US20020014227A1 - Gas flow regulation system - Google Patents

Gas flow regulation system Download PDF

Info

Publication number
US20020014227A1
US20020014227A1 US09/886,115 US88611501A US2002014227A1 US 20020014227 A1 US20020014227 A1 US 20020014227A1 US 88611501 A US88611501 A US 88611501A US 2002014227 A1 US2002014227 A1 US 2002014227A1
Authority
US
United States
Prior art keywords
port
fluid passage
gas flow
valve
disposed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US09/886,115
Other languages
English (en)
Inventor
Erick Girouard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GFI Control Systems Inc
Original Assignee
Erick Girouard
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Erick Girouard filed Critical Erick Girouard
Publication of US20020014227A1 publication Critical patent/US20020014227A1/en
Assigned to TELEFLEX GFI CONTROL SYSTEMS L.P. reassignment TELEFLEX GFI CONTROL SYSTEMS L.P. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GIROUARD, ERICK
Priority to US10/630,719 priority Critical patent/US6901952B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • G05D7/01Control of flow without auxiliary power
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D16/00Control of fluid pressure
    • G05D16/04Control of fluid pressure without auxiliary power
    • G05D16/06Control of fluid pressure without auxiliary power the sensing element being a flexible membrane, yielding to pressure, e.g. diaphragm, bellows, capsule
    • G05D16/063Control of fluid pressure without auxiliary power the sensing element being a flexible membrane, yielding to pressure, e.g. diaphragm, bellows, capsule the sensing element being a membrane
    • G05D16/0644Control of fluid pressure without auxiliary power the sensing element being a flexible membrane, yielding to pressure, e.g. diaphragm, bellows, capsule the sensing element being a membrane the membrane acting directly on the obturator
    • G05D16/0663Control of fluid pressure without auxiliary power the sensing element being a flexible membrane, yielding to pressure, e.g. diaphragm, bellows, capsule the sensing element being a membrane the membrane acting directly on the obturator using a spring-loaded membrane with a spring-loaded slideable obturator
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • G05D7/01Control of flow without auxiliary power
    • G05D7/0106Control of flow without auxiliary power the sensing element being a flexible member, e.g. bellows, diaphragm, capsule
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • G05D7/06Control of flow characterised by the use of electric means
    • G05D7/0617Control of flow characterised by the use of electric means specially adapted for fluid materials
    • G05D7/0629Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means
    • G05D7/0635Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on throttling means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0338Pressure regulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0388Arrangement of valves, regulators, filters
    • F17C2205/0391Arrangement of valves, regulators, filters inside the pressure vessel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/7722Line condition change responsive valves
    • Y10T137/7781With separate connected fluid reactor surface
    • Y10T137/7793With opening bias [e.g., pressure regulator]
    • Y10T137/7795Multi-stage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/7722Line condition change responsive valves
    • Y10T137/7781With separate connected fluid reactor surface
    • Y10T137/7793With opening bias [e.g., pressure regulator]
    • Y10T137/7822Reactor surface closes chamber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/7722Line condition change responsive valves
    • Y10T137/7781With separate connected fluid reactor surface
    • Y10T137/7793With opening bias [e.g., pressure regulator]
    • Y10T137/7822Reactor surface closes chamber
    • Y10T137/7823Valve head in inlet chamber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems
    • Y10T137/87917Flow path with serial valves and/or closures
    • Y10T137/87925Separable flow path section, valve or closure in each

Definitions

  • the present invention relates to gas flow regulation systems for controlling the flow of gas, and more particularly relates to tank-mounted modules for controlling the flow of high pressure gaseous fuels such as compressed or liquified natural gas or hydrogen from a storage tank.
  • gaseous fuels such as compressed or liquified natural gas or hydrogen
  • Many vehicles are manufactured to operate on gasoline only and are converted to run on two or more fuels.
  • the vehicles are manufactured with storage tanks for gasoline, pumps for moving the gasoline from the tank to the engine, and carburetors or fuel injectors for introducing the fuel and the required amount of air for combustion into the engine.
  • Gaseous fuels such as propane, natural gas, and hydrogen must be stored in pressurized cylinders to compress the gas into a manageable volume. Increasing the pressure to the highest level that can safely be handled by the pressurized storage cylinder increases the amount of fuel that can be stored in that cylinder and extends the distance that the vehicle can be driven to its maximum. Typical storage cylinder pressures range from 2000 to 5000 psig.
  • the pressure must also be regulated as it is reduced to ensure that the pressure of the fuel entering the engine is nearly constant even as the pressure in the storage cylinder is reduced. At the same time, the pressure regulation must permit as much gas as possible to be removed from the storage cylinder, and thus permit the pressure in the storage cylinder to fall to as close to the operating pressure as possible. A high pressure difference across the pressure regulator means that unused fuel remains in the storage cylinder and is unavailable to the engine.
  • Sirosh's pressure regulator can be internally mounted within a single nozzle in a storage cylinder, the space occupied by such regulator prevents, as a practical matter, the further internal mounting of a solenoid shut off valve within the same nozzle to open and close flow to the pressure regulator or the further internal mounting of a second regulator stage.
  • the size of the nozzle could be increased to accommodate the solenoid shut off valve or a second regulator stage.
  • such design changes would reduce the pressure rating of the associated storage cylinder, thereby preventing its use in storing high pressure gases.
  • the present invention provides a gas flow regulation module comprising a module housing, including a longitudinal axis, and including a first port and a second port, a first fluid passage extending from the first port, and a second fluid passage extending from the second port; and a regulator, mounted to the body and disposed in communication with the first and second fluid passages, including a moveable pressure boundary member characterized by a transverse axis which is transverse to the longitudinal axis of the module housing.
  • the present invention provides a gas flow regulation module comprising a module housing, including a longitudinal axis, a first port and a second port, a first fluid passage extending from the first port, and a second fluid passage extending from the second port and a regulator, mounted to the body and disposed in communication with the first and second fluid passages, including a moveable pressure boundary member substantially disposed in a plane which is substantially parallel to the longitudinal axis of the module housing.
  • the present invention provides a gas flow regulation module, adapted for mounting within a pressure vessel and through a nozzle provided in the pressure vessel, the pressure vessel including an interior, the nozzle including a longitudinal axis, comprising a module housing, including a first port and a second port, a first fluid passage extending from the first port and a second fluid passage extending from the second port and a regulator mounted to the body and disposed in the interior of the pressure vessel and in communication with the first and second fluid passages, including a moveable pressure boundary member characterized by a transverse axis which is perpendicular to the longitudinal axis of the nozzle.
  • the present invention provides a gas flow regulator module, configured for mounting within a pressure vessel, and through a nozzle provided in the pressure vessel, the pressure vessel including an interior, the nozzle including a longitudinal axis, comprising a module housing, including a first and a second port, a first fluid passage extending from the first port, and a second fluid passage extending from the second port and a regulator mounted to the body and disposed in the interior of the pressure vessel and in communication with the first and second fluid passages, the regulator including a moveable pressure boundary member substantially disposed in a plane which is substantially parallel to the longitudinal axis of the nozzle.
  • the present invention provides a gas flow regulation module comprising an elongated body including a longitudinal axis, a fluid passage disposed within the body, a valve seat disposed within the fluid passage, an orifice disposed within the valve seat, a valve, configured to seal the orifice, and a moveable pressure boundary member, coupled to the valve, and characterized by a transverse axis which is transverse to the longitudinal axis of the body.
  • the present invention provides a gas flow regulation module, configured for mounting within a pressure vessel, and through a nozzle provided in the pressure vessel, the nozzle including a longitudinal axis, comprising an elongated body, a fluid passage disposed within the body a valve seat disposed within the fluid passage, an orifice formed within the valve seat, a valve, configured to seal the orifice, and a moveable pressure boundary member, coupled to the valve, and characterized by a transverse axis which is transverse to the longitudinal axis of the nozzle.
  • the present invention provides a gas flow regulation module, configured for mounting within a pressure vessel, and through a nozzle provided in the pressure vessel, the nozzle including a first diameter, comprising a fluid passage, a valve seat disposed within the fluid passage, an orifice formed in the valve seat, a valve configured to seal the orifice, and a moveable pressure boundary member, coupled to the valve, including a second diameter which is greater than the first diameter.
  • the present invention provides a gas flow regulation module, configured for mounting within a pressure vessel, and through a nozzle provided in the pressure vessel, the nozzle including a longitudinal axis, comprising a fluid passage, a valve seat disposed within the fluid passage, an orifice formed in the valve seat, a valve configured to seal the orifice, and a moveable pressure boundary member, coupled to the valve, and substantially disposed in a plane which is substantially parallel to the longitudinal axis of the nozzle, wherein the moveable pressure boundary member is configured for insertion through the nozzle.
  • the module can further include a solenoid shut-off valve or a second regulator stage without requiring large nozzles to fit such an assembly in the interior of a pressure vessel.
  • FIG. 1 is a side elevation view of an embodiment of the present invention
  • FIG. 2 is a top plan view of the embodiment of the present invention illustrated in FIG. 1;
  • FIG. 3 is a sectional elevation view of a regulator of the embodiment of the present invention illustrated in FIG. 1;
  • FIG. 4 is a cut-away sectional elevation view of the pressure regulator in FIG. 3, showing components in the vicinity of the convolution of the diaphragm;
  • FIG. 5 is a sectional elevation view of the embodiment of the present invention illustrated in FIG. 1;
  • FIG. 6 is a cut-away sectional elevation view of the regulator in FIG. 5, showing each of the individual stages of the regulator;
  • FIG. 7 is a second sectional elevation view of the embodiment of the present invention illustrated in FIG. 1;
  • FIG. 8 is a sectional elevation view of the solenoid shut-off valve of an embodiment of the present invention, showing the solenoid shut-off valve in a closed position;
  • FIG. 9 is a sectional elevation view of the solenoid shut-off valve of an embodiment of the present invention, showing the shut-off valve in a transition position;
  • FIG. 10 is a sectional elevation view of the solenoid shut-off valve of an embodiment of the present invention, showing the shut-off valve in an open position;
  • FIG. 11 is a schematic showing the flow path taken through a shut-off valve of an embodiment of the present invention during filling of a pressure vessel with a gaseous mixture;
  • FIG. 12 is a schematic drawing showing manual shut-off valve blocking floor between a solenoid shut-off valve and a regulator of an embodiment of the present invention
  • FIG. 13 is a sectional plan view of the embodiment of the present invention illustrated in FIG. 1;
  • FIG. 14 is a schematic illustration of the process flow paths provided in an embodiment of the present invention.
  • FIG. 1 illustrates an embodiment of a gas flow regulation module ( 2 ) of the present invention.
  • Module ( 2 ) comprises a body ( 3 ) including a head ( 4 ) and an elongated neck ( 6 ) extending therefrom.
  • Pressure regulators ( 10 ) and ( 110 ), and solenoid shut off valve ( 210 ) are formed within neck ( 6 ) to control flow of gas from a pressure vessel ( 216 ).
  • module ( 2 ) functions as a housing for pressure regulators ( 10 ) and ( 110 ) and solenoid shut off valve ( 210 ).
  • pressure regulator ( 10 ) includes spring housing ( 12 ) mounted to base ( 14 ) to form regulator housing ( 16 ).
  • Housing ( 16 ) includes an inlet port ( 18 ) communicating with a pintle chamber ( 20 ).
  • Pintle chamber ( 20 ) communicates with output chamber ( 22 ) and includes a valve seat ( 23 ) with orifice ( 24 ).
  • Valve pintle ( 26 ) is disposed within pintle chamber ( 20 ) and includes sealing surface ( 28 ) to press against valve seat ( 23 ) and thereby close orifice ( 24 ).
  • Output chamber ( 22 ) communicates with outlet port ( 25 ) formed within housing ( 16 ) (see FIG. 5).
  • Valve pintle ( 26 ) is movable to open and close orifice ( 24 ) in response to the combined action of spring ( 30 ) and moveable pressure boundary member ( 31 ).
  • Spring ( 30 ) is provided within housing ( 16 ) to exert a force which tends to move the valve pintle ( 26 ) towards an open position wherein sealing surface ( 28 ) is unseated from valve seat ( 23 ), thereby opening orifice ( 24 ) into communication with output chamber ( 22 ).
  • Gas pressure in pintle chamber ( 20 ) and output chamber ( 22 ) acts against moveable pressure boundary member ( 31 ) and valve pintle ( 26 ) thereby opposing forces exerted by spring ( 30 ) and tending to move valve pintle ( 26 ) towards a closed position, wherein sealing surface ( 28 ) is pressed against valve seat ( 23 ), thereby closing orifice ( 24 ).
  • Pintle stem ( 34 ) extends from valve pintle ( 26 ), terminating in pintle nut ( 36 ).
  • Pintle nut ( 36 ) is mounted within central boss ( 38 ).
  • Central boss ( 38 ) extends through the centre of moveable pressure boundary ( 31 ).
  • a locking ring ( 44 ) fits over central boss ( 38 ) and bears down upon moveable pressure boundary member ( 31 ).
  • Spring ( 30 ) is fitted over locking ring ( 44 ), and is supported on moveable pressure boundary member ( 42 ). Spring ( 30 ) is retained within a spring chamber ( 46 ) formed within housing ( 16 ). Spring ( 30 ) can include coil springs, spring washers, or elastomeric-type springs.
  • moveable pressure boundary member is a diaphragm assembly comprising a diaphragm ( 32 ), first diaphragm plate ( 40 ) and diaphragm support plate ( 42 ).
  • Diaphragm ( 32 ) is mounted on a first diaphragm plate ( 40 ) disposed on one side of diaphragm ( 32 ) and extending from central boss ( 38 ).
  • the diaphragm ( 32 ) is retained on the first diaphragm plate ( 40 ) by means of a diaphragm support plate ( 42 ) and a locking ring ( 44 ).
  • diaphragm ( 32 ) is interposed and pinched between first diaphragm plate ( 40 ) and diaphragm support plate ( 42 ).
  • Groove ( 48 ) is formed within housing ( 16 ) to receive diaphragm ( 32 ), thereby securing diaphragm ( 32 ) to housing ( 16 ).
  • diaphragm ( 32 ) seals output chamber ( 22 ) from spring chamber ( 46 ), thereby isolating output chamber ( 22 ) from spring chamber ( 46 ).
  • Diaphragm ( 32 ) is generally characterized by a flat profile. Diaphragm ( 32 ) includes a first side surface ( 56 ) and second side surface ( 58 ) (see FIG. 4).
  • Diaphragm ( 32 ) further includes a throughbore ( 60 ) which receives central boss ( 38 ).
  • diaphragm ( 32 ) includes a rolling convolution ( 50 ) extending from a section ( 52 ) characterized by a flat profile, to provide a modification in the behaviour of diaphragm ( 32 ). Specifically, this design attempts to ensure that diaphragm ( 32 ) is always in tension (i.e., never in shear or compression). Thus, as the convolution rolls, diaphragm ( 32 ) is never stretched or buckled (i.e., largely eliminating hysteresis).
  • Pressure regulator ( 10 ) is characterized by an orientation wherein the transverse axis ( 61 ) of moveable pressure boundary member ( 31 ) is transverse to the longitudinal axis ( 62 ) of neck ( 6 ) (see FIG. 1).
  • the transverse axis ( 61 ) is perpendicular to the longitudinal axis ( 62 ) of neck ( 6 ).
  • moveable pressure boundary member ( 31 ) lies or is disposed substantially in a plane which is substantially parallel to the longitudinal axis ( 62 ) of neck ( 6 ).
  • module ( 2 ) including a regulator, with a relatively larger diameter moveable pressure boundary member ( 31 ), into a small diameter nozzle ( 217 ) of a pressure vessel ( 216 ) (see FIGS. 1, 5 and 7 ).
  • moveable pressure boundary ( 31 ) is characterized by a diameter which is larger than the diameter of nozzle ( 217 ). Further, in yet another embodiment, moveable pressure boundary ( 31 ) is characterized by a maximum diameter which is smaller than the diameter of nozzle ( 217 ). In either case, by virtue of the orientation of the moveable pressure boundary ( 31 ) relative to nozzle ( 217 ), module ( 2 ) is configured for insertion into nozzle ( 217 ). In particular, moveable pressure boundary ( 31 ), by virtue of its orientation, is configured for insertion through the nozzle by virtue of its orientation, and notwithstanding its dimensions relative to the nozzle ( 217 ).
  • Output port ( 25 ) can be adapted to communicate with an inlet port ( 118 ) of a second stage pressure regulator ( 110 ), as illustrated in FIGS. 5 and 6.
  • pressure regulator ( 110 ) is a balanced pressure regulator.
  • Pressure regulator ( 110 ) includes spring housing ( 112 ) mounted to base ( 114 ) to form regulator housing ( 116 ).
  • Housing ( 116 ) includes an inlet port ( 118 ) communicating with a pintle chamber ( 120 ).
  • Pintle chamber ( 120 ) communicates with output chamber ( 122 ) and includes a valve seat ( 123 ) with orifice ( 124 ).
  • Valve pintle ( 126 ) is disposed within pintle chamber ( 120 ) and includes a sealing member ( 127 ) with a sealing surface ( 128 ) to press against valve seat ( 123 ) and thereby close orifice ( 124 ).
  • Output chamber ( 122 ) communicates with output port ( 123 ) formed within housing ( 116 ).
  • Valve pintle ( 126 ) is movable to open and close orifice ( 124 ) in response to the combined action of spring ( 130 ) and diaphragm ( 132 ).
  • Spring ( 130 ) is provided within housing ( 116 ) to exert a force which tends to move the valve pintle ( 126 ) towards an open position wherein sealing surface ( 128 ) is unseated from valve seat ( 123 ), thereby opening orifice ( 124 ) into communication with output chamber ( 122 ).
  • Gas pressure in pintle chamber ( 120 ) and output chamber ( 122 ) acts against moveable pressure boundary member ( 131 ) and valve pintle ( 126 ) thereby opposing forces exerted by spring ( 130 ) and tending to move valve pintle ( 126 ) towards a closed position, wherein sealing surface ( 128 ) is pressed against valve seat ( 123 ), thereby closing orifice ( 124 ).
  • Pintle stem ( 134 ) extends from valve pintle ( 126 ), terminating in pintle nut ( 136 ).
  • Pintle nut ( 136 ) is mounted within central boss ( 138 ).
  • Central boss ( 138 ) extends through the centre of moveable pressure boundary member ( 131 ).
  • a locking ring ( 144 ) fits over central boss ( 138 ) and bears down upon moveable pressure boundary member ( 131 ).
  • Pressure regulator ( 110 ) is a balanced regulator with features provided to mitigate pressure imbalances which are attributable to unsteady state conditions, such as source pressure variability in pintle chamber ( 120 ).
  • regulator ( 110 ) is further provided with a balancing chamber ( 170 ) extending and sealed from pintle chamber ( 120 ).
  • Valve pintle ( 126 ) includes balancing stem ( 172 ) extending from sealing member ( 127 ) and disposed within balancing chamber ( 170 ).
  • Valve pintle ( 126 ) further includes a throughbore ( 174 ) extending between ports ( 176 ) and ( 178 ) provided in the surface of valve pintle ( 126 ).
  • Port ( 176 ) opens into communication with output chamber ( 122 ).
  • Port ( 178 ) opens into communication with balancing chamber ( 170 ).
  • Balancing chamber ( 170 ) is sealed from pintle chamber ( 120 ) by sealing member ( 180 ), such as an o-ring, which is carried within a groove ( 182 ) provided within internal surface ( 184 ) of balancing chamber ( 170 ).
  • sealing member ( 180 ) such as an o-ring
  • the cross-sectional area of balancing stem is made substantially the same as the seating area of sealing surface ( 128 ). This substantially reduces the significance of pressure in pintle chamber ( 120 ) on the regulatory function of diaphragm assembly ( 131 ) and valve pintle ( 126 ).
  • Spring ( 130 ) is fitted over locking ring ( 144 ), and is supported on diaphragm support plate ( 142 ). Spring ( 130 ) is retained within a spring chamber ( 146 ) formed within housing ( 116 ). Spring ( 130 ) can include coil springs, spring washers, or elastomeric-type springs.
  • moveable pressure boundary member ( 131 ) is a diaphragm assembly comprising diaphragm ( 132 ), first diaphragm plate ( 140 ), and diaphragm support plate ( 142 ).
  • Diaphragm ( 132 ) is mounted on a first diaphragm plate ( 40 ) disposed on one side of diaphragm ( 132 ) and extending from central boss ( 138 ).
  • the diaphragm ( 132 ) is retained on the first diaphragm plate ( 140 ) by means of a diaphragm support plate ( 142 ) and a locking ring ( 144 ).
  • diaphragm ( 132 ) is interposed and pinched between first diaphragm plate ( 140 ) and diaphragm support plate ( 142 ).
  • Groove ( 148 ) is formed within housing ( 116 ) to receive diaphragm ( 132 ), thereby securing diaphragm ( 132 ) to housing ( 116 ).
  • diaphragm ( 132 ) seals output chamber ( 122 ) from spring chamber ( 146 ), thereby isolating output chamber ( 122 ) from spring chamber ( 146 ).
  • Diaphragm ( 132 ) is generally characterized by a flat profile.
  • Diaphragm ( 132 ) includes a first side surface ( 156 ) and second side surface ( 158 ). First side surface ( 156 ) is exposed to gas within output chamber ( 122 ). Diaphragm ( 132 ) further includes a throughbore ( 160 ) which receives central boss ( 138 ).
  • diaphragm ( 132 ) includes a rolling convolution ( 150 ) extending from a section ( 152 ) characterized by a flat profile, to provide a modification in the behaviour of diaphragm ( 132 ). Specifically, this design attempts to ensure that diaphragm ( 132 ) is always in tension (i.e., never in shear or compression). Thus, as the convolution rolls, diaphragm ( 132 ) is never stretched or buckled (i e., largely eliminating hysteresis)
  • pressure regulator ( 110 ) is characterized by an orientation wherein transverse axis ( 161 ) of moveable pressure boundary member ( 131 ) is substantially perpendicular to longitudinal axis ( 62 ) of neck ( 6 ).
  • moveable pressure boundary member ( 131 ) lies or is disposed substantially in a plane which is parallel to the longitudinal axis ( 62 ) of neck ( 6 ).
  • Such orientation permits the use of a relatively larger moveable pressure boundary member ( 132 ) within module ( 2 ) where it is desired to minimize the diameter or width of neck ( 6 ).
  • moveable pressure boundary members ( 131 ) Use of larger diameter moveable pressure boundary members ( 131 ) in pressure regulators is desirable so that the pressure boundary member is more sensitive to pressure changes in the output chamber ( 122 ), thereby providing a more accurate response to these pressure changes and mitigating droop. Because moveable pressure boundary member ( 131 ) is oriented in this fashion, more space is available within module ( 2 ) for the formation of various flow passages necessary for permitting internal mounting of a solenoid shut-off valve in conjunction with a regulator.
  • an adjustable member such as a screw ( 164 ) is provided and extends through housing ( 116 ) to regulate compression of associated spring ( 130 ), thereby varying flow control characteristics of valve pintle ( 126 ).
  • a vent passage ( 84 ) is also formed within housing ( 16 ) to communicate with spring chamber ( 46 ). Any gas leaking across diaphragm ( 3 ) from output chamber ( 22 ) and into spring chamber ( 46 ) is thereby vented to prevent accumulation of gas within spring chamber ( 46 ).
  • spring chamber ( 46 ) of first stage regulator ( 10 ) vents to output chamber ( 122 ) of second stage regulator ( 110 ), while spring chamber ( 146 ) of second stage regulator ( 110 ) vents via passage ( 184 ) to atmosphere via port ( 316 ) formed within head ( 4 ).
  • gas within vessel ( 216 ) is characterized by a pressure of about 5000 psig. As gas flows across first stage regulator ( 10 ), pressure is dropped to about 300 to 500 psig. Pressure is further reduced through second stage regulator ( 110 ) such that pressure in output chamber ( 122 ) is about 115 psig.
  • gas flowing from a second stage regulator ( 110 ) through outlet port ( 125 ) is connected to outlet passage ( 300 ) which communicates with outlet port ( 310 ) formed within head ( 4 ).
  • outlet passage ( 300 ) is optionally connected to outlet passage ( 300 ) a pressure relief device ( 312 ) installed in port ( 314 ) in head ( 4 ).
  • Pressure relieve device ( 312 ) vents to a relief outlet connection ( 313 ).
  • Sensor ports ( 318 ) and ( 320 ) can also be formed within head ( 4 ) for receiving installation of high pressure and low pressure sensors ( 322 ) and ( 324 ) respectively.
  • High pressure sensor ( 322 ) senses pressure within fluid passage ( 64 ), which connects inlet port ( 18 ) of regulator ( 10 ) with outlet port ( 218 ) of solenoid shut off valve ( 210 ) (see FIGS. 13 and 14).
  • High pressure sensor ( 322 ) therefore, measures gas pressure entering regulator ( 10 ).
  • throughbore ( 326 ) connects sensor ( 318 ) to throughbore ( 329 ).
  • low pressure sensor ( 324 ) senses pressure within outlet passage ( 300 ) and, therefore, measures gas pressure leaving the regulator assembly ( 10 ) and ( 110 ).
  • throughbore ( 328 ) connects sensor port ( 320 ) to outlet passage ( 300 ).
  • inlet port ( 18 ) communicates with high pressure gas stored in pressure vessel ( 216 ) through solenoid shut off valve ( 210 ).
  • Solenoid shut off valve ( 210 ) controls gaseous flow out of pressure vessel ( 216 ).
  • Solenoid shut off valve ( 210 ) includes an inlet port ( 220 ) and an outlet port ( 218 ).
  • Outlet port ( 218 ) communicates with inlet port ( 18 ) of regulator ( 10 ) via a fluid passage ( 64 ).
  • a manual shut-off valve ( 330 ) (see FIGS. 5 and 7) is provided to interrupt flow between solenoid shut off valve ( 210 ) and inlet port ( 18 ).
  • solenoid shut-off valve ( 210 ) is an instant-on type valve.
  • instant-on valve ( 210 ) includes a valve body ( 212 ) configured for mounting within a nozzle ( 217 ) of a pressure vessel ( 216 ).
  • the pressure vessel ( 216 ) includes a storage volume ( 216 ).
  • Valve body ( 212 ) includes an outlet port ( 218 ) and an inlet port ( 220 ).
  • a flow passage ( 224 ) extends from the outlet port ( 218 ) and through the valve body ( 212 ) and is in communication with inlet port ( 220 ).
  • a valve seat ( 226 ) is provided in flow passage ( 224 ).
  • Valve seat ( 226 ) defines an orifice ( 228 ). Bore ( 229 ) extends between outlet port ( 218 ) and orifice ( 228 ) and forms part of flow passage ( 224 ).
  • Valve body ( 210 ) includes a conduit ( 211 ).
  • Conduit ( 211 ) includes a first conduit orifice ( 254 ), a second conduit orifice ( 221 ), and a third conduit orifice ( 228 ).
  • Second conduit orifice ( 221 ) functions as inlet port ( 220 ).
  • Conduit ( 211 ) includes a sleeve ( 222 ).
  • Primary piston ( 232 ) and secondary piston ( 231 ) are disposed and slidably carried within sleeve ( 222 ) of conduit ( 211 ), and are moveable therein.
  • Secondary piston ( 231 ) is interposed between primary piston ( 232 ) and first conduit orifice ( 254 ).
  • Sleeve ( 222 ) includes a first end ( 248 ) and a second end ( 250 ).
  • First end ( 248 ) is open for communication with flow passage ( 224 ).
  • Second end ( 250 ) includes a valve seat ( 252 ) with orifice ( 254 ) formed therein.
  • Sleeve ( 251 ) extend from valve seat ( 252 ) and terminate at a distal end ( 253 ) whereby second end ( 250 ) is defined.
  • Sleeve ( 222 ) communicates with pressure vessel ( 216 ) via orifice ( 254 ).
  • Primary piston ( 232 ) includes a body ( 233 ) comprising a first end ( 234 ) and a second end ( 236 ).
  • Primary piston ( 232 ) is comprised of non-magnetic material.
  • a bore, functioning as a bleed passage ( 244 ), is disposed within body ( 233 ) and extends therethrough between a first aperture ( 246 ) at first end ( 234 ) and a second aperture ( 242 ) at second end ( 236 ).
  • Second aperture ( 242 ) defines orifice ( 243 ).
  • Aperture ( 246 ) opens into flow passage ( 224 ), and particularly bore ( 229 ).
  • secondary piston ( 232 ) is sealingly engaged to conduit ( 211 ).
  • the first end ( 234 ) of primary piston ( 232 ) includes a valve comprising a sealing surface ( 238 ) for closing the orifice ( 228 ).
  • the first end ( 234 ) is further characterized by a surface ( 235 ) exposed to gaseous pressure within pressure vessel ( 216 ).
  • the second end ( 236 ) includes a valve seat ( 240 ). Orifice ( 243 ) is disposed in valve seat ( 240 ).
  • each of orifice ( 243 ) and orifice ( 254 ) is characterized by a cross-sectional area smaller than that of orifice ( 228 ). This facilitates faster unseating of primary piston ( 231 ) from valve seat ( 226 ) and unsealing of third conduit orifice ( 228 ), as will be described below.
  • orifice ( 243 ) is characterized by a smaller cross-sectional area than orifice ( 254 ). This facilitates bleeding of gas from sleeve ( 222 ) through bleed passage ( 244 ), as will be hereinafter described.
  • Secondary piston ( 231 ) is disposed between primary piston ( 232 ) and first conduit orifice ( 254 ).
  • Secondary piston ( 231 ) includes a first end ( 258 ) and a second end ( 260 ).
  • Secondary piston ( 231 ) is comprised of magnetic material.
  • First end ( 258 ) includes a valve comprising a sealing surface ( 262 ) for closing orifice ( 243 ).
  • Second end ( 262 ) includes a valve comprising a second sealing surface ( 264 ) for engaging valve seat ( 252 ), thereby closing orifice ( 254 ).
  • Resilient member or spring ( 266 ) bears against secondary piston ( 231 ) to bias secondary piston ( 231 ) towards primary piston ( 232 ) for pressing first sealing surface ( 262 ) against valve seat ( 240 ) and thereby close orifice ( 243 ).
  • spring ( 266 ) is housed at second end ( 250 ) of sleeve ( 222 ) and presses against second end ( 260 ) of secondary piston ( 231 ).
  • Solenoid coil ( 268 ) Surrounding sleeve ( 222 ) is a solenoid coil ( 268 ). Solenoid coil ( 268 ) is provided to apply electromagnetic forces on secondary piston ( 231 ) by external actuation, thereby causing movement of the secondary piston ( 231 ) against the force of spring ( 266 ) and fluid pressure forces within sleeve ( 222 ).
  • FIGS. 8,9, and 10 illustrate an embodiment of an instant-on valve ( 210 ) of the present invention in various conditions of operation.
  • FIG. 8 illustrates instant-on valve ( 210 ) in a closed position.
  • solenoid coil ( 268 ) is not energized.
  • spring ( 266 ) biases secondary piston ( 231 ) towards primary piston ( 232 ).
  • second sealing surface ( 264 ) is spaced from orifice ( 254 ) of valve seat ( 252 ) in sleeve ( 222 ), thereby opening orifice ( 254 ) to fluid pressure in the pressure vessel ( 216 ).
  • first sealing surface ( 262 ) on secondary piston ( 231 ) is pressed against valve seat ( 240 ) on primary piston ( 232 ), thereby closing orifice ( 243 ). Because orifice ( 254 ) in sleeve ( 222 ) is open to fluid pressure in pressure vessel ( 216 ), the spaces between sealing member ( 256 ) and orifice ( 254 ) are also exposed to fluid pressure of pressure vessel ( 216 ).
  • first end ( 234 ) of primary piston ( 232 ) is exposed to fluid pressure within pressure vessel ( 216 ) via inlet port ( 220 ).
  • FIG. 9 illustrates instant-on valve ( 210 ) in a transition position.
  • Instant-on valve ( 210 ) is in a transition position moments after solenoid coil ( 268 ) is energized.
  • Moments after solenoid coil ( 268 ) is energized electromagnetic forces produced thereby act upon secondary piston ( 231 ) and overcome the forces exerted by spring ( 266 ) and gas pressure within sleeve ( 222 ), thereby causing second sealing surface ( 264 ) in secondary piston ( 231 ) to seat against valve seat ( 252 ) provided on sleeve ( 222 ), thereby closing orifice ( 254 ).
  • first sealing surface ( 262 ) on secondary piston ( 231 ) retracts from valve seat ( 240 ) of primary piston ( 32 ), thereby opening orifice ( 43 ).
  • gas contained within sleeve ( 222 ) begins to escape through bleed passage ( 244 ) within primary piston ( 232 ) via orifice ( 243 ) and flow out of instant-on valve ( 210 ) through outlet port ( 218 ).
  • gas pressure within sleeve ( 222 ) begins to drop.
  • fluid pressure in this region has not dropped sufficiently to unseat primary piston ( 232 ) from valve seat ( 226 ).
  • FIG. 10 illustrates instant-on valve ( 210 ) in an open position.
  • fluid within sleeve ( 222 ) between sealing member ( 256 ) and orifice ( 254 ) has further escaped through bleed passage ( 244 ) in primary piston ( 232 ).
  • gaseous forces acting behind the surface of second end ( 236 ) have sufficiently subsided to have become overcome by the fluid forces acting upon the surface of first end ( 234 ) of primary piston ( 232 ).
  • sealing surface ( 238 ) of primary piston ( 232 ) has become unseated from valve seat ( 226 ), thereby creating an uninterrupted flow path between the interior of pressure vessel ( 216 ) and outlet port ( 218 ) via fluid passage ( 224 ).
  • pressure vessel ( 216 ) is filled with a gaseous mixture using module ( 2 ) through flow passages extending through instant-on valve ( 210 ).
  • Gas enters module ( 2 ) via inlet port ( 331 ), passing through filter ( 334 ) (flow direction denoted by arrows ( 333 ) in FIG. 13), and travelling through passage ( 329 ) for communication with the interior of pressure vessel ( 216 ) via orifice ( 228 ).
  • Gas flowing through orifice ( 228 ) presses upon secondary piston ( 232 ), causing unseating of secondary piston ( 232 ) from valve seat ( 226 ) of flow passage ( 224 ).
  • FIGS. 5,7 and 12 illustrates the disposition of manual shut-off valve ( 330 ) within passage ( 329 ) between outlet port ( 218 ) and orifice ( 228 ), thereby permitting manual shut-off of fluid passage ( 224 ).
  • a passage ( 329 ) is provided within neck ( 6 ), extending from port ( 342 ) provided in head ( 4 ).
  • Passage ( 329 ) includes a second valve seat ( 334 ) with an orifice ( 336 ) interposed between inlet port ( 18 ) of regulator ( 10 ) and orifice ( 228 ).
  • Manual shut-off valve ( 330 ) includes a sealing surface ( 338 ) for seating against valve seat ( 334 ), thereby closing orifice ( 336 ) and blocking flow passage ( 224 ) such that communication between regulator ( 10 ) and instant-on valve ( 210 ) is interrupted.
  • manual shut-off valve ( 330 ) is co-axial with the fluid passage used to fill pressure vessel ( 216 ).
  • Stem ( 340 ) extends from sealing surface ( 338 ) and through port ( 342 ) via passage ( 329 ).
  • Manual actuator ( 344 ) is provided at distal end ( 346 ) of stem ( 340 ) to facilitate closing of flow passage ( 224 ) by manual intervention.
  • Thermally actuated relief device ( 348 ) can be provided within throughbore ( 352 ) to vent tank gases in the case of a fire to prevent explosions. Throughbore ( 352 ) vents to outlet connection ( 313 ) (see FIGS. 13 and 14).
  • Port ( 354 ) is also provided with passage ( 356 ) extending therefrom, thereby functioning as a wire pass through and permitting electrical connection of instant-on valve ( 210 ) exterior to the pressure vessel ( 216 ).
  • module ( 2 ) is adapted for mounting within nozzle ( 217 ) of pressure vessel ( 216 ).
  • Nozzle ( 217 ) includes an aperture ( 227 ), and is characterized by a longitudinal axis ( 221 ).
  • Head ( 4 ) extends outside nozzle ( 217 ) and, therefore, functions as a cap.
  • Neck ( 6 ) depends from head ( 4 ) and extends into the interior ( 219 ) of pressure vessel ( 216 ).
  • each of the regulators ( 10 ) and ( 110 ) and solenoid shut-off valve ( 210 ) are disposed within the interior of ( 219 ) of pressure vessel ( 216 ).
  • each of moveable pressure boundary members ( 31 ) and ( 131 ) are oriented such that each of their respective transverse axes ( 61 ) and ( 161 ) is transverse to longitudinal axis ( 62 ) of neck ( 6 ) or longitudinal axis ( 221 ) of nozzle ( 217 ).
  • the transverse axis ( 61 ) or ( 161 ) is perpendicular to the longitudinal axis ( 62 ) of neck ( 61 ).
  • each of moveable pressure boundary members ( 31 ) and ( 131 ) lies or is disposed substantially in a plane which is parallel to the longitudinal axis ( 62 ) of neck ( 6 ) or the longitudinal axis ( 221 ) of nozzle ( 217 ).
US09/886,115 2000-06-23 2001-06-22 Gas flow regulation system Abandoned US20020014227A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/630,719 US6901952B2 (en) 2000-06-23 2003-07-31 Gas flow regulation system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CA2,312,122 2000-06-23
CA002312122A CA2312122A1 (en) 2000-06-23 2000-06-23 Gas flow regulation system

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/630,719 Continuation US6901952B2 (en) 2000-06-23 2003-07-31 Gas flow regulation system

Publications (1)

Publication Number Publication Date
US20020014227A1 true US20020014227A1 (en) 2002-02-07

Family

ID=4166543

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/886,115 Abandoned US20020014227A1 (en) 2000-06-23 2001-06-22 Gas flow regulation system
US10/630,719 Expired - Lifetime US6901952B2 (en) 2000-06-23 2003-07-31 Gas flow regulation system

Family Applications After (1)

Application Number Title Priority Date Filing Date
US10/630,719 Expired - Lifetime US6901952B2 (en) 2000-06-23 2003-07-31 Gas flow regulation system

Country Status (10)

Country Link
US (2) US20020014227A1 (ko)
EP (1) EP1295189B1 (ko)
JP (1) JP3857646B2 (ko)
KR (1) KR100725786B1 (ko)
AT (1) ATE269556T1 (ko)
AU (1) AU2001267229A1 (ko)
CA (1) CA2312122A1 (ko)
DE (1) DE60103896T2 (ko)
ES (1) ES2223881T3 (ko)
WO (1) WO2002001306A1 (ko)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030213521A1 (en) * 2002-05-17 2003-11-20 Downie Neil Alexander Intra-cylinder tubular pressure regulator
US20090314009A1 (en) * 2008-06-20 2009-12-24 Serge Campeau Vacuum actuated valve for high capacity storage and delivery systems
US20110155267A1 (en) * 2008-07-31 2011-06-30 Cavagna Group S.P.A. Pressure control valve assembly for containers adapted to contain compressed fluids
US20140174571A1 (en) * 2012-12-26 2014-06-26 Kia Motors Corporation Lpg bombe apparatus
US20150247605A1 (en) * 2012-09-21 2015-09-03 Entegris, Inc. Anti-spike pressure management of pressure-regulated fluid storage and delivery vessels
US20170102087A1 (en) * 2015-10-12 2017-04-13 Tescom Corporation Control Assembly for a Valve
US11105299B2 (en) * 2012-06-19 2021-08-31 Econtrols, Llc Highly accurate continuous-flow vaporized fuel supply for large dynamic power ranges
US11371657B2 (en) * 2017-03-30 2022-06-28 Plastic Omnium New Energies France Hydropack system
US11739716B2 (en) 2021-09-01 2023-08-29 American CNG, LLC Supplemental fuel system for compression-ignition engine

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6877488B2 (en) * 2002-05-29 2005-04-12 Nartron Corporation Vehicle fuel management system
US6959724B2 (en) * 2002-07-01 2005-11-01 Praxair Technology, Inc. Multiple regulator vacuum delivery valve assembly
JP2006003943A (ja) * 2004-06-15 2006-01-05 Toyota Motor Corp 減圧装置および減圧システム
US7740031B2 (en) * 2005-04-26 2010-06-22 Eden Innovations Ltd. System for blending and compressing gases
US7547385B2 (en) * 2005-11-14 2009-06-16 Eden Innovations Ltd. Method and system for producing a supercritical cryogenic fuel (SCCF)
US7497191B2 (en) 2006-02-06 2009-03-03 Eden Innovations Ltd. System and method for producing, dispensing, using and monitoring a hydrogen enriched fuel
US20070277438A1 (en) * 2006-05-30 2007-12-06 Brehon Energy Plc System and method for producing a hydrogen enriched fuel
US8087428B1 (en) * 2006-12-07 2012-01-03 Beswick Engineering Co., Inc. High pressure inlet regulator
EP2017514B1 (fr) * 2007-07-02 2018-11-14 Luxembourg Patent Company S.A. Vanne de fermeture intégrée dans un détendeur
FR2929890B1 (fr) * 2008-04-11 2010-09-24 Christian Forzale Reservoir a gaz amovible
JP5394122B2 (ja) * 2009-02-02 2014-01-22 株式会社ケーヒン 減圧弁
JP5427158B2 (ja) * 2010-10-19 2014-02-26 川崎重工業株式会社 燃料ガス供給充填システム
KR101047299B1 (ko) 2010-11-09 2011-07-07 주식회사 유니크 연료전지 차량용 워터트랩 밸브
JP5743744B2 (ja) * 2011-06-24 2015-07-01 株式会社不二工機 ダイアフラム式流体制御弁
EP2788215B1 (en) 2011-12-07 2020-01-15 Agility Fuel Systems LLC Systems and methods for monitoring and controlling fuel systems
US9714740B2 (en) * 2014-07-18 2017-07-25 Instrument Solutions Inc. System, method, and apparatus for regulating the flow of gas
DE102014222741A1 (de) 2014-11-06 2016-05-12 Robert Bosch Gmbh Vorrichtung zur Drosselung einer Fluidströmung und korrespondierende Kolbenpumpe zur Förderung von Fluiden
KR101899470B1 (ko) * 2018-03-28 2018-11-08 티이엠씨 주식회사 저장능력을 향상시킨 유체압력조정밸브가 구비된 실린더
US20210048148A1 (en) * 2019-08-12 2021-02-18 Numat Technologies Inc. Process and apparatus for dispensing and charging gas to a storage vessel
US11372431B1 (en) * 2021-05-10 2022-06-28 Bayotech, Inc. Multi-function three-stage pressure regulator
TWI829260B (zh) * 2021-07-28 2024-01-11 美商艾克爾系統公司 模組化配件組件以及包含該組件的系統

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US188690A (en) * 1877-03-20 Improvement in engine-gearing
US567764A (en) * 1896-09-15 Gas-holder
BE387342A (ko) *
US56764A (en) * 1866-07-31 Improved sad-iron
US173519A (en) * 1876-02-15 Improvement in feather-duster supporters
US2794321A (en) * 1957-06-04 Fuel pressure regulator
US1731519A (en) * 1926-07-23 1929-10-15 Bastian Blessing Co Two-stage fluid-pressure regulator
US2057133A (en) * 1929-11-30 1936-10-13 Union Carbide & Carbon Corp Multistage pressure regulator
US1883690A (en) * 1930-02-25 1932-10-18 Gilgenberg Paul Device for withdrawing low pressure gases from high pressure vessels
US2057150A (en) * 1932-03-21 1936-10-13 Union Carbide & Carbon Corp Two-stage pressure regulator
US2302284A (en) * 1940-02-20 1942-11-17 Pittsburgh Equitable Meter Co Safety gas pressure regulator
US2362352A (en) * 1940-12-12 1944-11-07 William C Buttner Two-stage regualtor
US2318721A (en) * 1941-01-11 1943-05-11 Union Carbide & Carbon Corp Fluid pressure regulator
US2687018A (en) * 1952-02-29 1954-08-24 Weatherhead Co Multiple head with regulators
US3323535A (en) * 1964-03-27 1967-06-06 Henry B Peter Adjustable flow control for metered flow of fluid
US3660546A (en) * 1970-02-04 1972-05-02 Norsk Spraengstofindustri As Process for the preparation of black powder
US3643683A (en) * 1970-09-23 1972-02-22 Albert L Semon Double venturi pressure regulator
JPS533448B2 (ko) * 1974-01-12 1978-02-07
US4334561A (en) 1979-01-03 1982-06-15 Valico P.V.B.A. Head piece for a tank for liquefied gas
US4349136A (en) * 1980-02-07 1982-09-14 Draft Systems, Inc. Safety pressure reducing regulator
US4484695A (en) * 1980-02-07 1984-11-27 Draft Systems, Inc. Safety pressure reducing regulator
US4352372A (en) * 1980-11-17 1982-10-05 Eaton Corporation Precision flow control device
US4541454A (en) * 1981-12-07 1985-09-17 Sturman Oded E Pressure regulators
US4520838A (en) * 1983-07-01 1985-06-04 The B.F. Goodrich Company Valve for high pressure fluid container
US4802507A (en) * 1987-01-02 1989-02-07 Kidde, Inc. Gas flow control device
US4898205A (en) * 1987-03-17 1990-02-06 Western/Scott Fetzer Company Stem regulator
US4744387A (en) * 1987-06-25 1988-05-17 Otteman John H Fluid pressure regulator
DE58904471D1 (de) 1988-08-11 1993-07-01 Milan Medvescek Differenzdruckregelventil.
US5303734A (en) * 1993-02-01 1994-04-19 Eidsmore Paul G Pressure regulator
US5931335A (en) * 1993-06-10 1999-08-03 Cippitani; Luciano Liquid propane gas tanks and, in particular to cylindrical tanks for vehicles
US5435344A (en) * 1993-07-14 1995-07-25 Siemens Automotive L.P. Flow through fuel pressure regulator
DE4445588C2 (de) * 1994-12-20 2002-12-05 Danfoss As Membrangesteuertes Differenzdruckventil
US5647328A (en) * 1995-06-30 1997-07-15 Walbro Corporation In-tank fuel pump and reservoir
US5598869A (en) * 1995-11-30 1997-02-04 Robertshaw Controls Company Pressure regulating unit
US6041762A (en) * 1996-08-16 2000-03-28 Impco Technologies, Inc. Control module for natural gas fuel supply for a vehicle
IT1297323B1 (it) * 1997-10-20 1999-09-01 Emer Srl Apparecchiatura di controllo dell'erogazione del gas in impianti a gas per autotrazione
US6186168B1 (en) * 1999-05-19 2001-02-13 Veritek Ngv, Corp Pressure Regulator
US6257000B1 (en) * 2000-03-22 2001-07-10 Luping Wang Fluid storage and dispensing system featuring interiorly disposed and exteriorly adjustable regulator for high flow dispensing of gas
US6360546B1 (en) * 2000-08-10 2002-03-26 Advanced Technology Materials, Inc. Fluid storage and dispensing system featuring externally adjustable regulator assembly for high flow dispensing

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030213521A1 (en) * 2002-05-17 2003-11-20 Downie Neil Alexander Intra-cylinder tubular pressure regulator
EP1367316A2 (en) * 2002-05-17 2003-12-03 Air Products And Chemicals, Inc. Intra-cylinder tubular pressure regulator
US20050274422A1 (en) * 2002-05-17 2005-12-15 Air Products And Chemicals, Inc. Intra-cylinder tubular pressure regulator
EP1367316A3 (en) * 2002-05-17 2006-04-05 Air Products And Chemicals, Inc. Intra-cylinder tubular pressure regulator
US7168445B2 (en) 2002-05-17 2007-01-30 Air Products And Chemicals, Inc. Intra-cylinder tubular pressure regulator
US20090314009A1 (en) * 2008-06-20 2009-12-24 Serge Campeau Vacuum actuated valve for high capacity storage and delivery systems
US7905247B2 (en) 2008-06-20 2011-03-15 Praxair Technology, Inc. Vacuum actuated valve for high capacity storage and delivery systems
US20110155267A1 (en) * 2008-07-31 2011-06-30 Cavagna Group S.P.A. Pressure control valve assembly for containers adapted to contain compressed fluids
US8656945B2 (en) 2008-07-31 2014-02-25 Cavagna Group S.P.A. Pressure control valve assembly for containers adapted to contain compressed fluids
US11105299B2 (en) * 2012-06-19 2021-08-31 Econtrols, Llc Highly accurate continuous-flow vaporized fuel supply for large dynamic power ranges
US20150247605A1 (en) * 2012-09-21 2015-09-03 Entegris, Inc. Anti-spike pressure management of pressure-regulated fluid storage and delivery vessels
US9897257B2 (en) * 2012-09-21 2018-02-20 Entegris, Inc. Anti-spike pressure management of pressure-regulated fluid storage and delivery vessels
US9139083B2 (en) * 2012-12-26 2015-09-22 Hyundai Motor Company LPG bomb apparatus
US20140174571A1 (en) * 2012-12-26 2014-06-26 Kia Motors Corporation Lpg bombe apparatus
US20170102087A1 (en) * 2015-10-12 2017-04-13 Tescom Corporation Control Assembly for a Valve
US11371657B2 (en) * 2017-03-30 2022-06-28 Plastic Omnium New Energies France Hydropack system
US11739716B2 (en) 2021-09-01 2023-08-29 American CNG, LLC Supplemental fuel system for compression-ignition engine
US11767811B2 (en) 2021-09-01 2023-09-26 American CNG, LLC Supplemental fuel system for compression-ignition engine
US20230304450A1 (en) * 2021-09-01 2023-09-28 American CNG, LLC Supplemental fuel system for compression-ignition engine
US11808221B2 (en) * 2021-09-01 2023-11-07 American CNG, LLC Supplemental fuel system for compression-ignition engine
US11835016B2 (en) 2021-09-01 2023-12-05 American CNG, LLC Supplemental fuel system for compression-ignition engine

Also Published As

Publication number Publication date
CA2312122A1 (en) 2001-12-23
US6901952B2 (en) 2005-06-07
DE60103896T2 (de) 2005-05-19
AU2001267229A1 (en) 2002-01-08
KR20030034104A (ko) 2003-05-01
EP1295189A1 (en) 2003-03-26
KR100725786B1 (ko) 2007-06-08
ATE269556T1 (de) 2004-07-15
US20040020537A1 (en) 2004-02-05
JP3857646B2 (ja) 2006-12-13
JP2004502229A (ja) 2004-01-22
DE60103896D1 (de) 2004-07-22
ES2223881T3 (es) 2005-03-01
WO2002001306A1 (en) 2002-01-03
EP1295189B1 (en) 2004-06-16

Similar Documents

Publication Publication Date Title
EP1295189B1 (en) Gas flow regulation system
US6186168B1 (en) Pressure Regulator
US6523565B2 (en) Pressure regulator
EP1295057B1 (en) Crashproof instant-on valve
US20130255638A1 (en) Gas fuel pressure control device
US4033378A (en) Compressed gas valve with constant flow
EP0793821B1 (en) Three stage gas pressure regulator
CA2414233A1 (en) Gas flow regulation system
KR101008906B1 (ko) 내장형 레귤레이터
US4513775A (en) Pressure regulator
US7086414B2 (en) Gas bottle assembly
CA2414237C (en) Pressure regulator
EP1070620A2 (en) Multivalve for a vehicle gaseous fuel tank
US3722534A (en) Flow control valve system with rapid closing valve
WO2003036142A1 (en) Valve
CA2414238C (en) Crashproof instant-on valve
CN114623021A (zh) 一种压力调节系统
KR20240022557A (ko) 수소 탱크 시스템용 차단 밸브, 압축 가스 용기, 및 수소 탱크 시스템
COMPILATION VALVE TECHNOLOGY

Legal Events

Date Code Title Description
AS Assignment

Owner name: TELEFLEX GFI CONTROL SYSTEMS L.P., CANADA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GIROUARD, ERICK;REEL/FRAME:014060/0319

Effective date: 20030421

STCB Information on status: application discontinuation

Free format text: EXPRESSLY ABANDONED -- DURING EXAMINATION