US20070027464A1 - Device for resecting spinal tissue - Google Patents

Device for resecting spinal tissue Download PDF

Info

Publication number
US20070027464A1
US20070027464A1 US11461036 US46103606A US2007027464A1 US 20070027464 A1 US20070027464 A1 US 20070027464A1 US 11461036 US11461036 US 11461036 US 46103606 A US46103606 A US 46103606A US 2007027464 A1 US2007027464 A1 US 2007027464A1
Authority
US
Grant status
Application
Patent type
Prior art keywords
tissue
device
cutting head
inner tubular
outer sleeve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11461036
Inventor
Bryce Way
Donald Schomer
Murray Solsberg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vertos Medical Inc
Original Assignee
X Sten Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/16Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans
    • A61B17/1662Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans for particular parts of the body
    • A61B17/1671Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans for particular parts of the body for the spine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B10/00Other methods or instruments for diagnosis, e.g. instruments for taking a cell sample, for biopsy, for vaccination diagnosis; Sex determination; Ovulation-period determination; Throat striking implements
    • A61B10/02Instruments for taking cell samples or for biopsy
    • A61B10/0233Pointed or sharp biopsy instruments
    • A61B10/0266Pointed or sharp biopsy instruments means for severing sample
    • A61B10/0275Pointed or sharp biopsy instruments means for severing sample with sample notch, e.g. on the side of inner stylet
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/16Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans
    • A61B17/1604Chisels; Rongeurs; Punches; Stamps
    • A61B17/1606Chisels; Rongeurs; Punches; Stamps of forceps type, i.e. having two jaw elements moving relative to each other
    • A61B17/1608Chisels; Rongeurs; Punches; Stamps of forceps type, i.e. having two jaw elements moving relative to each other the two jaw elements being linked to two elongated shaft elements moving longitudinally relative to each other
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/320016Endoscopic cutting instruments, e.g. arthroscopes, resectoscopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/007Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests for contrast media
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B10/00Other methods or instruments for diagnosis, e.g. instruments for taking a cell sample, for biopsy, for vaccination diagnosis; Sex determination; Ovulation-period determination; Throat striking implements
    • A61B10/02Instruments for taking cell samples or for biopsy
    • A61B10/06Biopsy forceps, e.g. with cup-shaped jaws
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/28Surgical forceps
    • A61B17/29Forceps for use in minimally invasive surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/28Surgical forceps
    • A61B17/29Forceps for use in minimally invasive surgery
    • A61B17/295Forceps for use in minimally invasive surgery combined with cutting implements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • A61B2017/00238Type of minimally invasive operation
    • A61B2017/00261Discectomy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • A61B2017/00292Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery mounted on or guided by flexible, e.g. catheter-like, means
    • A61B2017/00336Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery mounted on or guided by flexible, e.g. catheter-like, means with a protective sleeve, e.g. retractable or slidable
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00681Aspects not otherwise provided for
    • A61B2017/00685Archimedes screw
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/064Surgical staples, i.e. penetrating the tissue
    • A61B2017/0646Surgical staples, i.e. penetrating the tissue for insertion into cartillege, e.g. meniscus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/064Surgical staples, i.e. penetrating the tissue
    • A61B2017/0647Surgical staples, i.e. penetrating the tissue having one single leg, e.g. tacks
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/28Surgical forceps
    • A61B17/29Forceps for use in minimally invasive surgery
    • A61B17/2909Handles
    • A61B2017/2911Handles rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/28Surgical forceps
    • A61B17/29Forceps for use in minimally invasive surgery
    • A61B17/2909Handles
    • A61B2017/2925Pistol grips
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/320016Endoscopic cutting instruments, e.g. arthroscopes, resectoscopes
    • A61B2017/32004Endoscopic cutting instruments, e.g. arthroscopes, resectoscopes having a laterally movable cutting member at its most distal end which remains within the contours of said end
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B2017/320064Surgical cutting instruments with tissue or sample retaining means

Abstract

A device for excising tissue. In an embodiment, the device comprises an outer sleeve. In addition, the device comprises an inner tubular member slidingly received within the outer sleeve. Further the device comprises a cutting head connected to a distal end of the inner tubular, wherein the cutting head comprises at least three aims extending axially from the inner tubular. Still further, the device has an open position in which the cutting head extends from the outer sleeve, and a closed position in which the cutting head is at least partially disposed within the sleeve.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application claims benefit of U.S. provisional application Ser. No. 60/704,224 filed Jul. 29, 2005, and entitled “Device for Resecting Spinal Tissue,” which is hereby incorporated herein by reference in its entirety. This application also claims benefit of U.S. provisional application Ser. No. 60/747,166 filed May 12, 2006, and entitled “Percutaneous Tissue Excision Devices and Methods,” which is hereby incorporated herein by reference in its entirety.
  • STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT
  • Not Applicable.
  • BACKGROUND Field of the Invention
  • The present invention relates generally to minimally invasive methods, devices and systems for treating spinal disorders using imaging guidance. More particularly, the present invention relates to devices and methods to reduce stenosis and increase the cross-sectional area of the spinal canal available for the spinal cord. Still more particularly, the present invention relates to devices and methods to percutaneously excise portions of an enlarged ligamentum flavum.
  • Field of the Invention
  • The present invention relates generally to a minimally invasive method, device and system for treating spinal disorders using imaging guidance. More particularly, this invention relates to devices and tools that provide a percutaneous portal to tissues in a region of interest. Still more particularly, this invention relates to devices and tools that provide percutaneous portals to tissue through bone.
  • Background of the Invention
  • The vertebral column (spine, spinal column, backbone) forms the main part of the axial skeleton, provides a strong yet flexible support for the head and body, and protects the spinal cord disposed in the vertebral canal, which is formed within the vertebral column. The vertebral column comprises a stack of vertebrae with an intervertebral disc between adjacent vertebrae. The vertebrae are stabilized by muscles and ligaments that hold the vertebrae in place and limit the movements of the vertebrae.
  • As illustrated in FIG. 1, each vertebra 10 includes a vertebral body 12 that supports a vertebral arch 14. A median plane 210 generally divides vertebra 10 into two substantially equal lateral sides. Vertical body 12 has the general shape of a short cylinder and is anterior to the vertebral arch 14. The vertebral arch 14 together with vertebral body 12 encloses a space termed the vertebral foramen 15. The succession of vertebral foramen 15 in adjacent vertebrae 10 along the vertebral column define the vertebral canal (spinal canal), which contains the spinal cord.
  • Vertebral arch 14 is formed by two pedicles 24 which project posteriorly to meet two laminae 16. The two laminae 16 meet posteriomedially to form the spinous process 18. At the junction of pedicles 24 and laminae 16, six processes arise. Two transverse processes 20 project posterolaterally, two superior articular processes 22 project generally superiorly and are positioned superior to two inferior articular processes 25 that generally project inferiorly.
  • The vertebral foramen 15 is generally an oval shaped space that contains and protects the spinal cord 28. Spinal cord 28 comprises a plurality of nerves 34 surrounded by cerebrospinal fluid (CSF) and an outermost sheath/membrane called the dural sac 32. The CSF filled dural sac 32 containing nerves 34 is relatively compressible. Posterior to the spinal cord 28 within vertebral foramen 15 is the ligamentum flavum 26. Laminae 16 of adjacent vertebral arches 14 in the vertebral column are joined by the relatively broad, elastic ligamentum flavum 26.
  • In degenerative conditions of the spine, narrowing of the spinal canal (stenosis) can occur. Lumbar spinal stenosis is often defined as a dural sac cross-sectional area less than 100 mm2 or an anteroposterior (AP) dimension of the canal of less than 10-12 mm for an average male.
  • The source of many cases of lumbar spinal stenosis is thickening of the ligamentum flavum. Spinal stenosis may also be caused by subluxation, facet joint hypertrophy, osteophyte formation, underdevelopment of spinal canal, spondylosis deformans, degenerative intervertebral discs, degenerative spondylolisthesis, degenerative arthritis, ossification of the vertebral accessory ligaments and the like. A less common cause of spinal stenosis, which usually affects patients with morbid obesity or patients on oral corticosteroids, is excess fat in the epidural space. The excessive epidural fat compresses the dural sac, nerve roots and blood vessels contained therein and resulting in back and leg pain and weakness and numbness of the legs. Spinal stenosis may also affect the cervical and, less commonly, the thoracic spine.
  • Patients suffering from spinal stenosis are typically first treated with exercise therapy, analgesics and anti-inflammatory medications. These conservative treatment options frequently fail. If symptoms are severe, surgery is required to decompress the canal and nerve roots.
  • In some conventional approaches to correct stenosis in the lumbar region, an incision is made in the back and the muscles and supporting structures are stripped away from the spine, exposing the posterior aspect of the vertebral column. The thickened ligamentum flavum is then exposed by removal of a portion of the vertebral arch, often at the laminae, covering the back of the spinal canal (laminectomy). The thickened ligamentum flavum ligament can then be excised by sharp dissection with a scalpel or punching instruments such as a Kerison punch that is used to remove small chips of tissue. The procedure is performed under general anesthesia. Patients are usually admitted to the hospital for approximately five to seven days depending on the age and overall condition of the patient. Patients usually require between six weeks and three months to recover from the procedure. Further, many patients need extended therapy at a rehabilitation facility to regain enough mobility to live independently.
  • Much of the pain and disability after an open laminectomy results from the tearing and cutting of the back muscles, blood vessels, supporting ligaments, and nerves that occurs during the exposure of the spinal column. Also, because the spine stabilizing back muscles and ligaments are stripped and detached from the spine during the laminectomy, these patients frequently develop spinal instability post-operatively.
  • Minimally invasive techniques offer the potential for less post-operative pain and faster recovery compared to traditional open surgery. Percutaneous interventional spinal procedures can be performed with local anesthesia, thereby sparing the patient the risks and recovery time required with general anesthesia. In addition, there is less damage to the paraspinal muscles and ligaments with minimally invasive techniques, thereby reducing pain and preserving these important stabilizing structures.
  • Various techniques for minimally invasive treatment of the spine are known. Microdiscectomy is performed by making a small incision in the skin and deep tissues to create a portal to the spine. A microscope is then used to aid in the dissection of the adjacent structures prior to discectomy. The recovery for this procedure is much shorter than traditional open discectomies. Percutaneous discectomy devices with fluoroscopic guidance have been used successfully to treat disorders of the disc but not to treat spinal stenosis or the ligamentum flavum directly. Arthroscopy or direct visualization of the spinal structures using a catheter or optical system have also been proposed to treat disorders of the spine including spinal stenosis, however these devices still use miniaturized standard surgical instruments and direct visualization of the spine similar to open surgical procedures. These devices and techniques are limited by the small size of the canal and these operations are difficult to perform and master. In addition, these procedures are painful and often require general anesthesia. Further, the arthroscopy procedures are time consuming and the fiber optic systems are expensive to purchase and maintain.
  • Still further, because the nerves of the spinal cord pass through the spinal canal directly adjacent to and anterior to the ligamentum flavum, any surgery, regardless of whether open or percutaneous, includes a risk of damage to the nerves of the spinal cord.
  • Hence, it remains desirable to provide simple methods, techniques, and devices for treating spinal stenosis and other spinal disorders without requiring open surgery. It is further desired to provide a system whereby the risk of damage to the dural sac containing the spinal nerves may be reduced.
  • SUMMARY OF THE INVENTION
  • These and other needs in the art are addressed in one embodiment by a device for excising tissue. In an embodiment, the device comprises an outer sleeve. In addition, the device comprises an inner tubular member slidingly received within the outer sleeve. Further the device comprises a cutting head connected to a distal end of the inner tubular, wherein the cutting head comprises at least three arms extending axially from the inner tubular. Still further, the device has an open position in which the cutting head extends from the outer sleeve, and a closed position in which the cutting head is at least partially disposed within the sleeve.
  • These and other needs in the art aye addressed in another embodiment by a method for treating stenosis in a spine of a patient having a median plane, the spine including a spinal canal having a posterior surface, a dural sac and an epidural space between the posterior surface and dural sac, the location of the stenosis determining a region of interest in the spine. In an embodiment, the method comprises the step of positioning a tissue excision device adjacent the region of interest, wherein the tissue excision device comprises an outer sleeve, an inner tubular member slidingly received within the outer sleeve, and a cutting head connected to a distal end of the inner tubular, the cutting head including at least three arms extending axially from the inner tubular. In addition, the method comprises the step of opening the tissue excision device by extending the cutting head from the outer sleeve. Further, the method comprises the step of inserting the tissue excision device into tissue in the region of interest. Still further, the method comprises the step of closing the tissue excision device by advancing the outer sleeve over the cutting head. Moreover, the method comprises the step of retracting the tissue excision device from the tissue in the region of interest.
  • These and other needs in the art are addressed in another embodiment by a kit for performing a procedure on a spine, the spine including an epidural space containing a dural sac. In an embodiment, the kit comprises an insertion member for accessing the epidural space. In addition, the kit comprises a volume of a contrast medium adapted to be inserted into the epidural space by the insertion member and expanded so as to compress a portion of the thecal sac and provide a safety zone within the epidural space. Further, the kit comprises a tissue excision device comprising an outer sleeve, an inner tubular member slidingly received within the outer sleeve, a cutting head connected to a distal end of the inner tubular, wherein the cutting head comprises at least three arms extending axially from the inner tubular.
  • Thus, embodiments described herein comprise a combination of features and advantages intended to address various shortcomings associated with certain prior devices. The various characteristics described above, as well as other features, will be readily apparent to those skilled in the art upon reading the following detailed description of the preferred embodiments, and by referring to the accompanying drawings. It should be appreciated by those skilled in the art that the conception and the specific embodiments disclosed may be readily utilized as a basis for modifying or designing other structures for carrying out the same purposes of the embodiments described herein. It should also be realized by those skilled in the art that such equivalent constructions do not depart from the spirit and scope of the invention as set forth in the appended claims.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • For a more complete understanding of the invention, reference is made to the accompanying drawings, wherein:
  • FIG. 1 is cross-section of the spine viewed from the space between two vertebrae, showing the upper surface of one vertebra and the spinal canal with the dural sac and a normal (un-stenosed) ligamentum flavum therein;
  • FIG. 2 is an illustration of the same section as FIG. 1, showing the spinal canal with the dural sac and a thickened ligamentum flavum therein;
  • FIG. 3 is an enlarged cross-section of a vertebral foramen, showing a safety zone created by compression of the dural sac;
  • FIG. 4 is the cross-section of FIG. 3, showing a tissue excision tool positioned in the ligamentum flavum;
  • FIGS. 5-9 are a series of illustrations showing tissue excision by a tissue-excision tool constructed in accordance with a first embodiment of the invention;
  • FIGS. 10-14 are a series of illustrations showing tissue excision by a tissue-excision tool constructed in accordance with a second embodiment of the invention;
  • FIGS. 15 and 17 are sequential illustrations showing removal of tissue from a tissue-excision tool by a tissue-removal device constructed in accordance with an embodiment of the invention;
  • FIGS. 16 and 18 are end views of the tissue-removal device of FIGS. 15 and 17, respectively;
  • FIG. 19 shows an alternative embodiment of a grasping needle with a corkscrew shape;
  • FIG. 20 is a perspective view of a tissue-excision tool constructed in accordance with a third embodiment of the invention;
  • FIGS. 21 and 22 are enlarged cross-sectional and perspective views, respectively, of the grasping device of FIG. 20 in its retracted position;
  • FIGS. 23 and 24 are enlarged cross-sectional and perspective views, respectively, of the grasping device of FIG. 20 in its extended position;
  • FIG. 25 is a schematic illustration of one embodiment of a double-ended ligament anchor being deployed in a ligamentum flavum;
  • FIG. 26 shows the device of FIG. 25 after full deployment;
  • FIG. 27 is a perspective view of an entire tool constructed in accordance with preferred embodiments;
  • FIG. 28 is an enlarged cross-sectional view of the distal tip of the tool of FIG. 27 with the aperture partially opened;
  • FIG. 29 is a cross-sectional view of the handle end of the tool of FIG. 27;
  • FIG. 30 is cross-section of another embodiment of a tissue-removal device;
  • FIG. 31 is a perspective view of the distal portion of an embodiment of a tissue excision device in an open position;
  • FIG. 32 is an end-view of the tissue excision device of FIG. 31;
  • FIG. 33 is a perspective view of the tissue excision device of FIG. 31 transitioning from the open position to the closed position; and
  • FIGS. 34 and 35 are sequential schematic illustrations showing the excision of tissue by the tissue excision tool illustrated in FIG. 31.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • The following discussion is directed to various embodiments of the invention. Although one or more of these embodiments may be preferred, the embodiments disclosed should not be interpreted, or otherwise used, as limiting the scope of the disclosure, including the claims. In addition, one skilled in the art will understand that the following description has broad application, and the discussion of any embodiment is meant only to be exemplary of that embodiment, and not intended to intimate that the scope of the disclosure, including the claims, is limited to that embodiment
  • For purposes of this discussion, the x-, y-, and z-axes are shown in FIGS. 1 and 3 to aid in understanding the descriptions that follow. The x-, y-, and z-axes have been assigned as follows. The x-axis is perpendicular to the longitudinal axis of the vertebral column and perpendicular to the coronal/frontal plane (i.e., x-axis defines anterior vs. posterior relationships). The y-axis runs substantially parallel to the vertebral column and perpendicular to the transverse plane (i.e., y-axis defines superior vs. inferior relationships). The z-axis is perpendicular to the longitudinal axis of the vertebral column and perpendicular to the median/midsagittal plane (i.e., z-axis defines the lateral right and left sides of body parts). The set of coordinate axes (x-, y-, and z-axes) are consistently maintained throughout although different views of vertebrae and the spinal column may be presented.
  • It is to be understood that the median/midsagittal plane passes from the top to the bottom of the body and separates the left and the right sides of the body, and the spine, into substantially equal halves (e.g., two substantially equal lateral sides). Further, it is to be understood that the frontal/coronal plane essentially separates the body into the forward (anterior) half and the back (posterior) half, and is perpendicular to the median plane. Still further, it is to be understood that the transverse plane is perpendicular to both the median plane and coronal plane and is the plane which divides the body into an upper and a lower half.
  • The Spinal Canal and Spinal Stenosis
  • Referring again to FIG. 1, vertebral foramen 15 contains a portion of the ligamentum flavum 26, spinal cord 28, and an epidural space 27 between ligamentum flavum 26 and spinal cord 28. Spinal cord 28 comprises a plurality of nerves 34 surrounded by cerebrospinal fluid (CSF) contained within dural sac 32. Nerves 34 normally comprise only a small proportion of the dural sac 32 volume. Thus, CSF filled dural sac 32 is somewhat locally compressible, as localized pressure causes the CSF to flow to adjacent portions of the dural sac. Epidural space 27 is typically filled with blood vessels and fat. The posterior border of the normal epidural space 27 generally defined by the ligamentum flavum 26, which is shown in its normal, non-thickened state in FIG. 1.
  • FIG. 2 illustrates a case of spinal stenosis resulting from a thickened ligamentum flavum 26. Since vertebral foramen 15 is defined and surrounded by the relatively rigid bone its volume is substantially constant. Thus, thickening of ligamentum flavum 26 within vertebral foramen 15 can eventually result in compression of spinal cord 28. In particular, the thickened ligamentum flavum 26 may exert a compressive force on the posterior surface of dural sleeve 32. In addition, thickening of ligamentum flavum 26 may compress the blood vessels and fat occupying epidural space 27.
  • Compression of spinal cord 28, particularly in the lumbar region, may result in low back pain as well as pain or abnormal sensations in the legs. Further, compression of the blood vessels in the epidural space 27 that houses the nerves of the cauda equina may result in ischemic pain termed spinal claudication.
  • In order to relieve the symptoms associated with a thickened or enlarged ligamentum flavum 26, methods, techniques, and devices described herein may be employed to reduce the compressive forces exerted by the thickened ligamentum flavum on spinal cord 28 and the blood vessels in epidural space 27 (ergo, decompress spinal cord 28 and blood vessels in epidural space 27). In particular, compressive forces exerted by the thickened/enlarged ligamentum flavum 26 may be reduced by embodiments of a minimally invasive ligament decompression (MILD) procedure described herein. In some embodiments, the MILD procedure may be performed percutaneously to reduce the size of ligamentum flavum 26 by excising portions of ligamentum flavum 26. In particular, in some embodiments of the MILD procedure, the ligamentum flavum 26 is accessed, cut and removed ipsilaterally (i.e., on the same side of vertebral arch 14) by a percutaneous cranial-caudal approach. Such an embodiment of the MILD procedure may be described hereinafter as Ipsilateral Approach MILD Procedure (ILAMP).
  • Creation of Safety Zone
  • As shown in FIGS. 1 and 2, ligamentum flavum 26 is posteriorly apposed to spinal cord 28. Thus, placement of tools within ligamentum flavum 26 to excise portions of ligamentum flavum 26 creates a risk of for inadvertent damage to the spinal cord 28, dural sac 32, and/or nerves 34. Thus, in preferred embodiments of the procedures described herein, prior to insertion of tissue removal tools into the ligamentum flavum 26, a gap is advantageously created between ligamentum flavum 26 and spinal cold 28 to provide a safety zone between ligamentum flavum 26 and spinal cord 28.
  • FIG. 3 illustrates an enlarged cross-sectional view of a vertebral foramen 15 within a vertebra. Vertebral foramen 15 includes epidural space 27 and spinal cord 28 containing nerves 34 and CSF within dural sac 32. Further, a thickened/enlarged ligamentum flavum 26 extends into vertebral foramen 15. To reduce the risk of damage to dural sac 32 and spinal cord 28, a safety zone 40 is created between ligamentum flavum 26 and dural sac 32.
  • As previously described, spinal cord 28 comprises nerves 34 surrounded by CSF and is contained within dural sac 32. Since more than 90% of the volume of dural sac 32 in the lumbar region is filled by CSF, dural sac 32 is highly compressible. Thus, even when stenosis is causing compression of spinal cord 28, in most cases it is possible to temporarily compress spinal cord 28 further. Thus, according to preferred embodiments, dural sac 32 is further compressed in the region of interest by injecting a fluid into epidural space 27 to create safety zone 40. The presence of the injected fluid comprising safety zone 40 gently applies an additional compressive force to the outer surface of dural sac 32 so that at least a portion of the CSF within dural sac 32 is forced out of dural sac 32 in the region of interest, resulting in safety zone 40 between dural sac 32 and ligamentum flavum 26.
  • According to some embodiments, dural sac 32 is compressed by injecting a standard radio-opaque non-ionic myelographic contrast medium or other imagable or non-imagable medium into epidural space 27 in the region of interest. This is preferably accomplished with a percutaneous injection. Sufficient injectable fluid is preferably injected to displace the CSF out of the region of interest and compress dural sac 32 to at least a desired degree. The injected medium is preferably substantially contained within the confines of epidural space 27 extending to the margins of the dural sac 32. The epidural space is substantially watertight and the fatty tissues and vascularization in epidural space 27, combined with the viscous properties of the preferred fluids, serve to substantially maintain the injected medium in the desired region of interest. This novel method for protecting spinal cord 28 column may be referred to hereinafter as “contrast-guided dural protection.”
  • Once a safety zone 40 has been created, a tool 100, such as the tissue excision devices and tissue retraction devices described below, may be inserted into the ligamentum flavum 26, as illustrated in FIG. 4. Tool 100 may comprise any suitable device, tool, or instrument for relieving stenosis caused by the thickened/enlarged ligamentum flavum 26 including without limitation, embodiments of tissue excision devices and tissue retraction devices described in more detail below. Further, as best illustrated in FIG. 4, tool 100 is positioned in the ligamentum flavum 26 on the opposite side of median plane 210 as tool 100 percutaneously accesses the body, such that tool 100 crosses median plane 210. In another embodiment, tool 100 is inserted and positioned in the ligamentum flavum 26 on the same side (ipsilateral) of median plane 210 as tool 100 percutaneously accesses the body, such that tool 100 does not cross median plane 210.
  • While it is preferred that the tip of tool 100 remain within ligamentum flavum 26 as shown, the presence of safety zone 40 reduces the likelihood that dural sac 32 will be damaged, even if the tool breaks through the anterior surface of ligamentum flavum 26.
  • For insertion of tool 100, a fluoroscopic window of access (FWA) is defined by the inferior margin of the lamina (contra lateral to the point of instrument entry in the soft tissues) and the dorsal margin of the contrast material that defines the epidural space. This FWA is roughly orthogonal to the long axis of the cutting instrument, which parallels the inferior surface of the lamina as in FIG. 4. The fluoroscopic plane of projection is preferably but not necessarily oriented 20-40 degrees from normal (AP projection).
  • Because the present techniques are preferably performed percutaneously, certain aspects of the present invention may be facilitated by imaging. In this context, the spine can be imaged using any suitable technology, including without limitation, 2D fluoroscopy, 3D fluoroscopy, CT, MRI, ultrasound or with direct visualization with fiber optic or microsurgical techniques. Stereotactic or computerized image fusion techniques are also suitable. Fluoroscopy is currently particularly well-suited to the techniques disclosed herein. Fluoroscopic equipment is safe and easy to use, readily available in most medical facilities, relatively inexpensive. In a typical procedure, using direct biplane fluoroscopic guidance and local anesthesia, epidural space 27 is accessed for injection of contrast media adjacent to the surgical site.
  • If the injected medium is radio-opaque, as are for example myelographic contrast media, the margins of the expanded epidural space will be readily visible using fluoroscopy or CT imaging. Thus, the safety zone created by the present contrast-guided dural compression techniques can reduce the risk of damage to the spinal cord during procedures to remove or displace portions of the ligamentum flavum and/or laminae in order to treat spinal stenosis.
  • Injectable Medium
  • If desired, the injected medium can be provided as a re-absorbable water-soluble gel, so as to better localize safety zone 40 at the site of surgery and reduce leakage of this protective layer from the vertebral/spinal canal. An injectable gel is a significant improvement on prior epidural injection techniques. The gel is preferably substantially more viscid than conventional contrast media and the relatively viscid and/or viscous gel preferably tends to remain localized at the desired site of treatment as it does not spread as much as standard liquid contrast media that are used in epidurography. This may result in more uniform compression of dural sac 32 and less leakage of contrast out of the vertebral/spinal canal. In addition, preferred embodiments of the gel are re-absorbed more slowly than conventional contrast media, allowing for better visualization during the course of the surgical procedure.
  • In some embodiments, a contrast agent can be included in the gel itself, so that the entire gel mass is imagable. In other embodiments, an amount of contrast can be injected first, followed by the desired amount of gel, or an amount of gel can be injected first, followed by the desired amount of contrast. In this case, the contrast agent is captured on the surface of the expanding gel mass, so that the periphery of the mass is imagable.
  • Any standard hydrophilic-lipophilic block copolymer (Pluronic) gel such as are known in the art would be suitable and other gels may be used as the injectable medium. The gel preferably has an inert base. In certain embodiments, the gel material is liquid at ambient temperatures and can be injected through a small bore (such as a 27 gauge needle). The gel then preferably becomes viscous when warmed to body temperature after being injected. The viscosity of the gel can be adjusted through the specifics of the preparation. The gel or other fluid is preferably sufficiently viscid or viscous at body temperature to compress and protect the thecal sac in the manner described above and to remain sufficiently present in the region of interest for at least about 30 minutes. Thus, in some embodiments, the injected gel attains a viscosity that is two, three, six or even ten times that of the fluids that are typically used for epidurograms.
  • In certain embodiments, the injected medium undergoes a reversible change in viscosity when warmed to body temperature so that it can be injected as a low-viscosity fluid, thicken upon injection into the patient, and be returned to its low-viscosity state by cooling. In these embodiments, the injected medium is injected as desired and thickens upon warming, but can be removed by contacting it with a heat removal device, such as an aspirator that has been provided with a cooled tip. As a result of localized cooling, the gel reverts to its initial non viscous liquid state and can be easily suctioned up the cooled needle or catheter.
  • An example of a suitable contrast medium having the desired properties is Omnipaque® 240 available from Nycomed, New York, which is a commercially available non-ionic iodinated myelographic contrast medium. Other suitable injectable media will be known to those skilled in the art. Because of the proximity to spinal cord 28 and spinal nerves 34, it is preferred not to use ionic media in the injectable medium. The preferred compositions are reabsorbed relatively rapidly after the procedure. Thus any residual gel compression on dural sac 32 after the MILD procedure dissipates relatively quickly. For example, in preferred embodiments, the gel would have sufficient viscosity to compress dural sac 32 for thirty minutes, and sufficient degradability to be substantially reabsorbed within approximately two hours.
  • The injected contrast medium further may further include one or more bioactive agents. For example, medications such as those used in epidural steroid injection (e.g. Depo medrol, Celestone Soluspan) may be added to the epidural gel to speed healing and reduce inflammation, scarring and adhesions. The gel preferably releases the steroid medication slowly and prolongs the anti-inflammatory effect, which can be extremely advantageous. Local anesthetic agents may also be added to the gel. This prolongs the duration of action of local anesthetic agents in the epidural space to prolong pain relief during epidural anesthesia. In this embodiment the gel may be formulated to slow the reabsorption of the gel.
  • The present gels may also be used for epidural steroid injection and perineural blocks for management of acute and chronic spinal pain. Thrombin or other haemostatic agents can be added if desired, so as to reduce the risk of bleeding.
  • In some embodiments, the gel may also be used as a substitute for a blood patch if a CSF leak occurs. The gel may also be used as an alternative method to treat lumbar puncture complications such as post-lumbar puncture CSF leak or other causes of intracranial hypotension. Similarly, the gel may be used to patch postoperative CSF leaks or dural tears. If the dural sac were inadvertently torn or cut, then gel could immediately serve to seal the site and prevent leakage of the cerebral spinal fluid.
  • Percutaneous Tissue Excision
  • After safety zone 40 has been created, the margins of epidural space 27 are clearly demarcated by the injected medium and can be visualized radiographically if an imagable medium has been used. As mentioned above, percutaneous procedures can now safely be performed on ligamentum flavum 26 and/or surrounding tissues without injuring dural sac 32 or nerves 34 and the spinal canal can be decompressed using any of several techniques. Suitable decompression techniques include removal of tissue from the ligamentum flavum, laminectomy, laminotomy, and ligament retraction and anchoring.
  • In some embodiments, all or a portion of ligamentum flavum 26 and/or lamina 16 are excised using a percutaneous tissue excision device or probe 100, which may hereinafter be referred to as the MILD device. As shown schematically in FIG. 4, a device 100 may be placed parallel to the posterior and lateral margin of the safety zone 40 with its tip in the ligamentum flavum 26.
  • Preferred embodiments of the present tissue excision devices and techniques can take several forms. In the discussion below, the distal ends of the tools are described in detail. The construction of the proximal ends of the tools, and the means by which the various components disclosed herein are assembled and actuated, will be known and understood by those skilled in the art.
  • By way of example, in the embodiment shown in FIG. 4 and as illustrated in FIG. 5, device 100 maybe a coaxial excision system 50 with a sharpened or blunt tip that is placed obliquely into the thickened ligamentum flavum 26 posterior to safety zone 40 under fluoroscopic guidance. The needle is preferably placed parallel to the posterior margin of the canal. Excision system 50 is preferably manufactured from stainless steel, titanium or other suitable durable biocompatible material. As shown in FIGS. 5-10, an outer needle or cannula 51 has an opening or aperture 52 on one side that is closed during insertion by an inner occluding member 54. Aperture 52 is readily visible under imaging guidance. Once needle 51 is positioned in the ligamentum flavum or other tissue removal site, inner occluding member 54 is removed or retracted so that it no longer closes aperture 52 (FIG. 6). Aperture 52 is preferably oriented away from the epidural space so as to further protect the underlying structures from injury during the surgical procedure. If it was not already present in the tool, a tissue-engaging means 56 is inserted through outer needle 51 to aperture 52 so that it contacts adjacent tissue, e.g., the ligamentum flavum, via aperture 52.
  • Tissue-engaging means 56 may be a needle, hook, blade, tooth or the like, and preferably has at least one flexible barb or hook 58 attached to its shaft. The barb 58 or barbs may extend around approximately 120 degrees of the circumference of the shaft. Barbs 58 are preferably directed towards the proximal end of the tool. When tissue-engaging means 56 is retracted slightly, barbs 58 allow it to engage a segment of tissue. Depending on the configuration of barbs 58, the tissue sample engaged by tissue-engaging means 56 may be generally cylindrical or approximately hemispherical. Once needle 56 has engaged the desired tissue, inner occluding means 54, which is preferably provided with a sharpened distal edge, is advanced so that it cuts the engaged tissue section or sample loose from the surrounding tissue. Hence occluding means 54 also functions as a cutting means in this embodiment. In alternative embodiments, such as FIGS. 10-14 discussed below, a cylindrical outer cutting element 60 may extended over outer needle 51 and used in place of occluding member 54 to excise the tissue sample.
  • Referring still to FIGS. 5-9, once the tissue sample has been cut, tissue-engaging needle 56 can be pulled back through outer needle 51 so that the segment of tissue can be retrieved and removed from the barbs (FIG. 8). The process or engaging and resecting tissue may be repeated (FIG. 9) until the canal is adequately decompressed.
  • Referring briefly to FIGS. 10-14, in other embodiments, a tissue-engaging hook 64 can be used in place of needle 56 and an outer cutting member 60 can be used in place of inner occluding member 54. Hook 64 may comprise a length of wire that has been bent through at least about 270°, more preferably through 315°, and still more preferably through about 405°. Alternatively or in addition, hook 64 may comprise Nitinol™, or any other resilient metal that can withstand repeated elastic deflections. In the embodiment illustrated, hook 64 includes at least one barb 58 at its distal end. In some embodiments, hook 64 is pre-configured in a curvilinear shape and is retained within tool 100 by outer cutting member 60. When cutting member 60 is retracted, the curved shape of hook 64 urges its outer end to extend outward through aperture 52. If desired, hook 64 can be advanced toward the distal end of tool 100, causing it to extend farther into the surrounding tissue. In some embodiments, hook 64 is provided with a camming surface 66. Camming surface 66 beats on the edge of opening 52 as hook 64 is advance or retracted and thereby facilitates retraction and retention of hook 64 as it is retracted into the tool. In these embodiments, hook 64 may not extend through aperture 52 until it has been advanced sufficiently for camming surface 66 to clear the edge of the opening. Hook 64 may alternatively be used in conjunction with an inner occluding member 54 in the manner described above. As above, hook 64 can be used to retrieve the engaged tissue from the distal end of the tool.
  • In still other embodiments, the tissue-engaging means may comprise a hook or tooth or the like that engages tissue via aperture 52 by being rotated about the tool axis. In such embodiments (not shown) and by way of example only, the tissue-engaging means could comprise a partial cylinder that is received in outer cannula 51 and has a serrated side edge. Such a device can be rotated via a connection with the tool handle or other proximal device. As the serrated edge traverses aperture 52 tissue protruding into the tool via the aperture is engaged by the edge, whereupon it can be resected and retrieved in the manner disclosed herein.
  • In preferred embodiments, the working tip of tool 100 remains within the ligamentum flavum and does not penetrate the safety zone 40. Nonetheless, safety zone 40 is provided so that even an inadvertent penetration of the tool into the epidural space will not result in damage to the thecal sac. Regardless of the means by which the tissue is engaged and cut, it is preferably retrieved from the distal end of the tool so that additional tissue segments can be excised without requiring that the working tip of the tool be repositioned. A tissue-removal device such as that described below is preferably used to remove the tissue from the retrieval device between each excision.
  • Tissue Removal
  • Each piece of tissue may be removed from barbs 58 by pushing tissue-engaging means 56 through an opening that is large enough to allow passage of the flexible barbs and supporting needle but smaller than the diameter of the excised tissue mass. This pushes the tissue up onto the shaft, where it can be removed with a slicing blade or the like or by sliding the tissue over the proximal end of the needle. Alternatively, needle 56 can be removed and re-inserted into the tool for external, manual tissue removal.
  • It is expected that in some embodiments, approximately 8-10 cores or segments of tissue will be excised and pushed up the shaft towards the hub during the course of the procedure. Alternatively, a small blade can be used to split the tissue segment and thereby ease removal of the segment from the device. If desired, a blade for this purpose can be placed on the shaft of needle 56 proximal to the barbs.
  • In an exemplary embodiment, shown in FIGS. 15-18, the tissue removal device may include a scraper 120 that includes a keyhole slot having a wide end 122 and a narrow end 124. To remove a tissue sample from needle 56 or hook 64, the tissue-engaging device with a mass of excised tissue 110 thereon can be retracted (pulled toward the proximal end of the tool) through wide end 122 of the slot and then re-inserted (pushed toward the distal end of the tool) through narrow end 124 of the slot. Narrow end 124 is large enough to allow passage of the barbed needle, but small enough to remove the tissue mass as the needle passes through. The removed tissue can exit the tool through an opening 113 in the tool body. By shuttling the tissue-engaging device through scraper 120 in this manner, each excised segment of tissue 110 can be removed from the device, readying the device for another excision.
  • In an alternative embodiment shown in FIG. 30, the tissue removal device may be constructed such that tissue is removed from the tissue-engaging device by retracting the tissue-engaging device through narrow end 124 of the slot. As above, narrow end 124 is large enough to allow passage of the shaft of the tissue-engaging device, but small enough to remove the tissue mass as the needle passes through. If the tissue-engaging device is constructed of a tough material, the barbs or the like will cut through the tissue and/or deform and release the tissue. As above, the removed tissue can exit the tool through an opening 113 in the tool body. By shuttling the tissue-engaging device through scraper 120 in this manner, each excised segment of tissue 110 can be removed from the device, readying the device for another excision.
  • In another alternative embodiment (not shown) an alternative mechanism for removing the tissue segment from needle 56 includes an adjustable aperture in a disc. After the tissue-bearing needle is pulled back through the aperture, the aperture is partially closed. Needle 56 and flexible hooks 58 then can pass through the partially closed aperture but the larger cylinder of tissue cannot. Thus the tissue segment is pushed back onto the shaft. The tissue segment can either be pulled off the proximal end of the shaft or cut off of it. A small blade may be placed just proximal to the barbs to help cut the tissue segment off the shaft. The variable aperture can formed by any suitable construction, including a pair of metal plates with matching edges that each define one half of a central opening. The two pieces may be held apart by springs. The aperture may be closed by pushing the two edges together. In other embodiments, this process can be mechanically automated by using a disc or plate with an opening that is adjustable by a variety of known techniques, including a slit screw assembly or flexible gaskets.
  • Alternative Tissue Excision Devices
  • Other cutting and/or grasping devices can be used in place of the system described above. For example, embodiments of the grasping mechanism include but are not limited to: needles with flexible barbs, needles with rigid barbs, corkscrew-shaped needles, and/or retaining wires. The corkscrew-shaped needle shown in FIG. 19 works by screwing into the ligamentum flavum in the manner that a corkscrew is inserted in a cork. After the screw engages a segment of tissue, outer cutting element 60 slides over the needle, cutting a segment of tissue in a manner similar to that of the previous embodiment. In some embodiments, the cutting element can be rotated as it cuts.
  • In other embodiments, shown in FIGS. 20-22, cannulated scalpel 51 houses a grasping device 70 that includes at least one pair of arcuate, closable arms 72. Closable arms 72 may be constructed in any suitable manner. One technique for creating closable arms is to provide a slotted sleeve 74, as shown. Slotted member 74 preferably comprises an elongate body 75 with at least one slot 76 that extends through its thickness but does not extend to either end of the body. Slot 76 is preferably parallel to the longitudinal axis of the sleeve. On either side of slot 76, a strip 77 is defined, with strips 77 being joined at each end of sleeve 74. It is preferred that the width of each strip 77 be relatively small. In some embodiments, it may be desirable to construct slotted member 74 from a portion of a hollow tube or from a rectangular piece that has been curved around a longitudinal axis. The inner edge of each strip that lies along slot 76 forms an opposing edge 78. The width of the piece is the total of the width of strips 77 and slot 76.
  • Advancing one end of sleeve 74 toward the other end of sleeve 74 causes each strip 77 to buckle or bend. If strips 77 are prevented from buckling inward or if they are predisposed to bend in the desired direction, they will bend outward, thereby forming arcuate arms 72, which extend through aperture 52 of cannulated scalpel 51, as shown in FIG. 21. As they move away from the axis of body 75, arms 72 move apart in a direction normal to the axis of body 75. Likewise, moving the ends of sleeve 74 apart causes arms 72 to straighten and to move together and inward toward the axis of the device, as shown in FIG. 22. As the arms straighten, opposing edges 78 close and a segment of tissue can be capture between them. Tissue within the grasping device may then be resected or anchored via the other mechanisms described herein.
  • Closable arms 72 may include on their opposing edges 78 ridges, teeth, or other means to facilitate grasping of the tissue. In other embodiments, edges 78 may be sharpened, so as to excise a segment of tissue as they close. In these embodiments, closable arms 72 may also be used in conjunction with a hook, barbed needle, pincers or the like, which can in turn be used to retrieve the excised segment from the device.
  • Once arms 72 have closed on the tissue, if arms 72 have not cut the tissue themselves, the tissue can be excised using a blade such as cutting element 60 above. The excised tissue can be removed from the inside of needle 51 using a tissue-engaging hook 64 or other suitable means. The process of extending and closing arms 72, excising the tissue, and removing it from the device can be repeated until a desired amount of tissue has been removed.
  • If desired, this cycle can be repeated without repositioning the device in the tissue. Alternatively, the tool can be rotated or repositioned as desired between excisions. It is possible to rotate or reposition the tool during an excision, but it is expected that this will not generally be preferred. Furthermore, it is expected that the steps of tissue excision and removal can be accomplished without breaching the surface of the ligament, i.e. without any part of the device entering the safety zone created by the injected fluid. Nonetheless, should the tool leave the working zone, the safety zone will reduce the risk of injury to the thecal sac.
  • Ligament Retraction
  • In some embodiments, the spinal canal may also be enlarged by retracting the ligamentum flavum, either with or without concurrent resection. Retraction is preferably but not necessarily performed after dural compression has been used to provide a safety zone. In addition, the dural compression techniques described above have the effect of pressing the ligamentum flavum back out of the spinal canal and thereby making it easier to apply a restraining means thereto.
  • Thus, in preferred embodiments, after a safety zone is created by epidural injection of contrast medium or gel, a retraction device 90 as shown in FIG. 23 is used to retract and compress the thickened soft tissues around the posterior aspect of the spinal canal, thereby increasing the available space for the dural sac and nerves. In the embodiment shown, retraction device 90 is a double-headed anchor that includes at least one distal retractable tissue-engaging member 91 and at least one proximal tissue-engaging member 92, each of which are supported on a body 94. Retraction device 90 is preferably constructed from an implantable, non-biodegradable material, such as titanium or stainless steel, but may alternatively be polymeric or any other, suitable material. In certain preferred embodiments, body 94 is somewhat flexible. In some instances, flexibility in body 94 may facilitate the desired engagement of barbs 91, 92. Barbs 91, 92 may comprise hooks, arms, teeth, clamps, or any other device capable of selectively engaging adjacent tissue. Barbs 91, 92 may have any configuration that allows them to engage the ligamentum flavum and/or surrounding tissue. Similarly, barbs 91, 92 may be covered, sheathed, pivotable, retractable, or otherwise able to be extended from a first position in which they do not engage adjacent tissue to a second position in which they can engage adjacent tissue.
  • FIG. 23 shows schematically the distal and proximal retractable arms 91, 92 of a preferred ligament anchor 90. The proximal end of the anchor preferably includes a threaded connector 96 or other releasable mechanism that attaches to a support rod 100. Ligament anchor 90 may be attached to a support shaft 112 and sheathed in a guide housing 114. The distal and proximal barbs 91, 92 are prevented by guide housing 114 from engaging surrounding tissue. Housing 102 is preferably a metal or durable plastic guide housing.
  • The distal end of the device is preferably positioned in the ligamentum flavum under fluoroscopic guidance. If desired, an accessway through the lamina may be provided using an anchored cannula or the like. The device is held in position by support shaft 112. Distal barbs 91 are unsheathed and optionally expanded by pulling back guide housing 102, as shown in FIG. 23. Distal barbs 91 are secured in the ligamentum flavum by pulling back on the support shaft 112. With barbs 91 engaging the tissue, the ligamentum flavum is retracted posteriorly by pulling back on support shaft 112. While maintaining traction on the now-retracted ligament, proximal barbs 92 are uncovered and expanded by retracting guide housing 114, as shown in FIG. 24. Barbs 92 are preferably positioned in the soft tissues 116 in the para-spinal region so that the device is firmly anchored behind the posterior elements of the spinal canal. Once the proximal end of the anchor is engaged, support shaft 112 may be detached from body 94 as shown in FIG. 24. In this manner, the posterior margin 95 of the ligamentum flavum can be held in a retracted position, thereby expanding the canal. The procedure can then be repeated on adjacent portions of the ligamentum flavum until it is sufficiently retracted.
  • In an alternative embodiment the proximal end of ligament anchor 90 may be adapted to engage the lamina. This may be accomplished by having the arm posterior to the lamina or by using the laminotomy and suturing the device to the lamina there. A knotted or knotless system or a suture plate can be used.
  • A second embodiment of the present method uses a plurality of retraction devices 90. In this embodiment, the retraction device is inserted through one lamina in an oblique fashion, paralleling the opposite lamina. After the distal anchor is deployed, the retraction device is pulled back and across the ligamentum flavum, thereby decompressing the opposite lateral recess of the spinal canal. This is repeated on the opposite side. This same device can also be deployed with a direct approach to the lateral recess with a curved guide housing.
  • While retraction device 90 is describe above as a double-headed anchor, it will be understood that other devices can be used. For example sutures, barbed sutures, staples or the like can be used to fasten the ligament in a retracted position that reduces stenosis.
  • Using the percutaneous methods and devices described herein, significant reductions of stenosis can be achieved. For example, a dural sac cross-sectional area less than 100 mm2 or an anteroposterior (AP) dimension of the canal of less than 10-12 mm in an average male is typically considered relative spinal stenosis. A dural sac cross-sectional area less than 85 mm2 in an average male is considered severe spinal stenosis. The present devices and techniques are anticipated to cause an increase in canal area of 25 mm2 per anchor or 50 mm2 total. With resection and/or retraction of the ligamentum flavum, the cross-sectional area of the dural sac can be increased by 10 mm2, and in some instances by as much as 20 mm2 or even 30 mm2. Likewise, the present invention can result in an increase of the anteroposterior dimension of the canal by 1 to 2 mm and in some instances by as much as 4 or 6 mm. The actual amount by which the cross-sectional area of the thecal sac and/or the anteroposterior dimension of the canal are increased will depend on the size and age of the patient and the degree of stenosis and can be adjusted by the degree of retraction of the ligament.
  • Mild
  • The minimally invasive ligament decompression (MILD) devices and techniques described herein allow spinal decompression to be performed percutaneously, avoiding the pain and risk associated with open surgery. Through the provision of a safety zone, the present devices and techniques offer reduced risk of spinal cord damage. In addition to improving nerve function, it is expected that decompression of the spinal canal in the manner described herein will result in improved blood flow to the neural elements by reducing the extrinsic pressure on the spinal vasculature. For these reasons, it is believed that spinal decompression performed according to the present invention will be preferable to decompression operations performed using currently known techniques.
  • Dural Shield
  • In some embodiments (not shown), a mechanical device such as a balloon or mechanical shield can also be used to create a protective guard or barrier between the borders of the epidural space and the adjacent structures. In one embodiment a durable expandable device is attached to the outside of the percutaneous laminectomy device, preferably on the side opposite the cutting aperture. The cutting device is inserted into the ligamentum flavum with the expandable device deflated. With the aperture directed away from the spinal canal, the expandable device is gently expanded via mechanical means or inflated with air or another sterile fluid, such as saline solution, via a lumen that may be within or adjacent to the body of the device. This pushes the adjacent vital structures clear from the cutting aperture of the device and simultaneously presses the cutting aperture into the ligament. As above, the grasping and cutting needles can then be deployed and operated as desired. The balloon does not interfere with tissue excision because it is located on the side opposite the cutting aperture. The cutting needle may be hemispherical (semi-tubular) in shape with either a straight cutting or a sawing/reciprocating blade or may be sized to be placed within the outer housing that separates the balloon from the cutting aperture.
  • In another embodiment, a self-expanding metal mesh is positioned percutaneously in the epidural space. First the epidural space is accessed in the usual fashion. Then a guide catheter is placed in the epidural space at the site of the intended surgical procedure. The mesh is preferably compressed within a guide catheter. When the outer cover of the guide catheter is retracted, the mesh expands in the epidural space, protecting and displacing the adjacent dural sheath. At the conclusion of the surgical procedure, the mesh is pulled back into the guide sheath and the assembly removed. The mesh is deformable and compresses as it is pulled back into the guide catheter, in a manner similar to a self-expanding mesh stent. There are many commercially available self-expanding stents approved and in use in other applications. However, using a self-expandable mesh as a device within the epidural space to protect and displace the thecal sac is novel.
  • Tissue Excision Devices
  • Embodiments of tissue excision tools, devices, and methods disclosed herein may take several forms and may be used in accordance with the MILD method described above, or used according to alternative procedures such as the ipsilateral approach minimally invasive ligament decompression procedure (ILAMP method) disclosed in U.S. application Ser. No. 11/382,349, which is hereby incorporated herein by reference in its entirety.
  • In the descriptions of the tissue excision devices below, the distal portions of the devices are described in detail, distal referring to positions that are relatively closer to the region of interest (e.g., the thickened portion of the ligamentum flavum to be decompressed). An exemplary embodiment of a proximal end for the tissue excision devices, including an actuation means, is also described below. However, it is to be understood that embodiments of tissue extraction devices described herein may be used with a variety of proximal ends and a variety of actuation means that are known and understood by those skilled in the art.
  • FIGS. 31-33 illustrate the distal portion of an embodiment of a tissue excision device 200 in an open position. Tissue excision device 200 comprises an inner tubular 230 coaxially disposed within and slidingly engaging an outer sleeve 210. Inner tubular 230 and sleeve 210 both share a central longitudinal axis 250. Sleeve 210 has an inner radius R1 (not shown), as measured from axis 250, and inner tubular 230 has an outer radius R2 (not shown), as measured from axis 250. In this embodiment, outer radius R2 is substantially the same or slightly less than inner radius R1 such that the outer surface of inner tubular 230 slidingly engages the inner surface of sleeve 210. Thus, sleeve 210 and inner tubular 230 are permitted to move axially (i.e., along axis 250) relative to each other. Sleeve 210 and inner tubular 230 may be formed from any suitable hollow bodies including without limitation a hypotube, cannula, or catheter. Although sleeve 210 and inner tubular 230 shown in FIGS. 31-33 generally have a circular cross-section, in general sleeve 210 and inner tubular 230 may have any suitable shape and cross-section including without limitation circular, oval, or rectangular.
  • Inner tubular 230 includes a central cavity or through bore 240 (FIG. 32) that runs the length of inner tubular 230. In addition, a cutting head 250 is disposed at the distal end of inner tubular 230. In this embodiment, cutting head 250 is formed integrally with inner tubular 230 such as by casting, molding, or machining. However, in different embodiments, cutting head 250 may be manufactured separately from inner tubular 230 and then fixed to the distal end of inner tubular 230 by any suitable means, such as welding.
  • Cutting head 250 preferably comprises a body 252 and three cutting arms 253 extending axially from body 252. In this embodiment, body 252 is integral with and essentially an extension of inner tubular 230. Since each arm 253 extends axially from body 252, each arm 253 may be described as including a fixed end 253 a integral with body 252 and a free end 253 b generally distal to body 252. Although each of the embodiments illustrated herein show cutting head 250 with three cutting arms 253, in different embodiments, cutting head 250 may include any suitable number of cutting arms 253 including without limitation two, three, four, or more.
  • Arms 253 are preferably integral with body 252 and inner tubular 230. In such embodiments, arms 253 may be formed by any suitable means including without limitation casting or molding, laser cutting, machining, or combinations thereof. However, it should be understood that arms 253 may alternatively be distinct components that are mechanically coupled to body 252 and inner tubular 230 generally at fixed end 253 a. In such alternative embodiments, arms 253 may be connected to inner tubular 230 by any suitable means, including without limitation welding, pins, or combinations thereof.
  • As best shown in FIG. 32, bore 240 is contiguous with a tissue-receiving space 263 defined between arms 253 inside cutting head 250. Tissue-receiving space 253 and bore 240 accommodate tissue excised by device 200 (e.g., excised pieces of ligamentum flavum). In some embodiments, one or more of the surfaces that define tissue-receiving space 263 inside cutting head 250 may include ridges, knurling or other textured surface features 264 thereon so as to further improve grasping and retention of tissue between arms 253. Textured surface feature 264 may be formed by any suitable means including without limitation knurling, sand blasting, bead blasting, plasma etching, or combinations thereof. Likewise, the inner surface of inner tubular 230 may be roughened to enhance the ability of inner bore 240 to enhance grasping and retention of excised portions of tissue.
  • Referring again to FIGS. 31-33, each arm 253 preferably terminates in a cutting or tissue-grasping member. In the embodiment shown in FIGS. 31 and 32, two aims terminate in cutters 251 and a third arm terminates in a sharp anchoring tip 154 that extends beyond the distal ends of cutters 251. Each cutting edge 251 preferably has a sharpened or beveled edge adapted to slice through tissue. In addition, in this embodiment, anchoring tip 254 includes a tissue grasping member 257 that extends radially inward and helps grasp tissue and retain tissue within tissue-receiving space 263. In this embodiment, tissue grasping member 257 is a tooth. However, in different embodiments, one or more tissue grasping members may comprise teeth, barbs, or the like. Tooth 257 preferably has sharpened edges to enhance cutting of tissue. In general, arms 253 may be any desired length.
  • Cutting head 250 is constructed so that arms 253 can be brought together so as to grasp tissue therebetween, termed herein as a “closed position”, and moved apart so as to release tissue and/or allow the entry of tissue between arms 253, termed herein as an “open position”. As shown in FIGS. 31 and 32, cutting head 250 is in an open position. Specifically when cutting head 250 is in an open position, cutting head 250 is extended from sleeve 210 and free ends 253 b of each arm 253 are radially spaced apart. Consequently, any tissue within tissue-receiving space 263 is not pinched or firmly grasped by arms 253 and tissue is allowed to enter tissue-receiving space 263 via the gap between free ends 253 b of arms 253.
  • Referring now to FIGS. 31 and 33, cutting head 250 is transitioned to a closed position by advancing sleeve 210 axially relative to cutting head 250 toward cutting ends 253 b of arms 253 in the direction of arrow 270. Specifically, each arm 253 preferably includes a frustoconical chamfer 255 on its outer surface. The surface of each frustoconical chamfer 255 extends radially beyond inner radius R1 of sleeve 210. In the opened position (FIG. 31), cutting head 250 is extended from sleeve 210 and thus sleeve 210 does not engage frustoconical chamfer 255. Thus, each frustoconical chamfer 255 is generally flee to extend radially beyond inner radius R1 of sleeve 210 (i.e., sleeve 210 does engage chamfers 255 nor restrict arms 253). However, when sleeve 210 is advanced toward cutting ends 253 b it engages the portions of frustoconical chamfer 255 that radially extend beyond inner radius R1 of sleeve 210, thereby tending to force arms 253 together. As sleeve 210 is advanced further towards cutting ends 253 b, sleeve 210 continues to bear on chamfers 255 and arms 253 are brought closer together. Cutting head 250 achieves the closed position when arms 253 contact each other and/or when each radially outermost portions or ridge 260 of each frustoconical chamfer 255 is disposed within inner tubular 230. At this point, cutting ends 253 b of each arm 253 are at their closest relative to each other. In some embodiments, cutting ends 253 b may engage adjacent cutting ends 253 b.
  • In the reverse manner, device 200 and cutting head 250 can be transitioned from the closed position to the open position. In general, sleeve 210 may be moved axially relative to cutting head 250 by any suitable manner including without limitation a threaded engagement with inner tubular 230, a trigger mechanism, or combinations thereof.
  • In the embodiments described herein, aims 253 are normally open. In other words, arms 253 are biased to the open position such that cutting head 250 will assume the open position when no forces are acting to push arms 153 together. Thus, to transition device 200 and cutting head 250 to the closed position, compressive forces, namely sleeve 210 acting on each frustoconical chamfer 255, are necessary to push aims 253 together. Further, since arms 253 are biased open, cutting head 253 will automatically assume the open position illustrated in FIG. 31 as sleeve 210 is retracted and cutting head 253 extends flom sleeve 210. However, in other embodiments (not illustrated), arms 253 may be biased closed and transitioned to an open position by providing an inner wedge between each arm 253 that urges the arms apart as it moves axially relative to arms 253.
  • Tissue Excision and Removal
  • FIGS. 34 and 35 schematically illustrate the excision of a portion of tissue 126 by device 200. In some embodiments, a portal or cannula (not shown) may be employed to provide percutaneous access to tissue 126. For instance, tissue excision device 200 may be inserted into and advanced through such a portal or cannula to reach tissue 126. U.S. application Ser. No. 11/461,020 filed concurrently herewith, which is hereby incorporated herein by reference in its entirety, discloses several tools, devices and methods for employing a portal to provide percutaneous access to a tissue of interest. If a portal or cannula is used to guide device 200, device 200 may be passed through such cannula in the opened position or closed position.
  • Regardless of the manner in which tissue excision device 200 reaches the tissue of interest (e.g., by portal or otherwise), prior to insertion into the tissue to be excised, device 200 is configured in the open position as shown in FIGS. 31 and 32. With device 200 in the opened position, the distal portion of tissue excision device 200 is advanced into tissue 126, as best shown in FIG. 34. Tissue 126 may be any type of tissue to be excised and removed from a patient including without limitation, soft tissue, fat, muscle, or bone. When used to treat spinal stenosis caused by a thickened ligamentum flavum, cutting head 250 of device 200 is preferably inserted into the stenotic ligamentum flavum 26, preferably posterior to a safety zone 40, in order to safely cut and remove portions of the thickened ligamentum flavum 26 (see FIGS. 2 and 3), thereby reducing the stenosis.
  • Still referring to FIGS. 34 and 35, as device 200 is inserted and advanced into tissue 126, portions of tissue 126 slide into and fill at least a portion of tissue-receiving space 263 between arms 253 within cutting head 250. It is to be understood that the farther device 200 is advanced into tissue 126, the greater the amount of tissue 126 that will occupy tissue-receiving space 263. As tissue-receiving space 263 fills, some excess tissue within tissue-receiving space 263 may be pushed into bore 240 of inner tubular 230. Arms 253 are preferably rigid such that cutting head 250 does not inadvertently transition to the closed position as device 200 is advanced through the tissue. In other words, arms 253 are preferably rigid so that the forces exerted on the outer surface of arms 253 by the surrounding tissue 126 as device 200 is advanced do not tend to move arms 253 towards each other.
  • Once a desired amount of tissue has filled tissue-receiving space 263 and bore 240, device 200 may be transitioned to the closed position by advancing sleeve 210 toward cutting ends 253 b and over cutting head 250 as previously described. As arms 253 move towards each other, the portions of tissue 126 within tissue-receiving space 263 and bore 240 are severed from the surrounding tissue 126. Specifically, the sharpened or beveled edges of cutters 251 and tooth 257 slice tissue extending axially from tissue-receiving space 263, while an annular cutting edge 211 of sleeve 210 slices tissue extending radially from tissue-receiving space 263 between arms 253. Cutting edge 211 of sleeve 210 is preferably sharpened to enhance the cutting ability of sleeve 210 as it moves relative to cutting head 250. In addition, the severed tissue 126 contained within tissue-receiving space 263 is grasped by arms 253. Specifically, arms 253 exert compressive forces on the tissue 126 within tissue-receiving space 263, the textured surface features 264 on the inner surface of arms 253 grips the tissue 126 within tissue-receiving space 263, and tooth 257 grasps tissue 126 within tissue-receiving space 263 and restricts it from sliding axially out of cutting head 250 between cutting ends 253 b.
  • Once device 200 has achieved the closed position, device 200 maybe retracted from tissue 126 as best shown in FIG. 35. The portion of tissue 126 contained within tissue-receiving space 263 and bore 240 is removed along with device 200. Once device 200, including a portion of tissue 126 within tissue-receiving space 263 and bore 240, has been completely removed from the patient, resected tissue within tissue-receiving space 263 and bore 240 is removed from device 200 so that device 200 may be reinserted into tissue 126 to continue to the cutting and removal of portions of tissue 126.
  • Pieces of tissue 126 captured within tissue-receiving space 263 and bore 240 may be removed by simply opening device 200 and pulling the pieces of tissue from tissue-receiving space 263 and bore 240. Device 200 may be opened from the closed position by retracting sleeve 210 from cutting head 250 as previously described. As device 200 transitions to its opened position, arms 253 will separate, allowing the user to access tissue-receiving space 263 and inner bore 240.
  • In an alternative embodiment, a plunger or tissue ejector may be included with device 200 to physically eject the excised tissue 126 from tissue-receiving space 263 and inner bore 240. For instance, a plunger (not shown) may be included within device 200 to push cut tissue in tissue-receiving space 263 and inner bore 240 axially out through the opening between cutting ends 253 b of arms 253.
  • The process of inserting device 200 into tissue 126 in the opened position, closing device 126, retracting device 200 in the closed position, opening device 200, emptying tissue-receiving space 263 and bore 240, and reinserting device 200 may be repeated until the desired amount of tissue 126 has been excised and removed. Referring briefly to FIG. 3, when device 200 is employed to remove portions of thickened ligamentum flavum 26, this process may be repeated until the spinal canal is adequately decompressed. Further, when device 200 is employed to remove portions of thickened ligamentum flavum 26, the cutting ends 253 b of each arm 253 of device 200 are preferably controlled to remain within ligamentum flavum 26 and not penetrate safety zone 40. Nonetheless, safety zone 40 is preferably provided so that even an inadvertent penetration into epidural space 27 by device 200 will not result in damage to the dural sac 32 or nerves 34.
  • The components of tissue excision device 200 (e.g., arms 253, tooth 257, etc.) may comprise any suitable material(s) including without limitation metals (e.g., stainless steel, titanium, etch), non-metals (e.g., polymer, composites, etc.) or combinations thereof. The components of tissue excision device 200 are preferably manufactured from a durable biocompatible material such as titanium or stainless steel, but may alternatively be polymeric. In addition, arms 253 each preferably comprise a relatively rigid material(s) capable of maintaining their shape and configuration when inserted into and advanced through tissue. Further, arms 253 preferably comprises a resilient material having the ability to be repeatedly flexed between the open position and closed position without cracking or otherwise being damaged. Such a resilient material also enables each arm 253 to return to its original configuration once external forces (e.g., force applied by sleeve 210) are removed.
  • In addition, the components of tissue excision device 200 may be manufactured by any suitable methods. Examples of suitable methods include casting or molding, machining, laser cutting, EMD, or combinations thereof. In some embodiments, cutting edges or tips may be electro polished to for sharpening. The components of tissue excision device 200 may be assembled by any suitable method including without limitation welding, press fitting, or combinations thereof.
  • While preferred embodiments of this invention have been shown and described, modifications thereof can be made by one skilled in the art without departing from the scope or teaching of this invention. For example, the means by which the safety zone is formed may be varied, the shape and configuration of the tissue excision devices may be varied, and the steps used in carrying out the technique may be modified. Accordingly, the invention is not limited to the embodiments described herein, but is only limited by the claims that follow, the scope of which shall include all equivalents of the subject matter of the claims. Likewise, the sequential recitation of steps in a claim, unless explicitly so stated, is not intended to require that the steps be performed in any particular order or that a particular step be completed before commencement of another step.

Claims (17)

  1. 1. A device for excising tissue, comprising:
    an outer sleeve;
    an inner tubular member slidingly received within the outer sleeve;
    a cutting head on a distal end of the inner tubular;
    wherein the cutting head comprises at least three arms extending axially from the inner tubular;
    wherein the device has an open position in which the cutting head extends from the outer sleeve, and a closed position in which the cutting head is at least partially disposed within the sleeve; and
    wherein the arms are biased away flom each other when the device is in the opened position.
  2. 2. The device of claim 1 wherein the outer sleeve has an inner surface at a radius R1 and at least one arm has an outer frustoconical surface that extends radially to a distance greater than the radius R1 when the device is in the open position.
  3. 3. The device of claim 2 wherein the inner surface of the outer sleeve engages a radially outermost portion of the frustoconical surface when the device is in the closed position.
  4. 4. The device of claim 1 wherein each arm has a fixed end integral with the inner tubular and a free end.
  5. 5. The device of claim 4 wherein the free end of at least one arm includes a tissue grasping member.
  6. 6. The device of claim 5 wherein said tissue grasping member comprises a tooth extending radially inwards.
  7. 7. The device of claim 5 wherein the free end of at least one arm comprises a cutter having a beveled edge adapted to slice tissue.
  8. 8. The device of claim 6 wherein each arm has an axial length from the fixed end to the free end, and wherein the axial length of the at least one arm comprising the tooth is greater than the axial length of the other arms.
  9. 9. The device of claim 1 wherein at least one arm has an inner surface that includes a textured surface feature.
  10. 10. The device of claim 9 wherein the textured surface feature comprises ridges or knurling.
  11. 11. The device of claim 1 wherein the at least three arms define a tissue receiving space that is contiguous with a through bore of the inner tubular.
  12. 12. The device of claim 1 wherein each arm has a fixed end and a free end and wherein the free end of each arm engages the flee end of at least one other arm when the device is in the closed position.
  13. 13. A method for treating stenosis in a spine of a patient having a median plane, the spine including a spinal canal having a posterior surface, a dural sac and an epidural space between the posterior surface and dural sac, the location of the stenosis determining a region of interest in the spine, comprising the steps of:
    a) positioning a tissue excision device adjacent the region of interest, wherein the tissue excision device comprises:
    an outer sleeve;
    an inner tubular member slidingly received within the outer sleeve;
    a cutting head connected to a distal end of the inner tubular;
    wherein the cutting head comprises at least three arms extending axially from the inner tubular;
    wherein the device has an open position in which the cutting head extends from the outer sleeve, and a closed position in which the cutting head is at least partially disposed within the sleeve.
    b) opening the tissue excision device by extending the cutting head from the outer sleeve;
    c) inserting the tissue excision device into tissue in the region of interest;
    d) closing the tissue excision device by advancing the outer sleeve over the cutting head; and
    e) retracting the tissue excision device from the tissue in the region of interest.
  14. 14. The method of claim 13 wherein a portion of the patient's ligamentum flavum occupies the region of interest, and wherein step c) comprises inserting the tissue excision device into the ligamentum flavum in the region of interest, step d) comprises cutting at least a portion of the ligamentum flavum in the region of interest, and step e) comprises removing at least a portion of the cut ligamentum flavum.
  15. 15. The method of claim 13 further comprising the steps of compressing the dural sac in the region of interest by injecting a fluid to form a safety zone and establish a working zone in the region of interest, the safety zone lying between the working zone and the dural sac.
  16. 16. The method of claim 13 further comprising the step of emptying the cut tissue from the tissue excision device.
  17. 17. A kit for performing a procedure on a spine, the spine including an epidural space containing a dural sac, the lit comprising:
    an insertion member for accessing the epidural space;
    a volume of a contrast medium adapted to be inserted into the epidural space by the insertion member and expanded so as to compress a portion of the thecal sac and provide a safety zone within the epidural space; and
    a tissue excision device comprising:
    an outer sleeve;
    an inner tubular member slidingly received within the outer sleeve;
    a cutting head connected to a distal end of the inner tubular;
    wherein the cutting head comprises at least three arms extending axially from the inner tubular;
    wherein the device has an open position in which the cutting head extends from the outer sleeve, and
    a closed position in which the cutting head is at least partially disposed within the sleeve.
US11461036 2005-07-29 2006-07-31 Device for resecting spinal tissue Abandoned US20070027464A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US70422405 true 2005-07-29 2005-07-29
US74716606 true 2006-05-12 2006-05-12
US11461036 US20070027464A1 (en) 2005-07-29 2006-07-31 Device for resecting spinal tissue

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11461036 US20070027464A1 (en) 2005-07-29 2006-07-31 Device for resecting spinal tissue

Publications (1)

Publication Number Publication Date
US20070027464A1 true true US20070027464A1 (en) 2007-02-01

Family

ID=37709378

Family Applications (4)

Application Number Title Priority Date Filing Date
US11461045 Active 2028-11-20 US8696671B2 (en) 2005-07-29 2006-07-31 Percutaneous tissue excision devices
US11461036 Abandoned US20070027464A1 (en) 2005-07-29 2006-07-31 Device for resecting spinal tissue
US14019135 Active US8894653B2 (en) 2005-07-29 2013-09-05 Percutaneous tissue excision devices and methods
US14032770 Active US8882772B2 (en) 2005-07-29 2013-09-20 Percutaneous tissue excision devices and methods

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US11461045 Active 2028-11-20 US8696671B2 (en) 2005-07-29 2006-07-31 Percutaneous tissue excision devices

Family Applications After (2)

Application Number Title Priority Date Filing Date
US14019135 Active US8894653B2 (en) 2005-07-29 2013-09-05 Percutaneous tissue excision devices and methods
US14032770 Active US8882772B2 (en) 2005-07-29 2013-09-20 Percutaneous tissue excision devices and methods

Country Status (7)

Country Link
US (4) US8696671B2 (en)
EP (3) EP1912575B1 (en)
JP (1) JP2009502365A (en)
CA (1) CA2614721A1 (en)
DE (1) DE602006019736D1 (en)
ES (1) ES2637638T3 (en)
WO (2) WO2007016686A3 (en)

Cited By (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040267269A1 (en) * 2001-06-01 2004-12-30 Middleton Lance M. Tissue cavitation device and method
US20060036271A1 (en) * 2004-07-29 2006-02-16 X-Sten, Inc. Spinal ligament modification devices
US20060258951A1 (en) * 2005-05-16 2006-11-16 Baxano, Inc. Spinal Access and Neural Localization
US20070055215A1 (en) * 2005-07-29 2007-03-08 X-Sten Corp. Percutaneous Tissue Excision Devices and Methods
US20070055263A1 (en) * 2005-07-29 2007-03-08 X-Sten Corp. Tools for Percutaneous Spinal Ligament Decompression and Device for Supporting Same
US20070123877A1 (en) * 2005-11-15 2007-05-31 Aoi Medical, Inc. Inflatable Device for Restoring Anatomy of Fractured Bone
US20070123890A1 (en) * 2005-11-04 2007-05-31 X-Sten, Corp. Tissue retrieval devices and methods
US20070213735A1 (en) * 2004-10-15 2007-09-13 Vahid Saadat Powered tissue modification devices and methods
US20070260252A1 (en) * 2006-05-04 2007-11-08 Baxano, Inc. Tissue Removal with at Least Partially Flexible Devices
US20070276390A1 (en) * 2006-05-09 2007-11-29 X-Sten, Inc. Ipsilateral Approach to Minimally Invasive Ligament Decompression Procedure
US20080033465A1 (en) * 2006-08-01 2008-02-07 Baxano, Inc. Multi-Wire Tissue Cutter
US20080086034A1 (en) * 2006-08-29 2008-04-10 Baxano, Inc. Tissue Access Guidewire System and Method
US20080091227A1 (en) * 2006-08-25 2008-04-17 Baxano, Inc. Surgical probe and method of making
US20080111101A1 (en) * 2006-11-09 2008-05-15 Jason Keleher Compositions and methods for CMP of low-k-dielectric materials
US20080147084A1 (en) * 2006-12-07 2008-06-19 Baxano, Inc. Tissue removal devices and methods
US20080161809A1 (en) * 2006-10-03 2008-07-03 Baxano, Inc. Articulating Tissue Cutting Device
US20080221383A1 (en) * 2007-02-12 2008-09-11 Vertos Medical, Inc. Tissue excision devices and methods
US20080275458A1 (en) * 2004-10-15 2008-11-06 Bleich Jeffery L Guidewire exchange systems to treat spinal stenosis
US20080294166A1 (en) * 2007-05-21 2008-11-27 Mark Goldin Extendable cutting member
US20080312660A1 (en) * 2007-06-15 2008-12-18 Baxano, Inc. Devices and methods for measuring the space around a nerve root
US20090018507A1 (en) * 2007-07-09 2009-01-15 Baxano, Inc. Spinal access system and method
US20090118709A1 (en) * 2007-11-06 2009-05-07 Vertos Medical, Inc. A Delaware Corporation Tissue Excision Tool, Kits and Methods of Using the Same
US20090149865A1 (en) * 2007-12-07 2009-06-11 Schmitz Gregory P Tissue modification devices
US20090171381A1 (en) * 2007-12-28 2009-07-02 Schmitz Gregory P Devices, methods and systems for neural localization
US20090177241A1 (en) * 2005-10-15 2009-07-09 Bleich Jeffery L Multiple pathways for spinal nerve root decompression from a single access point
USD610259S1 (en) 2008-10-23 2010-02-16 Vertos Medical, Inc. Tissue modification device
USD611146S1 (en) 2008-10-23 2010-03-02 Vertos Medical, Inc. Tissue modification device
USD619253S1 (en) 2008-10-23 2010-07-06 Vertos Medical, Inc. Tissue modification device
USD619252S1 (en) 2008-10-23 2010-07-06 Vertos Medical, Inc. Tissue modification device
USD620593S1 (en) 2006-07-31 2010-07-27 Vertos Medical, Inc. Tissue excision device
USD621939S1 (en) 2008-10-23 2010-08-17 Vertos Medical, Inc. Tissue modification device
US20100321426A1 (en) * 2007-11-22 2010-12-23 Kazuki Suzuki Image forming apparatus
US20100331900A1 (en) * 2009-06-25 2010-12-30 Baxano, Inc. Surgical tools for treatment of spinal stenosis
US20100331883A1 (en) * 2004-10-15 2010-12-30 Schmitz Gregory P Access and tissue modification systems and methods
US7887538B2 (en) 2005-10-15 2011-02-15 Baxano, Inc. Methods and apparatus for tissue modification
USD635671S1 (en) 2008-10-23 2011-04-05 Vertos Medical, Inc. Tissue modification device
US20110112539A1 (en) * 2008-07-14 2011-05-12 Wallace Michael P Tissue modification devices
US7959577B2 (en) 2007-09-06 2011-06-14 Baxano, Inc. Method, system, and apparatus for neural localization
US20110160731A1 (en) * 2004-10-15 2011-06-30 Bleich Jeffery L Devices and methods for tissue access
US20110224710A1 (en) * 2004-10-15 2011-09-15 Bleich Jeffery L Methods, systems and devices for carpal tunnel release
US8048080B2 (en) 2004-10-15 2011-11-01 Baxano, Inc. Flexible tissue rasp
US8062298B2 (en) 2005-10-15 2011-11-22 Baxano, Inc. Flexible tissue removal devices and methods
US8142462B2 (en) 2004-05-28 2012-03-27 Cavitech, Llc Instruments and methods for reducing and stabilizing bone fractures
US8221420B2 (en) 2009-02-16 2012-07-17 Aoi Medical, Inc. Trauma nail accumulator
US8366712B2 (en) 2005-10-15 2013-02-05 Baxano, Inc. Multiple pathways for spinal nerve root decompression from a single access point
US8398641B2 (en) 2008-07-01 2013-03-19 Baxano, Inc. Tissue modification devices and methods
US8409206B2 (en) 2008-07-01 2013-04-02 Baxano, Inc. Tissue modification devices and methods
US8430881B2 (en) 2004-10-15 2013-04-30 Baxano, Inc. Mechanical tissue modification devices and methods
US8579902B2 (en) 2004-10-15 2013-11-12 Baxano Signal, Inc. Devices and methods for tissue modification
US8647346B2 (en) 2004-10-15 2014-02-11 Baxano Surgical, Inc. Devices and methods for tissue modification
US8801626B2 (en) 2004-10-15 2014-08-12 Baxano Surgical, Inc. Flexible neural localization devices and methods
US20140276802A1 (en) * 2013-03-14 2014-09-18 Kyphon Sarl Rotatable cutting instrument and method
US9101386B2 (en) 2004-10-15 2015-08-11 Amendia, Inc. Devices and methods for treating tissue
US9314253B2 (en) 2008-07-01 2016-04-19 Amendia, Inc. Tissue modification devices and methods
US9414884B2 (en) 2011-07-22 2016-08-16 Martin Faehndrich Instrument set for treating stenoses of the spinal canal
WO2016154030A1 (en) * 2015-03-20 2016-09-29 Musc Foundation For Research Development Dural protecting rongeur
US9456829B2 (en) 2004-10-15 2016-10-04 Amendia, Inc. Powered tissue modification devices and methods
EP3038548A4 (en) * 2013-08-31 2017-08-23 Robert Peliks Tissue removal device and method of use
US9763648B2 (en) 2013-08-31 2017-09-19 Becton, Dickerson and Company Tissue removal device and method of use

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9119680B2 (en) 2004-10-20 2015-09-01 Vertiflex, Inc. Interspinous spacer
US8128662B2 (en) 2004-10-20 2012-03-06 Vertiflex, Inc. Minimally invasive tooling for delivery of interspinous spacer
US9161783B2 (en) 2004-10-20 2015-10-20 Vertiflex, Inc. Interspinous spacer
US7763074B2 (en) 2004-10-20 2010-07-27 The Board Of Trustees Of The Leland Stanford Junior University Systems and methods for posterior dynamic stabilization of the spine
US8317864B2 (en) 2004-10-20 2012-11-27 The Board Of Trustees Of The Leland Stanford Junior University Systems and methods for posterior dynamic stabilization of the spine
US8409282B2 (en) 2004-10-20 2013-04-02 Vertiflex, Inc. Systems and methods for posterior dynamic stabilization of the spine
EP2219538A4 (en) 2004-12-06 2012-12-26 Vertiflex Inc Spacer insertion instrument
JP4679320B2 (en) * 2005-09-26 2011-04-27 タカタ株式会社 The air bag device, motorcycle with an air bag device
CA2669388A1 (en) * 2006-12-01 2008-06-12 The Board Of Trustees Of The Leland Stanford Junior University Devices and methods for accessing the epidural space
CA2684461C (en) 2007-04-16 2015-06-30 Vertiflex Inc. Interspinous spacer
CA2711955C (en) 2008-01-15 2016-05-17 Vertiflex, Inc. Interspinous spacer
WO2011066470A1 (en) * 2009-11-25 2011-06-03 Clements Robert M Device and system for multiple core biopsy
EP2765922A4 (en) * 2011-10-15 2015-04-22 Transmed7 Llc Soft tissue coring biopsy devices and methods
EP2946732A4 (en) * 2013-01-21 2016-03-02 Fujifilm Corp Tissue sampling device
US9675303B2 (en) 2013-03-15 2017-06-13 Vertiflex, Inc. Visualization systems, instruments and methods of using the same in spinal decompression procedures
WO2014192646A1 (en) * 2013-05-27 2014-12-04 富士フイルム株式会社 Tissue sampling device
US9155527B2 (en) * 2013-08-22 2015-10-13 Transmed7, Llc Soft tissue coring biopsy devices and methods
WO2015038770A3 (en) 2013-09-12 2015-11-19 Transmed7, Llc Tissue coring biopsy devices and methods
CN103860211B (en) * 2014-03-28 2015-07-08 山东省立医院 Centrum tumor remover
US9872671B2 (en) * 2014-05-07 2018-01-23 Boston Scientific Scimed, Inc. Closing EUS-FNA needle
US20160030019A1 (en) * 2014-07-31 2016-02-04 Boston Scientific Scimed, Inc. Scooper core needle
US9980737B2 (en) 2014-08-04 2018-05-29 Medos International Sarl Flexible transport auger
US9883898B2 (en) 2014-08-07 2018-02-06 Jeffrey Scott Smith Pedicle screw with electro-conductive coating or portion
US9924979B2 (en) 2014-09-09 2018-03-27 Medos International Sarl Proximal-end securement of a minimally invasive working channel
US10064610B2 (en) 2015-03-03 2018-09-04 Transmed7, Llc Devices and methods for soft tissue biopsy and tissue sample collection
USD825058S1 (en) * 2017-03-23 2018-08-07 Karl Storz Gmbh & Co. Kg Bipolar Forceps
USD825754S1 (en) * 2017-03-23 2018-08-14 Karl Storz Gmbh & Co. Kg Bipolar forceps
USD825057S1 (en) * 2017-03-23 2018-08-07 Karl Storz Gmbh & Co. Kg Bipolar forceps
USD825755S1 (en) * 2017-03-23 2018-08-14 Karl Storz Gmbh & Co. Kg Bipolar forceps
RU179099U1 (en) * 2017-10-27 2018-04-26 Максим Николаевич Кравцов A device for percutaneous spinal surgery videoendoscopic

Citations (94)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1493240A (en) * 1923-02-15 1924-05-06 Frank J Bohn Surgical bone cutter and extractor
US3893445A (en) * 1974-01-09 1975-07-08 Becton Dickinson Co Bone marrow biopsy instrument
US3989033A (en) * 1973-12-06 1976-11-02 David Marcos Halpern Surgical instrument for biopsies
US4200111A (en) * 1978-09-21 1980-04-29 Harris Arthur M Specimen removal instrument
US4201213A (en) * 1978-01-30 1980-05-06 Codman & Shurtleff, Inc. Surgical tool
US4283129A (en) * 1979-08-03 1981-08-11 Quality Craft, Inc. Camera for recording the output of an instrument
US4603694A (en) * 1983-03-08 1986-08-05 Richards Medical Company Arthroscopic shaver
US4682606A (en) * 1986-02-03 1987-07-28 Decaprio Vincent H Localizing biopsy apparatus
US4733663A (en) * 1986-07-02 1988-03-29 Farley Daniel K Medical instrument for removing bone
US4811734A (en) * 1987-08-13 1989-03-14 Baxter Travenol Laboratories, Inc. Surgical cutting instrument
US4834729A (en) * 1986-12-30 1989-05-30 Dyonics, Inc. Arthroscopic surgical instrument
US4844064A (en) * 1987-09-30 1989-07-04 Baxter Travenol Laboratories, Inc. Surgical cutting instrument with end and side openings
US4850354A (en) * 1987-08-13 1989-07-25 Baxter Travenol Laboratories, Inc. Surgical cutting instrument
US4911600A (en) * 1984-01-20 1990-03-27 Perkins Manufacturing Company Lifting device
US5026375A (en) * 1989-10-25 1991-06-25 Origin Medsystems, Inc. Surgical cutting instrument
US5040542A (en) * 1990-03-05 1991-08-20 Norman Gray Bone biopsy needle
US5108403A (en) * 1990-11-09 1992-04-28 Stern Mark S Bone waxing device
US5226910A (en) * 1989-07-05 1993-07-13 Kabushiki Kaisha Topcon Surgical cutter
US5281230A (en) * 1991-05-02 1994-01-25 Harald Heidmueller Extractor
US5290303A (en) * 1990-06-22 1994-03-01 Vance Products Incorporated D/B/A Cook Urological Incorporated Surgical cutting instrument
US5320110A (en) * 1991-10-29 1994-06-14 Wang Ko P Pleural biopsy syringe-needles
US5429136A (en) * 1993-04-21 1995-07-04 Devices For Vascular Intervention, Inc. Imaging atherectomy apparatus
US5429138A (en) * 1993-06-03 1995-07-04 Kormed, Inc. Biopsy needle with sample retaining means
US5531749A (en) * 1993-06-10 1996-07-02 Gary K. Michelson Spinal bone waxer
US5538008A (en) * 1993-01-18 1996-07-23 Crowe; John Forceps for endoscopes
US5540693A (en) * 1992-02-12 1996-07-30 Sierra Surgical, Inc. Surgical instrument for cutting hard tissue and method of use
US5595186A (en) * 1992-04-06 1997-01-21 Alan I. Rubinstein Bone marrow biopsy needle
US5613972A (en) * 1992-07-15 1997-03-25 The University Of Miami Surgical cutting heads with curled cutting wings
US5637096A (en) * 1990-12-27 1997-06-10 Yoon; Inbae Safety needle
US5638827A (en) * 1994-02-01 1997-06-17 Symbiosis Corporation Super-elastic flexible jaws assembly for an endoscopic multiple sample bioptome
US5645075A (en) * 1992-02-18 1997-07-08 Symbiosis Corporation Jaw assembly for an endoscopic instrument
US5649547A (en) * 1994-03-24 1997-07-22 Biopsys Medical, Inc. Methods and devices for automated biopsy and collection of soft tissue
US5705485A (en) * 1987-09-18 1998-01-06 Ethicon, Inc. Gel formulations containing growth factors
US5709697A (en) * 1995-11-22 1998-01-20 United States Surgical Corporation Apparatus and method for removing tissue
US5735865A (en) * 1995-12-19 1998-04-07 Richard Wolf Gmbh Instrument for endoscopic therapy
US5759185A (en) * 1994-10-24 1998-06-02 Smith & Nephew, Inc. Surgical instrument
US5775333A (en) * 1994-03-24 1998-07-07 Ethicon Endo-Surgery, Inc. Apparatus for automated biopsy and collection of soft tissue
US5776075A (en) * 1996-08-09 1998-07-07 Symbiosis Corporation Endoscopic bioptome jaw assembly having three or more jaws and an endoscopic instrument incorporating same
US5782849A (en) * 1993-05-07 1998-07-21 Sdgi Holdings, Inc. Surgical cutting instrument
US5792044A (en) * 1996-03-22 1998-08-11 Danek Medical, Inc. Devices and methods for percutaneous surgery
US5871453A (en) * 1994-02-08 1999-02-16 Boston Scientific Corporation Moveable sample tube multiple biopsy sampling device
US5873886A (en) * 1995-04-04 1999-02-23 United States Surgical Corporation Surgical cutting apparatus
US5879353A (en) * 1995-01-17 1999-03-09 Gore Enterprise Holdings, Inc. Guided bone rasp
US5879365A (en) * 1995-04-04 1999-03-09 United States Surgical Corporation Surgical cutting apparatus
US5925056A (en) * 1996-04-12 1999-07-20 Surgical Dynamics, Inc. Surgical cutting device removably connected to a rotary drive element
US5925050A (en) * 1997-08-15 1999-07-20 The University Of Iowa Research Foundation Self-clearing bone biting instrument
US6019765A (en) * 1998-05-06 2000-02-01 Johnson & Johnson Professional, Inc. Morsellized bone allograft applicator device
US6022362A (en) * 1998-09-03 2000-02-08 Rubicor Medical, Inc. Excisional biopsy devices and methods
US6083237A (en) * 1998-10-23 2000-07-04 Ethico Endo-Surgery, Inc. Biopsy instrument with tissue penetrating spiral
US6214010B1 (en) * 1999-11-04 2001-04-10 Thompson Surgical Instruments, Inc. Rongeur surgical instrument
US6221006B1 (en) * 1998-02-10 2001-04-24 Artemis Medical Inc. Entrapping apparatus and method for use
US20010005778A1 (en) * 1999-12-22 2001-06-28 Asahi Kogaku Kogyo Kabushiki Kaisha Endoscopic tissue collecting instrument
US6258093B1 (en) * 1999-02-01 2001-07-10 Garland U. Edwards Surgical reamer cutter
US6261294B1 (en) * 1998-01-22 2001-07-17 Karl Storz Gmbh & Co. Kg Medical sliding-shaft instrument
US6264087B1 (en) * 1999-07-12 2001-07-24 Powermed, Inc. Expanding parallel jaw device for use with an electromechanical driver device
US6375659B1 (en) * 2001-02-20 2002-04-23 Vita Licensing, Inc. Method for delivery of biocompatible material
US6419684B1 (en) * 2000-05-16 2002-07-16 Linvatec Corporation End-cutting shaver blade for axial resection
US20030009125A1 (en) * 1991-01-11 2003-01-09 Henry Nita Ultrasonic devices and methods for ablating and removing obstructive matter from anatomical passageways and blood vessels
US20030050574A1 (en) * 2000-04-18 2003-03-13 John Krueger Bone biopsy instrument having improved sample retention
US6533795B1 (en) * 2000-04-11 2003-03-18 Opus Medical, Inc Dual function suturing apparatus and method
US6575919B1 (en) * 1999-10-19 2003-06-10 Kyphon Inc. Hand-held instruments that access interior body regions
US6575563B1 (en) * 2002-08-05 2003-06-10 Lexmark International, Inc. Power/volume regime for ink jet printers
US6579291B1 (en) * 2000-10-10 2003-06-17 Spinalabs, Llc Devices and methods for the treatment of spinal disorders
US6682535B2 (en) * 1999-06-16 2004-01-27 Thomas Hoogland Apparatus for decompressing herniated intervertebral discs
US6692445B2 (en) * 1999-07-27 2004-02-17 Scimed Life Systems, Inc. Biopsy sampler
US20040049217A1 (en) * 1996-06-07 2004-03-11 Rod Ross Apparatus and method for performing ophthalmic procedures
US6716216B1 (en) * 1998-08-14 2004-04-06 Kyphon Inc. Systems and methods for treating vertebral bodies
US6746093B2 (en) * 2001-06-08 2004-06-08 Raul Martinez Methods and apparatus for image transfer to non-planar surfaces
US20040138701A1 (en) * 1999-08-24 2004-07-15 The Penn State Research Foundation Laparoscopic surgical instrument and method
US6852095B1 (en) * 1997-07-09 2005-02-08 Charles D. Ray Interbody device and method for treatment of osteoporotic vertebral collapse
US20050038432A1 (en) * 2003-04-25 2005-02-17 Shaolian Samuel M. Articulating spinal fixation rod and system
US20050070913A1 (en) * 2003-09-29 2005-03-31 Milbocker Michael T. Devices and methods for spine repair
US20050080441A1 (en) * 2003-10-10 2005-04-14 Duke University Surgical instruments which are especially useful for ophthalmic surgical procedures, and methods of making the same
US20050137602A1 (en) * 2003-10-23 2005-06-23 Assell Robert L. Method and apparatus for spinal distraction
US20050163850A1 (en) * 2003-10-31 2005-07-28 Wong Patrick S. Administration of levodopa and carbidopa
US20060030785A1 (en) * 2004-05-11 2006-02-09 Inrad, Inc. Core biopsy device
US20060036211A1 (en) * 2004-07-29 2006-02-16 X-Sten, Inc. Spinal ligament modification kit
US7008433B2 (en) * 2001-02-15 2006-03-07 Depuy Acromed, Inc. Vertebroplasty injection device
US7025771B2 (en) * 2000-06-30 2006-04-11 Spineology, Inc. Tool to direct bone replacement material
US7041050B1 (en) * 2004-07-19 2006-05-09 Ronald Medical Ltd. System for performing a surgical procedure inside a body
US20060122535A1 (en) * 2004-12-08 2006-06-08 Wolfgang Daum Method and device to obtain percutaneous tissue samples
US7066942B2 (en) * 2002-10-03 2006-06-27 Wright Medical Technology, Inc. Bendable needle for delivering bone graft material and method of use
US20070005084A1 (en) * 2004-06-16 2007-01-04 Clague Cynthia T Minimally invasive coring vein harvester
US7181289B2 (en) * 2000-03-20 2007-02-20 Pflueger D Russell Epidural nerve root access catheter and treatment methods
US20070055215A1 (en) * 2005-07-29 2007-03-08 X-Sten Corp. Percutaneous Tissue Excision Devices and Methods
US20070055263A1 (en) * 2005-07-29 2007-03-08 X-Sten Corp. Tools for Percutaneous Spinal Ligament Decompression and Device for Supporting Same
US7189240B1 (en) * 1999-08-01 2007-03-13 Disc-O-Tech Medical Technologies Ltd. Method and apparatus for spinal procedures
US7189206B2 (en) * 2003-02-24 2007-03-13 Senorx, Inc. Biopsy device with inner cutter
US20070123890A1 (en) * 2005-11-04 2007-05-31 X-Sten, Corp. Tissue retrieval devices and methods
US20070123888A1 (en) * 2004-10-15 2007-05-31 Baxano, Inc. Flexible tissue rasp
US20070162061A1 (en) * 2005-11-04 2007-07-12 X-Sten, Corp. Tissue excision devices and methods
US7322978B2 (en) * 2004-06-22 2008-01-29 Hs West Investments, Llc Bone anchors for use in attaching soft tissue to a bone
US7329402B2 (en) * 1995-06-07 2008-02-12 Imarx Pharmaceutical Corp. Methods of imaging and treatment
US20090118709A1 (en) * 2007-11-06 2009-05-07 Vertos Medical, Inc. A Delaware Corporation Tissue Excision Tool, Kits and Methods of Using the Same

Family Cites Families (157)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2670519A (en) 1951-10-24 1954-03-02 Charles F Recklitis Drainage tube with clot extractor
US3001522A (en) * 1957-12-26 1961-09-26 Silverman Irving Biopsy device
US3732858A (en) 1968-09-16 1973-05-15 Surgical Design Corp Apparatus for removing blood clots, cataracts and other objects from the eye
US3628524A (en) 1969-02-28 1971-12-21 Khosrow Jamshidi Biopsy needle
US3929123A (en) 1973-02-07 1975-12-30 Khosrow Jamshidi Muscle biopsy needle
US3945372A (en) 1973-06-01 1976-03-23 Milan Albert R Medical tissue-obtaining system
US4103690A (en) 1977-03-21 1978-08-01 Cordis Corporation Self-suturing cardiac pacer lead
US4174715A (en) 1977-03-28 1979-11-20 Hasson Harrith M Multi-pronged laparoscopy forceps
US6264617B1 (en) 1977-09-12 2001-07-24 Symbiosis Corporation Radial jaw biopsy forceps
US4535773A (en) 1982-03-26 1985-08-20 Inbae Yoon Safety puncturing instrument and method
US4522206A (en) * 1983-01-26 1985-06-11 Dyonics, Inc. Surgical instrument
US4777948A (en) 1984-01-16 1988-10-18 Wright David W Surgical tool
US4708147A (en) 1985-02-25 1987-11-24 Haaga John R Universal biopsy needle
GB8516230D0 (en) * 1985-06-27 1985-07-31 Ambrose B K Tissue sampler
US4801293A (en) 1985-10-09 1989-01-31 Anthony Jackson Apparatus and method for detecting probe penetration of human epidural space and injecting a therapeutic substance thereinto
US4931059A (en) 1986-11-24 1990-06-05 Markham Charles W Needle/stylet combination
GB8709021D0 (en) 1987-04-15 1987-05-20 Taylor J Soft tissue biopsy device
US4867157A (en) 1987-08-13 1989-09-19 Baxter Travenol Laboratories, Inc. Surgical cutting instrument
US5484437A (en) 1988-06-13 1996-01-16 Michelson; Gary K. Apparatus and method of inserting spinal implants
DK170965B1 (en) 1988-08-31 1996-04-09 Meadox Medicals Inc dilatation catheter
US5026386A (en) 1988-12-23 1991-06-25 Michelson Gary K Flaval separator
US5190759A (en) 1989-02-21 1993-03-02 Kabi Pharmacia Ab Composition and method for prevention of adhesions between body tissues
US5451227A (en) 1989-04-24 1995-09-19 Michaelson; Gary K. Thin foot plate multi bite rongeur
US5653713A (en) 1989-04-24 1997-08-05 Michelson; Gary Karlin Surgical rongeur
US5215105A (en) 1989-11-14 1993-06-01 Custom Medical Concepts, Inc. Method of treating epidural lesions
US5172702A (en) 1989-11-24 1992-12-22 Medical Device Technologies, Inc. Disposable spring-loaded soft tissue biopsy apparatus
US5665100A (en) * 1989-12-05 1997-09-09 Yoon; Inbae Multifunctional instrument with interchangeable operating units for performing endoscopic procedures
US5984939A (en) 1989-12-05 1999-11-16 Yoon; Inbae Multifunctional grasping instrument with cutting member and operating channel for use in endoscopic and non-endoscopic procedures
US5797958A (en) 1989-12-05 1998-08-25 Yoon; Inbae Endoscopic grasping instrument with scissors
US5797939A (en) * 1989-12-05 1998-08-25 Yoon; Inbae Endoscopic scissors with longitudinal operating channel
US5217473A (en) 1989-12-05 1993-06-08 Inbae Yoon Multi-functional instruments and stretchable ligating and occluding devices
US5954739A (en) 1990-03-02 1999-09-21 General Surgical Innovations, Inc. Method of dissecting tissue layers
US5636639A (en) * 1992-02-18 1997-06-10 Symbiosis Corporation Endoscopic multiple sample bioptome with enhanced biting action
US5269785A (en) 1990-06-28 1993-12-14 Bonutti Peter M Apparatus and method for tissue removal
FR2666981B1 (en) 1990-09-21 1993-06-25 Commarmond Jacques Synthetic vertebral ligament.
US5127916A (en) 1991-01-22 1992-07-07 Medical Device Technologies, Inc. Localization needle assembly
US5286255A (en) 1991-07-29 1994-02-15 Linvatec Corporation Surgical forceps
US6602248B1 (en) 1995-06-07 2003-08-05 Arthro Care Corp. Methods for repairing damaged intervertebral discs
US6264650B1 (en) * 1995-06-07 2001-07-24 Arthrocare Corporation Methods for electrosurgical treatment of intervertebral discs
US5902272A (en) 1992-01-07 1999-05-11 Arthrocare Corporation Planar ablation probe and method for electrosurgical cutting and ablation
US6772012B2 (en) 1995-06-07 2004-08-03 Arthrocare Corporation Methods for electrosurgical treatment of spinal tissue
US5366477A (en) 1991-10-17 1994-11-22 American Cyanamid Company Actuating forces transmission link and assembly for use in surgical instruments
US5462062A (en) 1991-12-13 1995-10-31 Rubinstein; Daniel B. Bone marrow biopsy needle with cutting and/or retaining device at distal end
US7104986B2 (en) 1996-07-16 2006-09-12 Arthrocare Corporation Intervertebral disc replacement method
US5857996A (en) 1992-07-06 1999-01-12 Catheter Imaging Systems Method of epidermal surgery
US5354266A (en) 1992-07-06 1994-10-11 Catheter Imaging Systems Method of epidural surgery
US5514379A (en) 1992-08-07 1996-05-07 The General Hospital Corporation Hydrogel compositions and methods of use
US5772597A (en) 1992-09-14 1998-06-30 Sextant Medical Corporation Surgical tool end effector
US5611354A (en) 1992-11-12 1997-03-18 Alleyne; Neville Cardiac protection device
US5417699A (en) 1992-12-10 1995-05-23 Perclose Incorporated Device and method for the percutaneous suturing of a vascular puncture site
US5385570A (en) 1993-01-12 1995-01-31 R. J. Surgical Instruments, Inc. Surgical cutting instrument
US5439464A (en) 1993-03-09 1995-08-08 Shapiro Partners Limited Method and instruments for performing arthroscopic spinal surgery
DE69301231D1 (en) * 1993-03-25 1996-02-15 Ferromec Sa The medical instrument on the inner walls of arteries or veins for removing deposits
US5300045A (en) 1993-04-14 1994-04-05 Plassche Jr Walter M Interventional needle having an automatically capping stylet
US6241747B1 (en) 1993-05-03 2001-06-05 Quill Medical, Inc. Barbed Bodily tissue connector
US5373854A (en) 1993-07-15 1994-12-20 Kolozsi; William Z. Biopsy apparatus for use in endoscopy
WO1995008945A3 (en) * 1993-09-20 1995-04-20 Boston Scient Corp Multiple biopsy sampling device
US5487392A (en) 1993-11-15 1996-01-30 Haaga; John R. Biopxy system with hemostatic insert
DE4400409A1 (en) 1994-01-05 1995-07-06 Hein Kleihues Microsurgical instrument
CA2180556C (en) 1994-01-26 2007-08-07 Mark A. Reiley Improved inflatable device for use in surgical protocol relating to fixation of bone
US5840338A (en) 1994-07-18 1998-11-24 Roos; Eric J. Loading of biologically active solutes into polymer gels
US5458112A (en) 1994-08-15 1995-10-17 Arrow Precision Products, Inc. Biliary biopsy device
US5569284A (en) 1994-09-23 1996-10-29 United States Surgical Corporation Morcellator
US5578030A (en) 1994-11-04 1996-11-26 Levin; John M. Biopsy needle with cauterization feature
US5562102A (en) 1994-11-21 1996-10-08 Taylor; Thomas V. Multiple biopsy device
US5562695A (en) 1995-01-10 1996-10-08 Obenchain; Theodore G. Nerve deflecting conduit needle and method
US7070596B1 (en) 2000-08-09 2006-07-04 Arthrocare Corporation Electrosurgical apparatus having a curved distal section
US5681337A (en) 1995-06-07 1997-10-28 Bray Jr.; Robert S. Bone shaver
US5569258A (en) 1995-06-22 1996-10-29 Logan Instruments, Inc. Laminectomy rongeurs
US5782764A (en) 1995-11-07 1998-07-21 Iti Medical Technologies, Inc. Fiber composite invasive medical instruments and methods for use in interventional imaging procedures
US5827305A (en) 1996-01-24 1998-10-27 Gordon; Mark G. Tissue sampling device
US5985320A (en) 1996-03-04 1999-11-16 The Penn State Research Foundation Materials and methods for enhancing cellular internalization
US6679833B2 (en) 1996-03-22 2004-01-20 Sdgi Holdings, Inc. Devices and methods for percutaneous surgery
US5823970A (en) 1996-03-22 1998-10-20 Medical Device Technologies, Inc. Biopsy needle set
EP1466564B1 (en) 1996-03-22 2010-10-20 Warsaw Orthopedic, Inc. Devices for percutaneous surgery related applications
US6096053A (en) 1996-05-03 2000-08-01 Scimed Life Systems, Inc. Medical retrieval basket
DE69726491T2 (en) * 1996-05-09 2004-10-28 Olympus Optical Co., Ltd. Bone surgical tool for retaining a cavity, surgical tool for retaining a cavity, the system for endoscopic surgery with use of a tool for holding a cavity
GB9609811D0 (en) 1996-05-10 1996-07-17 Web Dynamics Ltd A process for producing meltblown polyolefin fibres for mechanical filtration
US5853366A (en) 1996-07-08 1998-12-29 Kelsey, Inc. Marker element for interstitial treatment and localizing device and method using same
KR100207982B1 (en) 1996-07-19 1999-07-15 윤종용 Cleaner & cleaning method of metalmask for improving continuance of printing in surface mounting process
WO1998016197A1 (en) 1996-10-15 1998-04-23 Needham Charles W Surgical method and composition therefor
US6514256B2 (en) 1997-01-02 2003-02-04 St. Francis Medical Technologies, Inc. Spine distraction implant and method
US5836948A (en) 1997-01-02 1998-11-17 Saint Francis Medical Technologies, Llc Spine distraction implant and method
WO1998040015A3 (en) * 1997-03-13 1998-12-03 Biomax Technologies Inc Catheters and endoscopes comprising optical probes and bioptomes and methods of using the same
US5931855A (en) 1997-05-21 1999-08-03 Frank Hoffman Surgical methods using one-way suture
US5964782A (en) 1997-09-18 1999-10-12 Scimed Life Systems, Inc. Closure device and method
US6050955A (en) 1997-09-19 2000-04-18 United States Surgical Corporation Biopsy apparatus and method
US6632182B1 (en) 1998-10-23 2003-10-14 The Trustees Of Columbia University In The City Of New York Multiple bit, multiple specimen endoscopic biopsy forceps
US5980525A (en) 1997-10-27 1999-11-09 Bristol-Myers Squibb Company Bone reamer with impeller
US5954747A (en) 1997-11-20 1999-09-21 Clark; Ron Meniscus repair anchor system
JPH11225951A (en) * 1998-02-17 1999-08-24 Olympus Optical Co Ltd Treatment tool for endoscope
US6428498B2 (en) 1998-04-14 2002-08-06 Renan Uflacker Suction catheter for rapidly debriding abscesses
WO1999059477A1 (en) 1998-05-21 1999-11-25 Walshe Christopher J A tissue anchor system
US6139508A (en) * 1998-08-04 2000-10-31 Endonetics, Inc. Articulated medical device
US6605294B2 (en) 1998-08-14 2003-08-12 Incept Llc Methods of using in situ hydration of hydrogel articles for sealing or augmentation of tissue or vessels
US6440147B1 (en) 1998-09-03 2002-08-27 Rubicor Medical, Inc. Excisional biopsy devices and methods
CA2287087C (en) 1998-10-23 2007-12-04 Ethicon Endo-Surgery, Inc. Surgical device for the collection of soft tissue
JP3708356B2 (en) 1998-11-20 2005-10-19 株式会社モリタ製作所 Tissue sampling resector and dissecting forceps used for any
EP1139883B1 (en) 1998-12-31 2008-11-19 Kensey Nash Corporation Tissue fastening devices and delivery means
DE60018712T2 (en) 1999-02-03 2006-03-16 Synthes Ag Chur, Chur surgical drill
WO2000046868A1 (en) 1999-02-04 2000-08-10 Bolder Technologies Corporation Lead-tin alloy current collectors, batteries made thereof and methods for manufacturing same
WO2000045868A1 (en) 1999-02-05 2000-08-10 The Regents Of The University Of California Thermo-reversible polymer for intralumenal implant
US6296639B1 (en) 1999-02-12 2001-10-02 Novacept Apparatuses and methods for interstitial tissue removal
US6478805B1 (en) 1999-04-16 2002-11-12 Nuvasive, Inc. System for removing cut tissue from the inner bore of a surgical instrument
US6858229B1 (en) 1999-04-26 2005-02-22 California Institute Of Technology In situ forming hydrogels
US6268405B1 (en) 1999-05-04 2001-07-31 Porex Surgical, Inc. Hydrogels and methods of making and using same
US6541020B1 (en) 1999-07-09 2003-04-01 Trimeris, Inc. Methods and compositions for administration of therapeutic reagents
US6638233B2 (en) 1999-08-19 2003-10-28 Fox Hollow Technologies, Inc. Apparatus and methods for material capture and removal
US6248081B1 (en) 1999-09-28 2001-06-19 Scimed Life Systems, Inc. Endoscopic submucosal core biopsy device
WO2002096302A1 (en) 2001-05-29 2002-12-05 Microvention, Inc. Method of manufacturing expansile filamentous embolization devices
US6287304B1 (en) 1999-10-15 2001-09-11 Neothermia Corporation Interstitial cauterization of tissue volumes with electrosurgically deployed electrodes
US6358217B1 (en) 2000-01-31 2002-03-19 Hugh Bourassa Automatic and semi-automatic disposable biopsy needle device
US6558390B2 (en) 2000-02-16 2003-05-06 Axiamed, Inc. Methods and apparatus for performing therapeutic procedures in the spine
EP1267989B1 (en) 2000-04-05 2006-07-19 Pathway Medical Technologies, Inc. Intralumenal material removal systems and methods
US6443910B1 (en) 2000-04-18 2002-09-03 Allegiance Corporation Bone marrow biopsy needle
FR2808026B1 (en) 2000-04-25 2002-06-14 Alexandre Laurent Based biomaterial hydrophilic polymer having a specific imaging magnetic resonance signal and method of preparing such a biomaterial
US6423332B1 (en) 2000-05-26 2002-07-23 Ethicon, Inc. Method and composition for deforming soft tissues
US6620185B1 (en) 2000-06-27 2003-09-16 Smith & Nephew, Inc. Surgical procedures and instruments
EP1294324A1 (en) 2000-06-27 2003-03-26 Kyphon Inc. Systems and methods for injecting flowable materials into bones
US20050075630A1 (en) 2000-08-01 2005-04-07 Dfine, Inc. Voltage threshold ablation apparatus
US6358254B1 (en) 2000-09-11 2002-03-19 D. Greg Anderson Method and implant for expanding a spinal canal
US6582447B1 (en) 2000-10-20 2003-06-24 Angiodynamics, Inc. Convertible blood clot filter
EP1328222B1 (en) 2000-10-27 2005-03-30 SDGI Holdings, Inc. Annulus repair system
US6987755B2 (en) 2001-03-22 2006-01-17 Siemens Communications, Inc. System and method for user notification in a communication system
US6746451B2 (en) 2001-06-01 2004-06-08 Lance M. Middleton Tissue cavitation device and method
US7985225B2 (en) 2003-05-05 2011-07-26 Alexandria Research Technologies, Llc Apparatus and method for sculpting the surface of a joint
US6599310B2 (en) 2001-06-29 2003-07-29 Quill Medical, Inc. Suture method
FR2828088A1 (en) * 2001-08-03 2003-02-07 Artbois Sarl Instrument to take sample of brain tissue, from brain cavity of sheep, has tube to be inserted through hole into cavity with extending tool structure of alignment arms and cutting tools
US6669729B2 (en) 2002-03-08 2003-12-30 Kingsley Richard Chin Apparatus and method for the replacement of posterior vertebral elements
US20030220650A1 (en) 2002-03-18 2003-11-27 Major Eric D. Minimally invasive bone manipulation device and method of use
US7131951B2 (en) 2002-03-20 2006-11-07 Board Of Regents, The University Of Texas System Biopsy needle
US7118576B2 (en) 2002-05-15 2006-10-10 Nevmet Corporation Multiportal device with linked cannulae and method for percutaneous surgery
US6783534B2 (en) 2002-07-29 2004-08-31 Hamid M. Mehdizadeh Bone wax applicator
US7101382B2 (en) 2002-11-12 2006-09-05 Samuel George Retractable scalpel
KR100506543B1 (en) 2003-08-14 2005-08-05 주식회사 제닉 Temperature Sensitive State-Changing Hydrogel Composition and Method for their Preparation
US20050197661A1 (en) 2004-03-03 2005-09-08 Scimed Life Systems, Inc. Tissue removal probe with sliding burr in cutting window
US20050209610A1 (en) 2004-03-03 2005-09-22 Scimed Life Systems, Inc. Radially adjustable tissue removal device
US20050228403A1 (en) 2004-03-31 2005-10-13 Manoa Medical, Inc., A Delaware Corporation Tissue cutting devices and methods
DE102004018872A1 (en) 2004-04-19 2005-11-03 Cervitech, Inc. bone spreader
US20050261692A1 (en) 2004-05-21 2005-11-24 Scimed Life Systems, Inc. Articulating tissue removal probe and methods of using the same
US7276032B2 (en) 2004-09-29 2007-10-02 Ethicon Endo-Surgery, Inc. Biopsy apparatus and method
US8062298B2 (en) 2005-10-15 2011-11-22 Baxano, Inc. Flexible tissue removal devices and methods
CA2583906C (en) 2004-10-15 2011-12-06 Baxano, Inc. Devices and methods for tissue removal
US20060122458A1 (en) 2004-10-15 2006-06-08 Baxano, Inc. Devices and methods for tissue access
US8221397B2 (en) * 2004-10-15 2012-07-17 Baxano, Inc. Devices and methods for tissue modification
US7938830B2 (en) 2004-10-15 2011-05-10 Baxano, Inc. Powered tissue modification devices and methods
US7738968B2 (en) 2004-10-15 2010-06-15 Baxano, Inc. Devices and methods for selective surgical removal of tissue
US8109945B2 (en) 2005-02-04 2012-02-07 St. Jude Medical Puerto Rico Llc Percutaneous suture path tracking device with cutting blade
US20060206178A1 (en) 2005-03-11 2006-09-14 Kim Daniel H Percutaneous endoscopic access tools for the spinal epidural space and related methods of treatment
US20060224160A1 (en) * 2005-04-01 2006-10-05 Trieu Hai H Instruments and methods for aggressive yet continuous tissue removal
WO2007085628A1 (en) 2006-01-30 2007-08-02 Zimmer Gmbh Rongeur
US8262661B2 (en) 2006-04-05 2012-09-11 Premia Spine Ltd. Spinal reamer
US7942830B2 (en) 2006-05-09 2011-05-17 Vertos Medical, Inc. Ipsilateral approach to minimally invasive ligament decompression procedure
US20080161809A1 (en) 2006-10-03 2008-07-03 Baxano, Inc. Articulating Tissue Cutting Device
EP2460479A3 (en) 2006-12-07 2014-05-07 Baxano, Inc. Tissue removal devices and methods
KR20090110306A (en) 2006-12-15 2009-10-21 더 애델만 리서치 엘티디. Technique and device for laminar osteotomy and laminoplasty
EP2114268A4 (en) 2007-02-12 2010-03-03 Vertos Medical Inc Tissue excision devices and methods

Patent Citations (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1493240A (en) * 1923-02-15 1924-05-06 Frank J Bohn Surgical bone cutter and extractor
US3989033A (en) * 1973-12-06 1976-11-02 David Marcos Halpern Surgical instrument for biopsies
US3893445A (en) * 1974-01-09 1975-07-08 Becton Dickinson Co Bone marrow biopsy instrument
US4201213A (en) * 1978-01-30 1980-05-06 Codman & Shurtleff, Inc. Surgical tool
US4200111A (en) * 1978-09-21 1980-04-29 Harris Arthur M Specimen removal instrument
US4283129A (en) * 1979-08-03 1981-08-11 Quality Craft, Inc. Camera for recording the output of an instrument
US4603694A (en) * 1983-03-08 1986-08-05 Richards Medical Company Arthroscopic shaver
US4911600A (en) * 1984-01-20 1990-03-27 Perkins Manufacturing Company Lifting device
US4682606A (en) * 1986-02-03 1987-07-28 Decaprio Vincent H Localizing biopsy apparatus
US4733663A (en) * 1986-07-02 1988-03-29 Farley Daniel K Medical instrument for removing bone
US4834729A (en) * 1986-12-30 1989-05-30 Dyonics, Inc. Arthroscopic surgical instrument
US4811734A (en) * 1987-08-13 1989-03-14 Baxter Travenol Laboratories, Inc. Surgical cutting instrument
US4850354A (en) * 1987-08-13 1989-07-25 Baxter Travenol Laboratories, Inc. Surgical cutting instrument
US5705485A (en) * 1987-09-18 1998-01-06 Ethicon, Inc. Gel formulations containing growth factors
US4844064A (en) * 1987-09-30 1989-07-04 Baxter Travenol Laboratories, Inc. Surgical cutting instrument with end and side openings
US5226910A (en) * 1989-07-05 1993-07-13 Kabushiki Kaisha Topcon Surgical cutter
US5026375A (en) * 1989-10-25 1991-06-25 Origin Medsystems, Inc. Surgical cutting instrument
US5040542A (en) * 1990-03-05 1991-08-20 Norman Gray Bone biopsy needle
US5290303A (en) * 1990-06-22 1994-03-01 Vance Products Incorporated D/B/A Cook Urological Incorporated Surgical cutting instrument
US5108403A (en) * 1990-11-09 1992-04-28 Stern Mark S Bone waxing device
US5637096A (en) * 1990-12-27 1997-06-10 Yoon; Inbae Safety needle
US20030009125A1 (en) * 1991-01-11 2003-01-09 Henry Nita Ultrasonic devices and methods for ablating and removing obstructive matter from anatomical passageways and blood vessels
US5281230A (en) * 1991-05-02 1994-01-25 Harald Heidmueller Extractor
US5320110A (en) * 1991-10-29 1994-06-14 Wang Ko P Pleural biopsy syringe-needles
US5540693A (en) * 1992-02-12 1996-07-30 Sierra Surgical, Inc. Surgical instrument for cutting hard tissue and method of use
US5645075A (en) * 1992-02-18 1997-07-08 Symbiosis Corporation Jaw assembly for an endoscopic instrument
US5595186A (en) * 1992-04-06 1997-01-21 Alan I. Rubinstein Bone marrow biopsy needle
US5613972A (en) * 1992-07-15 1997-03-25 The University Of Miami Surgical cutting heads with curled cutting wings
US5538008A (en) * 1993-01-18 1996-07-23 Crowe; John Forceps for endoscopes
US5429136A (en) * 1993-04-21 1995-07-04 Devices For Vascular Intervention, Inc. Imaging atherectomy apparatus
US5782849A (en) * 1993-05-07 1998-07-21 Sdgi Holdings, Inc. Surgical cutting instrument
US5429138A (en) * 1993-06-03 1995-07-04 Kormed, Inc. Biopsy needle with sample retaining means
US5531749A (en) * 1993-06-10 1996-07-02 Gary K. Michelson Spinal bone waxer
US5638827A (en) * 1994-02-01 1997-06-17 Symbiosis Corporation Super-elastic flexible jaws assembly for an endoscopic multiple sample bioptome
US5871453A (en) * 1994-02-08 1999-02-16 Boston Scientific Corporation Moveable sample tube multiple biopsy sampling device
US6053877A (en) * 1994-02-08 2000-04-25 Boston Scientific Corporation Movable sample tube multiple biopsy sampling device
US5775333A (en) * 1994-03-24 1998-07-07 Ethicon Endo-Surgery, Inc. Apparatus for automated biopsy and collection of soft tissue
US5649547A (en) * 1994-03-24 1997-07-22 Biopsys Medical, Inc. Methods and devices for automated biopsy and collection of soft tissue
US7226424B2 (en) * 1994-03-24 2007-06-05 Ethicon Endo-Surgery, Inc. Methods and devices for automated biopsy and collection of soft tissue
US5759185A (en) * 1994-10-24 1998-06-02 Smith & Nephew, Inc. Surgical instrument
US5879353A (en) * 1995-01-17 1999-03-09 Gore Enterprise Holdings, Inc. Guided bone rasp
US5873886A (en) * 1995-04-04 1999-02-23 United States Surgical Corporation Surgical cutting apparatus
US5879365A (en) * 1995-04-04 1999-03-09 United States Surgical Corporation Surgical cutting apparatus
US7329402B2 (en) * 1995-06-07 2008-02-12 Imarx Pharmaceutical Corp. Methods of imaging and treatment
US5709697A (en) * 1995-11-22 1998-01-20 United States Surgical Corporation Apparatus and method for removing tissue
US5735865A (en) * 1995-12-19 1998-04-07 Richard Wolf Gmbh Instrument for endoscopic therapy
US5792044A (en) * 1996-03-22 1998-08-11 Danek Medical, Inc. Devices and methods for percutaneous surgery
US5925056A (en) * 1996-04-12 1999-07-20 Surgical Dynamics, Inc. Surgical cutting device removably connected to a rotary drive element
US20040049217A1 (en) * 1996-06-07 2004-03-11 Rod Ross Apparatus and method for performing ophthalmic procedures
US5776075A (en) * 1996-08-09 1998-07-07 Symbiosis Corporation Endoscopic bioptome jaw assembly having three or more jaws and an endoscopic instrument incorporating same
US6852095B1 (en) * 1997-07-09 2005-02-08 Charles D. Ray Interbody device and method for treatment of osteoporotic vertebral collapse
US5925050A (en) * 1997-08-15 1999-07-20 The University Of Iowa Research Foundation Self-clearing bone biting instrument
US6261294B1 (en) * 1998-01-22 2001-07-17 Karl Storz Gmbh & Co. Kg Medical sliding-shaft instrument
US6221006B1 (en) * 1998-02-10 2001-04-24 Artemis Medical Inc. Entrapping apparatus and method for use
US6019765A (en) * 1998-05-06 2000-02-01 Johnson & Johnson Professional, Inc. Morsellized bone allograft applicator device
US6716216B1 (en) * 1998-08-14 2004-04-06 Kyphon Inc. Systems and methods for treating vertebral bodies
US6022362A (en) * 1998-09-03 2000-02-08 Rubicor Medical, Inc. Excisional biopsy devices and methods
US6083237A (en) * 1998-10-23 2000-07-04 Ethico Endo-Surgery, Inc. Biopsy instrument with tissue penetrating spiral
US6258093B1 (en) * 1999-02-01 2001-07-10 Garland U. Edwards Surgical reamer cutter
US6682535B2 (en) * 1999-06-16 2004-01-27 Thomas Hoogland Apparatus for decompressing herniated intervertebral discs
US6264087B1 (en) * 1999-07-12 2001-07-24 Powermed, Inc. Expanding parallel jaw device for use with an electromechanical driver device
US6692445B2 (en) * 1999-07-27 2004-02-17 Scimed Life Systems, Inc. Biopsy sampler
US7189240B1 (en) * 1999-08-01 2007-03-13 Disc-O-Tech Medical Technologies Ltd. Method and apparatus for spinal procedures
US20040138701A1 (en) * 1999-08-24 2004-07-15 The Penn State Research Foundation Laparoscopic surgical instrument and method
US6575919B1 (en) * 1999-10-19 2003-06-10 Kyphon Inc. Hand-held instruments that access interior body regions
US6214010B1 (en) * 1999-11-04 2001-04-10 Thompson Surgical Instruments, Inc. Rongeur surgical instrument
US20010005778A1 (en) * 1999-12-22 2001-06-28 Asahi Kogaku Kogyo Kabushiki Kaisha Endoscopic tissue collecting instrument
US6572563B2 (en) * 1999-12-22 2003-06-03 Pentax Corporation Endoscopic tissue collecting instrument
US7181289B2 (en) * 2000-03-20 2007-02-20 Pflueger D Russell Epidural nerve root access catheter and treatment methods
US6533795B1 (en) * 2000-04-11 2003-03-18 Opus Medical, Inc Dual function suturing apparatus and method
US20030050574A1 (en) * 2000-04-18 2003-03-13 John Krueger Bone biopsy instrument having improved sample retention
US7201722B2 (en) * 2000-04-18 2007-04-10 Allegiance Corporation Bone biopsy instrument having improved sample retention
US6419684B1 (en) * 2000-05-16 2002-07-16 Linvatec Corporation End-cutting shaver blade for axial resection
US7025771B2 (en) * 2000-06-30 2006-04-11 Spineology, Inc. Tool to direct bone replacement material
US6579291B1 (en) * 2000-10-10 2003-06-17 Spinalabs, Llc Devices and methods for the treatment of spinal disorders
US7008433B2 (en) * 2001-02-15 2006-03-07 Depuy Acromed, Inc. Vertebroplasty injection device
US6375659B1 (en) * 2001-02-20 2002-04-23 Vita Licensing, Inc. Method for delivery of biocompatible material
US6746093B2 (en) * 2001-06-08 2004-06-08 Raul Martinez Methods and apparatus for image transfer to non-planar surfaces
US6575563B1 (en) * 2002-08-05 2003-06-10 Lexmark International, Inc. Power/volume regime for ink jet printers
US7066942B2 (en) * 2002-10-03 2006-06-27 Wright Medical Technology, Inc. Bendable needle for delivering bone graft material and method of use
US7189206B2 (en) * 2003-02-24 2007-03-13 Senorx, Inc. Biopsy device with inner cutter
US20050038432A1 (en) * 2003-04-25 2005-02-17 Shaolian Samuel M. Articulating spinal fixation rod and system
US20050070913A1 (en) * 2003-09-29 2005-03-31 Milbocker Michael T. Devices and methods for spine repair
US20050080441A1 (en) * 2003-10-10 2005-04-14 Duke University Surgical instruments which are especially useful for ophthalmic surgical procedures, and methods of making the same
US20050137602A1 (en) * 2003-10-23 2005-06-23 Assell Robert L. Method and apparatus for spinal distraction
US20050163850A1 (en) * 2003-10-31 2005-07-28 Wong Patrick S. Administration of levodopa and carbidopa
US20060030785A1 (en) * 2004-05-11 2006-02-09 Inrad, Inc. Core biopsy device
US20070005084A1 (en) * 2004-06-16 2007-01-04 Clague Cynthia T Minimally invasive coring vein harvester
US7322978B2 (en) * 2004-06-22 2008-01-29 Hs West Investments, Llc Bone anchors for use in attaching soft tissue to a bone
US7041050B1 (en) * 2004-07-19 2006-05-09 Ronald Medical Ltd. System for performing a surgical procedure inside a body
US20060036271A1 (en) * 2004-07-29 2006-02-16 X-Sten, Inc. Spinal ligament modification devices
US20060036211A1 (en) * 2004-07-29 2006-02-16 X-Sten, Inc. Spinal ligament modification kit
US20070123888A1 (en) * 2004-10-15 2007-05-31 Baxano, Inc. Flexible tissue rasp
US20060122535A1 (en) * 2004-12-08 2006-06-08 Wolfgang Daum Method and device to obtain percutaneous tissue samples
US20070055263A1 (en) * 2005-07-29 2007-03-08 X-Sten Corp. Tools for Percutaneous Spinal Ligament Decompression and Device for Supporting Same
US20070055215A1 (en) * 2005-07-29 2007-03-08 X-Sten Corp. Percutaneous Tissue Excision Devices and Methods
US20070162061A1 (en) * 2005-11-04 2007-07-12 X-Sten, Corp. Tissue excision devices and methods
US20070123890A1 (en) * 2005-11-04 2007-05-31 X-Sten, Corp. Tissue retrieval devices and methods
US20090118709A1 (en) * 2007-11-06 2009-05-07 Vertos Medical, Inc. A Delaware Corporation Tissue Excision Tool, Kits and Methods of Using the Same

Cited By (110)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040267269A1 (en) * 2001-06-01 2004-12-30 Middleton Lance M. Tissue cavitation device and method
US8142462B2 (en) 2004-05-28 2012-03-27 Cavitech, Llc Instruments and methods for reducing and stabilizing bone fractures
US8562634B2 (en) 2004-05-28 2013-10-22 Cavitech, Llc Instruments and methods for reducing and stabilizing bone fractures
US20060036271A1 (en) * 2004-07-29 2006-02-16 X-Sten, Inc. Spinal ligament modification devices
US20060036272A1 (en) * 2004-07-29 2006-02-16 X-Sten, Inc. Spinal ligament modification
US20060184175A1 (en) * 2004-07-29 2006-08-17 X-Sten, Inc. Spinal ligament modification devices
US20060235451A1 (en) * 2004-07-29 2006-10-19 X-Sten Ligament Decompression Tool with Tissue Engaging Device
US20060235452A1 (en) * 2004-07-29 2006-10-19 X-Sten Ligament Decompression Tool with Tissue Removal Device
US20060036211A1 (en) * 2004-07-29 2006-02-16 X-Sten, Inc. Spinal ligament modification kit
US20060264994A1 (en) * 2004-07-29 2006-11-23 X-Sten Spinal Decompression Method Using Tissue Retraction
US7896879B2 (en) 2004-07-29 2011-03-01 Vertos Medical, Inc. Spinal ligament modification
US20060206115A1 (en) * 2004-07-29 2006-09-14 X-Sten Ligament decompression kit with contrast
US9345491B2 (en) 2004-10-15 2016-05-24 Amendia, Inc. Flexible tissue rasp
US20100331883A1 (en) * 2004-10-15 2010-12-30 Schmitz Gregory P Access and tissue modification systems and methods
US20070213735A1 (en) * 2004-10-15 2007-09-13 Vahid Saadat Powered tissue modification devices and methods
US9463041B2 (en) 2004-10-15 2016-10-11 Amendia, Inc. Devices and methods for tissue access
US9456829B2 (en) 2004-10-15 2016-10-04 Amendia, Inc. Powered tissue modification devices and methods
US20110224710A1 (en) * 2004-10-15 2011-09-15 Bleich Jeffery L Methods, systems and devices for carpal tunnel release
US9320618B2 (en) 2004-10-15 2016-04-26 Amendia, Inc. Access and tissue modification systems and methods
US9247952B2 (en) 2004-10-15 2016-02-02 Amendia, Inc. Devices and methods for tissue access
US8048080B2 (en) 2004-10-15 2011-11-01 Baxano, Inc. Flexible tissue rasp
US9101386B2 (en) 2004-10-15 2015-08-11 Amendia, Inc. Devices and methods for treating tissue
US20110160731A1 (en) * 2004-10-15 2011-06-30 Bleich Jeffery L Devices and methods for tissue access
US10052116B2 (en) 2004-10-15 2018-08-21 Amendia, Inc. Devices and methods for treating tissue
US20080275458A1 (en) * 2004-10-15 2008-11-06 Bleich Jeffery L Guidewire exchange systems to treat spinal stenosis
US8801626B2 (en) 2004-10-15 2014-08-12 Baxano Surgical, Inc. Flexible neural localization devices and methods
US8257356B2 (en) 2004-10-15 2012-09-04 Baxano, Inc. Guidewire exchange systems to treat spinal stenosis
US8652138B2 (en) 2004-10-15 2014-02-18 Baxano Surgical, Inc. Flexible tissue rasp
US8647346B2 (en) 2004-10-15 2014-02-11 Baxano Surgical, Inc. Devices and methods for tissue modification
US8617163B2 (en) 2004-10-15 2013-12-31 Baxano Surgical, Inc. Methods, systems and devices for carpal tunnel release
US8613745B2 (en) 2004-10-15 2013-12-24 Baxano Surgical, Inc. Methods, systems and devices for carpal tunnel release
US8579902B2 (en) 2004-10-15 2013-11-12 Baxano Signal, Inc. Devices and methods for tissue modification
US8568416B2 (en) 2004-10-15 2013-10-29 Baxano Surgical, Inc. Access and tissue modification systems and methods
US8430881B2 (en) 2004-10-15 2013-04-30 Baxano, Inc. Mechanical tissue modification devices and methods
US7938830B2 (en) 2004-10-15 2011-05-10 Baxano, Inc. Powered tissue modification devices and methods
US20110098708A9 (en) * 2004-10-15 2011-04-28 Vahid Saadat Powered tissue modification devices and methods
US20060258951A1 (en) * 2005-05-16 2006-11-16 Baxano, Inc. Spinal Access and Neural Localization
US8419653B2 (en) 2005-05-16 2013-04-16 Baxano, Inc. Spinal access and neural localization
US20100010334A1 (en) * 2005-05-16 2010-01-14 Bleich Jeffery L Spinal access and neural localization
US8696671B2 (en) 2005-07-29 2014-04-15 Vertos Medical Inc. Percutaneous tissue excision devices
US8882772B2 (en) 2005-07-29 2014-11-11 Vertos Medical, Inc. Percutaneous tissue excision devices and methods
US20070055263A1 (en) * 2005-07-29 2007-03-08 X-Sten Corp. Tools for Percutaneous Spinal Ligament Decompression and Device for Supporting Same
US8894653B2 (en) 2005-07-29 2014-11-25 Vertos Medical, Inc. Percutaneous tissue excision devices and methods
US20070055215A1 (en) * 2005-07-29 2007-03-08 X-Sten Corp. Percutaneous Tissue Excision Devices and Methods
US8366712B2 (en) 2005-10-15 2013-02-05 Baxano, Inc. Multiple pathways for spinal nerve root decompression from a single access point
US9125682B2 (en) 2005-10-15 2015-09-08 Amendia, Inc. Multiple pathways for spinal nerve root decompression from a single access point
US9492151B2 (en) 2005-10-15 2016-11-15 Amendia, Inc. Multiple pathways for spinal nerve root decompression from a single access point
US7887538B2 (en) 2005-10-15 2011-02-15 Baxano, Inc. Methods and apparatus for tissue modification
US8092456B2 (en) 2005-10-15 2012-01-10 Baxano, Inc. Multiple pathways for spinal nerve root decompression from a single access point
US20090177241A1 (en) * 2005-10-15 2009-07-09 Bleich Jeffery L Multiple pathways for spinal nerve root decompression from a single access point
US8062298B2 (en) 2005-10-15 2011-11-22 Baxano, Inc. Flexible tissue removal devices and methods
US20070123890A1 (en) * 2005-11-04 2007-05-31 X-Sten, Corp. Tissue retrieval devices and methods
US20070123877A1 (en) * 2005-11-15 2007-05-31 Aoi Medical, Inc. Inflatable Device for Restoring Anatomy of Fractured Bone
US8585704B2 (en) 2006-05-04 2013-11-19 Baxano Surgical, Inc. Flexible tissue removal devices and methods
US8062300B2 (en) 2006-05-04 2011-11-22 Baxano, Inc. Tissue removal with at least partially flexible devices
US20070260252A1 (en) * 2006-05-04 2007-11-08 Baxano, Inc. Tissue Removal with at Least Partially Flexible Devices
US9351741B2 (en) 2006-05-04 2016-05-31 Amendia, Inc. Flexible tissue removal devices and methods
US8608762B2 (en) 2006-05-09 2013-12-17 Vertos Medical, Inc. Translaminar approach to minimally invasive ligament decompression procedure
US20070276390A1 (en) * 2006-05-09 2007-11-29 X-Sten, Inc. Ipsilateral Approach to Minimally Invasive Ligament Decompression Procedure
US20090036936A1 (en) * 2006-05-09 2009-02-05 Vertos Medical, Inc. Translaminar approach to minimally invasive ligament decompression procedure
US7942830B2 (en) 2006-05-09 2011-05-17 Vertos Medical, Inc. Ipsilateral approach to minimally invasive ligament decompression procedure
US8734477B2 (en) 2006-05-09 2014-05-27 Vertos Medical, Inc. Translaminar approach to minimally invasive ligament decompression procedure
USD620593S1 (en) 2006-07-31 2010-07-27 Vertos Medical, Inc. Tissue excision device
US20080033465A1 (en) * 2006-08-01 2008-02-07 Baxano, Inc. Multi-Wire Tissue Cutter
US20080091227A1 (en) * 2006-08-25 2008-04-17 Baxano, Inc. Surgical probe and method of making
US20080086034A1 (en) * 2006-08-29 2008-04-10 Baxano, Inc. Tissue Access Guidewire System and Method
US8551097B2 (en) 2006-08-29 2013-10-08 Baxano Surgical, Inc. Tissue access guidewire system and method
US7857813B2 (en) 2006-08-29 2010-12-28 Baxano, Inc. Tissue access guidewire system and method
US8845637B2 (en) 2006-08-29 2014-09-30 Baxano Surgical, Inc. Tissue access guidewire system and method
US20110046613A1 (en) * 2006-08-29 2011-02-24 Gregory Schmitz Tissue access guidewire system and method
US20080161809A1 (en) * 2006-10-03 2008-07-03 Baxano, Inc. Articulating Tissue Cutting Device
US20080111101A1 (en) * 2006-11-09 2008-05-15 Jason Keleher Compositions and methods for CMP of low-k-dielectric materials
US20080147084A1 (en) * 2006-12-07 2008-06-19 Baxano, Inc. Tissue removal devices and methods
US20080221383A1 (en) * 2007-02-12 2008-09-11 Vertos Medical, Inc. Tissue excision devices and methods
US20080294166A1 (en) * 2007-05-21 2008-11-27 Mark Goldin Extendable cutting member
US20080294167A1 (en) * 2007-05-21 2008-11-27 Brian Schumacher Articulating cavitation device
US20090131952A1 (en) * 2007-05-21 2009-05-21 Brian Schumacher Delivery system and method for inflatable devices
US8353911B2 (en) 2007-05-21 2013-01-15 Aoi Medical, Inc. Extendable cutting member
US20080312660A1 (en) * 2007-06-15 2008-12-18 Baxano, Inc. Devices and methods for measuring the space around a nerve root
US20090018507A1 (en) * 2007-07-09 2009-01-15 Baxano, Inc. Spinal access system and method
US8303516B2 (en) 2007-09-06 2012-11-06 Baxano, Inc. Method, system and apparatus for neural localization
US7959577B2 (en) 2007-09-06 2011-06-14 Baxano, Inc. Method, system, and apparatus for neural localization
US20090118709A1 (en) * 2007-11-06 2009-05-07 Vertos Medical, Inc. A Delaware Corporation Tissue Excision Tool, Kits and Methods of Using the Same
US20100321426A1 (en) * 2007-11-22 2010-12-23 Kazuki Suzuki Image forming apparatus
US9463029B2 (en) 2007-12-07 2016-10-11 Amendia, Inc. Tissue modification devices
US8663228B2 (en) 2007-12-07 2014-03-04 Baxano Surgical, Inc. Tissue modification devices
US8192436B2 (en) 2007-12-07 2012-06-05 Baxano, Inc. Tissue modification devices
US20090149865A1 (en) * 2007-12-07 2009-06-11 Schmitz Gregory P Tissue modification devices
US20090171381A1 (en) * 2007-12-28 2009-07-02 Schmitz Gregory P Devices, methods and systems for neural localization
US8409206B2 (en) 2008-07-01 2013-04-02 Baxano, Inc. Tissue modification devices and methods
US9314253B2 (en) 2008-07-01 2016-04-19 Amendia, Inc. Tissue modification devices and methods
US8398641B2 (en) 2008-07-01 2013-03-19 Baxano, Inc. Tissue modification devices and methods
US8845639B2 (en) 2008-07-14 2014-09-30 Baxano Surgical, Inc. Tissue modification devices
US20110112539A1 (en) * 2008-07-14 2011-05-12 Wallace Michael P Tissue modification devices
USD619253S1 (en) 2008-10-23 2010-07-06 Vertos Medical, Inc. Tissue modification device
USD611146S1 (en) 2008-10-23 2010-03-02 Vertos Medical, Inc. Tissue modification device
USD619252S1 (en) 2008-10-23 2010-07-06 Vertos Medical, Inc. Tissue modification device
USD676964S1 (en) 2008-10-23 2013-02-26 Vertos Medical, Inc. Tissue modification device
USD621939S1 (en) 2008-10-23 2010-08-17 Vertos Medical, Inc. Tissue modification device
USD635671S1 (en) 2008-10-23 2011-04-05 Vertos Medical, Inc. Tissue modification device
USD610259S1 (en) 2008-10-23 2010-02-16 Vertos Medical, Inc. Tissue modification device
US8221420B2 (en) 2009-02-16 2012-07-17 Aoi Medical, Inc. Trauma nail accumulator
US8394102B2 (en) 2009-06-25 2013-03-12 Baxano, Inc. Surgical tools for treatment of spinal stenosis
US20100331900A1 (en) * 2009-06-25 2010-12-30 Baxano, Inc. Surgical tools for treatment of spinal stenosis
US9414884B2 (en) 2011-07-22 2016-08-16 Martin Faehndrich Instrument set for treating stenoses of the spinal canal
US20140276802A1 (en) * 2013-03-14 2014-09-18 Kyphon Sarl Rotatable cutting instrument and method
US9161774B2 (en) * 2013-03-14 2015-10-20 Kyphon Sarl Rotatable cutting instrument
EP3038548A4 (en) * 2013-08-31 2017-08-23 Robert Peliks Tissue removal device and method of use
US9763648B2 (en) 2013-08-31 2017-09-19 Becton, Dickerson and Company Tissue removal device and method of use
WO2016154030A1 (en) * 2015-03-20 2016-09-29 Musc Foundation For Research Development Dural protecting rongeur

Also Published As

Publication number Publication date Type
EP1912575B1 (en) 2011-01-19 grant
WO2007016686A3 (en) 2009-05-07 application
US8882772B2 (en) 2014-11-11 grant
DE602006019736D1 (en) 2011-03-03 grant
US20140005671A1 (en) 2014-01-02 application
EP2335600B1 (en) 2017-04-19 grant
JP2009502365A (en) 2009-01-29 application
US20070055215A1 (en) 2007-03-08 application
CA2614721A1 (en) 2007-02-08 application
WO2007016683A3 (en) 2009-05-07 application
EP1912575A4 (en) 2009-11-25 application
US20140024933A1 (en) 2014-01-23 application
EP3228265A2 (en) 2017-10-11 application
ES2637638T3 (en) 2017-10-16 grant
WO2007016686A2 (en) 2007-02-08 application
EP1912575A2 (en) 2008-04-23 application
US8894653B2 (en) 2014-11-25 grant
US8696671B2 (en) 2014-04-15 grant
EP2335600A1 (en) 2011-06-22 application
WO2007016683A2 (en) 2007-02-08 application
EP3228265A3 (en) 2018-05-23 application

Similar Documents

Publication Publication Date Title
US7955355B2 (en) Methods and devices for improving percutaneous access in minimally invasive surgeries
US6793656B1 (en) Systems and methods for fixation of adjacent vertebrae
US6626903B2 (en) Surgical biopsy device
US6602204B2 (en) Intraoperative tissue treatment methods
US7503920B2 (en) Spinal surgery system and method
US6280450B1 (en) Breast surgery method and apparatus
US7232448B2 (en) Minimally invasive stitching device
US6238355B1 (en) Tumortherapy device and method
US6371968B1 (en) Cavity retaining tool for bone surgery, a cavity retaining tool for general surgery, an endoscopic surgery system involving the use of a cavity retaining tool, and a procedure for surgery
US7763055B2 (en) Instruments and methods for stabilization of bony structures
US8257356B2 (en) Guidewire exchange systems to treat spinal stenosis
US20040039384A1 (en) Device and method for pertcutaneous placement of lumbar pedicle screws and connecting rods
US7846093B2 (en) Minimally invasive retractor and methods of use
US20060015006A1 (en) System and method for accessing a body cavity
US20050137601A1 (en) Spinal nucleus extraction tool
US20050090852A1 (en) Insertion devices and method of use
Caspar A new surgical procedure for lumbar disc herniation causing less tissue damage through a microsurgical approach
US6875219B2 (en) Bone access system
US20070233089A1 (en) Systems and methods for reducing adjacent level disc disease
US20060235423A1 (en) Apparatus having at least one actuatable planar surface and method using the same for a spinal procedure
US20070093841A1 (en) Surgical drill, a set of surgical drills, a system for cutting bone and a method for removing bone
US6059734A (en) Methods of collecting tissue at obstructed anatomical sites
US6641592B1 (en) System for wound closure
US6726690B2 (en) Diskectomy instrument and method
US6126660A (en) Spinal compression and distraction devices and surgical methods

Legal Events

Date Code Title Description
AS Assignment

Owner name: X-STEN, CORP., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SCHOMER, DONALD;SOLSBERG, MURRAY D.;REEL/FRAME:018368/0507;SIGNING DATES FROM 20060822 TO 20060828

Owner name: X-STEN, CORP., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:WAY, BRYCE;REEL/FRAME:018368/0467

Effective date: 20060906

AS Assignment

Owner name: VERTOS MEDICAL, INC., CALIFORNIA

Free format text: CHANGE OF NAME;ASSIGNOR:X-STEN CORP;REEL/FRAME:020185/0620

Effective date: 20070817

AS Assignment

Owner name: X-STEN CORP, CALIFORNIA

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE NAME OF THE ASSIGNEE PREVIOUSLY RECORDED ON REEL 018368 FRAME0507;ASSIGNOR:SCHOMER, DONALD;REEL/FRAME:021633/0682

Effective date: 20060828

Owner name: X-STEN CORP, CALIFORNIA

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE NAME OF THE ASSIGNEE PREVIOUSLY RECORDED ON REEL 018368 FRAME0507;ASSIGNOR:SOLSBERG, MURRAY D.;REEL/FRAME:021633/0706

Effective date: 20080822

Owner name: X-STEN CORP, CALIFORNIA

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE NAME OF THE ASSIGNEE PREVIOUSLY RECORDED ON REEL 018368 FRAME0467;ASSIGNOR:WAY, BRYCE;REEL/FRAME:021633/0718

Effective date: 20060906