US20010007073A1 - Spine distraction implant and method - Google Patents
Spine distraction implant and method Download PDFInfo
- Publication number
- US20010007073A1 US20010007073A1 US09/754,534 US75453401A US2001007073A1 US 20010007073 A1 US20010007073 A1 US 20010007073A1 US 75453401 A US75453401 A US 75453401A US 2001007073 A1 US2001007073 A1 US 2001007073A1
- Authority
- US
- United States
- Prior art keywords
- implant
- spinous processes
- spinal column
- arm
- spinous
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- YYDXWNZZLPCQSL-UHFFFAOYSA-N CC1CC(C)=CC1 Chemical compound CC1CC(C)=CC1 YYDXWNZZLPCQSL-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/335—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
- A61K31/365—Lactones
- A61K31/366—Lactones having six-membered rings, e.g. delta-lactones
- A61K31/37—Coumarins, e.g. psoralen
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/56—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
- A61B17/58—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
- A61B17/68—Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
- A61B17/70—Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
- A61B17/7062—Devices acting on, attached to, or simulating the effect of, vertebral processes, vertebral facets or ribs ; Tools for such devices
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/56—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
- A61B17/58—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
- A61B17/68—Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
- A61B17/70—Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
- A61B17/7062—Devices acting on, attached to, or simulating the effect of, vertebral processes, vertebral facets or ribs ; Tools for such devices
- A61B17/7065—Devices with changeable shape, e.g. collapsible or having retractable arms to aid implantation; Tools therefor
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/56—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
- A61B17/58—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
- A61B17/68—Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
- A61B17/70—Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
- A61B17/7062—Devices acting on, attached to, or simulating the effect of, vertebral processes, vertebral facets or ribs ; Tools for such devices
- A61B17/7068—Devices comprising separate rigid parts, assembled in situ, to bear on each side of spinous processes; Tools therefor
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/56—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
- A61B17/58—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
- A61B17/60—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like for external osteosynthesis, e.g. distractors, contractors
- A61B17/66—Alignment, compression or distraction mechanisms
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/56—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
- A61B17/58—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
- A61B17/68—Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
- A61B17/70—Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
- A61B17/7071—Implants for expanding or repairing the vertebral arch or wedged between laminae or pedicles; Tools therefor
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/02—Surgical instruments, devices or methods, e.g. tourniquets for holding wounds open; Tractors
- A61B17/025—Joint distractors
- A61B2017/0256—Joint distractors for the spine
Definitions
- spinal stenosis including but not limited to central canal and lateral stenosis
- spinal stenosis including but not limited to central canal and lateral stenosis
- Pain associated with such stenosis can be relieved by medication and/or surgery.
- the present invention is directed to providing a minimally invasive implant and method for alleviating discomfort associated with the spinal column.
- the present invention provides for apparatus and method for relieving pain by relieving the pressure and restrictions on the aforementioned blood vessels and nerves. Such alleviation of pressure is accomplished in the present invention through the use of an implant and method which distract the spinous process of adjacent vertebra in order to alleviate the problems caused by spinal stenosis and facet arthropathy and the like. While the implant and method particularly address the needs of the elderly, the invention can be used with individuals of all ages and sizes where distraction of the spinous process would be beneficial.
- an implant for relieving pain comprising a device positioned between a first spinous process and a second spinous process.
- the device includes a spinal column extension stop and a spinal column flexion non-inhibitor.
- the implant is positioned between the first spinous process and the second spinous process and includes a distraction wedge that can distract the first and second spinous processes as the implant is positioned between the spinous processes.
- the implant includes a device which is adapted to increasing the volume of the spinal canal and/or the neural foramen as the device is positioned between adjacent spinous processes.
- a method for relieving pain due to the development of, by way of example only, spinal stenosis and facet arthropathy.
- the method is comprised of the steps of accessing adjacent first and second spinal processes of the spinal column and distracting the processes a sufficient amount in order to increase the volume of the spinal canal in order to relieve pain.
- the method further includes implanting a device In order to maintain the amount of distraction required to relieve such pain.
- the method includes implanting a device in order to achieve the desired distraction and to maintain that distraction.
- the implant includes a first portion and a second portion. The portions are urged together in order to achieve the desired distraction.
- FIGS. 1 and 2 depict an embodiment of an implant of the invention which is adjustable in order to select the amount of distraction required.
- FIG. 1 depicts the implant in a more extended configuration than does FIG. 2.
- FIGS. 3 a and 3 b depict side and end views of a first forked and of the embodiment of FIG. 1.
- FIGS. 4 a and 4 b depict side sectioned and end views of an interbody piece of the implant of FIG. 1.
- FIGS. 5 a and 5 b depict side and end views of a second forked end of the embodiment of FIG. 1.
- FIGS. 6, 7, 8 , 9 and 10 depict apparatus and method for another embodiment of the present invention for creating distraction between adjacent spinous processes.
- FIGS. 11, 12 and 13 depict yet a further embodiment of the invention for creating distraction between adjacent spinous processes.
- FIGS. 14 and 15 depict a further apparatus and method of an embodiment of the invention for creating distraction.
- FIGS. 16, 16 a, and 17 depict yet another embodiment of the present invention.
- FIGS. 18, 19 and 20 depict yet a further apparatus and method of the present embodiment.
- FIGS. 21 and 22 depict still a further embodiment of the present invention.
- FIGS. 23, 24 and 25 depict another embodiment of the present invention.
- FIGS. 26, 27 and 28 depict another embodiment of the invention.
- FIGS. 29 and 30 depict side elevational views of differently shaped implants of embodiments of the present invention.
- FIGS. 31, 32 and 33 depict various implant positions of an apparatus of the present invention.
- FIGS. 34 and 35 depict yet another apparatus and method of the present invention.
- FIGS. 36, 37 and 38 depict three different embodiments of the present invention.
- FIGS. 39 and 40 depict yet another apparatus and method of an embodiment of the present invention.
- FIGS. 41, 42 and 43 depict yet further embodiments of an apparatus and method of the present invention.
- FIG. 44 is still a further embodiment of an implant of the invention.
- FIG. 45 is yet another depiction of an apparatus and method of the invention.
- FIGS. 46 and 47 depict still a further apparatus and method of an embodiment of the invention.
- FIGS. 48, 49, 50 and 51 depict yet a further apparatus and method of the invention.
- FIGS. 52, 53, 54 , 55 a and 55 b depict another apparatus and method of the invention.
- FIGS. 56, 57 and 58 depict yet a further apparatus and method of the invention.
- FIGS. 59 and 60 depict still a further embodiment of the invention.
- FIG. 61 depict another embodiment of the invention.
- FIGS. 62 and 63 depict yet another embodiment of the present invention.
- FIGS. 64 and 65 depict still a further embodiment of the present invention.
- FIG. 66 depicts another embodiment of the invention.
- FIGS. 67 and 68 depict yet another embodiment of the present invention.
- FIGS. 69, 70, 71 and 71 a depict a further embodiment of the present invention.
- FIGS. 72 and 73 depict still another embodiment of the invention.
- FIGS. 74, 75, 76 , 77 , and 78 depict still other embodiments of the invention.
- Implant 20 includes first and second forked ends 22 and 24 , each defining a saddle 26 , 28 respectively.
- the forked ends 22 , 24 are mated using an interbody piece 30 .
- the first forked end 22 includes a threaded shaft 32 which projects rearwardly from the saddle 26 .
- the threaded shaft 32 fits into the threaded bore 34 (FIG. 4 a ) of the interbody piece 30 .
- the second forked end 24 (FIGS. 5 a, 5 b ) includes a smooth cylindrical shaft 36 which can fit into the smooth bore 38 of the interbody piece 30 .
- FIG. 1 shows the implant 20 in a fully extended position
- FIG. 2 shows the implant in an unextended position. In the unextended position, it can be seen that the threaded shaft 32 of the first forked end 22 fits inside the hollow cylindrical shaft 36 of the second forked end 24 .
- the implant 20 For purposes of implantation between adjacent first and second spinous processes of the spinal column, the implant 20 is configured as shown in FIG. 2. The first and second spinous processes are exposed using appropriate surgical techniques and thereafter, the implant 20 is positioned so that saddle 26 engages the first spinous process, and saddle 28 engages the second spinous process. At this point, the interbody piece 30 can be rotated by placing an appropriate tool or pin into the cross holes 40 and upon rotation, the saddle 26 is moved relative to the saddle 28 . Such rotation spreads apart or distracts the spinous processes with the resultant and beneficial effect of enlarging the volume of the spinal canal in order to alleviate any restrictions on blood vessels and nerves.
- this implant as well as the several other implants described herein act as an extension stop. That means that as the back is bent backwardly and thereby placed in extension the spacing between adjacent spinous processes cannot be reduced to a distance less than the distance between the lowest point of saddle 26 and the lowest point of saddle 28 .
- This implant does not inhibit or in any way limit the flexion of the spinal column, wherein the spinal column is bent forward.
- such a device provides for distraction in the range of about 5 millimeters to about 15 millimeters.
- devices which can distract up to and above 22 millimeters may be used depending on the characteristics of the individual patient.
- the implant 20 can be implanted essentially floating in position in order to gain the benefits of the aforementioned extension stop and flexion non-inhibitor.
- one of the saddles 26 can be laterally pinned with pin 29 to one of the spinous processes and the other saddle can be loosely associated with the other spinous processes by using a tether 31 which either pierces or surrounds the other spinous process and then is attached to the saddle in order to position the saddle relative to the spinous process.
- both saddles can be loosely tethered to the adjacent spinous process in order to allow the saddles to move relative to the spinous processes.
- the shape of the saddles being concave, gives the advantage of distributing the forces between the saddle and the respective spinous process. This ensures that the bone is not resorbed due to the placement of the implant 20 and that the structural integrity of the bone is maintained.
- the implant 20 in this embodiment can be made of a number of materials, including but not limited to, stainless steel, titanium, ceramics, plastics, elastics, composite materials or any combination of the above.
- the modulus of elasticity of the implant can be matched to that of bone, so that the implant 20 is not too rigid.
- the flexibility of the implant can further be enhanced by providing additional apertures or perforations throughout the implant in addition to the holes 40 which also have the above stated purpose of allowing the interbody piece 30 to be rotated in order to expand the distance between the saddle 26 , 28 .
- the spinous processes can be accessed and distracted initially using appropriate instrumentation, and that the implant 20 can be inserted and adjusted in order to maintain and achieve the desired distraction.
- the spinous process can be accessed and the implant 20 appropriately positioned. Once positioned, the length of the implant can be adjusted in order to distract the spinous processes or extend the distraction of already distracted spinous processes.
- the implant can be used to create a distraction or to maintain a distraction which has already been created.
- implant 20 The placement of implants such as implant 20 relative to the spinous process will be discussed hereinbelow with other embodiments. However, it is to be noted that ideally, the implant 20 would be placed close to the instantaneous axis of rotation of the spinal column so that the forces placed on the implant 20 and the forces that the implant 20 places on the spinal column are minimized.
- the method uses the approach of extending the length of the implant 20 a first amount and then allowing the spine to creep or adjust to this distraction. Thereafter, implant 20 would be lengthened another amount, followed by a period where the spine is allowed to creep or adjust to this new level of distraction. This process could be repeated until the desired amount of distraction has been accomplished.
- This same method can be used with insertion tools prior to the installation of an implant. The tools can be used to obtain the desired distraction using a series of spinal distraction and spine creep periods before an implant is installed.
- FIGS. 6, 7, 8 , 9 and 10 The embodiment of the invention shown in the above FIGS. 6, 7, 8 , 9 and 10 includes distraction or spreader tool 50 which has first and second arms 52 , 54 .
- Arms 52 , 54 are pivotal about pivot point 56 and releaseable from pivot point 56 in order to effect the implantation of implant 58 .
- the arms 52 , 54 are somewhat concave in order to cradle and securely hold the first spinous process 60 relative to arm 52 and the second spinous process 62 relative to arm 54 .
- the distraction tool 50 can be inserted through a small incision in the back of the patient in order to address the space between the first spinous process 60 and the second spinous process 62 .
- the arms 52 , 54 can be spread apart in order to distract the spinous processes.
- an implant 58 as shown in FIGS. 8 and 9, or of a design shown in other of the embodiments of this invention, can be urged between the arms 52 , 54 and into position between the spinous processes.
- the arms 52 , 54 can be withdrawn from the spinous processes leaving the implant 58 in place.
- the implant 58 is urged into place using a tool 64 which can be secured to the implant 58 through a threaded bore 66 in the back of the implant. As can be seen in FIG.
- the implant 58 includes saddles 68 and 70 which cradle the upper and lower spinous processes 60 , 62 in much the same manner as the above first embodiment and also in much the same manner as the individual arms of the tool 50 .
- the saddles as described above tend to distribute the load between the implant and the spinous processes and also assure that the spinous process is stably seated at the lowest point of the respective saddles.
- the spreader or distraction tool 80 includes first and second arms 82 , 84 which are permanently pivoted at pivot point 86 .
- the arms include L-shaped ends 88 , 90 .
- the L-shaped ends 88 , 90 can be inserted between the first and second spinous processes 92 , 94 .
- the arms 82 , 84 can be spread apart in order to distract the spinous processes.
- the implant 96 can then be urged between the spinous processes in order to maintain the distraction. It is noted that implant 96 includes wedged surfaces or ramps 98 , 100 .
- the ramps further cause the spinous processes to be distracted.
- the full distraction is maintained by the planar surfaces 99 , 101 located rearwardly of the ramps. It is to be understood that the cross-section of the implant 96 can be similar to that shown for implant 58 or similar to other implants in order to gain the advantages of load distribution, and stability.
- the implant 110 includes first and second conically shaped members 112 , 114 .
- Member 112 includes a male snap connector 116 and member 114 includes a female snap connector 118 .
- male snap connector 116 urged into female snap connector 118
- the first member 112 is locked to the second member 114 .
- a distraction or spreader tool 80 could be used.
- an implantation tool 120 can be used to position and snap together the implant 110 .
- the first member 112 of implant 110 is mounted on one arm and second member 114 is mounted on the other arm of tool 120 .
- the member 112 , 114 are placed on opposite sides of the space between adjacent spinous processes.
- the members 112 , 114 are urged together so that the implant 110 is locked in place between the spinous processes as shown in FIG. 15.
- the implant 110 can also be made more self-distracting by causing the cylindrical surface 122 to be more conical, much as surface 124 is conical, in order to hold implant 110 in place relative to the spinous processes and also to create additional distraction.
- FIGS. 16 and 17 An alternative embodiment of the implant can be seen in FIGS. 16 and 17.
- This implant 130 includes first and second members 132 , 134 .
- the implants are held together using a screw (not shown) which is inserted through countersunk bore 136 and engages a threaded bore 138 of the second member 134 .
- Surfaces 139 are flattened (FIG. 17) in order to carry and spread the load applied thereto by the spinous processes.
- the embodiment of implant 130 is not circular in overall outside appearance, as is the embodiment 110 of FIGS. 14 and 15.
- this embodiment is truncated so that the lateral side 140 , 142 are flattened with the upper and lower sides 144 , 146 being elongated in order to capture and create a saddle for the upper and lower spinous processes.
- the upper and lower sides, 144 , 146 are rounded to provide a more anatomical implant which is compatible with the spinous processes.
- key 148 and keyway 150 are designed to mate in a particular manner.
- Key 148 includes at least one flattened surface, such as flattened surface 152 , which mates to an appropriately flattened surface 154 of the keyway 150 .
- the first member is appropriately mated to the second member in order to form appropriate upper and lower saddles holding the implant 130 relative to the upper and lower spinous processes.
- FIG. 16 a depicts second member 134 in combination with a rounded nose lead-in plug 135 .
- Lead-in plug 135 includes a bore 137 which can fit snugly over key 148 .
- the lead-in plug 135 can be used to assist in the placement of the second member 134 between spinous processes. Once the second member 134 is appropriately positioned, the lead-in plug 135 can be removed. It is to be understood that the lead-in plug 135 can have other shapes such as pyramids and cones to assist in urging apart the spinous processes and soft tissues in order to position the second member 134 .
- the implant 330 as shown in FIG. 18 is comprised of first and second mating wedges 332 and 334 .
- the spinous processes are accessed from both sides and then a tool is used to push the wedges towards each other.
- the wedges move relative to each other so that the combined dimension of the implant 330 located between the upper and lower spinous processes 336 , 338 (FIG. 20), increases, thereby distracting the spinous processes.
- the wedges 332 , 334 include saddle 340 , 342 , which receiving the spinous processes 336 , 338 . These saddles have the advantages as described hereinabove.
- the first or second wedges 332 , 334 have a mating arrangement which includes a channel 344 and a projection of 346 which can be urged into the channel in order to lock the wedges 332 , 334 together.
- the channel 334 is undercut in order to keep the projection from separating therefrom.
- a detent can be located in one of the channel and the projection, with a complimentary recess in the other of the channel and the projection. Once these two snap together, the wedges are prevented from sliding relative to the other in the channel 344 .
- the implant 370 is comprised of first and second distraction cone 372 , 374 . These cones are made of a flexible material. The cones are positioned on either side of the spinous processes 376 , 378 as shown in FIG. 21. Using appropriate tool as shown hereinabove, the distraction cones 372 , 374 are urged together. As they are urged together, the cones distract the spinous processes as shown in FIG. 22. Once this has occurred, an appropriate screw or other type of fastening mechanism 380 can be used to maintain the position of the distraction cones 372 , 374 .
- the advantage of this arrangement is that the implant 370 is self-distracting and also that the implant, being flexible, molds about the spinous processes as shown in FIG. 22.
- FIGS. 23 and 24 another embodiment of the implant 170 is depicted.
- This implant is guided in place using an L-shaped guide 172 which can have a concave cross-section such as the cross-section 52 of retraction tool 50 In FIG. 6 in order to cradle and guide the implant 170 in position.
- a small incision would be made into the back of the patient and the L-shaped guide tool 172 inserted between the adjacent spinous processes.
- the implant 170 would be mounted on the end of insertion tool 174 and urged into position between the spinous processes. The act of urging the implant into position could cause the spinous processes to be further distracted if that is required.
- a distraction tool such as shown in FIG. 13 could be used to initially distract the spinous processes.
- Implant 170 can be made of a deformable material so that it can be urged into place and so that it can somewhat conform to the shape of the upper and lower spinous processes.
- This deformable material would be preferably an elastic material. The advantage of such a material would be that the load forces between the implant and the spinous processes would be distributed over a much broader surface area. Further, the implant would mold itself to an irregular spinous process shape in order to locate the implant relative to spinous processes.
- this implant 176 can be inserted over a guide wire, guide tool or stylet 178 .
- the guide wire 178 is positioned through a small incision to the back of the patient to a position between the adjacent spinous processes.
- the implant is threaded over the guide wire 178 and urged into position between the spinous processes. This urging can further distract the spinous processes if further distraction is required.
- the guide tool 178 is removed and the incision closed.
- the insertion tools of FIGS. 23 and 24 can also be used if desired.
- FIGS. 26, 27 and 28 uses an implant similar to that depicted in FIGS. 8 and 9 with different insertion tools.
- an L-shaped distraction tool 190 is similar to L-shaped distraction tool 80 (FIG. 12), is used to distract the first and second spinous processes 192 , 194 .
- an insertion tool 196 is placed between the spinous processes 192 , 194 .
- Insertion tool 196 includes a handle 198 to which is mounted a square-shaped ring 200 .
- the distraction tool 190 can be inserted through a small incision in the back in order to spread apart the spinous processes.
- an upper end 202 of ring 200 can be initially inserted followed by the remainder of the ring 200 .
- the ring can be rotated slightly by moving handle 198 downwardly in order to further wedge the spinous processes apart.
- an implant such as implant 204 can be inserted through the ring and properly positioned using implant handle 206 . Thereafter, the implant handle 206 and the insertion tool 196 can be removed.
- the implants 210 , 212 can have different shapes when viewed from the side. These implants are similar to the above-referenced implants 58 (FIG. 8) and 204 (FIG. 28). These implants have cross-sections similar to that shown in FIG. 10 which includes saddles in order to receive and hold the adjacent spinous processes.
- these implants can be placed in different positions with respect to the spinous process 214 .
- the implant 210 is placed closest to the lamina 216 . Being so positioned, the implant 210 is close to the instantaneous axis of rotation 218 of the spinal column, and the implant would experience least forces caused by movement of the spine. Thus, theoretically, this is the optimal location for the implant.
- the implant can be placed midway along the spinous process (FIG. 32) and towards the posterior aspect of the spinous process (FIG. 31). As positioned shown in FIG. 31, the greatest force would be placed on the implant 210 due to a combination of compression and extension of the spinal column.
- implant 220 is comprised of a plurality of individual leaves 222 which are substantially V-shaped.
- the leaves include interlocking indentations or detents 224 . That is, each leaf includes an indentation with a corresponding protrusion such that a protrusion of one leaf mates with an indentation of an adjacent leaf.
- an insertion tool 226 which has a blunt end 228 which conforms to the shape of an individual leaf 222 . For insertion of this implant into the space between the spinous processes as shown in FIG. 29, the insertion tool 226 first insert a single leaf 220 .
- the insertion tool then inserts a second leaf with the protrusion 224 of the second leaf snapping into corresponding indentation made by the protrusion 224 of the first leaf.
- This process would reoccur with third and subsequent leaves until the appropriate spacing between the spinous processes was built up.
- the lateral edges 229 of the individual leaves 222 are slightly curved upwardly in order to form a saddle for receiving the upper and lower spinous processes.
- FIGS. 36, 37 and 38 which include implants 230 , 232 , and 234 respectively, are designed in such a manner so the implant locks itself into position once it is properly positioned between the spinous processes.
- Implant 220 is essentially a series of truncated cones and includes a plurality of ever expanding steps 236 . These steps are formed by the conical bodies starting with the nose body 238 followed there behind by conical body 240 . Essentially, the implant 234 looks like a fir tree placed on its side.
- the implant 230 is inserted laterally throughout the opening between upper and lower spinous processes.
- the first body 238 causes the initial distraction. Each successive conical body distracts the spinous processes a further incremental amount.
- the spinous processes are locked into position by steps 236 .
- the initial nose body 238 of the implant and other bodies 240 can be broken, snapped or sawed off if desired in order to minimize the size of the implant 230 .
- the intersection between bodies such as body 238 and 240 , which is intersection line 242 , would be somewhat weaken with the appropriate removal of material. It is noted that only the intersection lines of the initial conical bodies need to be so weakened. Thus, intersection line 244 between the bodies which remain between the spinous processes would not need to be weaker, as there would be no intention that the implant would be broken off at this point.
- FIG. 37 shows implant 232 positioned between upper and lower spinous processes.
- This implant is wedge-shaped or triangular shaped in cross-sectioned and includes bore pluralities 245 and 246 . Through these bores can be placed locking pins 248 and 250 .
- the triangular or wedged-shaped implant can be urged laterally between and thus distract the upper and lower spinous processes.
- pins 248 , 250 can be inserted through the appropriate bores of the bore pluralities 245 and 246 in order to lock the spinous processes in a V-shaped valley formed by pins 248 , 250 on the one hand and the ramped surface 233 , 235 on the other hand.
- the implant 234 has a triangular-shaped or wedge-shaped body similar to that shown in FIG. 32.
- tab 252 , 254 are pivotally mounted to the triangular shaped body 234 .
- cannula 258 is inserted through a small incision to a position between upper and lower spinous processes. Once the cannula is properly inserted, an implant 260 is pushed through the cannula 258 using an insertion tool 262 .
- the implant 260 includes a plurality of ribs or indentation 264 that assist in positioning the implant 260 relative to the upper and lower spinal processes. Once the implant 260 is in position, the cannula 258 is withdrawn so that the implant 260 comes in contact with and wedges between the spinous processes.
- the cannula 258 is somewhat conical In shape with the nose end 266 being somewhat smaller than the distal end 268 in order to effect the insertion of the cannula into the space between the spinous processes.
- a plurality of cannula can be used instead of one, with each cannula being slightly bigger than one before.
- the first smaller cannula would be inserted followed by successively larger cannula being placed over the previous smaller cannula.
- the smaller cannula would then be withdrawn from the center of the larger cannula. Once the largest cannula is in place, and the opening of the skin accordingly expanded, the implant, which is accommodated by only the larger cannula, is inserted through the larger cannula and into position.
- the precurved implant 270 in FIGS. 41 and 42, and precurved implant 272 in FIG. 43 have common introduction techniques which includes a guide wire, guide tool, or stylet 274 .
- the guide wire 274 is appropriately positioned through the skin of the patient and into the space between the spinous processes. After this is accomplished, the implant is directed over the guide wire and into position between the spinous processes.
- the precurved nature of the implant assist in (1) positioning the implant through a first small incision in the patient's skin on one side of the space between two spinous processes and (2) guiding the implant toward a second small incision in the patient's skin on the other side of the space between the two spinous processes.
- the implant includes a conical introduction nose 276 and a distal portion 278 .
- the nose 276 As the nose 276 is inserted between the spinous processes, this causes distraction of the spinous processes.
- Break lines 280 , 282 are established at opposite sides of the implant 270 . Once the implant is properly positioned over the guide wire between the spinous processes, the nose portion 276 and the distal portion 278 can be broken off along the break lines, through the above two incisions, in order to leave the implant 270 in position.
- break lines 280 , 282 can be provided on implant 270 so that the implant can continue to be fed over the guide wire 278 until the appropriate width of the implant 270 creates the desired amount of distraction.
- the break lines can be created by perforating or otherwise weakening the implant 270 so that the appropriate portions can be snapped or sawed off.
- this implant is similar in design to the implant 230 shown in FIG. 36.
- This implant 272 in FIG. 47 is precurved and inserted over a guide wire 274 to a position between the spinous processes.
- sections of the implant 272 can be broken, snapped or sawed off as described hereinabove in order to leave a portion of the implant wedged between the upper and lower spinous processes.
- FIG. 44 A further embodiment of the invention is shown in FIG. 44.
- This embodiment includes a combination insertion tool and implant 290 .
- the insertion tool and implant 290 is in the shape of a ring which is hinged at point 292 .
- the ring is formed by a first elongated and conically shaped member 294 and a second elongated and conically shaped member 296 .
- Members 294 and 296 terminate in points and through the use of hinge 292 are aligned and meet.
- first member and second member are inserted through the skins of the patient and are mated together between the spinous processes.
- the implant 290 is rotated, for example clockwise, so that increasingly widening portions of the first member 292 are used to distract the first and second spinous processes.
- the remainder of the ring before and after the section which is located between the spinous processes can be broken off as taught hereinabove in order to maintain the desired distraction.
- the entire ring can be left in place with the spinous processes distracted.
- the implant 300 is comprised of a plurality of rods or stylets 302 which are inserted between the upper and lower spinous processes.
- the rods are designed much as described hereinabove so that they may be broken, snapped or cut off. Once these are inserted and the appropriate distraction has been reached, the stylets are broken off and a segment of each stylet remains in order to maintain distraction of the spinous process.
- Implant 310 of FIGS. 46 and 47 is comprised of a shape memory material which coils upon being released.
- the material is straightened out in a delivery tool 312 .
- the delivery tool is in position between upper and lower spinous processes 314 , 316 .
- the material is then pushed through the delivery tool. As it is released from the delivery end 318 of the delivery tool, the material coils, distracting the spinous processes to the desired amount. Once this distraction has been achieved, the material is cut and the delivery tool removed.
- the implant 320 is delivered between upper and lower spinous processes 322 and 324 , by delivery tool 326 .
- the delivery tool is given a 90°twist so that the implant goes from the orientation as shown in FIG. 49, with longest dimension substantially perpendicular to the spinous processes, to the orientation shown in FIG. 50 where the longest dimension is in line with and parallel to the spinous processes.
- This rotation causes the desired distraction between the spinous processes.
- Implant 320 includes opposed recesses 321 and 323 located at the ends thereof. Rotation of the implant 320 causes the spinous processes to become lodged in these recesses.
- the insertion tool 326 can be used to insert multiple implants 320 , 321 into the space between the spinous processes 322 , 324 (FIG. 51). Multiple implants 320 , 321 can be inserted until the appropriate amount of distraction is built up. It is to be understood in this situation that one implant would lock to another implant by use of, for example, a channel arrangement wherein a projection from one of the implants would be received into and locked into a channel of the other implant. Such a channel arrangement is depicted with respect to the other embodiment.
- FIGS. 52 through 55 b The embodiment of FIGS. 52 through 55 b is comprised of a fluid-filled dynamic distraction implant 350 .
- This implant includes a membrane 352 which is placed over pre-bent insertion rod 354 and then inserted through an incision on one side of the spinous process 356 .
- the bent insertion rod, with the implant 350 thereover, is guided between appropriate spinous processes. After this occurs, the insertion rod 354 is removed leaving the flexible implant in place.
- the implant 350 is then connected to a source of fluid (gas, liquid, gel and the like) and the fluid is forced into the implant causing it to expand as shown in FIG. 54, distracting the spinal processes to the desired amount.
- the implant 350 is closed off as is shown in FIG. 55 a .
- the implant 350 being flexible, can mold to the spinous processes which may be of irregular shape, thus assuring positioning. Further, implant 350 acts as a shock absorber, damping forces and stresses between the implant and the spinous processes.
- a variety of materials can be used to make the implant and the fluid which is forced into the implant.
- viscoelastic substances such as methylcellulose, or hyaluronic acid can be used to fill the implant.
- materials which are initially a fluid, but later solidify can be inserted in order to cause the necessary distraction. As the materials solidify, they mold into a custom shape about the spinous processes and accordingly are held in position at least with respect to one of two adjacent spinous processes.
- the implant can be formed about one spinous process in such a manner that the implant stays positioned with respect to that spinous process (FIG. 55 b ).
- a single implant can be used as an extension stop for spinous process located on either side, without restricting flexion of the spinal column.
- the implant 360 as shown in FIG. 56 is comprised of a shape memory material such as a plastic or a metal.
- a curved introductory tool 362 is positioned between the appropriate spinous processes as described hereinabove. Once this has occurred, bore 364 of the implant is received over the tool. This act can cause the implant to straighten out. The implant is then urged into position and thereby distracts the spinous processes. When this has occurred, the insertion tool 362 is removed, allowing the implant to assume its pre-straightened configuration and is thereby secured about one of the spinous processes.
- the implant can be temperature sensitive. That is to say that the implant would be more straightened initially, but become more curved when it was warmed by the temperature of the patient's body.
- the implant 380 is comprised of a plurality of interlocking leaves 382 . Initially, a first leaf is positioned between opposed spinous processes 384 , 386 . Then subsequently, leafs 382 are interposed between the spinous processes until the desired distraction has been built up. The leaves are somewhat spring-like in order to absorb the shock and can somewhat conform to the spinous processes.
- the implant 390 of FIG. 61 includes the placement of shields 392 , 394 over adjacent spinous processes 396 , 398 .
- the shields are used to prevent damage to the spinous processes.
- These shields include apertures which receives a self-tapping screw 400 , 402 .
- the shields are affixed to the spinous processes and the spinous processes are distracted in the appropriate amount. Once this has occurred, a rod 404 is used to hold the distracted position by being screwed into each of the spinous processes through the aperture in the shields using the screws as depicted in FIG. 61.
- Implant 410 of FIGS. 62, 63 is comprised of first and second members 412 , 414 which can be mated together using an appropriate screw and threaded bore arrangement to form the implant 410 .
- Main member 412 and mating member 414 form implant 410 .
- the implant 410 would have a plurality of members 414 for use with a standardized first member 412 .
- FIGS. 62 and 64 show different types of mating members 414 .
- the mating member 414 includes projections 416 and 418 which act like shims. These projections are used to project into the space of saddles 420 , 422 of the first member 412 .
- These projections 416 , 418 can be of varying lengths in order to accommodate different sizes of spinous processes.
- a groove 424 is placed between the projections 416 , 418 and mates with an extension 426 of the first member 412 .
- FIGS. 64, 65 and 66 are similar in design and concept to the embodiment of FIGS. 62 and 63.
- the implant 500 includes the first and second members 502 , 504 . These members can be secured together with appropriate screws or other fastening means as taught in other embodiments.
- Implant 500 includes first and second saddles 506 , 508 which are formed between the ends of first and second members 502 , 504 . These saddles 506 , 508 are used to receive and cradle the adjacent spinous processes. As can be seen in FIG. 64, each saddle 506 , 508 is defined by a single projection or leg 510 , 512 , which extends from the appropriate first and second members 502 , 504 .
- each of the saddles is defined by only a single leg as the ligaments and other tissues associated with the spinous processes can be used to ensure that the implant is held in an appropriate position.
- FIG. 64 it is easier to position the implant relative to the spinous processes as each saddle is defined by only a single leg and thus the first and second members can be more easily worked into position between the various tissues.
- the implant 520 is comprised of a single piece having saddles 522 and 524 .
- the saddles are defined by a single leg 526 , 528 respectively.
- an incision is made between lateral sides of adjacent spinous processes.
- the single leg 526 is directed through the incision to a position adjacent to an opposite lateral side of the spinous process with the spinous process cradled in the saddle 522 .
- the spinous processes are then urged apart until saddle 524 can be pivoted into position into engagement with the other spinous process in order to maintain the distraction between the two adjacent spinous processes.
- FIG. 66 The embodiment of FIG. 66 is similar to that of FIG. 65 with an implant 530 and first and second saddles 532 and 534 .
- a tether 536 , 538 Associated with each saddle is a tether 536 , 538 respectively.
- the tethers are made of flexible materials known in the trade and industry and are positioned through bores in the implant 530 . Once appropriately positioned, the tethers can be tied off. It is to be understood that the tethers are not meant to be used to immobilize one spinous process relative to the other, but are used to guide motion of the spinous processes relative to each other so that the implant 530 can be used as an extension stop and a flexion non-inhibitor.
- the saddles 532 , 534 are used to stop spinal column backward bending and extension. However, the tethers do not inhibit forward bending and spinal column flexion.
- the implant 550 is Z-shaped and includes a central body 552 and first and second arms 554 , 556 , extending in opposite directions therefrom.
- the central body 552 of the implant 550 includes first and second saddles 558 and 560 .
- the first and second saddles 558 and 560 would receive upper and lower spinous processes 562 , 568 .
- the arms 554 , 556 are accordingly located adjacent the distal end 566 (FIG. 68) of the central body 552 .
- the first and second arms 554 , 556 act to inhibit forward movement, migration or slippage of the implant 550 toward the spinal canal and keep the implant in place relative to the first and second spinal processes. This prevents the implant from pressing down on the ligamentum flavum and the dura.
- the central body would have a height of about 10 mm with each of the arms 554 , 556 have a height of also about 10 mm. Depending on the patient, the height of the body could vary from about less than 10 mm to about greater than 24 mm.
- the first and second arms 554 , 556 are additionally contoured in order to accept the upper and lower spinous processes 556 , 558 .
- the arms 554 , 556 as can be seen with respect to arm 554 have a slightly outwardly bowed portion 568 (FIG. 68) with a distal end 570 which is slightly inwardly bowed.
- This configuration allows the arm to fit about the spinous process with the distal end 570 somewhat urged against the spinous process in order to guide the motion of the spinous process relative to the implant.
- These arms 554 , 556 could if desired to be made more flexible than the central body 552 by making arms 554 , 556 thin and/or with perforations, and/or other material different than that of the central body 550 .
- this embodiment can be urged into position between adjacent spinous processes by directing an arm into a lateral incision so that the central body 552 can be finally positioned between spinous processes.
- FIGS. 69, 70 and 71 are perspective front, end, and side views of implant 580 of the invention.
- This implant includes a central body 582 which has first and second saddles 584 , 586 for receiving adjacent spinous processes. Additionally, the implant 580 includes first and second arms 588 and 590 . The arms, as with the past embodiment, prevent forward migration or slippage of the implant toward the spinal canal.
- First arm 588 projects outwardly from the first saddle 584 and second arm 590 projects outwardly from the second saddle 586 .
- the first arm 588 is located adjacent to the distal end 600 of the central body 582 and proceeds only partly along the length of the central body 582 .
- the first arm 588 is substantially perpendicular to the central body as shown in FIG. 70. Further, the first arm 588 , as well as the second arm 590 , is anatomically rounded.
- the second arm 590 projecting from second saddle 586 , is located somewhat rearward of the distal end 600 , and extends partially along the length of the central body 582 .
- the second arm 590 projects at a compound angle from the central body 582 .
- the second arm 590 is shown to be at about an angle of 45°from the saddle 586 (FIG. 70). Additionally, the second arm 590 is at an angle of about 45°relative to the length of the central body 580 as shown in FIG. 71. It is to be understood that other compound angles are within the spirit and scope of the invention as claimed.
- the first and second arms 588 , 590 have a length which is about the same as the width of the central body 582 .
- the length of each arm is about 10 mm and the width of the central body is about 10 mm.
- the bodies with the widths of 24 mm and greater are within the spirit and scope of the invention, along with first and second arms ranging from about 10 mm to greater than about 24 mm.
- the embodiment could include a central body having a width of about or greater than 24 mm with arms being at about 10 mm.
- FIGS. 69, 70 and 71 are designed to preferably be positioned between the L 4 -L 5 and the L 5 -S 1 vertebral pairs.
- the embodiment of FIGS. 69, 70, 71 is particularly designed for the L 5 -S 1 position with the arms being designed to conform to the sloping surfaces found therebetween. The first and second arms are thus contoured so that they lie flat against the lamina of the vertebra which has a slight angle.
- FIG. 69, 70, and 71 as with the embodiment of FIGS. 67 and 68 is Z-shaped in configuration so that it may be inserted from one lateral side to a position between adjacent spinous processes. A first arm, followed by the central body, is guided through the space between the spinous processes. Such an arrangement only requires that a incision on one side of the spinous process be made in order to successfully implant the device between the two spinous processes.
- the implant 610 of FIG. 71 a is similar to that immediately above with the first arm 612 located on the same side of the implant as the second arm 614 .
- the first and second saddle 616 , 618 are slightly modified in that distal portion 620 , 622 are somewhat flattened from the normal saddle shape in order to allow the implant to be positioned between the spinous processes from one side. Once in position, the ligaments and tissues associated with the spinous processes would hold the implant into position. Tethers also could be used if desired.
- Implant 630 is also designed so that it can be inserted from one side of adjacent spinous processes.
- This insert 630 includes a central body 632 with the first and second arms 634 , 636 extending on either side thereof.
- a plunger 638 is positioned to extend from an end of the central body 632 .
- the plunger 638 is fully extended and as shown in FIG. 73, the plunger 638 is received within the central body 632 of the implant 630 .
- the third and fourth arms or hooks 640 , 642 can extend outwardly from the central body 632 .
- the third and fourth arms or hooks 640 , 642 can be comprised of a variety of materials, such as for example, shape memory metal materials or materials which have a springy quality.
- the plunger 638 is pulled outwardly as shown in FIG. 72 .
- the central body 632 is then positioned between adjacent spinous processes and the plunger 638 is allowed to move to the position of FIG. 73 so that the third and fourth arms 640 , 642 can project outwardly from the central body 632 in order to hold the implant 630 in position between the spinous processes.
- Plunger 638 can be spring biased to the position as shown in FIG. 73 or can include detents or other mechanisms which lock it into that position. Further, the third and fourth arms themselves, as deployed, can keep the plunger in the position as shown in FIG. 73.
- FIGS. 74 through 78 Other embodiments of the invention are shown in FIGS. 74 through 78.
- FIGS. 74, 75 and 76 disclose implant 700 .
- Implant 700 is particularly suited for implantation between the L 4 -L 5 and L 5 -S 1 vertebra.
- the implant 700 includes a central body 702 which has a bore 704 provided therein.
- Bore 704 is used in order to adjust the modulus of elasticity of the implant so that it is preferably approximately two times the anatomical load placed on the vertebra in extension.
- the implant 700 is approximately two times stiffer than the normal load placed on the implant.
- Such an arrangement is made in order to ensure that the implant is somewhat flexible in order to reduce potential resorption of the bone adjacent to the implant.
- Other modulus values can be used and be within the spirit of the invention.
- Implant 700 includes first and second saddle 706 , 708 which are used to receive and spread the load from the upper and lower spinous processes.
- the saddle 706 is defined by first and second arms 710 and 712 .
- the second saddle 708 is defined by third and fourth arms 714 and 716 .
- the first arm 710 in a preferred embodiment, is approximately two times the length of the body 702 with the second arm being approximately less than a quarter length of the body.
- Third arm 714 is approximately one times the length of the body 702 with the fourth arm 716 being, in this preferred embodiment, approximately one and a half times the length of the body 702 .
- the arms are designed in such a way that the implant (1) can be easily and conveniently inserted between the adjacent spinous processes, (2) will not migrate forwardly toward the spinal canal, and (3) will hold its position through flexion and extension as well as lateral bending of the spinal column.
- First arm 710 is in addition designed to accommodate the shape of the vertebra. As can be seen in FIG. 74, the first arm 710 becomes narrower as it extends away from the body 702 .
- the first arm 710 includes a sloping portion 718 followed by a small recess 720 ending in a rounded portion 722 adjacent to the end 724 .
- This design is provided to accommodate the anatomical form of for example the L 4 vertebra. It is to be understood that these vertebra have a number of surfaces at roughly 30°angles and that the sloping surfaces of this embodiment and the embodiments shown in FIGS. 77 and 78 are designed to accommodate these surfaces. These embodiments can be further modified in order to accommodate other angles and shapes.
- the second arm 712 is small so that it is easy to insert between the spinous processes, yet still define the saddle 706 .
- the fourth arm 716 is larger than the third arm 714 , both of which are smaller than the first arm 710 .
- the third and fourth arms are designed so that they define the saddle 706 , guide the spinous processes relative to the implant 700 during movement of the spinal column, and yet are of a size which makes the implant easy to position between the spinous processes.
- the procedure, by way of example only, for implanting the implant 700 can be to make an incision laterally between two spinous processes and then initially insert first arm 710 between the spinous processes.
- the implant and/or appropriate tools would be used to distract the spinous processes allowing the third leg 714 and the central body 702 to fit through the space between the spinous processes.
- the third leg 714 would then come to rest adjacent the lower spinous processes on the opposite side with the spinous processes resting in the first and second saddle 706 , 708 .
- the longer fourth leg 716 would then assist in the positioning of the implant 700 .
- FIG. 77 includes an implant 740 which is similar to implant 700 and thus have similar numbering.
- the saddle 706 , 708 of implant 740 have been cantered or sloped in order to accommodate the bone structure between, by way of example, the L 4 -L 5 and the L 5 -S 1 vertebra.
- the vertebra in this area have a number of sloping surfaces in the range of about 30°. Accordingly, saddle 706 is sloped at less than 30°and preferably about 20°while saddle 708 is sloped at about 30°and preferably more than 30°.
- the implant 760 as shown in FIG. 78 is similar to implant 700 in FIG. 74 and is similarly numbered.
- Implant 760 includes third and fourth legs 714 , 716 which have sloping portions 762 , 764 which slope toward ends 766 , 768 of third and fourth arm 714 , 716 respectively.
- the sloping portions accommodate the form of the lower vertebra against which they are positioned. In the preferred embodiment, the sloping portions are of about 30 °. However, it is to be understood that sloping portions which are substantially greater and substantially less than 30°can be included and be within the spirit and scope of the invention.
- the present invention can be used to relieve pain caused by spinal stenosis in the form of, by way of example only, central canal stenosis or foraminal (lateral) stenosis. These implants have the ability to flatten the natural curvature of the spine and open the neural foramen and the spacing between adjacent vertebra to relieve problems associated with the above-mentioned lateral and central stenosis. Additionally, the invention can be used to relieve pain associated with facet arthropathy. The present invention is minimally invasive and can be used on an outpatient basis.
Landscapes
- Health & Medical Sciences (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Neurology (AREA)
- Surgery (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Molecular Biology (AREA)
- Medical Informatics (AREA)
- Heart & Thoracic Surgery (AREA)
- Biomedical Technology (AREA)
- Engineering & Computer Science (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- Prostheses (AREA)
Abstract
Description
- As the present society ages, it is anticipated that there will be an increase in adverse spinal conditions which are characteristic of older people. By way of example, with aging comes increases in spinal stenosis (including but not limited to central canal and lateral stenosis), the thickening of the bones which make up the spinal column and facet arthropathy. Spinal stenosis is characterized by a reduction in the available space for the passage of blood vessels and nerves. Pain associated with such stenosis can be relieved by medication and/or surgery. Of course, it is desirable to eliminate the need for major surgery for all individuals and in particular for the elderly.
- Accordingly, there needs to be developed procedures and implants for alleviating such condition which are minimally invasive, can be tolerated by the elderly and can be performed preferably on an outpatient basis.
- The present invention is directed to providing a minimally invasive implant and method for alleviating discomfort associated with the spinal column.
- The present invention provides for apparatus and method for relieving pain by relieving the pressure and restrictions on the aforementioned blood vessels and nerves. Such alleviation of pressure is accomplished in the present invention through the use of an implant and method which distract the spinous process of adjacent vertebra in order to alleviate the problems caused by spinal stenosis and facet arthropathy and the like. While the implant and method particularly address the needs of the elderly, the invention can be used with individuals of all ages and sizes where distraction of the spinous process would be beneficial.
- In one aspect of the invention, an implant is provided for relieving pain comprising a device positioned between a first spinous process and a second spinous process. The device includes a spinal column extension stop and a spinal column flexion non-inhibitor.
- In another aspect of the invention, the implant is positioned between the first spinous process and the second spinous process and includes a distraction wedge that can distract the first and second spinous processes as the implant is positioned between the spinous processes.
- In yet another aspect of the present invention, the implant includes a device which is adapted to increasing the volume of the spinal canal and/or the neural foramen as the device is positioned between adjacent spinous processes.
- In yet a further aspect of the present invention, a method is presented for relieving pain due to the development of, by way of example only, spinal stenosis and facet arthropathy. The method is comprised of the steps of accessing adjacent first and second spinal processes of the spinal column and distracting the processes a sufficient amount in order to increase the volume of the spinal canal in order to relieve pain. The method further includes implanting a device In order to maintain the amount of distraction required to relieve such pain.
- In yet a further aspect of the invention, the method includes implanting a device in order to achieve the desired distraction and to maintain that distraction.
- In yet a further aspect of the invention, the implant includes a first portion and a second portion. The portions are urged together in order to achieve the desired distraction.
- Other implants and methods within the spirit and scope of the invention can be used to increase the volume of the spinal canal thereby alleviating restrictions on vessels and nerves associated therewith, and pain.
- FIGS. 1 and 2 depict an embodiment of an implant of the invention which is adjustable in order to select the amount of distraction required. FIG. 1 depicts the implant in a more extended configuration than does FIG. 2.
- FIGS. 3a and 3 b depict side and end views of a first forked and of the embodiment of FIG. 1.
- FIGS. 4a and 4 b depict side sectioned and end views of an interbody piece of the implant of FIG. 1.
- FIGS. 5a and 5 b depict side and end views of a second forked end of the embodiment of FIG. 1.
- FIGS. 6, 7,8, 9 and 10 depict apparatus and method for another embodiment of the present invention for creating distraction between adjacent spinous processes.
- FIGS. 11, 12 and13 depict yet a further embodiment of the invention for creating distraction between adjacent spinous processes.
- FIGS. 14 and 15 depict a further apparatus and method of an embodiment of the invention for creating distraction.
- FIGS. 16, 16a, and 17 depict yet another embodiment of the present invention.
- FIGS. 18, 19 and20 depict yet a further apparatus and method of the present embodiment.
- FIGS. 21 and 22 depict still a further embodiment of the present invention.
- FIGS. 23, 24 and25 depict another embodiment of the present invention.
- FIGS. 26, 27 and28 depict another embodiment of the invention.
- FIGS. 29 and 30 depict side elevational views of differently shaped implants of embodiments of the present invention.
- FIGS. 31, 32 and33 depict various implant positions of an apparatus of the present invention.
- FIGS. 34 and 35 depict yet another apparatus and method of the present invention.
- FIGS. 36, 37 and38 depict three different embodiments of the present invention.
- FIGS. 39 and 40 depict yet another apparatus and method of an embodiment of the present invention.
- FIGS. 41, 42 and43 depict yet further embodiments of an apparatus and method of the present invention.
- FIG. 44 is still a further embodiment of an implant of the invention.
- FIG. 45 is yet another depiction of an apparatus and method of the invention.
- FIGS. 46 and 47 depict still a further apparatus and method of an embodiment of the invention.
- FIGS. 48, 49,50 and 51 depict yet a further apparatus and method of the invention.
- FIGS. 52, 53,54, 55 a and 55 b depict another apparatus and method of the invention.
- FIGS. 56, 57 and58 depict yet a further apparatus and method of the invention.
- FIGS. 59 and 60 depict still a further embodiment of the invention.
- FIG. 61 depict another embodiment of the invention.
- FIGS. 62 and 63 depict yet another embodiment of the present invention.
- FIGS. 64 and 65 depict still a further embodiment of the present invention.
- FIG. 66 depicts another embodiment of the invention.
- FIGS. 67 and 68 depict yet another embodiment of the present invention.
- FIGS. 69, 70,71 and 71 a depict a further embodiment of the present invention.
- FIGS. 72 and 73 depict still another embodiment of the invention.
- FIGS. 74, 75,76, 77, and 78 depict still other embodiments of the invention.
- Embodiment of FIGS.1-5 a, 5 b
- A first embodiment of the invention is shown in FIGS.1-5 a, 5 b.
Implant 20 includes first and second forkedends saddle interbody piece 30. As can be seen in FIGS. 3a, 3 b, the first forkedend 22 includes a threadedshaft 32 which projects rearwardly from thesaddle 26. The threadedshaft 32 fits into the threaded bore 34 (FIG. 4a) of theinterbody piece 30. - The second forked end24 (FIGS. 5a, 5 b) includes a smooth
cylindrical shaft 36 which can fit into thesmooth bore 38 of theinterbody piece 30. - FIG. 1 shows the
implant 20 in a fully extended position, while FIG. 2 shows the implant in an unextended position. In the unextended position, it can be seen that the threadedshaft 32 of the first forkedend 22 fits inside the hollowcylindrical shaft 36 of the second forkedend 24. - For purposes of implantation between adjacent first and second spinous processes of the spinal column, the
implant 20 is configured as shown in FIG. 2. The first and second spinous processes are exposed using appropriate surgical techniques and thereafter, theimplant 20 is positioned so thatsaddle 26 engages the first spinous process, and saddle 28 engages the second spinous process. At this point, theinterbody piece 30 can be rotated by placing an appropriate tool or pin into the cross holes 40 and upon rotation, thesaddle 26 is moved relative to thesaddle 28. Such rotation spreads apart or distracts the spinous processes with the resultant and beneficial effect of enlarging the volume of the spinal canal in order to alleviate any restrictions on blood vessels and nerves. - It is noted that this implant as well as the several other implants described herein act as an extension stop. That means that as the back is bent backwardly and thereby placed in extension the spacing between adjacent spinous processes cannot be reduced to a distance less than the distance between the lowest point of
saddle 26 and the lowest point ofsaddle 28. This implant, however, does not inhibit or in any way limit the flexion of the spinal column, wherein the spinal column is bent forward. - Preferably, such a device provides for distraction in the range of about 5 millimeters to about 15 millimeters. However, devices which can distract up to and above 22 millimeters may be used depending on the characteristics of the individual patient.
- With all the ligaments (such as the superspinous ligament) and tissues associated with the spinous processes left intact, the
implant 20 can be implanted essentially floating in position in order to gain the benefits of the aforementioned extension stop and flexion non-inhibitor. If desired, one of thesaddles 26 can be laterally pinned withpin 29 to one of the spinous processes and the other saddle can be loosely associated with the other spinous processes by using atether 31 which either pierces or surrounds the other spinous process and then is attached to the saddle in order to position the saddle relative to the spinous process. Alternatively, both saddles can be loosely tethered to the adjacent spinous process in order to allow the saddles to move relative to the spinous processes. - The shape of the saddles, being concave, gives the advantage of distributing the forces between the saddle and the respective spinous process. This ensures that the bone is not resorbed due to the placement of the
implant 20 and that the structural integrity of the bone is maintained. - The
implant 20 in this embodiment can be made of a number of materials, including but not limited to, stainless steel, titanium, ceramics, plastics, elastics, composite materials or any combination of the above. In addition, the modulus of elasticity of the implant can be matched to that of bone, so that theimplant 20 is not too rigid. The flexibility of the implant can further be enhanced by providing additional apertures or perforations throughout the implant in addition to theholes 40 which also have the above stated purpose of allowing theinterbody piece 30 to be rotated in order to expand the distance between thesaddle - In the present embodiment, it is understood that the spinous processes can be accessed and distracted initially using appropriate instrumentation, and that the
implant 20 can be inserted and adjusted in order to maintain and achieve the desired distraction. Alternatively, the spinous process can be accessed and theimplant 20 appropriately positioned. Once positioned, the length of the implant can be adjusted in order to distract the spinous processes or extend the distraction of already distracted spinous processes. Thus, the implant can be used to create a distraction or to maintain a distraction which has already been created. - The placement of implants such as
implant 20 relative to the spinous process will be discussed hereinbelow with other embodiments. However, it is to be noted that ideally, theimplant 20 would be placed close to the instantaneous axis of rotation of the spinal column so that the forces placed on theimplant 20 and the forces that theimplant 20 places on the spinal column are minimized. - Further, it is noted that during the actual process of installing or implanting the
implant 20, that the method uses the approach of extending the length of the implant 20 a first amount and then allowing the spine to creep or adjust to this distraction. Thereafter,implant 20 would be lengthened another amount, followed by a period where the spine is allowed to creep or adjust to this new level of distraction. This process could be repeated until the desired amount of distraction has been accomplished. This same method can be used with insertion tools prior to the installation of an implant. The tools can be used to obtain the desired distraction using a series of spinal distraction and spine creep periods before an implant is installed. - Embodiment of FIGS. 6, 7,8, 9 and 10
- The embodiment of the invention shown in the above FIGS. 6, 7,8, 9 and 10 includes distraction or
spreader tool 50 which has first andsecond arms Arms pivot point 56 and releaseable frompivot point 56 in order to effect the implantation ofimplant 58. As can be seen in FIG. 6, in cross-section, thearms spinous process 60 relative toarm 52 and the secondspinous process 62 relative toarm 54. Thedistraction tool 50 can be inserted through a small incision in the back of the patient in order to address the space between the firstspinous process 60 and the secondspinous process 62. Once thetool 50 is appropriately positioned, thearms implant 58 as shown in FIGS. 8 and 9, or of a design shown in other of the embodiments of this invention, can be urged between thearms arms implant 58 in place. Theimplant 58 is urged into place using atool 64 which can be secured to theimplant 58 through a threadedbore 66 in the back of the implant. As can be seen in FIG. 10, theimplant 58 includessaddles 68 and 70 which cradle the upper and lowerspinous processes tool 50. The saddles as described above tend to distribute the load between the implant and the spinous processes and also assure that the spinous process is stably seated at the lowest point of the respective saddles. - Embodiment of FIGS. 11, 12 and13
- Another embodiment of the apparatus and method of the invention is shown in FIGS. 11, 12 and13. In this embodiment, the spreader or
distraction tool 80 includes first andsecond arms pivot point 86. The arms include L-shaped ends 88, 90. Through a small incision, the L-shaped ends 88, 90 can be inserted between the first and second spinous processes 92, 94. Once positioned, thearms implant 96 can then be urged between the spinous processes in order to maintain the distraction. It is noted thatimplant 96 includes wedged surfaces orramps implant 96 is being urged between the spinous processes, the ramps further cause the spinous processes to be distracted. Once theimplant 96 is fully implanted, the full distraction is maintained by theplanar surfaces implant 96 can be similar to that shown forimplant 58 or similar to other implants in order to gain the advantages of load distribution, and stability. - Embodiments of FIGS. 14, 15,16, 16 a, and 17
- In FIGS. 14 and 15, yet another embodiment of the invention is depicted. In this embodiment, the
implant 110 includes first and second conically shapedmembers Member 112 includes amale snap connector 116 andmember 114 includes afemale snap connector 118. Withmale snap connector 116 urged intofemale snap connector 118, thefirst member 112 is locked to thesecond member 114. In this embodiment, a distraction orspreader tool 80 could be used. Once the spinous process has been spread apart, animplantation tool 120 can be used to position and snap together theimplant 110. Thefirst member 112 ofimplant 110 is mounted on one arm andsecond member 114 is mounted on the other arm oftool 120. Themember members implant 110 is locked in place between the spinous processes as shown in FIG. 15. It is to be noted that theimplant 110 can also be made more self-distracting by causing thecylindrical surface 122 to be more conical, much assurface 124 is conical, in order to holdimplant 110 in place relative to the spinous processes and also to create additional distraction. - An alternative embodiment of the implant can be seen in FIGS. 16 and 17. This
implant 130 includes first andsecond members bore 136 and engages a threadedbore 138 of thesecond member 134.Surfaces 139 are flattened (FIG. 17) in order to carry and spread the load applied thereto by the spinous processes. - The embodiment of
implant 130 is not circular in overall outside appearance, as is theembodiment 110 of FIGS. 14 and 15. In particular, with respect to the embodiment ofimplant 130 of FIGS. 16 and 17, this embodiment is truncated so that thelateral side lower sides 144, 146 being elongated in order to capture and create a saddle for the upper and lower spinous processes. The upper and lower sides, 144, 146 are rounded to provide a more anatomical implant which is compatible with the spinous processes. - If it is desired, and in order to assure that the
first member 132 and thesecond member 134 are aligned, key 148 andkeyway 150 are designed to mate in a particular manner.Key 148 includes at least one flattened surface, such as flattenedsurface 152, which mates to an appropriately flattenedsurface 154 of thekeyway 150. In this manner, the first member is appropriately mated to the second member in order to form appropriate upper and lower saddles holding theimplant 130 relative to the upper and lower spinous processes. - FIG. 16a depicts
second member 134 in combination with a rounded nose lead-inplug 135. Lead-inplug 135 includes abore 137 which can fit snugly overkey 148. In this configuration, the lead-inplug 135 can be used to assist in the placement of thesecond member 134 between spinous processes. Once thesecond member 134 is appropriately positioned, the lead-inplug 135 can be removed. It is to be understood that the lead-inplug 135 can have other shapes such as pyramids and cones to assist in urging apart the spinous processes and soft tissues in order to position thesecond member 134. - Embodiment of FIGS. 18, 19 and20
- The
implant 330 as shown in FIG. 18 is comprised of first andsecond mating wedges wedges implant 330 located between the upper and lowerspinous processes 336, 338 (FIG. 20), increases, thereby distracting the spinous processes. It is noted that thewedges saddle spinous processes - The first or
second wedges channel 344 and a projection of 346 which can be urged into the channel in order to lock thewedges channel 334 is undercut in order to keep the projection from separating therefrom. Further, as in other devices described herein, a detent can be located in one of the channel and the projection, with a complimentary recess in the other of the channel and the projection. Once these two snap together, the wedges are prevented from sliding relative to the other in thechannel 344. - While the above embodiment was described with respect to wedges, the wedges could also have been designed substantially as cones with all the same features and advantages.
- Embodiments of FIGS. 21 and 22
- The
implant 370 is comprised of first andsecond distraction cone spinous processes distraction cones fastening mechanism 380 can be used to maintain the position of thedistraction cones implant 370 is self-distracting and also that the implant, being flexible, molds about the spinous processes as shown in FIG. 22. - Embodiments of FIG. 23, 24 and25
- In FIGS. 23 and 24, another embodiment of the
implant 170 is depicted. This implant is guided in place using an L-shapedguide 172 which can have a concave cross-section such as thecross-section 52 ofretraction tool 50 In FIG. 6 in order to cradle and guide theimplant 170 in position. Preferably a small incision would be made into the back of the patient and the L-shapedguide tool 172 inserted between the adjacent spinous processes. Theimplant 170 would be mounted on the end ofinsertion tool 174 and urged into position between the spinous processes. The act of urging the implant into position could cause the spinous processes to be further distracted if that is required. Prior to the insertion of the L-shapedguide tool 172, a distraction tool such as shown in FIG. 13 could be used to initially distract the spinous processes. -
Implant 170 can be made of a deformable material so that it can be urged into place and so that it can somewhat conform to the shape of the upper and lower spinous processes. This deformable material would be preferably an elastic material. The advantage of such a material would be that the load forces between the implant and the spinous processes would be distributed over a much broader surface area. Further, the implant would mold itself to an irregular spinous process shape in order to locate the implant relative to spinous processes. - With respect to FIG. 25, this
implant 176 can be inserted over a guide wire, guide tool orstylet 178. Initially, theguide wire 178 is positioned through a small incision to the back of the patient to a position between the adjacent spinous processes. After this has occurred, the implant is threaded over theguide wire 178 and urged into position between the spinous processes. This urging can further distract the spinous processes if further distraction is required. Once the implant is in place, theguide tool 178 is removed and the incision closed. The insertion tools of FIGS. 23 and 24 can also be used if desired. - Embodiment of FIGS. 26, 27 and28
- The embodiment shown in FIGS. 26, 27 and28 uses an implant similar to that depicted in FIGS. 8 and 9 with different insertion tools. As can be seen in FIG. 26, an L-shaped
distraction tool 190 is similar to L-shaped distraction tool 80 (FIG. 12), is used to distract the first and secondspinous processes insertion tool 196 is placed between thespinous processes Insertion tool 196 includes ahandle 198 to which is mounted a square-shapedring 200. - The
distraction tool 190 can be inserted through a small incision in the back in order to spread apart the spinous processes. Through the same incision which has been slightly enlarged laterally, anupper end 202 ofring 200 can be initially inserted followed by the remainder of thering 200. Once the ring is inserted, the ring can be rotated slightly by movinghandle 198 downwardly in order to further wedge the spinous processes apart. Once this has been accomplished, an implant such asimplant 204 can be inserted through the ring and properly positioned usingimplant handle 206. Thereafter, theimplant handle 206 and theinsertion tool 196 can be removed. - Embodiments of FIGS. 29, 30,31, 32 and 33
- As can be seen in FIGS. 29 and 30, the
implants - As can be seen in FIGS. 31, 32 and33, these implants can be placed in different positions with respect to the
spinous process 214. Preferably as shown in FIG. 33, theimplant 210 is placed closest to thelamina 216. Being so positioned, theimplant 210 is close to the instantaneous axis ofrotation 218 of the spinal column, and the implant would experience least forces caused by movement of the spine. Thus, theoretically, this is the optimal location for the implant. - As can be seen in FIGS. 31 and 32, the implant can be placed midway along the spinous process (FIG. 32) and towards the posterior aspect of the spinous process (FIG. 31). As positioned shown in FIG. 31, the greatest force would be placed on the
implant 210 due to a combination of compression and extension of the spinal column. - Embodiment of FIGS. 34 and 35
- Another embodiment of the invention is shown in FIGS. 34 and 35. In these figures,
implant 220 is comprised of a plurality ofindividual leaves 222 which are substantially V-shaped. The leaves include interlocking indentations ordetents 224. That is, each leaf includes an indentation with a corresponding protrusion such that a protrusion of one leaf mates with an indentation of an adjacent leaf. Also associated with this embodiment is aninsertion tool 226 which has ablunt end 228 which conforms to the shape of anindividual leaf 222. For insertion of this implant into the space between the spinous processes as shown in FIG. 29, theinsertion tool 226 first insert asingle leaf 220. After that has occurred, the insertion tool then inserts a second leaf with theprotrusion 224 of the second leaf snapping into corresponding indentation made by theprotrusion 224 of the first leaf. This process would reoccur with third and subsequent leaves until the appropriate spacing between the spinous processes was built up. As can be seen in FIG. 29, thelateral edges 229 of the individual leaves 222 are slightly curved upwardly in order to form a saddle for receiving the upper and lower spinous processes. - Embodiments of FIGS. 36, 37 and38
- The embodiments of FIGS. 36, 37 and38 which include
implants Implant 220 is essentially a series of truncated cones and includes a plurality of ever expandingsteps 236. These steps are formed by the conical bodies starting with thenose body 238 followed there behind byconical body 240. Essentially, theimplant 234 looks like a fir tree placed on its side. - The
implant 230 is inserted laterally throughout the opening between upper and lower spinous processes. Thefirst body 238 causes the initial distraction. Each successive conical body distracts the spinous processes a further incremental amount. When the desired distraction has been reached, the spinous processes are locked into position bysteps 236. At this point, if desired, theinitial nose body 238 of the implant andother bodies 240 can be broken, snapped or sawed off if desired in order to minimize the size of theimplant 230. In order for a portion of theimplant 230 to be broken or snapped off, the intersection between bodies such asbody intersection line 242, would be somewhat weaken with the appropriate removal of material. It is noted that only the intersection lines of the initial conical bodies need to be so weakened. Thus,intersection line 244 between the bodies which remain between the spinous processes would not need to be weaker, as there would be no intention that the implant would be broken off at this point. - FIG. 37 shows implant232 positioned between upper and lower spinous processes. This implant is wedge-shaped or triangular shaped in cross-sectioned and includes bore
pluralities pins pins bore pluralities pins surface - Turning to FIG. 38, the
implant 234 has a triangular-shaped or wedge-shaped body similar to that shown in FIG. 32. In this embodiment,tab 252, 254 are pivotally mounted to the triangularshaped body 234. Once theimplant 234 is appropriately positioned in order to distract the spinous processes to the desired amount, thetabs 252, 254 rotate into position in order to hold theimplant 234 in the appropriate position. - Embodiment of FIGS. 39 and 40
- In the embodiment of FIGS. 39 and 40,
cannula 258 is inserted through a small incision to a position between upper and lower spinous processes. Once the cannula is properly inserted, animplant 260 is pushed through thecannula 258 using aninsertion tool 262. Theimplant 260 includes a plurality of ribs orindentation 264 that assist in positioning theimplant 260 relative to the upper and lower spinal processes. Once theimplant 260 is in position, thecannula 258 is withdrawn so that theimplant 260 comes in contact with and wedges between the spinous processes. Thecannula 258 is somewhat conical In shape with thenose end 266 being somewhat smaller than the distal end 268 in order to effect the insertion of the cannula into the space between the spinous processes. - Further, a plurality of cannula can be used instead of one, with each cannula being slightly bigger than one before. In the method of the invention, the first smaller cannula would be inserted followed by successively larger cannula being placed over the previous smaller cannula. The smaller cannula would then be withdrawn from the center of the larger cannula. Once the largest cannula is in place, and the opening of the skin accordingly expanded, the implant, which is accommodated by only the larger cannula, is inserted through the larger cannula and into position.
- Embodiments of FIGS. 41, 42 and43
- The
precurved implant 270 in FIGS. 41 and 42, andprecurved implant 272 in FIG. 43 have common introduction techniques which includes a guide wire, guide tool, orstylet 274. For both embodiments, theguide wire 274 is appropriately positioned through the skin of the patient and into the space between the spinous processes. After this is accomplished, the implant is directed over the guide wire and into position between the spinous processes. The precurved nature of the implant assist in (1) positioning the implant through a first small incision in the patient's skin on one side of the space between two spinous processes and (2) guiding the implant toward a second small incision in the patient's skin on the other side of the space between the two spinous processes. With respect to theimplant 270, the implant includes aconical introduction nose 276 and adistal portion 278. As thenose 276 is inserted between the spinous processes, this causes distraction of the spinous processes.Break lines implant 270. Once the implant is properly positioned over the guide wire between the spinous processes, thenose portion 276 and thedistal portion 278 can be broken off along the break lines, through the above two incisions, in order to leave theimplant 270 in position. - Although only two
break lines implant 270 so that the implant can continue to be fed over theguide wire 278 until the appropriate width of theimplant 270 creates the desired amount of distraction. As described hereinabove, the break lines can be created by perforating or otherwise weakening theimplant 270 so that the appropriate portions can be snapped or sawed off. - With respect to the
precurved implant 272, this implant is similar in design to theimplant 230 shown in FIG. 36. Thisimplant 272 in FIG. 47, however, is precurved and inserted over aguide wire 274 to a position between the spinous processes. As withimplant 230 in FIG. 43, once the appropriate level of this distraction has been reached and if desired, sections of theimplant 272 can be broken, snapped or sawed off as described hereinabove in order to leave a portion of the implant wedged between the upper and lower spinous processes. - Embodiment of FIG. 44
- A further embodiment of the invention is shown in FIG. 44. This embodiment includes a combination insertion tool and
implant 290. The insertion tool andimplant 290 is in the shape of a ring which is hinged atpoint 292. The ring is formed by a first elongated and conically shapedmember 294 and a second elongated and conically shapedmember 296.Members hinge 292 are aligned and meet. Through similar incisions on both sides of the spinous processes, first member and second member are inserted through the skins of the patient and are mated together between the spinous processes. After this has occurred, theimplant 290 is rotated, for example clockwise, so that increasingly widening portions of thefirst member 292 are used to distract the first and second spinous processes. When the appropriate level of distraction has occurred, the remainder of the ring before and after the section which is located between the spinous processes can be broken off as taught hereinabove in order to maintain the desired distraction. Alternatively, with a small enough ring, the entire ring can be left in place with the spinous processes distracted. - Embodiment of FIG. 45
- In FIG. 45, the
implant 300 is comprised of a plurality of rods orstylets 302 which are inserted between the upper and lower spinous processes. The rods are designed much as described hereinabove so that they may be broken, snapped or cut off. Once these are inserted and the appropriate distraction has been reached, the stylets are broken off and a segment of each stylet remains in order to maintain distraction of the spinous process. - Embodiment of FIGS. 46 and 47
-
Implant 310 of FIGS. 46 and 47 is comprised of a shape memory material which coils upon being released. The material is straightened out in adelivery tool 312. The delivery tool is in position between upper and lowerspinous processes delivery end 318 of the delivery tool, the material coils, distracting the spinous processes to the desired amount. Once this distraction has been achieved, the material is cut and the delivery tool removed. - Embodiments of FIGS. 48, 49,50 and 51
- As can be seen in FIG. 48, the
implant 320 is delivered between upper and lowerspinous processes delivery tool 326. Once theimplant 320 is in place between the spinous processes, the delivery tool is given a 90°twist so that the implant goes from the orientation as shown in FIG. 49, with longest dimension substantially perpendicular to the spinous processes, to the orientation shown in FIG. 50 where the longest dimension is in line with and parallel to the spinous processes. This rotation causes the desired distraction between the spinous processes.Implant 320 includes opposedrecesses implant 320 causes the spinous processes to become lodged in these recesses. - Alternatively, the
insertion tool 326 can be used to insertmultiple implants spinous processes 322, 324 (FIG. 51).Multiple implants - Embodiment of FIGS. 52, 53,54, 55 a and 55 b
- The embodiment of FIGS. 52 through 55b is comprised of a fluid-filled
dynamic distraction implant 350. This implant includes amembrane 352 which is placed overpre-bent insertion rod 354 and then inserted through an incision on one side of thespinous process 356. The bent insertion rod, with theimplant 350 thereover, is guided between appropriate spinous processes. After this occurs, theinsertion rod 354 is removed leaving the flexible implant in place. Theimplant 350 is then connected to a source of fluid (gas, liquid, gel and the like) and the fluid is forced into the implant causing it to expand as shown in FIG. 54, distracting the spinal processes to the desired amount. Once the desired amount of distraction has occurred, theimplant 350 is closed off as is shown in FIG. 55a. Theimplant 350 being flexible, can mold to the spinous processes which may be of irregular shape, thus assuring positioning. Further, implant 350 acts as a shock absorber, damping forces and stresses between the implant and the spinous processes. - A variety of materials can be used to make the implant and the fluid which is forced into the implant. By way of example only, viscoelastic substances such as methylcellulose, or hyaluronic acid can be used to fill the implant. Further, materials which are initially a fluid, but later solidify, can be inserted in order to cause the necessary distraction. As the materials solidify, they mold into a custom shape about the spinous processes and accordingly are held in position at least with respect to one of two adjacent spinous processes. Thus, it can be appreciated that using this embodiment and appropriate insertion tools the implant can be formed about one spinous process in such a manner that the implant stays positioned with respect to that spinous process (FIG. 55b). With such an embodiment, a single implant can be used as an extension stop for spinous process located on either side, without restricting flexion of the spinal column.
- It is to be understood that many of the other implants disclosed herein can be modified so that they receive a fluid in order to establish and maintain a desired distraction much in the manner as
implant 350 receives a fluid. - Embodiment of FIGS. 56, 57 and58
- The
implant 360 as shown in FIG. 56 is comprised of a shape memory material such as a plastic or a metal. A curvedintroductory tool 362 is positioned between the appropriate spinous processes as described hereinabove. Once this has occurred, bore 364 of the implant is received over the tool. This act can cause the implant to straighten out. The implant is then urged into position and thereby distracts the spinous processes. When this has occurred, theinsertion tool 362 is removed, allowing the implant to assume its pre-straightened configuration and is thereby secured about one of the spinous processes. Such an arrangement allows for an implant that is an extension stop and does not inhibit flexion of the spinous column. Alternatively, the implant can be temperature sensitive. That is to say that the implant would be more straightened initially, but become more curved when it was warmed by the temperature of the patient's body. - Embodiments of FIGS. 59 and 60
- In this embodiment, the
implant 380 is comprised of a plurality of interlocking leaves 382. Initially, a first leaf is positioned between opposedspinous processes leafs 382 are interposed between the spinous processes until the desired distraction has been built up. The leaves are somewhat spring-like in order to absorb the shock and can somewhat conform to the spinous processes. - Embodiment of FIG. 61
- The
implant 390 of FIG. 61 includes the placement ofshields spinous processes screw rod 404 is used to hold the distracted position by being screwed into each of the spinous processes through the aperture in the shields using the screws as depicted in FIG. 61. - Embodiment of FIGS. 62 and 63
-
Implant 410 of FIGS. 62, 63 is comprised of first andsecond members implant 410.Main member 412 andmating member 414form implant 410. Accordingly, theimplant 410 would have a plurality ofmembers 414 for use with a standardizedfirst member 412. FIGS. 62 and 64 show different types ofmating members 414. In FIG. 62, themating member 414 includesprojections saddles first member 412. Theseprojections groove 424 is placed between theprojections extension 426 of thefirst member 412. - As shown in FIG. 63, the projections of the embodiment shown in FIG. 62 are removed and recesses428, 430 are substituted therefor. These recesses expand the area of the
saddles - Embodiment of FIGS. 64, 65 and66
- The embodiments of FIGS. 64, 65 and66 are similar in design and concept to the embodiment of FIGS. 62 and 63. In FIG. 64, the
implant 500 includes the first andsecond members Implant 500 includes first andsecond saddles second members saddles saddle leg second members - In the embodiment of FIG. 65, the
implant 520 is comprised of a singlepiece having saddles single leg implant 520 to be positioned between the spinous processes, an incision is made between lateral sides of adjacent spinous processes. Thesingle leg 526 is directed through the incision to a position adjacent to an opposite lateral side of the spinous process with the spinous process cradled in thesaddle 522. The spinous processes are then urged apart untilsaddle 524 can be pivoted into position into engagement with the other spinous process in order to maintain the distraction between the two adjacent spinous processes. - The embodiment of FIG. 66 is similar to that of FIG. 65 with an
implant 530 and first andsecond saddles tether implant 530. Once appropriately positioned, the tethers can be tied off. It is to be understood that the tethers are not meant to be used to immobilize one spinous process relative to the other, but are used to guide motion of the spinous processes relative to each other so that theimplant 530 can be used as an extension stop and a flexion non-inhibitor. In other words, thesaddles - Embodiments of FIGS. 67, 68
- The
implant 550 is Z-shaped and includes acentral body 552 and first andsecond arms central body 552 of theimplant 550 includes first andsecond saddles second saddles spinous processes arms central body 552. The first andsecond arms implant 550 toward the spinal canal and keep the implant in place relative to the first and second spinal processes. This prevents the implant from pressing down on the ligamentum flavum and the dura. In a preferred embodiment, the central body would have a height of about 10 mm with each of thearms second arms spinous processes arms arm 554 have a slightly outwardly bowed portion 568 (FIG. 68) with adistal end 570 which is slightly inwardly bowed. This configuration allows the arm to fit about the spinous process with thedistal end 570 somewhat urged against the spinous process in order to guide the motion of the spinous process relative to the implant. Thesearms central body 552 by makingarms central body 550. As with the last embodiment, this embodiment can be urged into position between adjacent spinous processes by directing an arm into a lateral incision so that thecentral body 552 can be finally positioned between spinous processes. - Embodiment of FIGS. 69, 70,71 and 71 a
- FIGS. 69, 70 and71 are perspective front, end, and side views of
implant 580 of the invention. This implant includes acentral body 582 which has first andsecond saddles implant 580 includes first andsecond arms First arm 588 projects outwardly from thefirst saddle 584 andsecond arm 590 projects outwardly from thesecond saddle 586. In a preferred embodiment, thefirst arm 588 is located adjacent to thedistal end 600 of thecentral body 582 and proceeds only partly along the length of thecentral body 582. Thefirst arm 588 is substantially perpendicular to the central body as shown in FIG. 70. Further, thefirst arm 588, as well as thesecond arm 590, is anatomically rounded. - The
second arm 590, projecting fromsecond saddle 586, is located somewhat rearward of thedistal end 600, and extends partially along the length of thecentral body 582. Thesecond arm 590 projects at a compound angle from thecentral body 582. As can be seen in FIGS. 70 and 71, thesecond arm 590 is shown to be at about an angle of 45°from the saddle 586 (FIG. 70). Additionally, thesecond arm 590 is at an angle of about 45°relative to the length of thecentral body 580 as shown in FIG. 71. It is to be understood that other compound angles are within the spirit and scope of the invention as claimed. - In a preferred embodiment, the first and
second arms central body 582. Preferably, the length of each arm is about 10 mm and the width of the central body is about 10 mm. However, the bodies with the widths of 24 mm and greater are within the spirit and scope of the invention, along with first and second arms ranging from about 10 mm to greater than about 24 mm. Further, it is contemplated that the embodiment could include a central body having a width of about or greater than 24 mm with arms being at about 10 mm. - It is to be understood that the embodiment of FIGS. 69, 70 and71 as well as the embodiment of FIGS. 67 and 68 are designed to preferably be positioned between the L4-L5 and the L5-S1 vertebral pairs. The embodiment of FIGS. 69, 70, 71 is particularly designed for the L5-S1 position with the arms being designed to conform to the sloping surfaces found therebetween. The first and second arms are thus contoured so that they lie flat against the lamina of the vertebra which has a slight angle.
- The embodiment of FIG. 69, 70, and71 as with the embodiment of FIGS. 67 and 68 is Z-shaped in configuration so that it may be inserted from one lateral side to a position between adjacent spinous processes. A first arm, followed by the central body, is guided through the space between the spinous processes. Such an arrangement only requires that a incision on one side of the spinous process be made in order to successfully implant the device between the two spinous processes.
- The
implant 610 of FIG. 71a is similar to that immediately above with thefirst arm 612 located on the same side of the implant as thesecond arm 614. The first andsecond saddle distal portion - Embodiment of FIGS. 72, 73
-
Implant 630 is also designed so that it can be inserted from one side of adjacent spinous processes. Thisinsert 630 includes acentral body 632 with the first andsecond arms plunger 638 is positioned to extend from an end of thecentral body 632. As shown in FIG. 72, theplunger 638 is fully extended and as shown in FIG. 73, theplunger 638 is received within thecentral body 632 of theimplant 630. With the plunger received into theimplant 632, the third and fourth arms or hooks 640, 642 can extend outwardly from thecentral body 632. The third and fourth arms or hooks 640, 642 can be comprised of a variety of materials, such as for example, shape memory metal materials or materials which have a springy quality. - For purposes of positioning the
implant 630 between adjacent spinous processes, theplunger 638 is pulled outwardly as shown in FIG. 72. Thecentral body 632 is then positioned between adjacent spinous processes and theplunger 638 is allowed to move to the position of FIG. 73 so that the third andfourth arms central body 632 in order to hold theimplant 630 in position between the spinous processes. -
Plunger 638 can be spring biased to the position as shown in FIG. 73 or can include detents or other mechanisms which lock it into that position. Further, the third and fourth arms themselves, as deployed, can keep the plunger in the position as shown in FIG. 73. - Embodiments of FIGS. 74, 75,76, 77, and 78
- Other embodiments of the invention are shown in FIGS. 74 through 78. FIGS. 74, 75 and76
disclose implant 700.Implant 700 is particularly suited for implantation between the L4-L5 and L5-S1 vertebra. As can be seen in FIG. 74, theimplant 700 includes acentral body 702 which has abore 704 provided therein.Bore 704 is used in order to adjust the modulus of elasticity of the implant so that it is preferably approximately two times the anatomical load placed on the vertebra in extension. In other words, theimplant 700 is approximately two times stiffer than the normal load placed on the implant. Such an arrangement is made in order to ensure that the implant is somewhat flexible in order to reduce potential resorption of the bone adjacent to the implant. Other modulus values can be used and be within the spirit of the invention. -
Implant 700 includes first andsecond saddle saddle 706 is defined by first andsecond arms second saddle 708 is defined by third andfourth arms first arm 710, in a preferred embodiment, is approximately two times the length of thebody 702 with the second arm being approximately less than a quarter length of the body.Third arm 714 is approximately one times the length of thebody 702 with thefourth arm 716 being, in this preferred embodiment, approximately one and a half times the length of thebody 702. The arms are designed in such a way that the implant (1) can be easily and conveniently inserted between the adjacent spinous processes, (2) will not migrate forwardly toward the spinal canal, and (3) will hold its position through flexion and extension as well as lateral bending of the spinal column. -
First arm 710 is in addition designed to accommodate the shape of the vertebra. As can be seen in FIG. 74, thefirst arm 710 becomes narrower as it extends away from thebody 702. Thefirst arm 710 includes a slopingportion 718 followed by asmall recess 720 ending in arounded portion 722 adjacent to theend 724. This design is provided to accommodate the anatomical form of for example the L4 vertebra. It is to be understood that these vertebra have a number of surfaces at roughly 30°angles and that the sloping surfaces of this embodiment and the embodiments shown in FIGS. 77 and 78 are designed to accommodate these surfaces. These embodiments can be further modified in order to accommodate other angles and shapes. - The
second arm 712 is small so that it is easy to insert between the spinous processes, yet still define thesaddle 706. Thefourth arm 716 is larger than thethird arm 714, both of which are smaller than thefirst arm 710. The third and fourth arms are designed so that they define thesaddle 706, guide the spinous processes relative to theimplant 700 during movement of the spinal column, and yet are of a size which makes the implant easy to position between the spinous processes. - The procedure, by way of example only, for implanting the
implant 700 can be to make an incision laterally between two spinous processes and then initially insertfirst arm 710 between the spinous processes. The implant and/or appropriate tools would be used to distract the spinous processes allowing thethird leg 714 and thecentral body 702 to fit through the space between the spinous processes. Thethird leg 714 would then come to rest adjacent the lower spinous processes on the opposite side with the spinous processes resting in the first andsecond saddle fourth leg 716 would then assist in the positioning of theimplant 700. - FIG. 77 includes an
implant 740 which is similar toimplant 700 and thus have similar numbering. Thesaddle implant 740 have been cantered or sloped in order to accommodate the bone structure between, by way of example, the L4-L5 and the L5-S1 vertebra. As indicated above, the vertebra in this area have a number of sloping surfaces in the range of about 30°. Accordingly,saddle 706 is sloped at less than 30°and preferably about 20°whilesaddle 708 is sloped at about 30°and preferably more than 30°. - The
implant 760 as shown in FIG. 78 is similar toimplant 700 in FIG. 74 and is similarly numbered.Implant 760 includes third andfourth legs portions fourth arm - From the above, it is evident that the present invention can be used to relieve pain caused by spinal stenosis in the form of, by way of example only, central canal stenosis or foraminal (lateral) stenosis. These implants have the ability to flatten the natural curvature of the spine and open the neural foramen and the spacing between adjacent vertebra to relieve problems associated with the above-mentioned lateral and central stenosis. Additionally, the invention can be used to relieve pain associated with facet arthropathy. The present invention is minimally invasive and can be used on an outpatient basis.
- Additional aspects, objects and advantages of the invention can be obtained through a review of the appendant claims and figures.
- It is to be understood that other embodiments can be fabricated and come within the spirit and scope of the claims.
Claims (89)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/754,534 US6419677B2 (en) | 1997-01-02 | 2001-01-04 | Spine distraction implant and method |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/778,093 US5836948A (en) | 1997-01-02 | 1997-01-02 | Spine distraction implant and method |
US09/018,479 US6074390A (en) | 1997-01-02 | 1998-02-05 | Spine distraction implant and method |
US09/473,184 US6238397B1 (en) | 1997-01-02 | 1999-12-28 | Spine distraction implant and method |
US09/754,534 US6419677B2 (en) | 1997-01-02 | 2001-01-04 | Spine distraction implant and method |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/473,184 Continuation US6238397B1 (en) | 1997-01-02 | 1999-12-28 | Spine distraction implant and method |
Publications (2)
Publication Number | Publication Date |
---|---|
US20010007073A1 true US20010007073A1 (en) | 2001-07-05 |
US6419677B2 US6419677B2 (en) | 2002-07-16 |
Family
ID=25112286
Family Applications (13)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/778,093 Expired - Lifetime US5836948A (en) | 1997-01-02 | 1997-01-02 | Spine distraction implant and method |
US09/018,479 Expired - Lifetime US6074390A (en) | 1997-01-02 | 1998-02-05 | Spine distraction implant and method |
US09/124,203 Expired - Lifetime US6090112A (en) | 1997-01-02 | 1998-07-28 | Spine distraction implant and method |
US09/361,510 Expired - Fee Related US6379355B1 (en) | 1997-01-02 | 1999-07-27 | Spine distraction implant and method |
US09/361,513 Expired - Fee Related US6500178B2 (en) | 1997-01-02 | 1999-07-27 | Spine distraction implant and method |
US09/360,955 Expired - Lifetime US6149652A (en) | 1997-01-02 | 1999-07-27 | Spine distraction implant and method |
US09/473,184 Expired - Lifetime US6238397B1 (en) | 1997-01-02 | 1999-12-28 | Spine distraction implant and method |
US09/507,755 Expired - Lifetime US6280444B1 (en) | 1997-01-02 | 2000-02-18 | Spine distraction implant and method |
US09/684,748 Expired - Lifetime US6419676B1 (en) | 1997-01-02 | 2000-10-06 | Spine distraction implant and method |
US09/686,150 Expired - Fee Related US6451020B1 (en) | 1997-01-02 | 2000-12-07 | Spine distraction implant and method |
US09/754,534 Expired - Fee Related US6419677B2 (en) | 1997-01-02 | 2001-01-04 | Spine distraction implant and method |
US09/808,827 Expired - Fee Related US6478796B2 (en) | 1997-01-02 | 2001-03-15 | Spin distraction implant and method |
US11/692,306 Abandoned US20080172057A1 (en) | 1997-01-02 | 2007-03-28 | Spine distraction implant and method |
Family Applications Before (10)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/778,093 Expired - Lifetime US5836948A (en) | 1997-01-02 | 1997-01-02 | Spine distraction implant and method |
US09/018,479 Expired - Lifetime US6074390A (en) | 1997-01-02 | 1998-02-05 | Spine distraction implant and method |
US09/124,203 Expired - Lifetime US6090112A (en) | 1997-01-02 | 1998-07-28 | Spine distraction implant and method |
US09/361,510 Expired - Fee Related US6379355B1 (en) | 1997-01-02 | 1999-07-27 | Spine distraction implant and method |
US09/361,513 Expired - Fee Related US6500178B2 (en) | 1997-01-02 | 1999-07-27 | Spine distraction implant and method |
US09/360,955 Expired - Lifetime US6149652A (en) | 1997-01-02 | 1999-07-27 | Spine distraction implant and method |
US09/473,184 Expired - Lifetime US6238397B1 (en) | 1997-01-02 | 1999-12-28 | Spine distraction implant and method |
US09/507,755 Expired - Lifetime US6280444B1 (en) | 1997-01-02 | 2000-02-18 | Spine distraction implant and method |
US09/684,748 Expired - Lifetime US6419676B1 (en) | 1997-01-02 | 2000-10-06 | Spine distraction implant and method |
US09/686,150 Expired - Fee Related US6451020B1 (en) | 1997-01-02 | 2000-12-07 | Spine distraction implant and method |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/808,827 Expired - Fee Related US6478796B2 (en) | 1997-01-02 | 2001-03-15 | Spin distraction implant and method |
US11/692,306 Abandoned US20080172057A1 (en) | 1997-01-02 | 2007-03-28 | Spine distraction implant and method |
Country Status (2)
Country | Link |
---|---|
US (13) | US5836948A (en) |
DE (1) | DE69738301T2 (en) |
Cited By (65)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030040802A1 (en) * | 2001-07-16 | 2003-02-27 | Errico Joseph P. | Artificial intervertebral disc having limited rotation using a captured ball and socket joint with a solid ball and compression locking post |
US20030229358A1 (en) * | 2001-07-16 | 2003-12-11 | Errico Joseph P. | Wedge plate inserter/impactor and related methods for use in implanting an artificial intervertebral disc |
US20040087945A1 (en) * | 2001-11-30 | 2004-05-06 | Ralph James D. | Distraction instrument for use in anterior cervical fixation surgery |
US20040093089A1 (en) * | 2001-07-16 | 2004-05-13 | Ralph James D. | Porous intervertebral distraction spacers |
US20040158326A1 (en) * | 2001-07-16 | 2004-08-12 | Ralph James D. | Instruments for reorienting vertebral bones for the treatment of scoliosis |
US20040176772A1 (en) * | 2003-03-06 | 2004-09-09 | Rafail Zubok | Instrumentation and methods for use in implanting a cervical disc replacement device |
US20040193272A1 (en) * | 2003-03-06 | 2004-09-30 | Rafail Zubok | Instrumentation and methods for use in implanting a cervical disc replacement device |
US20050010234A1 (en) * | 2001-07-16 | 2005-01-13 | Ralph James D. | Method of distracting vertebral bones |
US20050038445A1 (en) * | 2001-07-16 | 2005-02-17 | Errico Joseph P. | Instrumentation for repositioning and extracting an artificial intervertebral disc from an intervertebral space |
US20050187632A1 (en) * | 2004-02-20 | 2005-08-25 | Rafail Zubok | Artificial intervertebral disc having a bored semispherical bearing with a compression locking post and retaining caps |
US20050246022A1 (en) * | 2004-02-20 | 2005-11-03 | Rafail Zubok | Artificial intervertebral disc having a universal joint |
US20060004451A1 (en) * | 2000-11-29 | 2006-01-05 | Facet Solutions, Inc. | Facet joint replacement |
US20060084988A1 (en) * | 2004-10-20 | 2006-04-20 | The Board Of Trustees Of The Leland Stanford Junior University | Systems and methods for posterior dynamic stabilization of the spine |
US20060089654A1 (en) * | 2004-10-25 | 2006-04-27 | Lins Robert E | Interspinous distraction devices and associated methods of insertion |
US20060189983A1 (en) * | 2005-02-22 | 2006-08-24 | Medicinelodge, Inc. | Apparatus and method for dynamic vertebral stabilization |
US7118599B2 (en) | 2001-07-16 | 2006-10-10 | Spinecore, Inc. | Artificial intervertebral disc |
US20060271055A1 (en) * | 2005-05-12 | 2006-11-30 | Jeffery Thramann | Spinal stabilization |
US7160327B2 (en) | 2001-07-16 | 2007-01-09 | Spinecore, Inc. | Axially compressible artificial intervertebral disc having limited rotation using a captured ball and socket joint with a solid ball and compression locking post |
US20070191953A1 (en) * | 2006-01-27 | 2007-08-16 | Sdgi Holdings, Inc. | Intervertebral implants and methods of use |
US20070191838A1 (en) * | 2006-01-27 | 2007-08-16 | Sdgi Holdings, Inc. | Interspinous devices and methods of use |
US20080009866A1 (en) * | 2004-03-09 | 2008-01-10 | Todd Alamin | Methods and systems for constraint of spinous processes with attachment |
US20080108993A1 (en) * | 2006-10-19 | 2008-05-08 | Simpirica Spine, Inc. | Methods and systems for deploying spinous process constraints |
US20080161919A1 (en) * | 2006-10-03 | 2008-07-03 | Warsaw Orthopedic, Inc. | Dynamic Devices and Methods for Stabilizing Vertebral Members |
US20080161920A1 (en) * | 2006-10-03 | 2008-07-03 | Warsaw Orthopedic, Inc. | Dynamizing Interbody Implant and Methods for Stabilizing Vertebral Members |
US20080183211A1 (en) * | 2007-01-11 | 2008-07-31 | Lanx, Llc | Spinous process implants and associated methods |
US20080262549A1 (en) * | 2006-10-19 | 2008-10-23 | Simpirica Spine, Inc. | Methods and systems for deploying spinous process constraints |
US20090030460A1 (en) * | 2004-02-17 | 2009-01-29 | Facet Solutions, Inc. | Linked bilateral spinal facet implants and methods of use |
US20090082820A1 (en) * | 2004-03-09 | 2009-03-26 | Louie Fielding | Spinal implant and method for restricting spinal flexion |
US20090088802A1 (en) * | 2000-12-13 | 2009-04-02 | Facet Solutions, Inc. | Prosthesis for the replacement of a posterior element of a vertebra |
US20090164018A1 (en) * | 2007-12-19 | 2009-06-25 | Robert Sommerich | Instruments For Expandable Corpectomy Spinal Fusion Cage |
US20090164017A1 (en) * | 2007-12-19 | 2009-06-25 | Robert Sommerich | Expandable Corpectomy Spinal Fusion Cage |
US20090264932A1 (en) * | 2006-10-19 | 2009-10-22 | Simpirica Spine, Inc. | Methods and systems for constraint of multiple spine segments |
US7682376B2 (en) | 2006-01-27 | 2010-03-23 | Warsaw Orthopedic, Inc. | Interspinous devices and methods of use |
US7713302B2 (en) | 2001-10-01 | 2010-05-11 | Spinecore, Inc. | Intervertebral spacer device utilizing a spirally slotted belleville washer having radially spaced concentric grooves |
US7722647B1 (en) | 2005-03-14 | 2010-05-25 | Facet Solutions, Inc. | Apparatus and method for posterior vertebral stabilization |
US7758581B2 (en) | 2005-03-28 | 2010-07-20 | Facet Solutions, Inc. | Polyaxial reaming apparatus and method |
US7771477B2 (en) | 2001-10-01 | 2010-08-10 | Spinecore, Inc. | Intervertebral spacer device utilizing a belleville washer having radially spaced concentric grooves |
US7815663B2 (en) | 2006-01-27 | 2010-10-19 | Warsaw Orthopedic, Inc. | Vertebral rods and methods of use |
US7815648B2 (en) | 2004-06-02 | 2010-10-19 | Facet Solutions, Inc | Surgical measurement systems and methods |
US20100280616A1 (en) * | 2009-04-29 | 2010-11-04 | William Frasier | Minimally invasive corpectomy cage and instrument |
US7955390B2 (en) | 2001-03-02 | 2011-06-07 | GME Delaware 2 LLC | Method and apparatus for spine joint replacement |
US7993373B2 (en) | 2005-02-22 | 2011-08-09 | Hoy Robert W | Polyaxial orthopedic fastening apparatus |
US8029568B2 (en) | 2001-10-18 | 2011-10-04 | Spinecore, Inc. | Intervertebral spacer device having a slotted partial circular domed arch strip spring |
US8038713B2 (en) | 2002-04-23 | 2011-10-18 | Spinecore, Inc. | Two-component artificial disc replacements |
US8109973B2 (en) | 2005-10-31 | 2012-02-07 | Stryker Spine | Method for dynamic vertebral stabilization |
US8123807B2 (en) | 2004-10-20 | 2012-02-28 | Vertiflex, Inc. | Systems and methods for posterior dynamic stabilization of the spine |
US8167944B2 (en) | 2004-10-20 | 2012-05-01 | The Board Of Trustees Of The Leland Stanford Junior University | Systems and methods for posterior dynamic stabilization of the spine |
US8187307B2 (en) | 2006-10-19 | 2012-05-29 | Simpirica Spine, Inc. | Structures and methods for constraining spinal processes with single connector |
US8206418B2 (en) | 2007-01-10 | 2012-06-26 | Gmedelaware 2 Llc | System and method for facet joint replacement with detachable coupler |
US8277507B2 (en) | 2002-04-12 | 2012-10-02 | Spinecore, Inc. | Spacerless artificial disc replacements |
US8317864B2 (en) | 2004-10-20 | 2012-11-27 | The Board Of Trustees Of The Leland Stanford Junior University | Systems and methods for posterior dynamic stabilization of the spine |
US20130006061A1 (en) * | 2011-06-29 | 2013-01-03 | Alexander James A | Systems, implants, tools, and methods for treatments of pelvic conditions |
US8366772B2 (en) | 2002-04-23 | 2013-02-05 | Spinecore, Inc. | Artificial disc replacements with natural kinematics |
US8409282B2 (en) | 2004-10-20 | 2013-04-02 | Vertiflex, Inc. | Systems and methods for posterior dynamic stabilization of the spine |
US8454660B2 (en) | 2006-10-19 | 2013-06-04 | Simpirica Spine, Inc. | Methods and systems for laterally stabilized constraint of spinous processes |
US8556936B2 (en) | 2000-11-29 | 2013-10-15 | Gmedelaware 2 Llc | Facet joint replacement |
US8562649B2 (en) | 2004-02-17 | 2013-10-22 | Gmedelaware 2 Llc | System and method for multiple level facet joint arthroplasty and fusion |
US8764801B2 (en) | 2005-03-28 | 2014-07-01 | Gmedelaware 2 Llc | Facet joint implant crosslinking apparatus and method |
US8900273B2 (en) | 2005-02-22 | 2014-12-02 | Gmedelaware 2 Llc | Taper-locking fixation system |
US9055981B2 (en) | 2004-10-25 | 2015-06-16 | Lanx, Inc. | Spinal implants and methods |
US9247968B2 (en) | 2007-01-11 | 2016-02-02 | Lanx, Inc. | Spinous process implants and associated methods |
US9743960B2 (en) | 2007-01-11 | 2017-08-29 | Zimmer Biomet Spine, Inc. | Interspinous implants and methods |
US11812923B2 (en) | 2011-10-07 | 2023-11-14 | Alan Villavicencio | Spinal fixation device |
US11872138B2 (en) | 2005-09-23 | 2024-01-16 | Ldr Medical | Intervertebral disc prosthesis |
US11957598B2 (en) | 2004-02-04 | 2024-04-16 | Ldr Medical | Intervertebral disc prosthesis |
Families Citing this family (727)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5836948A (en) * | 1997-01-02 | 1998-11-17 | Saint Francis Medical Technologies, Llc | Spine distraction implant and method |
US20050245937A1 (en) * | 2004-04-28 | 2005-11-03 | St. Francis Medical Technologies, Inc. | System and method for insertion of an interspinous process implant that is rotatable in order to retain the implant relative to the spinous processes |
US7306628B2 (en) * | 2002-10-29 | 2007-12-11 | St. Francis Medical Technologies | Interspinous process apparatus and method with a selectably expandable spacer |
US7959652B2 (en) * | 2005-04-18 | 2011-06-14 | Kyphon Sarl | Interspinous process implant having deployable wings and method of implantation |
US8128661B2 (en) | 1997-01-02 | 2012-03-06 | Kyphon Sarl | Interspinous process distraction system and method with positionable wing and method |
US20080071378A1 (en) * | 1997-01-02 | 2008-03-20 | Zucherman James F | Spine distraction implant and method |
US20080215058A1 (en) * | 1997-01-02 | 2008-09-04 | Zucherman James F | Spine distraction implant and method |
US6796983B1 (en) * | 1997-01-02 | 2004-09-28 | St. Francis Medical Technologies, Inc. | Spine distraction implant and method |
US6068630A (en) | 1997-01-02 | 2000-05-30 | St. Francis Medical Technologies, Inc. | Spine distraction implant |
US20080086212A1 (en) | 1997-01-02 | 2008-04-10 | St. Francis Medical Technologies, Inc. | Spine distraction implant |
US5860977A (en) | 1997-01-02 | 1999-01-19 | Saint Francis Medical Technologies, Llc | Spine distraction implant and method |
US7201751B2 (en) | 1997-01-02 | 2007-04-10 | St. Francis Medical Technologies, Inc. | Supplemental spine fixation device |
US6045551A (en) | 1998-02-06 | 2000-04-04 | Bonutti; Peter M. | Bone suture |
FR2774581B1 (en) * | 1998-02-10 | 2000-08-11 | Dimso Sa | INTEREPINOUS STABILIZER TO BE ATTACHED TO SPINOUS APOPHYSIS OF TWO VERTEBRES |
US6086593A (en) | 1998-06-30 | 2000-07-11 | Bonutti; Peter M. | Method and apparatus for use in operating on a bone |
DE29814174U1 (en) * | 1998-08-07 | 1999-12-16 | Howmedica GmbH, 24232 Schönkirchen | Instruments for inserting an implant into the human spine |
US6187000B1 (en) * | 1998-08-20 | 2001-02-13 | Endius Incorporated | Cannula for receiving surgical instruments |
US6099531A (en) | 1998-08-20 | 2000-08-08 | Bonutti; Peter M. | Changing relationship between bones |
US7621950B1 (en) | 1999-01-27 | 2009-11-24 | Kyphon Sarl | Expandable intervertebral spacer |
TW519488B (en) * | 1999-02-04 | 2003-02-01 | Synthes Ag | End member for a bone fusion implant |
US6419704B1 (en) * | 1999-10-08 | 2002-07-16 | Bret Ferree | Artificial intervertebral disc replacement methods and apparatus |
US7160312B2 (en) * | 1999-06-25 | 2007-01-09 | Usgi Medical, Inc. | Implantable artificial partition and methods of use |
NL1012719C1 (en) | 1999-07-28 | 2001-01-30 | Veldhuizen Dr Ag | Spine prosthesis. |
US6447516B1 (en) | 1999-08-09 | 2002-09-10 | Peter M. Bonutti | Method of securing tissue |
US6368343B1 (en) | 2000-03-13 | 2002-04-09 | Peter M. Bonutti | Method of using ultrasonic vibration to secure body tissue |
US6755863B2 (en) * | 1999-10-08 | 2004-06-29 | Bret A. Ferree | Rotator cuff repair using engineered tissues |
US7201776B2 (en) * | 1999-10-08 | 2007-04-10 | Ferree Bret A | Artificial intervertebral disc replacements with endplates |
US7435260B2 (en) * | 1999-08-13 | 2008-10-14 | Ferree Bret A | Use of morphogenetic proteins to treat human disc disease |
US6648920B2 (en) * | 1999-10-08 | 2003-11-18 | Bret A. Ferree | Natural and synthetic supplements to engineered annulus and disc tissues |
US20040186573A1 (en) * | 1999-10-08 | 2004-09-23 | Ferree Bret A. | Annulus fibrosis augmentation methods and apparatus |
US7201774B2 (en) * | 1999-10-08 | 2007-04-10 | Ferree Bret A | Artificial intervertebral disc replacements incorporating reinforced wall sections |
US20040172019A1 (en) * | 1999-10-08 | 2004-09-02 | Ferree Bret A. | Reinforcers for artificial disc replacement methods and apparatus |
US7060100B2 (en) * | 1999-10-08 | 2006-06-13 | Ferree Bret A | Artificial disc and joint replacements with modular cushioning components |
US20030004574A1 (en) * | 1999-10-08 | 2003-01-02 | Ferree Bret A. | Disc and annulus augmentation using biologic tissue |
US6432107B1 (en) * | 2000-01-15 | 2002-08-13 | Bret A. Ferree | Enhanced surface area spinal fusion devices |
US20030026788A1 (en) * | 1999-10-08 | 2003-02-06 | Ferree Bret A. | Use of extracellular matrix tissue to preserve cultured cell phenotype |
US6645247B2 (en) * | 1999-10-08 | 2003-11-11 | Bret A. Ferree | Supplementing engineered annulus tissues with autograft of allograft tendons |
US20040122424A1 (en) * | 2000-01-15 | 2004-06-24 | Ferree Bret A. | Enhanced surface area spinal fusion devices and alignment apparatus therefor |
US6500180B1 (en) * | 1999-10-20 | 2002-12-31 | Sdgi Holdings, Inc. | Methods and instrumentation for distraction of a disc space |
US7052516B2 (en) | 1999-10-20 | 2006-05-30 | Anulex Technologies, Inc. | Spinal disc annulus reconstruction method and deformable spinal disc annulus stent |
US7004970B2 (en) | 1999-10-20 | 2006-02-28 | Anulex Technologies, Inc. | Methods and devices for spinal disc annulus reconstruction and repair |
US7951201B2 (en) | 1999-10-20 | 2011-05-31 | Anulex Technologies, Inc. | Method and apparatus for the treatment of the intervertebral disc annulus |
US6592625B2 (en) | 1999-10-20 | 2003-07-15 | Anulex Technologies, Inc. | Spinal disc annulus reconstruction method and spinal disc annulus stent |
US6575899B1 (en) | 1999-10-20 | 2003-06-10 | Sdgi Holdings, Inc. | Methods and instruments for endoscopic interbody surgical techniques |
US8128698B2 (en) | 1999-10-20 | 2012-03-06 | Anulex Technologies, Inc. | Method and apparatus for the treatment of the intervertebral disc annulus |
US7615076B2 (en) | 1999-10-20 | 2009-11-10 | Anulex Technologies, Inc. | Method and apparatus for the treatment of the intervertebral disc annulus |
US7935147B2 (en) | 1999-10-20 | 2011-05-03 | Anulex Technologies, Inc. | Method and apparatus for enhanced delivery of treatment device to the intervertebral disc annulus |
US8632590B2 (en) | 1999-10-20 | 2014-01-21 | Anulex Technologies, Inc. | Apparatus and methods for the treatment of the intervertebral disc |
WO2001028469A2 (en) * | 1999-10-21 | 2001-04-26 | Sdgi Holdings, Inc. | Devices and techniques for a posterior lateral disc space approach |
US6830570B1 (en) | 1999-10-21 | 2004-12-14 | Sdgi Holdings, Inc. | Devices and techniques for a posterior lateral disc space approach |
US6764491B2 (en) | 1999-10-21 | 2004-07-20 | Sdgi Holdings, Inc. | Devices and techniques for a posterior lateral disc space approach |
ATE467400T1 (en) | 1999-10-22 | 2010-05-15 | Fsi Acquisition Sub Llc | FACET ARTHROPLASTY DEVICES |
US6974478B2 (en) * | 1999-10-22 | 2005-12-13 | Archus Orthopedics, Inc. | Prostheses, systems and methods for replacement of natural facet joints with artificial facet joint surfaces |
US7691145B2 (en) | 1999-10-22 | 2010-04-06 | Facet Solutions, Inc. | Prostheses, systems and methods for replacement of natural facet joints with artificial facet joint surfaces |
US8187303B2 (en) | 2004-04-22 | 2012-05-29 | Gmedelaware 2 Llc | Anti-rotation fixation element for spinal prostheses |
US7674293B2 (en) | 2004-04-22 | 2010-03-09 | Facet Solutions, Inc. | Crossbar spinal prosthesis having a modular design and related implantation methods |
US6635073B2 (en) | 2000-05-03 | 2003-10-21 | Peter M. Bonutti | Method of securing body tissue |
US6899716B2 (en) * | 2000-02-16 | 2005-05-31 | Trans1, Inc. | Method and apparatus for spinal augmentation |
ES2308014T5 (en) | 2000-02-16 | 2012-03-16 | Trans1, Inc. | Apparatus for distraction and spinal fusion |
US6558390B2 (en) | 2000-02-16 | 2003-05-06 | Axiamed, Inc. | Methods and apparatus for performing therapeutic procedures in the spine |
US7547324B2 (en) | 2000-02-16 | 2009-06-16 | Trans1, Inc. | Spinal mobility preservation apparatus having an expandable membrane |
US7727263B2 (en) | 2000-02-16 | 2010-06-01 | Trans1, Inc. | Articulating spinal implant |
US6740093B2 (en) | 2000-02-28 | 2004-05-25 | Stephen Hochschuler | Method and apparatus for treating a vertebral body |
US6805695B2 (en) | 2000-04-04 | 2004-10-19 | Spinalabs, Llc | Devices and methods for annular repair of intervertebral discs |
AU2001259593A1 (en) | 2000-05-05 | 2001-11-20 | Osteotech, Inc. | Intervertebral distractor and implant insertion instrument |
JP2004516040A (en) | 2000-06-30 | 2004-06-03 | リトラン、スティーブン | Multi-shaft coupling device and method |
FR2811540B1 (en) * | 2000-07-12 | 2003-04-25 | Spine Next Sa | IMPORTING INTERVERTEBRAL IMPLANT |
FR2812185B1 (en) | 2000-07-25 | 2003-02-28 | Spine Next Sa | SEMI-RIGID CONNECTION PIECE FOR RACHIS STABILIZATION |
FR2812186B1 (en) | 2000-07-25 | 2003-02-28 | Spine Next Sa | FLEXIBLE CONNECTION PIECE FOR SPINAL STABILIZATION |
US7204851B2 (en) * | 2000-08-30 | 2007-04-17 | Sdgi Holdings, Inc. | Method and apparatus for delivering an intervertebral disc implant |
US7166107B2 (en) * | 2000-09-11 | 2007-01-23 | D. Greg Anderson | Percutaneous technique and implant for expanding the spinal canal |
US6358254B1 (en) | 2000-09-11 | 2002-03-19 | D. Greg Anderson | Method and implant for expanding a spinal canal |
US6443987B1 (en) | 2000-09-15 | 2002-09-03 | Donald W. Bryan | Spinal vertebral implant |
US6500206B1 (en) | 2000-09-15 | 2002-12-31 | Donald W. Bryan | Instruments for inserting spinal vertebral implant |
US7166073B2 (en) | 2000-09-29 | 2007-01-23 | Stephen Ritland | Method and device for microsurgical intermuscular spinal surgery |
US6692434B2 (en) | 2000-09-29 | 2004-02-17 | Stephen Ritland | Method and device for retractor for microsurgical intermuscular lumbar arthrodesis |
DE10060815A1 (en) * | 2000-12-07 | 2002-06-20 | Henkel Kgaa | Stone composite panels |
US6565605B2 (en) | 2000-12-13 | 2003-05-20 | Medicinelodge, Inc. | Multiple facet joint replacement |
FR2818530B1 (en) * | 2000-12-22 | 2003-10-31 | Spine Next Sa | INTERVERTEBRAL IMPLANT WITH DEFORMABLE SHIM |
US7072328B2 (en) * | 2001-01-12 | 2006-07-04 | Voicegenie Technologies Inc. | Computer-implemented voice markup language-based server |
US8858564B2 (en) * | 2001-02-15 | 2014-10-14 | Spinecore, Inc. | Wedge plate inserter/impactor and related methods for use in implanting an artificial intervertebral disc |
US6607559B2 (en) | 2001-07-16 | 2003-08-19 | Spine Care, Inc. | Trial intervertebral distraction spacers |
US8940047B2 (en) * | 2001-02-15 | 2015-01-27 | Spinecore, Inc. | Intervertebral spacer device having recessed notch pairs for manipulation using a surgical tool |
WO2002065954A1 (en) | 2001-02-16 | 2002-08-29 | Queen's University At Kingston | Method and device for treating scoliosis |
US20030045935A1 (en) * | 2001-02-28 | 2003-03-06 | Angelucci Christopher M. | Laminoplasty implants and methods of use |
US6595998B2 (en) * | 2001-03-08 | 2003-07-22 | Spinewave, Inc. | Tissue distraction device |
US6887243B2 (en) | 2001-03-30 | 2005-05-03 | Triage Medical, Inc. | Method and apparatus for bone fixation with secondary compression |
US6511481B2 (en) | 2001-03-30 | 2003-01-28 | Triage Medical, Inc. | Method and apparatus for fixation of proximal femoral fractures |
US20050143747A1 (en) * | 2001-07-16 | 2005-06-30 | Rafail Zubok | Parallel distractor and related methods for use in implanting an artificial intervertebral disc |
US20070198092A1 (en) * | 2001-07-16 | 2007-08-23 | Spinecore, Inc. | System for inserting artificial intervertebral discs |
US6926728B2 (en) * | 2001-07-18 | 2005-08-09 | St. Francis Medical Technologies, Inc. | Curved dilator and method |
EP1427341A1 (en) | 2001-07-20 | 2004-06-16 | Spinal Concepts Inc. | Spinal stabilization system and method |
CA2495119C (en) * | 2001-08-20 | 2010-02-02 | Synthes (U.S.A.) | Interspinal prosthesis |
US8021399B2 (en) | 2005-07-19 | 2011-09-20 | Stephen Ritland | Rod extension for extending fusion construct |
AU2002327801B2 (en) | 2001-09-28 | 2008-03-06 | Stephen Ritland | Connection rod for screw or hook polyaxial system and method of use |
AU2002334655B2 (en) * | 2001-10-02 | 2008-06-05 | Rex Medical, L.P. | Spinal implant and method of use |
US6719765B2 (en) | 2001-12-03 | 2004-04-13 | Bonutti 2003 Trust-A | Magnetic suturing system and method |
US6733534B2 (en) * | 2002-01-29 | 2004-05-11 | Sdgi Holdings, Inc. | System and method for spine spacing |
AR038680A1 (en) | 2002-02-19 | 2005-01-26 | Synthes Ag | INTERVERTEBRAL IMPLANT |
AU2003239118B2 (en) | 2002-02-20 | 2007-09-20 | Stephen Ritland | Pedicle screw connector apparatus and method |
FR2837094B1 (en) * | 2002-03-15 | 2004-11-26 | Fixano | INTERVERTEBRAL IMPLANT |
US9044279B2 (en) | 2002-03-19 | 2015-06-02 | Innovative Surgical Designs, Inc. | Device and method for expanding the spinal canal with spinal column stabilization and spinal deformity correction |
US20100168751A1 (en) * | 2002-03-19 | 2010-07-01 | Anderson D Greg | Method, Implant & Instruments for Percutaneous Expansion of the Spinal Canal |
US6966910B2 (en) | 2002-04-05 | 2005-11-22 | Stephen Ritland | Dynamic fixation device and method of use |
CA2484923C (en) | 2002-05-08 | 2011-02-22 | Stephen Ritland | Dynamic fixation device and method of use |
US7048736B2 (en) * | 2002-05-17 | 2006-05-23 | Sdgi Holdings, Inc. | Device for fixation of spinous processes |
US7001433B2 (en) * | 2002-05-23 | 2006-02-21 | Pioneer Laboratories, Inc. | Artificial intervertebral disc device |
US8388684B2 (en) | 2002-05-23 | 2013-03-05 | Pioneer Signal Technology, Inc. | Artificial disc device |
US20030220643A1 (en) * | 2002-05-24 | 2003-11-27 | Ferree Bret A. | Devices to prevent spinal extension |
US6793678B2 (en) | 2002-06-27 | 2004-09-21 | Depuy Acromed, Inc. | Prosthetic intervertebral motion disc having dampening |
AU2003261286B2 (en) | 2002-07-19 | 2009-10-29 | Interventional Spine, Inc. | Method and apparatus for spinal fixation |
BR0313499A (en) | 2002-08-15 | 2005-07-05 | David Gerber | Intervertebral disc |
KR100984627B1 (en) * | 2002-08-15 | 2010-09-30 | 신세스 게엠바하 | Intervertebral disc implant |
FR2844179B1 (en) * | 2002-09-10 | 2004-12-03 | Jean Taylor | POSTERIOR VERTEBRAL SUPPORT KIT |
US8070778B2 (en) | 2003-05-22 | 2011-12-06 | Kyphon Sarl | Interspinous process implant with slide-in distraction piece and method of implantation |
US20060271194A1 (en) * | 2005-03-22 | 2006-11-30 | St. Francis Medical Technologies, Inc. | Interspinous process implant having deployable wing as an adjunct to spinal fusion and method of implantation |
US7549999B2 (en) | 2003-05-22 | 2009-06-23 | Kyphon Sarl | Interspinous process distraction implant and method of implantation |
US20080021468A1 (en) | 2002-10-29 | 2008-01-24 | Zucherman James F | Interspinous process implants and methods of use |
US7909853B2 (en) | 2004-09-23 | 2011-03-22 | Kyphon Sarl | Interspinous process implant including a binder and method of implantation |
US8147548B2 (en) | 2005-03-21 | 2012-04-03 | Kyphon Sarl | Interspinous process implant having a thread-shaped wing and method of implantation |
US20060064165A1 (en) * | 2004-09-23 | 2006-03-23 | St. Francis Medical Technologies, Inc. | Interspinous process implant including a binder and method of implantation |
US8048117B2 (en) | 2003-05-22 | 2011-11-01 | Kyphon Sarl | Interspinous process implant and method of implantation |
US20050075634A1 (en) * | 2002-10-29 | 2005-04-07 | Zucherman James F. | Interspinous process implant with radiolucent spacer and lead-in tissue expander |
US7497859B2 (en) * | 2002-10-29 | 2009-03-03 | Kyphon Sarl | Tools for implanting an artificial vertebral disk |
US7833246B2 (en) * | 2002-10-29 | 2010-11-16 | Kyphon SÀRL | Interspinous process and sacrum implant and method |
US7931674B2 (en) | 2005-03-21 | 2011-04-26 | Kyphon Sarl | Interspinous process implant having deployable wing and method of implantation |
US7101398B2 (en) * | 2002-12-31 | 2006-09-05 | Depuy Acromed, Inc. | Prosthetic facet joint ligament |
US20050055096A1 (en) * | 2002-12-31 | 2005-03-10 | Depuy Spine, Inc. | Functional spinal unit prosthetic |
ZA200506026B (en) | 2003-01-31 | 2006-11-29 | Spinalmotion Inc | Intervertebral prosthesis placement instrument |
EP1587437B1 (en) | 2003-01-31 | 2013-02-27 | Spinalmotion, Inc. | Spinal midline indicator |
DE50313446D1 (en) | 2003-02-06 | 2011-03-10 | Synthes Gmbh | INTERVERTEBRAL IMPLANT |
US7335203B2 (en) * | 2003-02-12 | 2008-02-26 | Kyphon Inc. | System and method for immobilizing adjacent spinous processes |
BRPI0407142A (en) * | 2003-02-14 | 2006-01-10 | Depuy Spine Inc | In situ intervertebral fusion device |
FR2851154B1 (en) * | 2003-02-19 | 2006-07-07 | Sdgi Holding Inc | INTER-SPINOUS DEVICE FOR BRAKING THE MOVEMENTS OF TWO SUCCESSIVE VERTEBRATES, AND METHOD FOR MANUFACTURING THE SAME THEREOF |
EP1596738A4 (en) | 2003-02-25 | 2010-01-20 | Stephen Ritland | Adjustable rod and connector device and method of use |
US20100185082A1 (en) * | 2003-03-07 | 2010-07-22 | Baylis Medical Company Inc. | Device and method for electrosurgery |
WO2004084742A1 (en) | 2003-03-24 | 2004-10-07 | Theken Surgical Llc | Spinal implant adjustment device |
ITFI20030084A1 (en) * | 2003-03-28 | 2004-09-29 | Cousin Biotech S A S | INTERLAMINARY VERTEBRAL PROSTHESIS |
EP1470803A1 (en) * | 2003-04-23 | 2004-10-27 | Sepitec Foundation | Spondylodesis device |
US20040230304A1 (en) | 2003-05-14 | 2004-11-18 | Archus Orthopedics Inc. | Prostheses, tools and methods for replacement of natural facet joints with artifical facet joint surfaces |
US7608104B2 (en) | 2003-05-14 | 2009-10-27 | Archus Orthopedics, Inc. | Prostheses, tools and methods for replacement of natural facet joints with artifical facet joint surfaces |
JP4410254B2 (en) | 2003-05-14 | 2010-02-03 | キリアン クラウス | Height adjustable implant for insertion between vertebral bodies and corresponding operating tools |
WO2004100840A1 (en) * | 2003-05-16 | 2004-11-25 | Pentax Corporation | Interspinal spacer |
US6997929B2 (en) * | 2003-05-16 | 2006-02-14 | Spine Wave, Inc. | Tissue distraction device |
US8262571B2 (en) | 2003-05-22 | 2012-09-11 | Stephen Ritland | Intermuscular guide for retractor insertion and method of use |
US10052211B2 (en) | 2003-05-27 | 2018-08-21 | Simplify Medical Pty Ltd. | Prosthetic disc for intervertebral insertion |
US7753956B2 (en) | 2003-05-27 | 2010-07-13 | Spinalmotion, Inc. | Prosthetic disc for intervertebral insertion |
US7575599B2 (en) | 2004-07-30 | 2009-08-18 | Spinalmotion, Inc. | Intervertebral prosthetic disc with metallic core |
JP4153372B2 (en) * | 2003-06-11 | 2008-09-24 | 信彦 一色 | Voice disorder treatment device |
US20040267367A1 (en) | 2003-06-30 | 2004-12-30 | Depuy Acromed, Inc | Intervertebral implant with conformable endplate |
US20050043796A1 (en) * | 2003-07-01 | 2005-02-24 | Grant Richard L. | Spinal disc nucleus implant |
US7074238B2 (en) | 2003-07-08 | 2006-07-11 | Archus Orthopedics, Inc. | Prostheses, tools and methods for replacement of natural facet joints with artificial facet joint surfaces |
KR100582768B1 (en) * | 2003-07-24 | 2006-05-23 | 최병관 | Insert complement for vertebra |
US7022138B2 (en) * | 2003-07-31 | 2006-04-04 | Mashburn M Laine | Spinal interbody fusion device and method |
US7708766B2 (en) * | 2003-08-11 | 2010-05-04 | Depuy Spine, Inc. | Distraction screw |
FR2858929B1 (en) * | 2003-08-21 | 2005-09-30 | Spine Next Sa | "INTERVERTEBRAL IMPLANT FOR LOMBO-SACRED JOINT" |
EP1675533A2 (en) * | 2003-09-19 | 2006-07-05 | Synecor, LLC | Method and apparatus for treating diseased or fractured bone |
US7255714B2 (en) | 2003-09-30 | 2007-08-14 | Michel H. Malek | Vertically adjustable intervertebral disc prosthesis |
US20050090822A1 (en) * | 2003-10-24 | 2005-04-28 | Dipoto Gene | Methods and apparatus for stabilizing the spine through an access device |
US8052613B2 (en) | 2003-10-23 | 2011-11-08 | Trans1 Inc. | Spinal nucleus extraction tool |
CA2544288A1 (en) * | 2003-10-30 | 2005-05-12 | Synthes Gmbh | Intervertebral implant |
US7320707B2 (en) * | 2003-11-05 | 2008-01-22 | St. Francis Medical Technologies, Inc. | Method of laterally inserting an artificial vertebral disk replacement implant with crossbar spacer |
ATE363250T1 (en) * | 2003-11-07 | 2007-06-15 | Impliant Ltd | SPINAL PROSTHESIS |
US7670377B2 (en) | 2003-11-21 | 2010-03-02 | Kyphon Sarl | Laterally insertable artifical vertebral disk replacement implant with curved spacer |
US7862586B2 (en) | 2003-11-25 | 2011-01-04 | Life Spine, Inc. | Spinal stabilization systems |
DE10357926B3 (en) | 2003-12-11 | 2005-09-01 | Deltacor Gmbh | Length adjustable spinal implant |
US20050131406A1 (en) | 2003-12-15 | 2005-06-16 | Archus Orthopedics, Inc. | Polyaxial adjustment of facet joint prostheses |
US7846183B2 (en) | 2004-02-06 | 2010-12-07 | Spinal Elements, Inc. | Vertebral facet joint prosthesis and method of fixation |
US8636802B2 (en) | 2004-03-06 | 2014-01-28 | DePuy Synthes Products, LLC | Dynamized interspinal implant |
US7763073B2 (en) | 2004-03-09 | 2010-07-27 | Depuy Spine, Inc. | Posterior process dynamic spacer |
WO2005089061A2 (en) * | 2004-03-23 | 2005-09-29 | Nds Limited | Optimally adapting multimedia content for mobile subscriber device playback |
US7993366B2 (en) * | 2004-05-27 | 2011-08-09 | Cardiva Medical, Inc. | Self-tensioning vascular occlusion device and method for its use |
US7406775B2 (en) | 2004-04-22 | 2008-08-05 | Archus Orthopedics, Inc. | Implantable orthopedic device component selection instrument and methods |
US7051451B2 (en) | 2004-04-22 | 2006-05-30 | Archus Orthopedics, Inc. | Facet joint prosthesis measurement and implant tools |
FR2870106B1 (en) * | 2004-05-11 | 2007-07-27 | Spine Next Sa | INTERVERTEBRAL IMPLANT |
US7585316B2 (en) | 2004-05-21 | 2009-09-08 | Warsaw Orthopedic, Inc. | Interspinous spacer |
US20060036258A1 (en) * | 2004-06-08 | 2006-02-16 | St. Francis Medical Technologies, Inc. | Sizing distractor and method for implanting an interspinous implant between adjacent spinous processes |
US9504583B2 (en) | 2004-06-10 | 2016-11-29 | Spinal Elements, Inc. | Implant and method for facet immobilization |
US7485133B2 (en) | 2004-07-14 | 2009-02-03 | Warsaw Orthopedic, Inc. | Force diffusion spinal hook |
US20070198019A1 (en) | 2004-07-29 | 2007-08-23 | X-Sten Corp. | Spinal ligament modification devices |
US7585326B2 (en) | 2004-08-06 | 2009-09-08 | Spinalmotion, Inc. | Methods and apparatus for intervertebral disc prosthesis insertion |
US20070156241A1 (en) | 2004-08-09 | 2007-07-05 | Reiley Mark A | Systems and methods for the fixation or fusion of bone |
WO2006020530A2 (en) * | 2004-08-09 | 2006-02-23 | Innovative Spinal Technologies | System and method for dynamic skeletal stabilization |
US20060036251A1 (en) | 2004-08-09 | 2006-02-16 | Reiley Mark A | Systems and methods for the fixation or fusion of bone |
US20180228621A1 (en) | 2004-08-09 | 2018-08-16 | Mark A. Reiley | Apparatus, systems, and methods for the fixation or fusion of bone |
US8388667B2 (en) | 2004-08-09 | 2013-03-05 | Si-Bone, Inc. | Systems and methods for the fixation or fusion of bone using compressive implants |
US8414648B2 (en) | 2004-08-09 | 2013-04-09 | Si-Bone Inc. | Apparatus, systems, and methods for achieving trans-iliac lumbar fusion |
US9662158B2 (en) | 2004-08-09 | 2017-05-30 | Si-Bone Inc. | Systems and methods for the fixation or fusion of bone at or near a sacroiliac joint |
US9949843B2 (en) | 2004-08-09 | 2018-04-24 | Si-Bone Inc. | Apparatus, systems, and methods for the fixation or fusion of bone |
US8444693B2 (en) | 2004-08-09 | 2013-05-21 | Si-Bone Inc. | Apparatus, systems, and methods for achieving lumbar facet fusion |
US7854752B2 (en) | 2004-08-09 | 2010-12-21 | Theken Spine, Llc | System and method for dynamic skeletal stabilization |
US8425570B2 (en) | 2004-08-09 | 2013-04-23 | Si-Bone Inc. | Apparatus, systems, and methods for achieving anterior lumbar interbody fusion |
US8470004B2 (en) | 2004-08-09 | 2013-06-25 | Si-Bone Inc. | Apparatus, systems, and methods for stabilizing a spondylolisthesis |
JP2008510518A (en) | 2004-08-18 | 2008-04-10 | アーカス・オーソペディクス・インコーポレーテッド | Adjoint level articulating device, spinal stabilization system and method |
US7931688B2 (en) | 2004-08-25 | 2011-04-26 | Spine Wave, Inc. | Expandable interbody fusion device |
US8012209B2 (en) | 2004-09-23 | 2011-09-06 | Kyphon Sarl | Interspinous process implant including a binder, binder aligner and method of implantation |
WO2006041963A2 (en) * | 2004-10-05 | 2006-04-20 | Abdou M S | Devices and methods for inter-vertebral orthopedic device placement |
WO2006042206A2 (en) * | 2004-10-06 | 2006-04-20 | Nuvasive, Inc. | Systems and methods for direct restoration of foraminal volume |
US9247952B2 (en) | 2004-10-15 | 2016-02-02 | Amendia, Inc. | Devices and methods for tissue access |
US7887538B2 (en) | 2005-10-15 | 2011-02-15 | Baxano, Inc. | Methods and apparatus for tissue modification |
US8617163B2 (en) | 2004-10-15 | 2013-12-31 | Baxano Surgical, Inc. | Methods, systems and devices for carpal tunnel release |
US8048080B2 (en) | 2004-10-15 | 2011-11-01 | Baxano, Inc. | Flexible tissue rasp |
EP1799129B1 (en) | 2004-10-15 | 2020-11-25 | Baxano, Inc. | Devices for tissue removal |
US20110190772A1 (en) | 2004-10-15 | 2011-08-04 | Vahid Saadat | Powered tissue modification devices and methods |
US20100331883A1 (en) | 2004-10-15 | 2010-12-30 | Schmitz Gregory P | Access and tissue modification systems and methods |
US8257356B2 (en) | 2004-10-15 | 2012-09-04 | Baxano, Inc. | Guidewire exchange systems to treat spinal stenosis |
US8062300B2 (en) | 2006-05-04 | 2011-11-22 | Baxano, Inc. | Tissue removal with at least partially flexible devices |
US7578819B2 (en) | 2005-05-16 | 2009-08-25 | Baxano, Inc. | Spinal access and neural localization |
US8221397B2 (en) | 2004-10-15 | 2012-07-17 | Baxano, Inc. | Devices and methods for tissue modification |
US9101386B2 (en) | 2004-10-15 | 2015-08-11 | Amendia, Inc. | Devices and methods for treating tissue |
US7963915B2 (en) | 2004-10-15 | 2011-06-21 | Baxano, Inc. | Devices and methods for tissue access |
US7959577B2 (en) | 2007-09-06 | 2011-06-14 | Baxano, Inc. | Method, system, and apparatus for neural localization |
US8430881B2 (en) | 2004-10-15 | 2013-04-30 | Baxano, Inc. | Mechanical tissue modification devices and methods |
US7938830B2 (en) | 2004-10-15 | 2011-05-10 | Baxano, Inc. | Powered tissue modification devices and methods |
US8613747B2 (en) | 2004-10-20 | 2013-12-24 | Vertiflex, Inc. | Spacer insertion instrument |
US8277488B2 (en) | 2004-10-20 | 2012-10-02 | Vertiflex, Inc. | Interspinous spacer |
US8425559B2 (en) | 2004-10-20 | 2013-04-23 | Vertiflex, Inc. | Systems and methods for posterior dynamic stabilization of the spine |
US8945183B2 (en) | 2004-10-20 | 2015-02-03 | Vertiflex, Inc. | Interspinous process spacer instrument system with deployment indicator |
US7763074B2 (en) | 2004-10-20 | 2010-07-27 | The Board Of Trustees Of The Leland Stanford Junior University | Systems and methods for posterior dynamic stabilization of the spine |
US9023084B2 (en) | 2004-10-20 | 2015-05-05 | The Board Of Trustees Of The Leland Stanford Junior University | Systems and methods for stabilizing the motion or adjusting the position of the spine |
US8292922B2 (en) * | 2004-10-20 | 2012-10-23 | Vertiflex, Inc. | Interspinous spacer |
US9161783B2 (en) | 2004-10-20 | 2015-10-20 | Vertiflex, Inc. | Interspinous spacer |
US9119680B2 (en) | 2004-10-20 | 2015-09-01 | Vertiflex, Inc. | Interspinous spacer |
US8128662B2 (en) | 2004-10-20 | 2012-03-06 | Vertiflex, Inc. | Minimally invasive tooling for delivery of interspinous spacer |
US8123782B2 (en) | 2004-10-20 | 2012-02-28 | Vertiflex, Inc. | Interspinous spacer |
WO2009009049A2 (en) | 2004-10-20 | 2009-01-15 | Vertiflex, Inc. | Interspinous spacer |
US8152837B2 (en) | 2004-10-20 | 2012-04-10 | The Board Of Trustees Of The Leland Stanford Junior University | Systems and methods for posterior dynamic stabilization of the spine |
US7918875B2 (en) | 2004-10-25 | 2011-04-05 | Lanx, Inc. | Interspinous distraction devices and associated methods of insertion |
CA2585135A1 (en) | 2004-10-25 | 2006-05-26 | Archus Orthopedics, Inc. | Spinal prosthesis having a modular design |
US20060106381A1 (en) * | 2004-11-18 | 2006-05-18 | Ferree Bret A | Methods and apparatus for treating spinal stenosis |
EP1814474B1 (en) | 2004-11-24 | 2011-09-14 | Samy Abdou | Devices for inter-vertebral orthopedic device placement |
WO2009086010A2 (en) | 2004-12-06 | 2009-07-09 | Vertiflex, Inc. | Spacer insertion instrument |
US7857832B2 (en) * | 2004-12-08 | 2010-12-28 | Interventional Spine, Inc. | Method and apparatus for spinal stabilization |
US7648523B2 (en) * | 2004-12-08 | 2010-01-19 | Interventional Spine, Inc. | Method and apparatus for spinal stabilization |
US20060149371A1 (en) * | 2004-12-10 | 2006-07-06 | Sdgi Holdings, Inc. | Intervertebral prosthetic device and method with locking mechanism |
US8066749B2 (en) | 2004-12-13 | 2011-11-29 | Warsaw Orthopedic, Inc. | Implant for stabilizing a bone graft during spinal fusion |
US7776090B2 (en) | 2004-12-13 | 2010-08-17 | Warsaw Orthopedic, Inc. | Inter-cervical facet implant and method |
US8100944B2 (en) | 2004-12-13 | 2012-01-24 | Kyphon Sarl | Inter-cervical facet implant and method for preserving the tissues surrounding the facet joint |
US8118838B2 (en) | 2004-12-13 | 2012-02-21 | Kyphon Sarl | Inter-cervical facet implant with multiple direction articulation joint and method for implanting |
US8172877B2 (en) | 2004-12-13 | 2012-05-08 | Kyphon Sarl | Inter-cervical facet implant with surface enhancements |
US8128660B2 (en) | 2004-12-13 | 2012-03-06 | Kyphon Sarl | Inter-cervical facet joint implant with locking screw system |
US8029540B2 (en) | 2005-05-10 | 2011-10-04 | Kyphon Sarl | Inter-cervical facet implant with implantation tool |
US8083797B2 (en) | 2005-02-04 | 2011-12-27 | Spinalmotion, Inc. | Intervertebral prosthetic disc with shock absorption |
US7998208B2 (en) | 2005-02-17 | 2011-08-16 | Kyphon Sarl | Percutaneous spinal implants and methods |
US8038698B2 (en) | 2005-02-17 | 2011-10-18 | Kphon Sarl | Percutaneous spinal implants and methods |
US20070276493A1 (en) | 2005-02-17 | 2007-11-29 | Malandain Hugues F | Percutaneous spinal implants and methods |
US8043335B2 (en) * | 2005-02-17 | 2011-10-25 | Kyphon Sarl | Percutaneous spinal implants and methods |
US7993342B2 (en) | 2005-02-17 | 2011-08-09 | Kyphon Sarl | Percutaneous spinal implants and methods |
US8096994B2 (en) | 2005-02-17 | 2012-01-17 | Kyphon Sarl | Percutaneous spinal implants and methods |
US8157841B2 (en) | 2005-02-17 | 2012-04-17 | Kyphon Sarl | Percutaneous spinal implants and methods |
US8096995B2 (en) | 2005-02-17 | 2012-01-17 | Kyphon Sarl | Percutaneous spinal implants and methods |
US20070276373A1 (en) * | 2005-02-17 | 2007-11-29 | Malandain Hugues F | Percutaneous Spinal Implants and Methods |
US8097018B2 (en) | 2005-02-17 | 2012-01-17 | Kyphon Sarl | Percutaneous spinal implants and methods |
US7998174B2 (en) | 2005-02-17 | 2011-08-16 | Kyphon Sarl | Percutaneous spinal implants and methods |
US8100943B2 (en) | 2005-02-17 | 2012-01-24 | Kyphon Sarl | Percutaneous spinal implants and methods |
US8029567B2 (en) | 2005-02-17 | 2011-10-04 | Kyphon Sarl | Percutaneous spinal implants and methods |
US8007521B2 (en) * | 2005-02-17 | 2011-08-30 | Kyphon Sarl | Percutaneous spinal implants and methods |
US7927354B2 (en) | 2005-02-17 | 2011-04-19 | Kyphon Sarl | Percutaneous spinal implants and methods |
EP1848351A4 (en) * | 2005-02-17 | 2012-03-14 | Kyphon Sarl | Percutaneous spinal implants and methods |
US8057513B2 (en) | 2005-02-17 | 2011-11-15 | Kyphon Sarl | Percutaneous spinal implants and methods |
US8034080B2 (en) | 2005-02-17 | 2011-10-11 | Kyphon Sarl | Percutaneous spinal implants and methods |
US8092459B2 (en) | 2005-02-17 | 2012-01-10 | Kyphon Sarl | Percutaneous spinal implants and methods |
US20060184248A1 (en) * | 2005-02-17 | 2006-08-17 | Edidin Avram A | Percutaneous spinal implants and methods |
US7988709B2 (en) | 2005-02-17 | 2011-08-02 | Kyphon Sarl | Percutaneous spinal implants and methods |
US8496686B2 (en) | 2005-03-22 | 2013-07-30 | Gmedelaware 2 Llc | Minimally invasive spine restoration systems, devices, methods and kits |
US9034041B2 (en) | 2005-03-31 | 2015-05-19 | Life Spine, Inc. | Expandable spinal interbody and intravertebral body devices |
US8066742B2 (en) | 2005-03-31 | 2011-11-29 | Warsaw Orthopedic, Inc. | Intervertebral prosthetic device for spinal stabilization and method of implanting same |
US9801733B2 (en) | 2005-03-31 | 2017-10-31 | Life Spine, Inc. | Expandable spinal interbody and intravertebral body devices |
JP2008534162A (en) * | 2005-03-31 | 2008-08-28 | ライフ・スパイン・インコーポレーテッド | Expandable interbody and intrabody devices |
US20060241757A1 (en) * | 2005-03-31 | 2006-10-26 | Sdgi Holdings, Inc. | Intervertebral prosthetic device for spinal stabilization and method of manufacturing same |
US8940048B2 (en) | 2005-03-31 | 2015-01-27 | Life Spine, Inc. | Expandable spinal interbody and intravertebral body devices |
US7862590B2 (en) * | 2005-04-08 | 2011-01-04 | Warsaw Orthopedic, Inc. | Interspinous process spacer |
MX2007012493A (en) | 2005-04-08 | 2008-03-14 | Paradigm Spine Llc | Interspinous vertebral and lumbosacral stabilization devices and methods of use. |
US7780709B2 (en) * | 2005-04-12 | 2010-08-24 | Warsaw Orthopedic, Inc. | Implants and methods for inter-transverse process dynamic stabilization of a spinal motion segment |
US8034079B2 (en) | 2005-04-12 | 2011-10-11 | Warsaw Orthopedic, Inc. | Implants and methods for posterior dynamic stabilization of a spinal motion segment |
US7789898B2 (en) * | 2005-04-15 | 2010-09-07 | Warsaw Orthopedic, Inc. | Transverse process/laminar spacer |
US7674296B2 (en) | 2005-04-21 | 2010-03-09 | Globus Medical, Inc. | Expandable vertebral prosthesis |
US20060285991A1 (en) * | 2005-04-27 | 2006-12-21 | Mckinley Laurence M | Metal injection moulding for the production of medical implants |
US7727233B2 (en) | 2005-04-29 | 2010-06-01 | Warsaw Orthopedic, Inc. | Spinous process stabilization devices and methods |
US20060247623A1 (en) * | 2005-04-29 | 2006-11-02 | Sdgi Holdings, Inc. | Local delivery of an active agent from an orthopedic implant |
US20060247634A1 (en) * | 2005-05-02 | 2006-11-02 | Warner Kenneth D | Spinous Process Spacer Implant and Technique |
US20060271048A1 (en) * | 2005-05-12 | 2006-11-30 | Jeffery Thramann | Pedicle screw based vertebral body stabilization apparatus |
US7828830B2 (en) * | 2005-05-12 | 2010-11-09 | Lanx, Inc. | Dynamic spinal stabilization |
US7879099B2 (en) * | 2005-06-03 | 2011-02-01 | Zipnick Richard I | Minimally invasive apparatus to manipulate and revitalize spinal column disc |
US7837688B2 (en) * | 2005-06-13 | 2010-11-23 | Globus Medical | Spinous process spacer |
US8080061B2 (en) | 2005-06-20 | 2011-12-20 | Synthes Usa, Llc | Apparatus and methods for treating bone |
US20060287728A1 (en) * | 2005-06-21 | 2006-12-21 | Mokhtar Mourad B | System and method for implanting intervertebral disk prostheses |
US20070005064A1 (en) | 2005-06-27 | 2007-01-04 | Sdgi Holdings | Intervertebral prosthetic device for spinal stabilization and method of implanting same |
FR2887434B1 (en) | 2005-06-28 | 2008-03-28 | Jean Taylor | SURGICAL TREATMENT EQUIPMENT OF TWO VERTEBRATES |
US8623088B1 (en) | 2005-07-15 | 2014-01-07 | Nuvasive, Inc. | Spinal fusion implant and related methods |
US20070027464A1 (en) | 2005-07-29 | 2007-02-01 | X-Sten, Corp. | Device for resecting spinal tissue |
US8870890B2 (en) * | 2005-08-05 | 2014-10-28 | DePuy Synthes Products, LLC | Pronged holder for treating spinal stenosis |
US7753938B2 (en) * | 2005-08-05 | 2010-07-13 | Synthes Usa, Llc | Apparatus for treating spinal stenosis |
US8277487B2 (en) * | 2005-08-11 | 2012-10-02 | National University Corporation Kobe University | Method of percutaneously enlarging processus spinosus interspace using minimally invasive implant |
US8591583B2 (en) | 2005-08-16 | 2013-11-26 | Benvenue Medical, Inc. | Devices for treating the spine |
US8366773B2 (en) | 2005-08-16 | 2013-02-05 | Benvenue Medical, Inc. | Apparatus and method for treating bone |
EP2705809B1 (en) | 2005-08-16 | 2016-03-23 | Benvenue Medical, Inc. | Spinal tissue distraction devices |
US8603098B2 (en) * | 2005-09-12 | 2013-12-10 | K2M, Inc. | Posterior modular disc replacement system |
US8034113B2 (en) * | 2005-09-27 | 2011-10-11 | Randall Lane Acker | Joint prosthesis and method of implanting same |
WO2007038475A2 (en) | 2005-09-27 | 2007-04-05 | Paradigm Spine, Llc | Interspinous vertebral stabilization devices |
US8167915B2 (en) * | 2005-09-28 | 2012-05-01 | Nuvasive, Inc. | Methods and apparatus for treating spinal stenosis |
EP1770302A1 (en) * | 2005-09-30 | 2007-04-04 | Acandis GmbH & Co. KG | Damping method and device |
US8870920B2 (en) * | 2005-10-07 | 2014-10-28 | M. Samy Abdou | Devices and methods for inter-vertebral orthopedic device placement |
US8366712B2 (en) | 2005-10-15 | 2013-02-05 | Baxano, Inc. | Multiple pathways for spinal nerve root decompression from a single access point |
US8062298B2 (en) | 2005-10-15 | 2011-11-22 | Baxano, Inc. | Flexible tissue removal devices and methods |
US20080086034A1 (en) | 2006-08-29 | 2008-04-10 | Baxano, Inc. | Tissue Access Guidewire System and Method |
US8092456B2 (en) | 2005-10-15 | 2012-01-10 | Baxano, Inc. | Multiple pathways for spinal nerve root decompression from a single access point |
US8267970B2 (en) * | 2005-10-25 | 2012-09-18 | Depuy Spine, Inc. | Laminar hook spring |
US8357181B2 (en) | 2005-10-27 | 2013-01-22 | Warsaw Orthopedic, Inc. | Intervertebral prosthetic device for spinal stabilization and method of implanting same |
FR2892616B1 (en) * | 2005-11-02 | 2009-01-09 | Spinevision Sa | INTERVERTEBRAL SURGICAL IMPLANT COMPRISING A VISCOELASTIC ELEMENT |
US7862591B2 (en) | 2005-11-10 | 2011-01-04 | Warsaw Orthopedic, Inc. | Intervertebral prosthetic device for spinal stabilization and method of implanting same |
US9907580B2 (en) | 2005-11-22 | 2018-03-06 | Bryson Medical Technology Llc | Adjustable spinous process spacer device and method of treating spinal disorders |
US20070118218A1 (en) * | 2005-11-22 | 2007-05-24 | Hooper David M | Facet joint implant and procedure |
US7862592B2 (en) * | 2005-12-06 | 2011-01-04 | Nuvasive, Inc. | Methods and apparatus for treating spinal stenosis |
US8002802B2 (en) | 2005-12-19 | 2011-08-23 | Samy Abdou | Devices and methods for inter-vertebral orthopedic device placement |
WO2007126428A2 (en) | 2005-12-20 | 2007-11-08 | Archus Orthopedics, Inc. | Arthroplasty revision system and method |
US20070162132A1 (en) | 2005-12-23 | 2007-07-12 | Dominique Messerli | Flexible elongated chain implant and method of supporting body tissue with same |
US7935148B2 (en) * | 2006-01-09 | 2011-05-03 | Warsaw Orthopedic, Inc. | Adjustable insertion device for a vertebral implant |
US20070161962A1 (en) * | 2006-01-09 | 2007-07-12 | Edie Jason A | Device and method for moving fill material to an implant |
US7922745B2 (en) * | 2006-01-09 | 2011-04-12 | Zimmer Spine, Inc. | Posterior dynamic stabilization of the spine |
US20070173821A1 (en) * | 2006-01-13 | 2007-07-26 | Sdgi Holdings, Inc. | Materials, devices, and methods for treating multiple spinal regions including the posterior and spinous process regions |
US20070168039A1 (en) * | 2006-01-13 | 2007-07-19 | Sdgi Holdings, Inc. | Materials, devices and methods for treating multiple spinal regions including vertebral body and endplate regions |
US20070173820A1 (en) * | 2006-01-13 | 2007-07-26 | Sdgi Holdings, Inc. | Materials, devices, and methods for treating multiple spinal regions including the anterior region |
US20070173823A1 (en) | 2006-01-18 | 2007-07-26 | Sdgi Holdings, Inc. | Intervertebral prosthetic device for spinal stabilization and method of implanting same |
US8083795B2 (en) | 2006-01-18 | 2011-12-27 | Warsaw Orthopedic, Inc. | Intervertebral prosthetic device for spinal stabilization and method of manufacturing same |
WO2007087535A2 (en) * | 2006-01-23 | 2007-08-02 | Pioneer Surgical Technology, Inc. | Interlaminar stabilizing system |
US7837711B2 (en) | 2006-01-27 | 2010-11-23 | Warsaw Orthopedic, Inc. | Artificial spinous process for the sacrum and methods of use |
US7691130B2 (en) | 2006-01-27 | 2010-04-06 | Warsaw Orthopedic, Inc. | Spinal implants including a sensor and methods of use |
US20070179614A1 (en) * | 2006-01-30 | 2007-08-02 | Sdgi Holdings, Inc. | Intervertebral prosthetic disc and method of installing same |
ATE548000T1 (en) * | 2006-02-01 | 2012-03-15 | Synthes Gmbh | INTERSPINAL INTERVENTION SPACER |
US7520888B2 (en) | 2006-02-14 | 2009-04-21 | Warsaw Orthopedic, Inc. | Treatment of the vertebral column |
EP1988854A2 (en) * | 2006-02-15 | 2008-11-12 | M. S. Abdou | Devices and methods for inter-vertebral orthopedic device placement |
WO2007098423A2 (en) | 2006-02-17 | 2007-08-30 | Paradigm Spine, L.L.C. | Method and system for performing interspinous space preparation for receiving an implant |
US20070233089A1 (en) * | 2006-02-17 | 2007-10-04 | Endius, Inc. | Systems and methods for reducing adjacent level disc disease |
EP1988855A2 (en) | 2006-02-27 | 2008-11-12 | Synthes GmbH | Intervertebral implant with fixation geometry |
FR2897771B1 (en) * | 2006-02-28 | 2008-06-06 | Abbott Spine Sa | INTERVERTEBRAL IMPLANT |
US7927358B2 (en) * | 2006-03-07 | 2011-04-19 | Zimmer Spine, Inc. | Spinal stabilization device |
US8262698B2 (en) | 2006-03-16 | 2012-09-11 | Warsaw Orthopedic, Inc. | Expandable device for insertion between anatomical structures and a procedure utilizing same |
US7871426B2 (en) * | 2006-03-21 | 2011-01-18 | Spinefrontier, LLS | Spinous process fixation device |
GB2436293A (en) * | 2006-03-24 | 2007-09-26 | Galley Geoffrey H | Spinous processes insertion device |
GB0605960D0 (en) * | 2006-03-24 | 2006-05-03 | Galley Geoffrey H | Expandable spinal prosthesis |
US8025681B2 (en) | 2006-03-29 | 2011-09-27 | Theken Spine, Llc | Dynamic motion spinal stabilization system |
US7985246B2 (en) | 2006-03-31 | 2011-07-26 | Warsaw Orthopedic, Inc. | Methods and instruments for delivering interspinous process spacers |
US20070233077A1 (en) * | 2006-03-31 | 2007-10-04 | Khalili Farid B | Dynamic intervertebral spacer assembly |
WO2007121320A2 (en) | 2006-04-12 | 2007-10-25 | Spinalmotion, Inc. | Posterior spinal device and method |
WO2007123920A2 (en) * | 2006-04-18 | 2007-11-01 | Joseph Nicholas Logan | Spinal rod system |
US8303660B1 (en) | 2006-04-22 | 2012-11-06 | Samy Abdou | Inter-vertebral disc prosthesis with variable rotational stop and methods of use |
US8118844B2 (en) | 2006-04-24 | 2012-02-21 | Warsaw Orthopedic, Inc. | Expandable device for insertion between anatomical structures and a procedure utilizing same |
US8252031B2 (en) | 2006-04-28 | 2012-08-28 | Warsaw Orthopedic, Inc. | Molding device for an expandable interspinous process implant |
US20070270823A1 (en) * | 2006-04-28 | 2007-11-22 | Sdgi Holdings, Inc. | Multi-chamber expandable interspinous process brace |
US8048118B2 (en) | 2006-04-28 | 2011-11-01 | Warsaw Orthopedic, Inc. | Adjustable interspinous process brace |
US20070270821A1 (en) * | 2006-04-28 | 2007-11-22 | Sdgi Holdings, Inc. | Vertebral stabilizer |
US8348978B2 (en) | 2006-04-28 | 2013-01-08 | Warsaw Orthopedic, Inc. | Interosteotic implant |
US8105357B2 (en) | 2006-04-28 | 2012-01-31 | Warsaw Orthopedic, Inc. | Interspinous process brace |
DE102007018860B4 (en) * | 2006-04-28 | 2023-01-05 | Paradigm Spine L.L.C. | Instrument system for use with an interspinous implant |
US7846185B2 (en) | 2006-04-28 | 2010-12-07 | Warsaw Orthopedic, Inc. | Expandable interspinous process implant and method of installing same |
DE202006006898U1 (en) * | 2006-04-29 | 2006-07-27 | Metz-Stavenhagen, Peter, Dr. Med. | spinal implant |
US8062337B2 (en) | 2006-05-04 | 2011-11-22 | Warsaw Orthopedic, Inc. | Expandable device for insertion between anatomical structures and a procedure utilizing same |
US8021394B2 (en) * | 2006-05-09 | 2011-09-20 | Life Spine, Inc. | Stenotic device |
US7942830B2 (en) | 2006-05-09 | 2011-05-17 | Vertos Medical, Inc. | Ipsilateral approach to minimally invasive ligament decompression procedure |
US20070272259A1 (en) * | 2006-05-23 | 2007-11-29 | Sdgi Holdings, Inc. | Surgical procedure for inserting a device between anatomical structures |
US20070276496A1 (en) | 2006-05-23 | 2007-11-29 | Sdgi Holdings, Inc. | Surgical spacer with shape control |
US8147517B2 (en) | 2006-05-23 | 2012-04-03 | Warsaw Orthopedic, Inc. | Systems and methods for adjusting properties of a spinal implant |
US8771355B2 (en) * | 2006-05-26 | 2014-07-08 | M. S. Abdou | Inter-vertebral disc motion devices and methods of use |
US20070276369A1 (en) * | 2006-05-26 | 2007-11-29 | Sdgi Holdings, Inc. | In vivo-customizable implant |
US20070299459A1 (en) * | 2006-06-26 | 2007-12-27 | X-Sten Corp. | Percutaneous Tissue Access Device |
US20080021457A1 (en) * | 2006-07-05 | 2008-01-24 | Warsaw Orthopedic Inc. | Zygapophysial joint repair system |
US7959564B2 (en) | 2006-07-08 | 2011-06-14 | Stephen Ritland | Pedicle seeker and retractor, and methods of use |
USD741488S1 (en) | 2006-07-17 | 2015-10-20 | Nuvasive, Inc. | Spinal fusion implant |
US8048119B2 (en) | 2006-07-20 | 2011-11-01 | Warsaw Orthopedic, Inc. | Apparatus for insertion between anatomical structures and a procedure utilizing same |
US8303630B2 (en) * | 2006-07-27 | 2012-11-06 | Samy Abdou | Devices and methods for the minimally invasive treatment of spinal stenosis |
US20080082104A1 (en) | 2006-07-27 | 2008-04-03 | Lanx, Llc | Methods and apparatuses for facilitating percutaneous fusion |
US20080027444A1 (en) * | 2006-07-28 | 2008-01-31 | Malek Michel H | Bone anchor device |
USD620593S1 (en) | 2006-07-31 | 2010-07-27 | Vertos Medical, Inc. | Tissue excision device |
US8034110B2 (en) | 2006-07-31 | 2011-10-11 | Depuy Spine, Inc. | Spinal fusion implant |
US8834526B2 (en) * | 2006-08-09 | 2014-09-16 | Rolando Garcia | Methods and apparatus for treating spinal stenosis |
WO2008021319A2 (en) | 2006-08-11 | 2008-02-21 | Abdou M Samy | Spinal motion preservation devices and methods of use |
US8702755B2 (en) | 2006-08-11 | 2014-04-22 | Gmedelaware 2 Llc | Angled washer polyaxial connection for dynamic spine prosthesis |
US20080051896A1 (en) * | 2006-08-25 | 2008-02-28 | Loubert Suddaby | Expandable Spinous Process Distractor |
WO2008024607A2 (en) * | 2006-08-25 | 2008-02-28 | Loubert Suddaby | Expandable spinous process distractor |
US20080086115A1 (en) | 2006-09-07 | 2008-04-10 | Warsaw Orthopedic, Inc. | Intercostal spacer device and method for use in correcting a spinal deformity |
US8715350B2 (en) | 2006-09-15 | 2014-05-06 | Pioneer Surgical Technology, Inc. | Systems and methods for securing an implant in intervertebral space |
EP2063817A4 (en) | 2006-09-15 | 2012-04-18 | Pioneer Surgical Technology Inc | Joint arthroplasty devices having articulating members |
US20080082172A1 (en) * | 2006-09-29 | 2008-04-03 | Jackson Roger P | Interspinous process spacer |
US8066750B2 (en) | 2006-10-06 | 2011-11-29 | Warsaw Orthopedic, Inc | Port structures for non-rigid bone plates |
US8845726B2 (en) | 2006-10-18 | 2014-09-30 | Vertiflex, Inc. | Dilator |
US20080177333A1 (en) * | 2006-10-24 | 2008-07-24 | Warsaw Orthopedic, Inc. | Adjustable jacking implant |
US8097019B2 (en) * | 2006-10-24 | 2012-01-17 | Kyphon Sarl | Systems and methods for in situ assembly of an interspinous process distraction implant |
FR2908035B1 (en) | 2006-11-08 | 2009-05-01 | Jean Taylor | INTEREPINE IMPLANT |
US8740941B2 (en) | 2006-11-10 | 2014-06-03 | Lanx, Inc. | Pedicle based spinal stabilization with adjacent vertebral body support |
US20080114358A1 (en) * | 2006-11-13 | 2008-05-15 | Warsaw Orthopedic, Inc. | Intervertebral Prosthetic Assembly for Spinal Stabilization and Method of Implanting Same |
US7879104B2 (en) | 2006-11-15 | 2011-02-01 | Warsaw Orthopedic, Inc. | Spinal implant system |
US20080114357A1 (en) * | 2006-11-15 | 2008-05-15 | Warsaw Orthopedic, Inc. | Inter-transverse process spacer device and method for use in correcting a spinal deformity |
WO2008063435A1 (en) | 2006-11-16 | 2008-05-29 | Rex Medical, L.P. | Spinal implant and method of use |
AR064013A1 (en) * | 2006-11-30 | 2009-03-04 | Paradigm Spine Llc | VERTEBRAL, INTERLAMINAR, INTERESPINOUS STABILIZATION SYSTEM |
WO2008070863A2 (en) | 2006-12-07 | 2008-06-12 | Interventional Spine, Inc. | Intervertebral implant |
DE102006059395A1 (en) * | 2006-12-08 | 2008-06-19 | Aesculap Ag & Co. Kg | Implant and implant system |
WO2008073447A2 (en) | 2006-12-11 | 2008-06-19 | Abdou M Samy | Dynamic spinal stabilization systems and methods of use |
US7955392B2 (en) | 2006-12-14 | 2011-06-07 | Warsaw Orthopedic, Inc. | Interspinous process devices and methods |
US20080177312A1 (en) * | 2006-12-28 | 2008-07-24 | Mi4Spine, Llc | Interspinous Process Spacer Device |
US20080161929A1 (en) | 2006-12-29 | 2008-07-03 | Mccormack Bruce | Cervical distraction device |
US8029544B2 (en) * | 2007-01-02 | 2011-10-04 | Zimmer Spine, Inc. | Spine stiffening device |
US20080167655A1 (en) * | 2007-01-05 | 2008-07-10 | Jeffrey Chun Wang | Interspinous implant, tools and methods of implanting |
US8974496B2 (en) | 2007-08-30 | 2015-03-10 | Jeffrey Chun Wang | Interspinous implant, tools and methods of implanting |
US20080167685A1 (en) * | 2007-01-05 | 2008-07-10 | Warsaw Orthopedic, Inc. | System and Method For Percutanously Curing An Implantable Device |
US20080172091A1 (en) * | 2007-01-12 | 2008-07-17 | Warsaw Orthopedic, Inc. | Spinal Stabilization System |
US8568453B2 (en) | 2007-01-29 | 2013-10-29 | Samy Abdou | Spinal stabilization systems and methods of use |
ES2968634T3 (en) | 2007-02-06 | 2024-05-13 | Pioneer Surgical Tech Inc | Intervertebral implant devices |
US8034081B2 (en) | 2007-02-06 | 2011-10-11 | CollabComl, LLC | Interspinous dynamic stabilization implant and method of implanting |
CA2678006C (en) | 2007-02-21 | 2014-10-14 | Benvenue Medical, Inc. | Devices for treating the spine |
US8992533B2 (en) | 2007-02-22 | 2015-03-31 | Spinal Elements, Inc. | Vertebral facet joint drill and method of use |
EP2129304B1 (en) | 2007-02-22 | 2014-09-03 | Spinal Elements, Inc. | Vertebral articular process drill |
WO2008106140A2 (en) | 2007-02-26 | 2008-09-04 | Abdou M Samy | Spinal stabilization systems and methods of use |
US8740944B2 (en) * | 2007-02-28 | 2014-06-03 | Warsaw Orthopedic, Inc. | Vertebral stabilizer |
US11298241B2 (en) | 2007-03-29 | 2022-04-12 | Life Spine, Inc. | Radially expandable spinal interbody device and implantation tool |
US10251759B2 (en) | 2007-03-29 | 2019-04-09 | Life Spine, Inc. | Radially expandable spinal interbody device and implantation tool |
US9138328B2 (en) | 2007-03-29 | 2015-09-22 | Life Spine, Inc. | Radially expandable spinal interbody device and implantation tool |
US9610172B2 (en) | 2007-03-29 | 2017-04-04 | Life Spine, Inc. | Radially expandable spinal interbody device and implantation tool |
WO2008124831A2 (en) | 2007-04-10 | 2008-10-16 | Lee David M D | Adjustable spine distraction implant |
EP2134276A4 (en) * | 2007-04-10 | 2012-10-17 | Medicinelodge Inc | Interspinous process spacers |
US7799058B2 (en) * | 2007-04-19 | 2010-09-21 | Zimmer Gmbh | Interspinous spacer |
CN101854887B (en) | 2007-05-01 | 2013-09-25 | 斯百诺辛普利斯提有限责任公司 | Interspinous implants and methods for implanting same |
EP2142146A4 (en) | 2007-05-01 | 2010-12-01 | Spinal Simplicity Llc | Interspinous implants and methods for implanting same |
US8142479B2 (en) | 2007-05-01 | 2012-03-27 | Spinal Simplicity Llc | Interspinous process implants having deployable engagement arms |
US20090012614A1 (en) * | 2007-05-08 | 2009-01-08 | Dixon Robert A | Device and method for tethering a spinal implant |
US9173686B2 (en) * | 2007-05-09 | 2015-11-03 | Ebi, Llc | Interspinous implant |
US9381047B2 (en) | 2007-05-09 | 2016-07-05 | Ebi, Llc | Interspinous implant |
US8840646B2 (en) | 2007-05-10 | 2014-09-23 | Warsaw Orthopedic, Inc. | Spinous process implants and methods |
US20080294200A1 (en) * | 2007-05-25 | 2008-11-27 | Andrew Kohm | Spinous process implants and methods of using the same |
US7967867B2 (en) | 2007-05-31 | 2011-06-28 | Spine Wave, Inc. | Expandable interbody fusion device |
US8070779B2 (en) * | 2007-06-04 | 2011-12-06 | K2M, Inc. | Percutaneous interspinous process device and method |
US7998176B2 (en) * | 2007-06-08 | 2011-08-16 | Interventional Spine, Inc. | Method and apparatus for spinal stabilization |
US8900307B2 (en) | 2007-06-26 | 2014-12-02 | DePuy Synthes Products, LLC | Highly lordosed fusion cage |
US20090043391A1 (en) | 2007-08-09 | 2009-02-12 | Spinalmotion, Inc. | Customized Intervertebral Prosthetic Disc with Shock Absorption |
US8348976B2 (en) | 2007-08-27 | 2013-01-08 | Kyphon Sarl | Spinous-process implants and methods of using the same |
US8308767B2 (en) | 2007-09-19 | 2012-11-13 | Pioneer Surgical Technology, Inc. | Interlaminar stabilization system |
US20090105833A1 (en) | 2007-10-22 | 2009-04-23 | Spinalmotion, Inc. | Method and Spacer Device for Spanning a Space Formed upon Removal of an Intervertebral Disc |
US20090105773A1 (en) * | 2007-10-23 | 2009-04-23 | Warsaw Orthopedic, Inc. | Method and apparatus for insertion of an interspinous process device |
US20090118833A1 (en) * | 2007-11-05 | 2009-05-07 | Zimmer Spine, Inc. | In-situ curable interspinous process spacer |
AU2008321212A1 (en) | 2007-11-16 | 2009-05-22 | Synthes Gmbh | Low profile intervertebral implant |
US8192436B2 (en) | 2007-12-07 | 2012-06-05 | Baxano, Inc. | Tissue modification devices |
AU2008345132A1 (en) | 2007-12-28 | 2009-07-09 | Osteomed Spine, Inc. | Bone tissue fixation device and method |
US8377097B2 (en) * | 2009-06-23 | 2013-02-19 | Osteomed, Llc | Bone tissue clamp |
US8617214B2 (en) | 2008-01-07 | 2013-12-31 | Mmsn Limited Partnership | Spinal tension band |
US9005288B2 (en) | 2008-01-09 | 2015-04-14 | Providence Medical Techonlogy, Inc. | Methods and apparatus for accessing and treating the facet joint |
WO2009091922A2 (en) * | 2008-01-15 | 2009-07-23 | Vertiflex, Inc. | Interspinous spacer |
EP2237748B1 (en) | 2008-01-17 | 2012-09-05 | Synthes GmbH | An expandable intervertebral implant |
US8105358B2 (en) | 2008-02-04 | 2012-01-31 | Kyphon Sarl | Medical implants and methods |
US8088163B1 (en) | 2008-02-06 | 2012-01-03 | Kleiner Jeffrey B | Tools and methods for spinal fusion |
US7935133B2 (en) * | 2008-02-08 | 2011-05-03 | Mmsn Limited Partnership | Interlaminar hook |
US8252029B2 (en) * | 2008-02-21 | 2012-08-28 | Zimmer Gmbh | Expandable interspinous process spacer with lateral support and method for implantation |
US8114136B2 (en) | 2008-03-18 | 2012-02-14 | Warsaw Orthopedic, Inc. | Implants and methods for inter-spinous process dynamic stabilization of a spinal motion segment |
US8202299B2 (en) | 2008-03-19 | 2012-06-19 | Collabcom II, LLC | Interspinous implant, tools and methods of implanting |
US8025678B2 (en) * | 2008-03-26 | 2011-09-27 | Depuy Spine, Inc. | Interspinous process spacer having tight access offset hooks |
US8313512B2 (en) * | 2008-03-26 | 2012-11-20 | Depuy Spine, Inc. | S-shaped interspinous process spacer having tight access offset hooks |
US8343190B1 (en) | 2008-03-26 | 2013-01-01 | Nuvasive, Inc. | Systems and methods for spinous process fixation |
WO2009151734A1 (en) | 2008-03-28 | 2009-12-17 | K2M, Inc. | Expandable cage |
AU2009228030B2 (en) * | 2008-03-28 | 2014-01-16 | K2M, Inc. | Expandable cage with locking device |
CA2720580A1 (en) | 2008-04-05 | 2009-10-08 | Synthes Usa, Llc | Expandable intervertebral implant |
US9301788B2 (en) | 2008-04-10 | 2016-04-05 | Life Spine, Inc. | Adjustable spine distraction implant |
US9034038B2 (en) | 2008-04-11 | 2015-05-19 | Spinalmotion, Inc. | Motion limiting insert for an artificial intervertebral disc |
US20090259316A1 (en) * | 2008-04-15 | 2009-10-15 | Ginn Richard S | Spacer Devices and Systems for the Treatment of Spinal Stenosis and Methods for Using the Same |
BRPI0801855A2 (en) * | 2008-04-25 | 2009-12-29 | Gm Dos Reis Jr | interspinous device |
WO2009137514A1 (en) | 2008-05-05 | 2009-11-12 | Spinalmotion, Inc. | Polyaryletherketone artificial intervertebral disc |
US10159475B2 (en) | 2008-05-07 | 2018-12-25 | Mighty Oak Medical, Inc. | Configurable intervertebral implant |
US8267966B2 (en) | 2008-06-06 | 2012-09-18 | Providence Medical Technology, Inc. | Facet joint implants and delivery tools |
EP3412231A1 (en) | 2008-06-06 | 2018-12-12 | Providence Medical Technology, Inc. | Facet joint implants and delivery tools |
US9333086B2 (en) | 2008-06-06 | 2016-05-10 | Providence Medical Technology, Inc. | Spinal facet cage implant |
US11224521B2 (en) | 2008-06-06 | 2022-01-18 | Providence Medical Technology, Inc. | Cervical distraction/implant delivery device |
US9381049B2 (en) | 2008-06-06 | 2016-07-05 | Providence Medical Technology, Inc. | Composite spinal facet implant with textured surfaces |
WO2010030994A2 (en) | 2008-06-06 | 2010-03-18 | Providence Medical Technology, Inc. | Cervical distraction/implant delivery device |
US8361152B2 (en) | 2008-06-06 | 2013-01-29 | Providence Medical Technology, Inc. | Facet joint implants and delivery tools |
US20100121381A1 (en) * | 2008-06-09 | 2010-05-13 | Springback, Inc. | Surgical method and apparatus for treating spinal stenosis and stabilization of vertebrae |
US8398641B2 (en) | 2008-07-01 | 2013-03-19 | Baxano, Inc. | Tissue modification devices and methods |
US9314253B2 (en) | 2008-07-01 | 2016-04-19 | Amendia, Inc. | Tissue modification devices and methods |
US8409206B2 (en) | 2008-07-01 | 2013-04-02 | Baxano, Inc. | Tissue modification devices and methods |
US20100012068A1 (en) * | 2008-07-03 | 2010-01-21 | International Engine Intellectual Property Company , Llc | Prioritizing Use Of Engine Cold Start Aids To mitigate Effect Of Weakened Battery Bank |
US8241329B2 (en) * | 2008-07-05 | 2012-08-14 | Abdou M Samy | Device and method for the prevention of multi-level vertebral extension |
US8414584B2 (en) | 2008-07-09 | 2013-04-09 | Icon Orthopaedic Concepts, Llc | Ankle arthrodesis nail and outrigger assembly |
US8328807B2 (en) | 2008-07-09 | 2012-12-11 | Icon Orthopaedic Concepts, Llc | Ankle arthrodesis nail and outrigger assembly |
EP2328489B1 (en) | 2008-07-14 | 2019-10-09 | Amendia, Inc. | Tissue modification devices |
US20100016906A1 (en) * | 2008-07-21 | 2010-01-21 | Abdou M Samy | Device and method to access the anterior column of the spine |
DE102008034300A1 (en) * | 2008-07-23 | 2010-01-28 | Lucas Automotive Gmbh | Vehicle disc brake |
ES2574302T3 (en) * | 2008-08-08 | 2016-06-16 | Alphatec Spine, Inc. | Device for spinous process |
US8172878B2 (en) * | 2008-08-27 | 2012-05-08 | Yue James J | Conical interspinous apparatus and a method of performing interspinous distraction |
US8187333B2 (en) * | 2008-09-18 | 2012-05-29 | Mayer Peter L | Intervertebral disc prosthesis and method for implanting and explanting |
US8814937B2 (en) | 2008-09-18 | 2014-08-26 | Peter L. Mayer | Intervertebral disc prosthesis, method for assembling, method for implanting prosthesis, and method for explanting |
USD853560S1 (en) | 2008-10-09 | 2019-07-09 | Nuvasive, Inc. | Spinal implant insertion device |
US8292923B1 (en) | 2008-10-13 | 2012-10-23 | Nuvasive, Inc. | Systems and methods for treating spinal stenosis |
US8163022B2 (en) | 2008-10-14 | 2012-04-24 | Anulex Technologies, Inc. | Method and apparatus for the treatment of the intervertebral disc annulus |
WO2010045491A1 (en) * | 2008-10-15 | 2010-04-22 | Replication Medical, Inc. | Swellable interspinous stabilization implant |
USD635671S1 (en) | 2008-10-23 | 2011-04-05 | Vertos Medical, Inc. | Tissue modification device |
USD611146S1 (en) | 2008-10-23 | 2010-03-02 | Vertos Medical, Inc. | Tissue modification device |
USD610259S1 (en) | 2008-10-23 | 2010-02-16 | Vertos Medical, Inc. | Tissue modification device |
USD619252S1 (en) | 2008-10-23 | 2010-07-06 | Vertos Medical, Inc. | Tissue modification device |
USD619253S1 (en) | 2008-10-23 | 2010-07-06 | Vertos Medical, Inc. | Tissue modification device |
USD621939S1 (en) | 2008-10-23 | 2010-08-17 | Vertos Medical, Inc. | Tissue modification device |
US8114131B2 (en) | 2008-11-05 | 2012-02-14 | Kyphon Sarl | Extension limiting devices and methods of use for the spine |
CN102256570B (en) | 2008-11-07 | 2015-09-02 | 斯恩蒂斯有限公司 | The interpyramidal distance piece of vertebra and connecting plate assembly |
US8187304B2 (en) | 2008-11-10 | 2012-05-29 | Malek Michel H | Facet fusion system |
US9717403B2 (en) | 2008-12-05 | 2017-08-01 | Jeffrey B. Kleiner | Method and apparatus for performing retro peritoneal dissection |
US8366748B2 (en) | 2008-12-05 | 2013-02-05 | Kleiner Jeffrey | Apparatus and method of spinal implant and fusion |
US8864654B2 (en) | 2010-04-20 | 2014-10-21 | Jeffrey B. Kleiner | Method and apparatus for performing retro peritoneal dissection |
US9492214B2 (en) | 2008-12-18 | 2016-11-15 | Michel H. Malek | Flexible spinal stabilization system |
US20100158209A1 (en) * | 2008-12-22 | 2010-06-24 | General Instrument Corporation | Access to Network Based on Automatic Speech-Recognition |
US8216278B2 (en) * | 2008-12-22 | 2012-07-10 | Synthes Usa, Llc | Expandable interspinous process spacer |
US8721723B2 (en) | 2009-01-12 | 2014-05-13 | Globus Medical, Inc. | Expandable vertebral prosthesis |
US8114135B2 (en) | 2009-01-16 | 2012-02-14 | Kyphon Sarl | Adjustable surgical cables and methods for treating spinal stenosis |
WO2010085809A1 (en) | 2009-01-26 | 2010-07-29 | Life Spine, Inc. | Flexible and static interspinous/inter-laminar spinal spacers |
US10052139B2 (en) | 2009-01-26 | 2018-08-21 | Life Spine, Inc. | Flexible and static interspinous/inter-laminar spinal spacers |
US9247943B1 (en) | 2009-02-06 | 2016-02-02 | Kleiner Intellectual Property, Llc | Devices and methods for preparing an intervertebral workspace |
USD656610S1 (en) | 2009-02-06 | 2012-03-27 | Kleiner Jeffrey B | Spinal distraction instrument |
US20100217272A1 (en) * | 2009-02-20 | 2010-08-26 | Holt Development Llc | Method and apparatus for positioning implant between spinous processes |
US9861399B2 (en) | 2009-03-13 | 2018-01-09 | Spinal Simplicity, Llc | Interspinous process implant having a body with a removable end portion |
MX2011009401A (en) * | 2009-03-13 | 2011-12-14 | Spinal Simplicity Llc | Dynamic vertebral column plate system. |
US8574270B2 (en) | 2009-03-13 | 2013-11-05 | Spinal Simplicity Llc | Bone plate assembly with bone screw retention features |
US9757164B2 (en) | 2013-01-07 | 2017-09-12 | Spinal Simplicity Llc | Interspinous process implant having deployable anchor blades |
US8945184B2 (en) | 2009-03-13 | 2015-02-03 | Spinal Simplicity Llc. | Interspinous process implant and fusion cage spacer |
MX2011009165A (en) | 2009-03-13 | 2011-09-26 | Baxano Inc | Flexible neural localization devices and methods. |
BRPI1008924A2 (en) | 2009-03-16 | 2017-06-06 | Synthes Gmbh | System and method for stabilizing vertebra in spine surgery through a lateral access channel |
US8535327B2 (en) | 2009-03-17 | 2013-09-17 | Benvenue Medical, Inc. | Delivery apparatus for use with implantable medical devices |
US9526620B2 (en) | 2009-03-30 | 2016-12-27 | DePuy Synthes Products, Inc. | Zero profile spinal fusion cage |
US8784451B2 (en) * | 2009-06-04 | 2014-07-22 | Linares Medical Devices, Llc | Elevating insert for cervical spinal vertebrae |
US8372117B2 (en) | 2009-06-05 | 2013-02-12 | Kyphon Sarl | Multi-level interspinous implants and methods of use |
US8157842B2 (en) | 2009-06-12 | 2012-04-17 | Kyphon Sarl | Interspinous implant and methods of use |
US9211147B2 (en) | 2009-06-23 | 2015-12-15 | Osteomed Llc | Spinous process fusion implants |
US8636772B2 (en) | 2009-06-23 | 2014-01-28 | Osteomed Llc | Bone plates, screws, and instruments |
US8721686B2 (en) | 2009-06-23 | 2014-05-13 | Osteomed Llc | Spinous process fusion implants and insertion, compression, and locking instrumentation |
US20100331891A1 (en) * | 2009-06-24 | 2010-12-30 | Interventional Spine, Inc. | System and method for spinal fixation |
US8394102B2 (en) | 2009-06-25 | 2013-03-12 | Baxano, Inc. | Surgical tools for treatment of spinal stenosis |
US20110040332A1 (en) * | 2009-08-11 | 2011-02-17 | Interventional Spine, Inc. | Spinous process spacer and implantation procedure |
US8403988B2 (en) * | 2009-09-11 | 2013-03-26 | Depuy Spine, Inc. | Minimally invasive intervertebral staple distraction devices |
US9615933B2 (en) | 2009-09-15 | 2017-04-11 | DePuy Synthes Products, Inc. | Expandable ring intervertebral fusion device |
US8906028B2 (en) | 2009-09-18 | 2014-12-09 | Spinal Surgical Strategies, Llc | Bone graft delivery device and method of using the same |
US9173694B2 (en) | 2009-09-18 | 2015-11-03 | Spinal Surgical Strategies, Llc | Fusion cage with combined biological delivery system |
US9629729B2 (en) | 2009-09-18 | 2017-04-25 | Spinal Surgical Strategies, Llc | Biological delivery system with adaptable fusion cage interface |
US9186193B2 (en) | 2009-09-18 | 2015-11-17 | Spinal Surgical Strategies, Llc | Fusion cage with combined biological delivery system |
US10245159B1 (en) | 2009-09-18 | 2019-04-02 | Spinal Surgical Strategies, Llc | Bone graft delivery system and method for using same |
US9060877B2 (en) | 2009-09-18 | 2015-06-23 | Spinal Surgical Strategies, Llc | Fusion cage with combined biological delivery system |
US8685031B2 (en) | 2009-09-18 | 2014-04-01 | Spinal Surgical Strategies, Llc | Bone graft delivery system |
USD750249S1 (en) | 2014-10-20 | 2016-02-23 | Spinal Surgical Strategies, Llc | Expandable fusion cage |
US10973656B2 (en) | 2009-09-18 | 2021-04-13 | Spinal Surgical Strategies, Inc. | Bone graft delivery system and method for using same |
USD723682S1 (en) | 2013-05-03 | 2015-03-03 | Spinal Surgical Strategies, Llc | Bone graft delivery tool |
US20170238984A1 (en) | 2009-09-18 | 2017-08-24 | Spinal Surgical Strategies, Llc | Bone graft delivery device with positioning handle |
USD731063S1 (en) | 2009-10-13 | 2015-06-02 | Nuvasive, Inc. | Spinal fusion implant |
US8771317B2 (en) | 2009-10-28 | 2014-07-08 | Warsaw Orthopedic, Inc. | Interspinous process implant and method of implantation |
US9028553B2 (en) | 2009-11-05 | 2015-05-12 | DePuy Synthes Products, Inc. | Self-pivoting spinal implant and associated instrumentation |
US8795335B1 (en) | 2009-11-06 | 2014-08-05 | Samy Abdou | Spinal fixation devices and methods of use |
US8764806B2 (en) | 2009-12-07 | 2014-07-01 | Samy Abdou | Devices and methods for minimally invasive spinal stabilization and instrumentation |
US20110232548A1 (en) * | 2009-12-08 | 2011-09-29 | Baker Hughes Incorporated | Method for improving the efficiency of heat transfer in a furnace |
US9168138B2 (en) | 2009-12-09 | 2015-10-27 | DePuy Synthes Products, Inc. | Aspirating implants and method of bony regeneration |
US9393129B2 (en) | 2009-12-10 | 2016-07-19 | DePuy Synthes Products, Inc. | Bellows-like expandable interbody fusion cage |
US8740948B2 (en) | 2009-12-15 | 2014-06-03 | Vertiflex, Inc. | Spinal spacer for cervical and other vertebra, and associated systems and methods |
US8652153B2 (en) | 2010-01-11 | 2014-02-18 | Anulex Technologies, Inc. | Intervertebral disc annulus repair system and bone anchor delivery tool |
US8317831B2 (en) | 2010-01-13 | 2012-11-27 | Kyphon Sarl | Interspinous process spacer diagnostic balloon catheter and methods of use |
US8114132B2 (en) | 2010-01-13 | 2012-02-14 | Kyphon Sarl | Dynamic interspinous process device |
US8262697B2 (en) * | 2010-01-14 | 2012-09-11 | X-Spine Systems, Inc. | Modular interspinous fixation system and method |
US20110184468A1 (en) * | 2010-01-28 | 2011-07-28 | Warsaw Orthopedic, Inc., An Indiana Corporation | Spinous process fusion plate with osteointegration insert |
US8945227B2 (en) * | 2010-02-01 | 2015-02-03 | X-Spine Systems, Inc. | Spinal implant co-insertion system and method |
US8388656B2 (en) | 2010-02-04 | 2013-03-05 | Ebi, Llc | Interspinous spacer with deployable members and related method |
US8246656B2 (en) * | 2010-02-25 | 2012-08-21 | Depuy Spine, Inc. | Crossover spinous process implant |
US8147526B2 (en) | 2010-02-26 | 2012-04-03 | Kyphon Sarl | Interspinous process spacer diagnostic parallel balloon catheter and methods of use |
US9301850B2 (en) | 2010-04-12 | 2016-04-05 | Globus Medical, Inc. | Expandable vertebral implant |
US8591585B2 (en) | 2010-04-12 | 2013-11-26 | Globus Medical, Inc. | Expandable vertebral implant |
US8870880B2 (en) | 2010-04-12 | 2014-10-28 | Globus Medical, Inc. | Angling inserter tool for expandable vertebral implant |
US8282683B2 (en) | 2010-04-12 | 2012-10-09 | Globus Medical, Inc. | Expandable vertebral implant |
US9066733B2 (en) * | 2010-04-29 | 2015-06-30 | DePuy Synthes Products, Inc. | Orthognathic implant and methods of use |
US8435270B2 (en) | 2010-04-29 | 2013-05-07 | Synthes Usa, Llc | Orthognathic implant and methods of use |
US20110295370A1 (en) * | 2010-06-01 | 2011-12-01 | Sean Suh | Spinal Implants and Methods of Use Thereof |
US9282979B2 (en) | 2010-06-24 | 2016-03-15 | DePuy Synthes Products, Inc. | Instruments and methods for non-parallel disc space preparation |
US8979860B2 (en) | 2010-06-24 | 2015-03-17 | DePuy Synthes Products. LLC | Enhanced cage insertion device |
JP5850930B2 (en) | 2010-06-29 | 2016-02-03 | ジンテス ゲゼルシャフト ミット ベシュレンクテル ハフツング | Isolated intervertebral implant |
US8814908B2 (en) | 2010-07-26 | 2014-08-26 | Warsaw Orthopedic, Inc. | Injectable flexible interspinous process device system |
WO2012040001A1 (en) | 2010-09-20 | 2012-03-29 | Pachyderm Medical, L.L.C. | Integrated ipd devices, methods, and systems |
US9301787B2 (en) | 2010-09-27 | 2016-04-05 | Mmsn Limited Partnership | Medical apparatus and method for spinal surgery |
US9402732B2 (en) | 2010-10-11 | 2016-08-02 | DePuy Synthes Products, Inc. | Expandable interspinous process spacer implant |
US20120116457A1 (en) * | 2010-11-06 | 2012-05-10 | Limited Liability Company; | Stabilizer for assisting stabilization of a spinal implant and method of using the stabilizer |
WO2012069878A1 (en) * | 2010-11-23 | 2012-05-31 | Giuseppe Calvosa | Interspinous vertebral distractor |
WO2012069877A1 (en) * | 2010-11-23 | 2012-05-31 | Giuseppe Calvosa | Intervertebral distractor |
US8721687B2 (en) | 2010-11-29 | 2014-05-13 | Life Spine, Inc. | Spinal implant for lumbar vertebra to sacrum fixation |
WO2012088238A2 (en) | 2010-12-21 | 2012-06-28 | Synthes Usa, Llc | Intervertebral implants, systems, and methods of use |
US8496689B2 (en) | 2011-02-23 | 2013-07-30 | Farzad Massoudi | Spinal implant device with fusion cage and fixation plates and method of implanting |
US8740949B2 (en) | 2011-02-24 | 2014-06-03 | Spinal Elements, Inc. | Methods and apparatus for stabilizing bone |
USD724733S1 (en) | 2011-02-24 | 2015-03-17 | Spinal Elements, Inc. | Interbody bone implant |
US9271765B2 (en) | 2011-02-24 | 2016-03-01 | Spinal Elements, Inc. | Vertebral facet joint fusion implant and method for fusion |
US8562650B2 (en) | 2011-03-01 | 2013-10-22 | Warsaw Orthopedic, Inc. | Percutaneous spinous process fusion plate assembly and method |
US8425560B2 (en) | 2011-03-09 | 2013-04-23 | Farzad Massoudi | Spinal implant device with fixation plates and lag screws and method of implanting |
US8790375B2 (en) | 2011-03-18 | 2014-07-29 | Raed M. Ali, M.D., Inc. | Transpedicular access to intervertebral spaces and related spinal fusion systems and methods |
US9265620B2 (en) | 2011-03-18 | 2016-02-23 | Raed M. Ali, M.D., Inc. | Devices and methods for transpedicular stabilization of the spine |
US8591548B2 (en) | 2011-03-31 | 2013-11-26 | Warsaw Orthopedic, Inc. | Spinous process fusion plate assembly |
US8591549B2 (en) | 2011-04-08 | 2013-11-26 | Warsaw Orthopedic, Inc. | Variable durometer lumbar-sacral implant |
US20120323276A1 (en) * | 2011-06-17 | 2012-12-20 | Bryan Okamoto | Expandable interspinous device |
US9149306B2 (en) | 2011-06-21 | 2015-10-06 | Seaspine, Inc. | Spinous process device |
WO2012178018A2 (en) | 2011-06-24 | 2012-12-27 | Benvenue Medical, Inc. | Devices and methods for treating bone tissue |
USD757943S1 (en) | 2011-07-14 | 2016-05-31 | Nuvasive, Inc. | Spinous process plate |
US8882805B1 (en) | 2011-08-02 | 2014-11-11 | Lawrence Maccree | Spinal fixation system |
US9668783B2 (en) * | 2011-09-06 | 2017-06-06 | Atul Goel | Devices and method for treatment of spondylotic disease |
US8845728B1 (en) | 2011-09-23 | 2014-09-30 | Samy Abdou | Spinal fixation devices and methods of use |
USD739935S1 (en) | 2011-10-26 | 2015-09-29 | Spinal Elements, Inc. | Interbody bone implant |
AU2012340180B2 (en) | 2011-11-17 | 2017-06-08 | Howmedica Osteonics Corp. | Interspinous spacers and associated methods of use and manufacture |
US9198769B2 (en) | 2011-12-23 | 2015-12-01 | Pioneer Surgical Technology, Inc. | Bone anchor assembly, bone plate system, and method |
US8562681B2 (en) | 2012-01-31 | 2013-10-22 | Styker Spine | Laminoplasty implant, method and instrumentation |
US20130226240A1 (en) | 2012-02-22 | 2013-08-29 | Samy Abdou | Spinous process fixation devices and methods of use |
US8778026B2 (en) | 2012-03-09 | 2014-07-15 | Si-Bone Inc. | Artificial SI joint |
US10363140B2 (en) | 2012-03-09 | 2019-07-30 | Si-Bone Inc. | Systems, device, and methods for joint fusion |
JP6091529B2 (en) | 2012-03-09 | 2017-03-08 | エスアイ−ボーン・インコーポレイテッドSi−Bone, Inc. | Integrated implant |
US10448977B1 (en) | 2012-03-31 | 2019-10-22 | Ali H. MESIWALA | Interspinous device and related methods |
US9393126B2 (en) | 2012-04-20 | 2016-07-19 | Peter L. Mayer | Bilaterally placed disc prosthesis for spinal implant and method of bilateral placement |
US9364339B2 (en) | 2012-04-30 | 2016-06-14 | Peter L. Mayer | Unilaterally placed expansile spinal prosthesis |
BR112014027319A2 (en) | 2012-05-04 | 2017-06-27 | Si Bone Inc | fenestrated implant |
US8771277B2 (en) | 2012-05-08 | 2014-07-08 | Globus Medical, Inc | Device and a method for implanting a spinous process fixation device |
US8974504B2 (en) | 2012-05-10 | 2015-03-10 | Spinal Simplicity Llc | Dynamic bone fracture plates |
US10660674B2 (en) * | 2012-07-17 | 2020-05-26 | Gomboc, LLC | Magnetically levitated spinous process implants and methods thereof |
EP2877127B1 (en) | 2012-07-26 | 2019-08-21 | Synthes GmbH | Expandable implant |
US9198767B2 (en) | 2012-08-28 | 2015-12-01 | Samy Abdou | Devices and methods for spinal stabilization and instrumentation |
US20140067069A1 (en) | 2012-08-30 | 2014-03-06 | Interventional Spine, Inc. | Artificial disc |
US9320617B2 (en) | 2012-10-22 | 2016-04-26 | Cogent Spine, LLC | Devices and methods for spinal stabilization and instrumentation |
USD745156S1 (en) | 2012-10-23 | 2015-12-08 | Providence Medical Technology, Inc. | Spinal implant |
USD732667S1 (en) | 2012-10-23 | 2015-06-23 | Providence Medical Technology, Inc. | Cage spinal implant |
US8715351B1 (en) | 2012-11-29 | 2014-05-06 | Spine Wave, Inc. | Expandable interbody fusion device with graft chambers |
US10022245B2 (en) | 2012-12-17 | 2018-07-17 | DePuy Synthes Products, Inc. | Polyaxial articulating instrument |
US9486251B2 (en) | 2012-12-31 | 2016-11-08 | Globus Medical, Inc. | Spinous process fixation system and methods thereof |
US9198697B2 (en) | 2013-03-13 | 2015-12-01 | Globus Medical, Inc. | Spinous process fixation system and methods thereof |
US9011493B2 (en) | 2012-12-31 | 2015-04-21 | Globus Medical, Inc. | Spinous process fixation system and methods thereof |
US9737294B2 (en) | 2013-01-28 | 2017-08-22 | Cartiva, Inc. | Method and system for orthopedic repair |
WO2014117107A1 (en) | 2013-01-28 | 2014-07-31 | Cartiva, Inc. | Systems and methods for orthopedic repair |
US9717601B2 (en) | 2013-02-28 | 2017-08-01 | DePuy Synthes Products, Inc. | Expandable intervertebral implant, system, kit and method |
US9522070B2 (en) | 2013-03-07 | 2016-12-20 | Interventional Spine, Inc. | Intervertebral implant |
US8900312B2 (en) | 2013-03-12 | 2014-12-02 | Spine Wave, Inc. | Expandable interbody fusion device with graft chambers |
US10154911B2 (en) | 2013-03-13 | 2018-12-18 | Life Spine, Inc. | Expandable implant assembly |
US11304818B2 (en) | 2013-03-13 | 2022-04-19 | Life Spine, Inc. | Expandable spinal interbody assembly |
US10383741B2 (en) | 2013-03-13 | 2019-08-20 | Life Spine, Inc. | Expandable spinal interbody assembly |
US8828019B1 (en) | 2013-03-13 | 2014-09-09 | Spine Wave, Inc. | Inserter for expanding an expandable interbody fusion device |
US10426632B2 (en) | 2013-03-13 | 2019-10-01 | Life Spine, Inc. | Expandable spinal interbody assembly |
US10327910B2 (en) | 2013-03-14 | 2019-06-25 | X-Spine Systems, Inc. | Spinal implant and assembly |
US10085783B2 (en) | 2013-03-14 | 2018-10-02 | Izi Medical Products, Llc | Devices and methods for treating bone tissue |
US9707096B2 (en) | 2013-03-14 | 2017-07-18 | K2M, Inc. | Spinal fixation device |
US9820784B2 (en) | 2013-03-14 | 2017-11-21 | Spinal Elements, Inc. | Apparatus for spinal fixation and methods of use |
US9421044B2 (en) | 2013-03-14 | 2016-08-23 | Spinal Elements, Inc. | Apparatus for bone stabilization and distraction and methods of use |
EP2967909A4 (en) | 2013-03-14 | 2016-10-05 | Raed M Ali M D Inc | Lateral interbody fusion devices, systems and methods |
US10292832B2 (en) | 2013-03-14 | 2019-05-21 | Ohio State Innovation Foundation | Spinal fixation device |
USD765853S1 (en) | 2013-03-14 | 2016-09-06 | Spinal Elements, Inc. | Flexible elongate member with a portion configured to receive a bone anchor |
US10687962B2 (en) | 2013-03-14 | 2020-06-23 | Raed M. Ali, M.D., Inc. | Interbody fusion devices, systems and methods |
US9913728B2 (en) | 2013-03-14 | 2018-03-13 | Quandary Medical, Llc | Spinal implants and implantation system |
US9675303B2 (en) | 2013-03-15 | 2017-06-13 | Vertiflex, Inc. | Visualization systems, instruments and methods of using the same in spinal decompression procedures |
WO2014145902A1 (en) | 2013-03-15 | 2014-09-18 | Si-Bone Inc. | Implants for spinal fixation or fusion |
US9522028B2 (en) | 2013-07-03 | 2016-12-20 | Interventional Spine, Inc. | Method and apparatus for sacroiliac joint fixation |
US9456855B2 (en) | 2013-09-27 | 2016-10-04 | Spinal Elements, Inc. | Method of placing an implant between bone portions |
US9839450B2 (en) | 2013-09-27 | 2017-12-12 | Spinal Elements, Inc. | Device and method for reinforcement of a facet |
US9839448B2 (en) | 2013-10-15 | 2017-12-12 | Si-Bone Inc. | Implant placement |
US11147688B2 (en) | 2013-10-15 | 2021-10-19 | Si-Bone Inc. | Implant placement |
US11065132B2 (en) | 2014-03-06 | 2021-07-20 | Spine Wave, Inc. | Method of expanding a space between opposing tissue surfaces |
US9439783B2 (en) | 2014-03-06 | 2016-09-13 | Spine Wave, Inc. | Inserter for expanding body tissue |
US9114026B1 (en) | 2014-03-06 | 2015-08-25 | Spine Wave, Inc. | Inserter for an expandable spinal interbody fusion device |
US9265623B2 (en) | 2014-03-06 | 2016-02-23 | Spine Wave, Inc. | Method of expanding a spinal interbody fusion device |
US9445921B2 (en) | 2014-03-06 | 2016-09-20 | Spine Wave, Inc. | Device for expanding and supporting body tissue |
AU2015256024B2 (en) | 2014-05-07 | 2020-03-05 | Vertiflex, Inc. | Spinal nerve decompression systems, dilation systems, and methods of using the same |
WO2015184012A2 (en) | 2014-05-27 | 2015-12-03 | Providence Medical Technology, Inc. | Lateral mass fixation implant |
JP2017520357A (en) | 2014-05-28 | 2017-07-27 | プロビデンス メディカル テクノロジー インコーポレイテッド | Outer mass fixing system |
US11478275B2 (en) | 2014-09-17 | 2022-10-25 | Spinal Elements, Inc. | Flexible fastening band connector |
US10166033B2 (en) | 2014-09-18 | 2019-01-01 | Si-Bone Inc. | Implants for bone fixation or fusion |
US9662157B2 (en) | 2014-09-18 | 2017-05-30 | Si-Bone Inc. | Matrix implant |
US9867718B2 (en) | 2014-10-22 | 2018-01-16 | DePuy Synthes Products, Inc. | Intervertebral implants, systems, and methods of use |
CA2966659A1 (en) | 2014-11-06 | 2016-05-12 | Spinal Elements, Inc. | Apparatus and method of treating spinous processes |
CA2972788A1 (en) | 2015-01-27 | 2016-08-04 | Spinal Elements, Inc. | Facet joint implant |
US9987052B2 (en) | 2015-02-24 | 2018-06-05 | X-Spine Systems, Inc. | Modular interspinous fixation system with threaded component |
US11426290B2 (en) | 2015-03-06 | 2022-08-30 | DePuy Synthes Products, Inc. | Expandable intervertebral implant, system, kit and method |
US10376206B2 (en) | 2015-04-01 | 2019-08-13 | Si-Bone Inc. | Neuromonitoring systems and methods for bone fixation or fusion procedures |
US9913727B2 (en) | 2015-07-02 | 2018-03-13 | Medos International Sarl | Expandable implant |
MX2018001713A (en) * | 2015-08-10 | 2018-11-22 | Nobelpharma Co Ltd | Voice disorder treatment tool and voice disorder treatment set. |
US9814496B2 (en) | 2015-09-15 | 2017-11-14 | Hydra Medical, LLC | Interspinous stabilization implant |
US10327908B2 (en) | 2015-09-18 | 2019-06-25 | K2M, Inc. | Corpectomy device and methods of use thereof |
JP2018532492A (en) | 2015-10-13 | 2018-11-08 | プロビデンス メディカル テクノロジー インコーポレイテッド | Spinal joint implant delivery apparatus and system |
USD841165S1 (en) | 2015-10-13 | 2019-02-19 | Providence Medical Technology, Inc. | Cervical cage |
US10857003B1 (en) | 2015-10-14 | 2020-12-08 | Samy Abdou | Devices and methods for vertebral stabilization |
USD797290S1 (en) | 2015-10-19 | 2017-09-12 | Spinal Surgical Strategies, Llc | Bone graft delivery tool |
US10335207B2 (en) | 2015-12-29 | 2019-07-02 | Nuvasive, Inc. | Spinous process plate fixation assembly |
US11510710B2 (en) | 2016-04-14 | 2022-11-29 | Spinal Simplicity, Llc | Locking system for interspinous implant insertion instrument |
CN109688980B (en) | 2016-06-28 | 2022-06-10 | Eit 新兴移植技术股份有限公司 | Expandable and angularly adjustable intervertebral cage with articulation joint |
JP6995789B2 (en) | 2016-06-28 | 2022-01-17 | イーアイティー・エマージング・インプラント・テクノロジーズ・ゲーエムベーハー | Expandable and angle adjustable intervertebral cage |
CN109640891A (en) | 2016-06-28 | 2019-04-16 | 普罗维登斯医疗技术公司 | Spinal implant and its application method |
USD887552S1 (en) | 2016-07-01 | 2020-06-16 | Providence Medical Technology, Inc. | Cervical cage |
PL3509506T3 (en) | 2016-09-07 | 2021-10-25 | Vertos Medical, Inc. | Percutaneous lateral recess resection instruments |
US10744000B1 (en) | 2016-10-25 | 2020-08-18 | Samy Abdou | Devices and methods for vertebral bone realignment |
US10973648B1 (en) | 2016-10-25 | 2021-04-13 | Samy Abdou | Devices and methods for vertebral bone realignment |
US10537436B2 (en) | 2016-11-01 | 2020-01-21 | DePuy Synthes Products, Inc. | Curved expandable cage |
US10888433B2 (en) | 2016-12-14 | 2021-01-12 | DePuy Synthes Products, Inc. | Intervertebral implant inserter and related methods |
TWI627935B (en) * | 2017-01-24 | 2018-07-01 | 好喜歡妮有限公司 | Interspinous stabilizer |
US10398563B2 (en) | 2017-05-08 | 2019-09-03 | Medos International Sarl | Expandable cage |
CN110891501A (en) | 2017-05-19 | 2020-03-17 | 普罗维登斯医疗技术公司 | Spinal fixation access and delivery system |
US11344424B2 (en) | 2017-06-14 | 2022-05-31 | Medos International Sarl | Expandable intervertebral implant and related methods |
US10940016B2 (en) | 2017-07-05 | 2021-03-09 | Medos International Sarl | Expandable intervertebral fusion cage |
US11896494B2 (en) | 2017-07-10 | 2024-02-13 | Life Spine, Inc. | Expandable implant assembly |
US11033403B2 (en) | 2017-07-10 | 2021-06-15 | Life Spine, Inc. | Expandable implant assembly |
US10966843B2 (en) | 2017-07-18 | 2021-04-06 | DePuy Synthes Products, Inc. | Implant inserters and related methods |
US11045331B2 (en) | 2017-08-14 | 2021-06-29 | DePuy Synthes Products, Inc. | Intervertebral implant inserters and related methods |
CA3074834A1 (en) | 2017-09-08 | 2019-03-14 | Pioneer Surgical Technology, Inc. | Intervertebral implants, instruments, and methods |
WO2019067584A1 (en) | 2017-09-26 | 2019-04-04 | Si-Bone Inc. | Systems and methods for decorticating the sacroiliac joint |
USD907771S1 (en) | 2017-10-09 | 2021-01-12 | Pioneer Surgical Technology, Inc. | Intervertebral implant |
US11648128B2 (en) | 2018-01-04 | 2023-05-16 | Providence Medical Technology, Inc. | Facet screw and delivery device |
US11678995B2 (en) | 2018-07-20 | 2023-06-20 | Fellowship Of Orthopaedic Researchers, Inc. | Magnetic intervertebral disc replacement devices and methods thereof |
US11179248B2 (en) | 2018-10-02 | 2021-11-23 | Samy Abdou | Devices and methods for spinal implantation |
US11446156B2 (en) | 2018-10-25 | 2022-09-20 | Medos International Sarl | Expandable intervertebral implant, inserter instrument, and related methods |
US11369419B2 (en) | 2019-02-14 | 2022-06-28 | Si-Bone Inc. | Implants for spinal fixation and or fusion |
WO2020168269A1 (en) | 2019-02-14 | 2020-08-20 | Si-Bone Inc. | Implants for spinal fixation and or fusion |
USD933230S1 (en) | 2019-04-15 | 2021-10-12 | Providence Medical Technology, Inc. | Cervical cage |
US11457959B2 (en) | 2019-05-22 | 2022-10-04 | Spinal Elements, Inc. | Bone tie and bone tie inserter |
WO2020236229A1 (en) | 2019-05-22 | 2020-11-26 | Spinal Elements, Inc. | Bone tie and bone tie inserter |
EP3979951A1 (en) | 2019-06-10 | 2022-04-13 | Life Spine, Inc. | Expandable implant assembly with compression features |
US12042395B2 (en) | 2019-06-11 | 2024-07-23 | Life Spine, Inc. | Expandable implant assembly |
USD911525S1 (en) | 2019-06-21 | 2021-02-23 | Providence Medical Technology, Inc. | Spinal cage |
WO2021108590A1 (en) | 2019-11-27 | 2021-06-03 | Si-Bone, Inc. | Bone stabilizing implants and methods of placement across si joints |
WO2021119126A1 (en) | 2019-12-09 | 2021-06-17 | Si-Bone Inc. | Sacro-iliac joint stabilizing implants and methods of implantation |
US11304733B2 (en) | 2020-02-14 | 2022-04-19 | Spinal Elements, Inc. | Bone tie methods |
USD945621S1 (en) | 2020-02-27 | 2022-03-08 | Providence Medical Technology, Inc. | Spinal cage |
US11426286B2 (en) | 2020-03-06 | 2022-08-30 | Eit Emerging Implant Technologies Gmbh | Expandable intervertebral implant |
US11857432B2 (en) | 2020-04-13 | 2024-01-02 | Life Spine, Inc. | Expandable implant assembly |
US11602439B2 (en) | 2020-04-16 | 2023-03-14 | Life Spine, Inc. | Expandable implant assembly |
US11602440B2 (en) | 2020-06-25 | 2023-03-14 | Life Spine, Inc. | Expandable implant assembly |
US11534310B2 (en) | 2020-08-20 | 2022-12-27 | Spinal Simplicity, Llc | Interspinous process implant |
EP4259015A4 (en) | 2020-12-09 | 2024-09-11 | Si Bone Inc | Sacro-iliac joint stabilizing implants and methods of implantation |
US11850160B2 (en) | 2021-03-26 | 2023-12-26 | Medos International Sarl | Expandable lordotic intervertebral fusion cage |
US11752009B2 (en) | 2021-04-06 | 2023-09-12 | Medos International Sarl | Expandable intervertebral fusion cage |
US12102542B2 (en) | 2022-02-15 | 2024-10-01 | Boston Scientific Neuromodulation Corporation | Interspinous spacer and methods and systems utilizing the interspinous spacer |
US12090064B2 (en) | 2022-03-01 | 2024-09-17 | Medos International Sarl | Stabilization members for expandable intervertebral implants, and related systems and methods |
US11672572B1 (en) | 2022-04-08 | 2023-06-13 | Spinal Simplicity, Llc | Disposable interspinous implant insertion instrument |
WO2023196535A1 (en) | 2022-04-08 | 2023-10-12 | Spinal Simplicity, Llc | Interspinous implant insertion instrument with wing actuation tool |
Family Cites Families (185)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US454812A (en) * | 1891-06-23 | G-eraldine o brien | ||
US520734A (en) * | 1894-05-29 | Machine | ||
US2677369A (en) * | 1952-03-26 | 1954-05-04 | Fred L Knowles | Apparatus for treatment of the spinal column |
US3030951A (en) * | 1959-04-10 | 1962-04-24 | Michael P Mandarino | Methods and materials for orthopedic surgery |
US3426364A (en) * | 1966-08-25 | 1969-02-11 | Colorado State Univ Research F | Prosthetic appliance for replacing one or more natural vertebrae |
US3648691A (en) * | 1970-02-24 | 1972-03-14 | Univ Colorado State Res Found | Method of applying vertebral appliance |
CA992255A (en) * | 1971-01-25 | 1976-07-06 | Cutter Laboratories | Prosthesis for spinal repair |
US3875595A (en) | 1974-04-15 | 1975-04-08 | Edward C Froning | Intervertebral disc prosthesis and instruments for locating same |
US4011602A (en) * | 1975-10-06 | 1977-03-15 | Battelle Memorial Institute | Porous expandable device for attachment to bone tissue |
US4170990A (en) * | 1977-01-28 | 1979-10-16 | Fried. Krupp Gesellschaft Mit Beschrankter Haftung | Method for implanting and subsequently removing mechanical connecting elements from living tissue |
PL114098B1 (en) * | 1978-04-14 | 1981-01-31 | Wyzsza Szkola Inzynierska | Apparatus for correcting spinal curvature |
CH628803A5 (en) * | 1978-05-12 | 1982-03-31 | Sulzer Ag | Implant insertable between adjacent vertebrae |
PL124738B1 (en) * | 1980-04-15 | 1983-02-28 | Politechnika Slaska Im Wincentego Pstrowskiego | Implant for internal spine stabilization |
US4369769A (en) | 1980-06-13 | 1983-01-25 | Edwards Charles C | Spinal fixation device and method |
CA1146301A (en) * | 1980-06-13 | 1983-05-17 | J. David Kuntz | Intervertebral disc prosthesis |
GB2083754B (en) * | 1980-09-15 | 1984-04-26 | Rezaian Seyed Mahmoud | Spinal fixator |
US4309777A (en) * | 1980-11-13 | 1982-01-12 | Patil Arun A | Artificial intervertebral disc |
US4501269A (en) * | 1981-12-11 | 1985-02-26 | Washington State University Research Foundation, Inc. | Process for fusing bone joints |
US4479491A (en) * | 1982-07-26 | 1984-10-30 | Martin Felix M | Intervertebral stabilization implant |
DE3313142A1 (en) | 1983-04-12 | 1984-10-18 | Nixdorf Computer Ag, 4790 Paderborn | WRITING HEAD FOR INK WRITING DEVICE |
US4599084A (en) * | 1983-05-24 | 1986-07-08 | American Hospital Supply Corp. | Method of using biological tissue to promote even bone growth |
US4554914A (en) | 1983-10-04 | 1985-11-26 | Kapp John P | Prosthetic vertebral body |
FR2553993B1 (en) | 1983-10-28 | 1986-02-07 | Peze William | METHOD AND APPARATUS FOR DYNAMIC CORRECTION OF SPINAL DEFORMATIONS |
US4553273A (en) * | 1983-11-23 | 1985-11-19 | Henry Ford Hospital | Vertebral body prosthesis and spine stabilizing method |
GB8333442D0 (en) | 1983-12-15 | 1984-01-25 | Showell A W Sugicraft Ltd | Devices for spinal fixation |
US4696290A (en) | 1983-12-16 | 1987-09-29 | Acromed Corporation | Apparatus for straightening spinal columns |
US4611582A (en) | 1983-12-27 | 1986-09-16 | Wisconsin Alumni Research Foundation | Vertebral clamp |
US4604995A (en) | 1984-03-30 | 1986-08-12 | Stephens David C | Spinal stabilizer |
US4643178A (en) | 1984-04-23 | 1987-02-17 | Fabco Medical Products, Inc. | Surgical wire and method for the use thereof |
US4573454A (en) * | 1984-05-17 | 1986-03-04 | Hoffman Gregory A | Spinal fixation apparatus |
FR2575059B1 (en) * | 1984-12-21 | 1988-11-10 | Daher Youssef | SHORING DEVICE FOR USE IN A VERTEBRAL PROSTHESIS |
US4685447A (en) | 1985-03-25 | 1987-08-11 | Pmt Corporation | Tissue expander system |
US4636217A (en) * | 1985-04-23 | 1987-01-13 | Regents Of The University Of Minnesota | Anterior spinal implant |
US4599086A (en) * | 1985-06-07 | 1986-07-08 | Doty James R | Spine stabilization device and method |
SE458417B (en) * | 1985-08-15 | 1989-04-03 | Sven Olerud | FIXING INSTRUMENTS PROVIDED FOR USE IN SPINE OPERATIONS |
US4743256A (en) * | 1985-10-04 | 1988-05-10 | Brantigan John W | Surgical prosthetic implant facilitating vertebral interbody fusion and method |
US4834757A (en) * | 1987-01-22 | 1989-05-30 | Brantigan John W | Prosthetic implant |
US4714469A (en) * | 1987-02-26 | 1987-12-22 | Pfizer Hospital Products Group, Inc. | Spinal implant |
SU1484348A1 (en) * | 1987-03-04 | 1989-06-07 | Белорусский научно-исследовательский институт травматологии и ортопедии | Spinal column fixing device |
US4790303A (en) * | 1987-03-11 | 1988-12-13 | Acromed Corporation | Apparatus and method for securing bone graft |
US4913134A (en) | 1987-07-24 | 1990-04-03 | Biotechnology, Inc. | Spinal fixation system |
GB8718627D0 (en) * | 1987-08-06 | 1987-09-09 | Showell A W Sugicraft Ltd | Spinal implants |
US4772287A (en) * | 1987-08-20 | 1988-09-20 | Cedar Surgical, Inc. | Prosthetic disc and method of implanting |
FR2623085B1 (en) * | 1987-11-16 | 1992-08-14 | Breard Francis | SURGICAL IMPLANT TO LIMIT THE RELATIVE MOVEMENT OF VERTEBRES |
JPH01136655A (en) | 1987-11-24 | 1989-05-29 | Asahi Optical Co Ltd | Movable type pyramid spacer |
US4874389A (en) * | 1987-12-07 | 1989-10-17 | Downey Ernest L | Replacement disc |
FR2625097B1 (en) * | 1987-12-23 | 1990-05-18 | Cote Sarl | INTER-SPINOUS PROSTHESIS COMPOSED OF SEMI-ELASTIC MATERIAL COMPRISING A TRANSFILING EYE AT ITS END AND INTER-SPINOUS PADS |
US5015247A (en) * | 1988-06-13 | 1991-05-14 | Michelson Gary K | Threaded spinal implant |
US5484437A (en) | 1988-06-13 | 1996-01-16 | Michelson; Gary K. | Apparatus and method of inserting spinal implants |
US5593409A (en) * | 1988-06-13 | 1997-01-14 | Sofamor Danek Group, Inc. | Interbody spinal fusion implants |
CA1333209C (en) * | 1988-06-28 | 1994-11-29 | Gary Karlin Michelson | Artificial spinal fusion implants |
US4961740B1 (en) * | 1988-10-17 | 1997-01-14 | Surgical Dynamics Inc | V-thread fusion cage and method of fusing a bone joint |
FR2642645B1 (en) * | 1989-02-03 | 1992-08-14 | Breard Francis | FLEXIBLE INTERVERTEBRAL STABILIZER AND METHOD AND APPARATUS FOR CONTROLLING ITS VOLTAGE BEFORE PLACEMENT ON THE RACHIS |
US5084049A (en) | 1989-02-08 | 1992-01-28 | Acromed Corporation | Transverse connector for spinal column corrective devices |
US4969888A (en) | 1989-02-09 | 1990-11-13 | Arie Scholten | Surgical protocol for fixation of osteoporotic bone using inflatable device |
US5458638A (en) * | 1989-07-06 | 1995-10-17 | Spine-Tech, Inc. | Non-threaded spinal implant |
CA2015507C (en) * | 1989-07-06 | 1999-01-05 | Stephen D. Kuslich | Spinal implant |
US4936848A (en) * | 1989-09-22 | 1990-06-26 | Bagby George W | Implant for vertebrae |
US4932975A (en) * | 1989-10-16 | 1990-06-12 | Vanderbilt University | Vertebral prosthesis |
US5055104A (en) * | 1989-11-06 | 1991-10-08 | Surgical Dynamics, Inc. | Surgically implanting threaded fusion cages between adjacent low-back vertebrae by an anterior approach |
US5059193A (en) * | 1989-11-20 | 1991-10-22 | Spine-Tech, Inc. | Expandable spinal implant and surgical method |
US5059194A (en) | 1990-02-12 | 1991-10-22 | Michelson Gary K | Cervical distractor |
US5345927A (en) * | 1990-03-02 | 1994-09-13 | Bonutti Peter M | Arthroscopic retractors |
US5540689A (en) * | 1990-05-22 | 1996-07-30 | Sanders; Albert E. | Apparatus for securing a rod adjacent to a bone |
US5047055A (en) | 1990-12-21 | 1991-09-10 | Pfizer Hospital Products Group, Inc. | Hydrogel intervertebral disc nucleus |
FR2672202B1 (en) * | 1991-02-05 | 1993-07-30 | Safir | BONE SURGICAL IMPLANT, ESPECIALLY FOR INTERVERTEBRAL STABILIZER. |
US5390683A (en) | 1991-02-22 | 1995-02-21 | Pisharodi; Madhavan | Spinal implantation methods utilizing a middle expandable implant |
US5123926A (en) | 1991-02-22 | 1992-06-23 | Madhavan Pisharodi | Artificial spinal prosthesis |
US5192327A (en) | 1991-03-22 | 1993-03-09 | Brantigan John W | Surgical prosthetic implant for vertebrae |
JP3007903B2 (en) | 1991-03-29 | 2000-02-14 | 京セラ株式会社 | Artificial disc |
US5290312A (en) | 1991-09-03 | 1994-03-01 | Alphatec | Artificial vertebral body |
FR2681525A1 (en) * | 1991-09-19 | 1993-03-26 | Medical Op | Device for flexible or semi-rigid stabilisation of the spine, in particular of the human spine, by a posterior route |
US5180381A (en) * | 1991-09-24 | 1993-01-19 | Aust Gilbert M | Anterior lumbar/cervical bicortical compression plate |
US5766221A (en) * | 1991-12-03 | 1998-06-16 | Boston Scientific Technology, Inc. | Bone anchor implantation device |
US5263953A (en) * | 1991-12-31 | 1993-11-23 | Spine-Tech, Inc. | Apparatus and system for fusing bone joints |
US5258031A (en) * | 1992-01-06 | 1993-11-02 | Danek Medical | Intervertebral disk arthroplasty |
US5167662A (en) | 1992-01-24 | 1992-12-01 | Zimmer, Inc. | Temporary clamp and inserter for a posterior midline spinal clamp |
US5306309A (en) | 1992-05-04 | 1994-04-26 | Calcitek, Inc. | Spinal disk implant and implantation kit |
US5304178A (en) | 1992-05-29 | 1994-04-19 | Acromed Corporation | Sublaminar wire |
FR2693364B1 (en) | 1992-07-07 | 1995-06-30 | Erpios Snc | INTERVERTEBRAL PROSTHESIS FOR STABILIZING ROTATORY AND FLEXIBLE-EXTENSION CONSTRAINTS. |
GB9217578D0 (en) | 1992-08-19 | 1992-09-30 | Surgicarft Ltd | Surgical implants,etc |
AU5600294A (en) * | 1992-11-12 | 1994-06-08 | Neville Alleyne | Cardiac protection device |
JPH06178787A (en) | 1992-12-14 | 1994-06-28 | Shima Yumiko | Centrum spacer with joint, intervertebral cavity measuring device and centrum spacer pattern |
US5306275A (en) * | 1992-12-31 | 1994-04-26 | Bryan Donald W | Lumbar spine fixation apparatus and method |
US5540703A (en) * | 1993-01-06 | 1996-07-30 | Smith & Nephew Richards Inc. | Knotted cable attachment apparatus formed of braided polymeric fibers |
US5496318A (en) * | 1993-01-08 | 1996-03-05 | Advanced Spine Fixation Systems, Inc. | Interspinous segmental spine fixation device |
US5352225A (en) | 1993-01-14 | 1994-10-04 | Yuan Hansen A | Dual-tier spinal clamp locking and retrieving system |
US5470333A (en) | 1993-03-11 | 1995-11-28 | Danek Medical, Inc. | System for stabilizing the cervical and the lumbar region of the spine |
US5415661A (en) * | 1993-03-24 | 1995-05-16 | University Of Miami | Implantable spinal assist device |
US5534028A (en) * | 1993-04-20 | 1996-07-09 | Howmedica, Inc. | Hydrogel intervertebral disc nucleus with diminished lateral bulging |
FR2704745B1 (en) | 1993-05-07 | 1995-11-24 | Erpios | Device for connecting the ends of a ligament for osteosynthesis, in particular for vertebral osteosynthesis. |
JPH0818795B2 (en) * | 1993-07-16 | 1996-02-28 | 日本ビソー株式会社 | Rope pulling device |
FR2707864B1 (en) | 1993-07-23 | 1996-07-19 | Jean Taylor | Surgical forceps for tensioning an osteosynthesis ligament. |
US5395372A (en) * | 1993-09-07 | 1995-03-07 | Danek Medical, Inc. | Spinal strut graft holding staple |
US5458641A (en) * | 1993-09-08 | 1995-10-17 | Ramirez Jimenez; Juan J. | Vertebral body prosthesis |
BE1007549A3 (en) | 1993-09-21 | 1995-08-01 | Beckers Louis Francois Charles | Implant. |
US5443514A (en) | 1993-10-01 | 1995-08-22 | Acromed Corporation | Method for using spinal implants |
US5514180A (en) | 1994-01-14 | 1996-05-07 | Heggeness; Michael H. | Prosthetic intervertebral devices |
EP0677277A3 (en) | 1994-03-18 | 1996-02-28 | Patrice Moreau | Spinal prosthetic assembly. |
US6093207A (en) | 1994-03-18 | 2000-07-25 | Pisharodi; Madhavan | Middle expanded, removable intervertebral disk stabilizer disk |
FR2717675B1 (en) | 1994-03-24 | 1996-05-03 | Jean Taylor | Interspinous wedge. |
FR2719763B1 (en) | 1994-05-11 | 1996-09-27 | Jean Taylor | Vertebral implant. |
US5571189A (en) * | 1994-05-20 | 1996-11-05 | Kuslich; Stephen D. | Expandable fabric implant for stabilizing the spinal motion segment |
FR2722980B1 (en) | 1994-07-26 | 1996-09-27 | Samani Jacques | INTERTEPINOUS VERTEBRAL IMPLANT |
DE69522060T2 (en) | 1994-09-08 | 2002-05-29 | Stryker Technologies Corp., Kalamazoo | Intervertebral disc core made of hydrogel |
US5885299A (en) | 1994-09-15 | 1999-03-23 | Surgical Dynamics, Inc. | Apparatus and method for implant insertion |
US5562736A (en) | 1994-10-17 | 1996-10-08 | Raymedica, Inc. | Method for surgical implantation of a prosthetic spinal disc nucleus |
DE69532856T2 (en) | 1994-10-17 | 2005-04-21 | Raymedica Inc | Spinal disc-GRAFT |
US5824098A (en) | 1994-10-24 | 1998-10-20 | Stein; Daniel | Patello-femoral joint replacement device and method |
US5674296A (en) * | 1994-11-14 | 1997-10-07 | Spinal Dynamics Corporation | Human spinal disc prosthesis |
FR2728159B1 (en) | 1994-12-16 | 1997-06-27 | Tornier Sa | ELASTIC DISC PROSTHESIS |
US5766252A (en) | 1995-01-24 | 1998-06-16 | Osteonics Corp. | Interbody spinal prosthetic implant and method |
US5645597A (en) * | 1995-12-29 | 1997-07-08 | Krapiva; Pavel I. | Disc replacement method and apparatus |
US5702455A (en) * | 1996-07-03 | 1997-12-30 | Saggar; Rahul | Expandable prosthesis for spinal fusion |
US5893850A (en) * | 1996-11-12 | 1999-04-13 | Cachia; Victor V. | Bone fixation device |
US6695842B2 (en) * | 1997-10-27 | 2004-02-24 | St. Francis Medical Technologies, Inc. | Interspinous process distraction system and method with positionable wing and method |
US6514256B2 (en) * | 1997-01-02 | 2003-02-04 | St. Francis Medical Technologies, Inc. | Spine distraction implant and method |
US6712819B2 (en) * | 1998-10-20 | 2004-03-30 | St. Francis Medical Technologies, Inc. | Mating insertion instruments for spinal implants and methods of use |
US6902566B2 (en) * | 1997-01-02 | 2005-06-07 | St. Francis Medical Technologies, Inc. | Spinal implants, insertion instruments, and methods of use |
US7201751B2 (en) * | 1997-01-02 | 2007-04-10 | St. Francis Medical Technologies, Inc. | Supplemental spine fixation device |
US5836948A (en) * | 1997-01-02 | 1998-11-17 | Saint Francis Medical Technologies, Llc | Spine distraction implant and method |
US6068630A (en) * | 1997-01-02 | 2000-05-30 | St. Francis Medical Technologies, Inc. | Spine distraction implant |
US5860977A (en) * | 1997-01-02 | 1999-01-19 | Saint Francis Medical Technologies, Llc | Spine distraction implant and method |
US5810878A (en) * | 1997-02-12 | 1998-09-22 | Sdgi Holdings, Inc. | Rod introducer forceps |
IL128261A0 (en) * | 1999-01-27 | 1999-11-30 | Disc O Tech Medical Tech Ltd | Expandable element |
IES80150B2 (en) | 1997-04-30 | 1998-06-03 | Eskina Developments Limited | Spinal osteosynthesis device for mechanically interconnecting two adjacent vertebrae in particular lumbar vertebrae |
US6022376A (en) * | 1997-06-06 | 2000-02-08 | Raymedica, Inc. | Percutaneous prosthetic spinal disc nucleus and method of manufacture |
KR100779258B1 (en) * | 1997-10-27 | 2007-11-27 | 세인트 프랜시스 메디컬 테크놀로지스, 인코포레이티드 | Spine distraction implant |
US5888226A (en) | 1997-11-12 | 1999-03-30 | Rogozinski; Chaim | Intervertebral prosthetic disc |
FR2771282B1 (en) | 1997-11-25 | 2000-01-28 | Jean Taylor | VERTEBRAL IMPLANT SUITABLE FOR INTRODUCTION BY A POSTERIOR ROUTE IN AN INTERVERTEBRAL SPACE |
FR2774581B1 (en) * | 1998-02-10 | 2000-08-11 | Dimso Sa | INTEREPINOUS STABILIZER TO BE ATTACHED TO SPINOUS APOPHYSIS OF TWO VERTEBRES |
FR2775183B1 (en) | 1998-02-20 | 2000-08-04 | Jean Taylor | INTER-SPINOUS PROSTHESIS |
US6045552A (en) * | 1998-03-18 | 2000-04-04 | St. Francis Medical Technologies, Inc. | Spine fixation plate system |
AU4088399A (en) | 1998-05-18 | 1999-12-06 | Vincent E. Bryan Jr. | Balloon jack |
FR2780269B1 (en) | 1998-06-26 | 2003-10-17 | Euros Sa | RACHIDIAN IMPLANT |
WO2000004851A1 (en) | 1998-07-22 | 2000-02-03 | Spinal Dynamics Corporation | Threaded cylindrical multidiscoid single or multiple array disc prosthesis |
DE69932336T2 (en) | 1998-09-04 | 2007-08-09 | Warsaw Orthopedic, Inc., Warsaw | CYLINDRICAL, HALF BALL-SHAPED SLICED PEST THREAT WITH PARALLEL THREAD |
WO2000013619A1 (en) | 1998-09-04 | 2000-03-16 | Spinal Dynamics Corporation | Peanut spectacle multi discoid thoraco-lumbar disc prosthesis |
FR2782911B1 (en) | 1998-09-07 | 2000-11-24 | Euros Sa | SPINAL IMPLANT WITH MEANS FOR ATTACHING A VERTEBRUS AND A DEVICE FOR THE CROSS-LINKAGE OF TWO LONGITUDINAL RODS |
US6352537B1 (en) * | 1998-09-17 | 2002-03-05 | Electro-Biology, Inc. | Method and apparatus for spinal fixation |
US7029473B2 (en) * | 1998-10-20 | 2006-04-18 | St. Francis Medical Technologies, Inc. | Deflectable spacer for use as an interspinous process implant and method |
US7189234B2 (en) * | 1998-10-20 | 2007-03-13 | St. Francis Medical Technologies, Inc. | Interspinous process implant sizer and distractor with a split head and size indicator and method |
US6554833B2 (en) * | 1998-10-26 | 2003-04-29 | Expanding Orthopedics, Inc. | Expandable orthopedic device |
US6261289B1 (en) * | 1998-10-26 | 2001-07-17 | Mark Levy | Expandable orthopedic device |
US6174311B1 (en) * | 1998-10-28 | 2001-01-16 | Sdgi Holdings, Inc. | Interbody fusion grafts and instrumentation |
AU773603B2 (en) * | 1999-01-25 | 2004-05-27 | Warsaw Orthopedic, Inc. | Instrument and method for creating an intervertebral space for receiving an implant |
US6416776B1 (en) * | 1999-02-18 | 2002-07-09 | St. Francis Medical Technologies, Inc. | Biological disk replacement, bone morphogenic protein (BMP) carriers, and anti-adhesion materials |
US6746485B1 (en) * | 1999-02-18 | 2004-06-08 | St. Francis Medical Technologies, Inc. | Hair used as a biologic disk, replacement, and/or structure and method |
US6113639A (en) | 1999-03-23 | 2000-09-05 | Raymedica, Inc. | Trial implant and trial implant kit for evaluating an intradiscal space |
US6234705B1 (en) | 1999-04-06 | 2001-05-22 | Synthes (Usa) | Transconnector for coupling spinal rods |
FR2799640B1 (en) | 1999-10-15 | 2002-01-25 | Spine Next Sa | IMPLANT INTERVETEBRAL |
FR2806614B1 (en) | 2000-03-21 | 2002-05-31 | Cousin Biotech | FASTENING DEVICE ON THE SACRUM |
FR2806616B1 (en) | 2000-03-21 | 2003-04-11 | Cousin Biotech | INTERPINEUSE SHIM AND FASTENING DEVICE ON THE SACRUM |
US6402750B1 (en) * | 2000-04-04 | 2002-06-11 | Spinlabs, Llc | Devices and methods for the treatment of spinal disorders |
US6579319B2 (en) * | 2000-11-29 | 2003-06-17 | Medicinelodge, Inc. | Facet joint replacement |
US6364883B1 (en) * | 2001-02-23 | 2002-04-02 | Albert N. Santilli | Spinous process clamp for spinal fusion and method of operation |
US6582433B2 (en) * | 2001-04-09 | 2003-06-24 | St. Francis Medical Technologies, Inc. | Spine fixation device and method |
US6733534B2 (en) * | 2002-01-29 | 2004-05-11 | Sdgi Holdings, Inc. | System and method for spine spacing |
JP3708883B2 (en) * | 2002-02-08 | 2005-10-19 | 昭和医科工業株式会社 | Vertebral space retainer |
EP1346708A1 (en) * | 2002-03-20 | 2003-09-24 | A-Spine Holding Group Corp. | Three-hooked device for fixing spinal column |
US7549999B2 (en) * | 2003-05-22 | 2009-06-23 | Kyphon Sarl | Interspinous process distraction implant and method of implantation |
US7909853B2 (en) * | 2004-09-23 | 2011-03-22 | Kyphon Sarl | Interspinous process implant including a binder and method of implantation |
US8048117B2 (en) * | 2003-05-22 | 2011-11-01 | Kyphon Sarl | Interspinous process implant and method of implantation |
US7931674B2 (en) * | 2005-03-21 | 2011-04-26 | Kyphon Sarl | Interspinous process implant having deployable wing and method of implantation |
US20060064165A1 (en) * | 2004-09-23 | 2006-03-23 | St. Francis Medical Technologies, Inc. | Interspinous process implant including a binder and method of implantation |
US20050075634A1 (en) * | 2002-10-29 | 2005-04-07 | Zucherman James F. | Interspinous process implant with radiolucent spacer and lead-in tissue expander |
US7497859B2 (en) * | 2002-10-29 | 2009-03-03 | Kyphon Sarl | Tools for implanting an artificial vertebral disk |
US7833246B2 (en) * | 2002-10-29 | 2010-11-16 | Kyphon SÀRL | Interspinous process and sacrum implant and method |
US6723126B1 (en) * | 2002-11-01 | 2004-04-20 | Sdgi Holdings, Inc. | Laterally expandable cage |
US7320707B2 (en) * | 2003-11-05 | 2008-01-22 | St. Francis Medical Technologies, Inc. | Method of laterally inserting an artificial vertebral disk replacement implant with crossbar spacer |
US20050149192A1 (en) * | 2003-11-20 | 2005-07-07 | St. Francis Medical Technologies, Inc. | Intervertebral body fusion cage with keels and implantation method |
US7837732B2 (en) * | 2003-11-20 | 2010-11-23 | Warsaw Orthopedic, Inc. | Intervertebral body fusion cage with keels and implantation methods |
US7503935B2 (en) * | 2003-12-02 | 2009-03-17 | Kyphon Sarl | Method of laterally inserting an artificial vertebral disk replacement with translating pivot point |
US7217291B2 (en) * | 2003-12-08 | 2007-05-15 | St. Francis Medical Technologies, Inc. | System and method for replacing degenerated spinal disks |
US20050165398A1 (en) * | 2004-01-26 | 2005-07-28 | Reiley Mark A. | Percutaneous spine distraction implant systems and methods |
US7776091B2 (en) * | 2004-06-30 | 2010-08-17 | Depuy Spine, Inc. | Adjustable posterior spinal column positioner |
US20060015181A1 (en) * | 2004-07-19 | 2006-01-19 | Biomet Merck France (50% Interest) | Interspinous vertebral implant |
US8317864B2 (en) * | 2004-10-20 | 2012-11-27 | The Board Of Trustees Of The Leland Stanford Junior University | Systems and methods for posterior dynamic stabilization of the spine |
US8162985B2 (en) * | 2004-10-20 | 2012-04-24 | The Board Of Trustees Of The Leland Stanford Junior University | Systems and methods for posterior dynamic stabilization of the spine |
US8167944B2 (en) * | 2004-10-20 | 2012-05-01 | The Board Of Trustees Of The Leland Stanford Junior University | Systems and methods for posterior dynamic stabilization of the spine |
US8123807B2 (en) * | 2004-10-20 | 2012-02-28 | Vertiflex, Inc. | Systems and methods for posterior dynamic stabilization of the spine |
EP1807012B1 (en) * | 2004-10-25 | 2016-07-06 | Lanx, LLC | Nterspinous distraction devices |
US7918875B2 (en) * | 2004-10-25 | 2011-04-05 | Lanx, Inc. | Interspinous distraction devices and associated methods of insertion |
US7835856B2 (en) * | 2004-10-25 | 2010-11-16 | General Motors Llc | Method and system for telematics location sensing |
US20060106381A1 (en) * | 2004-11-18 | 2006-05-18 | Ferree Bret A | Methods and apparatus for treating spinal stenosis |
-
1997
- 1997-01-02 US US08/778,093 patent/US5836948A/en not_active Expired - Lifetime
- 1997-12-23 DE DE69738301T patent/DE69738301T2/en not_active Expired - Lifetime
-
1998
- 1998-02-05 US US09/018,479 patent/US6074390A/en not_active Expired - Lifetime
- 1998-07-28 US US09/124,203 patent/US6090112A/en not_active Expired - Lifetime
-
1999
- 1999-07-27 US US09/361,510 patent/US6379355B1/en not_active Expired - Fee Related
- 1999-07-27 US US09/361,513 patent/US6500178B2/en not_active Expired - Fee Related
- 1999-07-27 US US09/360,955 patent/US6149652A/en not_active Expired - Lifetime
- 1999-12-28 US US09/473,184 patent/US6238397B1/en not_active Expired - Lifetime
-
2000
- 2000-02-18 US US09/507,755 patent/US6280444B1/en not_active Expired - Lifetime
- 2000-10-06 US US09/684,748 patent/US6419676B1/en not_active Expired - Lifetime
- 2000-12-07 US US09/686,150 patent/US6451020B1/en not_active Expired - Fee Related
-
2001
- 2001-01-04 US US09/754,534 patent/US6419677B2/en not_active Expired - Fee Related
- 2001-03-15 US US09/808,827 patent/US6478796B2/en not_active Expired - Fee Related
-
2007
- 2007-03-28 US US11/692,306 patent/US20080172057A1/en not_active Abandoned
Cited By (173)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060004451A1 (en) * | 2000-11-29 | 2006-01-05 | Facet Solutions, Inc. | Facet joint replacement |
US8313511B2 (en) | 2000-11-29 | 2012-11-20 | Gmedelaware 2 Llc | Facet joint replacement |
US8556936B2 (en) | 2000-11-29 | 2013-10-15 | Gmedelaware 2 Llc | Facet joint replacement |
US20090088802A1 (en) * | 2000-12-13 | 2009-04-02 | Facet Solutions, Inc. | Prosthesis for the replacement of a posterior element of a vertebra |
US8066741B2 (en) | 2000-12-13 | 2011-11-29 | Gmedelaware 2 Llc | Prosthesis for the replacement of a posterior element of a vertebra |
US7955390B2 (en) | 2001-03-02 | 2011-06-07 | GME Delaware 2 LLC | Method and apparatus for spine joint replacement |
US7118599B2 (en) | 2001-07-16 | 2006-10-10 | Spinecore, Inc. | Artificial intervertebral disc |
US7160327B2 (en) | 2001-07-16 | 2007-01-09 | Spinecore, Inc. | Axially compressible artificial intervertebral disc having limited rotation using a captured ball and socket joint with a solid ball and compression locking post |
US20030229358A1 (en) * | 2001-07-16 | 2003-12-11 | Errico Joseph P. | Wedge plate inserter/impactor and related methods for use in implanting an artificial intervertebral disc |
US20030040802A1 (en) * | 2001-07-16 | 2003-02-27 | Errico Joseph P. | Artificial intervertebral disc having limited rotation using a captured ball and socket joint with a solid ball and compression locking post |
US20050010234A1 (en) * | 2001-07-16 | 2005-01-13 | Ralph James D. | Method of distracting vertebral bones |
US20050038445A1 (en) * | 2001-07-16 | 2005-02-17 | Errico Joseph P. | Instrumentation for repositioning and extracting an artificial intervertebral disc from an intervertebral space |
US8361153B2 (en) | 2001-07-16 | 2013-01-29 | Spinecore, Inc. | Porous intervertebral distraction spacers |
US8758358B2 (en) | 2001-07-16 | 2014-06-24 | Spinecore, Inc. | Instrumentation for repositioning and extraction an artificial intervertebral disc from an intervertebral space |
US8038717B2 (en) | 2001-07-16 | 2011-10-18 | Spinecore, Inc. | Method of distracting vertebral bones |
US6989032B2 (en) | 2001-07-16 | 2006-01-24 | Spinecore, Inc. | Artificial intervertebral disc |
US20040158326A1 (en) * | 2001-07-16 | 2004-08-12 | Ralph James D. | Instruments for reorienting vertebral bones for the treatment of scoliosis |
US20100298940A1 (en) * | 2001-07-16 | 2010-11-25 | Spinecore, Inc. | Instruments for reorienting vertebral bones for the treatment of scoliosis |
US20040093089A1 (en) * | 2001-07-16 | 2004-05-13 | Ralph James D. | Porous intervertebral distraction spacers |
US7101399B2 (en) | 2001-07-16 | 2006-09-05 | Spinecore, Inc. | Artificial intervertebral disc having a captured ball and socket joint with a solid ball and compression locking post |
US8357167B2 (en) | 2001-07-16 | 2013-01-22 | Spinecore, Inc. | Artificial intervertebral disc trials with baseplates having inward tool engagement holes |
US7141069B2 (en) | 2001-07-16 | 2006-11-28 | Spinecore, Inc. | Axially compressible artificial intervertebral disc having limited rotation using a captured ball and socket joint with a solid ball and retaining cap |
US20040034425A1 (en) * | 2001-07-16 | 2004-02-19 | Errico Joseph P. | Axially compressible artificial intervertebral disc having a captured ball and socket joint with a solid ball and compression locking post |
US8685094B2 (en) | 2001-07-16 | 2014-04-01 | Spinecore, Inc. | Instruments for reorienting vertebral bones for the treatment of scoliosis |
US7223290B2 (en) | 2001-07-16 | 2007-05-29 | Spinecore, Inc. | Axially compressible artificial intervertebral disc having a captured ball and socket joint with a solid ball and compression locking post |
US7235081B2 (en) | 2001-07-16 | 2007-06-26 | Spinecore, Inc. | Wedge plate inserter/impactor and related methods for use in implanting an artificial intervertebral disc |
US7722675B2 (en) | 2001-07-16 | 2010-05-25 | Spinecore, Inc. | Instruments for reorienting vertebral bones for the treatment of scoliosis |
US8092539B2 (en) | 2001-10-01 | 2012-01-10 | Spinecore, Inc. | Intervertebral spacer device having a belleville washer with concentric grooves |
US7771477B2 (en) | 2001-10-01 | 2010-08-10 | Spinecore, Inc. | Intervertebral spacer device utilizing a belleville washer having radially spaced concentric grooves |
US7713302B2 (en) | 2001-10-01 | 2010-05-11 | Spinecore, Inc. | Intervertebral spacer device utilizing a spirally slotted belleville washer having radially spaced concentric grooves |
US8029568B2 (en) | 2001-10-18 | 2011-10-04 | Spinecore, Inc. | Intervertebral spacer device having a slotted partial circular domed arch strip spring |
US20040087945A1 (en) * | 2001-11-30 | 2004-05-06 | Ralph James D. | Distraction instrument for use in anterior cervical fixation surgery |
US7316685B2 (en) | 2001-11-30 | 2008-01-08 | Spinecore, Inc. | Distraction instrument for use in anterior cervical fixation surgery |
US8277507B2 (en) | 2002-04-12 | 2012-10-02 | Spinecore, Inc. | Spacerless artificial disc replacements |
US9198773B2 (en) | 2002-04-12 | 2015-12-01 | Spinecore, Inc. | Spacerless artificial disc replacements |
US10786363B2 (en) | 2002-04-12 | 2020-09-29 | Spinecore, Inc. | Spacerless artificial disc replacements |
US10271956B2 (en) | 2002-04-12 | 2019-04-30 | Spinecore, Inc. | Spacerless artificial disc replacements |
US8801789B2 (en) | 2002-04-12 | 2014-08-12 | Spinecore, Inc. | Two-component artificial disc replacements |
US8470041B2 (en) | 2002-04-12 | 2013-06-25 | Spinecore, Inc. | Two-component artificial disc replacements |
US8679182B2 (en) | 2002-04-12 | 2014-03-25 | Spinecore, Inc. | Spacerless artificial disc replacements |
US8366772B2 (en) | 2002-04-23 | 2013-02-05 | Spinecore, Inc. | Artificial disc replacements with natural kinematics |
US8038713B2 (en) | 2002-04-23 | 2011-10-18 | Spinecore, Inc. | Two-component artificial disc replacements |
US10299933B2 (en) | 2002-04-23 | 2019-05-28 | Spinecore, Inc. | Artificial disc replacements with natural kinematics |
US9168146B2 (en) | 2002-04-23 | 2015-10-27 | Spinecore, Inc. | Artificial disc replacements with natural kinematics |
US8784492B2 (en) | 2002-04-23 | 2014-07-22 | Spinecore, Inc. | Artificial disc replacements with natural kinematics |
US9572679B2 (en) | 2002-04-23 | 2017-02-21 | Spinecore, Inc. | Artificial disc replacements with natural kinematics |
US9877841B2 (en) | 2002-04-23 | 2018-01-30 | Spinecore, Inc. | Artificial disc replacements with natural kinematics |
US8961608B2 (en) | 2003-03-06 | 2015-02-24 | Spinecore, Inc. | Intervertebral disc replacement |
US10159578B2 (en) | 2003-03-06 | 2018-12-25 | Spinecore, Inc. | Instrumentation and methods for use in implanting a cervical disc replacement device |
US8936640B2 (en) | 2003-03-06 | 2015-01-20 | Spinecore, Inc. | Cervical disc replacement |
US7641654B2 (en) | 2003-03-06 | 2010-01-05 | Spinecore, Inc. | Instrumentation and methods for use in implanting a cervical disc replacement device |
US7648511B2 (en) | 2003-03-06 | 2010-01-19 | Spinecore, Inc. | Instrumentation and methods for use in implanting a cervical disc replacement device |
US7662182B2 (en) | 2003-03-06 | 2010-02-16 | Spinecore, Inc. | Instrumentation and methods for use in implanting a cervical disc replacement device |
US20040193272A1 (en) * | 2003-03-06 | 2004-09-30 | Rafail Zubok | Instrumentation and methods for use in implanting a cervical disc replacement device |
US7674292B2 (en) | 2003-03-06 | 2010-03-09 | Spinecore, Inc. | Instrumentation and methods for use in implanting a cervical disc replacement device |
US20100070040A1 (en) * | 2003-03-06 | 2010-03-18 | Spinecore, Inc. | Intervertebral Disc Replacement |
US10835385B2 (en) | 2003-03-06 | 2020-11-17 | Howmedica Osteonics Corp. | Instrumentation and methods for use in implanting a cervical disc replacement device |
US7708780B2 (en) | 2003-03-06 | 2010-05-04 | Spinecore, Inc. | Instrumentation and methods for use in implanting a cervical disc replacement device |
US11382762B2 (en) | 2003-03-06 | 2022-07-12 | Howmedica Osteonics Corp. | Instrumentation and methods for use in implanting a cervical disc replacement device |
US20040176772A1 (en) * | 2003-03-06 | 2004-09-09 | Rafail Zubok | Instrumentation and methods for use in implanting a cervical disc replacement device |
US9028552B2 (en) | 2003-03-06 | 2015-05-12 | Spinecore, Inc. | Cervical disc replacement |
US20040176778A1 (en) * | 2003-03-06 | 2004-09-09 | Rafail Zubok | Instrumentation and methods for use in implanting a cervical disc replacement device |
US8231628B2 (en) | 2003-03-06 | 2012-07-31 | Spinecore, Inc. | Instrumentation and methods for use in implanting a cervical disc replacement device |
US8435297B2 (en) | 2003-03-06 | 2013-05-07 | Spinecore, Inc. | Intervertebral disc replacement |
US10369005B2 (en) | 2003-03-06 | 2019-08-06 | Spinecore, Inc. | Cervical disc replacement |
US20040176774A1 (en) * | 2003-03-06 | 2004-09-09 | Rafail Zubok | Instrumentation and methods for use in implanting a cervical disc replacement device |
US9603716B2 (en) | 2003-03-06 | 2017-03-28 | Spinecore, Inc. | Intervertebral disc replacement |
US8109979B2 (en) | 2003-03-06 | 2012-02-07 | Spinecore, Inc. | Instrumentation and methods for use in implanting a cervical disc replacement device |
US8419770B2 (en) | 2003-12-10 | 2013-04-16 | Gmedelaware 2 Llc | Spinal facet implants with mating articulating bearing surface and methods of use |
US7753937B2 (en) | 2003-12-10 | 2010-07-13 | Facet Solutions Inc. | Linked bilateral spinal facet implants and methods of use |
US8926700B2 (en) | 2003-12-10 | 2015-01-06 | Gmedelware 2 LLC | Spinal facet joint implant |
US11957598B2 (en) | 2004-02-04 | 2024-04-16 | Ldr Medical | Intervertebral disc prosthesis |
US8579941B2 (en) | 2004-02-17 | 2013-11-12 | Alan Chervitz | Linked bilateral spinal facet implants and methods of use |
US7914560B2 (en) | 2004-02-17 | 2011-03-29 | Gmedelaware 2 Llc | Spinal facet implant with spherical implant apposition surface and bone bed and methods of use |
US7998177B2 (en) | 2004-02-17 | 2011-08-16 | Gmedelaware 2 Llc | Linked bilateral spinal facet implants and methods of use |
US7998178B2 (en) | 2004-02-17 | 2011-08-16 | Gmedelaware 2 Llc | Linked bilateral spinal facet implants and methods of use |
US8562649B2 (en) | 2004-02-17 | 2013-10-22 | Gmedelaware 2 Llc | System and method for multiple level facet joint arthroplasty and fusion |
US20090030460A1 (en) * | 2004-02-17 | 2009-01-29 | Facet Solutions, Inc. | Linked bilateral spinal facet implants and methods of use |
US8906063B2 (en) | 2004-02-17 | 2014-12-09 | Gmedelaware 2 Llc | Spinal facet joint implant |
US7393361B2 (en) | 2004-02-20 | 2008-07-01 | Spinecore, Inc. | Artificial intervertebral disc having a bored semispherical bearing with a compression locking post and retaining caps |
US8425609B2 (en) | 2004-02-20 | 2013-04-23 | Spinecore, Inc. | Artificial intervertebral disc having a bored semispherical bearing with a compression locking post and retaining caps |
US20050187632A1 (en) * | 2004-02-20 | 2005-08-25 | Rafail Zubok | Artificial intervertebral disc having a bored semispherical bearing with a compression locking post and retaining caps |
US7468076B2 (en) | 2004-02-20 | 2008-12-23 | Spinecore, Inc. | Artificial intervertebral disc having a universal joint |
US20050246022A1 (en) * | 2004-02-20 | 2005-11-03 | Rafail Zubok | Artificial intervertebral disc having a universal joint |
US20080306594A1 (en) * | 2004-02-20 | 2008-12-11 | Spinecore, Inc. | Artificial intervertebral disc having a bored semispherical bearing with a compression locking post and retaining caps |
US10080589B2 (en) | 2004-03-09 | 2018-09-25 | The Board Of Trustees Of The Leland Stanford Junior University | Methods and systems for constraint of spinous processes with attachment |
US20090082820A1 (en) * | 2004-03-09 | 2009-03-26 | Louie Fielding | Spinal implant and method for restricting spinal flexion |
US8486110B2 (en) | 2004-03-09 | 2013-07-16 | The Board Of Trustees Of The Leland Stanford Junior University | Spinal implant and method for restricting spinal flexion |
US20080009866A1 (en) * | 2004-03-09 | 2008-01-10 | Todd Alamin | Methods and systems for constraint of spinous processes with attachment |
US20090198282A1 (en) * | 2004-03-09 | 2009-08-06 | Louis Fielding | Spinal implant and method for restricting spinal flexion |
US8523904B2 (en) | 2004-03-09 | 2013-09-03 | The Board Of Trustees Of The Leland Stanford Junior University | Methods and systems for constraint of spinous processes with attachment |
US8105363B2 (en) | 2004-03-09 | 2012-01-31 | The Board Of Trustees Of The Leland Stanford Junior University | Spinal implant and method for restricting spinal flexion |
US8216275B2 (en) | 2004-03-09 | 2012-07-10 | The Board Of Trustees Of The Leland Stanford Junior University | Spinal implant and method for restricting spinal flexion |
US8777994B2 (en) | 2004-06-02 | 2014-07-15 | Gmedelaware 2 Llc | System and method for multiple level facet joint arthroplasty and fusion |
US7815648B2 (en) | 2004-06-02 | 2010-10-19 | Facet Solutions, Inc | Surgical measurement systems and methods |
US8317864B2 (en) | 2004-10-20 | 2012-11-27 | The Board Of Trustees Of The Leland Stanford Junior University | Systems and methods for posterior dynamic stabilization of the spine |
US8123807B2 (en) | 2004-10-20 | 2012-02-28 | Vertiflex, Inc. | Systems and methods for posterior dynamic stabilization of the spine |
US8012207B2 (en) | 2004-10-20 | 2011-09-06 | Vertiflex, Inc. | Systems and methods for posterior dynamic stabilization of the spine |
US20060084988A1 (en) * | 2004-10-20 | 2006-04-20 | The Board Of Trustees Of The Leland Stanford Junior University | Systems and methods for posterior dynamic stabilization of the spine |
US9211146B2 (en) * | 2004-10-20 | 2015-12-15 | The Board Of Trustees Of The Leland Stanford Junior University | Systems and methods for posterior dynamic stabilization of the spine |
US8167944B2 (en) | 2004-10-20 | 2012-05-01 | The Board Of Trustees Of The Leland Stanford Junior University | Systems and methods for posterior dynamic stabilization of the spine |
US8409282B2 (en) | 2004-10-20 | 2013-04-02 | Vertiflex, Inc. | Systems and methods for posterior dynamic stabilization of the spine |
US20120330359A1 (en) * | 2004-10-20 | 2012-12-27 | The Board Of Trustees Of The Leland Stanford Junior University | Systems and methods for posterior dynamic stabilization of the spine |
US9055981B2 (en) | 2004-10-25 | 2015-06-16 | Lanx, Inc. | Spinal implants and methods |
US8007517B2 (en) | 2004-10-25 | 2011-08-30 | Lanx, Inc. | Interspinous distraction devices and associated methods of insertion |
US20060089654A1 (en) * | 2004-10-25 | 2006-04-27 | Lins Robert E | Interspinous distraction devices and associated methods of insertion |
US9949762B2 (en) | 2005-02-22 | 2018-04-24 | Stryker European Holdings I, Llc | Apparatus and method for dynamic vertebral stabilization |
US7993373B2 (en) | 2005-02-22 | 2011-08-09 | Hoy Robert W | Polyaxial orthopedic fastening apparatus |
US20090099607A1 (en) * | 2005-02-22 | 2009-04-16 | Stryker Spine | Apparatus and method for dynamic vertebral stabilization |
US20100042153A1 (en) * | 2005-02-22 | 2010-02-18 | Fallin T Wade | Apparatus And Method For Dynamic Vertebral Stabilization |
US8062336B2 (en) | 2005-02-22 | 2011-11-22 | Gmedelaware 2 Llc | Polyaxial orthopedic fastening apparatus with independent locking modes |
US7361196B2 (en) | 2005-02-22 | 2008-04-22 | Stryker Spine | Apparatus and method for dynamic vertebral stabilization |
US7604654B2 (en) | 2005-02-22 | 2009-10-20 | Stryker Spine | Apparatus and method for dynamic vertebral stabilization |
US7625393B2 (en) | 2005-02-22 | 2009-12-01 | Stryker Spine | Apparatus and method for dynamic vertebral stabilization |
US8900273B2 (en) | 2005-02-22 | 2014-12-02 | Gmedelaware 2 Llc | Taper-locking fixation system |
US8226687B2 (en) | 2005-02-22 | 2012-07-24 | Stryker Spine | Apparatus and method for dynamic vertebral stabilization |
US20060189983A1 (en) * | 2005-02-22 | 2006-08-24 | Medicinelodge, Inc. | Apparatus and method for dynamic vertebral stabilization |
US8974499B2 (en) | 2005-02-22 | 2015-03-10 | Stryker Spine | Apparatus and method for dynamic vertebral stabilization |
US9486244B2 (en) | 2005-02-22 | 2016-11-08 | Stryker European Holdings I, Llc | Apparatus and method for dynamic vertebral stabilization |
US7722647B1 (en) | 2005-03-14 | 2010-05-25 | Facet Solutions, Inc. | Apparatus and method for posterior vertebral stabilization |
US8764801B2 (en) | 2005-03-28 | 2014-07-01 | Gmedelaware 2 Llc | Facet joint implant crosslinking apparatus and method |
US7758581B2 (en) | 2005-03-28 | 2010-07-20 | Facet Solutions, Inc. | Polyaxial reaming apparatus and method |
US20060271055A1 (en) * | 2005-05-12 | 2006-11-30 | Jeffery Thramann | Spinal stabilization |
US11872138B2 (en) | 2005-09-23 | 2024-01-16 | Ldr Medical | Intervertebral disc prosthesis |
US9770271B2 (en) | 2005-10-25 | 2017-09-26 | Zimmer Biomet Spine, Inc. | Spinal implants and methods |
US8137385B2 (en) | 2005-10-31 | 2012-03-20 | Stryker Spine | System and method for dynamic vertebral stabilization |
US10004539B2 (en) | 2005-10-31 | 2018-06-26 | Stryker European Holdings I, Llc | System and method for dynamic vertebral stabilization |
US8623059B2 (en) | 2005-10-31 | 2014-01-07 | Stryker Spine | System and method for dynamic vertebral stabilization |
US8529603B2 (en) | 2005-10-31 | 2013-09-10 | Stryker Spine | System and method for dynamic vertebral stabilization |
US9445846B2 (en) | 2005-10-31 | 2016-09-20 | Stryker European Holdings I, Llc | System and method for dynamic vertebral stabilization |
US8109973B2 (en) | 2005-10-31 | 2012-02-07 | Stryker Spine | Method for dynamic vertebral stabilization |
US20070191953A1 (en) * | 2006-01-27 | 2007-08-16 | Sdgi Holdings, Inc. | Intervertebral implants and methods of use |
US7578849B2 (en) | 2006-01-27 | 2009-08-25 | Warsaw Orthopedic, Inc. | Intervertebral implants and methods of use |
US20070191838A1 (en) * | 2006-01-27 | 2007-08-16 | Sdgi Holdings, Inc. | Interspinous devices and methods of use |
US7682376B2 (en) | 2006-01-27 | 2010-03-23 | Warsaw Orthopedic, Inc. | Interspinous devices and methods of use |
US7815663B2 (en) | 2006-01-27 | 2010-10-19 | Warsaw Orthopedic, Inc. | Vertebral rods and methods of use |
US8414619B2 (en) | 2006-01-27 | 2013-04-09 | Warsaw Orthopedic, Inc. | Vertebral rods and methods of use |
US9144439B2 (en) | 2006-01-27 | 2015-09-29 | Warsaw Orthopedic, Inc. | Vertebral rods and methods of use |
US20080161919A1 (en) * | 2006-10-03 | 2008-07-03 | Warsaw Orthopedic, Inc. | Dynamic Devices and Methods for Stabilizing Vertebral Members |
US20080161920A1 (en) * | 2006-10-03 | 2008-07-03 | Warsaw Orthopedic, Inc. | Dynamizing Interbody Implant and Methods for Stabilizing Vertebral Members |
US8092533B2 (en) | 2006-10-03 | 2012-01-10 | Warsaw Orthopedic, Inc. | Dynamic devices and methods for stabilizing vertebral members |
US20090264932A1 (en) * | 2006-10-19 | 2009-10-22 | Simpirica Spine, Inc. | Methods and systems for constraint of multiple spine segments |
US8454660B2 (en) | 2006-10-19 | 2013-06-04 | Simpirica Spine, Inc. | Methods and systems for laterally stabilized constraint of spinous processes |
US8187307B2 (en) | 2006-10-19 | 2012-05-29 | Simpirica Spine, Inc. | Structures and methods for constraining spinal processes with single connector |
US8162982B2 (en) | 2006-10-19 | 2012-04-24 | Simpirica Spine, Inc. | Methods and systems for constraint of multiple spine segments |
US8790372B2 (en) | 2006-10-19 | 2014-07-29 | Simpirica Spine, Inc. | Methods and systems for constraint of multiple spine segments |
US9295499B2 (en) | 2006-10-19 | 2016-03-29 | Empirical Spine, Inc. | Methods and systems for laterally stabilized constraint of spinous processes |
US20080108993A1 (en) * | 2006-10-19 | 2008-05-08 | Simpirica Spine, Inc. | Methods and systems for deploying spinous process constraints |
US20080262549A1 (en) * | 2006-10-19 | 2008-10-23 | Simpirica Spine, Inc. | Methods and systems for deploying spinous process constraints |
US8252027B2 (en) | 2007-01-10 | 2012-08-28 | Gmedelaware 2 Llc | System and method for facet joint replacement |
US8206418B2 (en) | 2007-01-10 | 2012-06-26 | Gmedelaware 2 Llc | System and method for facet joint replacement with detachable coupler |
US8211147B2 (en) | 2007-01-10 | 2012-07-03 | Gmedelaware 2 Llc | System and method for facet joint replacement |
US8333789B2 (en) | 2007-01-10 | 2012-12-18 | Gmedelaware 2 Llc | Facet joint replacement |
US8308768B2 (en) | 2007-01-10 | 2012-11-13 | Gmedelaware 2 Llc | System and method for facet joint replacement |
US8241330B2 (en) | 2007-01-11 | 2012-08-14 | Lanx, Inc. | Spinous process implants and associated methods |
US9743960B2 (en) | 2007-01-11 | 2017-08-29 | Zimmer Biomet Spine, Inc. | Interspinous implants and methods |
US9724136B2 (en) | 2007-01-11 | 2017-08-08 | Zimmer Biomet Spine, Inc. | Spinous process implants and associated methods |
US9861400B2 (en) | 2007-01-11 | 2018-01-09 | Zimmer Biomet Spine, Inc. | Spinous process implants and associated methods |
US9247968B2 (en) | 2007-01-11 | 2016-02-02 | Lanx, Inc. | Spinous process implants and associated methods |
US20080183211A1 (en) * | 2007-01-11 | 2008-07-31 | Lanx, Llc | Spinous process implants and associated methods |
US9050144B2 (en) | 2007-04-17 | 2015-06-09 | Gmedelaware 2 Llc | System and method for implant anchorage with anti-rotation features |
US8702759B2 (en) | 2007-04-17 | 2014-04-22 | Gmedelaware 2 Llc | System and method for bone anchorage |
US8353933B2 (en) | 2007-04-17 | 2013-01-15 | Gmedelaware 2 Llc | Facet joint replacement |
US20090164017A1 (en) * | 2007-12-19 | 2009-06-25 | Robert Sommerich | Expandable Corpectomy Spinal Fusion Cage |
US20090164018A1 (en) * | 2007-12-19 | 2009-06-25 | Robert Sommerich | Instruments For Expandable Corpectomy Spinal Fusion Cage |
USRE46261E1 (en) | 2007-12-19 | 2017-01-03 | DePuy Synthes Products, Inc. | Instruments for expandable corpectomy spinal fusion cage |
US8241363B2 (en) | 2007-12-19 | 2012-08-14 | Depuy Spine, Inc. | Expandable corpectomy spinal fusion cage |
US8241294B2 (en) | 2007-12-19 | 2012-08-14 | Depuy Spine, Inc. | Instruments for expandable corpectomy spinal fusion cage |
US8876905B2 (en) | 2009-04-29 | 2014-11-04 | DePuy Synthes Products, LLC | Minimally invasive corpectomy cage and instrument |
US20100280616A1 (en) * | 2009-04-29 | 2010-11-04 | William Frasier | Minimally invasive corpectomy cage and instrument |
US20130006061A1 (en) * | 2011-06-29 | 2013-01-03 | Alexander James A | Systems, implants, tools, and methods for treatments of pelvic conditions |
US10058240B2 (en) * | 2011-06-29 | 2018-08-28 | Boston Scientific Scimed, Inc. | Systems, implants, tools, and methods for treatments of pelvic conditions |
US11812923B2 (en) | 2011-10-07 | 2023-11-14 | Alan Villavicencio | Spinal fixation device |
Also Published As
Publication number | Publication date |
---|---|
US6500178B2 (en) | 2002-12-31 |
US6074390A (en) | 2000-06-13 |
DE69738301D1 (en) | 2007-12-27 |
US20010016776A1 (en) | 2001-08-23 |
US6280444B1 (en) | 2001-08-28 |
US6419677B2 (en) | 2002-07-16 |
US6238397B1 (en) | 2001-05-29 |
DE69738301T2 (en) | 2008-09-18 |
US20010039452A1 (en) | 2001-11-08 |
US6379355B1 (en) | 2002-04-30 |
US6451020B1 (en) | 2002-09-17 |
US6149652A (en) | 2000-11-21 |
US5836948A (en) | 1998-11-17 |
US6090112A (en) | 2000-07-18 |
US6419676B1 (en) | 2002-07-16 |
US20080172057A1 (en) | 2008-07-17 |
US6478796B2 (en) | 2002-11-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6419676B1 (en) | Spine distraction implant and method | |
US6514256B2 (en) | Spine distraction implant and method | |
US6796983B1 (en) | Spine distraction implant and method | |
US6183471B1 (en) | Spine distraction implant and method | |
US6152926A (en) | Spine distraction implant and method | |
US7918877B2 (en) | Lateral insertion method for spinous process spacer with deployable member | |
AU769208B2 (en) | Spine distraction implant and method | |
CA2594661C (en) | Spine distraction implant and method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Fee payment |
Year of fee payment: 4 |
|
AS | Assignment |
Owner name: BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT,WAS Free format text: SECURITY AGREEMENT;ASSIGNOR:ST. FRANCIS MEDICAL TECHNOLOGIES, INC.;REEL/FRAME:018911/0427 Effective date: 20070118 Owner name: BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT, WA Free format text: SECURITY AGREEMENT;ASSIGNOR:ST. FRANCIS MEDICAL TECHNOLOGIES, INC.;REEL/FRAME:018911/0427 Effective date: 20070118 |
|
FEPP | Fee payment procedure |
Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
AS | Assignment |
Owner name: KYPHON INC., CALIFORNIA Free format text: MERGER;ASSIGNOR:ST. FRANCIS MEDICAL TECHNOLOGIES, INC.;REEL/FRAME:020393/0260 Effective date: 20071128 Owner name: KYPHON INC.,CALIFORNIA Free format text: MERGER;ASSIGNOR:ST. FRANCIS MEDICAL TECHNOLOGIES, INC.;REEL/FRAME:020393/0260 Effective date: 20071128 |
|
AS | Assignment |
Owner name: KYPHON, INC., CALIFORNIA Free format text: TERMINATION/RELEASE OF SECURITY INTEREST;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:020679/0107 Effective date: 20071101 Owner name: KYPHON, INC.,CALIFORNIA Free format text: TERMINATION/RELEASE OF SECURITY INTEREST;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:020679/0107 Effective date: 20071101 |
|
AS | Assignment |
Owner name: MEDTRONIC SPINE LLC, CALIFORNIA Free format text: CHANGE OF NAME;ASSIGNOR:KYPHON INC;REEL/FRAME:020993/0042 Effective date: 20080118 Owner name: MEDTRONIC SPINE LLC,CALIFORNIA Free format text: CHANGE OF NAME;ASSIGNOR:KYPHON INC;REEL/FRAME:020993/0042 Effective date: 20080118 |
|
AS | Assignment |
Owner name: KYPHON SARL, SWITZERLAND Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MEDTRONIC SPINE LLC;REEL/FRAME:021070/0278 Effective date: 20080325 Owner name: KYPHON SARL,SWITZERLAND Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MEDTRONIC SPINE LLC;REEL/FRAME:021070/0278 Effective date: 20080325 |
|
FEPP | Fee payment procedure |
Free format text: PAT HOLDER NO LONGER CLAIMS SMALL ENTITY STATUS, ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: STOL); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees | ||
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20100716 |