US20020101387A1 - Dielectric loaded feed horn - Google Patents

Dielectric loaded feed horn Download PDF

Info

Publication number
US20020101387A1
US20020101387A1 US10/050,525 US5052502A US2002101387A1 US 20020101387 A1 US20020101387 A1 US 20020101387A1 US 5052502 A US5052502 A US 5052502A US 2002101387 A1 US2002101387 A1 US 2002101387A1
Authority
US
United States
Prior art keywords
horn
aperture
dielectric rod
feed
end part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/050,525
Other languages
English (en)
Inventor
Ronald Brandau
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commscope Technologies LLC
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US10/050,525 priority Critical patent/US20020101387A1/en
Assigned to ANDREW CORPORATION reassignment ANDREW CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BRANDAU, RONALD J.
Publication of US20020101387A1 publication Critical patent/US20020101387A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/18Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces having two or more spaced reflecting surfaces
    • H01Q19/19Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces having two or more spaced reflecting surfaces comprising one main concave reflecting surface associated with an auxiliary reflecting surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/02Waveguide horns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/02Waveguide horns
    • H01Q13/025Multimode horn antennas; Horns using higher mode of propagation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/20Non-resonant leaky-waveguide or transmission-line antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/24Non-resonant leaky-waveguide or transmission-line antennas; Equivalent structures causing radiation along the transmission path of a guided wave constituted by a dielectric or ferromagnetic rod or pipe
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/06Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using refracting or diffracting devices, e.g. lens
    • H01Q19/08Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using refracting or diffracting devices, e.g. lens for modifying the radiation pattern of a radiating horn in which it is located
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/20Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements characterised by the operating wavebands
    • H01Q5/28Arrangements for establishing polarisation or beam width over two or more different wavebands

Definitions

  • This invention is directed generally to communication systems, and more particularly to a novel and improved feed horn design for use in microwave reflector-type antennas.
  • the horn is utilized as a feed horn in a “tri-band” offset prime-fed reflector-type antenna.
  • the antenna operates in a 20 GHz band and a 30 GHz band for interactive communication with a satellite.
  • the antenna both receives and transmits at 20 GHz and 30 GHz respectively through the satellite link.
  • An additional 12 GHz band is also accommodated by the antenna for receiving satellite TV signals in this band from a satellite which is essentially co-located with the broadband internet satellite link.
  • phase center will generally move about somewhat as the frequency varies. For relatively narrow frequency bands, this generally does not present a significant problem. However, in the above-described application from 12 to 30 GHz, considerable shifting of the phase center may be experienced.
  • a major problem encountered in design of symmetrical dual reflector type antennas is the size of the feed horn element required for the frequency band or frequency bands to be utilized. Blockage of the energy to and from the reflector which is caused by the physical size or “shadow” of the radiating horn feed element can be detrimental to antenna performance.
  • a frequency band of 5.925 to 7.125 GHz is typically employed.
  • the problem of the physical size of the required feed horn is more significant than the problem of shifting phase center, which is relatively insignificant in this relatively narrow band.
  • a feed horn comprises an elongated horn portion having a generally cylindrical metallic interior surface and an elongated dielectric rod portion which is substantially centered with respect to said horn portion and having an elongated tapered end part extending in the direction of the horn aperture is described.
  • the horn is designed so as to have a minimal diameter and length and yet can produce a symmetrical horn pattern with a substantially stationary phase center over a large bandwidth
  • the design procedure also allows maintenance of these symmetrical patterns over a large gain range (6 to 18 dbi).
  • FIG. 1 shows a first embodiment of a feed horn for a tri-band antenna in accordance with one aspect of the invention
  • FIG. 2 shows an embodiment of an antenna for a dual reflector-type antenna in accordance with another aspect of the invention
  • FIGS. 3 a and 3 b show predicted patterns for the horn of FIG. 1 at various frequencies.
  • FIG. 4 shows an overlay of dielectric loaded and an equivalent corrugated metal type horns for this type of application
  • FIGS. 5 a , 5 b and 5 c show measured patterns for the feed of FIG. 2 at three frequencies.
  • FIGS. 6 a , 6 b and 6 c show predicted secondary patterns for the horn of FIG. 2.
  • a feed horn assembly for use in a reflector antenna is designated generally by the reference numeral 10
  • the embodiment of FIG. 1 is intended for use in a tri-band application, including 12 GHz, 20 GHz and 30 GHz bands, as discussed above.
  • the horn assembly 10 includes a first horn element or portion 12 which defines an open outer end or aperture 14 .
  • An inner surface of the horn 12 is metallic and has two portions.
  • a first portion 16 is generally cylindrical, except for a slight taper which is left to allow for easy injection molding or other similar formation process for manufacturing the horn.
  • Located inwardly of the first section 16 is a second section 18 which has an inwardly converging exponential type taper extending to the desired input bore of the horn.
  • a dielectric rod 22 is mounted concentrically with and centered with respect to the two sections 16 , 18 of the horn.
  • the dielectric rod 22 may be formed from various materials; however, for this example, a teflon-like material was selected having a dielectric constant of substantially 2.1 for this application. This material is relatively easy to mold or form to the desired shape.
  • a first portion 24 of the dielectric rod has a substantially constant outer diameter, whereas a second portion 26 is tapered inwardly as it proceeds in the direction of the aperture plane 14 of the horn 12 .
  • the end of the horn assembly 10 opposite the aperture plane 14 may be coupled with a waveguide (not shown).
  • the inner diameter of the horn aperture at the plane 14 is substantially 1.3 inches. This end does not necessarily terminate at the dielectric rod end. This factor could be used to further optimize the low band phase center if desired.
  • the diameter of the narrow end 30 of the rod 22 is substantially 0.118 inches.
  • the wide end 32 of the rod 22 is substantially 0.325 inches diameter, and the length of the tapered portion 26 of the rod is substantially 1.595 inches. This dimension is indicated generally by reference numeral by 27 in FIG. 1. It will be seen that the substantially cylindrically inner surface portion 16 of the horn 12 extends the full length of this taper 26 , whereupon the exponential taper 18 of the inner surface of the horn 12 begins.
  • FIGS. 3 a and 3 b illustrate the predicted patterns for the horn of FIG. 1 at various frequencies, including 11.95, 12.45, 19.95 and 29.75 GHz.
  • FIG. 3 a illustrates E plane patterns
  • FIG. 3 b illustrates H plane patterns.
  • FIG. 2 a similar feed horn structure 10 a is shown. Like parts and components of the feed horn assembly 10 a are indicated by like reference numerals to those used in FIG. 1, together with the suffix a. As mentioned above, this horn assembly is designed for use in a symmetrical dual reflector-type antenna assembly in a band from 5.925 to 7.125 GHz. In this application, the tip 30 a of the dielectric rod 26 a is spaced from the closest surface of a generally convex shaped sub reflector 40 (see FIG. 4) by a approximately 1.08 inches. However, here the first or cylindrical metallic inner portion 16 of the horn 12 a is omitted, with the horn beginning essentially at the exponentially tapering surface portion 18 a .
  • the dielectric rod 22 a extends outwardly of the aperture 14 a , in the illustrated embodiment by approximately 6.00 inches. Also, the length 27 a of the tapered portion 26 a of the rod 22 a is approximately 6.00 inches. The outer diameter of the aperture 14 a , as indicated by reference numeral 40 , is approximately 3.10 inches.
  • FIG. 2 for use in a symmetrical dual reflector-type antenna application, at a frequency of 5.93-7.125 GHz, the energy exists almost entirely within the dielectric rod 22 a
  • the metal of the horn is “pulled back” to such an extent that it is essentially in the “shadow” of the dielectric rod, whereby it resembles a narrow diameter radiating element providing minimal blockage of the radiation pattern to and from the reflector or reflectors (e.g., subreflector 40 —see FIG. 4).
  • the assembly of FIG. 2 performs much like a corrugated metal horn of approximately 3 to 3.5 inches diameter.
  • FIG. 4 shows an overlay of two horn types for this type of application.
  • FIGS. 5 a through 5 c The lines of radiation 50 from the subreflector 40 illustrate this Measured patterns for the horn of FIG. 2 are shown in FIGS. 5 a through 5 c , at various frequencies. Specifically, FIG. 5 a shows patterns at 5.925 GHz, the low end of the above-mentioned band. FIG. 5 b shows patterns at 6.525 GHz and FIG. 5 c shows patterns at 7.125 GHz, the upper end of the band.
  • FIGS. 6 a through 6 c show predicted secondary patterns for the horn configured as in FIG. 2, and having a 6′ diameter parabolic reflector with an 18′ diameter subreflector at the same frequencies noted above for FIGS. 5 a , 5 b and 5 c respectively. Subsequent measured secondary patterns agree with the predicted secondary patterns.
  • a feed horn assembly comprising an elongated horn portion having a generally cylindrical metallic interior surface and an elongated dielectric rod portion substantially centered with respect to said horn portion and having an elongated tapered end part extending in the direction of the horn aperture.
  • the horn is designed so as to have a minimal diameter and length and yet can produce a symmetrical horn pattern with a substantially stationary phase center over a large bandwidth.
  • the design procedure also allows maintenance of these symmetrical patterns over a large gain range (6 to 18 dbi).
  • the above-described horns produce circularly symmetrical radiation patterns, have a substantially constant phase center over a large frequency range, and are small in size for a given pattern. It is noted that frequency scaling allows the above described operation in any other corresponding frequency bands.

Landscapes

  • Waveguide Aerials (AREA)
  • Aerials With Secondary Devices (AREA)
US10/050,525 2001-01-30 2002-01-18 Dielectric loaded feed horn Abandoned US20020101387A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/050,525 US20020101387A1 (en) 2001-01-30 2002-01-18 Dielectric loaded feed horn

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US26504501P 2001-01-30 2001-01-30
US10/050,525 US20020101387A1 (en) 2001-01-30 2002-01-18 Dielectric loaded feed horn

Publications (1)

Publication Number Publication Date
US20020101387A1 true US20020101387A1 (en) 2002-08-01

Family

ID=23008718

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/050,525 Abandoned US20020101387A1 (en) 2001-01-30 2002-01-18 Dielectric loaded feed horn

Country Status (3)

Country Link
US (1) US20020101387A1 (ja)
EP (1) EP1227543A3 (ja)
JP (1) JP2002290147A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050093759A1 (en) * 2003-10-31 2005-05-05 Ali Louzir Source antennas with radiating aperture

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005204023A (ja) * 2004-01-15 2005-07-28 Nippon Telegr & Teleph Corp <Ntt> 高周波電磁波アンテナ
JP4819766B2 (ja) * 2007-08-28 2011-11-24 日本電信電話株式会社 平面アンテナ
DE102008015409B4 (de) * 2008-03-20 2015-07-30 KROHNE Meßtechnik GmbH & Co. KG Dielektrische Hornantenne
CN105024141A (zh) * 2015-07-13 2015-11-04 中国电子科技集团公司第十研究所 介质填充圆波导圆极化天线

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE936400C (de) * 1953-12-24 1955-12-15 Siemens Ag Trichter- oder Hornstrahleranordnung fuer kurze und sehr kurze elektromagnetische Wellen

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050093759A1 (en) * 2003-10-31 2005-05-05 Ali Louzir Source antennas with radiating aperture
US7528787B2 (en) * 2003-10-31 2009-05-05 Thomson Licensing Source antennas with radiating aperture

Also Published As

Publication number Publication date
JP2002290147A (ja) 2002-10-04
EP1227543A2 (en) 2002-07-31
EP1227543A3 (en) 2002-08-28

Similar Documents

Publication Publication Date Title
US11139584B2 (en) Antenna feeder assembly of multi-band antenna and multi-band antenna
US6982679B2 (en) Coaxial horn antenna system
US5543808A (en) Dual band EHF, VHF vehicular whip antenna
US6697027B2 (en) High gain, low side lobe dual reflector microwave antenna
US6483471B1 (en) Combination linearly polarized and quadrifilar antenna
US20100156754A1 (en) Dielectric loaded antenna having hollow portion therein
JP6642862B2 (ja) デュアルバンドスプラッシュプレートサポートを含むリフレクタアンテナ
US7187340B2 (en) Simultaneous multi-band ring focus reflector antenna-broadband feed
US6911953B2 (en) Multi-band ring focus antenna system with co-located main reflectors
US7034774B2 (en) Feed structure and antenna structures incorporating such feed structures
KR100898321B1 (ko) 광대역 소형 이중대역 옴니 안테나
WO2020263760A1 (en) Coaxial feed for multiband antenna
EP1221740B1 (en) Cassegrain-type feed for an antenna
US20020101387A1 (en) Dielectric loaded feed horn
Elboushi et al. Circularly-polarized SIW slot antenna for MMW applications
CN114759354A (zh) 小型化宽带稳定波束喇叭馈源天线
WO2016176717A1 (en) Improved dielectric rod antenna
Rao et al. Antenna system supporting multiple frequency bands and multiple beams
Du et al. A compact KU/E band horn antenna
Lytvyn et al. Dual band feed horn for mm-wave applications
Liu et al. An 18-40GHz Dielectric Loaded Compacted Broadband Stabilized Beam Feed Horn Antenna
JP2023550639A (ja) ジオデシック・アンテナの素子パターンにおけるリップルの低減
JPH0752807B2 (ja) ホーンアンテナ

Legal Events

Date Code Title Description
AS Assignment

Owner name: ANDREW CORPORATION, ILLINOIS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BRANDAU, RONALD J.;REEL/FRAME:012704/0700

Effective date: 20020123

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION