US20020079352A1 - Friction stir welding method - Google Patents
Friction stir welding method Download PDFInfo
- Publication number
- US20020079352A1 US20020079352A1 US10/085,091 US8509102A US2002079352A1 US 20020079352 A1 US20020079352 A1 US 20020079352A1 US 8509102 A US8509102 A US 8509102A US 2002079352 A1 US2002079352 A1 US 2002079352A1
- Authority
- US
- United States
- Prior art keywords
- welding
- rotary tool
- friction stir
- stir welding
- main shaft
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K20/00—Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
- B23K20/12—Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K20/00—Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
- B23K20/12—Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
- B23K20/122—Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding
- B23K20/123—Controlling or monitoring the welding process
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K20/00—Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
- B23K20/12—Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
- B23K20/122—Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K20/00—Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
- B23K20/12—Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
- B23K20/122—Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding
- B23K20/123—Controlling or monitoring the welding process
- B23K20/1235—Controlling or monitoring the welding process with temperature control during joining
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K20/00—Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
- B23K20/12—Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
- B23K20/122—Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding
- B23K20/123—Controlling or monitoring the welding process
- B23K20/124—Controlling or monitoring the welding process at the beginning or at the end of a weld
Definitions
- the present invention relates to friction stir welding along a non-linear path, for example, a circular-shaped path.
- friction stir welding is a method in which, by rotating a round rod (hereinafter called “a rotary tool”), inserting the rotary tool into a welding joint and moving the rotary tool along to the welding line, the welding portion is heated, softened and plastically fluidized and is solid-stately welded.
- a rotary tool a round rod
- the rotary tool is comprised of a small diameter portion (called “a pin”), which is inserted into the welding joint, and a large diameter portion (called “a shoulder”), which is positioned adjacent the small diameter portion of the rotary tool.
- the small diameter portion and the large diameter portion of the rotary tool have the same axis.
- the large diameter portion of the rotary tool is driven so that the rotary tool is rotated.
- Japanese application patent laid-open publication No. Hei 11-197855 discloses a welding method for use a case in which a welding line between two members has a ring shape (a circular shape). After a start end and a finish end of the welding have overlapped, the finish end is finished in a ring-shaped inner portion or a ring-shaped outer portion of the welding line. Accordingly, after the friction stir welding has been completed and the rotary tool is withdrawn from the welded member, a hole corresponding to the small diameter portion (the pin) of the rotary tool is left in the welded member. When a drawing position is a ring-shaped position to be welded, a problem in the strength of the weld results.
- the rotary tool which comprises a small diameter portion that is inserted into the welding portion and a large diameter portion that is positioned adjacent to and outside of the small diameter portion, is inserted at an angle so s to be inclined relative to the member to be welded.
- the direction of inclination is such that, in a moving direction (a direction to be welded) of the rotary tool, the small diameter portion of the rotary tool is positioned in front of and leads the large diameter portion of the rotary tool.
- the rotary tool is inclined to the rear relative to the direction of movement.
- An object of the present invention is provide to a friction stir welding method in which welding along a path having a ring shape or a circular shape (a circular arc is included) during the friction stir welding can be carried out easily.
- the above-stated object can be attained by a friction stir welding method, characterized in that a first member and a second member are fixed on a table of a machine tool having a main shaft onto which a rotary tool is installed; and then, the table is rotated relative to an axial center of the desired non-linear welding line, and also relative to the direction in which the first member and the second member are to be welded, under a state in which the table is inclined, so as to effect relative movement between the members to be welded and the rotary tool, thereby carrying out friction stir welding of the first and second members.
- FIG. 1 is a side view of an object to be subjected to friction stir welding according to one embodiment of the present invention
- FIG. 2 is a flow chart of a friction stir welding process according to one embodiment of the present invention.
- FIG. 3 is a plane view of an object before welding
- FIG. 4 is a longitudinal cross-sectional view taken along line IV-IV in FIG. 3;
- FIG. 5 is a plane view of the object after welding
- FIG. 6 is a cross-sectional view taken along line VI-VI in FIG. 5;
- FIG. 7 is a longitudinal cross-sectional view of the welded members of FIG. 6 after the outer periphery has been cut off.
- FIG. 4 is a cross-sectional view taken along line IV-IV in FIG. 3.
- the reference numeral 10 in FIG. 1 generally refers to elements of a numeric control type machine tool, which typically comprises a machining center.
- the machine tool has a table 20 for mounting an object to be subjected to processing (in this case to be subjected to welding), and a main shaft 30 for processing the object to be subjected to welding.
- the main shaft 30 carries a welding tool 50 and can be rotated to carry out friction stir welding.
- the machine tool of this embodiment according to the present invention is of the lateral axis type, in which the axis of the main shaft 30 is oriented in a horizontal direction.
- the surface of the table 20 for mounting (fixing) the object to be subjected to welding is oriented substantially in the vertical direction, with the center axis thereof being slightly inclined to the horizontal by an angle 0 , as seen in FIG. 1.
- the table 20 is mounted so that it can be rotated about its center axis, which is inclined to the horizontal.
- a cutting rotary tool operating as a machine tool or a friction stir welding rotary tool 50 can be installed on a tip end of the main shaft 30 .
- the friction stir welding rotary tool 50 is installed so that the tip end 51 of the rotary tool 50 is directed toward the table 20 .
- the axial center of the main shaft 30 and the rotary tool 50 is oriented in the horizontal direction.
- the rotary tool 50 is rotated by rotation of the main shaft 30 .
- the main shaft 30 is mounted so as to be able to move in an axial direction, as well as in a radial direction.
- the machine tool has a tool stocking device comprised of plural cutting rotary tools and plural friction stir welding rotary tools, and an automatic exchange device is provided for exchanging a desirable rotary tool between the tool stocking device and the main shaft.
- a member 70 to be subjected to welding is fixed to the table 20 using known means.
- a circular-shaped recess 71 is provided in the member 70 on the side of the main shaft 30 .
- an annular step 72 is provided in an outer peripheral portion of the circular-shaped recess 71 .
- the step 72 and the outer face of the member 70 form substantially flat parallel planar surfaces. This flat face of the step 72 is oriented in a rectangular direction relative to the axial direction of the circular shape recess.
- a circular-shaped plate cover 76 is inserted in the recess formed by the step 72 .
- the outer surface of the member 70 and the outer surface of the cover 76 are disposed in the same plane.
- the butted portion between the circular periphery of the cover 76 and the circular periphery of the step 72 is subjected to friction stir welding. Accordingly, the portion 79 to be welded (the welding line) has the form of a ring of circular shape.
- the reference numeral 79 b in FIG. 5 indicates the welding bead which is produced by the welding.
- the butted portion between the member 70 and the cover 76 is first temporarily welded at intermittent portions by arc welding to hold the cover 76 in position. After the temporary arc welding, the member 70 is fixed to the table 20 and friction stir welding is carried out. When the members 70 and 76 are joined by friction stir welding, a space is formed by the recessed portion 71 and the cover 76 which serves as a cooling passage. An inlet and an outlet of the cooling passage are not shown in the figure.
- the member 70 and the cover 76 form a part of a cooling machine.
- the member 70 and the cover 76 are made of aluminum alloys.
- the table 20 can be rotated about the center of the circular-shaped welding line 79 as a rotation center.
- the member 70 is mounted on the table 20 so that the rotation center of the table 20 and the center of the circular-shaped welding line 79 are coincident.
- the rotary tool 50 fixed to the main shaft 30 , is held stationary at first, so that it can not move in the circumferential direction of the welding line 79 ; it can only be rotated with the rotation of the main shaft 30 . However, by rotation of the table 20 , the rotary tool 50 is moved relatively along the welding line 79 .
- the rotary tool 50 fixed to the main shaft 30 , is positioned at a position 50 S, which is a position on the horizontal plane through the axial center of the welding line 79 .
- a position 50 S which is a position on the horizontal plane through the axial center of the welding line 79 .
- the table 20 is inclined away with respect to the relative moving direction of the rotary tool 50 during the friction stir welding. Due to the inclination of the table 20 in the above-stated moving direction (the direction to be welded), the small diameter portion 51 of the rotary tool 50 is positioned in front of the large diameter portion 52 of the rotary tool 50 in the welding direction.
- the small diameter portion 57 of the rotary tool will be positioned to the rear of the large diameter portion 52 of the rotary tool 50 in the direction of rotation.
- the inclination angle ⁇ of the table 20 is three (3) degrees, for example.
- the rotary tool 50 is positioned at point 50 S on the circular-shaped welding line 79 ; and, since the table 20 is rotated in a clockwise direction, an upper side of the table 20 (the member 70 ) is inclined away relative to the lower side so as to separate from the rotary tool 50 .
- the table 20 is rotated under the state in which the inclination angle of three (3) degrees is maintained.
- the rotation direction of the table 20 is the left-rotation (step S 13 ).
- the center of rotation of the table 20 is the center of the circular welding line 79 . Accordingly, the rotary tool 50 is moved relatively along to the welding line 79 and the circular-shaped butted portion is subjected to friction stir welding.
- the reference numeral 79 b indicates a welding bead produced by the friction stir welding operation.
- step S 15 when the table 20 has rotated through a predetermined angle of 360 degrees + ⁇ , the main shaft 30 is moved in the radial direction (step S 15 ).
- the main shaft 30 is moved outwardly from the circular-shaped welding line 79 as the table 20 is made to continue its rotation.
- the inclination angle ⁇ of the table is not varied. Accordingly, outside of the circular welding line 79 , an arc-shaped welding bead 79 c is formed, as seen in FIG. 5.
- the inclination angle ⁇ of the rotary tool 50 with respect to the relative direction of movement of the rotary tool 50 from the point at the angle 360 degrees + ⁇ (the point from which the main shaft 30 is started to move in the radial direction) must be the above stated three (3) degrees to effect a proper weld.
- this portion of the member 70 is not normally a portion to be subjected to friction stir welding, this requirement of the regular friction stir welding can be dispensed with.
- the main shaft 30 (namely, the rotary tool 50 ) is withdrawn from the member 70 at the end of the welding line 79 c (step S 17 ).
- the position of withdrawal of the main shaft 30 is determined by the extent of radial movement of the main shaft 30 .
- the withdrawal position of the main shaft 30 is located just inside of the outer diameter of the member 70 .
- a hole 55 which corresponds to the outer diameter of the small diameter portion 51 of the rotary tool 50 , remains.
- the member 70 is removed from the table 20 , and using another machine tool, the unnecessary peripheral portion of the member 70 is cut off.
- the portion of the member 74 outside of the circular-shaped welding line 79 is cut off to leave a circular shape (step S 21 ).
- the reference numeral 74 in FIG. 5 and FIG. 6 indicates the cut-off position. Since the hole 55 remains at the finish point of the welding, the portion with this hole 55 is removed by cutting off an outer peripheral portion of the member 70 according to a machine processing. Further, since burrs and recessed portions often remain in the welded portion, the face that has been welded (an upper face in FIG. 6) is machined, if necessary. As a result, the hole 55 in the welding portion is removed, and the side that has been welded becomes flat, so that a good product appearance can be obtained.
- the cut-off processing is carried out according to demand.
- the hole 55 at the finish point of the welding can be bored out by a drill machine and the like, and the hole can be used as a bolt hole and the like. Further, the hole 55 can be buried using TIG (Tungsten Inert Gas) welding, and the welded surface can be machined. As a welding rod for the TIG welding, the same material as that of the member 70 is used. Accordingly, the welding portion where the hole is formed will be hardly seen even in the case where no coating is applied.
- an optical type sensor for detecting the position of the butted portion is provided, and, based on the output of this optical type sensor, the position of the main shaft 30 can be moved.
- the moving direction of the main shaft 30 is a rectangular direction with respect to the relative direction of movement due to the rotation of the table 20 . Accordingly, even when the accuracy of a first member ( 70 ) and the accuracy of a second member ( 76 ) in the butted portion (the joining line 79 ) are inferior, the axial center of the rotary tool 50 can be positioned at the center of the circular butted portion.
- the welding lines of the object to be welded may be a circular path, a ring-shaped free curved line, a non-ring-shaped circular line, and a non-ring-shaped free curved line.
- the table 20 can be rotated around the center of the circular arc of the welding portion as a center while the table 20 as a whole is moved in a linear direction. Since the machine tool is of the numeric control type, the welding can be carried out easily along welding lines having the form of various curved lines.
- the hole 55 at the finish point of the welding, in the case of a circular arc-shaped line, will be buried using welding or soldering.
- the inner side member is removed according to a counter boring processing.
- the rotary tool 50 is inclined relative to the moving direction, and the rotation for effecting relative movement is carried out by the table 20 . Since the inclination of the rotary tool 50 and the circular movement of the rotary tool 50 are independent, the welding can be carried out at a low cost and easily.
- the rotary tool 50 on the main shaft 30 is exchanged for a cutting rotary tool.
- the exchange is carried out using an automatic exchanging device disposed between the main shaft 30 and a tool stocking device. After that, by rotating the main shaft, the cutting tool is rotated, and an unnecessary portion of the member 70 is cut off.
- the oil used for the cutting and the oil for cleaning after the cut-off processing exert a bad influence on the friction stir welding joint. Further, depending on the residual stock removal, the combination accuracy in the two members may become bad.
- the cut-off of the two members may be carried out, however the removal of the cutting oil is to be carried out sufficiently using another machine.
- cut-off processes for example, there are an enlargement with a desirable diameter of the hole 55 at the time of withdrawal of the rotary tool 50 , as well as a screw cutting process.
- friction stir welding of a pair of members to be subjected to welding may be carried out in a first welding portion of the members using a first rotary tool; next, between the main shaft and the tool stocking device, the first rotary tool is exchanged for a second rotary tool; and then, friction stir welding of a second welding portion of the above-stated members to be subjected to welding is carried out using the second rotary tool.
- friction stir welding can be carried out along a path having a ring shape, circular shape, free curved line shape, and a circular arc shape easily and at low cost.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Pressure Welding/Diffusion-Bonding (AREA)
Abstract
On a main shaft 30 of a numeric control type machine tool, a rotary tool 50 is installed. The main shaft 30 is not inclined in the machine tool. A first member 70 and a second member 76 to be subjected to friction stir welding are fixed on a table 20. Relative to an axial center of the rotary tool 50, a non-linear welding portion of the first member 70 and the second member 76 is inclined by inclining the table 20. Then, by rotating the table 20 and relatively moving the portion to be welded into contact with the rotary tool 50, welding of the first member to the second member is carried out according to friction stir welding. The above-stated inclination is the inclination required for the friction stir welding. In this way, welding along a path of ring shape or circular shape (including a circular arc) using friction stir welding can be carried out easily.
Description
- This application is a Divisional application of application Ser. No. 09/781,289, filed Feb. 13, 2001.
- The present invention relates to friction stir welding along a non-linear path, for example, a circular-shaped path.
- As disclosed in Japanese application patent laid-open publication No. Hei 9-309164 (EP 0797043 A2), friction stir welding is a method in which, by rotating a round rod (hereinafter called “a rotary tool”), inserting the rotary tool into a welding joint and moving the rotary tool along to the welding line, the welding portion is heated, softened and plastically fluidized and is solid-stately welded.
- The rotary tool is comprised of a small diameter portion (called “a pin”), which is inserted into the welding joint, and a large diameter portion (called “a shoulder”), which is positioned adjacent the small diameter portion of the rotary tool. The small diameter portion and the large diameter portion of the rotary tool have the same axis. The large diameter portion of the rotary tool is driven so that the rotary tool is rotated.
- Japanese application patent laid-open publication No. Hei 11-197855, discloses a welding method for use a case in which a welding line between two members has a ring shape (a circular shape). After a start end and a finish end of the welding have overlapped, the finish end is finished in a ring-shaped inner portion or a ring-shaped outer portion of the welding line. Accordingly, after the friction stir welding has been completed and the rotary tool is withdrawn from the welded member, a hole corresponding to the small diameter portion (the pin) of the rotary tool is left in the welded member. When a drawing position is a ring-shaped position to be welded, a problem in the strength of the weld results.
- Further, the rotary tool, which comprises a small diameter portion that is inserted into the welding portion and a large diameter portion that is positioned adjacent to and outside of the small diameter portion, is inserted at an angle so s to be inclined relative to the member to be welded. The direction of inclination is such that, in a moving direction (a direction to be welded) of the rotary tool, the small diameter portion of the rotary tool is positioned in front of and leads the large diameter portion of the rotary tool. In other words, the rotary tool is inclined to the rear relative to the direction of movement. The above fact is disclosed also in Japanese patent laid-announcement No. Hei 9-508073 (EP 0752926 B1).
- In Japanese application patent laid-open publication No. Hei 11-197855, the inclined rotary tool is moved along a circular path. However, it is extremely difficult to move an inclined rotary tool along a path having a circular shape. To accommodate various kinds of circular shapes, it has been suggested that the welding should be carried out using a numeric control type machine tool. In this type of machine tool, the member to be subjected to welding is fixed to a table, the rotary tool is installed on a main shaft of the machine tool, the main shaft is inclined relative to the table, and the main shaft is moved along a path having a circular shape. However, to maintain a predetermined inclination angle of the main shaft in a circular moving direction, it is necessary to vary the inclination angle with movement along the circular path; and, as a result, the preparation of programs to control such movements is not easily carried out.
- An object of the present invention is provide to a friction stir welding method in which welding along a path having a ring shape or a circular shape (a circular arc is included) during the friction stir welding can be carried out easily.
- The above-stated object can be attained by a friction stir welding method, characterized in that a first member and a second member are fixed on a table of a machine tool having a main shaft onto which a rotary tool is installed; and then, the table is rotated relative to an axial center of the desired non-linear welding line, and also relative to the direction in which the first member and the second member are to be welded, under a state in which the table is inclined, so as to effect relative movement between the members to be welded and the rotary tool, thereby carrying out friction stir welding of the first and second members.
- FIG. 1 is a side view of an object to be subjected to friction stir welding according to one embodiment of the present invention;
- FIG. 2 is a flow chart of a friction stir welding process according to one embodiment of the present invention;
- FIG. 3 is a plane view of an object before welding;
- FIG. 4 is a longitudinal cross-sectional view taken along line IV-IV in FIG. 3;
- FIG. 5 is a plane view of the object after welding;
- FIG. 6 is a cross-sectional view taken along line VI-VI in FIG. 5; and
- FIG. 7 is a longitudinal cross-sectional view of the welded members of FIG. 6 after the outer periphery has been cut off.
- A friction stir welding method according to one embodiment of the present invention will be explained with reference to FIG. 1 to FIG. 7. FIG. 4 is a cross-sectional view taken along line IV-IV in FIG. 3. The
reference numeral 10 in FIG. 1 generally refers to elements of a numeric control type machine tool, which typically comprises a machining center. The machine tool has a table 20 for mounting an object to be subjected to processing (in this case to be subjected to welding), and amain shaft 30 for processing the object to be subjected to welding. Themain shaft 30 carries awelding tool 50 and can be rotated to carry out friction stir welding. The machine tool of this embodiment according to the present invention is of the lateral axis type, in which the axis of themain shaft 30 is oriented in a horizontal direction. The surface of the table 20 for mounting (fixing) the object to be subjected to welding is oriented substantially in the vertical direction, with the center axis thereof being slightly inclined to the horizontal by an angle 0, as seen in FIG. 1. The table 20 is mounted so that it can be rotated about its center axis, which is inclined to the horizontal. - On a tip end of the
main shaft 30, a cutting rotary tool operating as a machine tool or a friction stirwelding rotary tool 50 can be installed. Herein, the friction stir weldingrotary tool 50 is installed so that thetip end 51 of therotary tool 50 is directed toward the table 20. The axial center of themain shaft 30 and therotary tool 50 is oriented in the horizontal direction. Therotary tool 50 is rotated by rotation of themain shaft 30. Themain shaft 30 is mounted so as to be able to move in an axial direction, as well as in a radial direction. - The machine tool has a tool stocking device comprised of plural cutting rotary tools and plural friction stir welding rotary tools, and an automatic exchange device is provided for exchanging a desirable rotary tool between the tool stocking device and the main shaft.
- A
member 70 to be subjected to welding is fixed to the table 20 using known means. As seen in FIG. 4, a circular-shaped recess 71 is provided in themember 70 on the side of themain shaft 30. In an outer peripheral portion of the circular-shaped recess 71, anannular step 72 is provided. Thestep 72 and the outer face of themember 70 form substantially flat parallel planar surfaces. This flat face of thestep 72 is oriented in a rectangular direction relative to the axial direction of the circular shape recess. - In the recess formed by the
step 72, a circular-shaped plate cover 76 is inserted. The outer surface of themember 70 and the outer surface of thecover 76 are disposed in the same plane. The butted portion between the circular periphery of thecover 76 and the circular periphery of thestep 72 is subjected to friction stir welding. Accordingly, theportion 79 to be welded (the welding line) has the form of a ring of circular shape. Thereference numeral 79 b in FIG. 5 indicates the welding bead which is produced by the welding. - The butted portion between the
member 70 and thecover 76 is first temporarily welded at intermittent portions by arc welding to hold thecover 76 in position. After the temporary arc welding, themember 70 is fixed to the table 20 and friction stir welding is carried out. When themembers recessed portion 71 and thecover 76 which serves as a cooling passage. An inlet and an outlet of the cooling passage are not shown in the figure. Themember 70 and thecover 76 form a part of a cooling machine. Themember 70 and thecover 76 are made of aluminum alloys. - The table20 can be rotated about the center of the circular-shaped
welding line 79 as a rotation center. In this regard, themember 70 is mounted on the table 20 so that the rotation center of the table 20 and the center of the circular-shapedwelding line 79 are coincident. Therotary tool 50, fixed to themain shaft 30, is held stationary at first, so that it can not move in the circumferential direction of thewelding line 79; it can only be rotated with the rotation of themain shaft 30. However, by rotation of the table 20, therotary tool 50 is moved relatively along thewelding line 79. - The
rotary tool 50, fixed to themain shaft 30, is positioned at aposition 50S, which is a position on the horizontal plane through the axial center of thewelding line 79. With therotary tool 50 at thisposition 50S, the table 20 is inclined away with respect to the relative moving direction of therotary tool 50 during the friction stir welding. Due to the inclination of the table 20 in the above-stated moving direction (the direction to be welded), thesmall diameter portion 51 of therotary tool 50 is positioned in front of thelarge diameter portion 52 of therotary tool 50 in the welding direction. - When the table is operated in the standard manner, and the rotation direction of the table20 is counter-clockwise, the small diameter portion 57 of the rotary tool will be positioned to the rear of the
large diameter portion 52 of therotary tool 50 in the direction of rotation. The inclination angle θ of the table 20 is three (3) degrees, for example. In FIG. 3 and FIG. 5, therotary tool 50 is positioned atpoint 50S on the circular-shapedwelding line 79; and, since the table 20 is rotated in a clockwise direction, an upper side of the table 20 (the member 70) is inclined away relative to the lower side so as to separate from therotary tool 50. - The welding process of this embodiment according to the present invention will be explained. With the table20 inclined with respect to the vertical by the above-stated three (3) degrees, the
cover 76 is fixed to themember 70 by temporary arc welding. Therotary tool 50 is then positioned at thepredetermined position 50S. In this state, by rotating (rotating on its own axis) themain shaft 30, therotary tool 50 is rotated, and then it is moved in the axial direction, so that thesmall diameter portion 51 of therotary tool 50 is inserted into the buttedportion 79. When therotary tool 50 has been inserted to a predetermined depth; the axial movement of therotary tool 50 is stopped. The insertion position of therotary tool 50 is theposition 50S in FIG. 3, which is a start point of the welding (step S11). - Next, under the state in which the inclination angle of three (3) degrees is maintained, the table20 is rotated. The rotation direction of the table 20 is the left-rotation (step S13). The center of rotation of the table 20 is the center of the
circular welding line 79. Accordingly, therotary tool 50 is moved relatively along to thewelding line 79 and the circular-shaped butted portion is subjected to friction stir welding. Thereference numeral 79 b indicates a welding bead produced by the friction stir welding operation. - When by rotation of the table20 the table again reaches a state where the
tool 50 reaches theposition 50S at which therotary tool 50 was originally inserted, namely when the table 20 has rotated through 360 degrees, the rotation of the table 20 is continued. Accordingly, from thestart point 50S of the friction stir welding, the welding is carried out again. - Next, when the table20 has rotated through a predetermined angle of 360 degrees +α, the
main shaft 30 is moved in the radial direction (step S15). Herein, themain shaft 30 is moved outwardly from the circular-shapedwelding line 79 as the table 20 is made to continue its rotation. The inclination angle θ of the table is not varied. Accordingly, outside of thecircular welding line 79, an arc-shapedwelding bead 79 c is formed, as seen in FIG. 5. The inclination angle θ of therotary tool 50 with respect to the relative direction of movement of therotary tool 50 from the point at the angle 360 degrees +α (the point from which themain shaft 30 is started to move in the radial direction) must be the above stated three (3) degrees to effect a proper weld. However, since this portion of themember 70 is not normally a portion to be subjected to friction stir welding, this requirement of the regular friction stir welding can be dispensed with. - When the
rotary tool 50 has moved to apredetermined position 50E, the main shaft 30 (namely, the rotary tool 50) is withdrawn from themember 70 at the end of thewelding line 79 c (step S17). The position of withdrawal of themain shaft 30 is determined by the extent of radial movement of themain shaft 30. The withdrawal position of themain shaft 30 is located just inside of the outer diameter of themember 70. At the position (the finish point of the welding) where therotary tool 50 is withdrawn from themember 70, ahole 55, which corresponds to the outer diameter of thesmall diameter portion 51 of therotary tool 50, remains. - After the friction stir welding has been completed, the
member 70 is removed from the table 20, and using another machine tool, the unnecessary peripheral portion of themember 70 is cut off. Herein, the portion of themember 74 outside of the circular-shapedwelding line 79 is cut off to leave a circular shape (step S21). Thereference numeral 74 in FIG. 5 and FIG. 6 indicates the cut-off position. Since thehole 55 remains at the finish point of the welding, the portion with thishole 55 is removed by cutting off an outer peripheral portion of themember 70 according to a machine processing. Further, since burrs and recessed portions often remain in the welded portion, the face that has been welded (an upper face in FIG. 6) is machined, if necessary. As a result, thehole 55 in the welding portion is removed, and the side that has been welded becomes flat, so that a good product appearance can be obtained. - Accordingly, it is unnecessary to incline the
rotary tool 50 and to move therotary tool 50 along the circular shape. Using a machine tool in which the main shaft 30 (the rotary tool 50) is not inclined, friction stir welding can be effectively carried out. Further, in a case where themain shaft 30 is inclined, the design of a program for maintaining the predetermined angle θ of the rotary tool along the entire length of the path of circular shape is troublesome and expensive. However, according to the above-stated embodiment, since the required inclination is provided by the table 20, the design of high cost programs becomes unnecessary. Accordingly, according to the present invention, friction stir welding can be carried out in a low cost and simple way using an existing machine tool. - The cut-off processing is carried out according to demand. The
hole 55 at the finish point of the welding can be bored out by a drill machine and the like, and the hole can be used as a bolt hole and the like. Further, thehole 55 can be buried using TIG (Tungsten Inert Gas) welding, and the welded surface can be machined. As a welding rod for the TIG welding, the same material as that of themember 70 is used. Accordingly, the welding portion where the hole is formed will be hardly seen even in the case where no coating is applied. - At the side of the
main shaft 30, an optical type sensor for detecting the position of the butted portion is provided, and, based on the output of this optical type sensor, the position of themain shaft 30 can be moved. The moving direction of themain shaft 30 is a rectangular direction with respect to the relative direction of movement due to the rotation of the table 20. Accordingly, even when the accuracy of a first member (70) and the accuracy of a second member (76) in the butted portion (the joining line 79) are inferior, the axial center of therotary tool 50 can be positioned at the center of the circular butted portion. - Further, the welding lines of the object to be welded may be a circular path, a ring-shaped free curved line, a non-ring-shaped circular line, and a non-ring-shaped free curved line. In the case of the free curved line, the table20 can be rotated around the center of the circular arc of the welding portion as a center while the table 20 as a whole is moved in a linear direction. Since the machine tool is of the numeric control type, the welding can be carried out easily along welding lines having the form of various curved lines. The
hole 55 at the finish point of the welding, in the case of a circular arc-shaped line, will be buried using welding or soldering. Further, it is possible to carry out friction stir welding along a welding line which comprises four (4) linear sides. In this case, to achieve welding along a path having four (4) linear sides, the table is moved linearly. At the time of welding the intersecting portions of the sides or the circular arc portions in the vicinity of the corners, the table 20 is rotated. - Further, not only the welding of a butted portion, but also a portion in which two members are overlapped can be welded. Further, it is possible to use a longitudinal type machine tool.
- When the welding has been completed in an inner side of the circular welding line, for example, the inner side member is removed according to a counter boring processing.
- The
rotary tool 50 is inclined relative to the moving direction, and the rotation for effecting relative movement is carried out by the table 20. Since the inclination of therotary tool 50 and the circular movement of therotary tool 50 are independent, the welding can be carried out at a low cost and easily. - Further, after the friction stir welding has been carried out, under the state where the
member 70 is fixed to the table 20, therotary tool 50 on themain shaft 30 is exchanged for a cutting rotary tool. The exchange is carried out using an automatic exchanging device disposed between themain shaft 30 and a tool stocking device. After that, by rotating the main shaft, the cutting tool is rotated, and an unnecessary portion of themember 70 is cut off. However, when friction stir welding has been carried out, the oil used for the cutting and the oil for cleaning after the cut-off processing exert a bad influence on the friction stir welding joint. Further, depending on the residual stock removal, the combination accuracy in the two members may become bad. However, after friction stir welding has been carried out, since the unnecessary portion is cut off, the above-stated problems can be eliminated. Before the friction stir welding, the cut-off of the two members may be carried out, however the removal of the cutting oil is to be carried out sufficiently using another machine. As cut-off processes, for example, there are an enlargement with a desirable diameter of thehole 55 at the time of withdrawal of therotary tool 50, as well as a screw cutting process. - Further, friction stir welding of a pair of members to be subjected to welding may be carried out in a first welding portion of the members using a first rotary tool; next, between the main shaft and the tool stocking device, the first rotary tool is exchanged for a second rotary tool; and then, friction stir welding of a second welding portion of the above-stated members to be subjected to welding is carried out using the second rotary tool.
- The technical range of the present invention is not limited by the foregoing embodiments or the described means for solving the problems of the prior art, but also includes a range in which one of ordinary skill in this technical field would recognize obvious equivalents.
- According to the present invention, friction stir welding can be carried out along a path having a ring shape, circular shape, free curved line shape, and a circular arc shape easily and at low cost.
Claims (1)
1. A weld body, comprising:
a first member and a second member joined to each other in a ring shape by a friction stir welding;
the friction stir welding is carried out from a side of one face of said first member; and
by continuing a portion in which the friction stir welding had been carried out, in a radial direction to an outer side of said ring shape members, the weld body has a portion which is welded according to a second friction stir welding; and
an end portion of said portion which is welded according to the second friction stir welding is positioned adjacent an end face of a radical direction outer side or a radial direction inner side of said first member or said second member.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/085,091 US20020079352A1 (en) | 2000-03-06 | 2002-03-01 | Friction stir welding method |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000060202 | 2000-03-06 | ||
JP2000-060202 | 2000-03-06 | ||
JP2000-318730 | 2000-10-19 | ||
JP2000318730A JP3575748B2 (en) | 2000-03-06 | 2000-10-19 | Friction stir welding method |
US09/781,289 US6722555B2 (en) | 2000-03-06 | 2001-02-13 | Friction stir welding method |
US10/085,091 US20020079352A1 (en) | 2000-03-06 | 2002-03-01 | Friction stir welding method |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/781,289 Division US6722555B2 (en) | 2000-03-06 | 2001-02-13 | Friction stir welding method |
Publications (1)
Publication Number | Publication Date |
---|---|
US20020079352A1 true US20020079352A1 (en) | 2002-06-27 |
Family
ID=26586831
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/781,289 Expired - Fee Related US6722555B2 (en) | 2000-03-06 | 2001-02-13 | Friction stir welding method |
US10/085,091 Abandoned US20020079352A1 (en) | 2000-03-06 | 2002-03-01 | Friction stir welding method |
US10/085,090 Abandoned US20020079347A1 (en) | 2000-03-06 | 2002-03-01 | Friction stir welding method |
US10/455,392 Expired - Fee Related US6786388B2 (en) | 2000-03-06 | 2003-06-06 | Friction stir welding method |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/781,289 Expired - Fee Related US6722555B2 (en) | 2000-03-06 | 2001-02-13 | Friction stir welding method |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/085,090 Abandoned US20020079347A1 (en) | 2000-03-06 | 2002-03-01 | Friction stir welding method |
US10/455,392 Expired - Fee Related US6786388B2 (en) | 2000-03-06 | 2003-06-06 | Friction stir welding method |
Country Status (8)
Country | Link |
---|---|
US (4) | US6722555B2 (en) |
EP (2) | EP1293288A1 (en) |
JP (1) | JP3575748B2 (en) |
KR (1) | KR100481782B1 (en) |
CN (3) | CN1583344A (en) |
AU (1) | AU756304B2 (en) |
DE (1) | DE60102963T2 (en) |
TW (1) | TW473411B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6585147B2 (en) * | 2000-06-30 | 2003-07-01 | Showa Aluminum Corporation | Friction agitation joining method |
US6708865B2 (en) * | 2000-10-27 | 2004-03-23 | Hitachi, Ltd. | Compound machining device and friction stir bonding method |
Families Citing this family (50)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3575748B2 (en) * | 2000-03-06 | 2004-10-13 | 株式会社日立製作所 | Friction stir welding method |
JP3818084B2 (en) * | 2000-12-22 | 2006-09-06 | 日立電線株式会社 | Cooling plate and manufacturing method thereof, and sputtering target and manufacturing method thereof |
US20070107465A1 (en) * | 2001-05-04 | 2007-05-17 | Battelle Energy Alliance, Llc | Apparatus for the liquefaction of gas and methods relating to same |
US6708866B2 (en) * | 2001-09-26 | 2004-03-23 | Nova-Tech Engineering, Inc. | Method and apparatus for machine tooling, such as friction stir welder |
FR2852999B1 (en) * | 2003-03-28 | 2007-03-23 | Snecma Moteurs | TURBOMACHINE RIDDLE AUBE AND METHOD OF MANUFACTURING THE SAME |
US7523850B2 (en) * | 2003-04-07 | 2009-04-28 | Luxfer Group Limited | Method of forming and blank therefor |
US7530486B2 (en) * | 2003-05-05 | 2009-05-12 | Sii Megadiamond, Inc. | Applications of friction stir welding using a superabrasive tool |
US7448528B2 (en) * | 2003-08-12 | 2008-11-11 | The Boeing Company | Stir forming apparatus and method |
JP2005095978A (en) * | 2003-08-21 | 2005-04-14 | Showa Denko Kk | Hollow body and its manufacturing method |
US6955283B2 (en) * | 2003-09-08 | 2005-10-18 | The Boeing Company | Adaptable mandrel for spin forming |
US7841504B2 (en) * | 2004-09-21 | 2010-11-30 | The Boeing Company | Apparatus and system for welding self-fixtured preforms and associated method |
WO2006066237A2 (en) * | 2004-12-17 | 2006-06-22 | Sii Megadiamond, Inc. | Single body friction stir welding tool for high melting temperature materials |
US8672100B2 (en) | 2005-02-07 | 2014-03-18 | Hitachi, Ltd. | Cylinder apparatus and disk brake |
JP4861656B2 (en) * | 2005-08-12 | 2012-01-25 | 昭和電工株式会社 | Friction stir welding method and hollow body manufacturing method |
JP4828255B2 (en) * | 2006-02-24 | 2011-11-30 | 日立オートモティブシステムズ株式会社 | Disc brake |
FR2900082B1 (en) * | 2006-04-20 | 2008-07-18 | Eads Europ Aeronautic Defence | PROCESS FOR FRICTION WELDING MIXING |
JP4832402B2 (en) * | 2007-10-22 | 2011-12-07 | 日立オートモティブシステムズ株式会社 | Disc brake and method of manufacturing disc brake |
JP5136072B2 (en) * | 2008-01-15 | 2013-02-06 | 日本軽金属株式会社 | Manufacturing method of liquid cooling jacket |
US7762447B2 (en) * | 2008-03-20 | 2010-07-27 | Ut-Battelle, Llc | Multiple pass and multiple layer friction stir welding and material enhancement processes |
JP5262822B2 (en) | 2009-02-23 | 2013-08-14 | 日本軽金属株式会社 | Manufacturing method of liquid cooling jacket |
JP5177017B2 (en) * | 2009-03-02 | 2013-04-03 | 日本軽金属株式会社 | Manufacturing method of heat transfer plate |
JP5177059B2 (en) * | 2009-04-02 | 2013-04-03 | 日本軽金属株式会社 | Manufacturing method of heat transfer plate |
JP5458684B2 (en) * | 2009-06-15 | 2014-04-02 | 日本軽金属株式会社 | Manufacturing method of structure |
JP5409144B2 (en) * | 2009-06-30 | 2014-02-05 | 日立オートモティブシステムズ株式会社 | Disc brake and manufacturing method thereof |
JP5418023B2 (en) * | 2009-07-03 | 2014-02-19 | 日本軽金属株式会社 | Lid joining method |
US8720607B2 (en) | 2010-03-31 | 2014-05-13 | Smith International, Inc. | Downhole tool having a friction stirred surface region |
US8783366B2 (en) | 2010-03-31 | 2014-07-22 | Smith International, Inc. | Article of manufacture having a sub-surface friction stir welded channel |
DE102010037522A1 (en) | 2010-09-14 | 2012-03-15 | Demag Cranes & Components Gmbh | Rail for overhead monorail, overhead cranes u. like. |
DE102010037521A1 (en) | 2010-09-14 | 2012-03-15 | Demag Cranes & Components Gmbh | Device for hanging a rail |
DE102010037520A1 (en) | 2010-09-14 | 2012-03-15 | Demag Cranes & Components Gmbh | Arrangement of a rail and an attached conductor rail holder |
DE102010037523A1 (en) * | 2010-09-14 | 2012-03-15 | Demag Cranes & Components Gmbh | Connecting arrangement of two rail sections |
US9073148B2 (en) | 2010-12-16 | 2015-07-07 | Mitsubishi Heavy Industries, Ltd. | Friction stir spot welding device and member support therefor |
CN102266995B (en) * | 2011-07-06 | 2013-04-24 | 重庆理工大学 | Semi-solid mechanical assisted mixing and brazing device for aluminum alloy and composite material thereof |
US9095927B2 (en) * | 2011-08-19 | 2015-08-04 | Nippon Light Metal Company, Ltd. | Friction stir welding method |
CN104114315A (en) * | 2011-12-30 | 2014-10-22 | 美佳斯迪尔科技有限责任公司 | System and method for holding materials having arcuate surfaces in place for friction stir welding or processing |
CN102642079A (en) * | 2012-05-02 | 2012-08-22 | 南京雷尔伟新技术有限公司 | Friction stir welding process for aluminum alloy side wall of rail transit vehicle |
JP6047951B2 (en) | 2012-06-29 | 2016-12-21 | スズキ株式会社 | Friction stir welding method of metal material and metal material joined body |
JP2014094409A (en) * | 2012-10-10 | 2014-05-22 | Nippon Light Metal Co Ltd | Method of producing heat exchanger plate and friction agitation joining method |
JP5725098B2 (en) * | 2013-08-02 | 2015-05-27 | 日本軽金属株式会社 | Manufacturing method of liquid cooling jacket |
CN105899321B (en) * | 2014-01-14 | 2018-10-02 | 日本轻金属株式会社 | The manufacturing method of liquid-cooled jacket |
CN104923907B (en) * | 2015-05-21 | 2017-06-20 | 陕西理工学院 | Friction welding method of the water heater sacrificial anode on Continuous Drive Friction Welding machine |
KR102273514B1 (en) * | 2017-10-31 | 2021-07-06 | 멜드 매뉴팩쳐링 코포레이션 | Solid-State Additive Manufacturing Systems and Material Compositions and Structures |
JP6647272B2 (en) * | 2017-12-28 | 2020-02-14 | 本田技研工業株式会社 | Member joining structure of power transmission device |
JP2020040100A (en) * | 2018-09-12 | 2020-03-19 | 太平洋工業株式会社 | Fsw weld component and method for manufacturing the same |
CN109676328B (en) * | 2019-02-12 | 2023-11-21 | 黄山学院 | Inclined plane workpiece surface modification method and device |
JP7523807B2 (en) * | 2019-03-27 | 2024-07-29 | 国立大学法人大阪大学 | Surface modification method for steel materials and steel structure |
JP7367319B2 (en) * | 2019-03-27 | 2023-10-24 | 株式会社Ihi | Friction stir welding equipment |
KR20210098786A (en) * | 2020-02-03 | 2021-08-11 | 엘에스일렉트릭(주) | Cooling plate and method of product the same |
JP7526466B2 (en) * | 2020-06-25 | 2024-08-01 | 京浜ラムテック株式会社 | Method for manufacturing metal structure |
JP2023069179A (en) * | 2021-11-05 | 2023-05-18 | 日本軽金属株式会社 | Method for manufacturing joined body |
Family Cites Families (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3605253A (en) * | 1969-05-13 | 1971-09-20 | Caterpillar Tractor Co | Method of inertial welding to eliminate center defects |
US4019018A (en) * | 1974-09-30 | 1977-04-19 | Kobe Steel Ltd. | Process for narrow gap welding of aluminum alloy thick plates |
DE2753386A1 (en) | 1977-11-30 | 1979-05-31 | Horst Dr Zimmermann | MACHINE TOOL |
JPH01170071A (en) | 1987-12-25 | 1989-07-05 | Sumitomo Electric Ind Ltd | Semiconductor substrate provided with superconductor layer |
JPH0289577A (en) | 1988-09-26 | 1990-03-29 | Mitsubishi Heavy Ind Ltd | Method for repair welding of defective piping |
US5205529A (en) * | 1991-08-02 | 1993-04-27 | Eaton Corporation | Friction-dampened gusset |
US5201455A (en) | 1992-08-21 | 1993-04-13 | Westinghouse Electric Corp. | Method for metallurgical enhancement of a failed bolt hole |
NO942790D0 (en) * | 1994-03-28 | 1994-07-27 | Norsk Hydro As | Method of friction welding and device for the same |
US6019013A (en) * | 1994-10-24 | 2000-02-01 | Luik; Ilmar | Machine tool operated by gyroscopic precession |
JP3014654B2 (en) | 1996-03-19 | 2000-02-28 | 株式会社日立製作所 | Friction joining method |
US6581819B1 (en) | 1996-03-19 | 2003-06-24 | Hitachi, Ltd. | Panel structure, a friction stir welding method, and a panel |
US5713507A (en) * | 1996-03-21 | 1998-02-03 | Rockwell International Corporation | Programmable friction stir welding process |
US5697544A (en) | 1996-03-21 | 1997-12-16 | Boeing North American, Inc. | Adjustable pin for friction stir welding tool |
US5794835A (en) | 1996-05-31 | 1998-08-18 | The Boeing Company | Friction stir welding |
US5769306A (en) * | 1996-05-31 | 1998-06-23 | The Boeing Company | Weld root closure method for friction stir welds |
US5718366A (en) * | 1996-05-31 | 1998-02-17 | The Boeing Company | Friction stir welding tool for welding variable thickness workpieces |
US6325273B1 (en) * | 1996-12-06 | 2001-12-04 | The Lead Sheet Association | Friction welding apparatus and method |
JP3045682B2 (en) * | 1997-01-17 | 2000-05-29 | 昭和アルミニウム株式会社 | Friction stir welding |
JP3081809B2 (en) | 1997-02-21 | 2000-08-28 | 昭和アルミニウム株式会社 | Metal material joining method |
JP3598204B2 (en) | 1997-06-26 | 2004-12-08 | 昭和電工株式会社 | Friction stir welding method and friction stir welding device |
JP3070735B2 (en) | 1997-07-23 | 2000-07-31 | 株式会社日立製作所 | Friction stir welding method |
JP3081825B2 (en) | 1997-12-12 | 2000-08-28 | 昭和アルミニウム株式会社 | Friction stir welding |
JP3409674B2 (en) * | 1998-01-12 | 2003-05-26 | 日本軽金属株式会社 | Annular joining method, sealed container and viscous damper obtained thereby |
JP3409675B2 (en) | 1998-01-14 | 2003-05-26 | 日本軽金属株式会社 | Annular friction stir welding method and sealed container obtained by the method |
JP3297845B2 (en) | 1998-02-16 | 2002-07-02 | 住友軽金属工業株式会社 | Aluminum member joining method |
US5975406A (en) * | 1998-02-27 | 1999-11-02 | The Boeing Company | Method to repair voids in aluminum alloys |
US5971252A (en) | 1998-04-30 | 1999-10-26 | The Boeing Company | Friction stir welding process to repair voids in aluminum alloys |
JP3262757B2 (en) * | 1998-07-23 | 2002-03-04 | 昭和電工株式会社 | Friction stir welding |
DE19934291B4 (en) * | 1998-08-07 | 2004-08-26 | Karl-Heinz Wiemers | Method and device for the mechanical processing of workpieces and for the assembly / disassembly of assemblies |
AU733140B2 (en) * | 1998-09-29 | 2001-05-10 | Hitachi Limited | A friction stir welding method |
US6259052B1 (en) * | 1998-12-18 | 2001-07-10 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Orbital friction stir weld system |
JP3262163B2 (en) * | 1999-01-12 | 2002-03-04 | 日本軽金属株式会社 | Friction stir welding apparatus and friction stir welding method |
JP3459193B2 (en) * | 1999-05-26 | 2003-10-20 | 株式会社日立製作所 | Method of repairing friction stir welding and method of manufacturing railway vehicle |
JP3442692B2 (en) * | 1999-08-12 | 2003-09-02 | 住友軽金属工業株式会社 | Manufacturing method of metal matrix composite |
US6173880B1 (en) * | 1999-12-08 | 2001-01-16 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Friction stir weld system for welding and weld repair |
US6299050B1 (en) * | 2000-02-24 | 2001-10-09 | Hitachi, Ltd. | Friction stir welding apparatus and method |
JP3575748B2 (en) * | 2000-03-06 | 2004-10-13 | 株式会社日立製作所 | Friction stir welding method |
JP4195206B2 (en) * | 2001-04-04 | 2008-12-10 | 株式会社日立製作所 | Friction stir welding equipment |
-
2000
- 2000-10-19 JP JP2000318730A patent/JP3575748B2/en not_active Expired - Fee Related
-
2001
- 2001-02-06 TW TW090102544A patent/TW473411B/en not_active IP Right Cessation
- 2001-02-07 AU AU18348/01A patent/AU756304B2/en not_active Ceased
- 2001-02-13 US US09/781,289 patent/US6722555B2/en not_active Expired - Fee Related
- 2001-02-15 CN CNA2004100644842A patent/CN1583344A/en active Pending
- 2001-02-15 KR KR10-2001-0007427A patent/KR100481782B1/en not_active IP Right Cessation
- 2001-02-15 EP EP02025240A patent/EP1293288A1/en not_active Withdrawn
- 2001-02-15 CN CNB2004100644857A patent/CN1301176C/en not_active Expired - Fee Related
- 2001-02-15 EP EP01301335A patent/EP1132167B1/en not_active Expired - Lifetime
- 2001-02-15 DE DE60102963T patent/DE60102963T2/en not_active Expired - Fee Related
- 2001-02-15 CN CNB011045221A patent/CN1192846C/en not_active Expired - Fee Related
-
2002
- 2002-03-01 US US10/085,091 patent/US20020079352A1/en not_active Abandoned
- 2002-03-01 US US10/085,090 patent/US20020079347A1/en not_active Abandoned
-
2003
- 2003-06-06 US US10/455,392 patent/US6786388B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6585147B2 (en) * | 2000-06-30 | 2003-07-01 | Showa Aluminum Corporation | Friction agitation joining method |
US6708865B2 (en) * | 2000-10-27 | 2004-03-23 | Hitachi, Ltd. | Compound machining device and friction stir bonding method |
Also Published As
Publication number | Publication date |
---|---|
US6722555B2 (en) | 2004-04-20 |
EP1132167B1 (en) | 2004-04-28 |
DE60102963T2 (en) | 2005-01-05 |
US6786388B2 (en) | 2004-09-07 |
JP2001321966A (en) | 2001-11-20 |
EP1293288A1 (en) | 2003-03-19 |
US20020079347A1 (en) | 2002-06-27 |
CN1583344A (en) | 2005-02-23 |
CN1583345A (en) | 2005-02-23 |
CN1301176C (en) | 2007-02-21 |
TW473411B (en) | 2002-01-21 |
AU1834801A (en) | 2001-09-13 |
EP1132167A3 (en) | 2001-12-05 |
KR20010087185A (en) | 2001-09-15 |
KR100481782B1 (en) | 2005-04-11 |
DE60102963D1 (en) | 2004-06-03 |
CN1192846C (en) | 2005-03-16 |
CN1312141A (en) | 2001-09-12 |
US20010019073A1 (en) | 2001-09-06 |
US20030205608A1 (en) | 2003-11-06 |
JP3575748B2 (en) | 2004-10-13 |
AU756304B2 (en) | 2003-01-09 |
EP1132167A2 (en) | 2001-09-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6722555B2 (en) | Friction stir welding method | |
US6708867B2 (en) | Friction stir welding method | |
US7857192B2 (en) | Friction stir welding tool and friction stir welding method | |
JP4647179B2 (en) | Processing method | |
US20040067721A1 (en) | Grinding method and grinding machine | |
EP2586329A1 (en) | Bristle and plate subassembly fixture and manufacturing method | |
AU2003200083B2 (en) | Friction stir welding method | |
CA2277396C (en) | Method for full penetration electron beam weld for downhole tools | |
JPH081380A (en) | Welding equipment, and mechanism and method for positioning groove part | |
WO2024034615A1 (en) | Beveling method, method for manufacturing connection pipe, beveling device, and automatic welding system equipped with same | |
JPS62212060A (en) | Plasma arc circle cutting machine | |
JP4532838B2 (en) | Clutch drum straightening method | |
AU2005200374A1 (en) | Compound machining device and friction stir welding method | |
JP2000107858A (en) | Welded structure of pipe jointing part and welding method thereof | |
JPS61169172A (en) | Production of cylindrical body | |
GB2399781A (en) | Tool and method for multi-axis back spot facing | |
JPH0760511A (en) | Cutting tool tip for cutting burr | |
JPH0580602U (en) | Pipe welding boss manufacturing jig | |
JPH0319716A (en) | Facing cutter for beveling | |
JPH09228366A (en) | Connecting method of pipe |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |