US20020019068A1 - Method and device for passive alignment - Google Patents
Method and device for passive alignment Download PDFInfo
- Publication number
- US20020019068A1 US20020019068A1 US09/862,461 US86246101A US2002019068A1 US 20020019068 A1 US20020019068 A1 US 20020019068A1 US 86246101 A US86246101 A US 86246101A US 2002019068 A1 US2002019068 A1 US 2002019068A1
- Authority
- US
- United States
- Prior art keywords
- alignment
- carrier
- laser
- structures
- passive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/05—Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
- H01S3/06—Construction or shape of active medium
- H01S3/063—Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/42—Coupling light guides with opto-electronic elements
- G02B6/4201—Packages, e.g. shape, construction, internal or external details
- G02B6/4219—Mechanical fixtures for holding or positioning the elements relative to each other in the couplings; Alignment methods for the elements, e.g. measuring or observing methods especially used therefor
- G02B6/4228—Passive alignment, i.e. without a detection of the degree of coupling or the position of the elements
- G02B6/423—Passive alignment, i.e. without a detection of the degree of coupling or the position of the elements using guiding surfaces for the alignment
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/42—Coupling light guides with opto-electronic elements
- G02B6/4201—Packages, e.g. shape, construction, internal or external details
- G02B6/4249—Packages, e.g. shape, construction, internal or external details comprising arrays of active devices and fibres
Definitions
- the present invention is related to a method and a device for precision and passive alignment such as a precision and passive alignment technology for low cost array fibre access components.
- BCB benzocyclobutene
- Silicon micromachining indiumphosfide (InP) laser diode array technology, benzocyclobutene (BCB) waveguides, passive alignments of laserdiode arrays to waveguides by self-aligning solder bumps, passive alignment of waveguide to an optical MT interface—micro replication technology and plastic encapsulation.
- InP indiumphosfide
- BCB benzocyclobutene
- a laser carrier is passive aligned to an MT-interface using alignments structures on a low cost replicated carrier.
- the laser carrier is based on a self-aligned semiconductor laser, flip-chip mounted on a silicon substrate with planar polymeric waveguides.
- the concept for alignment according to the invention is shown in FIG. 1 with a front view of a laser carrier mounted on a polymeric carrier.
- FIG. 1 is a front view of a laser carrier mounted on a polymeric carrier with the concept of an alignment according to the invention.
- FIG. 2 is a top view of a laser carrier with alignment trenches adapted for the carrier structure according to the invention.
- FIG. 3 is a front view of the polymer carrier according to the invention showing alignment structures in a mould insert and the formed polymeric carrier.
- a laser carrier 1 comprises an edge-emitting SM laser array 2 passive aligned to the waveguides 3 on the carrier using AuSn, soldering bumps, se FIG. 2. This method of alignment has earlier been shown to give single mode precision; see reference /1/ and /2/. The alignment is achieved by the surface tension that is created of the bumps in the melted phase.
- the planar waveguides 3 of for example BCB, see reference /3/, on the silicon substrate conduct the light from the laser array 2 to the edge of the carrier 1 , enabling a laser component without pigtail connection and with future waveguide functionality to be integrated.
- trenches 4 are etched, see FIG. 2, into the outer parts of the carrier 1 preferably made by silicon.
- the laser carrier 1 is then placed upside down on a polymeric carrier 5 and passively positioned to an MT-interface by fitting the alignment trenches 4 on the laser carrier to vertical alignment structures 6 and the waveguides 3 to horizontal alignment structures 7 on the polymeric carrier, see FIG. 1.
- Polymeric carriers are preferably made by using replication technique, based on transfer moulding with micro structured silicon as a mould insert 8 , see FIG. 3 and reference /4/.
- the mould insert comprises v-grooves of different sizes for the MT-interface, the vertical alignment and the horizontal alignment for later creating the vertical alignment structures 6 and the horizontal alignment structures 7 in the polymeric carrier.
- a cavity can be formed behind the alignment structures in the polymeric carrier.
- MT guiding holes 9 in the replicated carriers are made by placing the MT-guiding pins 10 on the mould insert during the replication step.
- a lead frame may then be mounted on the backside of the laser carier and connected to the electrodes by wire bonding. This is done before the laser carrier is fixed to the polymer carrier by gluing. Finally, this package is encapsulated using transfer moulding and polished to achieve optical finish at the waveguide edge.
- the laser array can have four laser channels, where signal electrodes can apear on the epitaxial side and be connected to the carrier when the laser array is flip-chip mounted.
- the common ground electrode is wire bonded to the laser carrier.
- the laser carrier was manufacturated using standard micro structuring technique with litography and dry etching on silicon. Electrodes were made by e-beam evaporation of Ti/Pt/Ni/Au and a lift-off technique. Gold and tin can then be electroplated through a photoresist mask as soldering bumps.
- the planar BCB waveguide was built up by under- and overcladding layers, and in between a waveguiding core, se reference /3/. All these layers were deposited on the silsicon substrate by spinning deposition and the pattern of the waveguiding core was made in a lithography step. The end surface of the waveguide was also dry etched, thus creating a sharp edge of the waveguide. This was done in order to get good coupling efficiency from the laser into the waveguide core. Finally, alignment trenches were etched into the substrate using DRIE (Deep Reactive Ion Etching) with oxide as masking material.
- DRIE Deep Reactive Ion Etching
- Silicon wafers of (100) orientation was anisotropically etched in KOH (30 vol. %), for manufacturing the mould insert. Since the v-grooves for the MT-guiding pins consists of two levels, two separate litography steps were used with Si oxide and Si nitride as masking material. First the wider MT-structures were etched with nitride as masking material. After removing the nitride, the rest of the structures were etched with an underlying oxide mask. In order to create the building block, another silcon wafer was fusion bonded on top of this wafer, The building block structures were then etched out from this bonded wafer. All structures in the mould insert were compensated for a dimensional shrinkage of 0,629% of the polymeric material, see reference /4/.
- the optical properties of the laser module can be tested with an integrating sphere and the IP-curve can be recorded for each individual channel.
- the total shrinkage of the replicated structures after the transfer moulding was found to be about 0,69% when measuring the structures on both mold insert and replicated carrier with a profilometer.
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Optical Couplings Of Light Guides (AREA)
- Semiconductor Lasers (AREA)
- Optical Integrated Circuits (AREA)
- Manipulator (AREA)
- Two-Way Televisions, Distribution Of Moving Picture Or The Like (AREA)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/177,493 US7317746B2 (en) | 2000-05-23 | 2005-07-11 | Method and device for passive alignment |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SE0001954A SE0001954D0 (sv) | 2000-05-23 | 2000-05-23 | Anordning för passiv upplinjering |
SE0001954-7 | 2000-05-23 | ||
SE0100367-2 | 2001-02-06 | ||
SE0100367A SE519713C2 (sv) | 2000-05-23 | 2001-02-06 | Förfarande och anordning för passiv upplinjering |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/177,493 Continuation US7317746B2 (en) | 2000-05-23 | 2005-07-11 | Method and device for passive alignment |
Publications (1)
Publication Number | Publication Date |
---|---|
US20020019068A1 true US20020019068A1 (en) | 2002-02-14 |
Family
ID=26655120
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/862,461 Abandoned US20020019068A1 (en) | 2000-05-23 | 2001-05-23 | Method and device for passive alignment |
US11/177,493 Expired - Fee Related US7317746B2 (en) | 2000-05-23 | 2005-07-11 | Method and device for passive alignment |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/177,493 Expired - Fee Related US7317746B2 (en) | 2000-05-23 | 2005-07-11 | Method and device for passive alignment |
Country Status (11)
Country | Link |
---|---|
US (2) | US20020019068A1 (sv) |
EP (1) | EP1290481B1 (sv) |
JP (1) | JP4808900B2 (sv) |
KR (1) | KR100902433B1 (sv) |
CN (1) | CN1380987A (sv) |
AT (1) | ATE478356T1 (sv) |
AU (1) | AU6094201A (sv) |
CA (1) | CA2380240C (sv) |
DE (1) | DE60142832D1 (sv) |
SE (1) | SE519713C2 (sv) |
WO (1) | WO2001090794A1 (sv) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030072338A1 (en) * | 2001-10-12 | 2003-04-17 | Masayuki Momiuchi | Laser oscillation apparatus |
US20070252289A1 (en) * | 2003-07-25 | 2007-11-01 | Hrl Laboratories, Llc | Oriented self-location of microstructures with alignment structures |
US10048450B2 (en) * | 2016-03-28 | 2018-08-14 | Cisco Technology, Inc. | Alignment of optical components using nanomagnets |
US11562984B1 (en) | 2020-10-14 | 2023-01-24 | Hrl Laboratories, Llc | Integrated mechanical aids for high accuracy alignable-electrical contacts |
US12057429B1 (en) | 2021-06-23 | 2024-08-06 | Hrl Laboratories, Llc | Temporary bonding structures for die-to-die and wafer-to-wafer bonding |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4699262B2 (ja) * | 2006-03-31 | 2011-06-08 | 京セラ株式会社 | 光導波路コネクタ及びそれを用いた光接続構造、並びに光導波路コネクタの製造方法 |
JP4754613B2 (ja) * | 2008-11-27 | 2011-08-24 | 日東電工株式会社 | 光電気混載基板およびその製造方法 |
US8265436B2 (en) | 2010-05-12 | 2012-09-11 | Industrial Technology Research Institute | Bonding system for optical alignment |
JP6052815B2 (ja) | 2014-09-30 | 2016-12-27 | インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation | 導波路用のコネクタおよびアライメント方法 |
US10852492B1 (en) * | 2014-10-29 | 2020-12-01 | Acacia Communications, Inc. | Techniques to combine two integrated photonic substrates |
US20230296853A9 (en) | 2015-10-08 | 2023-09-21 | Teramount Ltd. | Optical Coupling |
US11585991B2 (en) | 2019-02-28 | 2023-02-21 | Teramount Ltd. | Fiberless co-packaged optics |
US12124087B2 (en) | 2015-10-08 | 2024-10-22 | Teramount Ltd. | Wideband surface coupling |
US9804334B2 (en) | 2015-10-08 | 2017-10-31 | Teramount Ltd. | Fiber to chip optical coupler |
US10564374B2 (en) | 2015-10-08 | 2020-02-18 | Teramount Ltd. | Electro-optical interconnect platform |
US10048455B2 (en) * | 2016-01-18 | 2018-08-14 | Cisco Technology, Inc. | Passive fiber array connector alignment to photonic chip |
US10031299B2 (en) | 2016-05-27 | 2018-07-24 | Corning Optical Communications LLC | Silicon-based optical ports providing passive alignment connectivity |
US10656339B2 (en) | 2018-03-14 | 2020-05-19 | Cisco Technology, Inc. | Fiber to chip alignment using passive vgroove structures |
CN115362402A (zh) * | 2020-02-03 | 2022-11-18 | 扇港元器件股份有限公司 | 弹性平均耦合装置 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5535296A (en) * | 1994-09-28 | 1996-07-09 | Optobahn Corporation | Integrated optoelectronic coupling and connector |
US5559918A (en) * | 1992-12-04 | 1996-09-24 | Kabushiki Kaisha Toshiba | Optical semiconductor module in which a hermetically sealed optical semiconductor device is connected to an electrical wiring layer |
US5574811A (en) * | 1994-09-07 | 1996-11-12 | Northern Telecom Limited | Method and apparatus for providing optical coupling between optical components |
US6219470B1 (en) * | 1999-09-23 | 2001-04-17 | Xiang Zheng Tu | Wavelength division multiplexing transmitter and receiver module |
US6236788B1 (en) * | 1998-10-01 | 2001-05-22 | Daimlerchrysler Ag | Arrangement for aligning optical components |
US6238100B1 (en) * | 1998-10-21 | 2001-05-29 | Nec Corporation | Optical module and a method for fabricating a same |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0339706A (ja) * | 1989-07-06 | 1991-02-20 | Fujitsu Ltd | 光モジュール |
JP3090335B2 (ja) * | 1990-12-03 | 2000-09-18 | 株式会社東芝 | 光半導体モジュール |
JPH06130254A (ja) * | 1992-10-15 | 1994-05-13 | Toshiba Corp | 光部品結合装置 |
DE4240950C1 (de) * | 1992-12-07 | 1994-03-31 | Bosch Gmbh Robert | Verfahren zum Herstellen eines Deckels für eine integriert optische Schaltung und Deckel für eine integriert optische Schaltung |
JPH0777634A (ja) * | 1993-09-09 | 1995-03-20 | Fujitsu Ltd | 光端末装置 |
TW298627B (en) * | 1995-08-31 | 1997-02-21 | At & T Corp | Article comprising a fiber-to-planar waveguide coupling and method of making the article |
SE510049C2 (sv) * | 1996-03-25 | 1999-04-12 | Ericsson Telefon Ab L M | Anordning för att ansluta minst en vågledare till en optisk sändare eller mottagare |
JPH1039176A (ja) * | 1996-07-24 | 1998-02-13 | Furukawa Electric Co Ltd:The | 光素子の基板実装方法 |
KR100248407B1 (ko) * | 1997-08-06 | 2000-03-15 | 이계철 | 광섬유와 광소자의 수동정렬 방법 |
JP2000171669A (ja) * | 1998-12-03 | 2000-06-23 | Hitachi Ltd | 光素子アレイモジュールおよびその製造方法ならびに多芯光コネクタと光素子搭載基板 |
JP2001324631A (ja) * | 2000-05-12 | 2001-11-22 | Nec Corp | 基板、光ファイバ接続端部材、光素子ハウジング部材、光モジュール及び基板の製造方法 |
-
2001
- 2001-02-06 SE SE0100367A patent/SE519713C2/sv not_active IP Right Cessation
- 2001-05-23 DE DE60142832T patent/DE60142832D1/de not_active Expired - Lifetime
- 2001-05-23 AU AU60942/01A patent/AU6094201A/en not_active Abandoned
- 2001-05-23 EP EP01934792A patent/EP1290481B1/en not_active Expired - Lifetime
- 2001-05-23 US US09/862,461 patent/US20020019068A1/en not_active Abandoned
- 2001-05-23 JP JP2001586503A patent/JP4808900B2/ja not_active Expired - Fee Related
- 2001-05-23 AT AT01934792T patent/ATE478356T1/de not_active IP Right Cessation
- 2001-05-23 CA CA2380240A patent/CA2380240C/en not_active Expired - Fee Related
- 2001-05-23 KR KR1020027000938A patent/KR100902433B1/ko not_active IP Right Cessation
- 2001-05-23 WO PCT/SE2001/001181 patent/WO2001090794A1/en active Application Filing
- 2001-05-23 CN CN01801356A patent/CN1380987A/zh active Pending
-
2005
- 2005-07-11 US US11/177,493 patent/US7317746B2/en not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5559918A (en) * | 1992-12-04 | 1996-09-24 | Kabushiki Kaisha Toshiba | Optical semiconductor module in which a hermetically sealed optical semiconductor device is connected to an electrical wiring layer |
US5574811A (en) * | 1994-09-07 | 1996-11-12 | Northern Telecom Limited | Method and apparatus for providing optical coupling between optical components |
US5535296A (en) * | 1994-09-28 | 1996-07-09 | Optobahn Corporation | Integrated optoelectronic coupling and connector |
US6236788B1 (en) * | 1998-10-01 | 2001-05-22 | Daimlerchrysler Ag | Arrangement for aligning optical components |
US6238100B1 (en) * | 1998-10-21 | 2001-05-29 | Nec Corporation | Optical module and a method for fabricating a same |
US6219470B1 (en) * | 1999-09-23 | 2001-04-17 | Xiang Zheng Tu | Wavelength division multiplexing transmitter and receiver module |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030072338A1 (en) * | 2001-10-12 | 2003-04-17 | Masayuki Momiuchi | Laser oscillation apparatus |
US6687273B2 (en) * | 2001-10-12 | 2004-02-03 | Kabushiki Kaisha Topcon | Laser oscillation apparatus |
US20070252289A1 (en) * | 2003-07-25 | 2007-11-01 | Hrl Laboratories, Llc | Oriented self-location of microstructures with alignment structures |
US7622813B2 (en) * | 2003-07-25 | 2009-11-24 | Hrl Laboratories, Llc | Oriented self-location of microstructures with alignment structures |
US10048450B2 (en) * | 2016-03-28 | 2018-08-14 | Cisco Technology, Inc. | Alignment of optical components using nanomagnets |
US11562984B1 (en) | 2020-10-14 | 2023-01-24 | Hrl Laboratories, Llc | Integrated mechanical aids for high accuracy alignable-electrical contacts |
US12057429B1 (en) | 2021-06-23 | 2024-08-06 | Hrl Laboratories, Llc | Temporary bonding structures for die-to-die and wafer-to-wafer bonding |
Also Published As
Publication number | Publication date |
---|---|
KR100902433B1 (ko) | 2009-06-11 |
EP1290481B1 (en) | 2010-08-18 |
CA2380240C (en) | 2011-05-03 |
DE60142832D1 (de) | 2010-09-30 |
ATE478356T1 (de) | 2010-09-15 |
EP1290481A1 (en) | 2003-03-12 |
AU6094201A (en) | 2001-12-03 |
US20060007972A1 (en) | 2006-01-12 |
SE0100367L (sv) | 2001-11-26 |
CA2380240A1 (en) | 2001-11-29 |
CN1380987A (zh) | 2002-11-20 |
US7317746B2 (en) | 2008-01-08 |
JP4808900B2 (ja) | 2011-11-02 |
WO2001090794A1 (en) | 2001-11-29 |
JP2003534568A (ja) | 2003-11-18 |
SE0100367D0 (sv) | 2001-02-06 |
SE519713C2 (sv) | 2003-04-01 |
KR20020021161A (ko) | 2002-03-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7317746B2 (en) | Method and device for passive alignment | |
US10678005B2 (en) | Optically aligned hybrid semiconductor device and method | |
CN110554459B (zh) | 制造用于绝热耦合的器件的方法、对应的器件和系统 | |
US5647044A (en) | Fiber waveguide package with improved alignment means | |
US7298941B2 (en) | Optical coupling to IC chip | |
US6404960B1 (en) | Flexible optic connector assembly | |
US6219470B1 (en) | Wavelength division multiplexing transmitter and receiver module | |
US20090154872A1 (en) | Electronic device package and method of formation | |
US20180239095A1 (en) | Apparatus for Optical Fiber-to-Photonic Chip Connection and Associated Methods | |
US20230130045A1 (en) | Detachable connector for co-packaged optics | |
Holm et al. | Through-etched silicon carriers for passive alignment of optical fibers to surface-active optoelectronic components | |
Barwicz et al. | Photonic packaging in high-throughput microelectronic assembly lines for cost-efficiency and scalability | |
US6798953B1 (en) | Guides lithographically fabricated on semiconductor devices | |
Ericson et al. | Precision passive alignment technologies for low cost array FTTH component | |
Bäcklund | Micromechanics in optical microsystems-with focus on telecom systems | |
Hayashi et al. | Optical module with MU connector interface using self-alignment technique by solder-bump chip bonding | |
Acklin et al. | Self-aligned packing of an optical switch array with integrated tapers | |
US8319302B2 (en) | Wafer arrangement and a method for manufacturing the wafer arrangement | |
Snyder et al. | Developments in packaging and integration for silicon photonics | |
KR100360892B1 (ko) | 광섬유 정렬소자 및 그 제조방법 | |
EP4325262A1 (en) | Improved light source integration | |
Peall | Hybrid Integration of Optical Devices on Silicon | |
WO2023159311A1 (en) | Photonic wire bonding methods and processes for the advanced packaging of photonic devices and systems | |
van der Linden et al. | High-density and alignment-tolerant integration of monitoring photodetector arrays onto polymeric guided-wave components | |
Pocha et al. | Glass, plastic, and semiconductors: packaging techniques for miniature optoelectronic components |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: TELEFONAKTIEBOLAGET LM ERICSSON (PUBL), SWEDEN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ERICSON, THOMAS;ERIKSEN, PAUL;GRANBERG, MATS;AND OTHERS;REEL/FRAME:012244/0289;SIGNING DATES FROM 20010807 TO 20010921 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |