US11912257B2 - Method for controlling a driving dynamics control device, and driving dynamics control device - Google Patents

Method for controlling a driving dynamics control device, and driving dynamics control device Download PDF

Info

Publication number
US11912257B2
US11912257B2 US17/040,649 US201917040649A US11912257B2 US 11912257 B2 US11912257 B2 US 11912257B2 US 201917040649 A US201917040649 A US 201917040649A US 11912257 B2 US11912257 B2 US 11912257B2
Authority
US
United States
Prior art keywords
stator
electric motor
ideal position
rotor
control device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US17/040,649
Other languages
English (en)
Other versions
US20210016751A1 (en
Inventor
Jochen Bodmann
Andreas Schmidtlein
Christoph Emde
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of US20210016751A1 publication Critical patent/US20210016751A1/en
Assigned to ROBERT BOSCH GMBH reassignment ROBERT BOSCH GMBH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: EMDE, CHRISTOPH, BODMANN, Jochen, SCHMIDTLEIN, ANDREAS
Application granted granted Critical
Publication of US11912257B2 publication Critical patent/US11912257B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/34Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition
    • B60T8/40Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition comprising an additional fluid circuit including fluid pressurising means for modifying the pressure of the braking fluid, e.g. including wheel driven pumps for detecting a speed condition, or pumps which are controlled by means independent of the braking system
    • B60T8/4018Pump units characterised by their drive mechanisms
    • B60T8/4022Pump units driven by an individual electric motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/1755Brake regulation specially adapted to control the stability of the vehicle, e.g. taking into account yaw rate or transverse acceleration in a curve
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/12Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release the fluid being liquid
    • B60T13/16Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release the fluid being liquid using pumps directly, i.e. without interposition of accumulators or reservoirs
    • B60T13/20Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release the fluid being liquid using pumps directly, i.e. without interposition of accumulators or reservoirs with control of pump driving means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/66Electrical control in fluid-pressure brake systems
    • B60T13/662Electrical control in fluid-pressure brake systems characterised by specified functions of the control system components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T17/00Component parts, details, or accessories of power brake systems not covered by groups B60T8/00, B60T13/00 or B60T15/00, or presenting other characteristic features
    • B60T17/18Safety devices; Monitoring
    • B60T17/22Devices for monitoring or checking brake systems; Signal devices
    • B60T17/221Procedure or apparatus for checking or keeping in a correct functioning condition of brake systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T7/00Brake-action initiating means
    • B60T7/12Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/34Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition
    • B60T8/40Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition comprising an additional fluid circuit including fluid pressurising means for modifying the pressure of the braking fluid, e.g. including wheel driven pumps for detecting a speed condition, or pumps which are controlled by means independent of the braking system
    • B60T8/404Control of the pump unit
    • B60T8/405Control of the pump unit involving the start-up phase
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/34Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition
    • B60T8/48Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition connecting the brake actuator to an alternative or additional source of fluid pressure, e.g. traction control systems
    • B60T8/4809Traction control, stability control, using both the wheel brakes and other automatic braking systems
    • B60T8/4827Traction control, stability control, using both the wheel brakes and other automatic braking systems in hydraulic brake systems
    • B60T8/4863Traction control, stability control, using both the wheel brakes and other automatic braking systems in hydraulic brake systems closed systems
    • B60T8/4872Traction control, stability control, using both the wheel brakes and other automatic braking systems in hydraulic brake systems closed systems pump-back systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2270/00Further aspects of brake control systems not otherwise provided for
    • B60T2270/10ABS control systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2270/00Further aspects of brake control systems not otherwise provided for
    • B60T2270/30ESP control system
    • B60T2270/306ESP control system hydraulic system components

Definitions

  • the present invention relates to a method for controlling a driving dynamics control device and to a driving dynamics control device.
  • ESP systems systems for an electronic stability control
  • the active displacement or supply of brake fluid for an active pressure buildup in the brake fluid or for an evacuation of a low-pressure accumulator chamber for the brake fluid is carried out with the aid of an electrically operated return pump.
  • the requirement for the high-pressure configuration point results from the maximum system pressure at which an ABS control should be possible, from the eccentricity of the eccentric bearing and also from the surface of a pump element.
  • the required starting torque i.e., the required minimum torque for the run-up of the motor, depends on the position of the pump element or pump elements, and thus on the position of the rotor relative to the stator.
  • the configuration point or the electric motor must be designed so that the electric motor starts up even at a maximum sum of the torques at the pump elements. Therefore, the electric motor must be configured with a rotational speed/torque characteristic curve required for this purpose. The electric motor is consequently quite large or very powerful, and thus expensive.
  • Embodiments of the present invention may advantageously make it possible to provide a method for controlling a driving dynamics control device, or to provide a driving dynamics control device by which or in which a start-up of an electric motor is ensured at all times even when an electric motor is used that is not very powerful.
  • the driving dynamics control device has a pump, which includes at least two pump elements for the supply of brake fluid, and an electric motor, which includes a rotor and a stator for driving the pump elements, the example method having the following steps: detecting the position of the rotor relative to the stator; and adjusting an ideal position of the rotor relative to the stator, the sum of the torques for moving the pump elements lying below a predefined torque limit value, in particular being minimal, in the ideal position.
  • the electric motor generally has to have only low power. Because the rotor, and thus the pump elements, is/are easily movable when the rotor is in the ideal position, or in other words, a low torque is required to move the pump elements, the electric motor is usually easy to start up at all times.
  • the high pressure configuration point i.e., a point in the rotational speed/torque characteristic curve at which the electrically driven pump has to start up against very high pressures or system pressures of the brake fluid (e.g., in the ABS functionality), may thus be generally low.
  • the electric motor, and consequently the driving dynamics control device is thus typically able to be developed in a technically uncomplicated and economical as well as a compact manner.
  • Another advantage is that the electric motor starts up very quickly as a rule and brake fluid is consequently able to be supplied very rapidly by the pump.
  • a driving dynamics control device for influencing the braking of wheels of a motor vehicle
  • the driving dynamics control device including the following: a pump having at least two pump elements for the supply of brake fluid, and an electric motor including a rotor and a stator for driving the pump elements, characterized by a position detection device for detecting the position of the rotor relative to the stator, and a control device for adjusting the position of the rotor relative to the stator to an ideal position, the sum of the torques for moving the pump elements lying below a predefined torque limit value, in particular being minimal, in the ideal position.
  • this driving dynamics control device typically has to have only low power. Since the rotor and thus the pump elements is/are easily movable when the rotor is in the ideal position and a low torque is therefore required to move the pump elements, the electric motor of the driving dynamics control device is usually easy to start up at all times. As a result, the high pressure configuration point of the driving dynamics control device may generally be low, that is to say, a point in the rotational speed/torque characteristics curve at which the electrically driven pump has to start up against very high pressures or system pressures of the brake fluid (e.g., in the ABS functionality).
  • the electric motor, and consequently the driving dynamics control device are generally able to have a technically simple and economical as well as compact design.
  • An additional advantage is that the electric motor normally starts up very quickly and the pump is therefore able to supply brake fluid in a very rapid manner.
  • the rotor Because the rotor position relative to the stator is detected, the rotor is typically able to be stopped in an ideal position or be moved to an ideal position in a technically uncomplicated manner.
  • Embodiments and variants regarding specific embodiments of the present invention may be considered to be based on the thoughts and recognitions described herein, among other things.
  • the ideal position is determined by generating a predefined counterpressure against the supply of the brake fluid with the aid of the pump, and detecting the current of the electric motor required to supply the brake fluid against the generated counterpressure by the pump elements; the particular position of the rotor relative to the stator in which the required current for the electric motor lies below a predefined current value, in particular is minimal, being determined as the ideal position.
  • the ideal position is usually able to be determined in a rapid and technically simple manner. For example, this may be done during the final assembly of the driving dynamics control device. It is also possible that this takes place during the final assembly of the motor vehicle.
  • the rotor is adjusted after each movement of the electric motor such that the rotor is situated in the ideal position. This typically ensures that the electric motor is able to start up at all times and the pump is able to supply brake fluid.
  • the rotor in the method, is moved to the ideal position when the electric motor fails to move despite a start signal for starting the movement of the electric motor.
  • this offers the advantage that the rotor will not be moved to the ideal position after every stop of the electric motor, which may cause increased wear, etc., but instead is moved to the ideal position only when this becomes necessary, i.e., when the electric motor does not start up despite the start signal.
  • the energy consumption then is usually lower as a result.
  • the electric motor is moved counter to the normal running direction of the electric motor in order to move the rotor to the ideal position. This makes it possible to move the rotor to the ideal position in a generally technically uncomplicated and rapid manner and with a low energy consumption.
  • the sum of the torques for moving the pump elements essentially amounts to zero in the ideal position. This offers the advantage that the electric motor usually starts up especially quickly and the pump supplies brake fluid in a particularly rapid manner.
  • the pump elements supply brake fluid in alternation.
  • this makes it possible to supply the brake fluid in a technically simple and reliable manner while the torques for moving the pump elements can be kept low at the same time.
  • the rotor in the method, is adjusted to the ideal position when a counterpressure against the supply of the brake fluid is detected that lies above a predefined pressure value, in particular because the brake pedal has been depressed.
  • a counterpressure against the supply of the brake fluid is detected that lies above a predefined pressure value, in particular because the brake pedal has been depressed.
  • the rotor is adjusted to the ideal position, i.e., stopped in the ideal position or moved to the ideal position, after the motor has stopped moving only when it has to be assumed that the pump must supply brake fluid or has to start up against a high pressure, which means that the sum of the torques required to move the pump elements is likely going to be high, with the possible result that the electric motor may be difficult or slow to start up.
  • the counterpressure in order for the rotor to be adjusted to the ideal position, the counterpressure must lie above the predefined pressure value multiple times, in particular at least three times, within a predefined time period and/or for a time period that is longer than a predefined time period.
  • the rotor in the method, is adjusted to the ideal position when the fill level of a reservoir from which the pump supplies the brake fluid exceeds a predefined fill level limit value, in particular 80% of the maximum fill level, preferably 90% of the maximum fill level.
  • a predefined fill level limit value in particular 80% of the maximum fill level, preferably 90% of the maximum fill level.
  • a portion of the brake fluid is usually supplied into a reservoir in order to achieve a pressure reduction.
  • the rotor is normally moved to the ideal position only if it is assumed that the reservoir will soon approach the maximum fill level or would reach the maximum fill level, or will do so during one of the next times when the ABS functionality is used.
  • an unnecessary adjustment or movement of the rotor in the ideal position or to the ideal position thus takes place even more rarely.
  • Adjusting the rotor to the ideal position may particularly mean that the rotor, if it was moved in order to supply brake fluid, is stopped in the ideal position at the end of its movement (e.g., when the movement subsides after the supply operation) and/or that the rotor, if it has concluded its movement in a position that is not the ideal position relative to the stator, is actively moved to the ideal position by the electric motor.
  • the position of the pump elements is typically directly related to the position of the rotor relative to the stator. This means that the pump elements are always situated in the same position again when the rotor is situated at or in the same position relative to the stator.
  • That a value is “minimal” may particularly mean that the value has a local minimum or a global minimum.
  • the torque limit value may amount to 0.03 Nm or 0.01 Nm.
  • the torque limit value may depend on the used supply unit, in particular the pump surface or the eccenter.
  • FIG. 1 shows a schematic view of a specific embodiment of the driving dynamics control device according to the present invention.
  • FIG. 2 shows a diagram of the supply flow of the first pump element and the second pump element of the driving dynamics control device of FIG. 1 as a function of time.
  • FIG. 3 shows a diagram of an angle of the rotor relative to the stator of the electric motor of the driving dynamics control device of FIG. 1 as a function of time.
  • FIG. 4 shows a diagram of the torques of the first pump element and the second pump element of the driving dynamics control device of FIG. 1 as a function of time.
  • FIG. 5 shows a diagram of the eccentric travels of the first pump element and the second pump element of the driving dynamics control device of FIG. 1 as a function of time.
  • FIG. 1 shows a schematic view of a specific embodiment of the driving dynamics control device 10 according to the present invention.
  • FIG. 2 shows a diagram of the supply flow of first pump element 22 and second pump element 23 of driving dynamics control device 10 of FIG. 1 as a function of time.
  • FIG. 3 shows a diagram of an angle of the rotor relative to the stator of electric motor 30 of driving dynamics control device 10 of FIG. 1 as a function of time.
  • FIG. 4 shows a diagram of the torques of first pump element 22 and second pump element 23 of driving dynamics control device 10 of FIG. 1 as a function of time.
  • FIG. 5 shows a diagram of the eccentric travel of first pump element 22 and second pump element 23 of driving dynamics control device 10 of FIG. 1 as a function of time.
  • FIG. 1 A multitude of valves has been omitted in FIG. 1 for reasons of clarity.
  • the y-axis indicates the supplied brake fluid quantity in cm 3 /sec.
  • the y-axis indicates the angle of the rotor of electric motor 30 relative to the stator of electric motor 30 in degrees.
  • the y-axis denotes the torque in Nm that is required to move respective pump element 22 , 23 .
  • the y-axis denotes the supply position of pump elements 22 , 23 in millimeters.
  • Driving dynamics control device 10 includes an electric motor 30 which drives a pump 20 .
  • Pump 20 has at least two pump elements 22 , 23 .
  • Pump elements 22 , 23 may be pistons of a piston pump, for example.
  • a brake pedal 60 is fluidically connected to driving dynamics control device 10 .
  • Brake pedal 60 is used for braking the two, three or four wheels 50 , 52 of the motor vehicle.
  • Driving dynamics control device 10 influences the braking of the two, three or four wheels 50 , 52 of the motor vehicle to which driving dynamics control device 10 is connected.
  • driving dynamics control device 10 is able to briefly release one or multiple wheel(s) 50 , 52 .
  • Driving dynamics control device 10 is also able to actively block or brake one or multiple wheel(s) 50 , 52 within the scope of the electronic stability program (ESP).
  • ESP electronic stability program
  • Pump 20 supplies a brake fluid.
  • pump 20 is able to supply brake fluid from reservoir 40 in the direction of brake pedal 60 .
  • Pump elements 22 , 23 supply the brake fluid in alternation, as may be gathered from FIG. 2 .
  • the one pump element 22 supplies or pumps brake fluid while the other pump element 23 does not supply any brake fluid during this time.
  • the instant or the position of the rotor relative to the stator at which the sum of the torques of pump elements 22 , 23 lies below a predefined torque limit value (e.g., 0.01 Nm or approximately 0.005 Nm) or is minimal, is defined as the ideal position.
  • a predefined torque limit value e.g. 0.01 Nm or approximately 0.005 Nm
  • the ideal positions i.e., positions in which the sum of the torques is low, can be easily gathered from FIG. 4 ; the ideal positions are the positions in FIG. 4 in which the sum of the torques of the two pump elements 22 , 23 is minimal.
  • a pump element 22 has a negative torque.
  • the pistons may assume different distances from an underside of pump 20 .
  • Pump 20 must especially supply the brake fluid in opposition to an existing counterpressure such as when the driver is operating brake pedal 60 . For example, by pressing brake pedal 60 , the driver is able to generate a pressure of approximately 200 bar or of approximately 280 bar. Pump 20 must be capable of supplying brake fluid against this pressure.
  • Driving dynamics control device 10 includes a position detection device 55 .
  • Position detection device 55 detects the position of the rotor relative to the stator, i.e., the particular angle of the rotor relative to the stator. This is illustrated in FIG. 3 . However, it is also possible that only the position of a pump element 22 , 23 is detected because the position of the rotor relative to the stator is unequivocally able to be ascertained in this way since electric motor 30 is connected to pump elements 22 , 23 . For each angle illustrated in FIG. 3 , the positions of pump elements 22 , 23 shown in FIG. 5 are fixedly defined.
  • Electric motor 30 is stationary for part of the time, or in other words, pump 20 is not operated during this time and pump elements 22 , 23 stand still or are situated in the neutral state. If pump 20 is now meant to begin supplying brake fluid, electric motor 30 has to generate a torque that is acting on pump elements 22 , 23 in an effort to bring them out of the standstill or neutral state and induce them to move.
  • the rotor When the operation of electric motor 30 is concluded, the rotor is able to be moved to the ideal position or moved to one of the ideal positions so that only a very low torque is required to start up electric motor 30 or pump 20 and to supply the brake fluid, as is required at instant 0.105 s in FIG. 4 , for example.
  • the rotor is at an angle of approximately 180° (see FIG. 3 )
  • only a low torque is required to start the supply of the brake fluid with the aid of pump 20 .
  • the minima in FIG. 4 are found at the instants at which the lines of the two torques of pump elements 22 , 23 intersect.
  • the rotor may be moved to the ideal position by moving electric motor 30 counter to the normal running direction.
  • the normal running direction is the direction in which pump 20 supplies brake fluid in the direction of brake pedal 60 .
  • the movement of the rotor is stopped at an instant at which the rotor is in its ideal position. This means that the motor is stopped in one of the ideal positions after the rotor has slowed to a standstill after the operation of electric motor 30 or pump 20 .
  • the ideal position may also include multiple ideal positions, which means that there may be multiple positions of the rotor relative to the stator in which the sum of the torques lies below the torque limit value or in which a minimum of the sum of the torques is present, as illustrated in FIG. 4 .
  • the rotor it is possible to move the rotor to the ideal position only if a (counter) pressure above a minimum pressure value was generated with the aid of brake pedal 60 , or is present. For instance, the rotor is moved to the ideal position only when the driver exerts pressure on brake pedal 60 to such an extent that a pressure of more than 150 bar or more than 200 bar is generated in the brake fluid or in the vicinity of brake pedal 60 . Since a greater torque may be required here to move the rotor out of the neutral position or to move pump elements 22 , 23 out of the neutral position or out of a standstill, the rotor is moved to the ideal position or to one of the ideal positions.
  • pump elements 22 , 23 move along in a corresponding manner because a rigid or fixed relationship exists between the position of the rotor relative to the stator and the position of pump elements 22 , 23 , as may be gathered from FIG. 3 in conjunction with FIG. 6 .
  • the existing counterpressure exceed the minimum pressure value for a certain period of time or that the existing counterpressure exceed it multiple times within a certain period of time, e.g., at least two or three times. Only when this additional condition has been satisfied will the rotor be moved to the ideal position or be stopped in the ideal position.
  • the ideal position(s) of the rotor is/are able to be determined by detecting or measuring the current electric motor 30 requires to operate pump 20 or to start up pump 20 . Because a high torque corresponds to a high current consumption of electric motor 30 , a high current consumption means that a high torque or a large sum of the torques is required to move pump elements 22 , 23 . The same applies in reverse to a low torque. As a result, the sum of the torques for pump elements 22 , 23 —the components of the sum being shown in FIG. 4 —exhibits a minimum when the current consumption of electric motor 30 has a minimum. The sum of the torques for pump elements 22 , 23 —the components of the sum being shown in FIG. 4 —exhibits a maximum when the current consumption of electric motor 30 has a maximum. This determination of the ideal positions may be carried out during the final assembly of vehicle dynamics control device 10 and/or the motor vehicle, for example. A calculation of the ideal positions is another option.
  • the ideal position(s), that is to say, the respective position of the rotor relative to the stator in which only a low torque is required to operate pump 20 , is able to be stored in a non-volatile memory in driving dynamics control device 10 or in the motor vehicle or also stored externally from the motor vehicle (such as in a Cloud).
  • Pump 20 may be what is known as a return pump, in particular.
  • the position detection device may be an optical, electronic or mechanical detection device for detecting the angle of the rotor relative to the stator.
  • the electric motor could be a brushless DC motor or could encompass such a motor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Power Engineering (AREA)
  • Valves And Accessory Devices For Braking Systems (AREA)
  • Regulating Braking Force (AREA)
  • Control Of Electric Motors In General (AREA)
US17/040,649 2018-05-09 2019-03-07 Method for controlling a driving dynamics control device, and driving dynamics control device Active 2041-05-11 US11912257B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102018207207.8 2018-05-09
DE102018207207.8A DE102018207207A1 (de) 2018-05-09 2018-05-09 Verfahren zum Steuern einer Fahrdynamikregelungsvorrichtung und Fahrdynamikregelungsvorrichtung
PCT/EP2019/055709 WO2019214865A1 (de) 2018-05-09 2019-03-07 Verfahren zum steuern einer fahrdynamikregelungsvorrichtung und fahrdynamikregelungsvorrichtung

Publications (2)

Publication Number Publication Date
US20210016751A1 US20210016751A1 (en) 2021-01-21
US11912257B2 true US11912257B2 (en) 2024-02-27

Family

ID=65812268

Family Applications (1)

Application Number Title Priority Date Filing Date
US17/040,649 Active 2041-05-11 US11912257B2 (en) 2018-05-09 2019-03-07 Method for controlling a driving dynamics control device, and driving dynamics control device

Country Status (6)

Country Link
US (1) US11912257B2 (de)
EP (1) EP3790776B1 (de)
JP (1) JP7123239B2 (de)
CN (1) CN112041206B (de)
DE (1) DE102018207207A1 (de)
WO (1) WO2019214865A1 (de)

Citations (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6349995B1 (en) * 1998-12-24 2002-02-26 Aisin Seiki Kabushiki Kaisha Brake control system for a vehicle
US20020158510A1 (en) * 2001-04-26 2002-10-31 Kazuo Kobayashi Electrically driven brake booster
US20040183366A1 (en) * 2003-03-19 2004-09-23 Masahiko Kamiya Vehicle brake system for reducing brake noise
US20040239177A1 (en) * 2003-03-26 2004-12-02 Akihito Kusano Vehicle hydraulic brake device
US20050067890A1 (en) * 2003-07-23 2005-03-31 Masaki Tagome Motor driving apparatus and disk apparatus using the same
US20050200199A1 (en) * 2004-03-10 2005-09-15 Masahiko Kamiya Vehicle brake device
DE102005030671A1 (de) 2004-07-01 2006-02-09 Ford Global Technologies, LLC, Dearborn Verfahren und System zum Befüllen eines Fluidspeichers beim Betreiben eines einen Motor und eine Pumpe/Motor aufweisenden Hybridfahrzeug-Antriebsstrangs
DE102007029228A1 (de) 2006-06-30 2008-01-03 Continental Teves Ag & Co. Ohg Verfahren und System zur Ermittlung von Druckunterschieden in den Bremskreisen von Fahrzeugbremsanlagen
US20080007116A1 (en) * 2006-06-22 2008-01-10 Hitachi, Ltd. Brake control apparatus
DE102007031750A1 (de) 2006-08-02 2008-02-21 Continental Teves Ag & Co. Ohg Betriebsverfahren für eine Fahrzeugbremsanlage und Fahrzeugbremsanlage
EP2019474A2 (de) 2007-07-23 2009-01-28 Continental Automotive GmbH Elektromotor für das Elektromotor-Pumpen-Aggregat eines Kraftfahrzeug-Antiblockiersystems
WO2009127472A1 (de) 2008-04-15 2009-10-22 Continental Teves Ag & Co. Ohg Elektrisches motoransteuerungsverfahren mit lastmomentanpassung
US20100276239A1 (en) * 2008-01-09 2010-11-04 Gebhard Wuerth Brake system and method for operating a brake system
US20110108375A1 (en) * 2008-06-11 2011-05-12 Gebhard Wuerth Brake device for a motor vehicle having at least three brake circuits
WO2012039845A2 (en) 2010-09-24 2012-03-29 Robert Bosch Gmbh Electric motor pump control incorporating pump element position information
US20130026818A1 (en) * 2010-01-28 2013-01-31 Continental Teves Ag & Co. Oag Electronic Control Device for a Braking System, Suitable for a Distance Control System
CN103328822A (zh) 2010-11-17 2013-09-25 Ksb股份公司 用于转速可变地调节容积泵设备的方法和调节装置以及容积泵组件
US20130292999A1 (en) * 2010-10-27 2013-11-07 Stefan Strengert Brake system for a vehicle and method for operating a brake system of a vehicle
US20140244127A1 (en) * 2011-08-04 2014-08-28 Stefan Strengert Control device for a brake system of a vehicle, brake system for a vehicle and method for operating a brake system of a vehicle
CN104129380A (zh) 2013-05-03 2014-11-05 大众汽车有限公司 用于在紧急制动时辅助驾驶员的方法和驾驶员辅助系统
US8950826B2 (en) * 2010-02-24 2015-02-10 Robert Bosch Gmbh Brake system for a vehicle and method for operating a brake system of a vehicle
US20150061366A1 (en) * 2013-08-29 2015-03-05 Honda Motor Co., Ltd. Electric brake device
US20150232076A1 (en) * 2012-08-23 2015-08-20 Hitachi Automotive Systems, Ltd. Brake Control Device
CN104972908A (zh) 2014-04-14 2015-10-14 Zf腓德烈斯哈芬股份公司 用于使机动车自由摆动的方法
WO2015161958A2 (de) 2014-04-22 2015-10-29 Robert Bosch Gmbh Schlupfregelbare fahrzeugbremsanlage
CN105263734A (zh) 2013-04-04 2016-01-20 波克兰液压工业设备公司 液压传动设备
US20180354484A1 (en) * 2017-06-07 2018-12-13 Toyota Jidosha Kabushiki Kaisha Brake system
US20190058427A1 (en) * 2017-08-18 2019-02-21 Infineon Technologies Ag Generation of Motor Drive Signals with Misalignment Compensation
US10516362B2 (en) * 2016-03-18 2019-12-24 Rohm Co., Ltd. Motor driving device
US10773595B2 (en) * 2016-05-18 2020-09-15 Robert Bosch Gmbh Braking system for a vehicle and methods for operating a braking system of a vehicle

Patent Citations (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6349995B1 (en) * 1998-12-24 2002-02-26 Aisin Seiki Kabushiki Kaisha Brake control system for a vehicle
US20020158510A1 (en) * 2001-04-26 2002-10-31 Kazuo Kobayashi Electrically driven brake booster
US20040183366A1 (en) * 2003-03-19 2004-09-23 Masahiko Kamiya Vehicle brake system for reducing brake noise
US20040239177A1 (en) * 2003-03-26 2004-12-02 Akihito Kusano Vehicle hydraulic brake device
US20050067890A1 (en) * 2003-07-23 2005-03-31 Masaki Tagome Motor driving apparatus and disk apparatus using the same
US20050200199A1 (en) * 2004-03-10 2005-09-15 Masahiko Kamiya Vehicle brake device
DE102005030671A1 (de) 2004-07-01 2006-02-09 Ford Global Technologies, LLC, Dearborn Verfahren und System zum Befüllen eines Fluidspeichers beim Betreiben eines einen Motor und eine Pumpe/Motor aufweisenden Hybridfahrzeug-Antriebsstrangs
US20080007116A1 (en) * 2006-06-22 2008-01-10 Hitachi, Ltd. Brake control apparatus
DE102007029228A1 (de) 2006-06-30 2008-01-03 Continental Teves Ag & Co. Ohg Verfahren und System zur Ermittlung von Druckunterschieden in den Bremskreisen von Fahrzeugbremsanlagen
DE102007031750A1 (de) 2006-08-02 2008-02-21 Continental Teves Ag & Co. Ohg Betriebsverfahren für eine Fahrzeugbremsanlage und Fahrzeugbremsanlage
EP2019474A2 (de) 2007-07-23 2009-01-28 Continental Automotive GmbH Elektromotor für das Elektromotor-Pumpen-Aggregat eines Kraftfahrzeug-Antiblockiersystems
US20100276239A1 (en) * 2008-01-09 2010-11-04 Gebhard Wuerth Brake system and method for operating a brake system
WO2009127472A1 (de) 2008-04-15 2009-10-22 Continental Teves Ag & Co. Ohg Elektrisches motoransteuerungsverfahren mit lastmomentanpassung
US20110033322A1 (en) * 2008-04-15 2011-02-10 Continental Teves Ag & Co. Ohg Electrical motor activation method having load torque adaptation
US20110108375A1 (en) * 2008-06-11 2011-05-12 Gebhard Wuerth Brake device for a motor vehicle having at least three brake circuits
US20130026818A1 (en) * 2010-01-28 2013-01-31 Continental Teves Ag & Co. Oag Electronic Control Device for a Braking System, Suitable for a Distance Control System
US8950826B2 (en) * 2010-02-24 2015-02-10 Robert Bosch Gmbh Brake system for a vehicle and method for operating a brake system of a vehicle
US20120076667A1 (en) * 2010-09-24 2012-03-29 Robert Bosch Gmbh Electric motor pump control incorporating pump element position information
WO2012039845A2 (en) 2010-09-24 2012-03-29 Robert Bosch Gmbh Electric motor pump control incorporating pump element position information
US20130292999A1 (en) * 2010-10-27 2013-11-07 Stefan Strengert Brake system for a vehicle and method for operating a brake system of a vehicle
CN103328822A (zh) 2010-11-17 2013-09-25 Ksb股份公司 用于转速可变地调节容积泵设备的方法和调节装置以及容积泵组件
US20140244127A1 (en) * 2011-08-04 2014-08-28 Stefan Strengert Control device for a brake system of a vehicle, brake system for a vehicle and method for operating a brake system of a vehicle
US20150232076A1 (en) * 2012-08-23 2015-08-20 Hitachi Automotive Systems, Ltd. Brake Control Device
CN105263734A (zh) 2013-04-04 2016-01-20 波克兰液压工业设备公司 液压传动设备
CN104129380A (zh) 2013-05-03 2014-11-05 大众汽车有限公司 用于在紧急制动时辅助驾驶员的方法和驾驶员辅助系统
US20150061366A1 (en) * 2013-08-29 2015-03-05 Honda Motor Co., Ltd. Electric brake device
CN104972908A (zh) 2014-04-14 2015-10-14 Zf腓德烈斯哈芬股份公司 用于使机动车自由摆动的方法
WO2015161958A2 (de) 2014-04-22 2015-10-29 Robert Bosch Gmbh Schlupfregelbare fahrzeugbremsanlage
US20170043754A1 (en) * 2014-04-22 2017-02-16 Robert Bosch Gmbh Slip-Controllable Vehicle Brake System
US10516362B2 (en) * 2016-03-18 2019-12-24 Rohm Co., Ltd. Motor driving device
US10773595B2 (en) * 2016-05-18 2020-09-15 Robert Bosch Gmbh Braking system for a vehicle and methods for operating a braking system of a vehicle
US20180354484A1 (en) * 2017-06-07 2018-12-13 Toyota Jidosha Kabushiki Kaisha Brake system
US20190058427A1 (en) * 2017-08-18 2019-02-21 Infineon Technologies Ag Generation of Motor Drive Signals with Misalignment Compensation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
International Search Report for PCT/EP2019/055709, dated May 29, 2019.

Also Published As

Publication number Publication date
CN112041206B (zh) 2022-08-19
CN112041206A (zh) 2020-12-04
JP2021520316A (ja) 2021-08-19
EP3790776B1 (de) 2022-10-26
US20210016751A1 (en) 2021-01-21
WO2019214865A1 (de) 2019-11-14
EP3790776A1 (de) 2021-03-17
DE102018207207A1 (de) 2019-11-14
JP7123239B2 (ja) 2022-08-22

Similar Documents

Publication Publication Date Title
US7980638B2 (en) Brake controller
US20100253137A1 (en) Vehicle Brake System
JP5456314B2 (ja) 自動車のブレーキシステムにおける初期圧力の決定方法
US20120112524A1 (en) Brake control apparatus
US10435006B2 (en) Method for checking the braking force in a vehicle
US9033427B2 (en) Method for hydraulically boosting an electric parking brake of a vehicle
US8708428B2 (en) Pump control apparatus and brake control system
JP4615899B2 (ja) 車両用旋回走行制御装置
KR20140109277A (ko) 브레이크 제어 장치
JP2001239929A (ja) ブレーキ装置
KR102069206B1 (ko) 브레이크 시스템
JP2011031693A (ja) ブレーキ制御システム
JP2017013765A (ja) ブレーキ制御装置およびブレーキシステム
JP4955450B2 (ja) ブレーキ制御装置
EP3632758A2 (de) Aktuatorsteuergerät und fahrzeuginstalliertes system
US11912257B2 (en) Method for controlling a driving dynamics control device, and driving dynamics control device
US11407391B2 (en) Braking control device for vehicle
US11046297B2 (en) Method for checking the braking force in a vehicle
EP4086126B1 (de) Elektronisches bremssystem und verfahren zur steuerung davon
JP2014094707A (ja) ブレーキ制御装置
US10875515B2 (en) Braking control device for vehicle
CN110099827B (zh) 用于运行车辆的制动系统的机电的制动力放大器的控制装置和方法
CN108883750B (zh) 车辆的制动控制装置
CN110550005A (zh) 用于控制液压制动系统的方法
KR20200002476A (ko) 전자식 브레이크 시스템 및 그 제어방법

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STPP Information on status: patent application and granting procedure in general

Free format text: APPLICATION DISPATCHED FROM PREEXAM, NOT YET DOCKETED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

AS Assignment

Owner name: ROBERT BOSCH GMBH, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BODMANN, JOCHEN;SCHMIDTLEIN, ANDREAS;EMDE, CHRISTOPH;SIGNING DATES FROM 20210720 TO 20220310;REEL/FRAME:059711/0014

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: AWAITING TC RESP., ISSUE FEE NOT PAID

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT RECEIVED

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STCF Information on status: patent grant

Free format text: PATENTED CASE