stop junctions in parallel, “rupture junctions” can be formed, having lower maximum back pressure.
- U.S. Pat. No. 5,472,603, issued on Dec. 5, 1995 to Schembri (see also U.S. Pat. No. 5,627,041), discloses using centrifugal force to overcome the back pressure in a stop junction. When flow stops, the first zone is at atmospheric pressure plus a centrifugally generated pressure that is less than the pressure required to overcome the back pressure. The second zone is at atmospheric pressure. To resume flow, additional centrifugal pressure is applied to the first zone, overcoming the meniscus back pressure. The second zone remains at atmospheric pressure.
- European Patent Application EP 0 803 288, of Naka et al., published on Oct. 29, 1997, discloses a device and method for analyzing a sample that includes drawing the sample into the device by suction, then reacting the sample with a reagent in an analytical section. Analysis is done by optical or electrochemical means. In alternate embodiments, there are multiple analytical sections and/or a bypass channel. The flow among these sections is balanced without using stop junctions.
- U.S. Pat. No. 5,700,695, issued on Dec. 23, 1997 to Yassinzadeh et al., discloses an apparatus for collecting and manipulating a biological fluid that uses a “thermal pressure chamber” to provide the driving force for moving the sample through the apparatus.
- U.S. Pat. No. 5,736,404, issued on Apr. 7, 1998, to Yassinzadeh et al., discloses a method for determining the coagulation time of a blood sample that involves causing an end of the sample to oscillate within a passageway. The oscillating motion is caused by alternately increasing and decreasing the pressure on the sample.
- The present invention provides a fluidic diagnostic device for measuring an analyte concentration or property of a biological fluid. The device comprises
- a first layer and second layer at least one of which has a resilient region over at least part of its area, separated by an intermediate layer, in which cutouts in the intermediate layer form, with the first and second layers,
- a) a sample port for introducing a sample of the biological fluid into the device;
- b) a first measurement area, in which a physical parameter of the sample is measured and related to the analyte concentration or property of the fluid;
- c) a first channel, having a first end and a second end, to provide a fluidic path from the sample port at the first end through the first measurement area;
- d) a first bladder at the second end of the first channel, comprising at least a part of the resilient region in at least the first or second layer and having a volume that is at least about equal to the combined volume of the first measurement area and first channel; and
- e) a first stop junction in the first channel between the first measurement area and first bladder that comprises a co-aligned through hole in at least the first or second layer, the through hole being overlaid with a third layer.
- In another embodiment, the device comprises
- a first layer, which has a resilient region over at least a part of its area, and a second layer, separated by an intermediate layer, in which recesses in a first surface of the intermediate layer form, with the first layer,
- a) a sample port for introducing a sample of the biological fluid into the device;
- b) a measurement area, in which the sample undergoes a change in a physical parameter that is measured and related to the analyte concentration or property of the fluid;
- c) a channel, having a first end and a second end, to provide a fluidic path from the sample port at the first end through the measurement area; and
- d) a bladder, at the second end of the channel, comprising at least a part of the resilient region in the first layer and having a volume that is at least about equal to the combined volume of the measurement area and channel; and
- a stop junction in the channel between the measurement area and bladder that comprises two passages substantially normal to the first surface of the intermediate layer, each passage having a first end in fluid communication with the channel and a second end in fluid communication with a recess in a second surface of the intermediate layer, which recess provides fluid communication between the second ends of the passages.
- The device is particularly well adapted for measuring prothrombin time (PT time), with the biological fluid being whole blood and the measurement area having a composition that catalyzes the blood clotting cascade.
- FIG. 1 is a plan view of a device of the present invention.
- FIG. 2 is an exploded view of the device of FIG. 1.
- FIG. 3 is a perspective view of the device of FIG. 1.
- FIG. 4 is a schematic of a meter for use with a device of this invention.
- FIG. 4A depicts an alternative embodiment of an element of the meter of FIG. 4.
- FIG. 5 is a graph of data that is used to determine PT time.
- FIG. 6 is a plan view of an alternative embodiment of a device of this invention.
- FIGS. 6A, 6B, and6C depict a time sequence during which a sample is admitted to the device of FIG. 6.
- FIG. 7 is a schematic of a device having multiple measurement areas in parallel, multiple stop junctions in parallel, and a single bladder.
- FIG. 8 is a schematic of a device having multiple measurement areas in series, with a single stop junction, a single bladder, and a filter over the sample port.
- FIG. 9 is a schematic of a device having multiple measurement areas and multiple stop junctions arranged in an alternating series, as well as multiple bladders.
- FIG. 10 is a schematic of a device that includes multiple measurement areas in parallel, a single bladder, and a single bypass channel.
- FIG. 11 is a schematic of a device having multiple measurement areas in series, multiple stop junctions in series, multiple bladders in series, and multiple bypass channels.
- FIG. 12 is an exploded view of an injection-molded device of this invention.
- FIG. 13 is a perspective view of the device of FIG. 12.
- This invention relates to a fluidic device for analyzing biological fluid. The device is of the type that relates a physical parameter of the fluid, or an element of the fluid, to an analyte concentration in the fluid or to a property of the fluid. Although a variety of physical parameters—e.g., electrical, magnetic, fluidic, or optical—can form the basis for the measurement, a change in optical parameters is a preferred basis, and the details that follow refer to an optical device. The device includes a sample application area; a bladder, to create a suction force to draw the sample into the device; a measurement area, in which the sample may undergo a change in an optical parameter, such as light scattering; and a stop junction to precisely stop flow after filling the measurement area.
- Preferably, the device is substantially transparent over the measurement area, so that the area can be illuminated by a light source on one side and the transmitted light measured on the opposite side. The measurement on the sample may be of a parameter that is not changing, but typically the sample undergoes a change in the measurement area, and the change in transmitted light is a measure of the analyte or fluid property of interest. Alternatively, light that is scattered from a fluid sample or light that passes through the sample and is reflected back through a second time (by a reflector on that opposite side) can be detected by a detector on the same side as the light source.
- This type of device is suitable for a variety of analytical tests of biological fluids, such as determining biochemical or hematological characteristics, or measuring the concentration in such fluids of proteins, hormones, carbohydrates, lipids, drugs, toxins, gases, electrolytes, etc. The procedures for performing these tests have been described in the literature. Among the tests, and where they are described, are the following:
- (1) Chromogenic Factor XIIa Assay (and other clotting factors as well): Rand, M. D. et al., Blood, 88, 3432 (1996).
- (2) Factor X Assay: Bick, R. L. Disorders of Thrombosis and Hemostasis: Clinical and Laboratory Practice. Chicago, ASCP Press, 1992.
- (3) DRVVT (Dilute Russells Viper Venom Test): Exner, T. et al., Blood Coag. Fibrinol., 1, 259 (1990).
- (4) Immunonephelometric and Immunoturbidimetric Assays for Proteins: Whicher, J. T., CRC Crit. Rev. Clin Lab Sci. 18:213 (1983).
- (5) TPA Assay: Mann, K. G., et al., Blood, 76, 755, (1990).; and Hartshorn, J. N. et al., Blood, 78, 833 (1991).
- (6) APTT (Activated Partial Thromboplastin Time Assay): Proctor, R. R. and Rapaport, S. I. Amer. J. Clin. Path, 36, 212 (1961); Brandt, J. T. and Triplett, D. A. Amer. J. Clin. Path., 76, 530 (1981); and Kelsey, P. R. Thromb. Haemost. 52, 172 (1984).
- (7) HbAlc Assay (Glycosylated Hemoglobin Assay): Nicol, D. J. et al., Clin. Chem. 29, 1694 (1983).
- (8) Total Hemoglobin: Schneck et al., Clinical Chem., 32/33, 526 (1986); and U.S. Pat. No. 4,088,448.
- (9) Factor Xa: Vinazzer, H., Proc. Symp. Dtsch. Ges. Klin. Chem., 203 (1977), ed. By Witt, I
- (10) Colorimetric Assay for Nitric Oxide: Schmidt, H. H., et al., Biochemica, 2, 22 (1995).
- The present device is particularly well suited for measuring blood-clotting time—“prothrombin time” or “PT time”—and details regarding such a device appear below. The modifications needed to adapt the device for applications such as those listed above require no more than routine experimentation.
- FIG. 1 is a plan view of a
device 10 of the present invention. FIG. 2 is an exploded view and FIG. 3 a perspective view of the device. Sample is applied to sampleport 12 afterbladder 14 has been compressed. Clearly, the region oflayer 26 and/orlayer 28 that adjoins the cutout forbladder 14 must be resilient, to permitbladder 14 to be compressed. Polyester of about 0.1 mm thickness has suitable resilience and springiness. Preferably,top layer 26 has a thickness of about 0.125 mm,bottom layer 28 about 0.100 mm. When the bladder is released, suction draws sample throughchannel 16 tomeasurement area 18, which preferably contains areagent 20. In order to ensure thatmeasurement area 18 can be filled with sample, the volume ofbladder 14 is preferably at least about equal to the combined volume ofchannel 16 andmeasurement area 18. Ifmeasurement area 18 is to be illuminated from below,layer 28 must be transparent where it adjoinsmeasurement area 18. For a PT test,reagent 20 contains thromboplastin that is free of bulking reagents normally found in lyophilized reagents. - As shown in FIGS. 1, 2, and3, stop
junction 22 adjoinsbladder 14 andmeasurement area 18; however, a continuation ofchannel 16 may be on either or both sides ofstop junction 22, separating the stop junction frommeasurement area 18 and/orbladder 14. When the sample reaches stopjunction 22, sample flow stops. For PT measurements, it is important to stop the flow of sample as it reaches that point to permit reproducible “rouleaux formation”—the stacking of red blood cells—which is an important step in monitoring blood clotting using the present invention. The principle of operation of stop junctions is described in U.S. Pat. No. 5,230,866, incorporated herein by reference. - As shown in FIG. 2, all the above elements are formed by cutouts in
intermediate layer 24, sandwiched betweentop layer 26 andbottom layer 28. Preferably,layer 24 is double-sided adhesive tape. Stopjunction 22 is formed by an additional cutout inlayer 26 and/or 28, aligned with the cutout inlayer 24 and sealed with sealinglayer 30 and/or 32. Preferably, as shown, the stop junction comprises cutouts in bothlayers layers stop junction 22 is at least as wide aschannel 16. Also shown in FIG. 2 is anoptional filter 12A to coversample port 12. The filter may separate out red blood cells from a whole blood sample and/or may contain a reagent to interact with the blood to provide additional information. A suitable filter comprises an anisotropic membrane, preferably a polysulfone membrane of the type available from Spectral Diagnostics, Inc., Toronto, Canada.Optional reflector 18A may be on, or adjacent to, a surface oflayer 26 and positioned overmeasurement area 18. If the reflector is present, the device becomes a transflectance device. - The method of using the strip of FIGS. 1, 2, and3 can be understood with reference to a schematic of the elements of a meter shown in FIG. 4, which contemplates an automated meter. Alternatively, manual operation is also possible. (In that case,
bladder 14 is manually depressed before sample is applied to sampleport 12, then released.) The first step the user performs is to turn on the meter, thereby energizingstrip detector 40,sample detector 42,measurement system 44, andoptional heater 46. The second step is to insert the strip. Preferably, the strip is not transparent over at least a part of its area, so that an inserted strip will block the illumination byLED 40 a ofdetector 40 b. (More preferably, the intermediate layer is formed of a non-transparent material, so that background light does not entermeasurement system 44.)Detector 40 b thereby senses that a strip has been inserted and triggersbladder actuator 48 to compressbladder 14. Ameter display 50 then directs the user to apply a sample to sampleport 12 as the third and last step the user must perform to initiate the measurement sequence. The empty sample port is reflective. When a sample is introduced into the sample port, it absorbs light fromLED 42 a and thereby reduces the light that is reflected todetector 42 b. That reduction in light, in turn, signals actuator 48 to releasebladder 14. The resultant suction inchannel 16 draws sample throughmeasurement area 18 to stopjunction 22. Light fromLED 44 a passes throughmeasurement area 18, anddetector 44 b monitors the light transmitted through the sample as it is clotting. When there are multiple measurement areas,measurement system 44 includes an LED/detector pair (like 44 a and 44 b) for each measurement area. Analysis of the transmitted light as a function of time (as described below) permits a calculation of the PT time, which is displayed on themeter display 50. Preferably, sample temperature is maintained at about 37° C. byheater 46. - As described above, the detector senses a sample in
sample port 12, simply by detecting a reduction in (specular) reflection of a light signal that is emitted by 42 a and detected by 42 b. However, that simple system cannot easily distinguish between a whole blood sample and some other liquid (e.g., blood serum) placed in the sample port in-error or, even, an object (e.g., a finger) that can approachsample port 12 and cause the system to erroneously conclude that a proper sample has been applied. To avoid this type of error, another embodiment measures diffuse reflection from the sample port. This embodiment appears in FIG. 4A, which showsdetector 42 b positioned normal to the plane ofstrip 10. With the arrangement shown in FIG. 4A, if a whole blood sample has been applied to sampleport 12, the signal detected by 42 b increases abruptly, because of scattering in the blood sample, then decreases, because of rouleaux formation (discussed below). Thedetector system 42 is thus programmed to require that type of signal before causingactuator 48 to releasebladder 14. The delay of several seconds in releasingbladder 14 does not substantially affect the readings described below - FIG. 5 depicts a typical “clot signature” curve in which the current from
detector 44 b is plotted as a function of time. Blood is first detected in the measurement area by 44 b attime 1. In the time interval A, betweenpoints point 2, sample has filled the measurement area and is at rest, its movement having been stopped by the stop junction. The red cells begin to stack up like coins (rouleaux formation). The rouleaux effect allows increasing light transmission through the sample (and less scattering) in the time interval betweenpoints point 3, clot formation ends rouleaux formation and transmission through the sample reaches a maximum. The PT time can be calculated from the interval B betweenpoints endpoint 4 correlates with fibrinogen in the sample. - The device pictured in FIG. 2 and described above is preferably formed by laminating
thermoplastic sheets intermediate layer 24 that has adhesive on both of its surfaces. The cutouts that form the elements shown in FIG. 1 may be formed, for example, by laser- or die-cutting oflayers sheet 28 is hydrophilic. (Film 9962, available from 3M, St. Paul, Minn.) However, the surfaces do not need to be hydrophilic, because the sample fluid will fill the device without capillary forces. Thus,sheets - FIG. 6 is a plan view of another embodiment of the device of the present invention, in which the device includes a
bypass channel 52 that connectschannel 16 withbladder 14. The function and operation of the bypass channel can be understood by referring to FIGS. 6A, 6B, and 6C which depict a time sequence during which a sample is drawn intodevice 10 for the measurement. - FIG. 6A depicts the situation after a user has applied a sample to the strip, while
bladder 14 is compressed. This can be accomplished by applying one or more drops of blood. - FIG. 6B depicts the situation after the bladder is decompressed. The resulting reduced pressure in the
inlet channel 16 draws the sample initially into themeasurement area 18. When the sample reaches stopjunction 22, the sample encounters a back pressure that causes it to stop and causes additional sample to be drawn into the bypass channel. - FIG. 6C depicts the situation when a reading is taken. Sample is isolated and at rest in
measurement area 18. Excess sample and/or air has been drawn intobypass channel 52. - The bypass channel of FIG. 6 provides an important improvement over the operation of the “basic” strip of FIGS.1-3. In the basic strip, stop
junction 22 stops the flow of sample after it fillsmeasurement area 18. As was discussed earlier, it is important to stop the flow in order to facilitate rouleaux formation. As was also discussed earlier, the stop junction accomplishes the flow stoppage as a result of surface tension acting on the meniscus at the leading edge of the fluid at an abrupt change in cross section of the flow channel. In the basic strip, the pressure on the bladder side of the stop junction remains below atmospheric pressure while the pressure on the sample side remains open to atmosphere. Thus, there is an ambient pressure imbalance on the two sides. The greater the imbalance, the greater the risk that the stop junction will leak and that sample will flow through the stop junction, interfering with rouleaux formation, and, consequently, providing inaccurate values of PT. -
Bypass channel 52 minimizes that risk. The reduced pressure on the bladder side of the stop junction draws sample into the bypass channel (FIGS. 6B, 6C) until the ambient pressure is equalized at atmospheric pressure on both sides of the stop junction. Note that the (reduced) pressure on the bladder side is relatively uncontrolled. Thebypass channel 52, by enabling the pressures on the two sides of the stop junction to equilibrate, permits the use of larger bladders that have greater suction. Larger bladders, in turn, provide more reliable operation of the system. - FIG. 7 depicts an embodiment of the present invention in which there are multiple (three are shown) measurement areas “in parallel”. That is to say that the
channels port 112 whilebladder 114 is compressed, then releasingbladder 114. As discussed above, the first step is to apply sample to sample well 112 whilebladder 114 is compressed. The second step is to release the bladder. Sample flows tomeasurement areas - FIG. 8 is a schematic illustration of an embodiment in which multiple measurement areas are “in series”, meaning that they fill sequentially. In this embodiment,
measurement areas single channel 116S, until the sample reaches stopjunction 122S. A potential drawback of this design is that sample passing from one measurement area to the next may carry over reagent. - FIG. 9 is a schematic of another embodiment of a device that is adapted for multiple sequential tests. In that
embodiment stop junctions measurement areas bladders Bladder 114 is then released to draw blood intomeasurement area 118T to stopjunction 122T. At a selected later time,bladder 214 is released to permit blood to break throughstop junction 122T and entermeasurement area 218T to stopjunction 222T. Finally, when the user wishes to usemeasurement area 318T,bladder 314 is decompressed, permitting sample to break throughstop function 222T and flow to stopjunction 322T. The device of FIG. 9 must be carefully formed, since the force drawing sample into the device—caused by decompressing a bladder—must be balanced against the opposing force—exerted by a stop junction. If the drawing force is too great, a stop junction may prematurely permit sample to pass; if it's too small, it will not draw the sample through a stop junction, when that is intended. - FIG. 10 depicts a preferred embodiment of the present device. It is a parallel multi-channel device that includes
bypass channel 152P.Bypass channel 152P serves a purpose in this device that is analogous to that served bybypass channel 52 in the device of FIG. 6, which was described above.Measurement area 118P contains thromboplastin. Preferably,measurement areas Area 218P contains thromboplastin, bovine eluate, and recombinant Factor VIIa. The composition is selected to normalize the clotting time of a blood sample by counteracting the effect of an anticoagulant, such as warfarin.Measurement area 318P contains thromboplastin and bovine eluate alone, to partially overcome the effect of an anticoagulent. Thus, 3 measurements are made on the strip. PT time of the sample, the measurement of primary interest, is measured onarea 118P. However, that measurement is validated only when measurements onareas - If either or both of these control measurements are outside the range, then a retest is indicated.
Extended stop junction 422 stops flow in all three measurement areas. - FIG. 11 depicts a device that includes
bypass channels measurement areas First bypass channel 152S has a region in which a reagent that causes clotting, such as thromboplastin, is coated. As a first measurement is made inreagent area 118T, a clot forms in blood that had been drawn intobypass channel 152S. Thus, when the second bladder is decompressed, blood is blocked from being drawn throughbypass 152S and instead is drawn thoughstop junction 122T tomeasurement area 218T andbypass channel 252S. - All the previous figures depict the device of this invention as a laminated strip structure; however, the device could also be an injection-molded structure of the type shown in FIGS. 12 and 13. FIG. 12 is an exploded view of an injection-molded device110, including
top layer 126 andbottom layer 128 sandwichingintermediate layer 124. The intermediate layer has depressions in its top surface that formsample port 112,channel 116,measurement area 118, andoptional bypass channel 152.Stop junction 122 passes through the thickness ofintermediate layer 124. Sample flow stops at the interface betweenstop junction 122 and channel A, which is formed by a depression in the bottom surface. Thus, the sample flows fromsample port 112 throughchannel 116 tomeasurement area 118 intostop junction 122. - The principle of operation of the injection molded device is the same as described above. It provides greater flexibility in the design of the stop junction, as well as the other elements of the device, because a wide range of channel cross sections are feasible. The molded structure also provides more rigidity, although it is substantially more costly.
- The following examples demonstrate the present invention in its various embodiments, but are not intended to be in any way limiting.
- A strip of this invention is made by first passing a double-sided adhesive tape (RX 675SLT, available from Scapa Tapes, Windsor, Conn.) sandwiched between two release liners into a laminating and rotary die-cutting converting system. The pattern shown in FIG. 6, with the exception of the stop junction, is cut through the top release liner and tape, but not through the bottom release liner, which is then removed as waste, along with the cutouts from the tape. Polyester film treated to be hydrophilic (3M9962, available from 3M, St. Paul, Minn.) is laminated to the exposed bottom side of the tape. Reagent (thromboplastin, available from Ortho Clinical Diagnostics, Raritan, N.J.) is then printed onto the reagent area (18) of the polyester film by bubble jet printing, using printing heads 51612A, from Hewlett Packard, Corvallis, Oreg. A sample port is cut in untreated polyester film (AR1235, available from Adhesives Research, Glen Rock, Pa.) and then laminated, in register, to the top of the double-sided tape (after removing the release layer). A die then cuts the stop junction through the three layers of the sandwich. Finally, strips of single-sided adhesive tape (MSX4841, available from 3M, St. Paul, Minn.) are applied to the outside of the polyester layers to seal the stop junction.
- A procedure that is similar to the one described in Example 1 is followed to make a strip of the type depicted in FIG. 10. Reagent that is bubble-jet printed onto
areas - Measurements made on a whole blood sample using the strip of this Example yield a curve of the type shown in FIG. 5 for each of the measurement areas. The data from the curves for the controls (
measurement areas measurement area 118P. As a result, the PT time can be determined more reliably than can be done with a strip having a single measurement area. - The device of FIGS. 12 and 13 is formed by sandwiching
middle layer 124 betweentop layer 126 andbottom layer 128. The middle and bottom layers are injection molded polycarbonate (Lexan*121) and have thicknesses of 6.3 mm and 1.5 mm, respectively.Top layer 126 is made by die cutting 0.18 mm Lexan* 8010 sheet. The elements are ultrasonically welded after the reagent of Example 1 is applied toreagent area 118. The Lexan* material is available from General Electric, Pittsfield, Mass. - The invention having been fully described, it will be apparent to one of ordinary skill in the art that many modifications and changes may be made to it without departing from the spirit and scope of the present invention.
Claims (21)
1. A fluidic diagnostic device for measuring an analyte concentration or property of a biological fluid, comprising
a first layer and second layer, at least one of which has a resilient region over at least a part of its area, separated by an intermediate layer, in which cutouts in the intermediate layer form, with the first and second layers,
a) a sample port for introducing a sample of the biological fluid into the device;
b) a first measurement area, in which a physical parameter of the sample is measured and related to the analyte concentration or property of the fluid;
c) a first channel, having a first end and a second end, to provide a fluidic path from the sample port at the first end through the first measurement area;
d) a first bladder, at the second end of the first channel, comprising at least a part of the resilient region in at least the first or second layer and having a volume that is at least about equal to the combined volume of the first measurement area and first channel; and
e) a first stop junction in the first channel between the first measurement area and first bladder that comprises a co-aligned through hole in the first or second layer, the through hole overlaid with a third layer.
2. The device of claim 1 in which the sample port comprises co-aligned through holes in the first and intermediate layers.
3. The device of claim 1 in which the first stop junction further comprises a second through hole aligned with the first through hole, the second through hole being overlaid with a fourth layer.
4. The device of claim 1 , further comprising a bypass channel, to provide an additional path from the first channel to the bladder, without traversing the first measurement area and first stop junction.
5. The device of claim 1 in which at least the first or second layer is substantially transparent adjoining the first measurement area, and the physical parameter that is measured is optical transmission.
6. The device of claim 5 further comprising a reflective surface adjoining the first measurement area.
7. The device of claim 1 in which the physical parameter of the sample undergoes a change in the measurement area.
8. The device of claim 7 in which the first measurement area contains a composition that facilitates blood clotting, the biological fluid is whole blood, and the property being measured is prothrombin time.
9. The device of claim 8 in which the composition comprises thromboplastin.
10. The device of claim 1 further comprising a filter adjoining the sample port for filtering the biological fluid being introduced into the sample port.
11. The device of claim 10 in which the filter comprises an anisotropic membrane.
12. The device of claim 11 in which the filter material is polysulfone.
13. The device of claim 1 further comprising at least one additional measurement area between the first measurement area and the stop junction.
14. The device of claim 1 further comprising at least one alternate fluidic path from the first channel to the bladder, each such alternate path including a corresponding measurement area and stop junction.
15. The device of claim 4 in which the first measurement area contains a composition that facilitates blood clotting, the biological fluid is whole blood, and the property being measured is prothrombin time.
16. The device of claim 15 further comprising at least one alternate fluidic path from the first channel to the bladder, each such alternate path including a corresponding measurement area and stop junction.
17. The device of claim 16 in which a first alternate path is to a measurement area that overcomes the effect of an anticoagulant and a second alternate path is to a measurement area that partially overcomes the effect of an anticoagulant.
18. The device of claim 17 in which the measurement area in the first alternate path comprises thromboplastin, bovine eluate, and recombinant Factor VIIa and the measurement area in the second alternate path comprises thromboplastin and bovine eluate.
19. The device of claim 13 further comprising at least one set of channel, measurement area, and stop junction between the first stop junction and first bladder and, adjoining the first bladder, an additional bladder for each such set.
20. The device of claim 19 further comprising a bypass channel from the first channel to the first bladder and an additional bypass channel from the channel of each additional set to the corresponding additional bladder.
21. A fluidic diagnostic device for measuring an analyte concentration or property of a biological fluid, comprising
a first layer, which has a resilient region over at least a part of its area, and a second layer, separated by an intermediate layer, in which recesses in a first surface of the intermediate layer form, with the first layer,
a) a sample port for introducing a sample of the biological fluid into the device;
b) a measurement area, in which the sample undergoes a change in a physical property that is measured and related to the analyte concentration or property of the fluid;
c) a channel, having a first end and a second end, to provide a fluidic path from the sample port at the first end through the measurement area; and
d) a bladder, at the second end of the channel, comprising the resilient region in the first layer and having a volume that is at least about equal to the combined volume of the measurement area and channel; and
a stop junction in the channel between the measurement area and bladder that comprises two passages substantially normal to the first surface of the intermediate layer, each passage having a first end in fluid communication with the channel and a second end in fluid communication with a recess in a second surface of the intermediate layer, which recess provides fluid communication between the second ends of the passages.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/121,425 US20020110922A1 (en) | 1998-07-20 | 2002-04-11 | Vacuum loaded test strip and method of use |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US9342198P | 1998-07-20 | 1998-07-20 | |
US09/333,765 US6521182B1 (en) | 1998-07-20 | 1999-06-15 | Fluidic device for medical diagnostics |
US10/121,425 US20020110922A1 (en) | 1998-07-20 | 2002-04-11 | Vacuum loaded test strip and method of use |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/333,765 Continuation US6521182B1 (en) | 1998-07-20 | 1999-06-15 | Fluidic device for medical diagnostics |
Publications (1)
Publication Number | Publication Date |
---|---|
US20020110922A1 true US20020110922A1 (en) | 2002-08-15 |
Family
ID=26787520
Family Applications (8)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/333,765 Expired - Lifetime US6521182B1 (en) | 1998-07-20 | 1999-06-15 | Fluidic device for medical diagnostics |
US10/052,447 Abandoned US20020064480A1 (en) | 1998-07-20 | 2002-01-17 | Fluidic device for medical diagnostics |
US10/121,636 Abandoned US20020110486A1 (en) | 1998-07-20 | 2002-04-11 | Analyte test strip with two controls |
US10/121,425 Abandoned US20020110922A1 (en) | 1998-07-20 | 2002-04-11 | Vacuum loaded test strip and method of use |
US10/264,662 Abandoned US20030031594A1 (en) | 1998-07-20 | 2002-10-03 | Vacuum loaded test strip with stop junction and bypass channel |
US10/330,456 Abandoned US20030156983A1 (en) | 1998-07-20 | 2002-12-26 | Fluidic device for medical diagnostics |
US10/330,790 Expired - Lifetime US7022286B2 (en) | 1998-07-20 | 2002-12-26 | Fluidic device for medical diagnostics |
US10/666,846 Abandoned US20040109790A1 (en) | 1998-07-20 | 2003-09-18 | Vacuum loaded test strip with stop junction and bypass channel |
Family Applications Before (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/333,765 Expired - Lifetime US6521182B1 (en) | 1998-07-20 | 1999-06-15 | Fluidic device for medical diagnostics |
US10/052,447 Abandoned US20020064480A1 (en) | 1998-07-20 | 2002-01-17 | Fluidic device for medical diagnostics |
US10/121,636 Abandoned US20020110486A1 (en) | 1998-07-20 | 2002-04-11 | Analyte test strip with two controls |
Family Applications After (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/264,662 Abandoned US20030031594A1 (en) | 1998-07-20 | 2002-10-03 | Vacuum loaded test strip with stop junction and bypass channel |
US10/330,456 Abandoned US20030156983A1 (en) | 1998-07-20 | 2002-12-26 | Fluidic device for medical diagnostics |
US10/330,790 Expired - Lifetime US7022286B2 (en) | 1998-07-20 | 2002-12-26 | Fluidic device for medical diagnostics |
US10/666,846 Abandoned US20040109790A1 (en) | 1998-07-20 | 2003-09-18 | Vacuum loaded test strip with stop junction and bypass channel |
Country Status (13)
Country | Link |
---|---|
US (8) | US6521182B1 (en) |
EP (1) | EP0974840B1 (en) |
JP (1) | JP2000055911A (en) |
KR (1) | KR100634714B1 (en) |
CN (1) | CN1199038C (en) |
AT (1) | ATE229649T1 (en) |
CA (1) | CA2277639A1 (en) |
DE (1) | DE69904403T2 (en) |
DK (1) | DK0974840T3 (en) |
ES (1) | ES2189353T3 (en) |
IL (1) | IL130807A (en) |
NO (1) | NO993536L (en) |
TW (1) | TW411268B (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6673617B2 (en) * | 2002-03-14 | 2004-01-06 | Lifescan, Inc. | Test strip qualification system |
US6682933B2 (en) * | 2002-03-14 | 2004-01-27 | Lifescan, Inc. | Test strip qualification system |
US20040086953A1 (en) * | 2002-11-05 | 2004-05-06 | Richard Jenny | Method for manufacturing a tissue factor-based prothrombin time reagent |
EP2439530A1 (en) | 2008-03-14 | 2012-04-11 | Scandinavian Micro Biodevices ApS | Microfluidic system for coagulation tests or agglutination tests |
CN104066513A (en) * | 2012-01-24 | 2014-09-24 | 皇家飞利浦有限公司 | Analysis cartridge with filter unit |
Families Citing this family (201)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6036924A (en) | 1997-12-04 | 2000-03-14 | Hewlett-Packard Company | Cassette of lancet cartridges for sampling blood |
US7407811B2 (en) * | 1997-12-22 | 2008-08-05 | Roche Diagnostics Operations, Inc. | System and method for analyte measurement using AC excitation |
US8071384B2 (en) | 1997-12-22 | 2011-12-06 | Roche Diagnostics Operations, Inc. | Control and calibration solutions and methods for their use |
US7390667B2 (en) * | 1997-12-22 | 2008-06-24 | Roche Diagnostics Operations, Inc. | System and method for analyte measurement using AC phase angle measurements |
US6391005B1 (en) | 1998-03-30 | 2002-05-21 | Agilent Technologies, Inc. | Apparatus and method for penetration with shaft having a sensor for sensing penetration depth |
US6084660A (en) * | 1998-07-20 | 2000-07-04 | Lifescan, Inc. | Initiation of an analytical measurement in blood |
US6521182B1 (en) * | 1998-07-20 | 2003-02-18 | Lifescan, Inc. | Fluidic device for medical diagnostics |
US6830934B1 (en) | 1999-06-15 | 2004-12-14 | Lifescan, Inc. | Microdroplet dispensing for a medical diagnostic device |
US20050103624A1 (en) | 1999-10-04 | 2005-05-19 | Bhullar Raghbir S. | Biosensor and method of making |
US6458326B1 (en) | 1999-11-24 | 2002-10-01 | Home Diagnostics, Inc. | Protective test strip platform |
AU5096801A (en) | 2000-03-31 | 2001-10-15 | Lifescan Inc | Electrically-conductive patterns for monitoring the filling of medical devices |
US6908593B1 (en) * | 2000-03-31 | 2005-06-21 | Lifescan, Inc. | Capillary flow control in a fluidic diagnostic device |
US6488827B1 (en) * | 2000-03-31 | 2002-12-03 | Lifescan, Inc. | Capillary flow control in a medical diagnostic device |
JP4606543B2 (en) * | 2000-04-13 | 2011-01-05 | パナソニック株式会社 | Method for confirming amount of solution to be measured and measuring system control method in optical property measuring apparatus |
US6726818B2 (en) * | 2000-07-21 | 2004-04-27 | I-Sens, Inc. | Biosensors with porous chromatographic membranes |
CZ2003282A3 (en) * | 2000-07-31 | 2003-11-12 | Lifescan, Inc. | Process and apparatus for detection of presence of a liquid on a test strip |
JP4384344B2 (en) * | 2000-08-09 | 2009-12-16 | 拓之 今野 | Blood coagulation time measurement method and apparatus using granular spot pattern by laser reflected light |
US8641644B2 (en) | 2000-11-21 | 2014-02-04 | Sanofi-Aventis Deutschland Gmbh | Blood testing apparatus having a rotatable cartridge with multiple lancing elements and testing means |
US6620310B1 (en) | 2000-12-13 | 2003-09-16 | Lifescan, Inc. | Electrochemical coagulation assay and device |
US7144495B2 (en) * | 2000-12-13 | 2006-12-05 | Lifescan, Inc. | Electrochemical test strip with an integrated micro-needle and associated methods |
US20040099310A1 (en) * | 2001-01-05 | 2004-05-27 | Per Andersson | Microfluidic device |
US6562625B2 (en) | 2001-02-28 | 2003-05-13 | Home Diagnostics, Inc. | Distinguishing test types through spectral analysis |
US6541266B2 (en) | 2001-02-28 | 2003-04-01 | Home Diagnostics, Inc. | Method for determining concentration of an analyte in a test strip |
US6525330B2 (en) | 2001-02-28 | 2003-02-25 | Home Diagnostics, Inc. | Method of strip insertion detection |
JP4323806B2 (en) | 2001-03-19 | 2009-09-02 | ユィロス・パテント・アクチボラグ | Characterization of reaction variables |
US7981056B2 (en) | 2002-04-19 | 2011-07-19 | Pelikan Technologies, Inc. | Methods and apparatus for lancet actuation |
DE60239132D1 (en) | 2001-06-12 | 2011-03-24 | Pelikan Technologies Inc | APPARATUS FOR INCREASING THE SUCCESS RATE IN RESPECT OF BLOOD EXPLOITATION OBTAINED BY A FINGERSTICK |
US9427532B2 (en) | 2001-06-12 | 2016-08-30 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
US7041068B2 (en) | 2001-06-12 | 2006-05-09 | Pelikan Technologies, Inc. | Sampling module device and method |
US9795747B2 (en) | 2010-06-02 | 2017-10-24 | Sanofi-Aventis Deutschland Gmbh | Methods and apparatus for lancet actuation |
AU2002348683A1 (en) | 2001-06-12 | 2002-12-23 | Pelikan Technologies, Inc. | Method and apparatus for lancet launching device integrated onto a blood-sampling cartridge |
US8337419B2 (en) | 2002-04-19 | 2012-12-25 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
US9226699B2 (en) | 2002-04-19 | 2016-01-05 | Sanofi-Aventis Deutschland Gmbh | Body fluid sampling module with a continuous compression tissue interface surface |
ES2336081T3 (en) | 2001-06-12 | 2010-04-08 | Pelikan Technologies Inc. | SELF-OPTIMIZATION PUNCTURE DEVICE WITH MEANS OF ADAPTATION TO TEMPORARY VARIATIONS IN CUTANEOUS PROPERTIES. |
EP1404232B1 (en) | 2001-06-12 | 2009-12-02 | Pelikan Technologies Inc. | Blood sampling apparatus and method |
EP1395185B1 (en) | 2001-06-12 | 2010-10-27 | Pelikan Technologies Inc. | Electric lancet actuator |
US7776608B2 (en) | 2001-07-09 | 2010-08-17 | Bayer Healthcare Llc | Volume meter testing device and method of use |
US20030044318A1 (en) * | 2001-09-05 | 2003-03-06 | Lorin Olson | Devices for analyte concentration determination and methods of using the same |
US6884592B2 (en) * | 2001-09-05 | 2005-04-26 | Lifescan, Inc. | Devices for analyte concentration determination and methods of manufacturing and using the same |
JP2003091787A (en) * | 2001-09-17 | 2003-03-28 | Riken Keiki Co Ltd | Portable gas alarm |
EP1438385A1 (en) * | 2001-10-25 | 2004-07-21 | Bar-Ilan University | Interactive transparent individual cells biochip processor |
US6989891B2 (en) * | 2001-11-08 | 2006-01-24 | Optiscan Biomedical Corporation | Device and method for in vitro determination of analyte concentrations within body fluids |
EP1448489B1 (en) * | 2001-11-16 | 2010-08-25 | Stefan Ufer | Flexible sensor and method of fabrication |
US6746872B2 (en) | 2002-01-16 | 2004-06-08 | Lifescan, Inc. | Control compositions and methods of use for coagulation tests |
US6660527B2 (en) * | 2002-03-28 | 2003-12-09 | David Karl Stroup | Fluid-transfer collection assembly and method of using the same |
US8267870B2 (en) | 2002-04-19 | 2012-09-18 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for body fluid sampling with hybrid actuation |
US7491178B2 (en) | 2002-04-19 | 2009-02-17 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US7226461B2 (en) | 2002-04-19 | 2007-06-05 | Pelikan Technologies, Inc. | Method and apparatus for a multi-use body fluid sampling device with sterility barrier release |
US7892185B2 (en) | 2002-04-19 | 2011-02-22 | Pelikan Technologies, Inc. | Method and apparatus for body fluid sampling and analyte sensing |
US9795334B2 (en) | 2002-04-19 | 2017-10-24 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for penetrating tissue |
US7901362B2 (en) | 2002-04-19 | 2011-03-08 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US7909778B2 (en) | 2002-04-19 | 2011-03-22 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US8702624B2 (en) | 2006-09-29 | 2014-04-22 | Sanofi-Aventis Deutschland Gmbh | Analyte measurement device with a single shot actuator |
US7297122B2 (en) | 2002-04-19 | 2007-11-20 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US7648468B2 (en) | 2002-04-19 | 2010-01-19 | Pelikon Technologies, Inc. | Method and apparatus for penetrating tissue |
US7717863B2 (en) | 2002-04-19 | 2010-05-18 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US7976476B2 (en) | 2002-04-19 | 2011-07-12 | Pelikan Technologies, Inc. | Device and method for variable speed lancet |
US7175642B2 (en) | 2002-04-19 | 2007-02-13 | Pelikan Technologies, Inc. | Methods and apparatus for lancet actuation |
US7232451B2 (en) | 2002-04-19 | 2007-06-19 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US9248267B2 (en) | 2002-04-19 | 2016-02-02 | Sanofi-Aventis Deustchland Gmbh | Tissue penetration device |
US9314194B2 (en) | 2002-04-19 | 2016-04-19 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
US8579831B2 (en) | 2002-04-19 | 2013-11-12 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for penetrating tissue |
US7291117B2 (en) | 2002-04-19 | 2007-11-06 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US7892183B2 (en) | 2002-04-19 | 2011-02-22 | Pelikan Technologies, Inc. | Method and apparatus for body fluid sampling and analyte sensing |
US7674232B2 (en) | 2002-04-19 | 2010-03-09 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US8784335B2 (en) | 2002-04-19 | 2014-07-22 | Sanofi-Aventis Deutschland Gmbh | Body fluid sampling device with a capacitive sensor |
US8221334B2 (en) | 2002-04-19 | 2012-07-17 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for penetrating tissue |
US7331931B2 (en) | 2002-04-19 | 2008-02-19 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US7371247B2 (en) | 2002-04-19 | 2008-05-13 | Pelikan Technologies, Inc | Method and apparatus for penetrating tissue |
US7547287B2 (en) | 2002-04-19 | 2009-06-16 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US8360992B2 (en) | 2002-04-19 | 2013-01-29 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for penetrating tissue |
US7229458B2 (en) | 2002-04-19 | 2007-06-12 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
DE10234819A1 (en) * | 2002-07-31 | 2004-02-19 | Roche Diagnostics Gmbh | Test apparatus for blood, comprising compound body with test strip levels and transport channels to give complex tests in compact structure |
US7604775B2 (en) | 2002-08-12 | 2009-10-20 | Bayer Healthcare Llc | Fluid collecting and monitoring device |
US7010432B2 (en) | 2002-08-30 | 2006-03-07 | Lifescan, Inc. | Method and system for determining the acceptability of signal data collected from a prothrombin time test strip |
US7291310B2 (en) * | 2002-12-17 | 2007-11-06 | The Regents Of The University Of Michigan | Microsystem for determining clotting time of blood and low-cost, single-use device for use therein |
US8574895B2 (en) | 2002-12-30 | 2013-11-05 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus using optical techniques to measure analyte levels |
GB0300820D0 (en) * | 2003-01-14 | 2003-02-12 | Diagnoswiss Sa | Membrane-microchannel strip |
DE10305050A1 (en) * | 2003-02-07 | 2004-08-19 | Roche Diagnostics Gmbh | Analytical test element and method for blood tests |
IL154677A0 (en) * | 2003-02-27 | 2003-09-17 | Univ Bar Ilan | A method and apparatus for manipulating an individual cell |
US8153081B2 (en) | 2003-05-29 | 2012-04-10 | Bayer Healthcare Llc | Test sensor and method for manufacturing the same |
EP1628567B1 (en) | 2003-05-30 | 2010-08-04 | Pelikan Technologies Inc. | Method and apparatus for fluid injection |
US7850621B2 (en) | 2003-06-06 | 2010-12-14 | Pelikan Technologies, Inc. | Method and apparatus for body fluid sampling and analyte sensing |
WO2006001797A1 (en) | 2004-06-14 | 2006-01-05 | Pelikan Technologies, Inc. | Low pain penetrating |
US7718439B2 (en) | 2003-06-20 | 2010-05-18 | Roche Diagnostics Operations, Inc. | System and method for coding information on a biosensor test strip |
US7645373B2 (en) * | 2003-06-20 | 2010-01-12 | Roche Diagnostic Operations, Inc. | System and method for coding information on a biosensor test strip |
US8206565B2 (en) | 2003-06-20 | 2012-06-26 | Roche Diagnostics Operation, Inc. | System and method for coding information on a biosensor test strip |
US8071030B2 (en) * | 2003-06-20 | 2011-12-06 | Roche Diagnostics Operations, Inc. | Test strip with flared sample receiving chamber |
US8679853B2 (en) * | 2003-06-20 | 2014-03-25 | Roche Diagnostics Operations, Inc. | Biosensor with laser-sealed capillary space and method of making |
US7597793B2 (en) * | 2003-06-20 | 2009-10-06 | Roche Operations Ltd. | System and method for analyte measurement employing maximum dosing time delay |
US7645421B2 (en) * | 2003-06-20 | 2010-01-12 | Roche Diagnostics Operations, Inc. | System and method for coding information on a biosensor test strip |
US8058077B2 (en) * | 2003-06-20 | 2011-11-15 | Roche Diagnostics Operations, Inc. | Method for coding information on a biosensor test strip |
JP4619359B2 (en) | 2003-06-20 | 2011-01-26 | エフ ホフマン−ラ ロッシュ アクチェン ゲゼルシャフト | Specimen with sample receiving chamber formed in flare shape |
US7488601B2 (en) | 2003-06-20 | 2009-02-10 | Roche Diagnostic Operations, Inc. | System and method for determining an abused sensor during analyte measurement |
US8148164B2 (en) | 2003-06-20 | 2012-04-03 | Roche Diagnostics Operations, Inc. | System and method for determining the concentration of an analyte in a sample fluid |
US7452457B2 (en) * | 2003-06-20 | 2008-11-18 | Roche Diagnostics Operations, Inc. | System and method for analyte measurement using dose sufficiency electrodes |
WO2004113492A1 (en) * | 2003-06-26 | 2004-12-29 | Molecular Cytomics Ltd. | Improved materials for constructing cell-chips, cell-chip covers, cell-chip coats, processed cell-chips and uses thereof |
US8597597B2 (en) * | 2003-06-26 | 2013-12-03 | Seng Enterprises Ltd. | Picoliter well holding device and method of making the same |
US9200245B2 (en) * | 2003-06-26 | 2015-12-01 | Seng Enterprises Ltd. | Multiwell plate |
US6927745B2 (en) * | 2003-08-25 | 2005-08-09 | Harris Corporation | Frequency selective surfaces and phased array antennas using fluidic dielectrics |
US7582472B2 (en) * | 2003-08-26 | 2009-09-01 | Smith Kenneth E | Apparatus and method for liquid sample testing |
WO2005033659A2 (en) | 2003-09-29 | 2005-04-14 | Pelikan Technologies, Inc. | Method and apparatus for an improved sample capture device |
US9351680B2 (en) | 2003-10-14 | 2016-05-31 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for a variable user interface |
US7147362B2 (en) * | 2003-10-15 | 2006-12-12 | Agilent Technologies, Inc. | Method of mixing by intermittent centrifugal force |
EP1706026B1 (en) | 2003-12-31 | 2017-03-01 | Sanofi-Aventis Deutschland GmbH | Method and apparatus for improving fluidic flow and sample capture |
US7822454B1 (en) | 2005-01-03 | 2010-10-26 | Pelikan Technologies, Inc. | Fluid sampling device with improved analyte detecting member configuration |
WO2005078118A1 (en) | 2004-02-06 | 2005-08-25 | Bayer Healthcare Llc | Oxidizable species as an internal reference for biosensors and method of use |
US7588724B2 (en) * | 2004-03-05 | 2009-09-15 | Bayer Healthcare Llc | Mechanical device for mixing a fluid sample with a treatment solution |
US7156117B2 (en) * | 2004-03-31 | 2007-01-02 | Lifescan Scotland Limited | Method of controlling the movement of fluid through a microfluidic circuit using an array of triggerable passive valves |
US7665303B2 (en) * | 2004-03-31 | 2010-02-23 | Lifescan Scotland, Ltd. | Method of segregating a bolus of fluid using a pneumatic actuator in a fluid handling circuit |
US20050220644A1 (en) * | 2004-03-31 | 2005-10-06 | Sebastian Bohm | Pneumatic actuator for bolus generation in a fluid handling circuit |
US7059352B2 (en) * | 2004-03-31 | 2006-06-13 | Lifescan Scotland | Triggerable passive valve for use in controlling the flow of fluid |
US20050217742A1 (en) * | 2004-03-31 | 2005-10-06 | Sebastian Bohm | Microfluidic circuit including an array of triggerable passive valves |
US20050220630A1 (en) * | 2004-03-31 | 2005-10-06 | Sebastian Bohm | Method of using triggerable passive valves to control the flow of fluid |
ES2643836T3 (en) * | 2004-04-07 | 2017-11-24 | Abbott Laboratories | Disposable chamber to analyze biological fluids |
US7674615B2 (en) | 2004-05-04 | 2010-03-09 | Bayer Healthcare Llc | Mechanical cartridge with test strip fluid control features for use in a fluid analyte meter |
DE102004024432A1 (en) * | 2004-05-14 | 2005-12-08 | Tesa Ag | Use of a hydrophilic surface film in medical diagnostic strips |
EP1751546A2 (en) | 2004-05-20 | 2007-02-14 | Albatros Technologies GmbH & Co. KG | Printable hydrogel for biosensors |
WO2005120365A1 (en) | 2004-06-03 | 2005-12-22 | Pelikan Technologies, Inc. | Method and apparatus for a fluid sampling device |
US9775553B2 (en) | 2004-06-03 | 2017-10-03 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for a fluid sampling device |
US7556723B2 (en) * | 2004-06-18 | 2009-07-07 | Roche Diagnostics Operations, Inc. | Electrode design for biosensor |
US7569126B2 (en) | 2004-06-18 | 2009-08-04 | Roche Diagnostics Operations, Inc. | System and method for quality assurance of a biosensor test strip |
US20060000709A1 (en) * | 2004-06-30 | 2006-01-05 | Sebastian Bohm | Methods for modulation of flow in a flow pathway |
US8343074B2 (en) * | 2004-06-30 | 2013-01-01 | Lifescan Scotland Limited | Fluid handling devices |
US20060002817A1 (en) | 2004-06-30 | 2006-01-05 | Sebastian Bohm | Flow modulation devices |
US20060001551A1 (en) * | 2004-06-30 | 2006-01-05 | Ulrich Kraft | Analyte monitoring system with wireless alarm |
US20090054811A1 (en) * | 2004-12-30 | 2009-02-26 | Dirk Boecker | Method and apparatus for analyte measurement test time |
US8652831B2 (en) | 2004-12-30 | 2014-02-18 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for analyte measurement test time |
ES2352344T3 (en) | 2005-01-25 | 2011-02-17 | Seng Enterprises Limited | MICROFLUID DEVICE FOR CELL STUDY. |
US7364562B2 (en) * | 2005-10-06 | 2008-04-29 | Optiscan Biomedical Corp. | Anti-clotting apparatus and methods for fluid handling system |
US20060194325A1 (en) | 2005-02-14 | 2006-08-31 | Gable Jennifer H | Fluid handling cassette with a fluid control interface |
WO2006098696A1 (en) * | 2005-03-16 | 2006-09-21 | Attogenix Biosystems Pte Ltd. | Methods and device for transmitting, enclosing and analysing fluid samples |
MX2008000836A (en) | 2005-07-20 | 2008-03-26 | Bayer Healthcare Llc | Gated amperometry. |
US7259846B2 (en) * | 2005-08-30 | 2007-08-21 | Agilent Technologies, Inc. | Lab in a cuvette |
EP1934591B1 (en) | 2005-09-30 | 2019-01-02 | Ascensia Diabetes Care Holdings AG | Gated voltammetry |
US9561001B2 (en) | 2005-10-06 | 2017-02-07 | Optiscan Biomedical Corporation | Fluid handling cassette system for body fluid analyzer |
WO2007043619A1 (en) * | 2005-10-13 | 2007-04-19 | Nissui Pharmaceutical Co., Ltd. | Testing device |
AU2006305163B2 (en) * | 2005-10-18 | 2012-09-27 | Fujimori Kogyo Co., Ltd. | Apparatus for monitoring thrombus formation and method of monitoring thrombus formation |
US7731901B2 (en) * | 2005-10-19 | 2010-06-08 | Abbott Laboratories | Apparatus and method for performing counts within a biologic fluid sample |
US8133741B2 (en) | 2005-10-26 | 2012-03-13 | General Electric Company | Methods and systems for delivery of fluidic samples to sensor arrays |
US7723120B2 (en) * | 2005-10-26 | 2010-05-25 | General Electric Company | Optical sensor array system and method for parallel processing of chemical and biochemical information |
EP2016402A2 (en) * | 2006-04-11 | 2009-01-21 | Optiscan Biomedical Corporation | Anti-clotting apparatus and methods for fluid handling system |
SE530244C2 (en) * | 2006-05-05 | 2008-04-08 | Hemocue Ab | Method and system for quantitative hemoglobin determination |
SE531948C2 (en) | 2006-06-20 | 2009-09-15 | Aamic Ab | Liquid sample analyzer including filters in direct contact with projections |
US7771655B2 (en) * | 2006-07-12 | 2010-08-10 | Bayer Healthcare Llc | Mechanical device for mixing a fluid sample with a treatment solution |
DE102006032667A1 (en) * | 2006-07-13 | 2008-01-17 | Tesa Ag | Web-shaped material with a coating that allows a very fast spreading or a very fast transport of liquids |
GB0617035D0 (en) | 2006-08-30 | 2006-10-11 | Inverness Medical Switzerland | Fluidic indicator device |
WO2008079731A1 (en) * | 2006-12-22 | 2008-07-03 | Home Diagnostics, Inc. | Gel formation to reduce hematocrit sensitivity in electrochemical test |
EP2101917A1 (en) * | 2007-01-10 | 2009-09-23 | Scandinavian Micro Biodevices A/S | A microfluidic device and a microfluidic system and a method of performing a test |
DE102007003755A1 (en) * | 2007-01-19 | 2008-07-31 | Tesa Ag | Web-shaped material with a coating that enables a permanent fast spreading or a permanent, very fast transport of liquids |
KR100834286B1 (en) * | 2007-01-23 | 2008-05-30 | 엘지전자 주식회사 | Multi layer strip for bio material and apparatus for measuring bio material |
DE102007018383A1 (en) * | 2007-04-17 | 2008-10-23 | Tesa Ag | Sheet-like material with hydrophilic and hydrophobic areas and their production |
WO2008144575A2 (en) | 2007-05-18 | 2008-11-27 | Optiscan Biomedical Corporation | Fluid injection and safety system |
DE102007026998A1 (en) | 2007-06-07 | 2008-12-11 | Tesa Ag | Hydrophilic coating varnish |
AU2008265604A1 (en) * | 2007-06-20 | 2008-12-24 | Mec Dynamics Corporation | Methods and apparatus for measuring blood coagulation |
WO2009001289A1 (en) * | 2007-06-28 | 2008-12-31 | Koninklijke Philips Electronics N. V. | Microelectronic sensor device for optical examinations on a wetted surface |
US8529472B2 (en) * | 2007-09-04 | 2013-09-10 | Panasonic Corporation | Blood analysis device and blood analysis system using the same |
EP2055384A1 (en) * | 2007-10-31 | 2009-05-06 | Leukocare AG | Device for identifying constituents in a fluid |
TWI362491B (en) * | 2007-11-02 | 2012-04-21 | Ind Tech Res Inst | Fluid analytical device and fluid analytical method thereof |
WO2009060849A1 (en) * | 2007-11-05 | 2009-05-14 | Nippon Kayaku Kabushiki Kaisha | Biosensor |
US9975118B2 (en) * | 2007-11-15 | 2018-05-22 | Seng Enterprises Ltd. | Device for the study of living cells |
US9145540B1 (en) | 2007-11-15 | 2015-09-29 | Seng Enterprises Ltd. | Device for the study of living cells |
WO2009076302A1 (en) | 2007-12-10 | 2009-06-18 | Bayer Healthcare Llc | Control markers for auto-detection of control solution and methods of use |
DE102008006225A1 (en) | 2008-01-25 | 2009-07-30 | Tesa Ag | Biosensor and its production |
CN101965225B (en) * | 2008-03-11 | 2014-04-30 | 皇家飞利浦电子股份有限公司 | Filtering apparatus for filtering a fluid |
WO2009126900A1 (en) | 2008-04-11 | 2009-10-15 | Pelikan Technologies, Inc. | Method and apparatus for analyte detecting device |
ES2451541T3 (en) * | 2008-07-16 | 2014-03-27 | International Technidyne Corporation | Device based on cuvette for measurement and testing of blood coagulation |
DE102008050092A1 (en) | 2008-10-06 | 2010-04-08 | Hach Lange Gmbh | Mobile water analysis arrangement |
DE102008051008A1 (en) | 2008-10-13 | 2010-04-15 | Tesa Se | Pressure-sensitive adhesive tape with functionalized adhesive and its use |
US20100092768A1 (en) * | 2008-10-13 | 2010-04-15 | Tesa Ag | Pressure-sensitive adhesive tape with functionalized adhesive and use thereof |
US9375169B2 (en) | 2009-01-30 | 2016-06-28 | Sanofi-Aventis Deutschland Gmbh | Cam drive for managing disposable penetrating member actions with a single motor and motor and control system |
JP5665864B2 (en) * | 2009-07-07 | 2015-02-04 | ベーリンガー インゲルハイム マイクロパーツ ゲゼルシャフト ミットベシュレンクテル ハフツングBoehringer Ingelheim microParts GmbH | Plasma separation reservoir |
US9091676B2 (en) | 2010-06-09 | 2015-07-28 | Optiscan Biomedical Corp. | Systems and methods for measuring multiple analytes in a sample |
US9554742B2 (en) | 2009-07-20 | 2017-01-31 | Optiscan Biomedical Corporation | Fluid analysis system |
US8731638B2 (en) | 2009-07-20 | 2014-05-20 | Optiscan Biomedical Corporation | Adjustable connector and dead space reduction |
AU2010330825B2 (en) | 2009-12-18 | 2014-03-06 | Abbott Point Of Care, Inc. | Biologic fluid analysis cartridge |
US8965476B2 (en) | 2010-04-16 | 2015-02-24 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
EP2591334A1 (en) * | 2010-07-09 | 2013-05-15 | Koninklijke Philips Electronics N.V. | Cartridge with large-scale manufacturing design |
WO2012056334A1 (en) * | 2010-10-28 | 2012-05-03 | International Business Machines Corporation | Microfluidic device with auxiliary and bypass channels |
US9873118B2 (en) | 2010-12-30 | 2018-01-23 | Abbott Point Of Care, Inc. | Biologic fluid analysis cartridge with sample handling portion and analysis chamber portion |
US8956518B2 (en) | 2011-04-20 | 2015-02-17 | Lifescan, Inc. | Electrochemical sensors with carrier field |
ES2886583T3 (en) * | 2011-05-26 | 2021-12-20 | Massachusetts Gen Hospital | Optical thromboelastography system and method for the evaluation of blood coagulation metrics |
WO2013006716A1 (en) | 2011-07-06 | 2013-01-10 | Optiscan Biomedical Corporation | Sample cell for fluid analysis system |
US8797527B2 (en) | 2011-08-24 | 2014-08-05 | Abbott Point Of Care, Inc. | Biologic fluid sample analysis cartridge |
US20130341207A1 (en) | 2012-06-21 | 2013-12-26 | Lifescan Scotland Limited | Analytical test strip with capillary sample-receiving chambers separated by stop junctions |
US8877023B2 (en) | 2012-06-21 | 2014-11-04 | Lifescan Scotland Limited | Electrochemical-based analytical test strip with intersecting sample-receiving chambers |
US9128038B2 (en) | 2012-06-21 | 2015-09-08 | Lifescan Scotland Limited | Analytical test strip with capillary sample-receiving chambers separated by a physical barrier island |
US11172888B2 (en) | 2012-12-19 | 2021-11-16 | The General Hospital Corporation | Optical blood-coagulation sensor |
JP6273107B2 (en) * | 2013-08-02 | 2018-01-31 | デンカ生研株式会社 | Method for enhancing detection light using light reflector in immunochromatography |
EP3049808A4 (en) * | 2013-09-26 | 2017-07-26 | Quick LLC | Sample collection device for optical analysis |
CN105583014B (en) * | 2015-12-18 | 2019-01-22 | 中国电子科技集团公司第五十四研究所 | The photon miniflow detection chip integrated based on LTCC |
US11547996B2 (en) * | 2016-08-05 | 2023-01-10 | Vital Signs Solutions Limited | Device and method for liquid analysis to detect biomarkers |
KR20180099964A (en) * | 2017-02-27 | 2018-09-06 | (주)오상헬스케어 | Strip for blood analysis |
US10928289B2 (en) * | 2017-05-04 | 2021-02-23 | University Of Connecticut | Assembly for measuring the viscosity of fluids using microchannels |
CN110892247B (en) | 2017-08-17 | 2023-08-25 | 雅培医护站股份有限公司 | Apparatus, systems, and methods for performing optical and electrochemical assays |
CN108152517A (en) * | 2017-12-27 | 2018-06-12 | 北京乐普医疗科技有限责任公司 | A kind of device and method for testing activated partial thromboplastin time |
KR102428879B1 (en) * | 2017-12-29 | 2022-08-04 | 주식회사 앱솔로지 | Diagnostic kit and control method thereof |
US20220168727A1 (en) * | 2019-03-24 | 2022-06-02 | Mehul BALDWA | Biosensor for detection of analytes in a fluid |
WO2020218439A1 (en) * | 2019-04-25 | 2020-10-29 | 京セラ株式会社 | Flow path device, cartridge, and measurement system |
TWI737135B (en) * | 2020-01-21 | 2021-08-21 | 微采視像科技股份有限公司 | Slide sets, machine and method for optical blood coagulation test |
US20240328957A1 (en) * | 2023-04-03 | 2024-10-03 | Burst Diagnostics Llc | Chemiluminescence microfluidic immunoassay device and methods of use thereof |
Citations (54)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3620676A (en) * | 1969-02-20 | 1971-11-16 | Sterilizer Control Royalties A | Disposable colorimetric indicator and sampling device for liquids |
US3640267A (en) * | 1969-12-15 | 1972-02-08 | Damon Corp | Clinical sample container |
US4088448A (en) * | 1975-09-29 | 1978-05-09 | Lilja Jan Evert | Apparatus for sampling, mixing the sample with a reagent and making particularly optical analyses |
US4420566A (en) * | 1982-06-10 | 1983-12-13 | Eastman Kodak Company | Method and apparatus for detecting sample fluid on an analysis slide |
US4426451A (en) * | 1981-01-28 | 1984-01-17 | Eastman Kodak Company | Multi-zoned reaction vessel having pressure-actuatable control means between zones |
US4756884A (en) * | 1985-08-05 | 1988-07-12 | Biotrack, Inc. | Capillary flow device |
US4761381A (en) * | 1985-09-18 | 1988-08-02 | Miles Inc. | Volume metering capillary gap device for applying a liquid sample onto a reactive surface |
US4822568A (en) * | 1986-03-28 | 1989-04-18 | Minoru Tomita | Apparatus for measuring aggregation rate of whole blood red blood cells |
US4847209A (en) * | 1987-11-09 | 1989-07-11 | Miles Inc. | Latex agglutination immunoassay in the presence of hemoglobin |
US4849340A (en) * | 1987-04-03 | 1989-07-18 | Cardiovascular Diagnostics, Inc. | Reaction system element and method for performing prothrombin time assay |
US4868129A (en) * | 1987-08-27 | 1989-09-19 | Biotrack Inc. | Apparatus and method for dilution and mixing of liquid samples |
US4877745A (en) * | 1986-11-17 | 1989-10-31 | Abbott Laboratories | Apparatus and process for reagent fluid dispensing and printing |
US4935346A (en) * | 1986-08-13 | 1990-06-19 | Lifescan, Inc. | Minimum procedure system for the determination of analytes |
US5039617A (en) * | 1989-04-20 | 1991-08-13 | Biotrack, Inc. | Capillary flow device and method for measuring activated partial thromboplastin time |
US5049487A (en) * | 1986-08-13 | 1991-09-17 | Lifescan, Inc. | Automated initiation of timing of reflectance readings |
US5068181A (en) * | 1989-12-01 | 1991-11-26 | Akzo N.V. | Method of monitoring reagent delivery in a scanning spectrophotometer |
US5100620A (en) * | 1989-05-15 | 1992-03-31 | Miles, Inc. | Capillary tube/gap reagent format |
US5104813A (en) * | 1989-04-13 | 1992-04-14 | Biotrack, Inc. | Dilution and mixing cartridge |
US5108926A (en) * | 1987-09-08 | 1992-04-28 | Board Of Regents, The University Of Texas System | Apparatus for the precise positioning of cells |
US5196926A (en) * | 1990-05-19 | 1993-03-23 | Goldstar Co., Ltd. | Optical system for an lcd projector |
US5208163A (en) * | 1990-08-06 | 1993-05-04 | Miles Inc. | Self-metering fluid analysis device |
US5230866A (en) * | 1991-03-01 | 1993-07-27 | Biotrack, Inc. | Capillary stop-flow junction having improved stability against accidental fluid flow |
US5242606A (en) * | 1990-06-04 | 1993-09-07 | Abaxis, Incorporated | Sample metering port for analytical rotor having overflow chamber |
US5338688A (en) * | 1990-08-02 | 1994-08-16 | Boehringer Mannheim Gmbh | Method for the metered application of a biochemical analytical liquid to a target |
US5366902A (en) * | 1990-10-30 | 1994-11-22 | Hypoguard (Uk) Limited | Collection and display device |
US5378638A (en) * | 1990-08-02 | 1995-01-03 | Boehringer Mannheim Gmbh | Analysis element and process for its manufacture |
US5472603A (en) * | 1992-04-02 | 1995-12-05 | Abaxis, Inc. | Analytical rotor with dye mixing chamber |
US5504011A (en) * | 1994-10-21 | 1996-04-02 | International Technidyne Corporation | Portable test apparatus and associated method of performing a blood coagulation test |
US5508521A (en) * | 1994-12-05 | 1996-04-16 | Cardiovascular Diagnostics Inc. | Method and apparatus for detecting liquid presence on a reflecting surface using modulated light |
US5610287A (en) * | 1993-12-06 | 1997-03-11 | Molecular Tool, Inc. | Method for immobilizing nucleic acid molecules |
US5627041A (en) * | 1994-09-02 | 1997-05-06 | Biometric Imaging, Inc. | Disposable cartridge for an assay of a biological sample |
US5628961A (en) * | 1993-10-28 | 1997-05-13 | I-Stat Corporation | Apparatus for assaying viscosity changes in fluid samples and method of conducting same |
US5674699A (en) * | 1993-06-08 | 1997-10-07 | Chronomed, Inc. | Two-phase optical assay |
US5677195A (en) * | 1991-11-22 | 1997-10-14 | Affymax Technologies N.V. | Combinatorial strategies for polymer synthesis |
US5700695A (en) * | 1994-06-30 | 1997-12-23 | Zia Yassinzadeh | Sample collection and manipulation method |
US5708278A (en) * | 1996-05-13 | 1998-01-13 | Johnson & Johnson Clinical Diagnostics, Inc. | Reflective wetness detector |
US5728352A (en) * | 1994-11-14 | 1998-03-17 | Advanced Care Products | Disposable electronic diagnostic instrument |
US5736404A (en) * | 1995-12-27 | 1998-04-07 | Zia Yassinzadeh | Flow detection appartus and method |
US5827681A (en) * | 1996-12-20 | 1998-10-27 | University Technology Corporation | Rapid detection and drug sensitivity of malaria |
US5847209A (en) * | 1997-12-03 | 1998-12-08 | Gupta; Anurag Ateet | Process for recovery of solid and reusable urea from the urea adduction process |
US6001307A (en) * | 1996-04-26 | 1999-12-14 | Kyoto Daiichi Kagaku Co., Ltd. | Device for analyzing a sample |
US6033866A (en) * | 1997-12-08 | 2000-03-07 | Biomedix, Inc. | Highly sensitive amperometric bi-mediator-based glucose biosensor |
US6066504A (en) * | 1997-06-27 | 2000-05-23 | Hemosense, Inc. | Coagulation or lysis assays using an electroactive species |
US6066448A (en) * | 1995-03-10 | 2000-05-23 | Meso Sclae Technologies, Llc. | Multi-array, multi-specific electrochemiluminescence testing |
US6084660A (en) * | 1998-07-20 | 2000-07-04 | Lifescan, Inc. | Initiation of an analytical measurement in blood |
US6207369B1 (en) * | 1995-03-10 | 2001-03-27 | Meso Scale Technologies, Llc | Multi-array, multi-specific electrochemiluminescence testing |
US6261519B1 (en) * | 1998-07-20 | 2001-07-17 | Lifescan, Inc. | Medical diagnostic device with enough-sample indicator |
US6325975B1 (en) * | 1997-08-27 | 2001-12-04 | Arkray, Inc. | Suction generating device and sample analysis apparatus using the same |
US6362890B1 (en) * | 1999-06-14 | 2002-03-26 | Roche Diagnostics Gmbh | Method and device for checking the liquid take up of a test layer of an analysis element |
US20020064480A1 (en) * | 1998-07-20 | 2002-05-30 | Shartle Robert Justice | Fluidic device for medical diagnostics |
US20020098114A1 (en) * | 1998-07-20 | 2002-07-25 | Harding Ian A. | Microdroplet dispensing for a medical diagnostic device |
US6640267B1 (en) * | 1999-09-27 | 2003-10-28 | Cypress Semiconductor Corp. | Architecture for multi-queue storage element |
US6866822B1 (en) * | 2000-08-11 | 2005-03-15 | Lifescan, Inc. | Gimbaled bladder actuator for use with test strips |
US6991762B1 (en) * | 1996-04-26 | 2006-01-31 | Arkray, Inc. | Device for analyzing a sample |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IL52322A (en) | 1976-06-18 | 1980-10-26 | Alfa Laval Ab | Method of making reagent test device and device made accorording to this method |
DE3113953A1 (en) * | 1981-04-07 | 1982-10-21 | Basf Ag, 6700 Ludwigshafen | IMPACT THERMOPLASTIC MOLDS |
JPS59138432A (en) * | 1983-01-27 | 1984-08-08 | Kobe Steel Ltd | Mold clamping apparatus of tire vulcanizer |
US4894340A (en) * | 1987-12-21 | 1990-01-16 | Suomen Sokeri Oy | Microbial sulfhydryl oxidase and method |
FI87166C (en) * | 1991-07-05 | 1992-12-10 | Leo Longlife Ltd Oy | Packaging |
US5217868A (en) | 1992-05-01 | 1993-06-08 | Syncor Limited | Measurement of an enzyme marker as an aid to diagnosis of liver transplant rejection |
AU4681493A (en) | 1992-07-21 | 1994-02-14 | Medix Biotech, Inc. | Transparent assay test devices and methods |
CA2156226C (en) * | 1994-08-25 | 1999-02-23 | Takayuki Taguchi | Biological fluid analyzing device and method |
JP3213566B2 (en) * | 1996-04-26 | 2001-10-02 | アークレイ株式会社 | Sample analysis tool, sample analysis method and sample analyzer using the same |
HU222809B1 (en) | 1997-10-03 | 2003-10-28 | 77 Elektronika Műszeripari Kft. | Method and apparatus for detecting chemical component from sample mostly for detecting glucose content of blood from blood sample |
US6069011A (en) | 1997-12-10 | 2000-05-30 | Umm Electronics, Inc. | Method for determining the application of a sample fluid on an analyte strip using first and second derivatives |
US6056448A (en) * | 1998-04-16 | 2000-05-02 | Lockheed Martin Corporation | Vertical cavity surface emitting laser array packaging |
-
1999
- 1999-06-15 US US09/333,765 patent/US6521182B1/en not_active Expired - Lifetime
- 1999-07-05 IL IL13080799A patent/IL130807A/en not_active IP Right Cessation
- 1999-07-19 NO NO993536A patent/NO993536L/en not_active Application Discontinuation
- 1999-07-19 ES ES99305691T patent/ES2189353T3/en not_active Expired - Lifetime
- 1999-07-19 DE DE69904403T patent/DE69904403T2/en not_active Expired - Lifetime
- 1999-07-19 DK DK99305691T patent/DK0974840T3/en active
- 1999-07-19 EP EP99305691A patent/EP0974840B1/en not_active Expired - Lifetime
- 1999-07-19 AT AT99305691T patent/ATE229649T1/en active
- 1999-07-19 CA CA002277639A patent/CA2277639A1/en not_active Abandoned
- 1999-07-19 JP JP11205185A patent/JP2000055911A/en active Pending
- 1999-07-20 TW TW088112255A patent/TW411268B/en not_active IP Right Cessation
- 1999-07-20 CN CNB991106091A patent/CN1199038C/en not_active Expired - Lifetime
- 1999-07-20 KR KR1019990029228A patent/KR100634714B1/en not_active IP Right Cessation
-
2002
- 2002-01-17 US US10/052,447 patent/US20020064480A1/en not_active Abandoned
- 2002-04-11 US US10/121,636 patent/US20020110486A1/en not_active Abandoned
- 2002-04-11 US US10/121,425 patent/US20020110922A1/en not_active Abandoned
- 2002-10-03 US US10/264,662 patent/US20030031594A1/en not_active Abandoned
- 2002-12-26 US US10/330,456 patent/US20030156983A1/en not_active Abandoned
- 2002-12-26 US US10/330,790 patent/US7022286B2/en not_active Expired - Lifetime
-
2003
- 2003-09-18 US US10/666,846 patent/US20040109790A1/en not_active Abandoned
Patent Citations (64)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3620676A (en) * | 1969-02-20 | 1971-11-16 | Sterilizer Control Royalties A | Disposable colorimetric indicator and sampling device for liquids |
US3640267A (en) * | 1969-12-15 | 1972-02-08 | Damon Corp | Clinical sample container |
US4088448A (en) * | 1975-09-29 | 1978-05-09 | Lilja Jan Evert | Apparatus for sampling, mixing the sample with a reagent and making particularly optical analyses |
US4426451A (en) * | 1981-01-28 | 1984-01-17 | Eastman Kodak Company | Multi-zoned reaction vessel having pressure-actuatable control means between zones |
US4420566A (en) * | 1982-06-10 | 1983-12-13 | Eastman Kodak Company | Method and apparatus for detecting sample fluid on an analysis slide |
US4756884A (en) * | 1985-08-05 | 1988-07-12 | Biotrack, Inc. | Capillary flow device |
US4761381A (en) * | 1985-09-18 | 1988-08-02 | Miles Inc. | Volume metering capillary gap device for applying a liquid sample onto a reactive surface |
US4822568A (en) * | 1986-03-28 | 1989-04-18 | Minoru Tomita | Apparatus for measuring aggregation rate of whole blood red blood cells |
US5049487A (en) * | 1986-08-13 | 1991-09-17 | Lifescan, Inc. | Automated initiation of timing of reflectance readings |
US4935346A (en) * | 1986-08-13 | 1990-06-19 | Lifescan, Inc. | Minimum procedure system for the determination of analytes |
US4877745A (en) * | 1986-11-17 | 1989-10-31 | Abbott Laboratories | Apparatus and process for reagent fluid dispensing and printing |
US4849340A (en) * | 1987-04-03 | 1989-07-18 | Cardiovascular Diagnostics, Inc. | Reaction system element and method for performing prothrombin time assay |
US4868129A (en) * | 1987-08-27 | 1989-09-19 | Biotrack Inc. | Apparatus and method for dilution and mixing of liquid samples |
US5108926A (en) * | 1987-09-08 | 1992-04-28 | Board Of Regents, The University Of Texas System | Apparatus for the precise positioning of cells |
US4847209A (en) * | 1987-11-09 | 1989-07-11 | Miles Inc. | Latex agglutination immunoassay in the presence of hemoglobin |
US5104813A (en) * | 1989-04-13 | 1992-04-14 | Biotrack, Inc. | Dilution and mixing cartridge |
US5039617A (en) * | 1989-04-20 | 1991-08-13 | Biotrack, Inc. | Capillary flow device and method for measuring activated partial thromboplastin time |
US5100620A (en) * | 1989-05-15 | 1992-03-31 | Miles, Inc. | Capillary tube/gap reagent format |
US5068181A (en) * | 1989-12-01 | 1991-11-26 | Akzo N.V. | Method of monitoring reagent delivery in a scanning spectrophotometer |
US5196926A (en) * | 1990-05-19 | 1993-03-23 | Goldstar Co., Ltd. | Optical system for an lcd projector |
US5242606A (en) * | 1990-06-04 | 1993-09-07 | Abaxis, Incorporated | Sample metering port for analytical rotor having overflow chamber |
US5338688A (en) * | 1990-08-02 | 1994-08-16 | Boehringer Mannheim Gmbh | Method for the metered application of a biochemical analytical liquid to a target |
US5378638A (en) * | 1990-08-02 | 1995-01-03 | Boehringer Mannheim Gmbh | Analysis element and process for its manufacture |
US5208163A (en) * | 1990-08-06 | 1993-05-04 | Miles Inc. | Self-metering fluid analysis device |
US5366902A (en) * | 1990-10-30 | 1994-11-22 | Hypoguard (Uk) Limited | Collection and display device |
US5230866A (en) * | 1991-03-01 | 1993-07-27 | Biotrack, Inc. | Capillary stop-flow junction having improved stability against accidental fluid flow |
US5677195A (en) * | 1991-11-22 | 1997-10-14 | Affymax Technologies N.V. | Combinatorial strategies for polymer synthesis |
US5472603A (en) * | 1992-04-02 | 1995-12-05 | Abaxis, Inc. | Analytical rotor with dye mixing chamber |
US5674699A (en) * | 1993-06-08 | 1997-10-07 | Chronomed, Inc. | Two-phase optical assay |
US5628961A (en) * | 1993-10-28 | 1997-05-13 | I-Stat Corporation | Apparatus for assaying viscosity changes in fluid samples and method of conducting same |
US5610287A (en) * | 1993-12-06 | 1997-03-11 | Molecular Tool, Inc. | Method for immobilizing nucleic acid molecules |
US5700695A (en) * | 1994-06-30 | 1997-12-23 | Zia Yassinzadeh | Sample collection and manipulation method |
US5627041A (en) * | 1994-09-02 | 1997-05-06 | Biometric Imaging, Inc. | Disposable cartridge for an assay of a biological sample |
US5591403A (en) * | 1994-10-21 | 1997-01-07 | International Technidyne Corporation | Portable prothrombin time test apparatus and associated method of performing a prothrombin time test |
US5504011A (en) * | 1994-10-21 | 1996-04-02 | International Technidyne Corporation | Portable test apparatus and associated method of performing a blood coagulation test |
US5728352A (en) * | 1994-11-14 | 1998-03-17 | Advanced Care Products | Disposable electronic diagnostic instrument |
US5508521A (en) * | 1994-12-05 | 1996-04-16 | Cardiovascular Diagnostics Inc. | Method and apparatus for detecting liquid presence on a reflecting surface using modulated light |
US6066448A (en) * | 1995-03-10 | 2000-05-23 | Meso Sclae Technologies, Llc. | Multi-array, multi-specific electrochemiluminescence testing |
US6207369B1 (en) * | 1995-03-10 | 2001-03-27 | Meso Scale Technologies, Llc | Multi-array, multi-specific electrochemiluminescence testing |
US6103196A (en) * | 1995-12-27 | 2000-08-15 | Yassinzadeh; Zia | Flow detection apparatus and method |
US5736404A (en) * | 1995-12-27 | 1998-04-07 | Zia Yassinzadeh | Flow detection appartus and method |
US6001307A (en) * | 1996-04-26 | 1999-12-14 | Kyoto Daiichi Kagaku Co., Ltd. | Device for analyzing a sample |
US6991762B1 (en) * | 1996-04-26 | 2006-01-31 | Arkray, Inc. | Device for analyzing a sample |
US6180062B1 (en) * | 1996-04-26 | 2001-01-30 | Kyoto Daiichi Kagaku Co., Ltd. | Device for analyzing a sample |
US5708278A (en) * | 1996-05-13 | 1998-01-13 | Johnson & Johnson Clinical Diagnostics, Inc. | Reflective wetness detector |
US5827681A (en) * | 1996-12-20 | 1998-10-27 | University Technology Corporation | Rapid detection and drug sensitivity of malaria |
US6066504A (en) * | 1997-06-27 | 2000-05-23 | Hemosense, Inc. | Coagulation or lysis assays using an electroactive species |
US6325975B1 (en) * | 1997-08-27 | 2001-12-04 | Arkray, Inc. | Suction generating device and sample analysis apparatus using the same |
US5847209A (en) * | 1997-12-03 | 1998-12-08 | Gupta; Anurag Ateet | Process for recovery of solid and reusable urea from the urea adduction process |
US6033866A (en) * | 1997-12-08 | 2000-03-07 | Biomedix, Inc. | Highly sensitive amperometric bi-mediator-based glucose biosensor |
US20020064480A1 (en) * | 1998-07-20 | 2002-05-30 | Shartle Robert Justice | Fluidic device for medical diagnostics |
US20030156984A1 (en) * | 1998-07-20 | 2003-08-21 | John Lemke | Fluidic device for medical diagnostics |
US6261519B1 (en) * | 1998-07-20 | 2001-07-17 | Lifescan, Inc. | Medical diagnostic device with enough-sample indicator |
US20020098114A1 (en) * | 1998-07-20 | 2002-07-25 | Harding Ian A. | Microdroplet dispensing for a medical diagnostic device |
US20020110486A1 (en) * | 1998-07-20 | 2002-08-15 | Shartle Robert Justice | Analyte test strip with two controls |
US20030031594A1 (en) * | 1998-07-20 | 2003-02-13 | Shartle Robert Justice | Vacuum loaded test strip with stop junction and bypass channel |
US6521182B1 (en) * | 1998-07-20 | 2003-02-18 | Lifescan, Inc. | Fluidic device for medical diagnostics |
US7022286B2 (en) * | 1998-07-20 | 2006-04-04 | Lifescan, Inc. | Fluidic device for medical diagnostics |
US20030156983A1 (en) * | 1998-07-20 | 2003-08-21 | Shartle Robert Justice | Fluidic device for medical diagnostics |
US6084660A (en) * | 1998-07-20 | 2000-07-04 | Lifescan, Inc. | Initiation of an analytical measurement in blood |
US20030210287A1 (en) * | 1998-07-20 | 2003-11-13 | Harding Ian A. | Microdroplet dispensing methods for a medical diagnostic device |
US6362890B1 (en) * | 1999-06-14 | 2002-03-26 | Roche Diagnostics Gmbh | Method and device for checking the liquid take up of a test layer of an analysis element |
US6640267B1 (en) * | 1999-09-27 | 2003-10-28 | Cypress Semiconductor Corp. | Architecture for multi-queue storage element |
US6866822B1 (en) * | 2000-08-11 | 2005-03-15 | Lifescan, Inc. | Gimbaled bladder actuator for use with test strips |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6673617B2 (en) * | 2002-03-14 | 2004-01-06 | Lifescan, Inc. | Test strip qualification system |
US6682933B2 (en) * | 2002-03-14 | 2004-01-27 | Lifescan, Inc. | Test strip qualification system |
US20040096980A1 (en) * | 2002-03-14 | 2004-05-20 | Harshad Patel | Test strip qualification system |
US20040106212A1 (en) * | 2002-03-14 | 2004-06-03 | Harshad Patel | Test strip qualification system |
US6835570B2 (en) | 2002-03-14 | 2004-12-28 | Lifescan, Inc. | Test strip qualification system |
US6849456B2 (en) | 2002-03-14 | 2005-02-01 | Lifescan, Inc. | Test strip qualification system |
US20050153457A1 (en) * | 2002-03-14 | 2005-07-14 | Harshad Patel | Test strip qualification system |
US20040086953A1 (en) * | 2002-11-05 | 2004-05-06 | Richard Jenny | Method for manufacturing a tissue factor-based prothrombin time reagent |
US7049087B2 (en) | 2002-11-05 | 2006-05-23 | Lifescan, Inc. | Method for manufacturing a tissue factor-based prothrombin time reagent |
EP2439530A1 (en) | 2008-03-14 | 2012-04-11 | Scandinavian Micro Biodevices ApS | Microfluidic system for coagulation tests or agglutination tests |
US9201059B2 (en) | 2008-03-14 | 2015-12-01 | Scandinavian Micro Biodevices Aps | Microfluidic system and a method of performing a test |
CN104066513A (en) * | 2012-01-24 | 2014-09-24 | 皇家飞利浦有限公司 | Analysis cartridge with filter unit |
Also Published As
Publication number | Publication date |
---|---|
EP0974840A2 (en) | 2000-01-26 |
US20030156984A1 (en) | 2003-08-21 |
IL130807A (en) | 2003-11-23 |
US20020110486A1 (en) | 2002-08-15 |
EP0974840B1 (en) | 2002-12-11 |
DE69904403D1 (en) | 2003-01-23 |
KR100634714B1 (en) | 2006-10-17 |
JP2000055911A (en) | 2000-02-25 |
US20020064480A1 (en) | 2002-05-30 |
KR20000011826A (en) | 2000-02-25 |
US7022286B2 (en) | 2006-04-04 |
US6521182B1 (en) | 2003-02-18 |
DE69904403T2 (en) | 2003-10-30 |
NO993536L (en) | 2000-01-21 |
ES2189353T3 (en) | 2003-07-01 |
EP0974840A3 (en) | 2000-03-08 |
ATE229649T1 (en) | 2002-12-15 |
US20030031594A1 (en) | 2003-02-13 |
IL130807A0 (en) | 2001-01-28 |
TW411268B (en) | 2000-11-11 |
CA2277639A1 (en) | 2000-01-20 |
US20040109790A1 (en) | 2004-06-10 |
CN1199038C (en) | 2005-04-27 |
DK0974840T3 (en) | 2003-03-31 |
CN1250160A (en) | 2000-04-12 |
NO993536D0 (en) | 1999-07-19 |
US20030156983A1 (en) | 2003-08-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6521182B1 (en) | Fluidic device for medical diagnostics | |
AU752645B2 (en) | Fluidic device for medical diagnostics | |
US6084660A (en) | Initiation of an analytical measurement in blood | |
US6652814B1 (en) | Strip holder for use in a test strip meter | |
EP1311862B1 (en) | Automatic meters including a gimbaled bladder actuator for use with test strips | |
AU2001280844A1 (en) | Strip holder for use in a test strip meter | |
AU2001282985A1 (en) | Gimbaled bladder actuator for use with test strips |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: LIFESCAN, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SHARTLE, ROBERT JUSTICE;CHOW, HERBERT;HARTMANN, CHRISTA;REEL/FRAME:012798/0865;SIGNING DATES FROM 20000324 TO 20000329 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |