WO2024034615A1 - Beveling method, method for manufacturing connection pipe, beveling device, and automatic welding system equipped with same - Google Patents

Beveling method, method for manufacturing connection pipe, beveling device, and automatic welding system equipped with same Download PDF

Info

Publication number
WO2024034615A1
WO2024034615A1 PCT/JP2023/028971 JP2023028971W WO2024034615A1 WO 2024034615 A1 WO2024034615 A1 WO 2024034615A1 JP 2023028971 W JP2023028971 W JP 2023028971W WO 2024034615 A1 WO2024034615 A1 WO 2024034615A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipe
tube
beveling
pipes
tool path
Prior art date
Application number
PCT/JP2023/028971
Other languages
French (fr)
Japanese (ja)
Inventor
友洋 小池
崇功 上月
佑太郎 片岡
宏隆 田島
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Publication of WO2024034615A1 publication Critical patent/WO2024034615A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B5/00Turning-machines or devices specially adapted for particular work; Accessories specially adapted therefor
    • B23B5/16Turning-machines or devices specially adapted for particular work; Accessories specially adapted therefor for bevelling, chamfering, or deburring the ends of bars or tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C3/00Milling particular work; Special milling operations; Machines therefor
    • B23C3/12Trimming or finishing edges, e.g. deburring welded corners
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/02Seam welding; Backing means; Inserts
    • B23K9/028Seam welding; Backing means; Inserts for curved planar seams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q15/00Automatic control or regulation of feed movement, cutting velocity or position of tool or work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/22Arrangements for observing, indicating or measuring on machine tools for indicating or measuring existing or desired position of tool or work
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/4093Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by part programming, e.g. entry of geometrical information as taken from a technical drawing, combining this with machining and material information to obtain control information, named part programme, for the NC machine

Definitions

  • the present disclosure relates to a beveling method for forming a bevel at one end of a pipe using a cutting tool, and a joint pipe manufacturing method for manufacturing a joint pipe by welding one ends of the pipe together.
  • the present disclosure also relates to a beveling device that forms a bevel in one end of a pipe, and an automatic welding system equipped with the same.
  • a bevel is formed at the end of the pipe.
  • a beveling device that forms a beveling at the end of a pipe
  • a beveling device described in Patent Document 1 is known, for example.
  • the amount of eccentricity and amount of deformation strain of the pipe is measured.
  • the beveling device calculates cutting specifications based on the amount of eccentricity and the amount of deformation strain.
  • the beveling device then controls the movement of the processing tool based on the cutting specifications.
  • cutting specifications are calculated based on the amount of deformation strain.
  • the amount of deformation distortion is considered to be calculated as the amount of distortion from the nominal dimension, for example.
  • tolerances are generally allowed with respect to the nominal dimensions.
  • the groove shape may not be the desired shape due to tolerances and the like. That is, it is conceivable that variations occur in the groove shape. If there are variations in the groove shape, it is necessary to absorb the variations in the groove shape using the welding skill during welding. However, when welding is automated or when welding skills are low, it is difficult to absorb variations in welding skills. Therefore, it is necessary to reduce the variation in groove shape. Therefore, it is desired to suppress variations in the groove shape.
  • the present disclosure aims to provide a groove processing method, a joint manufacturing method, a groove processing apparatus, and an automatic welding system that can suppress the occurrence of variations in groove shape.
  • the beveling method of the present disclosure is a method of forming a bevel at one end of a pipe using a cutting tool, and includes a measurement step of measuring the shape of the one end of the pipe, and a measurement result of the measurement step. a tool path setting step of setting a tool path of the cutting tool based on the tool path setting step; and controlling the movement of the cutting tool based on the tool path set in the tool path setting step.
  • This method includes a processing step of forming a tip.
  • a tool path is set based on the measurement results of the shape of one end of the tube.
  • a bevel is then formed at one end of the tube by controlling the movement of the cutting tool based on the tool path. Therefore, the bevel can be formed according to the actual shape of one end of the tube. This suppresses variations in the groove shape compared to the case where the groove is formed without considering the actual shape of the pipe. That is, the groove shape can be formed into a desired shape.
  • the joint manufacturing method of the present disclosure is a joint pipe manufacturing method for manufacturing a joint pipe by butting and welding one end portions of the pipes, and the method includes forming a bevel at one end of the pipe using the beveling method described above.
  • This method includes a groove processing step of forming a groove, and a welding step of butting and welding one end portions of the pipes in which the grooves have been formed in the groove processing step.
  • a joint pipe is manufactured by butting and welding one end portions in which a groove is formed by the groove processing method described above. Since the bevel is formed by the beveling method described above, the bevel is formed according to the actual shape of one end of the tube. Therefore, variations in the groove shape can be suppressed. Therefore, since it can be easily welded, the joint pipe can be manufactured by automatic welding, for example.
  • the beveling device of the present disclosure forms a beveling at one end of a pipe, and includes a measuring instrument that measures the shape of the one end of the pipe, and a cutting tool that cuts the one end of the pipe using a cutting tool.
  • the controller includes a processing machine and a controller that controls the movement of the cutting tool, and the controller sets a tool path of the cutting tool based on the measurement result of the measuring device, and controls the cutting tool based on the tool path. It controls the movement of the tool.
  • a tool path is set based on the measurement result of measuring the shape of one end of the pipe, and a bevel is formed at one end of the pipe by controlling the movement of a cutting tool based on the tool path. . Therefore, the groove can be formed according to the shape of one end of the tube to be actually processed. This suppresses variations in the groove shape compared to the case where the groove is formed without considering the actual shape of the pipe. That is, the groove shape can be formed into a desired shape.
  • the automatic welding system of the present disclosure is a system for welding one end portions of pipes against each other, and includes the above-mentioned beveling device and one end portion of the tube in which the bevel is formed by the beveling device.
  • This system includes a welding device that butts and welds the two.
  • the welding device welds the one ends on which the grooves have been formed by the groove processing device described above butt against each other. Since the bevel is formed by the beveling device described above, the bevel can be formed in accordance with the shape of one end of the pipe to be actually machined. Therefore, the groove can be formed into a desired shape with high precision. Therefore, since it can be easily welded, the joint pipe can be manufactured by automatic welding.
  • FIG. 1 is a perspective view showing a welding robot of the automatic welding system of the present disclosure.
  • FIG. 3 is a perspective view showing a state in which pipes are beveled by the beveling system of FIG. 2 and the pipes are butted against each other.
  • 2 is a front view showing a beveling device included in the automatic welding system of FIG. 1.
  • FIG. FIG. 4 is a front view showing a state in which the shape of the pipe is being measured by the beveling device shown in FIG. 3;
  • FIG. 4 is a front view showing a state in which the outer surface of the pipe is being cut by the beveling device shown in FIG. 3;
  • FIG. 4 is a front view showing a state in which the inner surface of the pipe is being cut by the beveling device shown in FIG.
  • FIG. 2 is an enlarged sectional view showing a welded portion of the pipe shown in FIG. 1.
  • FIG. 2 is a flowchart showing the procedure of a joint pipe manufacturing method for manufacturing the joint pipe shown in FIG. 1.
  • FIG. 8 is a flowchart showing the procedure of groove processing in the joint pipe manufacturing method of FIG. 7.
  • FIG. It is a figure which shows the end of the piping in which the groove was created by the groove processing process, (a) shows the state where the outer surface and the inner surface of the piping are appropriately processed, and (b) shows the state where the outer surface is shallowly processed. (c) shows a state in which the inner surface is deeply processed, and (c) shows a state in which the outer surface is deeply processed and the inner surface is not processed.
  • It is a front view which shows the bevel processing apparatus of other embodiment.
  • An automatic welding system 1 a portion of which is shown in FIG. 1, is used when manufacturing a joint pipe 3 through which liquid or the like flows.
  • the joint pipe 3 is manufactured by butting one end portions 4a, 5a of two pipes 4, 5 against each other and welding them together (see the shaded area in FIG. 1).
  • the automatic welding system 1 forms grooves 4b and 5b at one end portions 4a and 5a of each of the pipes 4 and 5, respectively.
  • One end portions 4a and 5a of the two pipes 4 and 5 are butted against each other.
  • the automatic welding system 1 manufactures the joint pipe 3 by welding the two pipes 4 and 5 at the butt portion 3a.
  • the groove shape is U-shaped.
  • the shape of the groove may be V-shape, X-shape, K-shape, etc., and the shape is not limited.
  • the automatic welding system 1 includes a welding robot 6 and a beveling device 2.
  • the welding robot 6 has an attachment at its tip.
  • a welding rod 6a is attached to the attachment.
  • the welding robot 6 brings the tip of the welding rod 6a into contact with the butt portion 3a by moving each joint. Thereafter, the welding robot 6 welds the two pipes 4 and 5 by generating an arc at the butt portion 3a.
  • the welding method is not limited to arc welding, and other welding methods may be used.
  • the groove processing device 2 shown in FIG. 3 forms grooves 4b and 5b on one end portions 4a and 5a of the pipes 4 and 5, respectively.
  • the beveling device 2 forms bevels 4b and 5b on one end portions 4a and 5a of the pipes 4 and 5, respectively, using cutting tools 24 and 25, which will be described in detail later.
  • the beveling device 2 measures the shape of one end portions 4a, 5a of the pipes 4, 5.
  • the bevel processing device 2 sets tool paths for the cutting tools 24 and 25 based on the measurement results.
  • the tool path is information indicating a path followed by the blade portions 24a, 25a of the cutting tools 24, 25, which will be described in detail later.
  • the beveling device 2 controls the movement of the cutting tools 24 and 25 based on the set tool path.
  • the groove processing device 2 forms grooves 4b, 5b at the one end portions 4a, 5a of the pipes 4, 5.
  • the beveling device 2 includes a cutting machine 11, a measuring device 12, and a controller 13.
  • the cutting machine 11 has cutting tools 24 and 25.
  • the cutting machine 11 uses cutting tools 24 and 25 to cut one end portions 4a and 5a of the pipes 4 and 5. By doing so, the cutting machine 11 forms grooves 4b and 5b at one end portions 4a and 5a of the pipes 4 and 5. Further, the cutting machine 11 forms the pipes 4 and 5 into perfect circles.
  • the cutting machine 11 includes a mounting jig 21, a rotary surface plate 22, a holder 23, and cutting tools 24 and 25.
  • the mounting jig 21 can attach the pipes 4 and 5.
  • the pipes 4 and 5 are attached to the attachment jig 21 so that their axes L1 extend in the first direction.
  • the first direction is a direction intersecting the vertical direction.
  • the first direction is a direction perpendicular to the up-down direction.
  • the mounting jig 21 forms the pipes 4 and 5 into perfect circles. Note that a perfect circle is not limited to a perfect circle, but also includes a state that is close to a perfect circle.
  • the mounting jig 21 includes, for example, a chuck 21a and a core adjustment mechanism 21b.
  • the chuck 21a grips the pipes 4 and 5 from the outside.
  • the chuck 21a grips the pipes 4 and 5 from the outside by moving inward in the radial direction perpendicular to the first direction.
  • the mounting jig 21 forms the pipes 4 and 5 into perfect circles by moving the chuck 21a to reduce the diameter.
  • the chuck 21a does not necessarily have to move to reduce the diameter, and may grip the pipes 4 and 5 from the outside by moving in a second direction or an up-down direction, which will be described later.
  • the core adjustment mechanism 21b moves the chuck 21a in the vertical direction and the second direction.
  • the second direction is a direction that intersects the vertical direction and the first direction.
  • the second direction is a direction perpendicular to the vertical direction and the first direction.
  • the core adjustment mechanism 21b adjusts the position of the axis of the chuck 21a by moving the chuck 21a.
  • the pipes 4 and 5 are formed into a perfect circle, so that the axis L1 of the pipes 4 and 5 and the axis of the chuck 21a coincide with each other. Therefore, the core adjustment mechanism 21b can adjust the position of the axis L1 of the pipes 4 and 5 by moving the chuck 21a.
  • the positions of the axis L1 of the pipes 4 and 5 in the vertical direction and the second direction can be adjusted.
  • the rotating surface disc 22 is formed into a disc shape and rotates around its axis L2.
  • the rotary surface plate 22 is rotatably attached to a movable base (not shown).
  • the rotary surface plate 22 is arranged so that its main surface 22a faces the chuck 21a and is spaced apart from the chuck 21a in the first direction.
  • the rotary surface plate 22 is arranged with its main surface 22a facing one end portions 4a, 5a of the pipes 4, 5 to be attached.
  • the rotary surface plate 22 is configured to be movable in three axial directions by a movable base. In this embodiment, the three axial directions are an up-down direction, a first direction, and a second direction.
  • the rotary surface plate 22 is connected to an electric motor (not shown). The rotary surface plate 22 is rotated around the axis L2 by an electric motor.
  • the holder 23 is attached to the rotary surface plate 22.
  • the holder 23 holds cutting tools 24 and 25. Furthermore, the holder 23 moves relative to the rotary surface plate 22.
  • the holder 23 has a slider mechanism (not shown). The slider mechanism slides the holder 23 in the radial direction on the rotary surface plate 22.
  • the cutting tools 24 and 25 cut one end portions 4a and 5a of the pipes 4 and 5 by rotating around the pipes 4 and 5.
  • the two cutting tools 24 and 25 are detachably attached to the holder 23 while being separated from each other in the radial direction.
  • the two cutting tools 24 and 25 are arranged on the rotary face plate 22 so as to face each other in the radial direction.
  • one of the cutting tools 24, the outer surface cutting tool 24, is arranged radially outward from the other cutting tool 25, the inner surface cutting tool 25.
  • the two cutting tools 24 and 25 extend in the first direction.
  • the two cutting tools 24 and 25 have blade portions 24a and 25a at their tips, respectively.
  • the two cutting tools 24 and 25 have blade portions 24a and 25a facing each other.
  • the external cutting tool 24 rotates around the outer circumferential surfaces 4c, 5c of the one ends 4a, 5a of the pipes 4, 5 as the rotary surface disc 22 rotates. Then, the outer surface cutting tool 24 cuts the outer peripheral surfaces 4c, 5c of the one end portions 4a, 5a of the pipes 4, 5 over the entire circumference using the blade portion 24a. Further, the inner surface cutting tool 25 rotates along the inner circumferential surfaces 4d and 5d of the one end portions 4a and 5a of the pipes 4 and 5 as the rotary surface plate 22 rotates. Then, the inner surface cutting tool 25 cuts the inner peripheral surfaces 4d and 5d of the one end portions 4a and 5a of the pipes 4 and 5 over the entire circumference using the blade portion 25a.
  • the measuring instrument 12 measures the shape of one end portions 4a, 5a of the pipes 4, 5. To explain in more detail, the measuring instrument 12 measures the circumferential length or diameter of the one end portions 4a, 5a of the pipes 4, 5. In this embodiment, the measuring device 12 measures the diameters of the outer circumferential surfaces 4c and 5c of the pipes 4 and 5, that is, the outer diameter R. To explain in more detail, the measuring instrument 12 is attached to the beveling device 2, for example. In this embodiment, the measuring instrument 12 is attached to a holder 23. The measuring instrument 12 is arranged radially outward of the two cutting tools 25 in the holder 23. Moreover, the measuring device 12 extends in the first direction.
  • the measuring device 12 has a measuring section 12a at its tip.
  • the measuring instrument 12 is, for example, a contact-type measuring instrument, and is a probe. That is, the measuring device 12 measures the outer diameter R of the pipes 4 and 5 by bringing the measuring portion 12a into contact with the outer peripheral surfaces 4c and 5c of the pipes 4 and 5. In this embodiment, the measuring device 12 measures the outer diameter R of the pipes 4 and 5 according to the amount of movement of the holder 23 in the radial direction. Specifically, when the measuring portion 12a contacts the outer circumferential surfaces 4c, 5c, the measuring device 12 outputs the coordinates of the contact position on the outer circumferential surfaces 4c, 5c based on the distance from the axis L2 of the holder 23.
  • Controller 13 controls the movement of cutting tools 24 and 25.
  • the controller 13 controls the operation of the cutting machine 11. That is, the controller 13 controls the operations of the moving base, the electric motor, the slide mechanism, and the mounting jig 21.
  • the controller 13 can move the rotary surface board 22 in the second direction and in the vertical direction by operating the moving base. Thereby, the position of the axis L1 of the rotary surface plate 22 can be changed.
  • the controller 13 moves the rotating base plate 22 closer to or away from the one ends 4a, 5a of the pipes 4, 5 by moving the movable base in the first direction. That is, the controller 13 moves the movable base in the first direction to move the cutting tools 24, 25 closer to or away from the ends 4a, 5a of the pipes 4, 5.
  • the controller 13 rotates the rotary surface plate 22 around the axis L2 by driving the electric motor.
  • the controller 13 can change the position of the measuring device 12 around the outer circumferential surfaces 4c, 5c of the ends 4a, 5a of the pipes 4, 5 by rotating the rotary surface plate 22.
  • the measuring device 12 can measure coordinates at a plurality of locations on the outer circumferential surfaces 4c and 5c (see FIG. 4).
  • the controller 13 rotates the external cutting tool 24 along the outer circumferential surfaces 4c, 5c of the one ends 4a, 5a of the pipes 4, 5 (see FIG. 5).
  • the outer peripheral surfaces 4c and 5c are cut by the blade portion 24a.
  • the controller 13 rotates the inner surface cutting tool 25 along the inner peripheral surfaces 4d and 5d of the pipes 4 and 5 (see FIG. 6). As a result, the inner circumferential surfaces 4d and 5d are cut by the blade portion 25a.
  • the controller 13 can slide the holder 23 in the radial direction with respect to the rotary surface plate 22 by operating the slide mechanism. More specifically, the controller 13 can move the holder 23 in the radial direction with respect to the axis L2 by operating the slide mechanism. Thereby, the measuring instrument 12 can be moved close to and away from the outer surfaces of the pipes 4 and 5. Furthermore, the controller 13 can change the radial positions of the two rotating cutting tools 24 and 25 by moving the slide mechanism.
  • the controller 13 causes the mounting jig 21 to grip the pipes 4 and 5. More specifically, the controller 13 grips the pipes 4 and 5 by reducing the diameter of the chuck 21a of the mounting jig 21. Thereby, the pipes 4 and 5 are formed into perfect circles. Further, the controller 13 moves the mounting jig 21 in the vertical direction and in the second direction. To explain in more detail, the controller 13 moves the core adjustment mechanism 21b in the vertical direction and the second direction. Thereby, the controller 13 adjusts the position of the axis of the chuck 21a, that is, the axis L1 of the pipes 4 and 5 in the vertical direction and the second direction.
  • the controller 13 acquires the measurement results of the measuring device 12. That is, the controller 13 acquires measurement results regarding the shapes of the one end portions 4a, 5a of the pipes 4, 5.
  • the controller 13 moves the measuring device 12 radially inward using the holder 23, thereby bringing the measuring portion 12a into contact with the outer circumferential surfaces 4c, 5c of the pipes 4, 5.
  • the controller 13 acquires the coordinates of the contact position from the measuring device 12.
  • the controller 13 calculates the outer diameter R of the one end portions 4a, 5a of the pipes 4, 5 based on the coordinates of the contact position.
  • the controller 13 causes the measurement unit 12a to come into contact with a plurality of locations (in this embodiment, three locations) on one end portions 4a and 5a of the pipes 4 and 5 to measure coordinates.
  • the controller 13 moves the measuring instrument 12 around the axis L2 by a predetermined angle (120 degrees in this embodiment) using the rotary surface plate 22.
  • the controller 13 brings the measuring section 12a into contact with the outer circumferential surfaces 4c and 5c at each position.
  • the controller 13 can acquire the coordinates of the contact position at three locations.
  • the controller 13 calculates the outer diameter R of the pipes 4, 5 and the coordinates of the axis L1 of the one ends 4a, 5a of the pipes 4, 5, ie, the core coordinates of the pipes 4, 5, based on the three coordinates.
  • the controller 13 sets tool paths for the cutting tools 24 and 25 based on the measurement results.
  • the controller 13 sets the tool path of the external surface cutting tool 24 in external surface machining.
  • the external surface machining is, for example, a cutting process (more specifically, a facing process) in which the outer circumferential surfaces 4c and 5c are cut by rotating the external cutting tool 24.
  • the controller 13 sets the radial position of the outer surface cutting tool 24 as a tool path in outer surface machining based on the measurement results.
  • the controller 13 also sets a tool path for the inner surface cutting tool 25 in inner surface machining.
  • the inner surface processing is, for example, cutting processing (more specifically, thinning processing) in which the inner peripheral surfaces 4d and 5d are cut by rotating the inner surface cutting tool 25.
  • the controller 13 sets the radial position of the inner surface cutting tool 25 as a tool path in inner surface machining based on the measurement results.
  • the controller 13 sets the tool path for each of the outer surface machining and the inner surface machining so that the root surface r shown in FIG. 7 becomes a predetermined value r0.
  • the controller 13 selects two cutting tools based on the groove shape (U-shaped in this embodiment) and the outer diameter R of the outer circumferential surfaces 4c and 5c, which are the measurement results.
  • Set tool paths 24 and 25 For example, in the joint pipe 3, the inner surface processing extends beyond the grooves 4b, 5b to the inner surface processing portions 4e, 5e, which are the portions on the other end side.
  • the tool path for the inner surface processing is set so that the thickness t of the inner surface processing portions 4e and 5e becomes a predetermined thickness t0.
  • the controller 13 sets the radial position of the inner surface cutting tool 25 based on a value obtained by subtracting the predetermined thickness t0 from a value multiplied by 1/2 the outer diameter R of the pipes 4 and 5.
  • the controller 13 sets a tool path for inner surface machining so that the inner surface cutting tool 25 is pushed in the first direction from one end surface of the pipes 4 and 5 to a predetermined inner surface machining distance ⁇ .
  • the tool path for external surface machining is set so that the root surface r of the pipes 4 and 5 becomes a predetermined value r0.
  • the controller 13 sets the radial position of the external cutting tool 24 based on the groove depth d obtained by subtracting the predetermined value r0 from the predetermined thickness t0 described above. Then, the controller 13 pushes the outer surface cutting tool 24 from one end surface of the pipes 4 and 5 in the first direction to a predetermined outer surface machining distance ⁇ , and then moves the outer surface cutting tool 24 radially outward while pushing it in the first direction. Set the toolpath for external machining to move to .
  • a joint pipe manufacturing method for manufacturing the joint pipe 3 using the automatic welding system 1 will be explained with reference to the flowchart of FIG. 8.
  • the joint pipe 3 is manufactured by welding two pipes 4 and 5.
  • grooves 4b and 5b are formed at one end portions 4a and 5a of the pipes 4 and 5, respectively.
  • the joint pipe manufacturing method when manufacturing of the joint pipe 3 is started, the process moves to step S1.
  • step s1 a beveling process is performed.
  • the bevel processing process will be described below with reference to the flowchart in FIG. 9 .
  • grooves 4b, 5b are formed at one ends 4a, 5a of the pipes 4, 5 by a groove processing method.
  • the groove processing method is a method of forming grooves 4b, 5b at one end portions 4a, 5a of the pipes 4, 5 using cutting tools 24, 25.
  • step S11 which is a pipe installation process
  • one of the pipes 4 and 5, for example, the pipe 4 is mounted on the mounting jig 21.
  • the pipe 4 is placed in the chuck 21a of the mounting jig 21.
  • the arrangement of the pipes 4 may be performed manually by an operator or automatically by a device such as a robot.
  • a portion of the piping 4 closer to the other end than the one end 4a is disposed within the chuck 21a.
  • the controller 13 reduces the diameter of the chuck 21a radially inward. Thereby, the pipe 4 is attached to the mounting jig 21 and the pipe 4 is formed into a perfect circle. Then, the process moves to step S12.
  • step S12 which is a measurement process
  • the shape of one end portion 4a, 5a of the pipe 4 is measured.
  • the outer diameter R of the pipe 4 is measured by the measuring instrument 12.
  • the controller 13 moves the measuring instrument 12 around the axis L2 by a predetermined angle (120 degrees in this embodiment) using the rotary surface plate 22. Thereby, the controller 13 acquires the coordinates of the contact positions at three locations. Then, the controller 13 calculates the outer diameter R of the pipe 4 and the core coordinates of the pipe 4 based on the three coordinates. Then, the process moves to step S13.
  • step S13 which is a center position adjustment step
  • the center coordinates of the rotary face plate 22 are adjusted so that the axis L2 of the rotary face plate 22 is aligned with the axis L1 of the piping 4.
  • the controller 13 adjusts the center coordinates of the rotary surface plate 22 by moving the movable base based on the center coordinates of the piping 4 calculated in the measurement process. Thereby, the controller 13 aligns the axis L2 of the rotary surface plate 22 with the axis L1 of the piping 4.
  • the center coordinates of the rotary surface plate 22 are adjusted by the movable base, but the center coordinates of the piping 4 may be adjusted by operating the center adjustment mechanism 21b of the mounting jig 21.
  • step S14 which is a tool path setting step
  • the tool paths of the cutting tools 24 and 25 are set based on the measurement results of the measurement step.
  • the tool paths in each of the outer surface machining and the inner surface machining are set so that the root surface r becomes a predetermined value r0.
  • the tool path in the inner surface processing is set so that the thickness t of the inner surface processing portion 4e becomes a predetermined thickness t0.
  • the radial position of the inner surface cutting tool 25 is set as a tool path in inner surface machining based on the measurement result, and in this embodiment, the outer diameter R of the pipe 4.
  • the controller 13 sets the radial position of the inner surface cutting tool 25 as a tool path for inner surface machining based on a value obtained by subtracting a predetermined thickness t0 from a value multiplied by 1/2 the outer diameter R of the pipes 4 and 5. Set.
  • the controller 13 sets a tool path for inner surface machining so as to advance the inner surface cutting tool 25 in the first direction to a predetermined inner surface machining distance ⁇ .
  • the radial position of the outer surface cutting tool 24 is set as a tool path in the outer surface machining based on the measurement result, and in this embodiment, the outer diameter R of the pipe 4.
  • the controller 13 sets the radial position of the inner surface cutting tool 25 as the tool path for outer surface machining based on the groove depth d obtained by subtracting the predetermined value r0 from the predetermined thickness t0.
  • the controller 13 is configured to advance the external surface cutting tool 24 in the first direction to a predetermined external surface machining distance ⁇ ( ⁇ ), and then move the external surface cutting tool 24 radially outward while being pushed in the first direction. Set the toolpath for external machining. Once the tool path is set, the process moves to step S15.
  • step S15 which is a machining process
  • a groove 4b is formed in one end 4a of the pipe 4 by controlling the movement of the cutting tools 24 and 25 based on the tool path set in the tool path setting process.
  • the controller 13 performs external surface machining using the external surface cutting tool 24 . That is, the controller 13 moves the external cutting tool 24 according to the tool path for external processing while rotating the rotary surface plate 22 using the electric motor. As a result, the outer circumferential surface 4c of the pipe 4 is cut to form the groove 4b. Further, the controller 13 performs inner surface machining using the inner surface cutting tool 25 .
  • the controller 13 moves the inner surface cutting tool 25 according to the tool path for inner surface machining while rotating the rotary surface plate 22 using the electric motor.
  • the inner circumferential surface 4d of the pipe 4 is cut to form the groove 4b.
  • the outer surface processing and the inner surface processing may be performed in any order, or may be performed simultaneously.
  • a groove 4b is formed at one end 4a of the pipe 4 (see FIG. 10(a)).
  • step S16 which is a bevel processing presence/absence confirmation step, it is determined whether or not bevel processing has been performed on both one end portions 4a, 5a of the two pipes 4, 5 to be welded. If only one end 4a of one of the two pipes 4 and 5 is beveled, the process returns to step S11 in order to also bevel the one end 5a of the other pipe 5. Then, from step S11 onwards, the one end 5a of the pipe 5 is beveled in the same way as the one end 4a of the pipe 4 is beveled. That is, in step S11, the pipe 5 is attached to the attachment jig 21. Thereby, the pipe 5 is formed into a perfect circle. In step S12, the shape of one end 5a of the pipe 5 is measured.
  • step S13 the center coordinates of the rotating surface plate 22 are adjusted so that the axis L2 of the rotating surface disk 22 is aligned with the axis L1 of the piping 5.
  • step S14 tool paths of the cutting tools 24 and 25 with respect to the pipe 5 are set based on the measurement results.
  • step S15 a groove 5b is formed at one end 5a of the pipe 5 by controlling the movement of the cutting tools 24 and 25 based on the tool path.
  • step S16 when it is confirmed that both ends 4a and 5a of the two pipes 4 and 5 to be welded have been beveled, the beveling process ends. Then, when the bevel processing process is completed, the process moves to step S2.
  • step S2 which is an automatic welding process
  • the two pipes 4 and 5 are arranged so that the grooves 4b and 5b are butted against each other.
  • the two pipes 4 and 5 are arranged so that the internally processed inner circumferential surfaces 4d and 5d are flush with each other.
  • the welding robot 6 manufactures the joint pipe 3 by welding the butt portion 3a.
  • the welding robot 6 brings the tip of the welding rod 6a into contact with the butt portion 3a by moving each joint. Thereafter, the welding robot 6 welds the two pipes 4 and 5 by generating an arc at the butt portion 3a.
  • a tool path is set based on the measurement results of the shapes of the one end portions 4a, 5a of the pipes 4, 5.
  • Bevels 4b, 5b are formed at one ends 4a, 5a of the pipes 4, 5 by controlling the movement of the cutting tools 24, 25 based on the tool path. Therefore, the grooves 4b, 5b can be formed according to the actual shapes of the one ends 4a, 5a of the pipes 4, 5. This suppresses variations in the groove shapes compared to the case where the grooves 4b, 5b are formed without considering the actual shapes of the pipes 4, 5. That is, the groove shape can be formed into a desired shape.
  • the radial position of the outer surface cutting tool 24 is set as a tool path in outer surface processing based on the measurement results. Therefore, the outer surfaces of the pipes 4 and 5 can be processed according to their actual outer shapes. This prevents the depths of the grooves 4b and 5b from becoming smaller or larger depending on the external shape of the pipes 4 and 5 (for example, see FIGS. 10(b) and 10(c)). Therefore, the depth of the grooves 4b, 5b can be ensured regardless of the external shape of the pipes 4, 5.
  • the radial position of the inner surface cutting tool 25 is set as a tool path in inner surface processing based on the measurement results. Therefore, the inner surface can be processed according to the actual external shape and thickness of the pipes 4 and 5, that is, the shape of the pipes 4 and 5. Thereby, the size of the root surface r can be ensured regardless of the shape of the pipes 4 and 5.
  • the tool paths in each of the outer surface machining and the inner surface machining are set so that the root surface r becomes a predetermined value r0. Therefore, a root surface r of a desired size can be formed at one end portion 4a, 5a of the pipes 4, 5.
  • outer surface processing and inner surface processing are performed so that the thickness t on the other end side of the pipes 4 and 5 on the other end side than the grooves 4b and 5b becomes a predetermined thickness t0 or more.
  • a tool path is set for each. Therefore, it is possible to prevent the thickness t of the one end portions 4a, 5a of the pipes 4, 5 on the other end side from the grooves 4b, 5b from becoming less than the predetermined thickness t0 (see FIG. 10(a)). This makes it possible to ensure the strength at the one end portions 4a, 5a of the pipes 4, 5 even after the beveling process.
  • a tool path is set based on the outer diameter R measured in the measurement process. Therefore, measurements for setting tool paths are easy. Thereby, beveling can be easily performed.
  • the grooves 4b and 5b are formed after the pipes 4 and 5 are formed into perfect circles using the mounting jig 21. Therefore, the grooves 4b, 5b can be formed with high accuracy, so the grooves 4b, 5b can be formed into a desired shape with higher accuracy.
  • the joint pipe 3 is manufactured by butting and welding one end portions 4a, 5a on which grooves 4b, 5b are formed by the above-mentioned groove processing method. Since the grooves 4b, 5b are formed by the groove processing method described above, the grooves 4b, 5b are formed according to the actual shape of the one ends 4a, 5a of the pipes 4, 5. Therefore, variations in the groove shape can be suppressed. Therefore, since it can be easily welded, the joint pipe 3 can be manufactured, for example, by automatic welding or the like. Thereby, the lead time regarding the joint pipe 3 and equipment provided with it is shortened.
  • a tool path is set based on the measurement results of the shapes of the one end portions 4a, 5a of the pipes 4, 5.
  • Bevels 4b, 5b are formed at one ends 4a, 5a of the pipes 4, 5 by controlling the movement of the cutting tools 24, 25 based on the tool path. Therefore, the grooves 4b, 5b can be formed according to the actual shapes of the one ends 4a, 5a of the pipes 4, 5. This suppresses variations in the groove shapes compared to the case where the grooves 4b, 5b are formed without considering the actual shapes of the pipes 4, 5. That is, the groove shape can be formed into a desired shape.
  • the radial position of the outer surface cutting tool 24 is set as a tool path in outer surface machining based on the measurement results. Therefore, the outer surfaces of the pipes 4 and 5 can be processed according to their actual outer shapes. This prevents the depths of the grooves 4b and 5b from becoming smaller or larger depending on the external shape of the pipes 4 and 5 (for example, see FIGS. 10(b) and 10(c)). Therefore, the depth of the grooves 4b, 5b can be ensured regardless of the external shape of the pipes 4, 5.
  • the radial position of the inner surface cutting tool 25 is set as a tool path in inner surface processing based on the measurement results. Therefore, the inner surface can be processed according to the actual external shape and thickness of the pipes 4 and 5, that is, the shape of the pipes 4 and 5. Thereby, the size of the root surface r can be ensured regardless of the shape of the pipes 4 and 5.
  • the outer diameter R is calculated based on the positions of multiple locations on the circumferential surfaces of the one end portions 4a, 5a of the pipes 4, 5 measured by the measuring instrument 12. Then, a tool path is set based on the outer diameter R. Therefore, measurement using the measuring instrument 12 is easy, and calculation of the outer diameter R is easy. This makes it easy to set the tool path.
  • the welding robot 6 welds the ends 4a and 5a, on which the grooves 4b and 5b have been formed by the groove processing device 2 described above, butt against each other. Since the grooves 4b and 5b are formed by the groove processing device 2 described above, the grooves 4b and 5b can be formed according to the actual shapes of the one ends 4a and 5a of the pipes 4 and 5. Therefore, the grooves 4b and 5b can be formed into desired shapes with high precision. Therefore, since welding can be performed easily, the joint pipe 3 can be manufactured by automatic welding. Thereby, by automatically performing welding using the plurality of welding robots 6, the lead time regarding the joint pipe 3 and the equipment provided therewith is shortened.
  • the beveling device 2A of the automatic welding system 1A includes, for example, a cutting machine 11, a measuring device 12A, and a controller 13, as shown in FIG.
  • the measuring device 12A has a measuring section 12a.
  • the measuring device 12A measures the shape of the one end portions 4a, 5a of the pipes 4, 5 by operating the measuring portion 12Aa around the axis L1.
  • the measuring device 12A is, for example, a laser irradiation type measuring device, but may also be a contact type measuring device or a camera type measuring device. More specifically, the measuring device 12A measures the circumferential lengths of the outer peripheral surfaces 4c, 5c of the pipes 4, 5 by being operated.
  • the controller 13 sets tool paths for the cutting tools 24 and 25 based on the circumference. For example, the controller 13 calculates the outer diameter R of the pipes 4 and 5 based on the circumferential length. Then, the controller 13 sets the tool paths of the cutting tools 24 and 25 based on the outer diameter R. Note that the controller 13 may set the tool paths of the cutting tools 24 and 25 based on the circumferential length without calculating the outer diameter R.
  • the measuring device 12A may measure the inner diameter regardless of the outer diameter R, and the controller 13 may measure the radius of the outer circumferential surfaces 4c, 5c or the radius of the inner circumferential surfaces 4d, 5d as the diameter.
  • the measuring instrument 12A may be a 3D measuring instrument, and the measuring instrument 12A may be a 3D measuring instrument, and the measuring instrument 12A may be a 3D measuring instrument, and the shape of the one end portions 4a, 5a of the pipes 4, 5 itself (specifically, the coordinates of each point group arranged on the one end portions 4a, 5a). ) may be measured.
  • the tool path includes the radial position centered on the axis L2, the movement distance in the first direction, etc. May contain. Moreover, the tool path does not necessarily need to be set so that the thickness t at the other end of the pipes 4, 5 at the other end than the grooves 4b, 5b becomes a predetermined thickness t0.
  • the mounting jig 21 grips the pipes 4 and 5 from the outside by reducing the diameter of the chuck 21a, but is configured as follows. It's okay.
  • the pipes 4 and 5 may be attached to the mounting jig 21 in such a way that they are pushed apart from the inside. Further, although the movement of the mounting jig 21 is controlled by the controller 13, it may be controlled by a controller other than the controller 13.
  • both outer surface processing and inner surface processing are performed in the processing step, but only outer surface processing may be performed.
  • grooves 4b and 5b are formed on both the pipes 4 and 5 in order to form a U-shaped groove in the joint pipe 3.
  • the grooves 4b, 5b may be formed only in one of the pipes 4, 5 to form, for example, a K-shaped groove in the joint pipe 3.
  • the pipes 4 and 5 may be formed by cutting one end surface, which is the end surface of the one end portions 4a and 5a, with the cutting tools 24 and 25 so that the one end surface is perpendicular to the axis L1.
  • the processing of the grooves 4b, 5b in the processing step is not limited to the processing method described above, but may be any other processing method as long as the grooves 4b, 5b are formed.
  • facing processing is employed as the outer surface processing
  • thinning processing is employed as the inner surface processing, but other processing may be employed.
  • the pipes 4 and 5 are formed into perfect circles by the mounting jig 21, but the pipes 4 and 5 may be formed into perfect circles by a separate forming process. Moreover, if the pipes 4 and 5 are formed into a perfect circle in advance, there is no need to use the mounting jig 21 or a separate forming process to form the pipes 4 and 5 into a perfect circle.
  • the measurement process, tool path setting process, and machining process are performed in the beveling apparatus 2, but each of the measurement process, tool path setting process, and machining process is performed separately. It may also be performed by the device.
  • the welding device does not necessarily have to be the welding robot 6, and may be, for example, an automatic welding machine in all positions.
  • the all-position automatic welding machine includes a welding section arranged to surround the butt section 3a.
  • the pipes 4 and 5 are welded by moving the welding part around the abutting part 3a while applying the welding rod to the abutting part 3a.
  • the pipes 4 and 5 do not necessarily need to be welded using a welding device, but may be performed by an operator.
  • the welding process does not need to be automatically performed by the welding robot 6, and may be performed by an operator operating the welding device.
  • the beveling device 2 of this embodiment is also not limited to the configuration described above.
  • the cutting machine 11 of the beveling device 2 has a movable base that allows the cutting tools 24 and 25 to move forward and backward in the first direction, but may be configured such that the cutting tools 24 and 25 move forward and backward in the radial direction.
  • the beveling method in the first aspect is a method of forming a bevel at one end of a pipe using a cutting tool, and includes a measuring step of measuring the shape of the one end of the pipe, and a measuring step of the measuring step. a tool path setting step of setting a tool path of the cutting tool based on the result; and controlling the movement of the cutting tool based on the tool path set in the tool path setting step.
  • the method includes a processing step of forming the groove.
  • the tool path is set based on the measurement result of the shape of one end of the pipe.
  • a bevel is then formed at one end of the tube by controlling the movement of the cutting tool based on the tool path. Therefore, the bevel can be formed according to the actual shape of one end of the tube. This suppresses variations in the groove shape compared to the case where the groove is formed without considering the actual shape of the pipe. That is, the groove shape can be formed into a desired shape.
  • the beveling method according to the second aspect is the beveling method according to the first aspect, in which, in the machining step, the cutting tool rotates along the outer circumferential surface of the one end of the tube.
  • the groove is formed in the pipe by external processing in which the outer peripheral surface of the part is cut, and in the tool path setting step, the radial position of the cutting tool is set as a tool path in the external processing based on measurement results. It's okay.
  • the radial position of the cutting tool is set as a tool path in external surface machining based on the measurement results. Therefore, the outer surface can be processed according to the actual outer shape of the tube. This prevents the depth of the groove from becoming smaller or larger depending on the external shape of the pipe. Therefore, the depth of the groove can be ensured regardless of the external shape of the pipe.
  • the beveling method according to the third aspect is the beveling method according to the second aspect, in which, in the machining step, the cutting tool rotates along the inner circumferential surface at one end of the tube, thereby cutting the tube.
  • the root surface of the tube is adjusted by internal machining in which the inner peripheral surface of one end is cut, and in the tool path setting step, the radial position of the cutting tool is set as a tool path in the internal machining based on the measurement results. may be done.
  • the radial position of the cutting tool is set as a tool path in inner surface machining based on the measurement results. Therefore, the inner surface can be processed according to the actual external shape and thickness of the tube, that is, the shape of the tube. Thereby, the size of the root surface can be ensured regardless of the shape of the tube.
  • the beveling method according to the fourth aspect is the beveling method according to the third aspect, in which, in the tool path setting step, the tool path in each of the outer surface machining and the inner surface machining is set such that the root surface has a predetermined value. May be set.
  • the tool paths in each of the outer surface machining and the inner surface machining are set so that the root surface has a predetermined value. Therefore, a root surface of a desired size can be formed at the end of the tube.
  • the beveling method according to the fifth aspect is the beveling method according to the third or fourth aspect, wherein in the machining step, the inner surface machining is performed longer in the axial direction than the outer surface machining, and in the tool path setting step, the inner surface machining is performed longer in the axial direction.
  • the tool path for each inner surface processing may be set such that the thickness of one end of the tube on the other end side is a predetermined thickness from the groove.
  • the tool paths in each of the external surface processing and the internal surface processing are set so that the thickness t on the other end side from the groove at one end of the tube is greater than or equal to a predetermined thickness. Therefore, at one end of the tube, the thickness t on the other end side of the groove can be prevented from becoming less than a predetermined thickness. This makes it possible to ensure strength at one end of the tube even after beveling.
  • a beveling method is the beveling method according to any one of the first to fifth aspects, wherein in the measuring step, the circumference or diameter, which is the shape of one end of the pipe, is measured; In the tool path setting step, the tool path may be set based on the circumference or diameter measured in the measurement step.
  • the tool path is set based on the circumference or diameter measured in the measurement process. Therefore, measurements for setting tool paths are easy. Thereby, beveling can be easily performed.
  • the beveling method according to a seventh aspect is the beveling method according to any one of the first to sixth aspects, wherein in the measuring step, the shape of the pipe is calculated after forming the pipe into a perfect circle with a jig. may be done.
  • the groove is formed after the tube is formed into a perfect circle using a jig. Therefore, the shape of the tube can be measured with high accuracy. As a result, the groove can be formed with high accuracy, so that the groove can be formed into a desired shape with higher accuracy.
  • a method for manufacturing a joint pipe according to an eighth aspect is a method for manufacturing a joint pipe by butting and welding one ends of the pipes, wherein the pipe is formed by the beveling method according to any one of the first to seventh aspects.
  • This method includes a beveling step of forming the groove at one end, and a welding step of butting and welding the ends of the tubes on which the groove has been formed by the beveling step.
  • the joint pipe is manufactured by butting and welding the one end portions in which the grooves have been formed by the groove processing method described above. Since the bevel is formed by the beveling method described above, the bevel is formed according to the actual shape of one end of the tube. Therefore, variations in the groove shape can be suppressed. Therefore, since it can be easily welded, the joint pipe can be manufactured by automatic welding, for example.
  • a beveling device forms a beveling at one end of a pipe, and includes a measuring instrument for measuring the shape of the one end of the pipe, and a cutting tool to cut the one end of the pipe.
  • a cutting machine that controls the movement of the cutting tool; and a controller that controls the movement of the cutting tool, the controller that sets a tool path of the cutting tool based on the measurement result of the measuring device, and It controls the movement of the cutting tool.
  • a tool path is set based on the measurement results of the shape of one end of the pipe, and a bevel is formed at one end of the pipe by controlling the movement of the cutting tool based on the tool path. . Therefore, the groove can be formed according to the shape of one end of the tube to be actually processed. This suppresses variations in the groove shape compared to the case where the groove is formed without considering the actual shape of the pipe. That is, the groove shape can be formed into a desired shape.
  • a bevel processing apparatus is the bevel processing apparatus according to the ninth aspect, in which the cutting machine rotates the cutting tool along an outer circumferential surface at one end of the pipe.
  • the groove is formed in the pipe by external processing of cutting the outer peripheral surface of one end, and the controller determines the radial position of the cutting tool as a tool path in the external processing based on the measurement result of the measuring device. May be set.
  • the radial position of the cutting tool is set as a tool path in external surface machining based on the measurement results. Therefore, the outer surface can be processed according to the actual outer shape of the tube. This prevents the depth of the groove from becoming smaller or larger depending on the external shape of the pipe. Therefore, the depth of the groove can be ensured regardless of the external shape of the pipe.
  • the bevel processing apparatus is the bevel processing apparatus according to the tenth aspect, in which the cutting machine rotates the cutting tool along an inner circumferential surface at one end of the pipe.
  • the root surface of the pipe is adjusted by an inner surface machining that cuts an inner circumferential surface of one end, and the controller sets a radial position of the cutting tool as a tool path in the inner surface machining based on the measurement result. Good too.
  • the radial position of the cutting tool is set as a tool path in inner surface machining based on the measurement results. Therefore, the inner surface can be processed according to the actual external shape and thickness of the tube, that is, the shape of the tube. Thereby, the size of the root surface can be ensured regardless of the shape of the tube.
  • a beveling device is the beveling device according to any one of the ninth to eleventh aspects, wherein the measuring device measures positions at a plurality of locations on a circumferential surface of one end of the pipe, and The controller may calculate the circumferential length or diameter of the pipe based on the positions of the plurality of locations measured by the measuring device, and may set the tool path based on the circumferential length or diameter.
  • the circumferential length or diameter is calculated based on the positions of multiple locations on the circumferential surface of one end of the pipe measured by a measuring instrument.
  • a tool path is then set based on the circumference or diameter. Therefore, it is easy to measure with a measuring instrument, and it is easy to calculate the circumference or diameter. This makes it easy to set the tool path.
  • the automatic welding system is a system for welding one end portions of pipes against each other, and includes the beveling device according to any one of the ninth to twelfth aspects, and the beveling device.
  • This system includes a welding device that butts and welds one end portions of the tubes formed with the pipe.
  • the welding device welds the one ends in which the grooves have been formed by the groove processing device described above butt against each other. Since the bevel is formed by the beveling device described above, the bevel can be formed in accordance with the shape of one end of the pipe to be actually processed. Therefore, the groove can be formed into a desired shape with high precision. Therefore, since it can be easily welded, the joint pipe can be manufactured by automatic welding.

Abstract

This beveling method uses a cutting tool to form a bevel on one end section of a pipe, the method comprising: a measurement step for measuring the shape of one end section of a pipe; a tool path setting step for setting a tool path of the cutting tool on the basis of the measurement result of the measurement step; and a machining step for controlling the movement of the cutting tool on the basis of the tool path set in the tool path setting step, thereby forming a bevel on the one end section of the pipe.

Description

開先加工方法、継手管製造方法、開先加工装置、及びそれを備える自動溶接システムBeveling method, joint pipe manufacturing method, beveling device, and automatic welding system equipped with the same
 本開示は、切削工具を用いて管の一端部に開先を形成する開先加工方法、管の一端部同士を溶接して継手管を製造する継手管製造方法に関する。 The present disclosure relates to a beveling method for forming a bevel at one end of a pipe using a cutting tool, and a joint pipe manufacturing method for manufacturing a joint pipe by welding one ends of the pipe together.
 また、本開示は、管の一端部に開先を形成する開先加工装置、及びそれを備える自動溶接システムに関する。 The present disclosure also relates to a beveling device that forms a bevel in one end of a pipe, and an automatic welding system equipped with the same.
 配管の端部同士を溶接することによって継手管を製造する際、配管の端部に開先が形成される。配管の端部に開先を形成する開先加工装置の一例として、例えば特許文献1に記載される開先加工装置が知られている。特許文献1の開先加工装置では、配管の偏芯量及び変形歪み量が計測される。更に、開先加工装置は、偏芯量及び変形歪み量に基づいて切削諸元を算出する。そして、開先加工装置は、切削諸元に基づいて加工工具の動きを制御する。 When manufacturing a joint pipe by welding the ends of pipes together, a bevel is formed at the end of the pipe. As an example of a beveling device that forms a beveling at the end of a pipe, a beveling device described in Patent Document 1 is known, for example. In the beveling device disclosed in Patent Document 1, the amount of eccentricity and amount of deformation strain of the pipe is measured. Further, the beveling device calculates cutting specifications based on the amount of eccentricity and the amount of deformation strain. The beveling device then controls the movement of the processing tool based on the cutting specifications.
特開昭57-27609号公報Japanese Patent Application Publication No. 57-27609
 特許文献1の開先加工装置では、変形歪み量に基づいて切削諸元を算出している。変形歪み量は、例えば公称寸法から歪んだ量として算出されると考えられる。しかし、配管の形状には、一般的に公称寸法に対して公差が認められている。例えば管の外周長、外径、及び厚み等において、公称寸法に対して公差が±10%程度認められている。それ故、変形歪み量に基づいて切削諸元を算出しても、公差等に起因して開先形状が所望の形状にならないことが考えられる。即ち、開先形状にばらつきが生じることが考えられる。開先形状にばらつきがある場合、溶接する際に溶接の技量によって開先形状のばらつきを吸収する必要がある。しかし、溶接の自動化を図る場合や溶接の技術が低い場合には、溶接の技量によってばらつきを吸収することが難しい。それ故、開先形状のばらつきを小さくすることが必要である。そこで、開先形状のばらつきを抑制することが望まれている。 In the beveling device of Patent Document 1, cutting specifications are calculated based on the amount of deformation strain. The amount of deformation distortion is considered to be calculated as the amount of distortion from the nominal dimension, for example. However, in the shape of piping, tolerances are generally allowed with respect to the nominal dimensions. For example, in the outer circumferential length, outer diameter, thickness, etc. of a tube, a tolerance of about ±10% is allowed with respect to the nominal dimensions. Therefore, even if the cutting specifications are calculated based on the amount of deformation strain, the groove shape may not be the desired shape due to tolerances and the like. That is, it is conceivable that variations occur in the groove shape. If there are variations in the groove shape, it is necessary to absorb the variations in the groove shape using the welding skill during welding. However, when welding is automated or when welding skills are low, it is difficult to absorb variations in welding skills. Therefore, it is necessary to reduce the variation in groove shape. Therefore, it is desired to suppress variations in the groove shape.
 そこで本開示は、開先形状のばらつきの発生を抑制できる開先加工方法、継手製造方法、開先加工装置、及び自動溶接システムを提供することを目的としている。 Therefore, the present disclosure aims to provide a groove processing method, a joint manufacturing method, a groove processing apparatus, and an automatic welding system that can suppress the occurrence of variations in groove shape.
 本開示の開先加工方法は、切削工具を用いて管の一端部に開先を形成する方法であって、前記管の一端部の形状を計測する計測工程と、前記計測工程の計測結果に基づいて前記切削工具のツールパスを設定するツールパス設定工程と、前記ツールパス設定工程で設定されたツールパスに基づいて前記切削工具の動きを制御することによって、前記管の一端部に前記開先を形成する加工工程とを、備える方法である。 The beveling method of the present disclosure is a method of forming a bevel at one end of a pipe using a cutting tool, and includes a measurement step of measuring the shape of the one end of the pipe, and a measurement result of the measurement step. a tool path setting step of setting a tool path of the cutting tool based on the tool path setting step; and controlling the movement of the cutting tool based on the tool path set in the tool path setting step. This method includes a processing step of forming a tip.
 本開示に従えば、管の一端部の形状を計測した計測結果に基づいてツールパスが設定される。そして、ツールパスに基づいて切削工具の動きを制御することによって管の一端部に開先が形成される。それ故、管の一端部の実際の形状に応じて開先を形成することができる。これにより、管の実際の形状を考慮しないで開先を形成する場合に比べて、開先形状のばらつきが抑制される。即ち、開先形状を所望の形状に形成することができる。 According to the present disclosure, a tool path is set based on the measurement results of the shape of one end of the tube. A bevel is then formed at one end of the tube by controlling the movement of the cutting tool based on the tool path. Therefore, the bevel can be formed according to the actual shape of one end of the tube. This suppresses variations in the groove shape compared to the case where the groove is formed without considering the actual shape of the pipe. That is, the groove shape can be formed into a desired shape.
 本開示の継手製造方法は、管の一端部同士を突き合わせて溶接することによって継手管を製造する継手管製造方法であって、前述する開先加工方法によって前記管の一端部に前記開先を形成する開先加工工程と、前記開先加工工程によって前記開先が形成された前記管の一端部同士を突き合わせて溶接する溶接工程と、を備える方法である。 The joint manufacturing method of the present disclosure is a joint pipe manufacturing method for manufacturing a joint pipe by butting and welding one end portions of the pipes, and the method includes forming a bevel at one end of the pipe using the beveling method described above. This method includes a groove processing step of forming a groove, and a welding step of butting and welding one end portions of the pipes in which the grooves have been formed in the groove processing step.
 本開示に従えば、前述する開先加工方法によって開先が形成された一端部同士を突き合わせて溶接することによって継手管が製造される。前述する開先加工方法によって開先が形成されるので、管の一端部の実際の形状に応じて開先が形成される。それ故、開先形状のばらつきを抑制することができる。従って、容易に溶接することができるので、例えば自動溶接等によって継手管を製造することができる。 According to the present disclosure, a joint pipe is manufactured by butting and welding one end portions in which a groove is formed by the groove processing method described above. Since the bevel is formed by the beveling method described above, the bevel is formed according to the actual shape of one end of the tube. Therefore, variations in the groove shape can be suppressed. Therefore, since it can be easily welded, the joint pipe can be manufactured by automatic welding, for example.
 本開示の開先加工装置は、管の一端部に開先を形成するものであって、前記管の一端部の形状を計測する計測器と、切削工具によって前記管の一端部を切削する切削加工機械と、前記切削工具の動きを制御する制御器とを備え、前記制御器は、前記計測器の計測結果に基づいて前記切削工具のツールパスを設定し、前記ツールパスに基づいて前記切削工具の動きを制御するものである。 The beveling device of the present disclosure forms a beveling at one end of a pipe, and includes a measuring instrument that measures the shape of the one end of the pipe, and a cutting tool that cuts the one end of the pipe using a cutting tool. The controller includes a processing machine and a controller that controls the movement of the cutting tool, and the controller sets a tool path of the cutting tool based on the measurement result of the measuring device, and controls the cutting tool based on the tool path. It controls the movement of the tool.
 本開示に従えば、管の一端部の形状を計測した計測結果に基づいてツールパスを設定し、ツールパスに基づいて切削工具の動きを制御することによって管の一端部に開先を形成する。それ故、実際に加工される管の一端部の形状に応じて開先を形成することができる。これにより、管の実際の形状を考慮しないで開先を形成する場合に比べて、開先形状のばらつきが抑制される。即ち、開先形状を所望の形状に形成することができる。 According to the present disclosure, a tool path is set based on the measurement result of measuring the shape of one end of the pipe, and a bevel is formed at one end of the pipe by controlling the movement of a cutting tool based on the tool path. . Therefore, the groove can be formed according to the shape of one end of the tube to be actually processed. This suppresses variations in the groove shape compared to the case where the groove is formed without considering the actual shape of the pipe. That is, the groove shape can be formed into a desired shape.
 本開示の自動溶接システムは、管の一端部同士を突き合わせて溶接するシステムであって、前述する開先加工装置と、前記開先加工装置によって前記開先が形成された前記管の一端部同士を突き合わせて溶接する溶接装置とを備えるシステムである。 The automatic welding system of the present disclosure is a system for welding one end portions of pipes against each other, and includes the above-mentioned beveling device and one end portion of the tube in which the bevel is formed by the beveling device. This system includes a welding device that butts and welds the two.
 本開示に従えば、前述する開先加工装置によって開先が形成された一端部同士を突き合わせて溶接装置が溶接する。前述する開先加工装置によって開先が形成されるので、実際に加工される管の一端部の形状に応じて開先を形成することができる。それ故、開先を所望の形状に精度高く形成することができる。従って、容易に溶接することができるので、自動溶接によって継手管を製造することができる。 According to the present disclosure, the welding device welds the one ends on which the grooves have been formed by the groove processing device described above butt against each other. Since the bevel is formed by the beveling device described above, the bevel can be formed in accordance with the shape of one end of the pipe to be actually machined. Therefore, the groove can be formed into a desired shape with high precision. Therefore, since it can be easily welded, the joint pipe can be manufactured by automatic welding.
 本開示によれば、開先形状のばらつきの発生を抑制することができる。 According to the present disclosure, it is possible to suppress the occurrence of variations in groove shape.
 本開示の上記目的、他の目的、特徴、及び利点は、添付図面参照の下、以下の好適な実施態様の詳細な説明から明らかにされる。 The above objects, other objects, features, and advantages of the present disclosure will become apparent from the following detailed description of preferred embodiments with reference to the accompanying drawings.
本開示の自動溶接システムの溶接ロボットを示す斜視図である。FIG. 1 is a perspective view showing a welding robot of the automatic welding system of the present disclosure. 図2の開先加工システムによって配管に開先加工が施され、更に配管同士が突き合わされる状態を示す斜視図である。FIG. 3 is a perspective view showing a state in which pipes are beveled by the beveling system of FIG. 2 and the pipes are butted against each other. 図1の自動溶接システムに備わる開先加工装置を示す正面図である。2 is a front view showing a beveling device included in the automatic welding system of FIG. 1. FIG. 図3の開先加工装置によって配管の形状を計測している状態を示す正面図である。FIG. 4 is a front view showing a state in which the shape of the pipe is being measured by the beveling device shown in FIG. 3; 図3の開先加工装置によって配管の外面を切削加工している状態を示す正面図である。FIG. 4 is a front view showing a state in which the outer surface of the pipe is being cut by the beveling device shown in FIG. 3; 図3の開先加工装置によって配管の内面を切削加工している状態を示す正面図である。FIG. 4 is a front view showing a state in which the inner surface of the pipe is being cut by the beveling device shown in FIG. 3; 図1に示す配管の溶接部分を拡大して示す断面図である。FIG. 2 is an enlarged sectional view showing a welded portion of the pipe shown in FIG. 1. FIG. 図1に示す継手管を製造する継手管製造方法の手順を示すフローチャートである。2 is a flowchart showing the procedure of a joint pipe manufacturing method for manufacturing the joint pipe shown in FIG. 1. FIG. 図7の継手管製造方法における開先加工処理の手順を示すフローチャートである。8 is a flowchart showing the procedure of groove processing in the joint pipe manufacturing method of FIG. 7. FIG. 開先加工処理によって開先が作成された配管の端部を示す図であり、(a)は適切に配管の外面及び内面が加工されている状態を示し、(b)は外面の加工が浅く且つ内面の加工が深い状態を示し、(c)は、外面の加工が深く且つ内面の加工が施されていない状態を示す。It is a figure which shows the end of the piping in which the groove was created by the groove processing process, (a) shows the state where the outer surface and the inner surface of the piping are appropriately processed, and (b) shows the state where the outer surface is shallowly processed. (c) shows a state in which the inner surface is deeply processed, and (c) shows a state in which the outer surface is deeply processed and the inner surface is not processed. その他の実施形態の開先加工装置を示す正面図である。It is a front view which shows the bevel processing apparatus of other embodiment.
 以下、本開示に係る実施形態の開先加工方法、継手管製造方法、自動溶接システム1、及び開先加工装置2が前述する図面を参照しながら説明される。なお、以下の説明で用いる方向の概念は、説明する上で便宜上使用するものであって、発明の構成の向き等をその方向に限定するものではない。また、以下に説明する開先加工方法、継手管製造方法、自動溶接システム1、及び開先加工装置2は、本開示の一実施形態に過ぎない。従って、本開示は実施形態に限定されず、発明の趣旨を逸脱しない範囲で追加、削除、変更が可能である。 Hereinafter, a groove processing method, a joint pipe manufacturing method, an automatic welding system 1, and a groove processing apparatus 2 according to embodiments of the present disclosure will be explained with reference to the above-mentioned drawings. Note that the concept of direction used in the following explanation is used for convenience in explanation, and does not limit the orientation of the structure of the invention to that direction. Moreover, the groove processing method, the joint pipe manufacturing method, the automatic welding system 1, and the groove processing apparatus 2 described below are only one embodiment of the present disclosure. Therefore, the present disclosure is not limited to the embodiments, and additions, deletions, and changes can be made without departing from the spirit of the invention.
 <自動溶接システム>
 図1に一部分を示す自動溶接システム1は、液体等を流す継手管3を製造する際に用いられる。継手管3は、図2に示すように2つの配管4,5の一端部4a,5a同士を突き合わせて溶接する(図1の網掛部分参照)ことによって製造される。より詳細に説明すると、自動溶接システム1は、配管4,5を溶接するにあたって、配管4,5の各々の一端部4a,5aに開先4b,5bを形成する。そして、2つの配管4,5において、一端部4a,5aが突き合わされる。自動溶接システム1は、突合せ部3aにおいて2つの配管4,5を溶接することによって、継手管3を製造する。本実施形態において、開先形状はU形である。但し、開先形状は、V形、X形、K形等であってもよく、その形状は問わない。更に詳細に説明すると、自動溶接システム1は、溶接ロボット6と開先加工装置2とを備えている。
<Automatic welding system>
An automatic welding system 1, a portion of which is shown in FIG. 1, is used when manufacturing a joint pipe 3 through which liquid or the like flows. As shown in FIG. 2, the joint pipe 3 is manufactured by butting one end portions 4a, 5a of two pipes 4, 5 against each other and welding them together (see the shaded area in FIG. 1). To explain in more detail, when welding the pipes 4 and 5, the automatic welding system 1 forms grooves 4b and 5b at one end portions 4a and 5a of each of the pipes 4 and 5, respectively. One end portions 4a and 5a of the two pipes 4 and 5 are butted against each other. The automatic welding system 1 manufactures the joint pipe 3 by welding the two pipes 4 and 5 at the butt portion 3a. In this embodiment, the groove shape is U-shaped. However, the shape of the groove may be V-shape, X-shape, K-shape, etc., and the shape is not limited. More specifically, the automatic welding system 1 includes a welding robot 6 and a beveling device 2.
 <溶接ロボット>
 溶接装置の一例である溶接ロボット6は、図1に示すように、例えば多関節ロボットである。溶接ロボット6は、先端部にアタッチメントを有している。アタッチメントには、例えば溶接棒6aが取り付けられている。溶接ロボット6は、各関節を動かすことによって溶接棒6aの先端を突合せ部3aに当てる。その後、溶接ロボット6は、突合せ部3aにてアークを発生させることによって2つの配管4,5を溶接する。なお、本実施形態では、溶接ロボット6がアーク溶接によって配管4,5を溶接する場合について説明したが、溶接方法はアーク溶接に限定されず、その他の溶接方法であってもよい。
<Welding robot>
A welding robot 6, which is an example of a welding device, is, for example, an articulated robot, as shown in FIG. The welding robot 6 has an attachment at its tip. For example, a welding rod 6a is attached to the attachment. The welding robot 6 brings the tip of the welding rod 6a into contact with the butt portion 3a by moving each joint. Thereafter, the welding robot 6 welds the two pipes 4 and 5 by generating an arc at the butt portion 3a. In this embodiment, a case has been described in which the welding robot 6 welds the pipes 4 and 5 by arc welding, but the welding method is not limited to arc welding, and other welding methods may be used.
 <開先加工装置>
 図3に示す開先加工装置2は、配管4,5の一端部4a,5aの各々に開先4b,5bを形成する。本実施形態において、開先加工装置2は、後で詳述する切削工具24,25を用いて配管4,5の一端部4a,5aの各々に開先4b,5bを形成する。より詳細に説明すると、開先加工装置2は、配管4,5の一端部4a,5aの形状を計測する。そして、開先加工装置2は、計測結果に基づいて切削工具24,25のツールパスを設定する。ここで、ツールパスは、後で詳述する切削工具24,25の刃部24a,25aがたどる経路を示す情報である。更に、開先加工装置2は、設定されたツールパスに基づいて切削工具24,25の動きを制御する。これにより、開先加工装置2は、配管4,5の一端部4a,5aに開先4b,5bを形成する。更に詳細に説明すると、開先加工装置2は、切削加工機械11と、計測器12と、制御器13とを備えている。
<Bevel processing equipment>
The groove processing device 2 shown in FIG. 3 forms grooves 4b and 5b on one end portions 4a and 5a of the pipes 4 and 5, respectively. In the present embodiment, the beveling device 2 forms bevels 4b and 5b on one end portions 4a and 5a of the pipes 4 and 5, respectively, using cutting tools 24 and 25, which will be described in detail later. To explain in more detail, the beveling device 2 measures the shape of one end portions 4a, 5a of the pipes 4, 5. The bevel processing device 2 then sets tool paths for the cutting tools 24 and 25 based on the measurement results. Here, the tool path is information indicating a path followed by the blade portions 24a, 25a of the cutting tools 24, 25, which will be described in detail later. Further, the beveling device 2 controls the movement of the cutting tools 24 and 25 based on the set tool path. Thereby, the groove processing device 2 forms grooves 4b, 5b at the one end portions 4a, 5a of the pipes 4, 5. More specifically, the beveling device 2 includes a cutting machine 11, a measuring device 12, and a controller 13.
 <切削加工機械>
 切削加工機械11は、切削工具24,25を有している。切削加工機械11は、切削工具24,25によって配管4,5の一端部4a,5aを切削する。そうすることによって、切削加工機械11は、配管4,5の一端部4a,5aに開先4b,5bを形成する。また、切削加工機械11は、配管4,5を真円に成形する。より詳細に説明すると、切削加工機械11は、取付治具21と、回転面盤22と、ホルダー23と、切削工具24,25とを有している。
<Cutting machines>
The cutting machine 11 has cutting tools 24 and 25. The cutting machine 11 uses cutting tools 24 and 25 to cut one end portions 4a and 5a of the pipes 4 and 5. By doing so, the cutting machine 11 forms grooves 4b and 5b at one end portions 4a and 5a of the pipes 4 and 5. Further, the cutting machine 11 forms the pipes 4 and 5 into perfect circles. To explain in more detail, the cutting machine 11 includes a mounting jig 21, a rotary surface plate 22, a holder 23, and cutting tools 24 and 25.
 取付治具21は、配管4,5を取り付けることができる。より詳細に説明すると、配管4,5は、その軸線L1が第1方向に延在するように取付治具21に取り付けられる。ここで、第1方向は、上下方向に交差する方向である。本実施形態において、第1方向は、上下方向に直交する方向である。また、取付治具21は、配管4,5を真円に成形する。なお、真円とは、完全なる真円に限定されず、真円に近い状態も含む。より詳細に説明すると、取付治具21は、例えばチャック21aと芯調整機構21bとを有している。 The mounting jig 21 can attach the pipes 4 and 5. To explain in more detail, the pipes 4 and 5 are attached to the attachment jig 21 so that their axes L1 extend in the first direction. Here, the first direction is a direction intersecting the vertical direction. In this embodiment, the first direction is a direction perpendicular to the up-down direction. Further, the mounting jig 21 forms the pipes 4 and 5 into perfect circles. Note that a perfect circle is not limited to a perfect circle, but also includes a state that is close to a perfect circle. To explain in more detail, the mounting jig 21 includes, for example, a chuck 21a and a core adjustment mechanism 21b.
 チャック21aは、配管4,5を外側から把持する。本実施形態において、チャック21aは、第1方向に直交する径方向内方に向かって縮径するように動くことによって配管4,5を外側から把持する。そして、取付治具21は、チャック21aを縮径するように動かすことによって配管4,5を真円に成形する。また、チャック21aは、必ずしも縮径するように動く必要はなく、後述する第2方向又は上下方向に動くことによって配管4,5を外側から把持してもよい。 The chuck 21a grips the pipes 4 and 5 from the outside. In this embodiment, the chuck 21a grips the pipes 4 and 5 from the outside by moving inward in the radial direction perpendicular to the first direction. Then, the mounting jig 21 forms the pipes 4 and 5 into perfect circles by moving the chuck 21a to reduce the diameter. Further, the chuck 21a does not necessarily have to move to reduce the diameter, and may grip the pipes 4 and 5 from the outside by moving in a second direction or an up-down direction, which will be described later.
 芯調整機構21bは、チャック21aを上下方向及び第2方向に移動させる。ここで、第2方向は上下方向及び第1方向に交差する方向である。本実施形態において、第2方向は上下方向及び第1方向に直交する方向である。更に詳細に説明すると、芯調整機構21bは、チャック21aの移動させることによって、チャック21aの軸線の位置を調整する。本実施形態において、取付治具21では、配管4,5が真円に成形されることによって、配管4,5の軸線L1とチャック21aの軸線とが一致するようになっている。それ故、芯調整機構21bは、チャック21aを移動させることによって、配管4,5の軸線L1の位置を調整することができる。本実施形態では、配管4,5の軸線L1の上下方向及び第2方向の位置を調整することができる。 The core adjustment mechanism 21b moves the chuck 21a in the vertical direction and the second direction. Here, the second direction is a direction that intersects the vertical direction and the first direction. In this embodiment, the second direction is a direction perpendicular to the vertical direction and the first direction. More specifically, the core adjustment mechanism 21b adjusts the position of the axis of the chuck 21a by moving the chuck 21a. In the present embodiment, in the mounting jig 21, the pipes 4 and 5 are formed into a perfect circle, so that the axis L1 of the pipes 4 and 5 and the axis of the chuck 21a coincide with each other. Therefore, the core adjustment mechanism 21b can adjust the position of the axis L1 of the pipes 4 and 5 by moving the chuck 21a. In this embodiment, the positions of the axis L1 of the pipes 4 and 5 in the vertical direction and the second direction can be adjusted.
 回転面盤22は、円盤状に形成されており、その軸線L2を中心に回転する。より詳細に説明すると、回転面盤22は、図示しない移動基台に回転可能に取り付けられている。そして、回転面盤22は、その主面22aがチャック21aに対向し、且つ第1方向に距離をあけて配置されている。これにより、回転面盤22は、取り付けられる配管4,5の一端部4a,5aに主面22aを対向させて配置される。更に、回転面盤22は、移動基台によって3軸方向に移動可能に構成されている。本実施形態において、3軸方向は、上下方向、第1方向、及び第2方向である。また、回転面盤22は、図示しない電動機に連結されている。そして、回転面盤22は、電動機によって軸線L2まわりに回転させられる。 The rotating surface disc 22 is formed into a disc shape and rotates around its axis L2. To explain in more detail, the rotary surface plate 22 is rotatably attached to a movable base (not shown). The rotary surface plate 22 is arranged so that its main surface 22a faces the chuck 21a and is spaced apart from the chuck 21a in the first direction. Thereby, the rotary surface plate 22 is arranged with its main surface 22a facing one end portions 4a, 5a of the pipes 4, 5 to be attached. Further, the rotary surface plate 22 is configured to be movable in three axial directions by a movable base. In this embodiment, the three axial directions are an up-down direction, a first direction, and a second direction. Further, the rotary surface plate 22 is connected to an electric motor (not shown). The rotary surface plate 22 is rotated around the axis L2 by an electric motor.
 ホルダー23は、回転面盤22に取り付けられている。そして、ホルダー23は、切削工具24,25を保持する。また、ホルダー23は、回転面盤22に対して相対移動する。より詳細に説明すると、ホルダー23は、図示しないスライダ機構を有している。スライダ機構は、回転面盤22においてホルダー23を径方向にスライドさせる。 The holder 23 is attached to the rotary surface plate 22. The holder 23 holds cutting tools 24 and 25. Furthermore, the holder 23 moves relative to the rotary surface plate 22. To explain in more detail, the holder 23 has a slider mechanism (not shown). The slider mechanism slides the holder 23 in the radial direction on the rotary surface plate 22.
 切削工具24,25は、配管4,5周りを回転することによって配管4,5の一端部4a,5aを切削する。より詳細に説明すると、2つの切削工具24,25は、径方向に互いに離してホルダー23に着脱可能に取り付けられている。また、2つの切削工具24,25は、径方向に互いに対向するように回転面盤22に配置されている。本実施形態において、一方の切削工具24である外面用切削工具24は、他方の切削工具25である内面用切削工具25より径方向外側に配置されている。そして、2つの切削工具24,25は、第1方向に延在している。また、2つの切削工具24,25は、先端部に刃部24a,25aを夫々有している。2つの切削工具24,25は、刃部24a,25aを互いに対向させている。外面用切削工具24は、回転面盤22が回転することによって配管4,5の一端部4a,5aの外周面4c,5cの周りを回る。そして、外面用切削工具24は、刃部24aによって配管4,5の一端部4a,5aの外周面4c,5cを全周にわたって切削する。また、内面用切削工具25は、回転面盤22が回転することによって配管4,5の一端部4a,5aの内周面4d,5dに沿って回る。そして、内面用切削工具25は、刃部25aによって配管4,5の一端部4a,5aの内周面4d,5dを全周にわたって切削する。 The cutting tools 24 and 25 cut one end portions 4a and 5a of the pipes 4 and 5 by rotating around the pipes 4 and 5. To explain in more detail, the two cutting tools 24 and 25 are detachably attached to the holder 23 while being separated from each other in the radial direction. Further, the two cutting tools 24 and 25 are arranged on the rotary face plate 22 so as to face each other in the radial direction. In this embodiment, one of the cutting tools 24, the outer surface cutting tool 24, is arranged radially outward from the other cutting tool 25, the inner surface cutting tool 25. The two cutting tools 24 and 25 extend in the first direction. Further, the two cutting tools 24 and 25 have blade portions 24a and 25a at their tips, respectively. The two cutting tools 24 and 25 have blade portions 24a and 25a facing each other. The external cutting tool 24 rotates around the outer circumferential surfaces 4c, 5c of the one ends 4a, 5a of the pipes 4, 5 as the rotary surface disc 22 rotates. Then, the outer surface cutting tool 24 cuts the outer peripheral surfaces 4c, 5c of the one end portions 4a, 5a of the pipes 4, 5 over the entire circumference using the blade portion 24a. Further, the inner surface cutting tool 25 rotates along the inner circumferential surfaces 4d and 5d of the one end portions 4a and 5a of the pipes 4 and 5 as the rotary surface plate 22 rotates. Then, the inner surface cutting tool 25 cuts the inner peripheral surfaces 4d and 5d of the one end portions 4a and 5a of the pipes 4 and 5 over the entire circumference using the blade portion 25a.
 <計測器>
 計測器12は、配管4,5の一端部4a,5aの形状を計測する。より詳細に説明すると、計測器12は、配管4,5の一端部4a,5aの形状である周長又は径を計測する。本実施形態において、計測器12は、配管4,5の外周面4c,5cの径、即ち外径Rを計測する。より詳細に説明すると、計測器12は、例えば開先加工装置2に取り付けられる。本実施形態において、計測器12は、ホルダー23に取り付けられている。そして、計測器12は、ホルダー23において2つの切削工具25より径方向外側に配置されている。また、計測器12は、第1方向に延在している。そして、計測器12は、先端部に計測部12aを有している。計測器12は、例えば接触式の計測器であってプローブである。即ち、計測器12は、計測部12aを配管4,5の外周面4c,5cに当接させることによって配管4,5の外径Rを計測する。本実施形態において、計測器12は、ホルダー23の径方向の移動量に応じて配管4,5の外径Rを計測する。具体的に説明すると、計測器12は、計測部12aが外周面4c,5cに接触した際、ホルダー23の軸線L2からの距離に基づいて外周面4c,5cにおける接触位置の座標を出力する。
<Measuring instrument>
The measuring instrument 12 measures the shape of one end portions 4a, 5a of the pipes 4, 5. To explain in more detail, the measuring instrument 12 measures the circumferential length or diameter of the one end portions 4a, 5a of the pipes 4, 5. In this embodiment, the measuring device 12 measures the diameters of the outer circumferential surfaces 4c and 5c of the pipes 4 and 5, that is, the outer diameter R. To explain in more detail, the measuring instrument 12 is attached to the beveling device 2, for example. In this embodiment, the measuring instrument 12 is attached to a holder 23. The measuring instrument 12 is arranged radially outward of the two cutting tools 25 in the holder 23. Moreover, the measuring device 12 extends in the first direction. The measuring device 12 has a measuring section 12a at its tip. The measuring instrument 12 is, for example, a contact-type measuring instrument, and is a probe. That is, the measuring device 12 measures the outer diameter R of the pipes 4 and 5 by bringing the measuring portion 12a into contact with the outer peripheral surfaces 4c and 5c of the pipes 4 and 5. In this embodiment, the measuring device 12 measures the outer diameter R of the pipes 4 and 5 according to the amount of movement of the holder 23 in the radial direction. Specifically, when the measuring portion 12a contacts the outer circumferential surfaces 4c, 5c, the measuring device 12 outputs the coordinates of the contact position on the outer circumferential surfaces 4c, 5c based on the distance from the axis L2 of the holder 23.
 <制御器>
 制御器13は、切削工具24,25の動きを制御する。より詳細に説明すると、制御器13は、切削加工機械11の動作を制御する。即ち、制御器13は、移動基台、電動機、スライド機構、及び取付治具21の動作を制御する。例えば、制御器13は、移動基台を作動させることによって回転面盤22を第2方向及び上下方向に動かすことができる。これにより、回転面盤22の軸線L1の位置を変えることができる。また、制御器13は、移動基台を第1方向に移動させることによって回転面盤22を配管4,5の一端部4a,5aに近づけたり離したりする。即ち、制御器13は、移動基台を第1方向に移動させることによって切削工具24,25を配管4,5の一端部4a,5aに近づけたり離したりする。
<Controller>
Controller 13 controls the movement of cutting tools 24 and 25. To explain in more detail, the controller 13 controls the operation of the cutting machine 11. That is, the controller 13 controls the operations of the moving base, the electric motor, the slide mechanism, and the mounting jig 21. For example, the controller 13 can move the rotary surface board 22 in the second direction and in the vertical direction by operating the moving base. Thereby, the position of the axis L1 of the rotary surface plate 22 can be changed. Further, the controller 13 moves the rotating base plate 22 closer to or away from the one ends 4a, 5a of the pipes 4, 5 by moving the movable base in the first direction. That is, the controller 13 moves the movable base in the first direction to move the cutting tools 24, 25 closer to or away from the ends 4a, 5a of the pipes 4, 5.
 また、制御器13は、電動機を駆動することによって回転面盤22を軸線L2まわりに回転させる。制御器13は、回転面盤22を回転させることによって、配管4,5の一端部4a,5aの外周面4c,5cの周りにおいて計測器12の位置を変えることができる。これにより、計測器12は、外周面4c,5cにおいて複数箇所にて座標の計測を行うことができる(図4参照)。また、制御器13は、外面用切削工具24を配管4,5の一端部4a,5aの外周面4c,5cに沿って回転させる(図5参照)。これにより、刃部24aによって外周面4c,5cが切削される。更に、制御器13は、内面用切削工具25を配管4,5の内周面4d,5dに沿って回転させる(図6参照)。これにより、刃部25aによって内周面4d,5dが切削される。 Furthermore, the controller 13 rotates the rotary surface plate 22 around the axis L2 by driving the electric motor. The controller 13 can change the position of the measuring device 12 around the outer circumferential surfaces 4c, 5c of the ends 4a, 5a of the pipes 4, 5 by rotating the rotary surface plate 22. Thereby, the measuring device 12 can measure coordinates at a plurality of locations on the outer circumferential surfaces 4c and 5c (see FIG. 4). Further, the controller 13 rotates the external cutting tool 24 along the outer circumferential surfaces 4c, 5c of the one ends 4a, 5a of the pipes 4, 5 (see FIG. 5). As a result, the outer peripheral surfaces 4c and 5c are cut by the blade portion 24a. Furthermore, the controller 13 rotates the inner surface cutting tool 25 along the inner peripheral surfaces 4d and 5d of the pipes 4 and 5 (see FIG. 6). As a result, the inner circumferential surfaces 4d and 5d are cut by the blade portion 25a.
 更に、制御器13は、スライド機構を作動させることによってホルダー23を回転面盤22に対して半径方向にスライドさせることができる。より詳細に説明すると、制御器13は、スライド機構を作動させることによってホルダー23を軸線L2に対して半径方向に移動させることができる。これにより、計測器12を配管4,5の外面に近接離隔させることができる。また、制御器13は、スライド機構を動かすことによって回転する2つの切削工具24,25の径方向位置を変えることができる。 Furthermore, the controller 13 can slide the holder 23 in the radial direction with respect to the rotary surface plate 22 by operating the slide mechanism. More specifically, the controller 13 can move the holder 23 in the radial direction with respect to the axis L2 by operating the slide mechanism. Thereby, the measuring instrument 12 can be moved close to and away from the outer surfaces of the pipes 4 and 5. Furthermore, the controller 13 can change the radial positions of the two rotating cutting tools 24 and 25 by moving the slide mechanism.
 更に、制御器13は、取付治具21によって配管4,5を把持させる。より詳細に説明すると、制御器13は、取付治具21のチャック21aを縮径させることによって配管4,5を把持させる。これにより、配管4,5が真円に成形される。また、制御器13は、取付治具21を上下方向及び第2方向に移動させる。より詳細に説明すると、制御器13は、芯調整機構21bを上下方向及び第2方向に移動させる。これにより、制御器13は、チャック21aに軸線、即ち配管4,5の軸線L1の上下方向及び第2方向の位置を調整する。 Further, the controller 13 causes the mounting jig 21 to grip the pipes 4 and 5. More specifically, the controller 13 grips the pipes 4 and 5 by reducing the diameter of the chuck 21a of the mounting jig 21. Thereby, the pipes 4 and 5 are formed into perfect circles. Further, the controller 13 moves the mounting jig 21 in the vertical direction and in the second direction. To explain in more detail, the controller 13 moves the core adjustment mechanism 21b in the vertical direction and the second direction. Thereby, the controller 13 adjusts the position of the axis of the chuck 21a, that is, the axis L1 of the pipes 4 and 5 in the vertical direction and the second direction.
 また、制御器13は、計測器12の計測結果を取得する。即ち、制御器13は、配管4,5の一端部4a,5aの形状に関する計測結果を取得する。本実施形態において、制御器13は、ホルダー23によって計測器12を径方向内側に動かすことによって、計測部12aを配管4,5の外周面4c,5cに当接させる。そして、制御器13は、計測器12から接触位置の座標を取得する。これにより、制御器13は、接触位置の座標に基づいて配管4,5の一端部4a,5aの外径Rを算出する。また、制御器13は、配管4,5の一端部4a,5aの複数箇所(本実施形態において、3箇所)において計測部12aを接触させて座標を計測させる。例えば、制御器13は、回転面盤22によって計測器12を軸線L2まわりに所定の角度(本実施形態において、120度)ずつ移動させる。そして、制御器13は、各位置にて計測部12aを外周面4c,5cに接触させる。これにより、制御器13は、3か所において接触位置の座標を取得することができる。そして、制御器13は、3つの座標に基づいて配管4,5の外径Rと共に配管4,5の一端部4a,5aの軸線L1の座標、即ち配管4,5の芯座標を算出する。 Additionally, the controller 13 acquires the measurement results of the measuring device 12. That is, the controller 13 acquires measurement results regarding the shapes of the one end portions 4a, 5a of the pipes 4, 5. In this embodiment, the controller 13 moves the measuring device 12 radially inward using the holder 23, thereby bringing the measuring portion 12a into contact with the outer circumferential surfaces 4c, 5c of the pipes 4, 5. Then, the controller 13 acquires the coordinates of the contact position from the measuring device 12. Thereby, the controller 13 calculates the outer diameter R of the one end portions 4a, 5a of the pipes 4, 5 based on the coordinates of the contact position. Further, the controller 13 causes the measurement unit 12a to come into contact with a plurality of locations (in this embodiment, three locations) on one end portions 4a and 5a of the pipes 4 and 5 to measure coordinates. For example, the controller 13 moves the measuring instrument 12 around the axis L2 by a predetermined angle (120 degrees in this embodiment) using the rotary surface plate 22. Then, the controller 13 brings the measuring section 12a into contact with the outer circumferential surfaces 4c and 5c at each position. Thereby, the controller 13 can acquire the coordinates of the contact position at three locations. Then, the controller 13 calculates the outer diameter R of the pipes 4, 5 and the coordinates of the axis L1 of the one ends 4a, 5a of the pipes 4, 5, ie, the core coordinates of the pipes 4, 5, based on the three coordinates.
 更に、制御器13は、計測結果に基づいて切削工具24,25のツールパスを設定する。より詳細に説明すると、制御器13は、外面加工における外面用切削工具24のツールパスを設定する。外面加工は、例えば外面用切削工具24を回転させることによって外周面4c,5cが切削される切削加工(より詳しくは、フェーシング加工)である。本実施形態において、制御器13は、外面加工におけるツールパスとして外面用切削工具24の径方向位置を計測結果に基づいて設定する。また、制御器13は、内面加工における内面用切削工具25のツールパスを設定する。内面加工は、例えば内面用切削工具25を回転させることによって内周面4d,5dが切削される切削加工(より詳しくは、シンニング加工)である。本実施形態において、制御器13は、内面加工におけるツールパスとして内面用切削工具25の径方向位置を計測結果に基づいて設定する。 Furthermore, the controller 13 sets tool paths for the cutting tools 24 and 25 based on the measurement results. To explain in more detail, the controller 13 sets the tool path of the external surface cutting tool 24 in external surface machining. The external surface machining is, for example, a cutting process (more specifically, a facing process) in which the outer circumferential surfaces 4c and 5c are cut by rotating the external cutting tool 24. In this embodiment, the controller 13 sets the radial position of the outer surface cutting tool 24 as a tool path in outer surface machining based on the measurement results. The controller 13 also sets a tool path for the inner surface cutting tool 25 in inner surface machining. The inner surface processing is, for example, cutting processing (more specifically, thinning processing) in which the inner peripheral surfaces 4d and 5d are cut by rotating the inner surface cutting tool 25. In this embodiment, the controller 13 sets the radial position of the inner surface cutting tool 25 as a tool path in inner surface machining based on the measurement results.
 更に詳細に説明すると、制御器13は、図7に示すルート面rが所定値r0となるように外面加工及び内面加工の各々におけるツールパスを設定する。ツールパスの設定方法について具体的に説明すると、制御器13は、開先形状(本実施形態においてU形)と計測結果である外周面4c,5cの外径Rとに基づいて2つの切削工具24,25のツールパスを設定する。例えば、継手管3では、内面加工が開先4b,5bより更に他端側の部分である内面加工部分4e,5eまで及んでいる。内面加工のツールパスは、内面加工部分4e,5eの厚みtが所定厚さt0となるように設定される。具体的には、制御器13は、配管4,5の外径Rの1/2倍した値から所定厚さt0を減算した値に基づいて内面用切削工具25の径方向位置を設定する。更に、制御器13は、内面用切削工具25を配管4,5の一端面から第1方向に所定の内面加工距離αまで推し進めるように内面加工のツールパスを設定する。また、外面加工のツールパスは、配管4,5のルート面rが所定値r0となるように設定される。具体的には、制御器13は、前述する所定厚さt0から所定値r0を減算した開先深さdに基づいて外面用切削工具24の径方向位置を設定する。そして、制御器13は、外面用切削工具24を配管4,5の一端面から第1方向に所定の外面加工距離βまで推し進め、その後第1方向に押し進めながら外面用切削工具24を径方向外側に移動させるように外面加工のツールパスを設定する。 To explain in more detail, the controller 13 sets the tool path for each of the outer surface machining and the inner surface machining so that the root surface r shown in FIG. 7 becomes a predetermined value r0. To explain specifically how to set the tool path, the controller 13 selects two cutting tools based on the groove shape (U-shaped in this embodiment) and the outer diameter R of the outer circumferential surfaces 4c and 5c, which are the measurement results. Set tool paths 24 and 25. For example, in the joint pipe 3, the inner surface processing extends beyond the grooves 4b, 5b to the inner surface processing portions 4e, 5e, which are the portions on the other end side. The tool path for the inner surface processing is set so that the thickness t of the inner surface processing portions 4e and 5e becomes a predetermined thickness t0. Specifically, the controller 13 sets the radial position of the inner surface cutting tool 25 based on a value obtained by subtracting the predetermined thickness t0 from a value multiplied by 1/2 the outer diameter R of the pipes 4 and 5. Furthermore, the controller 13 sets a tool path for inner surface machining so that the inner surface cutting tool 25 is pushed in the first direction from one end surface of the pipes 4 and 5 to a predetermined inner surface machining distance α. Further, the tool path for external surface machining is set so that the root surface r of the pipes 4 and 5 becomes a predetermined value r0. Specifically, the controller 13 sets the radial position of the external cutting tool 24 based on the groove depth d obtained by subtracting the predetermined value r0 from the predetermined thickness t0 described above. Then, the controller 13 pushes the outer surface cutting tool 24 from one end surface of the pipes 4 and 5 in the first direction to a predetermined outer surface machining distance β, and then moves the outer surface cutting tool 24 radially outward while pushing it in the first direction. Set the toolpath for external machining to move to .
 <継手管製造方法>
 以下では、自動溶接システム1を用いた継手管3を製造する継手管製造方法が図8のフローチャートを参照しながら説明される。継手管製造方法では、2つの配管4,5を溶接することによって継手管3が製造される。配管4,5を溶接するにあたって、配管4,5の一端部4a,5aに開先4b,5bが形成される。継手管製造方法では、継手管3の製造が開始されると、ステップS1にて移行する。ステップs1では、開先加工処理が行われる。以下では、開先加工処理について、図9のフローチャートを参照しながら説明される。
<Joint pipe manufacturing method>
Below, a joint pipe manufacturing method for manufacturing the joint pipe 3 using the automatic welding system 1 will be explained with reference to the flowchart of FIG. 8. In the joint pipe manufacturing method, the joint pipe 3 is manufactured by welding two pipes 4 and 5. When welding the pipes 4 and 5, grooves 4b and 5b are formed at one end portions 4a and 5a of the pipes 4 and 5, respectively. In the joint pipe manufacturing method, when manufacturing of the joint pipe 3 is started, the process moves to step S1. In step s1, a beveling process is performed. The bevel processing process will be described below with reference to the flowchart in FIG. 9 .
 開先加工処理では、開先加工方法によって配管4,5の一端部4a,5aに開先4b,5bが形成される。開先加工方法は、切削工具24,25を用いて配管4,5の一端部4a,5aに開先4b,5bを形成する方法である。開先加工処理が実行されると、ステップS11に移行する。 In the groove processing, grooves 4b, 5b are formed at one ends 4a, 5a of the pipes 4, 5 by a groove processing method. The groove processing method is a method of forming grooves 4b, 5b at one end portions 4a, 5a of the pipes 4, 5 using cutting tools 24, 25. When the groove processing process is executed, the process moves to step S11.
 配管取付工程であるステップS11では、取付治具21に配管4,5の一方、例えば配管4が取り付けられる。より詳細に説明すると、取付治具21のチャック21aの中に配管4が配置される。なお、配管4の配置は、作業者によって手動で行われたり、ロボット等の装置によって自動的に行われたりしてもよい。また、本実施形態では、配管4の一端部4aより他端側の部分がチャック21a内に配置される。配管4が配置されると、制御器13は、チャック21aを径方向内方向に向かって縮径させる。これにより、取付治具21に配管4が取り付けられると共に配管4が真円に成形される。そうすると、ステップS12に移行する。 In step S11, which is a pipe installation process, one of the pipes 4 and 5, for example, the pipe 4, is mounted on the mounting jig 21. To explain in more detail, the pipe 4 is placed in the chuck 21a of the mounting jig 21. Note that the arrangement of the pipes 4 may be performed manually by an operator or automatically by a device such as a robot. Furthermore, in this embodiment, a portion of the piping 4 closer to the other end than the one end 4a is disposed within the chuck 21a. When the pipe 4 is placed, the controller 13 reduces the diameter of the chuck 21a radially inward. Thereby, the pipe 4 is attached to the mounting jig 21 and the pipe 4 is formed into a perfect circle. Then, the process moves to step S12.
 計測工程であるステップS12では、配管4の一端部4a,5aの形状が計測される。より詳細に説明すると、取付工程において取付治具21によって配管4を真円に成形した後に配管4の一端部4a,5aの形状が計測される。また、本実施形態において、配管4の外径Rが計測器12によって計測される。具体的に説明すると、制御器13は、回転面盤22によって計測器12を軸線L2まわりに所定の角度(本実施形態において、120度)ずつ移動させる。これにより、制御器13は、3か所において接触位置の座標を取得する。そして、制御器13は、3つの座標に基づいて配管4の外径Rと共に配管4の芯座標を算出する。そうすると、ステップS13に移行する。 In step S12, which is a measurement process, the shape of one end portion 4a, 5a of the pipe 4 is measured. To explain in more detail, in the mounting process, after the pipe 4 is formed into a perfect circle by the mounting jig 21, the shapes of the one ends 4a and 5a of the pipe 4 are measured. Further, in this embodiment, the outer diameter R of the pipe 4 is measured by the measuring instrument 12. Specifically, the controller 13 moves the measuring instrument 12 around the axis L2 by a predetermined angle (120 degrees in this embodiment) using the rotary surface plate 22. Thereby, the controller 13 acquires the coordinates of the contact positions at three locations. Then, the controller 13 calculates the outer diameter R of the pipe 4 and the core coordinates of the pipe 4 based on the three coordinates. Then, the process moves to step S13.
 芯位置調整工程であるステップS13では、配管4の軸線L1に回転面盤22の軸線L2を合わせるように回転面盤22の芯座標が調整される。より詳細に説明すると、制御器13は、計測工程において算出される配管4の芯座標に基づいて移動基台を動かすことによって回転面盤22の芯座標を調整する。これにより、制御器13は、回転面盤22の軸線L2を配管4の軸線L1に一致させる。本実施形態では、移動基台によって回転面盤22の芯座標を調整しているが、取付治具21の芯調整機構21bを作動させることによって配管4の芯座標が調整されてもよい。回転面盤22の軸線L2を配管4の軸線L1に一致させると、ステップS14に移行する。 In step S13, which is a center position adjustment step, the center coordinates of the rotary face plate 22 are adjusted so that the axis L2 of the rotary face plate 22 is aligned with the axis L1 of the piping 4. To explain in more detail, the controller 13 adjusts the center coordinates of the rotary surface plate 22 by moving the movable base based on the center coordinates of the piping 4 calculated in the measurement process. Thereby, the controller 13 aligns the axis L2 of the rotary surface plate 22 with the axis L1 of the piping 4. In this embodiment, the center coordinates of the rotary surface plate 22 are adjusted by the movable base, but the center coordinates of the piping 4 may be adjusted by operating the center adjustment mechanism 21b of the mounting jig 21. Once the axis L2 of the rotary surface plate 22 is aligned with the axis L1 of the piping 4, the process moves to step S14.
 ツールパス設定工程であるステップS14では、計測工程の計測結果に基づいて切削工具24,25のツールパスが設定される。より詳細に説明すると、外面加工及び内面加工の各々におけるツールパスは、ルート面rが所定値r0となるように設定される。また、内面加工におけるツールパスは、内面加工部分4eの厚みtが所定厚さt0になるように設定される。 In step S14, which is a tool path setting step, the tool paths of the cutting tools 24 and 25 are set based on the measurement results of the measurement step. To explain in more detail, the tool paths in each of the outer surface machining and the inner surface machining are set so that the root surface r becomes a predetermined value r0. Moreover, the tool path in the inner surface processing is set so that the thickness t of the inner surface processing portion 4e becomes a predetermined thickness t0.
 具体的に説明すると、内面加工におけるツールパスとして内面用切削工具25の径方向位置が計測結果、本実施形態において配管4の外径Rに基づいて設定される。例えば、制御器13は、配管4,5の外径Rの1/2倍した値から所定厚さt0を減算した値に基づいて内面用切削工具25の径方向位置を内面加工のツールパスとして設定する。更に、制御器13は、内面用切削工具25を第1方向に所定の内面加工距離αまで推し進めるように内面加工のツールパスを設定する。他方、外面加工におけるツールパスとして外面用切削工具24の径方向位置が計測結果、本実施形態において配管4の外径Rに基づいて設定される。例えば、制御器13は、所定厚さt0から所定値r0を減算した開先深さdに基づいて内面用切削工具25の径方向位置を外面加工のツールパスとして設定する。更に、制御器13は、外面用切削工具24を第1方向に所定の外面加工距離β(<α)まで推し進め、その後第1方向に押し進めながら外面用切削工具24を径方向外側に移動させるように外面加工のツールパスを設定する。ツールパスが設定されると、ステップS15に移行する。 Specifically, the radial position of the inner surface cutting tool 25 is set as a tool path in inner surface machining based on the measurement result, and in this embodiment, the outer diameter R of the pipe 4. For example, the controller 13 sets the radial position of the inner surface cutting tool 25 as a tool path for inner surface machining based on a value obtained by subtracting a predetermined thickness t0 from a value multiplied by 1/2 the outer diameter R of the pipes 4 and 5. Set. Furthermore, the controller 13 sets a tool path for inner surface machining so as to advance the inner surface cutting tool 25 in the first direction to a predetermined inner surface machining distance α. On the other hand, the radial position of the outer surface cutting tool 24 is set as a tool path in the outer surface machining based on the measurement result, and in this embodiment, the outer diameter R of the pipe 4. For example, the controller 13 sets the radial position of the inner surface cutting tool 25 as the tool path for outer surface machining based on the groove depth d obtained by subtracting the predetermined value r0 from the predetermined thickness t0. Furthermore, the controller 13 is configured to advance the external surface cutting tool 24 in the first direction to a predetermined external surface machining distance β (<α), and then move the external surface cutting tool 24 radially outward while being pushed in the first direction. Set the toolpath for external machining. Once the tool path is set, the process moves to step S15.
 加工工程であるステップS15は、ツールパス設定工程で設定されたツールパスに基づいて切削工具24,25の動きを制御することによって、配管4の一端部4aに開先4bを形成する。より詳細に説明すると、加工工程では、制御器13が外面用切削工具24によって外面加工を行う。即ち、制御器13は、電動機によって回転面盤22を回転させつつ、外面加工のツールパスに応じて外面用切削工具24を移動させる。これにより、開先4bを形成すべく配管4の外周面4cが切削される。また、制御器13が内面用切削工具25によって内面加工を行う。即ち、制御器13は、電動機によって回転面盤22を回転させつつ、内面加工のツールパスに応じて内面用切削工具25を移動させる。これにより、開先4bを形成すべく配管4の内周面4dが切削される。なお、加工工程では、外面加工及び内面加工は何れから行われてもよく、同時に行われてもよい。このように配管4の外周面4c及び内周面5dが切削されると、配管4の一端部4aに開先4bが形成される(図10(a)参照)。開先4bが形成されると、ステップS16に移行する。 In step S15, which is a machining process, a groove 4b is formed in one end 4a of the pipe 4 by controlling the movement of the cutting tools 24 and 25 based on the tool path set in the tool path setting process. To explain in more detail, in the machining process, the controller 13 performs external surface machining using the external surface cutting tool 24 . That is, the controller 13 moves the external cutting tool 24 according to the tool path for external processing while rotating the rotary surface plate 22 using the electric motor. As a result, the outer circumferential surface 4c of the pipe 4 is cut to form the groove 4b. Further, the controller 13 performs inner surface machining using the inner surface cutting tool 25 . That is, the controller 13 moves the inner surface cutting tool 25 according to the tool path for inner surface machining while rotating the rotary surface plate 22 using the electric motor. As a result, the inner circumferential surface 4d of the pipe 4 is cut to form the groove 4b. In addition, in the processing step, the outer surface processing and the inner surface processing may be performed in any order, or may be performed simultaneously. When the outer peripheral surface 4c and the inner peripheral surface 5d of the pipe 4 are cut in this way, a groove 4b is formed at one end 4a of the pipe 4 (see FIG. 10(a)). Once the groove 4b is formed, the process moves to step S16.
 開先加工有無確認工程であるステップS16では、溶接する2つの配管4,5の両方の一端部4a,5aに開先加工が施されているか否かを判断する。2つの配管4,5のうち一方の配管4の一端部4aにのみ開先加工が施されている場合、他方の配管5の一端部5aにも開先加工を施すべく、ステップS11に戻る。そして、ステップS11以降では、配管4の一端部4aに対する開先加工と同様に配管5の一端部5aに開先加工が施される。即ち、ステップS11では、取付治具21に配管5が取り付けられる。これにより、配管5が真円に成形される。ステップS12では、配管5の一端部5aの形状が計測される。ステップS13では、配管5の軸線L1に回転面盤22の軸線L2を合わせるように回転面盤22の芯座標が調整される。ステップS14では、計測結果に基づいて配管5に対する切削工具24,25のツールパスが設定される。ステップS15では、ツールパスに基づいて切削工具24,25の動きを制御することによって、配管5の一端部5aに開先5bが形成される。そして、ステップS16において、溶接する2つの配管4,5の両方の一端部4a,5aに開先加工が施されていたことを確認すると、開先加工処理が終了する。そして、開先加工処理が終了すると、ステップS2に移行する。 In step S16, which is a bevel processing presence/absence confirmation step, it is determined whether or not bevel processing has been performed on both one end portions 4a, 5a of the two pipes 4, 5 to be welded. If only one end 4a of one of the two pipes 4 and 5 is beveled, the process returns to step S11 in order to also bevel the one end 5a of the other pipe 5. Then, from step S11 onwards, the one end 5a of the pipe 5 is beveled in the same way as the one end 4a of the pipe 4 is beveled. That is, in step S11, the pipe 5 is attached to the attachment jig 21. Thereby, the pipe 5 is formed into a perfect circle. In step S12, the shape of one end 5a of the pipe 5 is measured. In step S13, the center coordinates of the rotating surface plate 22 are adjusted so that the axis L2 of the rotating surface disk 22 is aligned with the axis L1 of the piping 5. In step S14, tool paths of the cutting tools 24 and 25 with respect to the pipe 5 are set based on the measurement results. In step S15, a groove 5b is formed at one end 5a of the pipe 5 by controlling the movement of the cutting tools 24 and 25 based on the tool path. Then, in step S16, when it is confirmed that both ends 4a and 5a of the two pipes 4 and 5 to be welded have been beveled, the beveling process ends. Then, when the bevel processing process is completed, the process moves to step S2.
 自動溶接工程であるステップS2では、開先加工工程によって開先4b,5bが形成された配管4,5の一端部4a,5a同士を突き合わせて溶接する。より詳細に説明すると、2つの配管4,5は、開先4b,5b同士を突き合せるように配置される。なお、突き合せる際、2つの配管4,5は、内面加工された内周面4d,5dが面一となるように配置される。そして、溶接ロボット6は、突合せ部3aを溶接することによって継手管3を製造する。より詳細に説明すると、溶接ロボット6は、各関節を動かすことによって溶接棒6aの先端を突合せ部3aに当てる。その後、溶接ロボット6は、突合せ部3aにてアークを発生させることによって2つの配管4,5を溶接する。このように、配管4,5を溶接することによって継手管3が製造されると、継手管製造方法が終了する。 In step S2, which is an automatic welding process, one ends 4a and 5a of the pipes 4 and 5, in which grooves 4b and 5b have been formed in the groove processing process, are butted against each other and welded. To explain in more detail, the two pipes 4 and 5 are arranged so that the grooves 4b and 5b are butted against each other. In addition, when abutting, the two pipes 4 and 5 are arranged so that the internally processed inner circumferential surfaces 4d and 5d are flush with each other. Then, the welding robot 6 manufactures the joint pipe 3 by welding the butt portion 3a. To explain in more detail, the welding robot 6 brings the tip of the welding rod 6a into contact with the butt portion 3a by moving each joint. Thereafter, the welding robot 6 welds the two pipes 4 and 5 by generating an arc at the butt portion 3a. When the joint pipe 3 is manufactured by welding the pipes 4 and 5 in this manner, the joint pipe manufacturing method is completed.
 本実施形態の開先加工方法では、配管4,5の一端部4a,5aの形状を計測した計測結果に基づいてツールパスが設定される。ツールパスに基づいて切削工具24,25の動きを制御することによって配管4,5の一端部4a,5aに開先4b,5bが形成される。それ故、配管4,5の一端部4a,5aの実際の形状に応じて開先4b,5bを形成することができる。これにより、配管4,5の実際の形状を考慮しないで開先4b,5bが形成される場合に比べて、開先形状のばらつきが抑制される。即ち、開先形状を所望の形状に形成することができる。 In the groove processing method of this embodiment, a tool path is set based on the measurement results of the shapes of the one end portions 4a, 5a of the pipes 4, 5. Bevels 4b, 5b are formed at one ends 4a, 5a of the pipes 4, 5 by controlling the movement of the cutting tools 24, 25 based on the tool path. Therefore, the grooves 4b, 5b can be formed according to the actual shapes of the one ends 4a, 5a of the pipes 4, 5. This suppresses variations in the groove shapes compared to the case where the grooves 4b, 5b are formed without considering the actual shapes of the pipes 4, 5. That is, the groove shape can be formed into a desired shape.
 また、本実施形態の開先加工方法では、外面加工におけるツールパスとして外面用切削工具24の径方向位置が計測結果に基づいて設定される。それ故、配管4,5の実際の外形形状に応じて外面加工を施すことができる。これにより、配管4,5の外形形状に応じて開先4b,5bの深さが小さくなったり大きくなったりすることが抑制される(例えば、図10(b)及び(c)参照)。従って、配管4,5の外形形状に拘らず、開先4b,5bの深さを確保することができる。 In addition, in the beveling method of this embodiment, the radial position of the outer surface cutting tool 24 is set as a tool path in outer surface processing based on the measurement results. Therefore, the outer surfaces of the pipes 4 and 5 can be processed according to their actual outer shapes. This prevents the depths of the grooves 4b and 5b from becoming smaller or larger depending on the external shape of the pipes 4 and 5 (for example, see FIGS. 10(b) and 10(c)). Therefore, the depth of the grooves 4b, 5b can be ensured regardless of the external shape of the pipes 4, 5.
 また、本実施形態の開先加工方法では、内面加工におけるツールパスとして内面用切削工具25の径方向位置が計測結果に基づいて設定される。それ故、配管4,5の実際の外形形状及び厚み、即ち配管4,5の形状に応じて内面加工を施すことができる。これにより、配管4,5の形状に拘らず、ルート面rの大きさを確保することができる。 Furthermore, in the beveling method of this embodiment, the radial position of the inner surface cutting tool 25 is set as a tool path in inner surface processing based on the measurement results. Therefore, the inner surface can be processed according to the actual external shape and thickness of the pipes 4 and 5, that is, the shape of the pipes 4 and 5. Thereby, the size of the root surface r can be ensured regardless of the shape of the pipes 4 and 5.
 また、本実施形態の開先加工方法では、ルート面rが所定値r0となるように外面加工及び内面加工の各々におけるツールパスが設定される。それ故、配管4,5の一端部4a,5aに所望の大きさのルート面rを形成することができる。 Furthermore, in the groove machining method of this embodiment, the tool paths in each of the outer surface machining and the inner surface machining are set so that the root surface r becomes a predetermined value r0. Therefore, a root surface r of a desired size can be formed at one end portion 4a, 5a of the pipes 4, 5.
 また、本実施形態の開先加工方法では、配管4,5の一端部4a,5aにおいて開先4b,5bより他端側の厚みtが所定厚さt0以上になるように外面加工及び内面加工の各々におけるツールパスが設定される。それ故、配管4,5の一端部4a,5aにおいて開先4b,5bより他端部側の厚みtが所定厚さt0未満になることを抑制できる(図10(a)参照)。これにより、開先加工を行った後であっても配管4,5の一端部4a,5aにおける強度を確保することができる。 In addition, in the groove processing method of this embodiment, outer surface processing and inner surface processing are performed so that the thickness t on the other end side of the pipes 4 and 5 on the other end side than the grooves 4b and 5b becomes a predetermined thickness t0 or more. A tool path is set for each. Therefore, it is possible to prevent the thickness t of the one end portions 4a, 5a of the pipes 4, 5 on the other end side from the grooves 4b, 5b from becoming less than the predetermined thickness t0 (see FIG. 10(a)). This makes it possible to ensure the strength at the one end portions 4a, 5a of the pipes 4, 5 even after the beveling process.
 また、本実施形態の開先加工方法では、計測工程で計測される外径Rに基づいてツールパスが設定される。それ故、ツールパスを設定するための計測が容易である。これにより、開先加工を容易に行うことができる。 Furthermore, in the beveling method of this embodiment, a tool path is set based on the outer diameter R measured in the measurement process. Therefore, measurements for setting tool paths are easy. Thereby, beveling can be easily performed.
 また、本実施形態の開先加工方法では、取付治具21によって配管4,5を真円に成形した後に開先4b,5bが形成される。それ故、精度よく開先4b,5bを形成することができるので、開先4b,5bをより精度よく所望の形状に形成することができる。 Furthermore, in the groove processing method of this embodiment, the grooves 4b and 5b are formed after the pipes 4 and 5 are formed into perfect circles using the mounting jig 21. Therefore, the grooves 4b, 5b can be formed with high accuracy, so the grooves 4b, 5b can be formed into a desired shape with higher accuracy.
 本実施形態の継手管製造方法では、前述する開先加工方法によって開先4b,5bが形成された一端部4a,5a同士を突き合わせて溶接することによって継手管3が製造される。前述する開先加工方法によって開先4b,5bが形成されるので、配管4,5の一端部4a,5aの実際の形状に応じて開先4b,5bが形成される。それ故、開先形状のばらつきを抑制することができる。従って、容易に溶接することができるので、例えば自動溶接等によって継手管3を製造することができる。これにより、継手管3やそれを備える設備に関するリードタイムが短縮される。 In the joint pipe manufacturing method of the present embodiment, the joint pipe 3 is manufactured by butting and welding one end portions 4a, 5a on which grooves 4b, 5b are formed by the above-mentioned groove processing method. Since the grooves 4b, 5b are formed by the groove processing method described above, the grooves 4b, 5b are formed according to the actual shape of the one ends 4a, 5a of the pipes 4, 5. Therefore, variations in the groove shape can be suppressed. Therefore, since it can be easily welded, the joint pipe 3 can be manufactured, for example, by automatic welding or the like. Thereby, the lead time regarding the joint pipe 3 and equipment provided with it is shortened.
 本実施形態の開先加工装置2では、配管4,5の一端部4a,5aの形状を計測した計測結果に基づいてツールパスが設定される。ツールパスに基づいて切削工具24,25の動きを制御することによって配管4,5の一端部4a,5aに開先4b,5bが形成される。それ故、配管4,5の一端部4a,5aの実際の形状に応じて開先4b,5bを形成することができる。これにより、配管4,5の実際の形状を考慮しないで開先4b,5bを形成する場合に比べて、開先形状のばらつきが抑制される。即ち、開先形状を所望の形状に形成することができる。 In the beveling device 2 of this embodiment, a tool path is set based on the measurement results of the shapes of the one end portions 4a, 5a of the pipes 4, 5. Bevels 4b, 5b are formed at one ends 4a, 5a of the pipes 4, 5 by controlling the movement of the cutting tools 24, 25 based on the tool path. Therefore, the grooves 4b, 5b can be formed according to the actual shapes of the one ends 4a, 5a of the pipes 4, 5. This suppresses variations in the groove shapes compared to the case where the grooves 4b, 5b are formed without considering the actual shapes of the pipes 4, 5. That is, the groove shape can be formed into a desired shape.
 また、本実施形態の開先加工装置2では、外面加工におけるツールパスとして外面用切削工具24の径方向位置が計測結果に基づいて設定される。それ故、配管4,5の実際の外形形状に応じて外面加工を施すことができる。これにより、配管4,5の外形形状に応じて開先4b,5bの深さが小さくなったり大きくなったりすることが抑制される(例えば、図10(b)及び(c)参照)。従って、配管4,5の外形形状に拘らず、開先4b,5bの深さを確保することができる。 In addition, in the beveling device 2 of this embodiment, the radial position of the outer surface cutting tool 24 is set as a tool path in outer surface machining based on the measurement results. Therefore, the outer surfaces of the pipes 4 and 5 can be processed according to their actual outer shapes. This prevents the depths of the grooves 4b and 5b from becoming smaller or larger depending on the external shape of the pipes 4 and 5 (for example, see FIGS. 10(b) and 10(c)). Therefore, the depth of the grooves 4b, 5b can be ensured regardless of the external shape of the pipes 4, 5.
 また、本実施形態の開先加工装置2では、内面加工におけるツールパスとして内面用切削工具25の径方向位置が計測結果に基づいて設定される。それ故、配管4,5の実際の外形形状及び厚み、即ち配管4,5の形状に応じて内面加工を施すことができる。これにより、配管4,5の形状に拘らず、ルート面rの大きさを確保することができる。 Furthermore, in the bevel processing apparatus 2 of this embodiment, the radial position of the inner surface cutting tool 25 is set as a tool path in inner surface processing based on the measurement results. Therefore, the inner surface can be processed according to the actual external shape and thickness of the pipes 4 and 5, that is, the shape of the pipes 4 and 5. Thereby, the size of the root surface r can be ensured regardless of the shape of the pipes 4 and 5.
 また、本実施形態の開先加工装置2では、計測器12で計測される配管4,5の一端部4a,5aの周面における複数箇所の位置に基づいて外径Rが算出される。そして、外径Rに基づいてツールパスが設定される。それ故、計測器12による計測が容易であって外径Rの算出が容易である。これにより、ツールパスの設定が容易である。 In addition, in the beveling device 2 of this embodiment, the outer diameter R is calculated based on the positions of multiple locations on the circumferential surfaces of the one end portions 4a, 5a of the pipes 4, 5 measured by the measuring instrument 12. Then, a tool path is set based on the outer diameter R. Therefore, measurement using the measuring instrument 12 is easy, and calculation of the outer diameter R is easy. This makes it easy to set the tool path.
 本実施形態の自動溶接システム1では、前述する開先加工装置2によって開先4b,5bが形成された一端部4a,5a同士を突き合わせて溶接ロボット6が溶接する。前述する開先加工装置2によって開先4b,5bが形成されるので、配管4,5の一端部4a,5aの実際の形状に応じて開先4b,5bを形成することができる。それ故、開先4b,5bを所望の形状に精度高く形成することができる。従って、容易に溶接することができるので、自動溶接によって継手管3を製造することができる。これにより、複数の溶接ロボット6によって自動溶接を行うことによって、継手管3やそれを備える設備に関するリードタイムが短縮される。 In the automatic welding system 1 of this embodiment, the welding robot 6 welds the ends 4a and 5a, on which the grooves 4b and 5b have been formed by the groove processing device 2 described above, butt against each other. Since the grooves 4b and 5b are formed by the groove processing device 2 described above, the grooves 4b and 5b can be formed according to the actual shapes of the one ends 4a and 5a of the pipes 4 and 5. Therefore, the grooves 4b and 5b can be formed into desired shapes with high precision. Therefore, since welding can be performed easily, the joint pipe 3 can be manufactured by automatic welding. Thereby, by automatically performing welding using the plurality of welding robots 6, the lead time regarding the joint pipe 3 and the equipment provided therewith is shortened.
 <その他の実施形態>
 本実施形態の開先加工方法において、計測工程では、配管4,5の一端部4a,5aの形状として配管4,5の外径Rが計測されているが、配管4,5の周長が計測されてもよい。この場合、自動溶接システム1Aの開先加工装置2Aは、図11に示すように例えば切削加工機械11と、計測器12Aと、制御器13とを備えている。計測器12Aは、計測部12aを有している。計測器12Aは、配管4,5の一端部4a,5aを軸線L1まわりに計測部12Aaを操作させることよって一端部4a,5aの形状を計測する。計測器12Aは、例えばレーザ照射式の計測器であるが、接触式の計測器又はカメラ式の計測器であってもよい。計測器12Aについて更に具体的に説明すると、計測器12Aは、操作されることによって配管4,5の外周面4c,5cの周長を計測する。制御器13は、周長に基づいて切削工具24,25のツールパスを設定する。例えば、制御器13は、周長に基づいて配管4,5の外径Rを算出する。そして、制御器13は、外径Rに基づいて切削工具24,25のツールパスを設定する。なお、制御器13は、外径Rを算出せずに周長に基づいて切削工具24,25のツールパスを設定してもよい。また、計測器12Aは、外径Rに拘らず、内径を計測してもよく、また制御器13は、径として外周面4c,5cの半径又は内周面4d,5dの半径を計測してもよい。更に、計測器12Aは、3D計測器であってもよく、配管4,5の一端部4a,5aの形状そのもの(具体的には、一端部4a,5a上に配置される各点群の座標)を計測してもよい。
<Other embodiments>
In the beveling method of this embodiment, in the measurement step, the outer diameter R of the pipes 4, 5 is measured as the shape of one end portion 4a, 5a of the pipes 4, 5, but the circumferential length of the pipes 4, 5 is May be measured. In this case, the beveling device 2A of the automatic welding system 1A includes, for example, a cutting machine 11, a measuring device 12A, and a controller 13, as shown in FIG. The measuring device 12A has a measuring section 12a. The measuring device 12A measures the shape of the one end portions 4a, 5a of the pipes 4, 5 by operating the measuring portion 12Aa around the axis L1. The measuring device 12A is, for example, a laser irradiation type measuring device, but may also be a contact type measuring device or a camera type measuring device. More specifically, the measuring device 12A measures the circumferential lengths of the outer peripheral surfaces 4c, 5c of the pipes 4, 5 by being operated. The controller 13 sets tool paths for the cutting tools 24 and 25 based on the circumference. For example, the controller 13 calculates the outer diameter R of the pipes 4 and 5 based on the circumferential length. Then, the controller 13 sets the tool paths of the cutting tools 24 and 25 based on the outer diameter R. Note that the controller 13 may set the tool paths of the cutting tools 24 and 25 based on the circumferential length without calculating the outer diameter R. Further, the measuring device 12A may measure the inner diameter regardless of the outer diameter R, and the controller 13 may measure the radius of the outer circumferential surfaces 4c, 5c or the radius of the inner circumferential surfaces 4d, 5d as the diameter. Good too. Furthermore, the measuring instrument 12A may be a 3D measuring instrument, and the measuring instrument 12A may be a 3D measuring instrument, and the measuring instrument 12A may be a 3D measuring instrument, and the shape of the one end portions 4a, 5a of the pipes 4, 5 itself (specifically, the coordinates of each point group arranged on the one end portions 4a, 5a). ) may be measured.
 本実施形態の開先加工方法及び開先加工装置2において、ツールパスとして軸線L2を中心とする径方向位置及び第1方向の移動距離等が含まれているが、ツールパスは、3次元座標を含んでいてもよい。また、ツールパスは、必ずしも配管4,5の一端部4a,5aにおいて開先4b,5bより他端側の厚みtが所定厚さt0となるように設定されている必要はない。また、本実施形態の開先加工方法及び開先加工装置2では、取付治具21がチャック21aを縮径させることによって配管4,5を外側から把持しているが、以下のように構成されてもよい。即ち、配管4,5内においてチャックが拡径することによって、内側から押し広げるようにして取付治具21に配管4,5が取り付けられてもよい。また、取付治具21の動きは、制御器13によって制御されているが、制御器13以外の制御器によって制御されてもよい。 In the beveling method and beveling device 2 of this embodiment, the tool path includes the radial position centered on the axis L2, the movement distance in the first direction, etc. May contain. Moreover, the tool path does not necessarily need to be set so that the thickness t at the other end of the pipes 4, 5 at the other end than the grooves 4b, 5b becomes a predetermined thickness t0. In addition, in the beveling method and beveling device 2 of this embodiment, the mounting jig 21 grips the pipes 4 and 5 from the outside by reducing the diameter of the chuck 21a, but is configured as follows. It's okay. That is, by expanding the diameter of the chuck inside the pipes 4 and 5, the pipes 4 and 5 may be attached to the mounting jig 21 in such a way that they are pushed apart from the inside. Further, although the movement of the mounting jig 21 is controlled by the controller 13, it may be controlled by a controller other than the controller 13.
 また、本実施形態の開先加工方法では、加工工程において外面加工及び内面加工の両方が実施されているが、外面加工だけであってもよい。また、開先加工方法では、継手管3においてU形開先を形成すべく、配管4,5の両方に開先4b,5bが形成されている。しかし、継手管3に例えばK形開先を形成すべく配管4,5の一方にのみ開先4b,5bが形成されてもよい。また、配管4,5に関して、一端部4a,5aの端面である一端面を切削工具24,25で切削することによって、一端面が軸線L1に対して垂直になるように形成されてもよい。更に、加工工程における開先4b,5bの加工は、前述するような加工方法に限定されず、開先4b,5bが形成される加工方法であればその他の加工方法であってよい。また、本実施形態において、外面加工としてフェーシング加工が採用され、且つ内面加工としてシンニング加工が採用されているが、その他の加工が採用されてもよい。 Furthermore, in the groove processing method of this embodiment, both outer surface processing and inner surface processing are performed in the processing step, but only outer surface processing may be performed. Furthermore, in the groove processing method, grooves 4b and 5b are formed on both the pipes 4 and 5 in order to form a U-shaped groove in the joint pipe 3. However, the grooves 4b, 5b may be formed only in one of the pipes 4, 5 to form, for example, a K-shaped groove in the joint pipe 3. Further, the pipes 4 and 5 may be formed by cutting one end surface, which is the end surface of the one end portions 4a and 5a, with the cutting tools 24 and 25 so that the one end surface is perpendicular to the axis L1. Furthermore, the processing of the grooves 4b, 5b in the processing step is not limited to the processing method described above, but may be any other processing method as long as the grooves 4b, 5b are formed. Further, in this embodiment, facing processing is employed as the outer surface processing, and thinning processing is employed as the inner surface processing, but other processing may be employed.
 更に、本実施形態の開先加工方法では、取付治具21によって配管4,5が真円に成形されているが、別途成形工程によって配管4,5が真円に成形されてもよい。また、予め真円に成形されている場合には、取付治具21や別途成形工程によって配管4,5が真円に成形される必要もない。 Furthermore, in the beveling method of this embodiment, the pipes 4 and 5 are formed into perfect circles by the mounting jig 21, but the pipes 4 and 5 may be formed into perfect circles by a separate forming process. Moreover, if the pipes 4 and 5 are formed into a perfect circle in advance, there is no need to use the mounting jig 21 or a separate forming process to form the pipes 4 and 5 into a perfect circle.
 本実施形態の開先加工方法において、計測工程、ツールパス設定工程、及び加工工程が開先加工装置2で行われているが、計測工程、ツールパス設定工程、及び加工工程の各々が別々の装置によって実行されてもよい。また、溶接装置は、必ずしも溶接ロボット6である必要はなく、例えば全姿勢自動溶接機であってもよい。全姿勢自動溶接機は、突合せ部3aを外囲するように配置される溶接部を備える。そして、全姿勢自動溶接機では、突合せ部3aに溶接棒を当てながら溶接部が突合せ部3aの周りを一周することによって配管4,5を溶接する。更に、溶接工程では、必ずしも溶接装置によって配管4,5を溶接する必要はなく、作業者によって行われてもよい。更に、溶接工程は、溶接ロボット6によって自動的に行われる必要はなく、操作者が溶接装置を操作することによって行われてもよい。 In the beveling method of this embodiment, the measurement process, tool path setting process, and machining process are performed in the beveling apparatus 2, but each of the measurement process, tool path setting process, and machining process is performed separately. It may also be performed by the device. Further, the welding device does not necessarily have to be the welding robot 6, and may be, for example, an automatic welding machine in all positions. The all-position automatic welding machine includes a welding section arranged to surround the butt section 3a. In the all-position automatic welding machine, the pipes 4 and 5 are welded by moving the welding part around the abutting part 3a while applying the welding rod to the abutting part 3a. Furthermore, in the welding process, the pipes 4 and 5 do not necessarily need to be welded using a welding device, but may be performed by an operator. Further, the welding process does not need to be automatically performed by the welding robot 6, and may be performed by an operator operating the welding device.
 また、本実施形態の開先加工装置2もまた前述するような構成を備えるものに限定されない。例えば、開先加工装置2の切削加工機械11は、移動基台によって切削工具24,25が第1方向に進退するが、径方向に進退するような構成であってもよい。 Furthermore, the beveling device 2 of this embodiment is also not limited to the configuration described above. For example, the cutting machine 11 of the beveling device 2 has a movable base that allows the cutting tools 24 and 25 to move forward and backward in the first direction, but may be configured such that the cutting tools 24 and 25 move forward and backward in the radial direction.
 <例示的な実施形態>
 第1の局面における開先加工方法は、切削工具を用いて管の一端部に開先を形成する方法であって、前記管の一端部の形状を計測する計測工程と、前記計測工程の計測結果に基づいて前記切削工具のツールパスを設定するツールパス設定工程と、前記ツールパス設定工程で設定されたツールパスに基づいて前記切削工具の動きを制御することによって、前記管の一端部に前記開先を形成する加工工程とを、備える方法である。
<Exemplary Embodiment>
The beveling method in the first aspect is a method of forming a bevel at one end of a pipe using a cutting tool, and includes a measuring step of measuring the shape of the one end of the pipe, and a measuring step of the measuring step. a tool path setting step of setting a tool path of the cutting tool based on the result; and controlling the movement of the cutting tool based on the tool path set in the tool path setting step. The method includes a processing step of forming the groove.
 上記局面に従えば、管の一端部の形状を計測した計測結果に基づいてツールパスが設定される。そして、ツールパスに基づいて切削工具の動きを制御することによって管の一端部に開先が形成される。それ故、管の一端部の実際の形状に応じて開先を形成することができる。これにより、管の実際の形状を考慮しないで開先を形成する場合に比べて、開先形状のばらつきが抑制される。即ち、開先形状を所望の形状に形成することができる。 According to the above aspect, the tool path is set based on the measurement result of the shape of one end of the pipe. A bevel is then formed at one end of the tube by controlling the movement of the cutting tool based on the tool path. Therefore, the bevel can be formed according to the actual shape of one end of the tube. This suppresses variations in the groove shape compared to the case where the groove is formed without considering the actual shape of the pipe. That is, the groove shape can be formed into a desired shape.
 第2の局面における開先加工方法は、第1の局面の開先加工方法において、前記加工工程では、前記管の一端部における外周面に沿って前記切削工具が回転することによって前記管の一端部の外周面が切削される外面加工によって、前記管に前記開先が形成され、前記ツールパス設定工程では、外面加工におけるツールパスとして前記切削工具の径方向位置が計測結果に基づいて設定されてもよい。 The beveling method according to the second aspect is the beveling method according to the first aspect, in which, in the machining step, the cutting tool rotates along the outer circumferential surface of the one end of the tube. The groove is formed in the pipe by external processing in which the outer peripheral surface of the part is cut, and in the tool path setting step, the radial position of the cutting tool is set as a tool path in the external processing based on measurement results. It's okay.
 上記局面に従えば、外面加工におけるツールパスとして切削工具の径方向位置が計測結果に基づいて設定される。それ故、管の実際の外形形状に応じて外面加工を施すことができる。これにより、管の外形形状に応じて開先の深さが小さくなったり大きくなったりすることが抑制される。従って、管の外形形状に拘らず、開先の深さを確保することができる。 According to the above aspect, the radial position of the cutting tool is set as a tool path in external surface machining based on the measurement results. Therefore, the outer surface can be processed according to the actual outer shape of the tube. This prevents the depth of the groove from becoming smaller or larger depending on the external shape of the pipe. Therefore, the depth of the groove can be ensured regardless of the external shape of the pipe.
 第3の局面における開先加工方法は、第2の局面の開先加工方法において、前記加工工程では、前記管の一端部における内周面に沿って前記切削工具が回転することによって前記管の一端部の内周面が切削される内面加工によって、前記管のルート面を調整し、前記ツールパス設定工程では、内面加工におけるツールパスとして前記切削工具の径方向位置が計測結果に基づいて設定されてもよい。 The beveling method according to the third aspect is the beveling method according to the second aspect, in which, in the machining step, the cutting tool rotates along the inner circumferential surface at one end of the tube, thereby cutting the tube. The root surface of the tube is adjusted by internal machining in which the inner peripheral surface of one end is cut, and in the tool path setting step, the radial position of the cutting tool is set as a tool path in the internal machining based on the measurement results. may be done.
 上記局面に従えば、内面加工におけるツールパスとして切削工具の径方向位置が計測結果に基づいて設定される。それ故、管の実際の外形形状及び厚み、即ち管の形状に応じて内面加工を施すことができる。これにより、管の形状に拘らず、ルート面の大きさを確保することができる。 According to the above aspect, the radial position of the cutting tool is set as a tool path in inner surface machining based on the measurement results. Therefore, the inner surface can be processed according to the actual external shape and thickness of the tube, that is, the shape of the tube. Thereby, the size of the root surface can be ensured regardless of the shape of the tube.
 第4の局面における開先加工方法は、第3の局面の開先加工方法において、前記ツールパス設定工程では、前記ルート面が所定値となるように外面加工及び内面加工の各々におけるツールパスが設定されてもよい。 The beveling method according to the fourth aspect is the beveling method according to the third aspect, in which, in the tool path setting step, the tool path in each of the outer surface machining and the inner surface machining is set such that the root surface has a predetermined value. May be set.
 上記局面に従えば、ルート面が所定値となるように外面加工及び内面加工の各々におけるツールパスが設定される。それ故、管の端部に所望の大きさのルート面を形成することができる。 According to the above aspect, the tool paths in each of the outer surface machining and the inner surface machining are set so that the root surface has a predetermined value. Therefore, a root surface of a desired size can be formed at the end of the tube.
 第5の局面における開先加工方法は、第3又は4の局面の開先加工方法において、前記加工工程では、外面加工に比べて内面加工が軸方向に長く施され、前記ツールパス設定工程では、前記管の一端部において前記開先より前記他端側の厚みが所定厚さになるように内面加工の各々におけるツールパスが設定されてもよい。 The beveling method according to the fifth aspect is the beveling method according to the third or fourth aspect, wherein in the machining step, the inner surface machining is performed longer in the axial direction than the outer surface machining, and in the tool path setting step, the inner surface machining is performed longer in the axial direction. The tool path for each inner surface processing may be set such that the thickness of one end of the tube on the other end side is a predetermined thickness from the groove.
 上記局面に従えば、管の一端部において開先より他端側の厚みtが所定厚さ以上になるように外面加工及び内面加工の各々におけるツールパスが設定される。それ故、管の一端部において開先より他端部側の厚みtが所定厚さ未満になることを抑制できる。これにより、開先加工を行った後であっても管の一端部における強度を確保することができる。 According to the above aspect, the tool paths in each of the external surface processing and the internal surface processing are set so that the thickness t on the other end side from the groove at one end of the tube is greater than or equal to a predetermined thickness. Therefore, at one end of the tube, the thickness t on the other end side of the groove can be prevented from becoming less than a predetermined thickness. This makes it possible to ensure strength at one end of the tube even after beveling.
 第6の局面における開先加工方法は、第1乃至5の何れかの局面の開先加工方法において、前記計測工程では、前記管の一端部の形状である周長又は径が計測され、前記ツールパス設定工程では、前記計測工程で計測される周長又は径に基づいてツールパスが設定されてもよい。 A beveling method according to a sixth aspect is the beveling method according to any one of the first to fifth aspects, wherein in the measuring step, the circumference or diameter, which is the shape of one end of the pipe, is measured; In the tool path setting step, the tool path may be set based on the circumference or diameter measured in the measurement step.
 上記局面に従えば、計測工程で計測される周長又は径に基づいてツールパスが設定される。それ故、ツールパスを設定するための計測が容易である。これにより、開先加工を容易に行うことができる。 According to the above aspect, the tool path is set based on the circumference or diameter measured in the measurement process. Therefore, measurements for setting tool paths are easy. Thereby, beveling can be easily performed.
 第7の局面における開先加工方法は、第1乃至6の何れかの局面の開先加工方法において、前記計測工程では、治具によって前記管を真円に成形した後に前記管の形状が計算されてもよい。 The beveling method according to a seventh aspect is the beveling method according to any one of the first to sixth aspects, wherein in the measuring step, the shape of the pipe is calculated after forming the pipe into a perfect circle with a jig. may be done.
 上記局面に従えば、治具によって管を真円に成形した後に開先が形成される。それ故、精度よく管の形状を計測することができる。これにより、精度よく開先を形成することができるので、開先をより精度よく所望の形状に形成することができる。 According to the above aspect, the groove is formed after the tube is formed into a perfect circle using a jig. Therefore, the shape of the tube can be measured with high accuracy. As a result, the groove can be formed with high accuracy, so that the groove can be formed into a desired shape with higher accuracy.
 第8の局面における継手管製造方法は、管の一端部同士を突き合わせて溶接することによって継手管を製造する方法であって、第1乃至7の何れかの局面の開先加工方法によって前記管の一端部に前記開先を形成する開先加工工程と、前記開先加工工程によって前記開先が形成された前記管の一端部同士を突き合わせて溶接する溶接工程と、を備える方法である。 A method for manufacturing a joint pipe according to an eighth aspect is a method for manufacturing a joint pipe by butting and welding one ends of the pipes, wherein the pipe is formed by the beveling method according to any one of the first to seventh aspects. This method includes a beveling step of forming the groove at one end, and a welding step of butting and welding the ends of the tubes on which the groove has been formed by the beveling step.
 上記局面に従えば、前述する開先加工方法によって開先が形成された一端部同士を突き合わせて溶接することによって継手管が製造される。前述する開先加工方法によって開先が形成されるので、管の一端部の実際の形状に応じて開先が形成される。それ故、開先形状のばらつきを抑制することができる。従って、容易に溶接することができるので、例えば自動溶接等によって継手管を製造することができる。 According to the above aspect, the joint pipe is manufactured by butting and welding the one end portions in which the grooves have been formed by the groove processing method described above. Since the bevel is formed by the beveling method described above, the bevel is formed according to the actual shape of one end of the tube. Therefore, variations in the groove shape can be suppressed. Therefore, since it can be easily welded, the joint pipe can be manufactured by automatic welding, for example.
 第9の局面における開先加工装置は、管の一端部に開先を形成するものであって、前記管の一端部の形状を計測する計測器と、切削工具によって前記管の一端部を切削する切削加工機械と、前記切削工具の動きを制御する制御器とを備え、前記制御器は、前記計測器の計測結果に基づいて前記切削工具のツールパスを設定し、前記ツールパスに基づいて前記切削工具の動きを制御するものである。 A beveling device according to a ninth aspect forms a beveling at one end of a pipe, and includes a measuring instrument for measuring the shape of the one end of the pipe, and a cutting tool to cut the one end of the pipe. a cutting machine that controls the movement of the cutting tool; and a controller that controls the movement of the cutting tool, the controller that sets a tool path of the cutting tool based on the measurement result of the measuring device, and It controls the movement of the cutting tool.
 上記局面に従えば、管の一端部の形状を計測した計測結果に基づいてツールパスを設定し、ツールパスに基づいて切削工具の動きを制御することによって管の一端部に開先を形成する。それ故、実際に加工される管の一端部の形状に応じて開先を形成することができる。これにより、管の実際の形状を考慮しないで開先を形成する場合に比べて、開先形状のばらつきが抑制される。即ち、開先形状を所望の形状に形成することができる。 According to the above aspect, a tool path is set based on the measurement results of the shape of one end of the pipe, and a bevel is formed at one end of the pipe by controlling the movement of the cutting tool based on the tool path. . Therefore, the groove can be formed according to the shape of one end of the tube to be actually processed. This suppresses variations in the groove shape compared to the case where the groove is formed without considering the actual shape of the pipe. That is, the groove shape can be formed into a desired shape.
 第10の局面における開先加工装置は、第9の局面の開先加工装置において、前記切削加工機械は、前記管の一端部における外周面に沿って前記切削工具を回転させることによって前記管の一端部の外周面を切削する外面加工によって、前記管に前記開先を形成し、前記制御器は、外面加工におけるツールパスとして前記切削工具の径方向位置を前記計測器の計測結果に基づいて設定してもよい。 A bevel processing apparatus according to a tenth aspect is the bevel processing apparatus according to the ninth aspect, in which the cutting machine rotates the cutting tool along an outer circumferential surface at one end of the pipe. The groove is formed in the pipe by external processing of cutting the outer peripheral surface of one end, and the controller determines the radial position of the cutting tool as a tool path in the external processing based on the measurement result of the measuring device. May be set.
 上記局面に従えば、外面加工におけるツールパスとして切削工具の径方向位置が計測結果に基づいて設定される。それ故、実際の管の外形形状に応じて外面加工を施すことができる。これにより、管の外形形状に応じて開先の深さが小さくなったり大きくなったりすることが抑制される。従って、管の外形形状に拘らず、開先の深さを確保することができる。 According to the above aspect, the radial position of the cutting tool is set as a tool path in external surface machining based on the measurement results. Therefore, the outer surface can be processed according to the actual outer shape of the tube. This prevents the depth of the groove from becoming smaller or larger depending on the external shape of the pipe. Therefore, the depth of the groove can be ensured regardless of the external shape of the pipe.
 第11の局面における開先加工装置は、第10の局面の開先加工装置において、前記切削加工機械は、前記管の一端部における内周面に沿って前記切削工具を回転させることによって前記管の一端部の内周面を切削する内面加工によって、前記管のルート面を調整し、前記制御器は、内面加工におけるツールパスとして前記切削工具の径方向位置を計測結果に基づいて設定してもよい。 The bevel processing apparatus according to an eleventh aspect is the bevel processing apparatus according to the tenth aspect, in which the cutting machine rotates the cutting tool along an inner circumferential surface at one end of the pipe. The root surface of the pipe is adjusted by an inner surface machining that cuts an inner circumferential surface of one end, and the controller sets a radial position of the cutting tool as a tool path in the inner surface machining based on the measurement result. Good too.
 上記局面に従えば、内面加工におけるツールパスとして切削工具の径方向位置が計測結果に基づいて設定される。それ故、実際の管の外形形状及び厚み、即ち管の形状に応じて内面加工を施すことができる。これにより、管の形状に拘らず、ルート面の大きさを確保することができる。 According to the above aspect, the radial position of the cutting tool is set as a tool path in inner surface machining based on the measurement results. Therefore, the inner surface can be processed according to the actual external shape and thickness of the tube, that is, the shape of the tube. Thereby, the size of the root surface can be ensured regardless of the shape of the tube.
 第12の局面における開先加工装置は、第9乃至11の何れかの局面の開先加工装置において、前記計測器は、前記管の一端部の周面における複数箇所の位置を計測し、前記制御器は、前記計測器が計測する複数箇所の位置に基づいて前記管の形状である周長又は径を算出し、周長又は径に基づいてツールパスを設定してもよい。 A beveling device according to a twelfth aspect is the beveling device according to any one of the ninth to eleventh aspects, wherein the measuring device measures positions at a plurality of locations on a circumferential surface of one end of the pipe, and The controller may calculate the circumferential length or diameter of the pipe based on the positions of the plurality of locations measured by the measuring device, and may set the tool path based on the circumferential length or diameter.
 上記局面に従えば、計測器で計測される管の一端部の周面における複数箇所の位置に基づいて周長又は径が算出される。そして、周長又は径に基づいてツールパスが設定される。それ故、計測器による計測が容易であって、周長又は径の算出が容易である。これにより、ツールパスの設定が容易である。 According to the above aspect, the circumferential length or diameter is calculated based on the positions of multiple locations on the circumferential surface of one end of the pipe measured by a measuring instrument. A tool path is then set based on the circumference or diameter. Therefore, it is easy to measure with a measuring instrument, and it is easy to calculate the circumference or diameter. This makes it easy to set the tool path.
 第13の局面における自動溶接システムは、管の一端部同士を突き合わせて溶接するシステムであって、第9乃至12の何れかの局面の開先加工装置と、前記開先加工装置によって前記開先が形成された前記管の一端部同士を突き合わせて溶接する溶接装置とを備えるシステムである。 The automatic welding system according to a thirteenth aspect is a system for welding one end portions of pipes against each other, and includes the beveling device according to any one of the ninth to twelfth aspects, and the beveling device. This system includes a welding device that butts and welds one end portions of the tubes formed with the pipe.
 上記局面に従えば、前述する開先加工装置によって開先が形成された一端部同士を突き合わせて溶接装置が溶接する。前述する開先加工装置によって開先が形成されるので、実際に加工される管の一端部の形状に応じて開先を形成することができる。それ故、開先を所望の形状に精度高く形成することができる。従って、容易に溶接することができるので、自動溶接によって継手管を製造することができる。 According to the above aspect, the welding device welds the one ends in which the grooves have been formed by the groove processing device described above butt against each other. Since the bevel is formed by the beveling device described above, the bevel can be formed in accordance with the shape of one end of the pipe to be actually processed. Therefore, the groove can be formed into a desired shape with high precision. Therefore, since it can be easily welded, the joint pipe can be manufactured by automatic welding.
 上記説明から、当業者にとっては、本発明の多くの改良や他の実施形態が明らかである。従って、上記説明は、例示としてのみ解釈されるべきであり、本発明を実行する最良の態様を当業者に教示する目的で提供されたものである。本発明の精神を逸脱することなく、その構造及び/又は機能の詳細を実質的に変更できる。 From the above description, many modifications and other embodiments of the invention will be apparent to those skilled in the art. Accordingly, the above description is to be construed as illustrative only, and is provided for the purpose of teaching those skilled in the art the best mode of carrying out the invention. Substantial changes may be made in the structural and/or functional details thereof without departing from the spirit of the invention.

Claims (13)

  1.  切削工具を用いて管の一端部に開先を形成する開先加工方法であって、
     前記管の一端部の形状を計測する計測工程と、
     前記計測工程の計測結果に基づいて前記切削工具のツールパスを設定するツールパス設定工程と、
     前記ツールパス設定工程で設定されたツールパスに基づいて前記切削工具の動きを制御することによって、前記管の一端部に前記開先を形成する加工工程とを、備える、開先加工方法。
    A beveling method for forming a bevel at one end of a pipe using a cutting tool,
    a measuring step of measuring the shape of one end of the pipe;
    a tool path setting step of setting a tool path of the cutting tool based on the measurement results of the measurement step;
    A beveling method comprising: forming the bevel at one end of the pipe by controlling movement of the cutting tool based on the toolpath set in the toolpath setting step.
  2.  前記加工工程では、前記管の一端部における外周面に沿って前記切削工具が回転することによって前記管の一端部の外周面が切削される外面加工によって、前記管に前記開先が形成され、
     前記ツールパス設定工程では、外面加工におけるツールパスとして前記切削工具の径方向位置が計測結果に基づいて設定される、請求項1に記載の開先加工方法。
    In the machining step, the groove is formed in the tube by external processing in which the outer circumferential surface of the one end of the tube is cut by rotating the cutting tool along the outer circumferential surface of the one end of the tube,
    The beveling method according to claim 1, wherein in the tool path setting step, a radial position of the cutting tool is set as a tool path in external surface machining based on a measurement result.
  3.  前記加工工程では、前記管の一端部における内周面に沿って前記切削工具が回転することによって前記管の一端部の内周面が切削される内面加工によって、前記管のルート面を調整し、
     前記ツールパス設定工程では、内面加工におけるツールパスとして前記切削工具の径方向位置が計測結果に基づいて設定される、請求項2に記載の開先加工方法。
    In the machining step, the root surface of the tube is adjusted by internal machining in which the inner circumferential surface of one end of the tube is cut by rotating the cutting tool along the inner circumferential surface of the one end of the tube. ,
    The beveling method according to claim 2, wherein in the tool path setting step, the radial position of the cutting tool is set as a tool path in inner surface machining based on a measurement result.
  4.  前記ツールパス設定工程では、前記ルート面が所定値となるように外面加工及び内面加工の各々におけるツールパスが設定される、請求項3に記載の開先加工方法。 The beveling method according to claim 3, wherein in the tool path setting step, tool paths for each of the outer surface processing and inner surface processing are set so that the root surface has a predetermined value.
  5.  前記加工工程では、外面加工に比べて内面加工が軸方向に長く施され、
     前記ツールパス設定工程では、前記管の一端部において前記開先より前記他端側の厚みが所定厚さになるように内面加工の各々におけるツールパスが設定される、請求項3に記載の開先加工方法。
    In the machining process, the inner surface is processed longer in the axial direction than the outer surface.
    4. The opening according to claim 3, wherein in the tool path setting step, a tool path for each inner surface processing is set so that the thickness of the other end of the tube is a predetermined thickness from the groove at one end of the tube. Tip processing method.
  6.  前記計測工程では、前記管の一端部の形状である周長又は径が計測され、
     前記ツールパス設定工程では、前記計測工程で計測される周長又は径に基づいてツールパスが設定される、請求項1に記載の開先加工方法。
    In the measuring step, the circumferential length or diameter, which is the shape of one end of the tube, is measured,
    The beveling method according to claim 1, wherein in the tool path setting step, a tool path is set based on the circumference or diameter measured in the measuring step.
  7.  前記計測工程では、治具によって前記管を真円に成形した後に前記管の形状が計算される、請求項1に記載の開先加工方法。 The beveling method according to claim 1, wherein in the measuring step, the shape of the pipe is calculated after forming the pipe into a perfect circle using a jig.
  8.  管の一端部同士を突き合わせて溶接することによって継手管を製造する継手管製造方法であって、
     請求項1に記載の開先加工方法によって前記管の一端部に前記開先を形成する開先加工工程と、
     前記開先加工工程によって前記開先が形成された前記管の一端部同士を突き合わせて溶接する溶接工程と、を備える継手管製造方法。
    A joint pipe manufacturing method for manufacturing a joint pipe by butting and welding one ends of the pipes, the method comprising:
    A beveling step of forming the bevel at one end of the tube by the beveling method according to claim 1;
    A method for manufacturing a joint pipe, comprising: a welding step of butting and welding one end portions of the tubes in which the grooves have been formed in the groove processing step.
  9.  管の一端部に開先を形成する開先加工装置であって、
     前記管の一端部の形状を計測する計測器と、
     切削工具によって前記管の一端部を切削する切削加工機械と、
     前記切削工具の動きを制御する制御器とを備え、
     前記制御器は、前記計測器の計測結果に基づいて前記切削工具のツールパスを設定し、前記ツールパスに基づいて前記切削工具の動きを制御する、開先加工装置。
    A beveling device for forming a bevel at one end of a pipe,
    a measuring device that measures the shape of one end of the tube;
    a cutting machine that cuts one end of the tube with a cutting tool;
    a controller that controls movement of the cutting tool;
    The bevel processing apparatus, wherein the controller sets a tool path of the cutting tool based on a measurement result of the measuring device, and controls movement of the cutting tool based on the tool path.
  10.  前記切削加工機械は、前記管の一端部における外周面に沿って前記切削工具を回転させることによって前記管の一端部の外周面を切削する外面加工によって、前記管に前記開先を形成し、
     前記制御器は、外面加工におけるツールパスとして前記切削工具の径方向位置を前記計測器の計測結果に基づいて設定する、請求項9に記載の開先加工装置。
    The cutting machine forms the bevel in the tube by an external surface machining process that cuts the outer circumferential surface of one end of the tube by rotating the cutting tool along the outer circumferential surface of the one end of the tube,
    The bevel processing apparatus according to claim 9, wherein the controller sets a radial position of the cutting tool as a tool path in external surface processing based on a measurement result of the measuring device.
  11.  前記切削加工機械は、前記管の一端部における内周面に沿って前記切削工具を回転させることによって前記管の一端部の内周面を切削する内面加工によって、前記管のルート面を調整し、
     前記制御器は、内面加工におけるツールパスとして前記切削工具の径方向位置を計測結果に基づいて設定する、請求項10に記載の開先加工装置。
    The cutting machine adjusts the root surface of the tube by internal processing that cuts the inner circumferential surface of one end of the tube by rotating the cutting tool along the inner circumferential surface of the one end of the tube. ,
    The bevel processing apparatus according to claim 10, wherein the controller sets a radial position of the cutting tool as a tool path in internal processing based on a measurement result.
  12.  前記計測器は、前記管の一端部の周面における複数箇所の位置を計測し、
     前記制御器は、前記計測器が計測する複数箇所の位置に基づいて前記管の形状である周長又は径を算出し、周長又は径に基づいてツールパスを設定する、請求項9に記載の開先加工装置。
    The measuring device measures positions at multiple locations on the circumferential surface of one end of the pipe,
    The controller calculates the circumference or diameter of the pipe based on the positions of the plurality of locations measured by the measuring device, and sets the tool path based on the circumference or diameter. bevel processing equipment.
  13.  管の一端部同士を突き合わせて溶接する自動溶接システムであって、
     請求項9に記載の開先加工装置と、
     前記開先加工装置によって前記開先が形成された前記管の一端部同士を突き合わせて溶接する溶接装置とを備える、自動溶接システム。
    An automatic welding system that butts and welds one end of pipes,
    The beveling device according to claim 9;
    An automatic welding system comprising: a welding device that butts and welds one end portions of the pipes in which the grooves have been formed by the groove processing device.
PCT/JP2023/028971 2022-08-12 2023-08-08 Beveling method, method for manufacturing connection pipe, beveling device, and automatic welding system equipped with same WO2024034615A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022129064A JP7186914B1 (en) 2022-08-12 2022-08-12 Groove processing method, joint pipe manufacturing method, groove processing device, and automatic welding system provided with the same
JP2022-129064 2022-08-12

Publications (1)

Publication Number Publication Date
WO2024034615A1 true WO2024034615A1 (en) 2024-02-15

Family

ID=84388165

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/028971 WO2024034615A1 (en) 2022-08-12 2023-08-08 Beveling method, method for manufacturing connection pipe, beveling device, and automatic welding system equipped with same

Country Status (2)

Country Link
JP (1) JP7186914B1 (en)
WO (1) WO2024034615A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50113083U (en) * 1974-02-22 1975-09-16
JPS61141001U (en) * 1985-02-25 1986-09-01
JPH0347744U (en) * 1989-09-20 1991-05-07

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5449698A (en) * 1977-09-26 1979-04-19 Mitsuboshi Seisakusho Apparatus for working pipe end groove
GB2534382B (en) * 2015-01-21 2017-09-13 Acergy France SAS Scanning bevels in preperation for welding

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50113083U (en) * 1974-02-22 1975-09-16
JPS61141001U (en) * 1985-02-25 1986-09-01
JPH0347744U (en) * 1989-09-20 1991-05-07

Also Published As

Publication number Publication date
JP2024025547A (en) 2024-02-26
JP7186914B1 (en) 2022-12-09

Similar Documents

Publication Publication Date Title
EP1132167B1 (en) Friction stir welding
CA2074237C (en) Method of making frames from tubular members and frames made by the method
JP3763734B2 (en) Panel member processing method
KR101344343B1 (en) automatic welding system
JP6302782B2 (en) Defect repair device and defect repair method
WO2024034615A1 (en) Beveling method, method for manufacturing connection pipe, beveling device, and automatic welding system equipped with same
TW202412982A (en) Groove processing method, joint pipe manufacturing method, groove processing device, and automatic welding system equipped with the groove processing device
JP4537100B2 (en) Cylindrical welding method and welding apparatus
JP2001353642A (en) Measuring method of center position of pipe body cross section, and pipe body machining/guiding device
CN113370235B (en) Automatic milling device for weld reinforcement, path generation method and using method
WO2022004625A1 (en) Machine tool and method for controlling machine tool
JP5126672B2 (en) Tool radius compensation device
JP7267475B1 (en) Pipe joint welding method using plasma welding prior to CO2 welding and joint pipe welded by this method
JP6687316B2 (en) Processing device and processing method for steel pipe end
CN214815988U (en) Structure for assembling and positioning welding parts
WO2023090251A1 (en) Pipe machining device and pipe machining method
KR20180117364A (en) Beveling machine for large diameter pipes
CN110605485B (en) Method for searching center of pipe with section having two unparallel straight line edges
JPH081380A (en) Welding equipment, and mechanism and method for positioning groove part
JP3207059U (en) Pipe fitting
KR20230012994A (en) Process for improving the repeatability of a weld
JP2004268052A (en) Bevel shape, and welding method therefor
CN116117444A (en) Butt joint method for high-strength precision welded cold drawn steel tube
JP2869050B2 (en) Automatic groove processing method for membrane panel
JP6049449B2 (en) Copy welding equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23852577

Country of ref document: EP

Kind code of ref document: A1