US1948691A - Steel skeleton for reenforced concrete structures - Google Patents

Steel skeleton for reenforced concrete structures Download PDF

Info

Publication number
US1948691A
US1948691A US387858A US38785829A US1948691A US 1948691 A US1948691 A US 1948691A US 387858 A US387858 A US 387858A US 38785829 A US38785829 A US 38785829A US 1948691 A US1948691 A US 1948691A
Authority
US
United States
Prior art keywords
bars
reenforcements
concrete
steel skeleton
reenforced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US387858A
Inventor
Bauer Bruno
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of US1948691A publication Critical patent/US1948691A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/18Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
    • E04B1/20Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons the supporting parts consisting of concrete, e.g. reinforced concrete, or other stonelike material
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/18Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
    • E04B1/30Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons the supporting parts being composed of two or more materials; Composite steel and concrete constructions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/30Means for extinguishing or preventing arc between current-carrying parts
    • H01H9/44Means for extinguishing or preventing arc between current-carrying parts using blow-out magnet
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D1/00Demodulation of amplitude-modulated oscillations
    • H03D1/14Demodulation of amplitude-modulated oscillations by means of non-linear elements having more than two poles
    • H03D1/16Demodulation of amplitude-modulated oscillations by means of non-linear elements having more than two poles of discharge tubes
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/18Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
    • E04B1/20Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons the supporting parts consisting of concrete, e.g. reinforced concrete, or other stonelike material
    • E04B1/21Connections specially adapted therefor
    • E04B1/215Connections specially adapted therefor comprising metallic plates or parts

Definitions

  • steel skeleton construction is not to be understood a construction in which the bearing character of walls and pillars is taken into consideration, in order to assign to these elements of construction a volumetric function only, but one in which all forces -(load on flats, wind pressure and the like), acting on the finished structure, are received by a steel skeleton constructed and dimensioned for this load or stress and consisting of rolled sections (generally H-sections) riveted or welded together. Therefore a steel skeleton of this kind constitutes the complete supporting structure of the whole building and after erecting said skeleton, which is done in the manner of iron constructions, the same is provided with a fireproof lining and walled up.
  • the building constructions of reenforced concrete represent a compound member, which serves the purpose of carrying or supporting the two materials, namely concrete and iron,'of which it consists, so that in this kind of constructions, the concrete enclosing the iron mountings protects the iron against damage by rust or fire and also acts as a support or carrier.
  • this economic advantage can only be made use of in part because the rigidity and stiffness of the reenforced concrete constructions can only be utilized after the hardening of the concrete and therefore it is necessary to make a rigid boarding scaffold in order to shape the reenforced concrete structure.
  • This rigid hollow mold which usually consists of wood and has to be erected at the site of the building at comparatively high costs, uses up a large proportion of the savings gained by the reenforced concrete construction compared with the steel skeleton structure.
  • the mode of working during the erection of the reenforced concrete buildings renders necessary the manufacture of a hollow mold for each fiat and the subsequent alternate insertion and embedding of the reenforcing iron in the concrete, because the manufacture of a hollow mold of boardings uniformly for the whole building is very expensive in view of the necessary safety of the whole boarding scaffold.
  • the present invention has for its object to combine the advantages of the steel skeleton structure and the reenforced concrete structure and at the same time avoid the drawbacks of these two constructions.
  • the reenforcing skeleton according to the present invention does not form per se the supporting scaffold of the entire building but possesses such a bearing power that it is not necessary to carry out the boarding and concreting by steps, because the reenforcing skeleton can be erected in a uniform manner by trained fitters and the erection can precede the concreting operation for two or three or even more flats.
  • the reenforcements of the reenforced concrete structure which in view of the regulations at present in force can be employed for a certain percentage of reenforcement and in view of the tendency to use as small a quantity of iron as possible in such reenforcements are not some ciently strong to properly resist for instance the wind in case of high buildings or readily permit erection as in the case of bridges before the concreting operation takes place.
  • the horizontal parts of the reenforcing skeleton according to the present invention do not need to be of the whole cross-sectional area found by calculation, but only that part is of standard size, which after erection constitutes the whole reenforcement and provides a firm support for the boardings.
  • the skeleton can thus be produced in a considerably simpler and lighter manner, whereby the costs of the boardings are reduced very considerably.
  • boarding-supports can be employed for the erection of the reenforcing skeleton according to the present invention, the said supports satisfying five functions.
  • the stiff reenforcements forming the reenforcing skeleton or a combination of stiff and loose insertions are present, the stiff insertions being formed by the reenforcing skeleton, while the loose insertions are introduced in known manner before the concreting operation, in order to correspondingly complete the reenforcement formed by the skeleton.
  • FIG. 1 is a diagrammatic view in longitudinal section of the vertical longitudinal reenforcement of a concrete pillar extending through three sis . pressure members of a concrete bridge.
  • Fig. 8 shows in cross section the reenforcement of adjacent pressure members of a concrete bridge.
  • Figs. 9 to 15 illustrate different modes of connection between the vertical longitudinal reenforcements and the horizontal reenforcements.
  • the stable bars or rods 1 are united with one another by distance members 2 in such a manner, that the reenforcement of the entire building passes through all flats.
  • the connection between the individual adjoining rods 1 is effected either by welding or by adjustable sleeves as shown at 4.
  • the character 5 designates a strapping of rolled wire
  • 6 is a tube formed by spirally winding an endless strip
  • 7 indicates a tube of perforated sheet metal.
  • the latter may be seamless or formed by welding.
  • the arrangement may be such, that the tube is produced by rolling a suitable sheet metal and longitudinally welding the same along the strapping or in a separate operation and thereafter the tube is pushed over the longitudinal rods.
  • These longitudinal rods 1 are arranged radially placed on edge as shown in Fig. 2, whereby either four rods of this kind are provided or a larger number of these rods may be arranged as shown in Fig. 3.
  • FIG. 4 eight round rods are provided, while Fig. 5 shows the application of four round rods held by adjustable distance members 2.
  • Fig. 6 the four round rods and the distance members consist of a casting.
  • the reenforcement according to the present invention is applicable to high buildings with any desired number of flats.
  • the reenforcement according to the present invention can be used with particular advantage also for reenforced concrete bridges.
  • Substantially the same longitudinal rods 1 with distance members 2 and straps 5 and 6 are used to form a bridge-arch by uniting the adjoining longitudinal rods by welding or the like.
  • stiff horizontal reenforcements 9 are rigidly connected with the stiff vertical longitudinal reenforcements 1, consisting of rods, bars, tubes or the like, by means of cage-like bearings 10 secured to the longitudinal reenforcements 9 and carrying the said horizontal reenforcements.
  • the bearings 10 are secured to rods or bars 11, which are pushed onto the longitudinal reenforcements 1 by means of sleeves 12. These rods 11 preferably overlap the abutting places of the longitudinal reenforcements, so that under certain circumstances it is not necessary to unite the individual members of these longitudinal reenforcements.
  • the horizontal reenforcements 9 are connected with the cage-like bearings 10 preferably by screws, rivets, welding or the like.
  • the vertical longitudinal reenforcements are strapped in the usual manner. In the illustrated construction, a stable spiral wire 5 forms the strapping.
  • reenforcements 13 are inserted in the cagelike bearings 10, the said reenforcements 13 being trough-shaped and preferably of rasp-shaped steel sheets. These horizontal reenforcements also serve as casings for the ceiling-beams.
  • a perforated tube 7 constitutes the enclosure of the vertical reenforcements 1.
  • the vertical longitudinal reenforcements 1 and the horizontal reenforcements 16 consist of tubes which are welded together at the abutting place.
  • the trough-shaped horizontal reenforcements 13 are suspended from the steel skeleton thus formed.
  • a spiral wound band 6 forms the strapping of the vertical horizontal reenforcements.
  • the use of the trough-shaped horizontal reenforcements of rasp-like steel sheet calls for certain provisions in order to firmly connect the poured-in concrete with these encasing troughs.
  • the metal walls are covered with beton milk either inwardly or outwardly or on both sides.
  • the steeltroughs may be previously faced with cement or covered with concrete.
  • the rasp-like openings are closed and the concrete subsequently poured adheres firmly to the casing.
  • a self supporting steel skeleton for a reenforced concrete structure for tall buildings comprising a plurality of spaced bars extending vertically through. the entire building, spacing means for joining the bars together outside of the area enclosed by said bars and leaving the cross section of concrete between said bars substantially undivided throughout the length of the column, each bar consisting of a plurality of short units joined at their abutting ends and reenforcing elements to connect the ends of such units.
  • a self supporting steel skeleton for a reenforced concrete structure for tall buildings comprising a plurality of spaced bars extending vertically through the entire building, spacing means for joining the bars together outside of the area enclosed by said bars and leaving the cross section of concrete between said bars substantially undivided throughout the length of the column, each bar consisting of a plurality of short units joined at their abutting ends and reenforcing means encircling said bars.
  • a self supporting steel skeleton for a reenforced concrete structure for tall buildings comprising a plurality of spaced, rigid bars extending vertically through the entire building, spacing means for joining the bars together outside of the area enclosed by said bars and leaving the cross section of concrete between said bars substantially undivided throughout the length of the column, each bar consisting of a plurality of short units welded together at their abutting ends, and a plurality of spirally wound strips encircling said bars and rigidly secured thereto.
  • a self supporting steel skeleton for a reenforced concrete structure for tall buildings comprising a plurality of spaced bars extending vertically through the entire building, horizontal distance pieces for securing said bars together at different elevations outside of the area enclosed by said bars and leaving the cross section of concrete between said bars substantially undivided throughout the length of the column, and perforated tubes surrounding said bars and rigidly secured thereto.
  • a self supporting steel skeleton for a reenforced concrete structure for tall buildings comprising a plurality of spaced bars extending vertically through the entire building, each bar consisting of a plurality of shorter units joined at their abutting ends, horizontal distance pieces for securing said spaced bars together outside of the area enclosed by said bars and leaving the cross section of concrete between said bars substantially undivided throughout the length of the column, said pieces having sleeves which fit over the joints between the various units of each vertical bar, and secure said units together, and
  • a self supporting steel skeleton for a reenforced concrete structure for tall buildings comprising a plurality of spaced rigid bars extending vertically through the entire building, spacing means for joining said bars together, bearing cages secured at various heights to said vertical bars, and horizontal reenforcing members secured in said cages.
  • a self supporting steel skeleton for a reen forced concrete structure for tall buildings of a nature to withstand the forces acting on the building prior to concreting comprising a plurality of rigid spaced bars extending vertically through the entire building, spacing means for joining said bars together, perforated tubes surrounding and secured to said bars at various elevations, bearing cages secured to said vertical bars between the ends of said tubes and horizontal reenforcing members secured in said cages.
  • bearing cages have rods secured thereto and sleeves on said rods for fastening said cages to said spaced bars.

Description

B. BAUER Feb. 27, 1934.
STEEL SKELETON FOR REENFORCED CONCRETESTRUCTURES 5 Sheets-Sheet 1 Filed Aug. 23, 1929 I 1g.1
III!- llllllll Bruno Bauer Feb. 27, 1934. BAUER 1,948,691
STEEL SKELETON FOR REENFORCED CONCRETE STRUCTURES Filed Aug. 23, 1929 5 SheetsfSheet 2 5w no EXIUQY mvzwroa; By WM&
5 Sheets-Sheet 3 ErunaBauex B. BAUER Feb. 27, 1934.
STEEL SKELETON FOR REENFORCED CONCRETE STRUCTURES Filed Aug. 23, 1929 Fig.
Feb. 27, 1934. B. BAUER 1,948,691
STEEL SKELETON FOR REENFORCED CONCRETE STRUCTURES Filed Aug. 23, 1929 5 Sheets-Sheet 4 Brun 0 Ba er iNVENToRv Attorney Feb. 2%, 1934. B. BAUER 1,948,691
STEEL SKELETON FOR REENFORCED CONCRETE STRUCTURES Filed Aug. 23, 1929 5 Sheets-Sheet 5 5mm) Bauer HJVEEN TO R:
Ammo Patented Feb. 27, 1934 UNITED STATES STEEL SKELETON FOR REENFORCED CONCRETE STRUCTURES Bruno Bauer, Vienna, Austria Application August 23, 1929, Serial No. 387,858 In Austria December 29, 1928 9 Claims. (01. 72-76) Although the reenforced concrete mode of construction possesses many advantages compared with the iron construction, the reenforced concrete could not compete in any way with the steel skeleton construction as far as high buildings (buildings with a large number of flats, skyscrapers) are concerned. By the term steel skeleton construction is not to be understood a construction in which the bearing character of walls and pillars is taken into consideration, in order to assign to these elements of construction a volumetric function only, but one in which all forces -(load on flats, wind pressure and the like), acting on the finished structure, are received by a steel skeleton constructed and dimensioned for this load or stress and consisting of rolled sections (generally H-sections) riveted or welded together. Therefore a steel skeleton of this kind constitutes the complete supporting structure of the whole building and after erecting said skeleton, which is done in the manner of iron constructions, the same is provided with a fireproof lining and walled up. These fireproof supports are of the greatest importance for the security of a tall building, because in case of fire in one of the lower flats, the deformation of the supports owing to the heat may lead to the collapse of the building. However the steel skeleton constructions used at present in connection with high buildings possess the drawback, that the masonry, either of concrete or bricks, necessary for the fire-proof encasing of the skeletons and for making the ceilings, subject said steel skeletons to an undue load because they are not utilized for bearing or carrying objects. Compared with this, the building constructions of reenforced concrete represent a compound member, which serves the purpose of carrying or supporting the two materials, namely concrete and iron,'of which it consists, so that in this kind of constructions, the concrete enclosing the iron mountings protects the iron against damage by rust or fire and also acts as a support or carrier. However this economic advantage can only be made use of in part because the rigidity and stiffness of the reenforced concrete constructions can only be utilized after the hardening of the concrete and therefore it is necessary to make a rigid boarding scaffold in order to shape the reenforced concrete structure. This rigid hollow mold, which usually consists of wood and has to be erected at the site of the building at comparatively high costs, uses up a large proportion of the savings gained by the reenforced concrete construction compared with the steel skeleton structure. The mode of working during the erection of the reenforced concrete buildings renders necessary the manufacture of a hollow mold for each fiat and the subsequent alternate insertion and embedding of the reenforcing iron in the concrete, because the manufacture of a hollow mold of boardings uniformly for the whole building is very expensive in view of the necessary safety of the whole boarding scaffold.
The present invention has for its object to combine the advantages of the steel skeleton structure and the reenforced concrete structure and at the same time avoid the drawbacks of these two constructions. The reenforcing skeleton according to the present invention does not form per se the supporting scaffold of the entire building but possesses such a bearing power that it is not necessary to carry out the boarding and concreting by steps, because the reenforcing skeleton can be erected in a uniform manner by trained fitters and the erection can precede the concreting operation for two or three or even more flats.
The reenforcements of the reenforced concrete structure, which in view of the regulations at present in force can be employed for a certain percentage of reenforcement and in view of the tendency to use as small a quantity of iron as possible in such reenforcements are not some ciently strong to properly resist for instance the wind in case of high buildings or readily permit erection as in the case of bridges before the concreting operation takes place.
This object can however be attained according to my present invention by uniting bars or rods of considerably larger cross-sectional area, than correspond to the regulations at present in force, by means of straps and uniform connec tions over the entire structure, tonew kinds of skeletons and use the same as reenforcements.
Thus stiff, rigid and firm bars or rods of materials of comparatively great resistance to contusions and other shocks, such as cast iron or transmission-shaft steel or the like, are used. These bars or rods directly are joined to each other by means of welding or by cups, grooves, notches, wedges, looks or adjustable sleeves and the like, in order to produce a uniform vertical reenforcement passing through the entire struc ture.
Particularly the horizontal parts of the reenforcing skeleton according to the present invention do not need to be of the whole cross-sectional area found by calculation, but only that part is of standard size, which after erection constitutes the whole reenforcement and provides a firm support for the boardings. The skeleton can thus be produced in a considerably simpler and lighter manner, whereby the costs of the boardings are reduced very considerably. Preferably also boarding-supports can be employed for the erection of the reenforcing skeleton according to the present invention, the said supports satisfying five functions.
1. They impart a suflicient rigidity to the reenforcing skeleton advanced for three or four flats.
2. They constitute a part of the reenforcement of the reenforced concrete beams determined by calculation.
3. They replace brackets.
4. They serve as boarding of the reenforced concrete beam.
5. They form the bearing of the ceiling-boarding.
In the finished reenforced concrete structure either the stiff reenforcements forming the reenforcing skeleton or a combination of stiff and loose insertions are present, the stiff insertions being formed by the reenforcing skeleton, while the loose insertions are introduced in known manner before the concreting operation, in order to correspondingly complete the reenforcement formed by the skeleton.
Some modes of carrying out the present invention are illustrated by way of example on the accompanying sheets of drawings in which Fig. 1 is a diagrammatic view in longitudinal section of the vertical longitudinal reenforcement of a concrete pillar extending through three sis . pressure members of a concrete bridge.
Fig. 8 shows in cross section the reenforcement of adjacent pressure members of a concrete bridge.
Figs. 9 to 15 illustrate different modes of connection between the vertical longitudinal reenforcements and the horizontal reenforcements.
In the construction shown in Fig. 1, the stable bars or rods 1 are united with one another by distance members 2 in such a manner, that the reenforcement of the entire building passes through all flats. As indicated at 3 the connection between the individual adjoining rods 1 is effected either by welding or by adjustable sleeves as shown at 4. The character 5 designates a strapping of rolled wire, 6 is a tube formed by spirally winding an endless strip and 7 indicates a tube of perforated sheet metal. The latter may be seamless or formed by welding. The arrangement may be such, that the tube is produced by rolling a suitable sheet metal and longitudinally welding the same along the strapping or in a separate operation and thereafter the tube is pushed over the longitudinal rods.
These longitudinal rods 1 are arranged radially placed on edge as shown in Fig. 2, whereby either four rods of this kind are provided or a larger number of these rods may be arranged as shown in Fig. 3.
In the construction shown in Fig. 4 eight round rods are provided, while Fig. 5 shows the application of four round rods held by adjustable distance members 2. In the construction shown in Fig. 6 the four round rods and the distance members consist of a casting.
The reenforcement according to the present invention is applicable to high buildings with any desired number of flats.
As shown in Figs. '7 and 8, the reenforcement according to the present invention can be used with particular advantage also for reenforced concrete bridges. Substantially the same longitudinal rods 1 with distance members 2 and straps 5 and 6 are used to form a bridge-arch by uniting the adjoining longitudinal rods by welding or the like.
In the construction shown in Figs. 9 and 10 in side view and plan view respectively, stiff horizontal reenforcements 9 are rigidly connected with the stiff vertical longitudinal reenforcements 1, consisting of rods, bars, tubes or the like, by means of cage-like bearings 10 secured to the longitudinal reenforcements 9 and carrying the said horizontal reenforcements. The bearings 10 are secured to rods or bars 11, which are pushed onto the longitudinal reenforcements 1 by means of sleeves 12. These rods 11 preferably overlap the abutting places of the longitudinal reenforcements, so that under certain circumstances it is not necessary to unite the individual members of these longitudinal reenforcements. The horizontal reenforcements 9 are connected with the cage-like bearings 10 preferably by screws, rivets, welding or the like. The vertical longitudinal reenforcements are strapped in the usual manner. In the illustrated construction, a stable spiral wire 5 forms the strapping.
In the construction shown in Figs. 11 and 12 in side view and in plan view respectively, horizontal reenforcements 13 are inserted in the cagelike bearings 10, the said reenforcements 13 being trough-shaped and preferably of rasp-shaped steel sheets. These horizontal reenforcements also serve as casings for the ceiling-beams. In the illustrated embodiment, a perforated tube 7 constitutes the enclosure of the vertical reenforcements 1.
In the perspective View shown in Fig. 13, the rods 11, pushed by means of sleeves 12 onto the longitudinal reenforcements, carry eyelets 14 from which the trough-shaped horizontal reenforcements 13 are suspended by means of hooks 15. In the construction shown in Figs. 14 and 15 in side View and in plan View respectively, the vertical longitudinal reenforcements 1 and the horizontal reenforcements 16 consist of tubes which are welded together at the abutting place. The trough-shaped horizontal reenforcements 13 are suspended from the steel skeleton thus formed. A spiral wound band 6 forms the strapping of the vertical horizontal reenforcements.
The use of the trough-shaped horizontal reenforcements of rasp-like steel sheet calls for certain provisions in order to firmly connect the poured-in concrete with these encasing troughs. Before pouring in the concrete the metal walls are covered with beton milk either inwardly or outwardly or on both sides. If desired the steeltroughs may be previously faced with cement or covered with concrete. In View of this preliminary treatment, the rasp-like openings are closed and the concrete subsequently poured adheres firmly to the casing.
I claim- 1. A self supporting steel skeleton for a reenforced concrete structure for tall buildings comprising a plurality of spaced bars extending vertically through. the entire building, spacing means for joining the bars together outside of the area enclosed by said bars and leaving the cross section of concrete between said bars substantially undivided throughout the length of the column, each bar consisting of a plurality of short units joined at their abutting ends and reenforcing elements to connect the ends of such units.
2. A self supporting steel skeleton for a reenforced concrete structure for tall buildings comprising a plurality of spaced bars extending vertically through the entire building, spacing means for joining the bars together outside of the area enclosed by said bars and leaving the cross section of concrete between said bars substantially undivided throughout the length of the column, each bar consisting of a plurality of short units joined at their abutting ends and reenforcing means encircling said bars.
3. A self supporting steel skeleton for a reenforced concrete structure for tall buildings comprising a plurality of spaced, rigid bars extending vertically through the entire building, spacing means for joining the bars together outside of the area enclosed by said bars and leaving the cross section of concrete between said bars substantially undivided throughout the length of the column, each bar consisting of a plurality of short units welded together at their abutting ends, and a plurality of spirally wound strips encircling said bars and rigidly secured thereto.
4. A self supporting steel skeleton for a reenforced concrete structure for tall buildings comprising a plurality of spaced bars extending vertically through the entire building, horizontal distance pieces for securing said bars together at different elevations outside of the area enclosed by said bars and leaving the cross section of concrete between said bars substantially undivided throughout the length of the column, and perforated tubes surrounding said bars and rigidly secured thereto.
5. A self supporting steel skeleton for a reenforced concrete structure for tall buildings, comprising a plurality of spaced bars extending vertically through the entire building, each bar consisting of a plurality of shorter units joined at their abutting ends, horizontal distance pieces for securing said spaced bars together outside of the area enclosed by said bars and leaving the cross section of concrete between said bars substantially undivided throughout the length of the column, said pieces having sleeves which fit over the joints between the various units of each vertical bar, and secure said units together, and
means surrounding and rigidly secured to said bars.
6. A self supporting steel skeleton for a reenforced concrete structure for tall buildings, comprising a plurality of spaced rigid bars extending vertically through the entire building, spacing means for joining said bars together, bearing cages secured at various heights to said vertical bars, and horizontal reenforcing members secured in said cages.
'7. A structure as recited in claim 6 wherein the horizontal reenforcing members comprise perforated metallic troughs.
8. A self supporting steel skeleton for a reen forced concrete structure for tall buildings of a nature to withstand the forces acting on the building prior to concreting, comprising a plurality of rigid spaced bars extending vertically through the entire building, spacing means for joining said bars together, perforated tubes surrounding and secured to said bars at various elevations, bearing cages secured to said vertical bars between the ends of said tubes and horizontal reenforcing members secured in said cages.
9. A structure as defined in claim 6, wherein the bearing cages have rods secured thereto and sleeves on said rods for fastening said cages to said spaced bars.
' BRUNO BAUER.
US387858A 1929-07-20 1929-08-23 Steel skeleton for reenforced concrete structures Expired - Lifetime US1948691A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
AT687185X 1929-07-20

Publications (1)

Publication Number Publication Date
US1948691A true US1948691A (en) 1934-02-27

Family

ID=40547781

Family Applications (1)

Application Number Title Priority Date Filing Date
US387858A Expired - Lifetime US1948691A (en) 1929-07-20 1929-08-23 Steel skeleton for reenforced concrete structures

Country Status (4)

Country Link
US (1) US1948691A (en)
DE (1) DE569491C (en)
FR (1) FR687185A (en)
GB (1) GB346409A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3110982A (en) * 1960-06-15 1963-11-19 Ollie L Besinger Precast, reinforced concrete column construction
USD847378S1 (en) * 2017-03-07 2019-04-30 Nxt Ip Pty Ltd Void former
US10392794B2 (en) 2016-09-21 2019-08-27 Skyrise Global, Llc Structure and method of making the same
US11959270B1 (en) * 2021-04-16 2024-04-16 Morse Distribution, Inc. Stud rail systems and methods for use in reinforced concrete structures

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3110982A (en) * 1960-06-15 1963-11-19 Ollie L Besinger Precast, reinforced concrete column construction
US10392794B2 (en) 2016-09-21 2019-08-27 Skyrise Global, Llc Structure and method of making the same
US10550566B2 (en) 2016-09-21 2020-02-04 Skyrise Global, Llc Structure and method of making the same
US10731327B2 (en) 2016-09-21 2020-08-04 Skyrise Global, Llc Structure and method of making the same
USD847378S1 (en) * 2017-03-07 2019-04-30 Nxt Ip Pty Ltd Void former
US11959270B1 (en) * 2021-04-16 2024-04-16 Morse Distribution, Inc. Stud rail systems and methods for use in reinforced concrete structures

Also Published As

Publication number Publication date
GB346409A (en) 1931-04-07
DE569491C (en) 1933-02-06
FR687185A (en) 1930-09-06

Similar Documents

Publication Publication Date Title
US2050258A (en) Building construction
US20120210669A1 (en) Method of constructing prefabricated steel reinforced concrete (psrc) column using angle steels and psrc column using angle steels
US1380324A (en) Concrete construction
JP2001525022A (en) Composite column of steel and concrete
CN104831818A (en) Connection node of precast reinforced concrete beam and laminated column
US1948691A (en) Steel skeleton for reenforced concrete structures
US1625899A (en) Fireproof building construction
WO2016020932A2 (en) Deployable pre-fabricated reinforcement cage system
KR101499811B1 (en) Prefabricated wall frame unit and construction method of prefabricated wall using the same
JPH11152899A (en) Construction method of tower structure and construction thereof
GB379700A (en) Improvements in and relating to reinforced concrete columns and skeleton frames for buildings
US2001162A (en) System of building construction
US2014087A (en) Construction of buildings and the like
US2069280A (en) Composite structural steel and reenforced concrete construction
KR101377119B1 (en) Methods for connecting of concrete filling pipe and concrete filling pipe
GB515819A (en) Improvements relating to the construction of reinforced concrete walls, pillars and supports for buildings, bridges and the like
JPS5883751A (en) Construction of beam in building
RU2793496C1 (en) Building frame
US20030001070A1 (en) Manufactured reinforced concrete system
JPH01214641A (en) Construction of steel-pipe precast concrete pole
US1099953A (en) Fireproof-building construction.
CN106760115A (en) A kind of lightweight assembled composite floor and its construction method
RU119365U1 (en) LARGE BLOCK BUILDING
US1141160A (en) Reinforced-concrete building construction.
KR100579543B1 (en) System for constructing composite reinforced concrete girders and beams using FRP