US11598663B2 - Transducer for non-invasive measurement - Google Patents

Transducer for non-invasive measurement Download PDF

Info

Publication number
US11598663B2
US11598663B2 US17/189,287 US202117189287A US11598663B2 US 11598663 B2 US11598663 B2 US 11598663B2 US 202117189287 A US202117189287 A US 202117189287A US 11598663 B2 US11598663 B2 US 11598663B2
Authority
US
United States
Prior art keywords
piezoelectric element
shear
vessel
face
transducer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US17/189,287
Other languages
English (en)
Other versions
US20210181008A1 (en
Inventor
Christof Bernhard
Frank Kassubek
Miklos LENNER
Detlef Pape
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABB Schweiz AG
Original Assignee
ABB Schweiz AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB Schweiz AG filed Critical ABB Schweiz AG
Assigned to ABB SCHWEIZ AG reassignment ABB SCHWEIZ AG ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BERNHARD, Christof, KASSUBEK, FRANK, LENNER, MIKLOS, PAPE, DETLEF
Publication of US20210181008A1 publication Critical patent/US20210181008A1/en
Application granted granted Critical
Publication of US11598663B2 publication Critical patent/US11598663B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/28Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring the variations of parameters of electromagnetic or acoustic waves applied directly to the liquid or fluent solid material
    • G01F23/296Acoustic waves
    • G01F23/2968Transducers specially adapted for acoustic level indicators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/28Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring the variations of parameters of electromagnetic or acoustic waves applied directly to the liquid or fluent solid material
    • G01F23/296Acoustic waves
    • G01F23/2965Measuring attenuation of transmitted waves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • B06B1/0644Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using a single piezoelectric element
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/28Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring the variations of parameters of electromagnetic or acoustic waves applied directly to the liquid or fluent solid material
    • G01F23/296Acoustic waves
    • G01F23/2962Measuring transit time of reflected waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • G01F1/662Constructional details

Definitions

  • the present invention relates to a transducer for non-invasive measurement, and to a non-invasive measurement method.
  • Ultrasonic waves generated by a transducer attached to a wall of a vessel have been used for the non-invasive measurement of parameters, such as level, speed of sound, mixing state etc., of a liquid contained within the vessel.
  • the term “vessel” is used here and throughout this document in a broad sense, not being limited to a closed container, but also including containers that are at least partly open, and also including tubes or plumbing or pipelines that are configured to contain or guide any kind of media, such as liquids, liquified solids or gases of all kinds.
  • transducer is used here and throughout this document to comprise both sender and receiver.
  • the radiation field launched into the liquid may not be as desired, leading to non-optimum measurements.
  • the present invention provides a transducer for non-invasive measurement, comprising: a shear-type piezoelectric element; and a host material, wherein the shear-type piezoelectric element is mounted to a first face of the host material, wherein a second face of the host material is configured to be mounted to a wall of a vessel configured to hold a liquid, wherein when the second face of the host material is mounted to the wall of the vessel, the transducer when activated at an activation frequency is configured to launch a Lamb wave into the wall of the vessel, and wherein the transducer is configured such that a phase velocity of the Lamb wave in the wall of the vessel is greater than a speed of sound in the liquid held by the vessel.
  • FIG. 1 shows a schematic representation of a transducer for non-invasive measurement
  • FIG. 2 shows a non-invasive measurement method
  • FIG. 3 shows a transducer with a plate-type piezoelectric element exciting disturbed leaky Lamb waves in a liquid
  • FIG. 4 shows an example of the transducer of FIG. 1 , having a shear-type piezoelectric element exciting undisturbed leaky Lamb waves in a liquid;
  • FIG. 5 shows the phase velocity of two Lamb wave modes (symmetric and asymmetric) as a function of frequency.
  • the present invention provides an improved transducer for non-invasive measurement and an improved non-invasive measurement method.
  • a transducer for non-invasive measurement comprising:
  • the shear-type piezoelectric element is mounted to a first face of the host material.
  • a second face of the host material is configured to be mounted to a wall of a vessel.
  • the term “mounted to” is used here and throughout this document in a broad sense, comprising direct mounting, but also using some intermediate layer, for example that a silicon mat is used between host material and wall.
  • the vessel is configured to hold a liquid.
  • the transducer when operated as sender and activated at an activation frequency is configured to launch a Lamb wave into the wall of the vessel.
  • the transducer is configured such that a phase velocity of the Lamb wave in the wall of the vessel is greater than the speed of sound in the liquid held by the vessel.
  • the transducer can be configured to have a required phase velocity of Lamb wave, and a required radiation direction of the leaky Lamb wave in the liquid, because this depends on the ratio of the phase velocity to the speed of sound in the liquid.
  • precise radiation direction is provided thereby enabling for accurate distance and speed of sound measurements in the liquid.
  • transducer can also be an element working as receiver.
  • an optimized transducer is also an optimal filter for incoming waves from a specific direction, such as plane waves.
  • the host material is polyamide.
  • a shear-type piezoelectric element a non-standard piezoelectric—with an appropriate host material and an optimized transducer geometry a frequency steerable, well-defined, directional ultrasonic beam with an isolated cone can be generated in a liquid, which is beneficial for non-invasive measurement applications.
  • the sound field can consist of—almost—plane waves propagating in a single direction.
  • the piezoelectric element is a single ceramic shear-type piezoelectric element.
  • a shear-type piezoelectric element has the advantage that the aspect ratio does not need particular attention.
  • a plate-type piezo which generates longitudinal and transversal waves and where thus the aspect ratio needs to be carefully controlled. This is not so in case of a shear-type piezo.
  • the transducer is configured such that the phase velocity of the Lamb wave in the wall of the vessel is greater than the speed of sound in the shear-type piezoelectric element.
  • the activation frequency is selected on the basis of a thickness of the wall of the vessel.
  • a face of the piezoelectric element is attached to the first face of the host material.
  • a dimension of the face of the shear-type piezoelectric element is significantly greater than a thickness of the shear-type piezoelectric element perpendicular to the face of the shear-type piezoelectric element.
  • the thickness of the shear-type piezoelectric element is based at least in part on the activation frequency.
  • the dimension of the shear-type piezoelectric element is based at least in part on the activation frequency.
  • the transducer when activated is configured to launch a leaky Lamb wave into the liquid held by the vessel.
  • a direction of propagation of the leaky Lamb wave is based at least in part on the thickness of the shear-type piezoelectric element.
  • the transducer when activated is configured to launch a leaky Lamb wave into the liquid held by the vessel.
  • a direction of propagation of the leaky Lamb wave is based at least in part on the dimension of the face of the shear-type piezoelectric element.
  • the first face of the host material is angled to the second face of the host material.
  • the shape of the host material can be optimised to provide for increased efficiency of launching of leaky Lamb waves into the liquid.
  • a non-invasive measurement method comprising:
  • FIG. 1 shows an example of a transducer 10 for non-invasive measurement.
  • the transducer 10 comprises a shear-type piezoelectric element 20 , and a host material 30 .
  • the shear-type piezoelectric element is mounted to a first face 40 of the host material.
  • a second face 50 of the host material is configured to be mounted to a wall of a vessel 60 .
  • the vessel is configured to hold a liquid 70 .
  • the transducer when activated at an activation frequency is configured to launch a Lamb wave into the wall of the vessel.
  • the transducer is configured such that a phase velocity of the Lamb wave in the wall of the vessel is greater than the speed of sound in the liquid held by the vessel.
  • the host material is polyamide.
  • the piezoelectric element is a single ceramic shear-type piezoelectric element.
  • the transducer is configured such that the phase velocity of the Lamb wave in the wall of the vessel is greater than the speed of sound in the shear-type piezoelectric element.
  • the activation frequency is selected on the basis of a thickness 80 of the wall of the vessel.
  • a face 90 of the piezoelectric element is attached to the first face of the host material.
  • a dimension 100 of the face of the shear-type piezoelectric element is significantly greater than a thickness 110 of the shear-type piezoelectric element perpendicular to the face of the shear-type piezoelectric element.
  • the thickness of the shear-type piezoelectric element is based at least in part on the activation frequency.
  • the dimension of the shear-type piezoelectric element is based at least in part on the activation frequency.
  • the transducer when activated is configured to launch a leaky Lamb wave into the liquid held by the vessel.
  • a direction of propagation of the leaky Lamb wave is based at least in part on the thickness of the shear-type piezoelectric element.
  • the transducer when activated is configured to launch a leaky Lamb wave into the liquid held by the vessel.
  • a direction of propagation of the leaky Lamb wave is based at least in part on the dimension of the face of the shear-type piezoelectric element.
  • the first face of the host material is angled to the second face of the host material.
  • FIG. 2 shows a non-invasive measurement method 200 in its basic steps.
  • the method 200 comprises:
  • a mounting step 210 also referred to as step a), mounting a transducer to a vessel containing liquid, wherein the transducer comprises a shear-type piezoelectric element and a host material, wherein the shear-type piezoelectric element is mounted to a first face of a host material, and a second face of the host material is mounted to a wall of the vessel; and
  • step 220 activating the transducer at an activation frequency to launch a Lamb wave into the wall of the vessel; and wherein a phase velocity of the Lamb wave in the wall of the vessel is greater than the speed of sound in the liquid held by the vessel.
  • the host material is polyamide.
  • the piezoelectric element is a single ceramic shear-type piezoelectric element.
  • step b) the phase velocity of the Lamb wave in the wall of the vessel is greater than the speed of sound in the shear-type piezoelectric element.
  • step b) comprises selecting the activation frequency on the basis of a thickness of the wall of the vessel.
  • a face of the piezoelectric element is attached to the first face of the host material.
  • a dimension of the face of the shear-type piezoelectric element is significantly greater than a thickness of the shear-type piezoelectric element perpendicular to the face of the shear-type piezoelectric element.
  • the thickness of the shear-type piezoelectric element is based at least in part on the activation frequency.
  • the dimension of the shear-type piezoelectric element is based at least in part on the activation frequency.
  • step b) comprises launching a leaky Lamb wave into the liquid held by the vessel.
  • a direction of propagation of the leaky Lamb wave is based at least in part on the thickness of the shear-type piezoelectric element.
  • the direction of propagation of the leaky Lamb wave is based at least in part on the dimension of the face of the shear-type piezoelectric element.
  • the first face of the host material is angled to the second face of the host material.
  • the transducer for non-invasive measurement and non-invasive measurement method are now described in more detail with reference to FIGS. 3 - 5 .
  • FIG. 3 shows a transducer used for non-invasive measurement.
  • a plate-type piezoelectric element is mounted, or attached, to a host or base material.
  • the host material is mounted, or attached, to steel wall of a vessel containing a liquid.
  • the plate-type piezoelectric element excites longitudinal (and to a smaller degree) transverse waves in the transducer material.
  • the transverse modes have a special wave pattern; in the simplest case, two shear waves with opposite sign are emitted from the upper and lower half of the piezoelectric element.
  • a complicated excitation pattern for Lamb waves in the vessel wall results.
  • the leaky Lamb waves launched into the liquid has an undesired radiation field, with sound emitted in separate cones and in different directions.
  • FIG. 4 shows the present solution, that addresses these issues.
  • a shear-type piezoelectric element is mounted to a host material, which is itself mounted to the wall of a vessel containing a liquid.
  • a shear-type piezoelectric actuator or element is mounted on a base (host) material to form an ultrasound transducer.
  • the transducer is connected to a fluid-loaded plate (the vessel wall) in which asymmetric Lamb waves are excited. These waves emit energy in the form of pressure waves—leaky Lamb waves—into the liquid at a certain angle with respect to the plate normal.
  • Directionality and steerability is provided, with beam control for a beam that has a single cone. This improves measurements for the non-invasive measurements of liquids, such as level, flow etc.
  • the host material is polyamide, which has been selected due to its acoustic material properties. This ensures that the propagation speed of transverse pressure waves (shear waves) can be matched to the phase velocity of appropriate Lamb waves in the steel container wall. “Matching means that the projection of the wavelength of the incoming beam—in the transducer material—onto the wall matches the wavelength in the wall—of the Lamb wave. Control of the phase velocity of the lamb wave is enabled by frequency control of the excitation signal, as shown in FIG. 5 . The operating frequency range is determined by the thickness of the plate (wall of the container), which in turn defines a selection of piezoelectric actuator with respect to dimension, type of material.
  • the decoupling of transverse and longitudinal waves can be achieved by a) selective excitation of vibration modes or b) an appropriate choice of piezoelectric dimensions, where mode separation is achieved by using a single ceramic shear-type piezoelectric element of high aspect ratio.
  • the appropriate selection of the piezoelectric thickness and aspect ratio enables direction control without introducing significant mode coupling between transversal and longitudinal vibrations.
  • the shear-type piezoelectric element emits unidirectional transversely oriented pressure waves into the host material. As a result, a unidirectional displacement of the piezoelectric element contact surface parallel to the interface with the host material is achieved and a shear wave therein is launched.
  • the so-excited shear wave shows phase fronts with unidirectional displacement direction.
  • This unidirectional displacement across the phase fronts enhances the effect of excitation of a single “phase matched” Lamb wave, propagating in one direction along the container wall resulting in an undisturbed leaky Lamb wave radiation pattern in the liquid.
  • the piezoelectric element is mounted on a wedged host material, with a wedge angle optimised to provide efficiency of exciting leaky Lamb waves in the liquid and providing for maximum power transmission into liquid—see DE10221771A1.
  • Transducer 30 may be made out of multiple materials and not a single solid block, for example a silicon mat attached.
  • some embodiments are described with reference to method type claims whereas other embodiments are described with reference to the device type claims.
  • a person skilled in the art will gather from the above and the following description that, unless otherwise notified, in addition to any combination of features belonging to one type of subject matter also any combination between features relating to different subject matters is considered to be disclosed with this application. However, all features can be combined providing synergetic effects that are more than the simple summation of the features.
  • the recitation of “at least one of A, B and C” should be interpreted as one or more of a group of elements consisting of A, B and C, and should not be interpreted as requiring at least one of each of the listed elements A, B and C, regardless of whether A, B and C are related as categories or otherwise.
  • the recitation of “A, B and/or C” or “at least one of A, B or C” should be interpreted as including any singular entity from the listed elements, e.g., A, any subset from the listed elements, e.g., A and B, or the entire list of elements A, B and C.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Electromagnetism (AREA)
  • Thermal Sciences (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Transducers For Ultrasonic Waves (AREA)
US17/189,287 2018-09-06 2021-03-02 Transducer for non-invasive measurement Active 2039-09-12 US11598663B2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP18192884 2018-09-06
EP18192884 2018-09-06
EP18192884.7 2018-09-06
PCT/EP2019/073460 WO2020048977A1 (en) 2018-09-06 2019-09-03 Transducer for non-invasive measurement

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2019/073460 Continuation WO2020048977A1 (en) 2018-09-06 2019-09-03 Transducer for non-invasive measurement

Publications (2)

Publication Number Publication Date
US20210181008A1 US20210181008A1 (en) 2021-06-17
US11598663B2 true US11598663B2 (en) 2023-03-07

Family

ID=63524117

Family Applications (1)

Application Number Title Priority Date Filing Date
US17/189,287 Active 2039-09-12 US11598663B2 (en) 2018-09-06 2021-03-02 Transducer for non-invasive measurement

Country Status (4)

Country Link
US (1) US11598663B2 (zh)
EP (1) EP3847425A1 (zh)
CN (1) CN112639418A (zh)
WO (1) WO2020048977A1 (zh)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB738376A (en) 1951-12-21 1955-10-12 Glass Developments Ltd Improvements in or relating to assemblies for producing ultrasonic waves
GB855650A (en) 1958-06-10 1960-12-07 Nat Res Dev Improvements in or relating to flowmeters
GB959029A (en) 1960-02-10 1964-05-27 Nat Res Dev Method and apparatus for testing materials
US3512400A (en) 1967-04-13 1970-05-19 Panametrics Ultrasonic testing method
EP0212470A2 (en) 1985-08-12 1987-03-04 Panametrics, Inc. Apparatus for measuring fluid characteristics using surface generated volumetric interrogation signals
US4692654A (en) 1984-11-02 1987-09-08 Hitachi, Ltd. Ultrasonic transducer of monolithic array type
EP0264991A1 (en) 1986-09-29 1988-04-27 Altometer Produktiebedrijf Ultrasonic flow meter
DE10221771A1 (de) 2002-05-15 2003-11-27 Flowtec Ag Ultraschallwandler für ein Ultraschall-Durchflußmessgerät
US20100244629A1 (en) * 2009-03-31 2010-09-30 Ceratec Corporation Piezoelectric Generator
WO2016134005A1 (en) 2015-02-17 2016-08-25 General Electric Company Method for inspecting a weld seam with ultrasonic phased array
EP3115753A1 (en) 2015-07-06 2017-01-11 ABB Schweiz AG System and method for non-intrusive and continuous level measurement of a liquid specification
EP3115754A1 (en) 2015-07-06 2017-01-11 ABB Schweiz AG System and method for non-instrusive and continuous level measurement in a cylindrical vessel

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4383194A (en) * 1979-05-01 1983-05-10 Toray Industries, Inc. Electro-acoustic transducer element
GB201103211D0 (en) * 2011-02-24 2011-04-13 Univ Glasgow Fluidics apparatus, use of fluidics apparatus and process for the manufacture of fluidics apparatus
CN202052686U (zh) * 2011-03-23 2011-11-30 北京工业大学 一种低频单模态兰姆波换能器
DE102011080125A1 (de) * 2011-07-29 2013-01-31 Robert Bosch Gmbh Kapazitiver Schallwandler mit Faserverstärkung
CN102539536B (zh) * 2011-12-19 2013-11-06 北京工业大学 一种单层板兰姆波非接触式波速提取的方法
CN103926315B (zh) * 2014-04-04 2016-06-29 北京工业大学 一种基于单纯形法的各向同性薄板材料弹性性质获取方法
CN103926329B (zh) * 2014-04-04 2017-08-25 北京工业大学 一种基于单纯形法的半无限域基体涂层结构材料弹性性质获取方法
CN104821372B (zh) * 2015-05-20 2018-06-19 中南大学 一种剪切型压电复合材料
CN105784848A (zh) * 2016-03-07 2016-07-20 北京工业大学 一种基于面内剪切的压电传感器
CN105842348B (zh) * 2016-04-07 2018-08-10 北京大学 用于激励和接收非弥散超声导波的压电换能器及制备方法
CN205620362U (zh) * 2016-04-07 2016-10-05 北京大学 一种用于激励和接收非弥散超声导波的压电换能器
CN106153132B (zh) * 2016-06-23 2020-03-27 西南大学 基于Lamb波的非接触式流体流量测量系统及方法
CN107910434B (zh) * 2017-11-13 2019-12-13 中南大学 一种剪切型压电纤维复合材料的制备方法
CN108493328B (zh) * 2018-01-29 2021-12-17 北京信息科技大学 基于剪切振动和弯张振动的压电振子、换能器及制作方法

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB738376A (en) 1951-12-21 1955-10-12 Glass Developments Ltd Improvements in or relating to assemblies for producing ultrasonic waves
GB855650A (en) 1958-06-10 1960-12-07 Nat Res Dev Improvements in or relating to flowmeters
GB959029A (en) 1960-02-10 1964-05-27 Nat Res Dev Method and apparatus for testing materials
US3512400A (en) 1967-04-13 1970-05-19 Panametrics Ultrasonic testing method
US4692654A (en) 1984-11-02 1987-09-08 Hitachi, Ltd. Ultrasonic transducer of monolithic array type
US4735097A (en) * 1985-08-12 1988-04-05 Panametrics, Inc. Method and apparatus for measuring fluid characteristics using surface generated volumetric interrogation signals
EP0212470A2 (en) 1985-08-12 1987-03-04 Panametrics, Inc. Apparatus for measuring fluid characteristics using surface generated volumetric interrogation signals
EP0264991A1 (en) 1986-09-29 1988-04-27 Altometer Produktiebedrijf Ultrasonic flow meter
DE10221771A1 (de) 2002-05-15 2003-11-27 Flowtec Ag Ultraschallwandler für ein Ultraschall-Durchflußmessgerät
US20100244629A1 (en) * 2009-03-31 2010-09-30 Ceratec Corporation Piezoelectric Generator
WO2016134005A1 (en) 2015-02-17 2016-08-25 General Electric Company Method for inspecting a weld seam with ultrasonic phased array
EP3115753A1 (en) 2015-07-06 2017-01-11 ABB Schweiz AG System and method for non-intrusive and continuous level measurement of a liquid specification
EP3115754A1 (en) 2015-07-06 2017-01-11 ABB Schweiz AG System and method for non-instrusive and continuous level measurement in a cylindrical vessel
US20170010146A1 (en) * 2015-07-06 2017-01-12 Abb Schweiz Ag System and method for non-intrusive and continuous level measurement of a liquid

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
P D. Wilcox et al.," Mode and Transducer Selection for Long Range Lamb Wave Inspection" Journal of Intelligent Material Systems and Structures, vol. 12, Aug. 2001, pp. 553-565, Sage Publications, New York, U.S.A.

Also Published As

Publication number Publication date
EP3847425A1 (en) 2021-07-14
WO2020048977A1 (en) 2020-03-12
US20210181008A1 (en) 2021-06-17
CN112639418A (zh) 2021-04-09

Similar Documents

Publication Publication Date Title
US8079748B2 (en) Liquid agitating device
JP3852949B2 (ja) 超音波変換器
CN109282840B (zh) 用于确定流体量的测量模块
US20070035204A1 (en) Dual frequency band ultrasound transducer arrays
US20070034016A1 (en) Ultrasonic flow sensor
JP4925819B2 (ja) ミクロキャビティでの少量液体の混合方法と装置
US11137494B2 (en) Distance-detection system for determining a time-of-flight measurement and having a reduced dead zone
Gallego‐Juárez Basic principles of ultrasound
US20100257940A1 (en) Ultrasonic transducer for determining and/or monitoring flow of a measured medium through a measuring tube
US9689846B2 (en) Device and method for determining properties of a medium
US11598663B2 (en) Transducer for non-invasive measurement
CN109142537B (zh) 一种质点偏振方向控制与扫描检测方法
JP2008232801A (ja) 超音波トランスジューサ及び超音波レベル計
US11898893B2 (en) Transducer for non-invasive measurement
Cheeke et al. Observation of flexural Lamb waves (A mode) on water-filled cylindrical shells
CN112638549B (zh) 用于非侵入测量的换能器
US20220241820A1 (en) Device for producing a standard ultrasonic field
RU2700031C1 (ru) Многочастотное приемоизлучающее антенное устройство
Toda et al. Propagation characteristics of leaky Lamb waves in a liquid-loaded double-layered substrate consisting of a thin piezoelectric ceramic plate and a thin glass plate
WO1999038027A1 (fr) Dispositif emetteur pour emetteur d'ondes ultrasoniques
JP2024007286A (ja) 超音波用探触子
Kittinger et al. Improvement of echo shape in low impedance materials
JPH09243620A (ja) センサ
JP2024016372A (ja) 計測機器用の超音波振動子
Calvo et al. Underwater sound transmission through thin soft elastomers containing arrays of pancake voids: Measurements and modeling

Legal Events

Date Code Title Description
AS Assignment

Owner name: ABB SCHWEIZ AG, SWITZERLAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BERNHARD, CHRISTOF;KASSUBEK, FRANK;LENNER, MIKLOS;AND OTHERS;SIGNING DATES FROM 20210209 TO 20210222;REEL/FRAME:055450/0801

FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STPP Information on status: patent application and granting procedure in general

Free format text: APPLICATION DISPATCHED FROM PREEXAM, NOT YET DOCKETED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STCF Information on status: patent grant

Free format text: PATENTED CASE