US20010005471A1 - Electronic component feeding apparatus - Google Patents
Electronic component feeding apparatus Download PDFInfo
- Publication number
- US20010005471A1 US20010005471A1 US09/742,223 US74222300A US2001005471A1 US 20010005471 A1 US20010005471 A1 US 20010005471A1 US 74222300 A US74222300 A US 74222300A US 2001005471 A1 US2001005471 A1 US 2001005471A1
- Authority
- US
- United States
- Prior art keywords
- electronic component
- electronic components
- feeding apparatus
- component feeding
- bore
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K13/00—Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
- H05K13/02—Feeding of components
- H05K13/021—Loading or unloading of containers
Definitions
- the present invention relates to an electronic component feeding apparatus which conveys electronic components such as chip components in a alignment state to a predetermined position.
- a conventional electronic component feeding apparatus is disclosed in Japanese Patent Laid-Open No. 6-232596 and U.S. Pat. No. 5,525,023 corresponding to said Japanese Patent Laid-Open.
- This apparatus discharges chip components stored in a storage chamber in a bulk state through a component convey pipe onto a belt, conveys forward chip components discharged on the belt by use of the belt, and stops the chip components conveyed with the belt by use of a stopper.
- the apparatus Because of the belt which is used to convey the chip components forward, the apparatus needs the belt and a ratchet mechanism to intermittently drive the belt. Although the cost of such apparatuses is recently required to be cut, these apparatuses, which need the belt and its drive mechanism to the component conveyance, are difficult to be simplified, so that the cost of the apparatuses can limitedly be reduced.
- An object of the present invention is to provide a simple and inexpensive electronic component feeding apparatus.
- an electronic component feeding apparatus includes: a conveying passage for conveying electronic components having a predetermined shape in a alignment state; a sucking device for exerting an air suction into the conveying passage from an end of the conveying passage and conveying the electronic components in the conveying passage; a movable component stopper for stopping the electronic components conveyed in the alignment state by the air suction; and a displacing device for displacing the component stopper from a stop position to a removed position therefrom after the electronic components conveyed are stopped by the component stopper.
- an electronic component feeding apparatus includes: a conveying passage for conveying electronic components having a predetermined shape in a alignment state; a sucking device for exerting a air suction into the conveying passage from an end of the conveying passage and conveying the electronic components in the conveying passage; and a movable component stopper for stopping the electronic components conveyed in the alignment state by the air suction; wherein the conveying passage is composed of a tube having a bore whose cross section allows the electronic components to pass through the bore in a predetermined direction.
- These apparatuses can convey the electronic components in the conveying passage in the alignment state by exerting the air suction into the conveying passage from the end of the conveying passage, and stop the electronic components conveyed in the alignment state by use of the component stopper. That is, it is possible to convey the electronic components in the alignment state to the predetermined position by these apparatuses having the conveying passage, the sucking device, and the component stopper. Since these apparatuses do not need the belt and the belt drive mechanism of the conventional apparatus, the simple and inexpensive electronic component feeding apparatus can be provided.
- FIG. 1 is a side view of an electronic component feeding apparatus showing one embodiment of the present invention
- FIG. 2(A) is an enlarged longitudinal section view of a stationary pipe and a movable pipe shown in FIG. 1;
- FIG. 2(B) is a top view of the stationary pipe and the movable pipe shown in FIG. 1;
- FIG. 2(C) is an end top view of a conveying tube shown in FIG. 1;
- FIG. 3 is an enlarged longitudinal section view of a feed block and a slider shown in FIG. 1;
- FIG. 4 is an enlarged top view of the feed block and the slider shown in FIG. 1;
- FIG. 5(A) is a sectional view taken along a line A-A in FIG. 3;
- FIG. 5(B) is a sectional view taken along a line B-B in FIG. 3;
- FIG. 6 is a view showing a state in which a drive lever of the apparatus shown in FIG. 1 is pushed down;
- FIG. 7 is a view showing a state in which the drive lever of the apparatus shown in FIG. 1 is released from the pushing down and is returned to its original position;
- FIGS. 8 (A) and 8 (B) are views showing an operation in which electronic components in a storage chamber are taken into the stationary pipe by moving up and down the movable pipe;
- FIGS. 9 and 10 are views showing an operation of conveying electronic components by sucking air
- FIG. 11 is a view showing an operation of separating a forefront electronic component from subsequent electronic components by moving the slider forward;
- FIG. 12 is a top face view of FIG. 11;
- FIG. 13 is a view showing an operation of piking up the forefront electronic component by using a suction nozzle
- FIG. 14(A) is a view showing a modification of a bore of the stationary pipe.
- FIG. 14(B) is a view showing a modification of a bore of the conveying tube.
- FIGS. 1 through 13 show an embodiment of an electronic component feeding apparatus according to the present invention.
- reference numeral 1 denotes a frame
- 2 denotes a storage container
- 3 denotes a stationary pipe
- 4 denotes a movable pipe
- 5 denotes a conveying tube
- 6 denotes a feed block
- 7 denotes a slider
- 8 denotes an air cylinder
- 9 denotes an air tube
- 10 denotes a driving lever
- 11 denotes a link
- 12 denotes a driven lever.
- the left side of FIG. 1 is referred to as “front”
- the right side of FIG. 1 is referred to as “back or rear”
- the near side of FIG. 1 is referred to as “left”
- the back side of the FIG. 1 is referred to as “right.”
- the electronic component P includes a chip component such as chip capacitor, chip resistor, chip inductor, and so on; a composite component such as LC filter and so on; and an array component such as capacitor array, inductor array, and so on.
- the frame 1 is manufactured by punching a plate made of stainless steel or the like into a predetermined shape and forming a plate material on a bending and so on.
- This frame has a support bracket 1 a for the stationary pipe, a plurality of support brackets 1 b for the conveying tube 5 , and a plurality of support brackets 1 c for the air tube 9 , which are formed by local cutting and standing, on one side of the frame 1 .
- This frame 1 has bent parts 1 d and 1 e at the back side (on the right side of the drawing) and bottom side to increase frame's rigidity.
- the bent part 1 e is provided with a plurality of positioning pins 1 f to attach the apparatus to other member. If the thickness of the frame 1 is rigid enough to ensure predetermined rigidity, the bent parts 1 d and 1 e are not always necessary.
- the storage container 2 comprises a flat storage container body 2 a with an top opening which is formed by a resin molding and a slide lid 2 b which freely slides to cover and uncover the top opening of the storage container body 2 a .
- a flat storage chamber 2 c with an about V-shaped inclined bottom is formed in the storage container body 2 a .
- a bore 2 d circular in cross section, into which the movable pipe 4 is inserted so that it can move up and down, is formed so that the bore 2 d runs from the bottom of the storage container body 2 a into the deepest part of the inclined bottom.
- screws FS the storage container 2 is removably attached to the frame 1 .
- the stationary pipe 3 made of a metal, a hard resin, etc., has a bore 3 a rectangular in cross section and an outer shape circular in cross section.
- the cross section of the bore 3 a is a square which is slightly larger than, and similar to, that of longitudinal end face shape of an electronic component P.
- the electronic component P can longitudinally pass through the bore 3 a of the stationary pipe 3 .
- the stationary pipe 3 is inserted into the center of the bore 2 d of the storage container body 2 a , its lower end passes through the support bracket 1 a of the frame 1 and is fixed to the the support bracket 1 a .
- the upper end of the stationary pipe 3 is slightly below the upper end of the bore 2 d .
- the upper end of the stationary pipe 3 may be almost at the same level as that of the bore 2 d or slightly above the upper end of the bore 2 d.
- the movable pipe 4 made of a metal, a hard resin, etc., has a bore 4 a circular in cross section which is slightly larger than the outer shape of the stationary pipe 3 and an outer shape outer shape circular in cross section which is slightly smaller than that of the bore 2 d of the storage container body 2 a .
- a funnel-shaped guide surface 4 b is formed at the upper end of the movable pipe 4 , and Colors 4 c and 4 d are formed at the lower end of the pipe 4 and above the side.
- the movable pipe 4 is disposed outside the stationary pipe 3 , with its upper end inserted into the bore 2 d of the storage container body 2 a .
- a first coil spring S 1 is installed below the upper color 4 d to prevent overload, and a second coil spring S 2 is installed above the upper color 4 d to press down the movable pipe 4 .
- the first coil spring S 1 produces a larger force than the second coil spring S 2 . If the force produced by the first coil spring S 1 is equal to or smaller than the force produced by the second coil spring S 2 , however, the movable pipe can move.
- the bottom of the movable pipe 4 at its lower position (standby position) is in contact with a rubber damper ring LR, installed on the support bracket 1 a of the frame 1 .
- the upper end of the movable pipe 4 is below the upper end of the stationary pipe 3 .
- a circular recess (not indicated by any reference numeral) which is defined by the guide surface 4 b of the movable pipe 4 , the outer surface of the stationary pipe 3 , and the bore 2 d is formed above the movable pipe 4 .
- the conveying tube 5 is made of a resin such as polypropylene, polyamide system resin, or fluoroplastic, or a metal such as stainless steel.
- the cross section of a bore 5 a of the conveying tube 5 is a square and almost the same as the bore 3 a of the stationary pipe 3 .
- the electronic component P can longitudinally pass through the bore 5 a of the conveying tube 5 .
- An outer shape of the conveying tube 5 is a square similar to the cross section of the bore 5 a or circular cross section.
- a connection recess 5 b circular in cross section is formed at a start of the conveying tube 5 , the stationary pipe 3 is inserted to and connected with the connection recess 5 b As shown in FIG.
- the conveying tube 5 is connected its start with the lower end of the stationary pipe 3 so as to align the internal surface of the bore 5 a with the internal surface of the bore 3 a of the stationary pipe 3 by using an adhesive according to need.
- the inlet of the bore 5 a of the conveying tube 5 is chamfered or rounded as necessary so that the electronic component P is not caught at the interface between the bore 3 a of the stationary pipe 3 to the bore 5 a of the conveying tube 5 when the component conveys from the bore 3 a to the bore 5 a .
- the bore 5 a of the conveying tube 5 composes a conveying passage for conveying the electronic component P in a alignment state.
- the feed block 6 has a passage 6 a which has almost the same square cross section as the bore 5 a of the conveying tube 5 .
- a connection recess 6 b square in cross section is formed at the rear end of the passage 6 a , an end of the conveying tube 5 is inserted to and connected with the connection recess 6 b .
- the conveying tube 5 is connected at its end with the the feed block 6 so as to align the internal surface of the bore 5 a with the internal surface of the passage 6 a of the feed block 6 by using an adhesive according to need.
- the inlet of the passage 6 a is chamfered or rounded as necessary so that the electronic component P is not caught at the interface between the bore 5 a of the conveying tube 5 to the passage 6 a when the component conveys from the bore 5 a to the passage 6 a .
- a first recess 6 c which is nearly as wide as a shutter plate 7 d described later, and has a depth which is almost equal to a distance between the top surface of the feed block 6 and the top surface of the passage 6 a is formed above the passage 6 a of the feed block 6 .
- a front part of the passage 6 a opens through the first recess 6 c to the outside.
- a suction bore 6 d circular in cross section which runs from the bottom of the feed block 6 into that of the passage 6 a is formed at the bottom of the passage 6 a of the feed block 6 .
- the suction bore 6 d is fitted at its lower end with an air tube connector CM.
- a second recess 6 e for movably disposing a slider body 7 a described later is formed at front side is formed in front of the passage 6 a of the feed block 6 .
- the second recess 6 e is open at the top and on the right and left sides.
- a cover plate 6 f is disposed on the second recess 6 e of the feed block 6 to cover the top opening of the second recess 6 e .
- the bottom of the cover plate 6 f is opposite the shutter plate 7 d with a small clearance between these two plates.
- the slider 7 comprises the rectangular slider body 7 a , a permanent magnet 7 b , a stopper plate 7 c , and the shutter plate 7 d.
- the slider body 7 a has at the center of its top a straight groove 7 a 1 which extends longitudinally.
- a width of the straight groove 7 a 1 is slightly smaller than a width of the passage 6 a of the feed block 6 .
- a magnet installation hole 7 a 2 which is circular in cross section and has a predetermined depth is formed at the straight groove 7 a 1 of the slider body 7 a .
- a cylindrical permanent magnet 7 b such as a samarium-cobalt magnet or a ferrite magnet, which has a length almost equal to the depth of the magnet installation hole 7 a 2 , is inserted into the magnet installation hole 7 a 2 so that the N or S pole of the magnet faces up by using an adhesive according to need.
- a pin 7 a 3 which is inserted into an oval hole 12 a at the upper end of the driven lever 12 described later is disposed on the left side of the slider body 7 a so that the tip of the pin 7 a 3 protrudes outside from the left side of the feed block 6 .
- the stopper plate 7 c is made of a magnetic material such as iron or the like. This stopper plate 7 c is nearly as wide as the straight groove 7 a 1 of the slider body 7 a and has a thickness less than a depth of the straight groove 7 a 1 .
- the shutter plate 7 d has a width which is slightly smaller than a width of the first recess 6 c of the feed block 6 .
- a straight bump 7 d 1 which is nearly as wide as the straight groove 7 a 1 in the slider body 7 a and has a height smaller than the depth of the straight groove 7 a 1 is formed at the center of the bottom of the shutter plate.
- the slider 7 is assembled by inserting the stopper plate 7 c into the straight groove 7 a 1 of the slider body 7 a , and then, disposing the the shutter plate 7 d on the slider body 7 a so as to fit the straight bump 7 d 1 into the straight groove 7 a 1 .
- These parts may be combined together using an adhesive, screws, etc. It is possible to clip the stopper plate 7 c by the shutter plate 7 d combined with the slider body 7 a .
- the bottom of the stopper plate 7 c is in contact with the top of the permanent magnet 7 b , so that the rear end of the stopper plate 7 c has the N or S pole. The rear end of the stopper plate 7 c is beyond the shutter plate 7 d.
- the slider 7 is disposed so that the slider body 7 a is in the second recess 6 e of the feed block 6 and that the rear of the stopper plate 7 c and the rear of the straight bump 7 d 1 on the shutter plate 7 d are in the passage 6 a of the feed block 6 .
- a third coil spring S 3 which is interposed between the front surface of the slider body 7 a and that of the second recess 6 e of the feed block 6 urges the slider 7 , thus pressing the back surface of the slider body 7 a against the back surface of the second recess 6 e and the rear end of the shutter plate 7 d against the back surface of the first recess 6 c .
- the shutter plate 7 d closes the opening of the passage 6 a of the feed block 6 .
- a clearance which is a part of a suction passage is between the bottom of the passage 6 a and that of the stopper plate 7 c .
- the suction bore 6 d and the bore 5 a of the conveying tube 5 communicate through the clearance with each other.
- the stopper plate 7 c constitutes a component stopper
- the slider 7 constitutes a displacing device which displaces the stopper plate 7 c from a stop position to a removed position therefrom.
- the air cylinder 8 which has a rod 8 a connected with a piston (not shown), is rotatably supported at its lower end 8 b on the frame 1 .
- the air cylinder 8 has a suction port 8 c and an exhaust port 8 d which each incorporate a nonreturn valve (not shown).
- the suction port 8 c is connected through the air tube 9 with the connector CM at the bottom of the feed block 6 . As shown in FIG.
- the air cylinder 8 can suck the air through the suction port 8 c by lowering the rod 8 a from its upper position, and exert an air suction for conveying the electronic components into the bore 5 a of the conveying tube 5 through the suction passage composed by the air tube 9 , the suction bore 6 d , and the passage 6 a .
- the air cylinder 8 can exhaust the air through the exhaust port 8 d by lifting the rod 8 a from its lower position, and discharge the air in the air cylinder 8 through the exhaust port 8 d .
- the nonreturn valve in the exhaust port 8 d closes when the air is sucked
- the nonreturn valve in the suction port 8 c closes when the air is discharged.
- the air cylinder 8 constitutes a sucking device which conveys the electronic components P in the bore 5 a of the conveying tube 5 using the air suction.
- the driving lever 10 is shaped by a first vertical plate 10 a , a horizontal plate 10 b , and a second vertical plate 10 c which are arranged in that order.
- the first vertical plate 10 a has a protrusion 10 d extending downward.
- the driving lever 10 is rotatably supported nearly at the center of the first vertical plate 10 a on the frame 1 and urged clockwise in the figure by a torsion coil spring S 4 .
- a pressed rod 10 a 1 is provided on the right side at the front end of the first vertical plate 10 a .
- the pressed rod 10 a 1 is pressed down by a driving device, not shown, thus causing the driving lever 10 to rotate counterclockwise (see FIG. 6).
- the horizontal plate 10 b is provided with a engaging portion 10 b 1 , that is, a round bore or a U-shaped notch. As shown in FIG. 2(A), the engaging portion 10 b 1 is between the lower color 4 c of the movable pipe 4 and the first coil spring S 1 .
- the rod 8 a of the air cylinder 8 is rotatably supported on the second vertical plate 10 c.
- the rear end of the link 11 is rotatably connected with the lower end of the protrusion 10 d .
- the front end of the link 11 is rotatably connected with the lower end of the driven lever 12 .
- the driven lever 12 is rotatably supported nearly at its center on the frame 1 .
- the pin 7 a 3 of the slider body 7 a is inserted into the oval hole 12 a at the upper end of the driven lever 12 .
- the subsequent electronic components P are in close contact with each other.
- the forefront electronic component P is attracted to the rear end of the stopper plate 7 c under the action of magnetism, because the rear end of the stopper plate 7 c provides the N or S pole as described above.
- the forefront electronic component P attracted to the rear end of the stopper plate 7 c , displaces forward together with the stopper plate 7 c , so that the forefront electronic component P is separated from the following electronic components P.
- the slider 7 moves forward, thus causing the shutter plate 7 d to move away from the back surface of the first recess 6 c .
- the front part of the passage 6 a opens to the outside through the first recess 6 c , so that the forefront electronic component P is exposed.
- the forefront electronic component P attracted to the rear end of the stopper plate 7 c , is piked up by a suction nozzle AN, which lowers from above the top electronic component.
- the electronic components P in the bore 5 a can be conveyed in the predetermined position in the alignment state, and can be stopped by the stopper plate 7 c . That is, by using the apparatus with the conveying tube 5 , the air cylinder 8 , and the stopper plate 7 c , the electronic components P can be conveyed in the alignment state to the predetermined position. Since this apparatus do not need the belt and the belt drive mechanism of the conventional apparatus, the simple and inexpensive electronic component feeding apparatus can be provided. Moreover, since the conveying passage is composed of the tube 5 , a plurality of members do not need to be combined to form the conveying passage. This also helps provide the inexpensive electronic component feeding apparatus.
- the pick up operation of the forefront electronic component P by use of the suction nozzle AN is easily performed. Since the permanent magnet 7 b is brought into contact with the stopper plate 7 c so that the rear end of the stopper plate 7 c provides the N or S pole, when the electronic components P conveyed by the air suction are stopped by the stopper plate 7 c , the forefront electronic component P can be attracted to the stopper plate 7 c to keep the position of the forefront electronic component P.
- the forefront electronic component P attracted to the rear end of the stopper plate 7 c can be displaced forward together with the stopper plate 7 c and separated from the following electronic components P by displacing the stopper plate 7 c from the stop position to the removed position therefrom, when the forefront electronic component P is picked up by use of the suction nozzle AN, the forefront electronic component P can be picked up in a stable position as preventing the forefront electronic component P from interfering with the following electronic components P.
- a take-in device which is intended to take electronic components in the storage camber 2 c into the bore 5 a of the conveying tube 5 one by one in the predetermined position, is composed of the stationary pipe 3 and the movable pipe 4 , electronic components P can be sequentially introduced into the bore 5 a of the conveying tube 5 .
- the movable pipe 4 serves to stir electronic components in the storage chamber 2 c and lead them into the bore 3 a of the stationary pipe 3 and the bore 5 a of the conveying tube 5 , the electronic components P in the storage chamber 2 c can efficiently be introduced into the bore 5 a of the conveying tube 5 .
- the apparatus can properly and stably convey electronic components P having the square pole shape in the alignment state without any problem such as an improper position.
- the aforesaid apparatus can convey cylindrical electronic components P in the same way as electronic components having the square pole shape.
- the bore 3 a ′ of a stationary pipe 3 ′ should be provided with a rectangular cross section which is similar to the longitudinal end face shape of the electronic component P′ and slightly larger than the longitudinal end face shape as shown in FIG. 14(A).
- a bore 5 a ′ of a conveying tube 5 ′ should be provided with a rectangular cross section which is almost the same as the cross section of the bore 3 a ′ of the stationary pipe 3 ′ as shown in FIG. 14(B).
- the aforesaid apparatus moves the slider 7 forward when the pressed rod 10 a 1 of the driving lever 10 is pushed down, and exerts the air suction through the suction passage into the bore 5 a of the conveying tube 5 when the pressed rod 10 a 1 returns to its original position.
- an arrangement also achieves the same effects and advantages as described above which exerts the air suction through the suction passage into the bore 5 a of the conveying tube 5 when the pressed rod 10 a 1 of the driving lever 10 is pushed down, and moves the slider 7 forward when the pressed rod 10 a 1 returns to its original position.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Supply And Installment Of Electrical Components (AREA)
Abstract
An electronic component feeding apparatus which conveys electronic components in a alignment state to a predetermined position. This apparatus includes a conveying tube for conveying electronic components having a predetermined shape in a alignment state, an air cylinder for exerting an air suction into the conveying tube from an end of the conveying tube, and a movable stopper plate for stopping the electronic components conveyed in the alignment state.
Description
- 1. Field of the Invention
- The present invention relates to an electronic component feeding apparatus which conveys electronic components such as chip components in a alignment state to a predetermined position.
- 2. Description of the Related Art
- A conventional electronic component feeding apparatus is disclosed in Japanese Patent Laid-Open No. 6-232596 and U.S. Pat. No. 5,525,023 corresponding to said Japanese Patent Laid-Open. This apparatus discharges chip components stored in a storage chamber in a bulk state through a component convey pipe onto a belt, conveys forward chip components discharged on the belt by use of the belt, and stops the chip components conveyed with the belt by use of a stopper.
- Because of the belt which is used to convey the chip components forward, the apparatus needs the belt and a ratchet mechanism to intermittently drive the belt. Although the cost of such apparatuses is recently required to be cut, these apparatuses, which need the belt and its drive mechanism to the component conveyance, are difficult to be simplified, so that the cost of the apparatuses can limitedly be reduced.
- An object of the present invention is to provide a simple and inexpensive electronic component feeding apparatus.
- To attain the object, an electronic component feeding apparatus according to the present invention includes: a conveying passage for conveying electronic components having a predetermined shape in a alignment state; a sucking device for exerting an air suction into the conveying passage from an end of the conveying passage and conveying the electronic components in the conveying passage; a movable component stopper for stopping the electronic components conveyed in the alignment state by the air suction; and a displacing device for displacing the component stopper from a stop position to a removed position therefrom after the electronic components conveyed are stopped by the component stopper. Furthermore, an electronic component feeding apparatus according to the present invention includes: a conveying passage for conveying electronic components having a predetermined shape in a alignment state; a sucking device for exerting a air suction into the conveying passage from an end of the conveying passage and conveying the electronic components in the conveying passage; and a movable component stopper for stopping the electronic components conveyed in the alignment state by the air suction; wherein the conveying passage is composed of a tube having a bore whose cross section allows the electronic components to pass through the bore in a predetermined direction.
- These apparatuses can convey the electronic components in the conveying passage in the alignment state by exerting the air suction into the conveying passage from the end of the conveying passage, and stop the electronic components conveyed in the alignment state by use of the component stopper. That is, it is possible to convey the electronic components in the alignment state to the predetermined position by these apparatuses having the conveying passage, the sucking device, and the component stopper. Since these apparatuses do not need the belt and the belt drive mechanism of the conventional apparatus, the simple and inexpensive electronic component feeding apparatus can be provided.
- The above-described and other objects, features and advantages of the present invention will be apparent from the following descriptions made with reference to the accompanying drawings.
- FIG. 1 is a side view of an electronic component feeding apparatus showing one embodiment of the present invention;
- FIG. 2(A) is an enlarged longitudinal section view of a stationary pipe and a movable pipe shown in FIG. 1;
- FIG. 2(B) is a top view of the stationary pipe and the movable pipe shown in FIG. 1;
- FIG. 2(C) is an end top view of a conveying tube shown in FIG. 1;
- FIG. 3 is an enlarged longitudinal section view of a feed block and a slider shown in FIG. 1;
- FIG. 4 is an enlarged top view of the feed block and the slider shown in FIG. 1;
- FIG. 5(A) is a sectional view taken along a line A-A in FIG. 3;
- FIG. 5(B) is a sectional view taken along a line B-B in FIG. 3;
- FIG. 6 is a view showing a state in which a drive lever of the apparatus shown in FIG. 1 is pushed down;
- FIG. 7 is a view showing a state in which the drive lever of the apparatus shown in FIG. 1 is released from the pushing down and is returned to its original position;
- FIGS.8(A) and 8(B) are views showing an operation in which electronic components in a storage chamber are taken into the stationary pipe by moving up and down the movable pipe;
- FIGS. 9 and 10 are views showing an operation of conveying electronic components by sucking air;
- FIG. 11 is a view showing an operation of separating a forefront electronic component from subsequent electronic components by moving the slider forward;
- FIG. 12 is a top face view of FIG. 11;
- FIG. 13 is a view showing an operation of piking up the forefront electronic component by using a suction nozzle;
- FIG. 14(A) is a view showing a modification of a bore of the stationary pipe; and
- FIG. 14(B) is a view showing a modification of a bore of the conveying tube.
- FIGS. 1 through 13 show an embodiment of an electronic component feeding apparatus according to the present invention. In FIGS. 1 through 13,
reference numeral 1 denotes a frame, 2 denotes a storage container, 3 denotes a stationary pipe, 4 denotes a movable pipe, 5 denotes a conveying tube, 6 denotes a feed block, 7 denotes a slider, 8 denotes an air cylinder, 9 denotes an air tube, 10 denotes a driving lever, 11 denotes a link, and 12 denotes a driven lever. In the following descriptions, the left side of FIG. 1 is referred to as “front,” the right side of FIG. 1 is referred to as “back or rear,” the near side of FIG. 1 is referred to as “left,” and the back side of the FIG. 1 is referred to as “right.” - The apparatus in FIGS. 1 through 13 feeds electronic components P of square pole shape having a dimensional relationship such as length>width= height. The electronic component P includes a chip component such as chip capacitor, chip resistor, chip inductor, and so on; a composite component such as LC filter and so on; and an array component such as capacitor array, inductor array, and so on.
- The
frame 1 is manufactured by punching a plate made of stainless steel or the like into a predetermined shape and forming a plate material on a bending and so on. This frame has asupport bracket 1 a for the stationary pipe, a plurality ofsupport brackets 1 b for theconveying tube 5, and a plurality ofsupport brackets 1 c for theair tube 9, which are formed by local cutting and standing, on one side of theframe 1. Thisframe 1 hasbent parts bent part 1 e is provided with a plurality ofpositioning pins 1 f to attach the apparatus to other member. If the thickness of theframe 1 is rigid enough to ensure predetermined rigidity, thebent parts - The
storage container 2 comprises a flatstorage container body 2 a with an top opening which is formed by a resin molding and aslide lid 2 b which freely slides to cover and uncover the top opening of thestorage container body 2 a. Aflat storage chamber 2 c with an about V-shaped inclined bottom is formed in thestorage container body 2 a. Abore 2 d circular in cross section, into which themovable pipe 4 is inserted so that it can move up and down, is formed so that thebore 2 d runs from the bottom of thestorage container body 2 a into the deepest part of the inclined bottom. Using an appropriate number of screws FS, thestorage container 2 is removably attached to theframe 1. - The
stationary pipe 3, made of a metal, a hard resin, etc., has abore 3 a rectangular in cross section and an outer shape circular in cross section. As shown in FIG. 2(B), the cross section of thebore 3 a is a square which is slightly larger than, and similar to, that of longitudinal end face shape of an electronic component P. Thus, the electronic component P can longitudinally pass through thebore 3 a of thestationary pipe 3. As shown in FIG. 2(A), thestationary pipe 3 is inserted into the center of thebore 2 d of thestorage container body 2 a, its lower end passes through thesupport bracket 1 a of theframe 1 and is fixed to the thesupport bracket 1 a. In FIG. 2(A), the upper end of thestationary pipe 3 is slightly below the upper end of thebore 2 d. The upper end of thestationary pipe 3 may be almost at the same level as that of thebore 2 d or slightly above the upper end of thebore 2 d. - The
movable pipe 4, made of a metal, a hard resin, etc., has abore 4 a circular in cross section which is slightly larger than the outer shape of thestationary pipe 3 and an outer shape outer shape circular in cross section which is slightly smaller than that of thebore 2 d of thestorage container body 2 a. A funnel-shaped guide surface 4 b is formed at the upper end of themovable pipe 4, andColors pipe 4 and above the side. As shown in FIG. 2(A), themovable pipe 4 is disposed outside thestationary pipe 3, with its upper end inserted into thebore 2 d of thestorage container body 2 a. A first coil spring S1 is installed below theupper color 4 d to prevent overload, and a second coil spring S2 is installed above theupper color 4 d to press down themovable pipe 4. The first coil spring S1 produces a larger force than the second coil spring S2. If the force produced by the first coil spring S1 is equal to or smaller than the force produced by the second coil spring S2, however, the movable pipe can move. The bottom of themovable pipe 4 at its lower position (standby position) is in contact with a rubber damper ring LR, installed on thesupport bracket 1 a of theframe 1. The upper end of themovable pipe 4 is below the upper end of thestationary pipe 3. That is, when themovable pipe 4 is at the lower position, a circular recess (not indicated by any reference numeral) which is defined by theguide surface 4 b of themovable pipe 4, the outer surface of thestationary pipe 3, and thebore 2 d is formed above themovable pipe 4. - The conveying
tube 5 is made of a resin such as polypropylene, polyamide system resin, or fluoroplastic, or a metal such as stainless steel. As shown in FIG. 2(C), the cross section of abore 5 a of the conveyingtube 5 is a square and almost the same as thebore 3 a of thestationary pipe 3. Thus, the electronic component P can longitudinally pass through thebore 5 a of the conveyingtube 5. An outer shape of the conveyingtube 5 is a square similar to the cross section of thebore 5 a or circular cross section. Aconnection recess 5 b circular in cross section is formed at a start of the conveyingtube 5, thestationary pipe 3 is inserted to and connected with theconnection recess 5 b As shown in FIG. 2(A), the conveyingtube 5 is connected its start with the lower end of thestationary pipe 3 so as to align the internal surface of thebore 5 a with the internal surface of thebore 3 a of thestationary pipe 3 by using an adhesive according to need. The inlet of thebore 5 a of the conveyingtube 5 is chamfered or rounded as necessary so that the electronic component P is not caught at the interface between thebore 3 a of thestationary pipe 3 to thebore 5 a of the conveyingtube 5 when the component conveys from thebore 3 a to thebore 5 a. In the apparatus in the figure, thebore 5 a of the conveyingtube 5 composes a conveying passage for conveying the electronic component P in a alignment state. - As shown in FIGS. 3, 4,5(A), and 5(B), the
feed block 6 has apassage 6 a which has almost the same square cross section as thebore 5 a of the conveyingtube 5. Aconnection recess 6 b square in cross section is formed at the rear end of thepassage 6 a, an end of the conveyingtube 5 is inserted to and connected with theconnection recess 6 b. The conveyingtube 5 is connected at its end with the thefeed block 6 so as to align the internal surface of thebore 5 a with the internal surface of thepassage 6 a of thefeed block 6 by using an adhesive according to need. The inlet of thepassage 6 a is chamfered or rounded as necessary so that the electronic component P is not caught at the interface between thebore 5 a of the conveyingtube 5 to thepassage 6 a when the component conveys from thebore 5 a to thepassage 6 a. Afirst recess 6 c which is nearly as wide as ashutter plate 7 d described later, and has a depth which is almost equal to a distance between the top surface of thefeed block 6 and the top surface of thepassage 6 a is formed above thepassage 6 a of thefeed block 6. A front part of thepassage 6 a opens through thefirst recess 6 c to the outside. A suction bore 6 d circular in cross section which runs from the bottom of thefeed block 6 into that of thepassage 6 a is formed at the bottom of thepassage 6 a of thefeed block 6. The suction bore 6 d is fitted at its lower end with an air tube connector CM. Asecond recess 6 e for movably disposing aslider body 7 a described later is formed at front side is formed in front of thepassage 6 a of thefeed block 6. Thesecond recess 6 e is open at the top and on the right and left sides. Acover plate 6 f is disposed on thesecond recess 6 e of thefeed block 6 to cover the top opening of thesecond recess 6 e. The bottom of thecover plate 6 f is opposite theshutter plate 7 d with a small clearance between these two plates. - As shown in FIGS. 3, 4,5(A), and 5(B), the
slider 7 comprises therectangular slider body 7 a, apermanent magnet 7 b, astopper plate 7 c, and theshutter plate 7 d. - The
slider body 7 a has at the center of its top astraight groove 7 a 1 which extends longitudinally. A width of thestraight groove 7 a 1 is slightly smaller than a width of thepassage 6 a of thefeed block 6. Amagnet installation hole 7 a 2 which is circular in cross section and has a predetermined depth is formed at thestraight groove 7 a 1 of theslider body 7 a. A cylindricalpermanent magnet 7 b such as a samarium-cobalt magnet or a ferrite magnet, which has a length almost equal to the depth of themagnet installation hole 7 a 2, is inserted into themagnet installation hole 7 a 2 so that the N or S pole of the magnet faces up by using an adhesive according to need. Apin 7 a 3 which is inserted into anoval hole 12 a at the upper end of the drivenlever 12 described later is disposed on the left side of theslider body 7 a so that the tip of thepin 7 a 3 protrudes outside from the left side of thefeed block 6. - The
stopper plate 7 c is made of a magnetic material such as iron or the like. Thisstopper plate 7 c is nearly as wide as thestraight groove 7 a 1 of theslider body 7 a and has a thickness less than a depth of thestraight groove 7 a 1. - The
shutter plate 7 d has a width which is slightly smaller than a width of thefirst recess 6 c of thefeed block 6. Astraight bump 7d 1 which is nearly as wide as thestraight groove 7 a 1 in theslider body 7 a and has a height smaller than the depth of thestraight groove 7 a 1 is formed at the center of the bottom of the shutter plate. - The
slider 7 is assembled by inserting thestopper plate 7 c into thestraight groove 7 a 1 of theslider body 7 a, and then, disposing the theshutter plate 7 d on theslider body 7 a so as to fit thestraight bump 7d 1 into thestraight groove 7 a 1. These parts may be combined together using an adhesive, screws, etc. It is possible to clip thestopper plate 7 c by theshutter plate 7 d combined with theslider body 7 a. After assembling, the bottom of thestopper plate 7 c is in contact with the top of thepermanent magnet 7 b, so that the rear end of thestopper plate 7 c has the N or S pole. The rear end of thestopper plate 7 c is beyond theshutter plate 7 d. - As shown in FIGS. 3, 4,5(A), and 5(B), the
slider 7 is disposed so that theslider body 7 a is in thesecond recess 6 e of thefeed block 6 and that the rear of thestopper plate 7 c and the rear of thestraight bump 7d 1 on theshutter plate 7 d are in thepassage 6 a of thefeed block 6. A third coil spring S3 which is interposed between the front surface of theslider body 7 a and that of thesecond recess 6 e of thefeed block 6 urges theslider 7, thus pressing the back surface of theslider body 7 a against the back surface of thesecond recess 6 e and the rear end of theshutter plate 7 d against the back surface of thefirst recess 6 c. Thus theshutter plate 7 d closes the opening of thepassage 6 a of thefeed block 6. As shown in FIGS. 3 and 5(A), a clearance which is a part of a suction passage is between the bottom of thepassage 6 a and that of thestopper plate 7 c. The suction bore 6 d and thebore 5 a of the conveyingtube 5 communicate through the clearance with each other. In the apparatus in the figure, thestopper plate 7 c constitutes a component stopper, and theslider 7 constitutes a displacing device which displaces thestopper plate 7 c from a stop position to a removed position therefrom. - The
air cylinder 8, which has arod 8 a connected with a piston (not shown), is rotatably supported at itslower end 8 b on theframe 1. Theair cylinder 8 has asuction port 8 c and anexhaust port 8 d which each incorporate a nonreturn valve (not shown). Thesuction port 8 c is connected through theair tube 9 with the connector CM at the bottom of thefeed block 6. As shown in FIG. 7, theair cylinder 8 can suck the air through thesuction port 8 c by lowering therod 8 a from its upper position, and exert an air suction for conveying the electronic components into thebore 5 a of the conveyingtube 5 through the suction passage composed by theair tube 9, the suction bore 6 d, and thepassage 6 a. As shown in FIG. 6, theair cylinder 8 can exhaust the air through theexhaust port 8 d by lifting therod 8 a from its lower position, and discharge the air in theair cylinder 8 through theexhaust port 8 d. Besides, the nonreturn valve in theexhaust port 8 d closes when the air is sucked, and the nonreturn valve in thesuction port 8 c closes when the air is discharged. Thus the air suction can be exerted on the electronic component in thebore 5 a of the conveyingtube 5 when the air is sucked, and the positive pressure can be prevented from working in thebore 5 a of the conveyingtube 5 when the air is discharged. In the apparatus in the drawing, theair cylinder 8 constitutes a sucking device which conveys the electronic components P in thebore 5 a of the conveyingtube 5 using the air suction. - The driving
lever 10 is shaped by a firstvertical plate 10 a, ahorizontal plate 10 b, and a secondvertical plate 10 c which are arranged in that order. The firstvertical plate 10 a has aprotrusion 10 d extending downward. The drivinglever 10 is rotatably supported nearly at the center of the firstvertical plate 10 a on theframe 1 and urged clockwise in the figure by a torsion coil spring S4. A pressedrod 10 a 1 is provided on the right side at the front end of the firstvertical plate 10 a. The pressedrod 10 a 1 is pressed down by a driving device, not shown, thus causing the drivinglever 10 to rotate counterclockwise (see FIG. 6). Thehorizontal plate 10 b is provided with a engagingportion 10b 1, that is, a round bore or a U-shaped notch. As shown in FIG. 2(A), the engagingportion 10b 1 is between thelower color 4 c of themovable pipe 4 and the first coil spring S1. Therod 8 a of theair cylinder 8 is rotatably supported on the secondvertical plate 10 c. - The rear end of the
link 11 is rotatably connected with the lower end of theprotrusion 10 d. The front end of thelink 11 is rotatably connected with the lower end of the drivenlever 12. The drivenlever 12 is rotatably supported nearly at its center on theframe 1. Thepin 7 a 3 of theslider body 7 a is inserted into theoval hole 12 a at the upper end of the drivenlever 12. - Operation of the apparatus will be described below.
- When the apparatus is used to feed thousands to tens of thousands of the electronic components P, which are stored in a bulk state in the
storage chamber 2 c of thestorage container 2, the cycle consisting of the following operations is repeated: (1) using the driving device, not shown, the pressedrod 10 a 1 of the drivinglever 10 in its standby position is pressed down against urging force produced by the torsion coil spring S4 and the second coil spring S2 (see FIG. 6), and then (2) the pressedrod 10 a 1 is released to return the drivinglever 10 to its standby position, using urging force produced by the torsion coil spring S4 and the second coil spring S2 (see FIG. 7). - When the
driver lever 10 is rotated counterclockwise through a predetermined angle from the standby position, thehorizontal plate 10 b causes themovable pipe 4 to rise from the lower position in FIG. 8(A) to the upper position in FIG. 8(b). When mainly the second coil spring S2 contracts, themovable pipe 4 rises, so that its top slightly enters thestorage chamber 2 c. This is because the force produced by the first coil spring S1 is larger than the force produced by the second coil spring S2. As shown in FIG. 8(A), when themovable pipe 4 is in the lower position, several electronic components P are in the circular recess above themovable pipe 4. Thus when themovable pipe 4 rises, these electronic components P are lifted, thus stirring stored electronic components P. As a result, stored electronic components P are taken one by one into the upper end of thebore 3 a of the thestationary pipe 3 in a longitudinal direction, directly or under favor of an inclination of theguide surface 4 b. When the drivinglever 10 returns to the standby position after it rotates, by returning thehorizontal plate 10 b, themovable pipe 4 is returned by the urging force produced by the second coil spring S2 from the upper position in FIG. 8(B) to the lower position in FIG. 8(A). At this time, stored electronic components P are also taken one by one into the upper end of thebore 3 a of the thestationary pipe 3 as well as the above-mentioned. - The electronic components P taken into the
bore 3 a of thestationary pipe 3 move down through thebore 3 a under the gravity, and are taken into thebore 5 a of the conveyingtube 5 which is connected to the lower end of thestationary pipe 3. Then the electronic components P taken into thebore 5 a of the conveyingtube 5 move down through thebore 5 a under the gravity, and are changed its posture from a longitudinal position to a lateral position in a curved segment of the conveyingtube 5. - When the driving
lever 10 returns to the standby position after it rotates, therod 8 a of theair cylinder 8 lowers from the upper position to the lower position as shown in FIG. 7. Here through the suction passage composed by theair tube 9, the suction bore 6 d, and thepassage 6 a, the air suction for conveying the electronic components is exerted into thebore 5 a of the conveyingtube 5. The electronic components P in thebore 5 a of the conveyingtube 5 are moved forward in the alignment state by the air suction as shown in FIG. 9. The electronic components P conveyed in the alignment state by the air suction, stop when the forefront electronic component P against the rear end of thestopper plate 7 c as shown in FIG. 10. Following the forefront electronic component P, the subsequent electronic components P are in close contact with each other. The forefront electronic component P is attracted to the rear end of thestopper plate 7 c under the action of magnetism, because the rear end of thestopper plate 7 c provides the N or S pole as described above. - On the other hand, when the driving
lever 10 is rotated counterclockwise through a predetermined angle from the standby position, as shown in FIG. 6, theprotrusion 10 d on the drivinglever 10 displaces, thus pulling back thelink 11, so that the drivenlever 12 rotates counterclockwise through a predetermined angle with a pivot at the center. As shown in FIG. 11, when rotating, the drivenlever 12 causes theslider 7 to move forward a predetermined distance against the urging force produced by the third coil spring S3. Thestopper plate 7 c displaces forward from the stop position to the removed position therefrom. The forefront electronic component P, attracted to the rear end of thestopper plate 7 c, displaces forward together with thestopper plate 7 c, so that the forefront electronic component P is separated from the following electronic components P. Theslider 7 moves forward, thus causing theshutter plate 7 d to move away from the back surface of thefirst recess 6 c. As a result, the front part of thepassage 6 a opens to the outside through thefirst recess 6 c, so that the forefront electronic component P is exposed. As shown in FIG. 13, the forefront electronic component P, attracted to the rear end of thestopper plate 7 c, is piked up by a suction nozzle AN, which lowers from above the top electronic component. - When the driving
lever 10 is returned to the standby position after it is rotated, theprotrusion 10 d of the drivinglever 10 returns to its original position. This causes thelink 11 and drivenlever 12 to also return to their original positions as shown in FIG. 7, so that theslider 7 returns to its original position under the action of the urging force produced by the third coil spring S3, as shown in FIG. 9. When theslider 7 moves back and forth, thepassage 6 a, thestopper plate 7 c, which is in the passage, and thestraight bump 7d 1 on theshutter plate 7 d; and thefirst recess 6 c and theshutter plate 7 d which is in the recess; serve as guides. - According to the aforesaid apparatus, by driving the
air cylinder 8 and exerting the air suction into thebore 5 a from the end of the conveyingtube 5, the electronic components P in thebore 5 a can be conveyed in the predetermined position in the alignment state, and can be stopped by thestopper plate 7 c. That is, by using the apparatus with the conveyingtube 5, theair cylinder 8, and thestopper plate 7 c, the electronic components P can be conveyed in the alignment state to the predetermined position. Since this apparatus do not need the belt and the belt drive mechanism of the conventional apparatus, the simple and inexpensive electronic component feeding apparatus can be provided. Moreover, since the conveying passage is composed of thetube 5, a plurality of members do not need to be combined to form the conveying passage. This also helps provide the inexpensive electronic component feeding apparatus. - Further, according to the aforesaid apparatus, by displacing the
stopper plate 7 c from the stop position to the removed position therefrom with use of theslider 7 after conveyed electronic components P are stopped by thestopper plate 7 c, the pick up operation of the forefront electronic component P by use of the suction nozzle AN is easily performed. Since thepermanent magnet 7 b is brought into contact with thestopper plate 7 c so that the rear end of thestopper plate 7 c provides the N or S pole, when the electronic components P conveyed by the air suction are stopped by thestopper plate 7 c, the forefront electronic component P can be attracted to thestopper plate 7 c to keep the position of the forefront electronic component P. In addition, since the forefront electronic component P attracted to the rear end of thestopper plate 7 c can be displaced forward together with thestopper plate 7 c and separated from the following electronic components P by displacing thestopper plate 7 c from the stop position to the removed position therefrom, when the forefront electronic component P is picked up by use of the suction nozzle AN, the forefront electronic component P can be picked up in a stable position as preventing the forefront electronic component P from interfering with the following electronic components P. - Furthermore, according to the aforesaid apparatus, since the
air cylinder 8 and the drivinglever 10 for activating theair cylinder 8 are installed on theframe 1, there is no need for placing a vacuum pump and plumbing in this vacuum pump, and for preparing a power supply for the vacuum pump and a circuit for controlling air suction. Thus the cost of the apparatus can be reduced. Both because theair cylinder 8 can be operated, by using the drivinglever 10 and because theslider 7 can be operated through thelink 11 and drivenlever 12 which are connected with the drivinglever 10, a sequence of component feed operations can be securely performed by only applying a force to the drivinglever 10. - Further, according to the aforesaid apparatus, since a take-in device, which is intended to take electronic components in the
storage camber 2 c into thebore 5 a of the conveyingtube 5 one by one in the predetermined position, is composed of thestationary pipe 3 and themovable pipe 4, electronic components P can be sequentially introduced into thebore 5 a of the conveyingtube 5. Moreover, because themovable pipe 4 serves to stir electronic components in thestorage chamber 2 c and lead them into thebore 3 a of thestationary pipe 3 and thebore 5 a of the conveyingtube 5, the electronic components P in thestorage chamber 2 c can efficiently be introduced into thebore 5 a of the conveyingtube 5. - Furthermore, according to the aforesaid apparatus, since the cross section of the
bore 5 a of the conveyingtube 5 is similar to the longitudinal end face shape of the electronic component P and slightly larger than the longitudinal end face shape, the apparatus can properly and stably convey electronic components P having the square pole shape in the alignment state without any problem such as an improper position. - By the way, the aforesaid apparatus can convey cylindrical electronic components P in the same way as electronic components having the square pole shape. When the apparatus is used to convey electronic components P′ which meet a dimensional relationship such as length>width>height, the
bore 3 a′ of astationary pipe 3′ should be provided with a rectangular cross section which is similar to the longitudinal end face shape of the electronic component P′ and slightly larger than the longitudinal end face shape as shown in FIG. 14(A). In addition, abore 5 a′ of a conveyingtube 5′ should be provided with a rectangular cross section which is almost the same as the cross section of thebore 3 a′ of thestationary pipe 3′ as shown in FIG. 14(B). - Further, the aforesaid apparatus moves the
slider 7 forward when the pressedrod 10 a 1 of the drivinglever 10 is pushed down, and exerts the air suction through the suction passage into thebore 5 a of the conveyingtube 5 when the pressedrod 10 a 1 returns to its original position. However, an arrangement also achieves the same effects and advantages as described above which exerts the air suction through the suction passage into thebore 5 a of the conveyingtube 5 when the pressedrod 10 a 1 of the drivinglever 10 is pushed down, and moves theslider 7 forward when the pressedrod 10 a 1 returns to its original position. - The preferred embodiments described herein are illustrative, not restrictive. The scope of the present invention is defined by the accompanying claims. The present invention covers all variations within the scope of the claims.
Claims (20)
1. An electronic component feeding apparatus, comprising:
a conveying passage for conveying electronic components having a predetermined shape in a alignment state;
a sucking device for exerting an air suction into the conveying passage from an end of the conveying passage and conveying the electronic components in the conveying passage;
a movable component stopper for stopping the electronic components conveyed in the alignment state by the air suction; and
a displacing device for displacing the component stopper from a stop position to a removed position therefrom after the electronic components conveyed are stopped by the component stopper.
2. The electronic component feeding apparatus according to , wherein
claim 1
the sucking device is installed on an apparatus frame, the apparatus frame is provided with a lever mechanism for operating the sucking device.
3. The electronic component feeding apparatus according to , wherein
claim 2
the sucking device includes an air cylinder installed on the apparatus frame and a suction passage for connecting a suction port of the air cylinder and the end of the conveying passage.
4. The electronic component feeding apparatus according to , wherein
claim 1
the displacing device includes a movable member for displacing the component stopper from the stop position to the removed position, and
a lever mechanism for operating the displacing device is installed on an apparatus frame.
5. The electronic component feeding apparatus according to , wherein
claim 4
the component stopper includes an adsorbent for attracting a forefront electronic component of the electronic components stopped by the component stopper.
6. The electronic component feeding apparatus according to , wherein
claim 5
the adsorbent is a permanent magnet, the forefront electronic component is attracted to the component stopper by magnetic force of the permanent magnet.
7. The electronic component feeding apparatus according to , further comprising:
claim 1
a storage container for storing electronic components having the predetermined shape in a bulk state; and
a take-in device for taking electronic components one by one into a start of the conveying passage.
8. The electronic component feeding apparatus according to , wherein
claim 7
the take-in device includes a movable member for stirring the electronic components in the storage container and leading the electronic components to the start of the conveying passage, and
a lever mechanism for operating the the take-in device is installed on an apparatus frame.
9. The electronic component feeding apparatus according to , wherein
claim 1
the conveying passage is composed of a tube having a bore whose cross section allows the electronic components to pass through the bore in a predetermined direction.
10. The electronic component feeding apparatus according to , wherein
claim 9
the cross section of the bore of the tube is similar to a longitudinal end face shape of an electronic component and slightly larger than the longitudinal end face shape.
11. The electronic component feeding apparatus according to , wherein
claim 9
the tube is made of a resin.
12. The electronic component feeding apparatus according to , wherein
claim 9
the tube is made of a metal.
13. An electronic component feeding apparatus, comprising:
a conveying passage for conveying electronic components having a predetermined shape in a alignment state;
a sucking device for exerting a air suction into the conveying passage from an end of the conveying passage and conveying the electronic components in the conveying passage; and
a movable component stopper for stopping the electronic components conveyed in the alignment state by the air suction;
wherein the conveying passage is composed of a tube having a bore whose cross section allows the electronic components to pass through the bore in a predetermined direction.
14. The electronic component feeding apparatus according to , wherein
claim 13
the cross section of the bore of the tube is similar to a longitudinal end face shape of a electronic component and slightly larger than the longitudinal end face shape.
15. The electronic component feeding apparatus according to , wherein
claim 13
the tube is made of a resin.
16. The electronic component feeding apparatus according to , wherein
claim 13
the tube is made of a metal.
17. The electronic component feeding apparatus according to , wherein
claim 13
the sucking device is installed on an apparatus frame, the apparatus frame is provided with a lever mechanism for operating the sucking device.
18. The electronic component feeding apparatus according to , wherein
claim 17
the sucking device includes an air cylinder installed on the apparatus frame and a suction passage for connecting a suction port of the air cylinder and the end of the conveying passage.
19. The electronic component feeding apparatus according to , further comprising:
claim 13
a storage container for storing electronic components having the predetermined shape in a bulk state; and
a take-in device for taking electronic components one by one into a start of the conveying passage.
20. The electronic component feeding apparatus according to , wherein
claim 19
the take-in device includes a movable member for stirring the electronic components in the storage container and leading the electronic components to the start of the conveying passage, and
a lever mechanism for operating the the take-in device is installed on an apparatus frame.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11-367858 | 1999-12-24 | ||
JPH11-367858 | 1999-12-24 | ||
JP36785899A JP3520008B2 (en) | 1999-12-24 | 1999-12-24 | Electronic component supply device |
Publications (2)
Publication Number | Publication Date |
---|---|
US20010005471A1 true US20010005471A1 (en) | 2001-06-28 |
US6443669B2 US6443669B2 (en) | 2002-09-03 |
Family
ID=18490382
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/742,223 Expired - Fee Related US6443669B2 (en) | 1999-12-24 | 2000-12-22 | Electronic component feeding apparatus |
Country Status (3)
Country | Link |
---|---|
US (1) | US6443669B2 (en) |
EP (1) | EP1111983A1 (en) |
JP (1) | JP3520008B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060254048A1 (en) * | 2004-01-26 | 2006-11-16 | Popman Corporation | Automatic electronic component supplying apparatus and components inventory management apparatus |
CN108367869A (en) * | 2015-12-28 | 2018-08-03 | 仓敷纺绩株式会社 | Article supply method and device |
US20190305141A1 (en) * | 2018-03-27 | 2019-10-03 | Hong Kong Applied Science And Technology Research Institute Co., Ltd. | High Voltage Silicon Carbide Schottky Diode Flip Chip Array |
CN113747782A (en) * | 2021-09-06 | 2021-12-03 | 常州冯卡斯登智能科技有限公司 | Automatic feeding device for chip mounter |
Families Citing this family (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6752291B2 (en) * | 2001-03-29 | 2004-06-22 | Taiyo Yuden Co., Ltd. | Component feeding method, component feeding apparatus, and component feeding unit |
TW491094U (en) * | 2001-09-28 | 2002-06-11 | Ind Tech Res Inst | Material selection device for micro-workpiece |
FR2845978B1 (en) * | 2002-10-21 | 2005-07-22 | F2 C2 System | DEVICE FOR DISTRIBUTING WORKPIECES, IN PARTICULAR RIVETS, DELIVERED OUT OF A STORAGE MEANS SUCH AS A VIBRANT BOWL, ITS WORKING PROCESS AND ADAPTIVE VIBRANT BOWL |
DE10300878B4 (en) * | 2003-01-10 | 2006-04-06 | Richard Bergner Verbindungstechnik Gmbh & Co. Kg | Apparatus and method for feeding a bolt-shaped element to a processing unit |
ITBO20030491A1 (en) * | 2003-08-08 | 2005-02-09 | Gd Spa | SUPPLY UNIT FOR FILTERS TO A FILTER MACHINE |
JP2006100484A (en) * | 2004-09-29 | 2006-04-13 | Taiyo Yuden Co Ltd | Component supply apparatus |
US7678107B2 (en) * | 2005-03-10 | 2010-03-16 | Boston Scientific Scimed, Inc. | Medical needles and electrodes with improved bending stiffness |
DE102005018651A1 (en) * | 2005-04-21 | 2006-10-26 | Uhlmann Pac-Systeme Gmbh & Co Kg | Device for orientation and onward transport of bulk material |
WO2007025078A2 (en) * | 2005-08-24 | 2007-03-01 | Greenwald Technologies, Inc. | System for packaging solid pharmaceutical products |
CN101646551B (en) * | 2007-03-27 | 2013-06-12 | 诺瓦提斯公司 | Method and device for transporting a molded object |
FR2926070B1 (en) * | 2008-01-07 | 2009-12-18 | Eris | DEVICE FOR STORING AND DISTRIBUTING SMALL PARTS SUCH AS RIVETS. |
DE102012212502B4 (en) * | 2012-04-16 | 2016-01-14 | Magna Steyr Fahrzeugtechnik Ag & Co Kg | Nietweiche for more than two different types of loose rivets |
CN104724481B (en) * | 2013-12-20 | 2017-07-18 | 深圳富泰宏精密工业有限公司 | Sorting mechanism |
GB201405340D0 (en) * | 2014-03-25 | 2014-05-07 | British American Tobacco Co | Feed Unit |
GB201405341D0 (en) | 2014-03-25 | 2014-05-07 | British American Tobacco Co | Feed unit |
GB201405337D0 (en) | 2014-03-25 | 2014-05-07 | British American Tobacco Co | Feed unit |
GB201405342D0 (en) | 2014-03-25 | 2014-05-07 | British American Tobacco Co | Feed unit |
EP3037192B1 (en) * | 2014-12-22 | 2017-09-06 | KUKA Systems Aerospace | Feeder mechanism for feeding mechanical fasteners |
US9459183B1 (en) * | 2015-01-15 | 2016-10-04 | Bruce D. Schnakenberg | System for the collection and disposal of grain samples |
EP3266731A4 (en) * | 2015-03-06 | 2018-11-21 | Kurashiki Boseki Kabushiki Kaisha | Article supply device |
JP5840815B1 (en) * | 2015-07-07 | 2016-01-06 | 株式会社電元社製作所 | Nut feeder |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AT368104B (en) * | 1979-06-25 | 1982-09-10 | Sticht Walter | AIR TRANSPORT SYSTEM, ESPECIALLY FOR ASSEMBLY PARTS |
JPH02160432A (en) * | 1988-12-15 | 1990-06-20 | Toshiba Corp | Feeding device for part |
JPH0730572Y2 (en) * | 1990-05-31 | 1995-07-12 | 太陽誘電株式会社 | Electronic component supply device |
JP3453809B2 (en) | 1992-12-10 | 2003-10-06 | 松下電器産業株式会社 | Chip component supply device and chip component supply method |
TW348933U (en) * | 1992-12-10 | 1998-12-21 | Matsushita Electric Ind Co Ltd | Chip component supply equipment |
EP1771058A3 (en) * | 1994-05-18 | 2007-06-13 | Taiyo Yuden Co., Ltd. | Apparatus for supplying chip parts and method for same |
JP3642071B2 (en) * | 1994-08-09 | 2005-04-27 | 松下電器産業株式会社 | Chip component supply device |
CN1183024A (en) * | 1996-11-15 | 1998-05-27 | 太阳诱电株式会社 | Device for feeding sheet shape parts and suction tray used |
JP3579234B2 (en) * | 1997-12-09 | 2004-10-20 | 太陽誘電株式会社 | Chip component supply device |
JP3956036B2 (en) * | 1997-12-22 | 2007-08-08 | 井関農機株式会社 | Rice transplanter |
JP3814400B2 (en) * | 1998-01-05 | 2006-08-30 | 松下電器産業株式会社 | Bulk feeder |
JP4141004B2 (en) * | 1998-03-04 | 2008-08-27 | 太陽誘電株式会社 | Chip component supply device |
JP4275255B2 (en) * | 1999-06-25 | 2009-06-10 | 富士機械製造株式会社 | Alignment feeder |
-
1999
- 1999-12-24 JP JP36785899A patent/JP3520008B2/en not_active Expired - Fee Related
-
2000
- 2000-12-21 EP EP00128186A patent/EP1111983A1/en not_active Withdrawn
- 2000-12-22 US US09/742,223 patent/US6443669B2/en not_active Expired - Fee Related
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060254048A1 (en) * | 2004-01-26 | 2006-11-16 | Popman Corporation | Automatic electronic component supplying apparatus and components inventory management apparatus |
CN108367869A (en) * | 2015-12-28 | 2018-08-03 | 仓敷纺绩株式会社 | Article supply method and device |
EP3398887A4 (en) * | 2015-12-28 | 2019-08-14 | Kurashiki Boseki Kabushiki Kaisha | Article supply method and device |
US20190305141A1 (en) * | 2018-03-27 | 2019-10-03 | Hong Kong Applied Science And Technology Research Institute Co., Ltd. | High Voltage Silicon Carbide Schottky Diode Flip Chip Array |
CN113747782A (en) * | 2021-09-06 | 2021-12-03 | 常州冯卡斯登智能科技有限公司 | Automatic feeding device for chip mounter |
Also Published As
Publication number | Publication date |
---|---|
EP1111983A1 (en) | 2001-06-27 |
JP2001185897A (en) | 2001-07-06 |
JP3520008B2 (en) | 2004-04-19 |
US6443669B2 (en) | 2002-09-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6443669B2 (en) | Electronic component feeding apparatus | |
CN210911371U (en) | Automatic pressing and buckling mechanism | |
US6742675B2 (en) | Electronic component feeding apparatus | |
JP2006100484A (en) | Component supply apparatus | |
US6471094B2 (en) | Electronic component feeding apparatus | |
US6752291B2 (en) | Component feeding method, component feeding apparatus, and component feeding unit | |
JPH03295300A (en) | Electronic component automatic feeder | |
JPH05306013A (en) | Method and device for successively feeding components to mounting apparatus | |
JPH0752072Y2 (en) | Electronic component storage pack | |
JP3642071B2 (en) | Chip component supply device | |
CN215701347U (en) | Magnetic loading device | |
JP3817104B2 (en) | Electronic component feeder | |
JP2843484B2 (en) | Chip-shaped component supply device | |
JP3785325B2 (en) | Electronic component transfer method and transfer device | |
CN209919268U (en) | Jump ring assembly quality | |
JPH07105618B2 (en) | Electronic parts automatic feeder | |
JP2843485B2 (en) | Chip-shaped component supply device | |
JP4171291B2 (en) | Parts supply device | |
JP2575911Y2 (en) | Chip-shaped circuit component mounting device | |
JPH08222890A (en) | Electronic parts supply device | |
JP2000280126A (en) | Part feeder | |
JPH0751834Y2 (en) | Electronic parts automatic feeder | |
JPH07101794B2 (en) | Electronic parts automatic feeder | |
JP3586389B2 (en) | Parts feeder | |
JP3161958B2 (en) | Chip component supply device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: TAIYO YUDEN CO., LTD., JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SAITO, KOJI;REEL/FRAME:011396/0264 Effective date: 20001115 |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees | ||
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20140903 |