US11452898B2 - Resistance-generating device, exercise apparatus, and method - Google Patents

Resistance-generating device, exercise apparatus, and method Download PDF

Info

Publication number
US11452898B2
US11452898B2 US17/177,741 US202117177741A US11452898B2 US 11452898 B2 US11452898 B2 US 11452898B2 US 202117177741 A US202117177741 A US 202117177741A US 11452898 B2 US11452898 B2 US 11452898B2
Authority
US
United States
Prior art keywords
resistance
mounting members
mounting member
generating device
mounting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US17/177,741
Other versions
US20210252325A1 (en
Inventor
Gregory Lloyd CORRIGAN
Benjamin Charles ZUCKERMAN
Tima Fader
Yin Kwong William Tang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
1195143 BC Ltd
Original Assignee
1195143 BC Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 1195143 BC Ltd filed Critical 1195143 BC Ltd
Priority to US17/177,741 priority Critical patent/US11452898B2/en
Publication of US20210252325A1 publication Critical patent/US20210252325A1/en
Assigned to 1195143 B.C. LTD. reassignment 1195143 B.C. LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: TANG, YIN KWONG WILLIAM
Assigned to 7286139 Canada Ltd., Rosychuk, Rick, ROBINSON, SAMUEL reassignment 7286139 Canada Ltd. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: 9614206 CANADA INC.
Assigned to 1195143 B.C. LTD. reassignment 1195143 B.C. LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: FADER, Tima
Assigned to 1195143 B.C. LTD. reassignment 1195143 B.C. LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: TUT FITNESS GROUP ASIA LIMITED
Assigned to TUT FITNESS GROUP ASIA LIMITED reassignment TUT FITNESS GROUP ASIA LIMITED CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: BKR FITNESS GROUP LIMITED
Assigned to BKR FITNESS GROUP LIMITED reassignment BKR FITNESS GROUP LIMITED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: Rosychuk, Rick, ROBINSON, SAMUEL, 7286139 Canada Ltd.
Assigned to 9614206 CANADA INC. reassignment 9614206 CANADA INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CORRIGAN, Gregory Lloyd, ZUCKERMAN, Benjamin Charles
Publication of US11452898B2 publication Critical patent/US11452898B2/en
Application granted granted Critical
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B21/00Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices
    • A63B21/00058Mechanical means for varying the resistance
    • A63B21/00065Mechanical means for varying the resistance by increasing or reducing the number of resistance units
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B21/00Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices
    • A63B21/00058Mechanical means for varying the resistance
    • A63B21/00069Setting or adjusting the resistance level; Compensating for a preload prior to use, e.g. changing length of resistance or adjusting a valve
    • A63B21/00072Setting or adjusting the resistance level; Compensating for a preload prior to use, e.g. changing length of resistance or adjusting a valve by changing the length of a lever
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B21/00Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices
    • A63B21/02Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices using resilient force-resisters
    • A63B21/04Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices using resilient force-resisters attached to static foundation, e.g. a user
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B21/00Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices
    • A63B21/02Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices using resilient force-resisters
    • A63B21/04Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices using resilient force-resisters attached to static foundation, e.g. a user
    • A63B21/0407Anchored at two end points, e.g. installed within an apparatus
    • A63B21/0428Anchored at two end points, e.g. installed within an apparatus the ends moving relatively by linear reciprocation
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B21/00Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices
    • A63B21/02Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices using resilient force-resisters
    • A63B21/055Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices using resilient force-resisters extension element type
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B21/00Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices
    • A63B21/02Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices using resilient force-resisters
    • A63B21/055Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices using resilient force-resisters extension element type
    • A63B21/0552Elastic ropes or bands
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B21/00Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices
    • A63B21/02Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices using resilient force-resisters
    • A63B21/055Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices using resilient force-resisters extension element type
    • A63B21/0552Elastic ropes or bands
    • A63B21/0557Details of attachments, e.g. clips or clamps

Definitions

  • the application relates generally to force-generating objects and, more particularly, to a resistance-generating device.
  • a resistance-generating device comprising: an elongated resilient body having opposed ends, a first mounting member attached to the resilient body at one of the ends, and a second mounting member attached to the other end of the resilient body, the first and second mounting members being made of an inelastic material, at least one of the first and second mounting members being removably mountable to a corresponding one of the first and second mounting members of another device, the first mounting member being removably mountable to a first structure and the second mounting member being removably mountable to a second structure being displaceable relative to the first structure, the resilient body generating resistance upon being elastically deformed by displacement of the second mounting member mounted to the second structure relative to the first mounting member mounted to the first structure.
  • At least one of the first and second mounting members includes a first surface having a mounting feature, and a second surface having a receiving feature, the mounting feature of each device being removably mountable to the receiving feature of another device.
  • the mounting feature is a projection extending outwardly from the first surface
  • the receiving feature is a recess extending into the second surface
  • the projection and the recess have complementary shapes.
  • each of the first and second mounting members have the mounting feature and the receiving feature, the first and second mounting members having a same construction.
  • the resilient body is a resilient band.
  • At least one of the first mounting member, the second mounting member, and the resilient body have a visual indicia indicative of a resistance of the device.
  • a set of the resistance-generating device wherein at least one of the first and second mounting members of each device are removably mountable to the corresponding first and second mounting members of another device to increase a resistance provided by the set.
  • At least two devices of the set have a common first or second mounting member, the other first or second mounting members of the at least two devices being separate.
  • only one of the first or second mounting members of one of the devices of the set is removable from the corresponding first and second mounting members of another device to detach said device from the set.
  • a method of generating resistance comprising: connecting one end of a first resilient body to a stationary first structure; connecting another end of the first resilient body to a displaceable second structure; connecting one end of at least another resilient body to one of the ends of the first resilient body; and displacing the second structure relative to the first structure to elastically deform at least the first resilient body to generate resistance.
  • the method further comprises disconnecting at least one end of the at least one another resilient body from the corresponding end of the first resilient body to decrease the resistance.
  • disconnecting at least one end of the at least one another resilient body includes disconnecting only one end of the at least one another resilient body from the corresponding end of the first resilient body while maintaining the other end of the at least one another resilient body connected to the corresponding end of the first resilient body.
  • connecting one end of the at least another resilient body includes connecting the ends of multiple resilient bodies together to form a set of resilient bodies, a resistance of the set being greater than a resistance of any one of the resilient bodies alone.
  • an exercise apparatus comprising: a first structure spaced apart from a second structure, the second structure being displaceable relative to the first structure; and at least one resistance-generating device having an elongated resilient body having opposed ends, a first mounting member attached to the resilient body at one of the ends, and a second mounting member attached to the other end of the resilient body, the first and second mounting members being made of an inelastic material, at least one of the first and second mounting members being removably mountable to a corresponding one of the first and second mounting members of another device, the first mounting member being removably mountable to the first structure and the second mounting member being removably mountable to the second structure, the resilient body generating resistance upon being elastically deformed by displacement of the second mounting member mounted to the second structure relative to the first mounting member mounted to the first structure.
  • At least one of the first and second mounting members includes a first surface having a mounting feature, and a second surface having a receiving feature, the mounting feature of each device being removably mountable to the receiving feature of another device.
  • the mounting feature is a projection extending outwardly from the first surface
  • the receiving feature is a recess extending into the second surface
  • the projection and the recess have complementary shapes.
  • each of the first and second mounting members have the mounting feature and the receiving feature, the first and second mounting members having a same construction.
  • the resilient body is a resilient band.
  • At least one of the first mounting member, the second mounting member, and the resilient body have a visual indicia indicative of a resistance of the at least one device.
  • the at least one resistance-generating device includes a set of resistance-generating devices, at least one of the first and second mounting members of each device are removably mountable to the corresponding first and second mounting members of another device to increase a resistance provided by the set.
  • At least two devices of the set have a common first or second mounting member, the other first or second mounting members of the at least two devices being separate.
  • only one of the first or second mounting members of one of the devices of the set is removable from the corresponding first and second mounting members of another device to detach said device from the set.
  • a resistance-generating device comprising: a resilient body extending between opposed ends, a first mounting member attached to the resilient body at one of the ends and a second mounting member attached to the other end of the resilient body, the resilient body having a first portion extending between the first and second mounting members and a second portion extending between the first and second mounting members, the first portion being spaced apart from the second portion, the first and second mounting members being made of an inelastic material, at least one of the first and second mounting members being removably mountable to a corresponding one of the first and second mounting members of another resistance-generating device, the first mounting member being removably mountable to a first structure and the second mounting member being removably mountable to a second structure being displaceable relative to the first structure, the resilient body generating resistance upon the first and second portions being elastically deformed by displacement of the second mounting member mounted to the second structure relative to the first mounting member mounted to the first structure.
  • a method of adjusting a resistance-generating device comprising: displacing parts of the resistance-generating device positioned at opposed ends of the resistance-generating device to another position in which the parts of the resistance-generating device are positioned between the opposed ends.
  • an exercise apparatus comprising: a first structure spaced apart from a second structure, the second structure being displaceable relative to the first structure; and one or more resistance-generating devices having a resilient body extending between opposed ends, a first mounting member attached to the resilient body at one of the ends and a second mounting member attached to the other end of the resilient body, the resilient body having a first portion extending between the first and second mounting members and a second portion extending between the first and second mounting members, the first portion being spaced apart from the second portion, the first and second mounting members being made of an inelastic material, at least one of the first and second mounting members being removably mountable to a corresponding one of the first and second mounting members of another resistance-generating device, the first mounting member being removably mountable to the first structure and the second mounting member being removably mountable to the second structure, the resilient body generating resistance upon the first and second portions being elastically deformed by displacement of the second mounting member mounted to the second structure relative to the first mounting member mounted to the first structure; and one
  • FIG. 1 is a perspective view of a resistance-generating device mounted to a first structure and to a second structure, according to an embodiment of the present disclosure
  • FIG. 2A is a perspective view of the resistance-generating device of FIG. 1 ;
  • FIG. 2B is a perspective view of a plurality of the resistance-generating devices of FIG. 1 ;
  • FIG. 2C is a schematic side view of part of two of the resistance-generating devices of FIG. 1 ;
  • FIG. 3 is a perspective view of a plurality of the resistance-generating devices mounted to the first structure and to the second structure of FIG. 1 ;
  • FIG. 4A is a perspective view of the second structure of FIG. 1 for receiving a resistance-generating device
  • FIG. 4B is a perspective view of a mounting member of the resistance-generating device mounted to the second structure of FIG. 4A ;
  • FIG. 5A is a perspective view of an end cap for a resistance-generating device, according to another embodiment of the present disclosure.
  • FIG. 5B is another perspective view of the end cap of FIG. 5A ;
  • FIG. 5C is a side elevational view of the end cap of FIG. 5A ;
  • FIG. 6 is a perspective view of a plurality of the resistance-generating devices mounted to the first structure and to the second structure of FIG. 1 ;
  • FIG. 7 is a perspective view of a plurality of the resistance-generating devices of FIG. 1 ;
  • FIG. 8 is a cross-sectional view of one of the resistance-generating devices taken along the line 8 - 8 in FIG. 7 ;
  • FIG. 9 is an exploded view of one of the resistance-generating devices.
  • FIG. 1 illustrates an exercise apparatus 8 .
  • the exercise apparatus 8 can be used by a person in a training or exercise regimen.
  • the exercise apparatus 8 includes a first structure 11 and a spaced-apart second structure 12 .
  • the first structure 11 and second structure 12 are displaceable relative to one another.
  • the first structure 11 is a stationary object that does not displace
  • the second structure 12 is a moveable object which displaces along direction D toward and away from the first structure 11 .
  • Other configurations for the displacement of the second structure 12 relative to the first structure 11 are also possible.
  • both the first and the second structures 11 , 12 can be displaceable.
  • the first and second structures 11 , 12 can be any body, object, or member which allows for the above-described relative displacement of the exercise apparatus 8 .
  • the second structure 12 has a pulley-housing body 12 A enclosing a pulley.
  • the pulley-housing body 12 A is slidingly displaceable in direction D along support post 13 when cables 14 actuate the pulley.
  • the first structure 11 shown in FIG. 1 is a block or protrusion that is fixedly attached to the support post 13 , such that the pulley-housing body 12 A is able to displace in the direction D relative to the first structure 11 (i.e. away from the first structure 11 and towards the first structure 11 , along direction D).
  • FIG. 1 also illustrates a resistance-generating device 10 mounted to the first structure 11 and to the second structure 12 .
  • the resistance-generating device 10 is mounted to the first and second structures 11 , 12 such that it can be easily removed therefrom.
  • the displacement of the second structure 12 relative to the first structure 11 causes the resistance-generating device 10 attached to the first and second structure 11 , 12 to generate resistance.
  • the resistance-generating device 10 (referred to herein sometimes simply as “device 10 ”) generates resistance when the second structure 12 is displaced away from the first structure 11 .
  • the device 10 may also generate resistance in other ways.
  • the configuration of the first and second structures 11 , 12 and the attachment of the device 10 thereto may allow the device 10 to generate resistance through the relative displacement of the first and second structures 11 , 12 toward one another.
  • the resistance generated can be used for any suitable purpose.
  • the resistance generated by device 10 is used by a person in a training or exercise regimen.
  • the device 10 has an elongated resilient body 15 .
  • the resilient body 15 (referred to herein sometimes simply as “body 15 ”) is an object having a length, and extends between two opposed ends 16 .
  • the body 15 is elastically deformable and returns to its original form or configuration after being stretched.
  • the resistance of the body 15 to deformation is what generates the resistance of the device 10 .
  • the resiliency of the body 15 can be obtained from the material from which it is made.
  • the body 15 can be made from any suitable polymer material which undergoes elastic deformation.
  • the body 15 can be made from any suitable elastomeric material which undergoes elastic deformation.
  • the material of the body 15 can be a naturally-occurring or synthetic elastomer, such as natural rubber, butyl rubber, or neoprene.
  • the body 15 is in the form of a resilient band 15 A.
  • the body 15 may take other forms as well.
  • the body 15 can be in the form of a resilient elongated cylinder, or can be in the form of a hollow resilient tube. Even more possible forms for the body 15 are described in greater detail below.
  • the device 10 also has a first mounting member 21 and a second mounting member 22 .
  • the first mounting member 21 is disposed at one of the ends 16 of the body 15
  • the second mounting member 22 is disposed at the other end 16 of the body 15 .
  • Each of the first and second mounting members 21 , 22 is a separate component from the body 15 , and is attached or connected to their respective ends 16 of the body 15 , or integral therewith.
  • the first and second mounting members 21 , 22 are permanently attached to the body 15 .
  • the first and second mounting members 21 , 22 are removably mounted to the ends 16 of the body 15 .
  • the first and second mounting members 21 , 22 are also removably mounted to the first and second structures 11 , 12 , respectively.
  • the first and second mounting members 21 , 22 link the body 15 to the relative displacement of the first and second structures 11 , 12 , thereby allowing the body 15 to generate resistance.
  • the resilient body 15 therefore generates resistance upon being elastically deformed by the displacement of the second mounting member 22 mounted to the second structure 12 relative to the first mounting member 21 mounted to the first structure 11 .
  • the relative displacement of the first and second mounting members 21 , 22 occurs when the first and second structures 11 , 12 , to which they are attached, are displaced relative to one another.
  • the first and second mounting members 21 , 22 are made of an inelastic material. In contrast to the body 15 , which undergoes elastic deformation, the first and second mounting members 21 , 22 are rigid and inflexible. Therefore, when the body 15 is undergoing elastic deformation, for example from tension being applied thereto by the relative displacement of the first and second structures 11 , 12 , the first and second mounting members 21 , 22 will not significantly expand or enlarge in shape.
  • the non-elasticity or rigidity of the first and second mounting members 21 , 22 allows the body 15 to be the principal generator of resistance in the device 10 .
  • Some non-limiting examples of materials from which the first and second mounting members 21 , 22 can be made include plastic, wood, metal, rigid elastomers, and composites or combinations thereof.
  • the material of the first and second mounting members 21 , 22 is not the same as the elastomeric material of the body 15 . In another embodiment, the material of the first and second mounting members 21 , 22 is the same as the elastomeric material of the body 15 , but the material of the first and second mounting members 21 , 22 is rigid and inflexible (e.g. a hard rubber material).
  • FIGS. 2A shows a single device 10 as described above
  • FIG. 2B shows a plurality or set 40 of the devices 10 , 10 ′ connected together.
  • each of the devices 10 , 10 ′ in the set 40 is removably mounted to one another. This allows multiple devices 10 , 10 ′ to be combined, or “stacked”, together. In combining the devices 10 , 10 ′ in this way, it is possible to increase the resistance generated. More particularly, the set 40 of devices 10 , 10 ′ can be mounted to the first and second structures 11 , 12 and the combined resistance they generate will be greater than the resistance generated by any one of the devices 10 , 10 ′ of the set 40 alone.
  • the ability to removably mount or stack one device 10 to another device 10 ′ allows the user to quickly and easily increase the resistance required for resistance-based exercise or training, for example.
  • This “resistance multiplier” effect contrasts with trying to increase resistance with conventional free weights, which typically requires adding heavy or cumbersome weights about a space-occupying support.
  • FIG. 2A Another possible form for the body 15 is shown in FIG. 2A .
  • the body 15 has a first portion 17 A and a second portion 17 B (see FIG. 4B as well).
  • the first and second portions 17 A, 17 B are parts or segments of the body 15 , or make up the body 15 , so as to have the same characteristics as the body 15 described above.
  • the first and second portions 17 A, 17 B are elastically deformable and return to their original form or configuration after being stretched.
  • Each of the first and second portions 17 A, 17 B extend between, and are mounted to, the first and second mounting members 21 , 22 , so that the first and second portions 17 A, 17 B generate resistance upon being elastically deformed by the displacement of the second mounting member 22 mounted to the second structure 12 relative to the first mounting member 21 mounted to the first structure 11 .
  • the first portion 17 A is spaced apart from the second portion 17 B.
  • the first portion 17 A is spaced apart from the second portion 17 B in a direction that is transverse or perpendicular to the length of the device 10 .
  • a lateral gap is defined between the first and second portions 17 A, 17 B of the body 15 .
  • the first and second portions 17 A, 17 B extend along the entire length of the device 10 between, or possibly into, the first and second mounting members 21 , 22 .
  • each of the first and second portions 17 A, 17 B have an inner surface 17 I and an outer surface 17 O.
  • the inner surfaces 171 of the first and second portions 17 A, 17 B face each other across the lateral gap.
  • the outer surface 170 of the first and second portions 17 A, 17 B face away from each other across the lateral gap.
  • the first and second portion 17 A, 17 B may be defined by the mounting of the body 15 to the first and second mounting members 21 , 22 , as explained in greater detail below.
  • the removable mounting of one device 10 to another device 10 ′ can take different forms.
  • the first and second mounting members 21 , 22 of one device 10 are removably mounted to the corresponding first and second mounting members 21 ′, 22 ′ of another device 10 ′.
  • Other configurations for removably mounting one device 10 to another device 10 ′ are possible.
  • the two devices 10 , 10 ′ share a common first or second mounting member 21 , 22 at one end 16 of the body 15 , and have separate first and second mounting members 21 , 22 at the other end of the body 15 .
  • This configuration is represented in FIG. 2B , where two devices 10 , 10 ′ are shown having a common first mounting member 21 ′.
  • the resistance of the devices 10 , 10 ′ can be combined by removably mounting only the separate corresponding first and second mounting members 21 , 22 together. Similarly, in such a configuration, the resistance of the devices 10 , 10 ′ can be decoupled by disconnecting only the separate corresponding first and second mounting members 21 , 22 .
  • each of the first and second mounting members 21 , 22 includes an end cap 23 secured to one of the ends 16 of the body 15 .
  • the end cap 23 is a molded plastic piece that is secured to the end 16 of the body 15 during a molding manufacturing procedure.
  • the end cap 23 has a first surface 24 A and a second surface 24 B disposed opposite to the first surface 24 A on the other side of the end cap 23 .
  • the first surface 24 A has a mounting feature 25 and the second surface 24 B has a receiving feature 26 .
  • the mounting feature 25 of one device 10 is removably mountable to the receiving feature 26 ′ of another device 10 ′, which allows the devices 10 , 10 ′ to be combined together.
  • each mounting feature 25 includes a projection 27 extending outwardly from the first surface 24 A.
  • Each receiving feature 26 includes a groove or recess 28 in the second surface 24 B.
  • the shape of the projection 27 corresponds to that of the recess 28 so that the projection 27 can be inserted into the recess 28 and secured therein, thereby combining corresponding first and second mounting members 21 , 22 and first and second devices 10 , 10 ′.
  • the shape of the projection 27 and recess 28 can vary.
  • the projection 27 and the recess 28 have complementary shapes.
  • the projection 27 has a U-shape, and the recess 28 also has a U-shape as it extends into the second surface 24 B.
  • the U-shaped projection 27 of one mounting member is slid into the U-shaped recess 28 of a corresponding mounting member.
  • the configuration of the mounting feature 25 and the receiving feature 26 can vary, and is not limited to the depicted configuration. Another embodiment of the mounting and receiving features 25 , 26 is described below. In other embodiments, the mounting feature 25 and receiving feature 26 can also be another configuration of male-female mating objects, a hook-and-loop fastener, a biased mechanism, magnets, or any other suitable mechanical connection.
  • decreasing the resistance generated by the set 40 can also be easily achieved through the removable mounting of the first and second mounting members 21 , 22 of one device 10 to those of another device 10 ′. More particularly, if the user wishes to reduce the resistance generated by the set 40 , she can simply detach or decouple one or both of the first and second mounting members 21 , 22 of one device 10 from the corresponding first and second mounting member 21 ′, 22 ′ of another device 10 ′.
  • first or second mounting members 21 , 22 of one device 10 is removed from the corresponding first and second mounting member 21 ′, 22 ′ of another device 10 ′, while maintaining the other mounting member 21 , 22 of the device 10 connected to the corresponding mounting member 21 ′, 22 ′ of the other device 10 ′.
  • This disconnection allows the user to detach only part of one device 10 from the set 40 , thereby providing a reduction in resistance without having to disconnect the entirety of the device 10 . Since one of the mounting members is no longer attached to the remainder of the devices 10 of the set 40 , the device 10 corresponding to that mounting member will not generate resistance when its body 15 undergoes elastic deformation.
  • the user wishes to increase the resistance of the set 40 , she can quickly reattach the detached mounting member 21 , 22 .
  • This functionality allows the user of the set 40 to quickly modify (i.e. increase and decrease) the resistance generated by a set 40 of devices 10 .
  • FIG. 3 shows the set 40 , wherein one of its devices 10 is removably mounted to the first and second structures 11 , 12 . More particularly, the first mounting member 21 of the device 10 is mounted to the first structure 11 , and the second mounting member 22 is mounted to the second structure 12 . The remaining devices 10 ′ of the set 40 are combined together by mounting the first and second mounting members 21 , 22 of each device 10 ′ together. As the second structure 12 is displaced along direction D relative to the first structure 11 , the second mounting members 22 of all the devices 10 , 10 ′ are also displaced, thereby causing the bodies 15 of the devices 10 , 10 ′ to generate resistance. If the user wishes to decrease the resistance generated by the set 40 , she can simply detach or decouple one or more mounting members 21 , 22 of each device 10 , 10 ′ from the corresponding mounting member 21 , 22 of another device 10 , 10 ′.
  • each of the devices 10 , 10 ′ have one or more visual indicia 15 B which provides information to the user on the resistance provided by the device 10 .
  • the visual indicia 15 B is a colour that is unique to each device 10 , each colour being indicative of the stiffness of the body 15 , or how much resistance it generates.
  • Other visual indicia including, but not limited to, markings, number, alphanumeric characters, or symbols, may also be used to indicate resistance.
  • the visual indicia 15 B may also be provided on one of, or both, of the first and second mounting members 21 , 22 , or as an alternative or in addition to being provided on the body 15 .
  • the user can select a device 10 whose resistance is similar to that generated by a 10 lbs free weight, for example.
  • the user can combine this device 10 with another device 10 whose colour is indicative of a resistance similar to that generated by a 20 lbs free weight.
  • the combined resistance of this set 40 of devices 10 , 10 ′ will be similar to that generated by lifting 30 lbs of free weights.
  • each of the first and second mounting members 21 , 22 of each device 10 , 10 ′ have the mounting feature 25 and the receiving feature 26 . This allows the device 10 , 10 ′ to be reversed because each mounting member 21 , 22 is compatible with either one of the mounting members 21 , 22 of another device 10 ′.
  • the first and second mounting members 21 , 22 of each device 10 therefore have the same construction or structure.
  • the end cap 23 of the second mounting member 22 is mounted to the displaceable second structure 12 .
  • the second structure 12 has a structure mount 12 M.
  • the structure mount 12 M is fixed in position on the second structure 12 and displaces with the second structure 12 .
  • the structure mount 12 M is shaped and sized to removably receive one of the first and second mounting members 21 , 22 of one of the devices 10 , 10 ′. More particularly, the dovetail projection 27 from the first surface 24 A of the end cap 23 is slid into a similarly shaped recess 12 A of the structure mount 12 M.
  • the first mounting member 21 is similarly mounted to a structure mount 12 M on the stationary first structure 11 .
  • the user applies force to an exercise accessory which is linked to the first and second structure 11 , 12 via cables 14 and pulleys.
  • the tension this creates in the cables 14 causes the second structure 12 , the structure mount 12 M, and the second mounting member 22 mounted thereto to displace relative to the first structure 11 (and relative to the first mounting member 21 mounted thereto) along direction D.
  • the body 15 is thus stretched, which generates the resistance of the device 10 .
  • FIGS. 5A to 5C show another embodiment of the end cap 123 of the first and second mounting members 21 , 22 .
  • the end cap 123 is a molded plastic piece that is secured to the end 16 of the body 15 during a molding manufacturing procedure.
  • the end cap 123 has a first surface 124 A and a second surface 124 B disposed opposite to the first surface 124 A on the other side of the end cap 123 .
  • the first surface 124 A has a mounting feature 125 and the second surface 124 B has a receiving feature 126 .
  • the mounting feature 125 of one device 10 is removably mountable to the receiving feature 126 of another device 10 ′, which allows the devices 10 , 10 ′ to be combined together.
  • the shape of the projection 127 corresponds to that of the recess 128 so that the projection 127 can be inserted into the recess 128 and secured therein, thereby combining corresponding first and second mounting members 21 , 22 and first and second devices 10 , 10 ′.
  • the projection 127 and the recess 128 have complementary shapes.
  • the projection 127 has a dovetail shape, and the recess 128 flares outwardly as it extends into the second surface 124 B.
  • the dovetail projection 127 of one mounting member is slid into the flared recess 128 of a corresponding mounting member.
  • the first and second structures 11 , 12 can have complementary shaped recesses to accommodate the projections 127 .
  • the end cap 123 is at least partially hollow.
  • the end cap 123 defines an internal cavity 123 A occupying a volume of the interior of the end cap 123 .
  • the cavity 123 A is delimited by internal walls of the end cap 123 , which also delimit an opening 123 O leading into the cavity 123 A.
  • the cavity 123 A is sized and shaped to receive therein, via the opening 123 O, distal parts or extremities of the first and second portions 17 A, 17 B of the body 15 , as described in greater detail below.
  • Other features of the end cap 123 are housed therein and located within the cavity 123 A.
  • the end cap 123 has a support 123 B.
  • the support 123 is positioned within the end cap 123 and extends across the cavity 123 A between opposed lateral walls 124 L of the end cap 123 .
  • the support 123 B is sized, shaped and arranged so as to support a distal part or extremity of the body 15 within the end cap 123 , and helps to define the first and second portions 17 A, 17 B of the body 15 , as described in greater detail below.
  • the support 123 B may assume any suitable configuration to achieve such functionality.
  • the support 123 B is in the form of a shaft 123 S that extends between the lateral walls 124 L of the end cap 123 .
  • the shaft 123 S is positioned midway between the first and second surfaces 124 A, 124 B of the end cap 123 .
  • the shaft 123 S is inserted through shaft apertures 123 SA in the lateral walls 124 (see FIG. 9 ).
  • the shaft 123 S defines a shaft axis 123 T.
  • the shaft axis 123 T is perpendicular to the lateral walls 124 L.
  • the shaft 123 S is rotatable about the shaft axis 123 T. The rotation of the shaft 123 S allows for the body 15 mounted to the shaft 123 S to displace with respect to the end cap 123 .
  • the support 123 B may also be one or more of a bearing, a rod, a wheel, and a pulley, or any other rotatable body which supports the body 15 when placed under tension and accommodates its displacement relative to the first and second members 21 , 22 .
  • the support 123 B does not rotate and has a fixed position relative to the end cap 123 .
  • Such a support 123 B also supports the body 15 when placed under tension and accommodates its displacement relative to the first and second members 21 , 22 .
  • a plurality or set 40 of the devices 10 , 10 ′ are connected together.
  • Each of the devices 10 , 10 ′ in the set 40 is removably mounted to one another. This allows multiple devices 10 , 10 ′ to be combined, or “stacked”, together, as explained above.
  • the first and second portions 17 A, 17 B of the resilient body 15 are displaceable relative to the first and second mounting members 21 , 22 .
  • the relative displaceability of the first and second portions 17 A, 17 B may take different forms. In the embodiment shown in FIG.
  • each of the first and second portions 17 A, 17 B can displace in the direction D 1 toward the second mounting member 22 , and also in the direction D 2 toward the first mounting member 21 .
  • each of the first and second portions 17 A, 17 B can displace in only one the directions D 1 ,D 2 , either in the same direction or in different directions.
  • the first and second portions 17 A, 17 B of the resilient body 15 are able to change the part of the resilient body 15 that is attached or mounted to the first and second mounting members 21 , 22 .
  • the body 15 is resiliently deformed and contracted at a high frequency by the relative displacement of the first and second mounting members 21 , 22 , such as during a high-intensity or cardiovascular workout, the parts of the body 15 which are attached or mounted to the first and second mounting members 21 , 22 may experience wear or strain. Prolonged or repeated exposure of these parts of the body 15 to this cyclic loading may cause these parts to fatigue, lose their resiliency, or tear.
  • the user is able to change the parts of the body 15 that are attached or mounted to the first and second mounting members 21 , 22 and that experience such wear, thereby helping to increase the longevity of the body 15 and of the device 10 , 10 ′.
  • FIGS. 8 and 9 show one possible configuration for how the first and second portions 17 A, 17 B of the body 15 are mounted or attached to the first and second mounting members 21 , 22 .
  • the first and second portions 17 A, 17 B are mounted to, or about, the supports 123 B.
  • the supports 123 B are caused to rotate about their axes 123 T when the first and second portions 17 A, 17 B are displaced relative to the first and second mounting members 21 , 22 .
  • Some or all of the first and second portions 17 A, 17 B travel through the cavity 123 A of the end cap 123 and are spaced inwardly from the inner walls of the end cap 123 that define the cavity 123 A.
  • sections of the first and second portions 17 A, 17 B are permanently positioned in the cavity 123 A and within the end cap 123 irrespective of the displacement of the first and second portions 17 A, 17 B.
  • the length of each of the first and second portions 17 A, 17 B is defined between the supports 123 B.
  • the resilient body 15 is a loop 19 (see FIGS. 2A and 4B as well).
  • the loop 19 is elastically deformable and returns to its original form or configuration after being stretched.
  • the loop 19 extends between, and is mounted to, the first and second mounting members 21 , 22 , so that the loop 19 generates resistance upon being elastically deformed by the displacement of the second mounting member 22 mounted to the second structure 12 relative to the first mounting member 21 mounted to the first structure 11 .
  • the loop 19 is a structure the end of which is connected to the beginning.
  • the loop 19 is an integral, one-piece, or monolithic body of elastomeric material.
  • the loop 19 may be composed of two or more interconnected segments.
  • the loop 19 is a closed loop because there are no openings along its length.
  • the loop 19 extends between opposed loop ends 19 A.
  • the first mounting member 21 is attached to the loop 19 at one of the loop ends 19 A, and the second mounting member 22 is attached to the other loop end 19 A.
  • the loop 19 defines the first and second portions 17 A, 17 B between the loop ends 19 A.
  • the first and second portions 17 A, 17 B are thus defined by the manner in which the loop 19 is mounted or attached to the first and second mounting members 21 , 22 .
  • one of the loop ends 19 A is mounted about the shaft 123 S within the second mounting member 22
  • the other loop end 19 A is mounted about the shaft 123 S within the first mounting member 21 .
  • Portions of the loop 19 are thus spaced apart from each other by the shafts 123 S.
  • Portions of the loop 19 are thus spaced apart from each other by the diameter of the shafts 123 S.
  • the shafts 123 S therefore define the first and second portions 17 A, 17 B of the loop 19 . Referring to FIGS.
  • the loop 19 is displaceable relative to the first and second mounting members 21 , 22 . More particularly, the loop 19 is displaceable in a looping, repeating or recurrent motion about the shafts 123 S and relative to the first and second mounting members 21 , 22 , such that displacement of the loop 19 causes the shafts 123 S to rotate about their shaft axes 123 T. During this looping motion, the portions of the loop 19 repeatedly travel over the same path as they are displaced relative to the first and second mounting members 21 , 22 .
  • the user may adjust the device 10 as follows.
  • the user may pull or push on the first and/or second portions 17 A, 17 B of the loop 19 .
  • This will cause the shafts 123 S to rotate about their shaft axes 123 T.
  • This will also cause the first and second portions 17 A, 17 B to simultaneously displace relative to the first and second mounting members 21 , 22 .
  • the first portion 17 A will displace in direction D 1 toward the second mounting member 22 while the second portion 17 B will simultaneously displace in the direction D 2 toward the first mounting member 21 .
  • the first portion 17 A is thus displaceable toward the first mounting member 21 such that the second portion 17 B is simultaneously displaceable toward the second mounting member 22
  • the first portion 17 A is displaceable toward the second mounting member 22 such that the second portion 17 B is simultaneously displaceable toward the first mounting member 21 .
  • the user can displace the first and/or second portion 17 A, 17 B until the parts of the loop 19 previously at positons P 1 arrive at positions P 2 .
  • the positions P 2 may be any positions of the loop 19 that are not positions P 1 .
  • the positions P 2 may be any positions of the loop 19 between the loop ends 19 A.
  • the resilient body 15 is not a loop.
  • the resilient body 15 is two or more independent resilient segments extending between the first and second mounting members 21 , 22 , which define the first and second portions 17 A, 17 B, and whose length can be adjusted to avoid having the same part thereof being continuously exposed to wear and strain.
  • the first and second portions 17 A, 17 B are displaced independently of each other, and not displaced simultaneously.
  • the method includes displacing parts of the device 10 , such as parts of the body 15 , which are positioned at opposed ends 16 of the resistance-generating device to another position in which the parts of the resistance-generating device are positioned between the opposed ends 16 .
  • the method includes connecting one end 16 of a first resilient body 15 to the stationary first structure 11 .
  • the method includes connecting another end 16 of the first resilient body 16 to the displaceable second structure 12 .
  • the method includes connecting one end 16 of at least another resilient body 15 to one of the ends 16 of the first resilient body 15 .
  • the method includes displacing the second structure 12 relative to the first structure 11 to elastically deform at least the first resilient body 15 to generate resistance.
  • the device 10 disclosed herein allows the user to easily modify the resistance desired for training. For example, if the user wants to experience more resistance, such as for weight training, she may simply combine the devices 10 together, and mount the set 40 of devices 10 to the first and second structures 11 , 12 . Similarly, if the user wants to experience less resistance, such as for cardiovascular training, she may simply detach or decouple one or more of the devices 10 from the set 40 , or change the devices 10 for one offering less resistance.
  • the device 10 disclosed herein allows resistance to be rapidly scaled up or down, without the above-described inconveniences and potential dangers associated with free weights.
  • the device 10 therefore facilitates cardiovascular and/or weight-training exercises by allowing the user to easily increase the resistance by adding more of the relatively light-weight and easily-stored devices 10 .
  • the device 10 are both space and weight efficient, and easy to transport.
  • first and second are used herein merely to distinguish components from one another. It will be appreciated that the descriptors can be reversed, and that the components described as “first” can also be described as “second”.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • General Health & Medical Sciences (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Rehabilitation Tools (AREA)
  • Toys (AREA)
  • Orthopedics, Nursing, And Contraception (AREA)

Abstract

A resistance-generating device includes a resilient body extending between opposed ends. The resilient body has a first portion extending between first and second mounting members of the device, and a second portion extending between the first and second mounting members. The first portion is spaced apart from the second portion, and the first and second mounting members are made of an inelastic material. At least one of the first and second mounting members is removably mountable to a corresponding one of the first and second mounting members of another resistance-generating device. The resilient body generates resistance upon the first and second portions being elastically deformed by displacement of the second mounting member mounted to a second structure relative to the first mounting member mounted to a first structure.

Description

CROSS-REFERENCE TO RELATED APPLICATIONS
This is a continuation-in-part application of U.S. patent application Ser. No. 16/323,549, which is a national stage filing under 35 U.S.C. 371 of PCT application number PCT/CA2017/050969 filed Aug. 16, 2017, which designates the United States, was published in English, and claims the priority of U.S. provisional patent application No. 62/375,940 filed on Aug. 17, 2016, the entire contents of all of which are incorporated by reference herein.
TECHNICAL FIELD
The application relates generally to force-generating objects and, more particularly, to a resistance-generating device.
BACKGROUND
Various devices exist for performing resistance or load-bearing exercises. Conventional weight-bearing devices are often heavy and cumbersome. Many small apartments or homes, campers, hotel rooms, gyms, etc. cannot support these structures. Size, space and weight constraints inhibit the use and the availability of these devices.
Furthermore, effective weight-training requires continuously increasing the resistance or load. Many devices are restricted in the amount of resistance that can be added, which limits their usefulness.
SUMMARY
There is disclosed a resistance-generating device, comprising: an elongated resilient body having opposed ends, a first mounting member attached to the resilient body at one of the ends, and a second mounting member attached to the other end of the resilient body, the first and second mounting members being made of an inelastic material, at least one of the first and second mounting members being removably mountable to a corresponding one of the first and second mounting members of another device, the first mounting member being removably mountable to a first structure and the second mounting member being removably mountable to a second structure being displaceable relative to the first structure, the resilient body generating resistance upon being elastically deformed by displacement of the second mounting member mounted to the second structure relative to the first mounting member mounted to the first structure.
In an embodiment, at least one of the first and second mounting members includes a first surface having a mounting feature, and a second surface having a receiving feature, the mounting feature of each device being removably mountable to the receiving feature of another device.
In an embodiment, the mounting feature is a projection extending outwardly from the first surface, and the receiving feature is a recess extending into the second surface.
In an embodiment, the projection and the recess have complementary shapes.
In an embodiment, each of the first and second mounting members have the mounting feature and the receiving feature, the first and second mounting members having a same construction.
In an embodiment, the resilient body is a resilient band.
In an embodiment, at least one of the first mounting member, the second mounting member, and the resilient body have a visual indicia indicative of a resistance of the device.
In an embodiment, there is provided a set of the resistance-generating device, wherein at least one of the first and second mounting members of each device are removably mountable to the corresponding first and second mounting members of another device to increase a resistance provided by the set.
In an embodiment, at least two devices of the set have a common first or second mounting member, the other first or second mounting members of the at least two devices being separate.
In an embodiment, only one of the first or second mounting members of one of the devices of the set is removable from the corresponding first and second mounting members of another device to detach said device from the set.
In another aspect, there is provided a method of generating resistance, comprising: connecting one end of a first resilient body to a stationary first structure; connecting another end of the first resilient body to a displaceable second structure; connecting one end of at least another resilient body to one of the ends of the first resilient body; and displacing the second structure relative to the first structure to elastically deform at least the first resilient body to generate resistance.
In an embodiment, the method further comprises disconnecting at least one end of the at least one another resilient body from the corresponding end of the first resilient body to decrease the resistance.
In an embodiment, disconnecting at least one end of the at least one another resilient body includes disconnecting only one end of the at least one another resilient body from the corresponding end of the first resilient body while maintaining the other end of the at least one another resilient body connected to the corresponding end of the first resilient body.
In an embodiment, connecting one end of the at least another resilient body includes connecting the ends of multiple resilient bodies together to form a set of resilient bodies, a resistance of the set being greater than a resistance of any one of the resilient bodies alone.
There is disclosed an exercise apparatus, comprising: a first structure spaced apart from a second structure, the second structure being displaceable relative to the first structure; and at least one resistance-generating device having an elongated resilient body having opposed ends, a first mounting member attached to the resilient body at one of the ends, and a second mounting member attached to the other end of the resilient body, the first and second mounting members being made of an inelastic material, at least one of the first and second mounting members being removably mountable to a corresponding one of the first and second mounting members of another device, the first mounting member being removably mountable to the first structure and the second mounting member being removably mountable to the second structure, the resilient body generating resistance upon being elastically deformed by displacement of the second mounting member mounted to the second structure relative to the first mounting member mounted to the first structure.
In an embodiment, at least one of the first and second mounting members includes a first surface having a mounting feature, and a second surface having a receiving feature, the mounting feature of each device being removably mountable to the receiving feature of another device.
In an embodiment, the mounting feature is a projection extending outwardly from the first surface, and the receiving feature is a recess extending into the second surface.
In an embodiment, the projection and the recess have complementary shapes.
In an embodiment, each of the first and second mounting members have the mounting feature and the receiving feature, the first and second mounting members having a same construction.
In an embodiment, the resilient body is a resilient band.
In an embodiment, at least one of the first mounting member, the second mounting member, and the resilient body have a visual indicia indicative of a resistance of the at least one device.
In an embodiment, the at least one resistance-generating device includes a set of resistance-generating devices, at least one of the first and second mounting members of each device are removably mountable to the corresponding first and second mounting members of another device to increase a resistance provided by the set.
In an embodiment, at least two devices of the set have a common first or second mounting member, the other first or second mounting members of the at least two devices being separate.
In an embodiment, only one of the first or second mounting members of one of the devices of the set is removable from the corresponding first and second mounting members of another device to detach said device from the set.
There is disclosed a resistance-generating device, comprising: a resilient body extending between opposed ends, a first mounting member attached to the resilient body at one of the ends and a second mounting member attached to the other end of the resilient body, the resilient body having a first portion extending between the first and second mounting members and a second portion extending between the first and second mounting members, the first portion being spaced apart from the second portion, the first and second mounting members being made of an inelastic material, at least one of the first and second mounting members being removably mountable to a corresponding one of the first and second mounting members of another resistance-generating device, the first mounting member being removably mountable to a first structure and the second mounting member being removably mountable to a second structure being displaceable relative to the first structure, the resilient body generating resistance upon the first and second portions being elastically deformed by displacement of the second mounting member mounted to the second structure relative to the first mounting member mounted to the first structure.
There is disclosed a method of adjusting a resistance-generating device, comprising: displacing parts of the resistance-generating device positioned at opposed ends of the resistance-generating device to another position in which the parts of the resistance-generating device are positioned between the opposed ends.
There is disclosed an exercise apparatus, comprising: a first structure spaced apart from a second structure, the second structure being displaceable relative to the first structure; and one or more resistance-generating devices having a resilient body extending between opposed ends, a first mounting member attached to the resilient body at one of the ends and a second mounting member attached to the other end of the resilient body, the resilient body having a first portion extending between the first and second mounting members and a second portion extending between the first and second mounting members, the first portion being spaced apart from the second portion, the first and second mounting members being made of an inelastic material, at least one of the first and second mounting members being removably mountable to a corresponding one of the first and second mounting members of another resistance-generating device, the first mounting member being removably mountable to the first structure and the second mounting member being removably mountable to the second structure, the resilient body generating resistance upon the first and second portions being elastically deformed by displacement of the second mounting member mounted to the second structure relative to the first mounting member mounted to the first structure.
DESCRIPTION OF THE DRAWINGS
Reference is now made to the accompanying figures in which:
FIG. 1 is a perspective view of a resistance-generating device mounted to a first structure and to a second structure, according to an embodiment of the present disclosure;
FIG. 2A is a perspective view of the resistance-generating device of FIG. 1;
FIG. 2B is a perspective view of a plurality of the resistance-generating devices of FIG. 1;
FIG. 2C is a schematic side view of part of two of the resistance-generating devices of FIG. 1;
FIG. 3 is a perspective view of a plurality of the resistance-generating devices mounted to the first structure and to the second structure of FIG. 1;
FIG. 4A is a perspective view of the second structure of FIG. 1 for receiving a resistance-generating device;
FIG. 4B is a perspective view of a mounting member of the resistance-generating device mounted to the second structure of FIG. 4A;
FIG. 5A is a perspective view of an end cap for a resistance-generating device, according to another embodiment of the present disclosure;
FIG. 5B is another perspective view of the end cap of FIG. 5A;
FIG. 5C is a side elevational view of the end cap of FIG. 5A;
FIG. 6 is a perspective view of a plurality of the resistance-generating devices mounted to the first structure and to the second structure of FIG. 1;
FIG. 7 is a perspective view of a plurality of the resistance-generating devices of FIG. 1;
FIG. 8 is a cross-sectional view of one of the resistance-generating devices taken along the line 8-8 in FIG. 7; and
FIG. 9 is an exploded view of one of the resistance-generating devices.
DETAILED DESCRIPTION
FIG. 1 illustrates an exercise apparatus 8. The exercise apparatus 8 can be used by a person in a training or exercise regimen. The exercise apparatus 8 includes a first structure 11 and a spaced-apart second structure 12. The first structure 11 and second structure 12 are displaceable relative to one another. In the depicted embodiment, the first structure 11 is a stationary object that does not displace, and the second structure 12 is a moveable object which displaces along direction D toward and away from the first structure 11. Other configurations for the displacement of the second structure 12 relative to the first structure 11 are also possible. For example, both the first and the second structures 11,12 can be displaceable. The first and second structures 11,12 can be any body, object, or member which allows for the above-described relative displacement of the exercise apparatus 8. In the depicted embodiment, the second structure 12 has a pulley-housing body 12A enclosing a pulley. The pulley-housing body 12A is slidingly displaceable in direction D along support post 13 when cables 14 actuate the pulley. The first structure 11 shown in FIG. 1 is a block or protrusion that is fixedly attached to the support post 13, such that the pulley-housing body 12A is able to displace in the direction D relative to the first structure 11 (i.e. away from the first structure 11 and towards the first structure 11, along direction D).
FIG. 1 also illustrates a resistance-generating device 10 mounted to the first structure 11 and to the second structure 12. The resistance-generating device 10 is mounted to the first and second structures 11,12 such that it can be easily removed therefrom. As will be explained in greater detail below, the displacement of the second structure 12 relative to the first structure 11 causes the resistance-generating device 10 attached to the first and second structure 11,12 to generate resistance. In the depicted embodiment, the resistance-generating device 10 (referred to herein sometimes simply as “device 10”) generates resistance when the second structure 12 is displaced away from the first structure 11. The device 10 may also generate resistance in other ways. For example, the configuration of the first and second structures 11,12 and the attachment of the device 10 thereto may allow the device 10 to generate resistance through the relative displacement of the first and second structures 11,12 toward one another. The resistance generated can be used for any suitable purpose. For example, in the depicted embodiment, the resistance generated by device 10 is used by a person in a training or exercise regimen.
Still referring to FIG. 1, the device 10 has an elongated resilient body 15. The resilient body 15 (referred to herein sometimes simply as “body 15”) is an object having a length, and extends between two opposed ends 16. The body 15 is elastically deformable and returns to its original form or configuration after being stretched. The resistance of the body 15 to deformation is what generates the resistance of the device 10. The resiliency of the body 15 can be obtained from the material from which it is made. For example, the body 15 can be made from any suitable polymer material which undergoes elastic deformation. For example, the body 15 can be made from any suitable elastomeric material which undergoes elastic deformation. The material of the body 15 can be a naturally-occurring or synthetic elastomer, such as natural rubber, butyl rubber, or neoprene. In the depicted embodiment, the body 15 is in the form of a resilient band 15A. The body 15 may take other forms as well. For example, the body 15 can be in the form of a resilient elongated cylinder, or can be in the form of a hollow resilient tube. Even more possible forms for the body 15 are described in greater detail below.
The device 10 also has a first mounting member 21 and a second mounting member 22. The first mounting member 21 is disposed at one of the ends 16 of the body 15, and the second mounting member 22 is disposed at the other end 16 of the body 15. Each of the first and second mounting members 21,22 is a separate component from the body 15, and is attached or connected to their respective ends 16 of the body 15, or integral therewith. In the depicted embodiment, the first and second mounting members 21,22 are permanently attached to the body 15. In an alternate embodiment, the first and second mounting members 21,22 are removably mounted to the ends 16 of the body 15.
In the depicted embodiment, the first and second mounting members 21,22 are also removably mounted to the first and second structures 11,12, respectively. By mounting to the first and second structures 11,12, the first and second mounting members 21,22 link the body 15 to the relative displacement of the first and second structures 11,12, thereby allowing the body 15 to generate resistance. The resilient body 15 therefore generates resistance upon being elastically deformed by the displacement of the second mounting member 22 mounted to the second structure 12 relative to the first mounting member 21 mounted to the first structure 11. The relative displacement of the first and second mounting members 21,22 occurs when the first and second structures 11,12, to which they are attached, are displaced relative to one another.
The first and second mounting members 21,22 are made of an inelastic material. In contrast to the body 15, which undergoes elastic deformation, the first and second mounting members 21,22 are rigid and inflexible. Therefore, when the body 15 is undergoing elastic deformation, for example from tension being applied thereto by the relative displacement of the first and second structures 11,12, the first and second mounting members 21,22 will not significantly expand or enlarge in shape. The non-elasticity or rigidity of the first and second mounting members 21,22 allows the body 15 to be the principal generator of resistance in the device 10. Some non-limiting examples of materials from which the first and second mounting members 21,22 can be made include plastic, wood, metal, rigid elastomers, and composites or combinations thereof. In an embodiment, the material of the first and second mounting members 21,22 is not the same as the elastomeric material of the body 15. In another embodiment, the material of the first and second mounting members 21,22 is the same as the elastomeric material of the body 15, but the material of the first and second mounting members 21,22 is rigid and inflexible (e.g. a hard rubber material).
FIGS. 2A shows a single device 10 as described above, and FIG. 2B shows a plurality or set 40 of the devices 10,10′ connected together. As shown in FIG. 2B, each of the devices 10,10′ in the set 40 is removably mounted to one another. This allows multiple devices 10,10′ to be combined, or “stacked”, together. In combining the devices 10,10′ in this way, it is possible to increase the resistance generated. More particularly, the set 40 of devices 10,10′ can be mounted to the first and second structures 11,12 and the combined resistance they generate will be greater than the resistance generated by any one of the devices 10,10′ of the set 40 alone. It can thus be appreciated that the ability to removably mount or stack one device 10 to another device 10′ allows the user to quickly and easily increase the resistance required for resistance-based exercise or training, for example. This “resistance multiplier” effect contrasts with trying to increase resistance with conventional free weights, which typically requires adding heavy or cumbersome weights about a space-occupying support.
Another possible form for the body 15 is shown in FIG. 2A. The body 15 has a first portion 17A and a second portion 17B (see FIG. 4B as well). The first and second portions 17A,17B are parts or segments of the body 15, or make up the body 15, so as to have the same characteristics as the body 15 described above. The first and second portions 17A,17B are elastically deformable and return to their original form or configuration after being stretched. Each of the first and second portions 17A,17B extend between, and are mounted to, the first and second mounting members 21,22, so that the first and second portions 17A,17B generate resistance upon being elastically deformed by the displacement of the second mounting member 22 mounted to the second structure 12 relative to the first mounting member 21 mounted to the first structure 11. Referring to FIGS. 2A and 4B, the first portion 17A is spaced apart from the second portion 17B. Referring to FIGS. 2A and 4B, the first portion 17A is spaced apart from the second portion 17B in a direction that is transverse or perpendicular to the length of the device 10. A lateral gap is defined between the first and second portions 17A,17B of the body 15. The first and second portions 17A,17B extend along the entire length of the device 10 between, or possibly into, the first and second mounting members 21,22. Referring to FIG. 4B, each of the first and second portions 17A,17B have an inner surface 17I and an outer surface 17O. The inner surfaces 171 of the first and second portions 17A,17B face each other across the lateral gap. The outer surface 170 of the first and second portions 17A,17B face away from each other across the lateral gap. The first and second portion 17A,17B may be defined by the mounting of the body 15 to the first and second mounting members 21,22, as explained in greater detail below.
The removable mounting of one device 10 to another device 10′ can take different forms. In FIG. 2B, the first and second mounting members 21,22 of one device 10 are removably mounted to the corresponding first and second mounting members 21′,22′ of another device 10′. Other configurations for removably mounting one device 10 to another device 10′ are possible. For example, in an alternate embodiment, the two devices 10,10′ share a common first or second mounting member 21,22 at one end 16 of the body 15, and have separate first and second mounting members 21,22 at the other end of the body 15. This configuration is represented in FIG. 2B, where two devices 10,10′ are shown having a common first mounting member 21′. In such a configuration, the resistance of the devices 10,10′ can be combined by removably mounting only the separate corresponding first and second mounting members 21,22 together. Similarly, in such a configuration, the resistance of the devices 10,10′ can be decoupled by disconnecting only the separate corresponding first and second mounting members 21,22.
Referring to FIGS. 2A to 2C, each of the first and second mounting members 21,22 includes an end cap 23 secured to one of the ends 16 of the body 15. The end cap 23 is a molded plastic piece that is secured to the end 16 of the body 15 during a molding manufacturing procedure. The end cap 23 has a first surface 24A and a second surface 24B disposed opposite to the first surface 24A on the other side of the end cap 23. The first surface 24A has a mounting feature 25 and the second surface 24B has a receiving feature 26. The mounting feature 25 of one device 10 is removably mountable to the receiving feature 26′ of another device 10′, which allows the devices 10,10′ to be combined together.
In the depicted embodiment, each mounting feature 25 includes a projection 27 extending outwardly from the first surface 24A. Each receiving feature 26 includes a groove or recess 28 in the second surface 24B. As shown in FIG. 2C, the shape of the projection 27 corresponds to that of the recess 28 so that the projection 27 can be inserted into the recess 28 and secured therein, thereby combining corresponding first and second mounting members 21,22 and first and second devices 10,10′. The shape of the projection 27 and recess 28 can vary. For example, in the depicted embodiment, the projection 27 and the recess 28 have complementary shapes. The projection 27 has a U-shape, and the recess 28 also has a U-shape as it extends into the second surface 24B. In order to connect corresponding first and second mounting members 21,22, the U-shaped projection 27 of one mounting member is slid into the U-shaped recess 28 of a corresponding mounting member. It will be appreciated that the configuration of the mounting feature 25 and the receiving feature 26 can vary, and is not limited to the depicted configuration. Another embodiment of the mounting and receiving features 25,26 is described below. In other embodiments, the mounting feature 25 and receiving feature 26 can also be another configuration of male-female mating objects, a hook-and-loop fastener, a biased mechanism, magnets, or any other suitable mechanical connection.
Referring to FIGS. 2B and 2C, it can be appreciated that decreasing the resistance generated by the set 40 can also be easily achieved through the removable mounting of the first and second mounting members 21,22 of one device 10 to those of another device 10′. More particularly, if the user wishes to reduce the resistance generated by the set 40, she can simply detach or decouple one or both of the first and second mounting members 21,22 of one device 10 from the corresponding first and second mounting member 21′,22′ of another device 10′. If desired, only one of the first or second mounting members 21,22 of one device 10 is removed from the corresponding first and second mounting member 21′,22′ of another device 10′, while maintaining the other mounting member 21,22 of the device 10 connected to the corresponding mounting member 21′,22′ of the other device 10′. This disconnection allows the user to detach only part of one device 10 from the set 40, thereby providing a reduction in resistance without having to disconnect the entirety of the device 10. Since one of the mounting members is no longer attached to the remainder of the devices 10 of the set 40, the device 10 corresponding to that mounting member will not generate resistance when its body 15 undergoes elastic deformation. If the user wishes to increase the resistance of the set 40, she can quickly reattach the detached mounting member 21,22. This functionality allows the user of the set 40 to quickly modify (i.e. increase and decrease) the resistance generated by a set 40 of devices 10.
FIG. 3 shows the set 40, wherein one of its devices 10 is removably mounted to the first and second structures 11,12. More particularly, the first mounting member 21 of the device 10 is mounted to the first structure 11, and the second mounting member 22 is mounted to the second structure 12. The remaining devices 10′ of the set 40 are combined together by mounting the first and second mounting members 21,22 of each device 10′ together. As the second structure 12 is displaced along direction D relative to the first structure 11, the second mounting members 22 of all the devices 10,10′ are also displaced, thereby causing the bodies 15 of the devices 10,10′ to generate resistance. If the user wishes to decrease the resistance generated by the set 40, she can simply detach or decouple one or more mounting members 21,22 of each device 10,10′ from the corresponding mounting member 21,22 of another device 10,10′.
In the depicted embodiment, each of the devices 10,10′ have one or more visual indicia 15B which provides information to the user on the resistance provided by the device 10. In the depicted embodiment, the visual indicia 15B is a colour that is unique to each device 10, each colour being indicative of the stiffness of the body 15, or how much resistance it generates. Other visual indicia including, but not limited to, markings, number, alphanumeric characters, or symbols, may also be used to indicate resistance. The visual indicia 15B may also be provided on one of, or both, of the first and second mounting members 21,22, or as an alternative or in addition to being provided on the body 15. It can thus be appreciated that the user can select a device 10 whose resistance is similar to that generated by a 10 lbs free weight, for example. The user can combine this device 10 with another device 10 whose colour is indicative of a resistance similar to that generated by a 20 lbs free weight. The combined resistance of this set 40 of devices 10,10′ will be similar to that generated by lifting 30 lbs of free weights.
In the depicted embodiment, each of the first and second mounting members 21,22 of each device 10,10′ have the mounting feature 25 and the receiving feature 26. This allows the device 10,10′ to be reversed because each mounting member 21,22 is compatible with either one of the mounting members 21,22 of another device 10′. The first and second mounting members 21,22 of each device 10 therefore have the same construction or structure.
An example of the operation of the device 10 is explained with reference to FIGS. 4A and 4B. The end cap 23 of the second mounting member 22 is mounted to the displaceable second structure 12. The second structure 12 has a structure mount 12M. The structure mount 12M is fixed in position on the second structure 12 and displaces with the second structure 12. The structure mount 12M is shaped and sized to removably receive one of the first and second mounting members 21,22 of one of the devices 10,10′. More particularly, the dovetail projection 27 from the first surface 24A of the end cap 23 is slid into a similarly shaped recess 12A of the structure mount 12M. The first mounting member 21 is similarly mounted to a structure mount 12M on the stationary first structure 11. In order to generate resistance, the user applies force to an exercise accessory which is linked to the first and second structure 11,12 via cables 14 and pulleys. The tension this creates in the cables 14 causes the second structure 12, the structure mount 12M, and the second mounting member 22 mounted thereto to displace relative to the first structure 11 (and relative to the first mounting member 21 mounted thereto) along direction D. The body 15 is thus stretched, which generates the resistance of the device 10.
FIGS. 5A to 5C show another embodiment of the end cap 123 of the first and second mounting members 21,22. The end cap 123 is a molded plastic piece that is secured to the end 16 of the body 15 during a molding manufacturing procedure. The end cap 123 has a first surface 124A and a second surface 124B disposed opposite to the first surface 124A on the other side of the end cap 123. The first surface 124A has a mounting feature 125 and the second surface 124B has a receiving feature 126. The mounting feature 125 of one device 10 is removably mountable to the receiving feature 126 of another device 10′, which allows the devices 10,10′ to be combined together. The shape of the projection 127 corresponds to that of the recess 128 so that the projection 127 can be inserted into the recess 128 and secured therein, thereby combining corresponding first and second mounting members 21,22 and first and second devices 10,10′. In the depicted embodiment, the projection 127 and the recess 128 have complementary shapes. The projection 127 has a dovetail shape, and the recess 128 flares outwardly as it extends into the second surface 124B. In order to connect corresponding first and second mounting members 21,22, the dovetail projection 127 of one mounting member is slid into the flared recess 128 of a corresponding mounting member. It will be appreciated that the first and second structures 11,12 can have complementary shaped recesses to accommodate the projections 127.
Referring to FIGS. 5A to 5C, the end cap 123 is at least partially hollow. The end cap 123 defines an internal cavity 123A occupying a volume of the interior of the end cap 123. The cavity 123A is delimited by internal walls of the end cap 123, which also delimit an opening 123O leading into the cavity 123A. The cavity 123A is sized and shaped to receive therein, via the opening 123O, distal parts or extremities of the first and second portions 17A,17B of the body 15, as described in greater detail below. Other features of the end cap 123 are housed therein and located within the cavity 123A. Referring to FIGS. 5A to 5C, the end cap 123 has a support 123B. The support 123 is positioned within the end cap 123 and extends across the cavity 123A between opposed lateral walls 124L of the end cap 123. The support 123B is sized, shaped and arranged so as to support a distal part or extremity of the body 15 within the end cap 123, and helps to define the first and second portions 17A,17B of the body 15, as described in greater detail below. The support 123B may assume any suitable configuration to achieve such functionality. For example, and referring to FIGS. 5A to 5C, the support 123B is in the form of a shaft 123S that extends between the lateral walls 124L of the end cap 123. The shaft 123S is positioned midway between the first and second surfaces 124A,124B of the end cap 123. The shaft 123S is inserted through shaft apertures 123SA in the lateral walls 124 (see FIG. 9). The shaft 123S defines a shaft axis 123T. The shaft axis 123T is perpendicular to the lateral walls 124L. The shaft 123S is rotatable about the shaft axis 123T. The rotation of the shaft 123S allows for the body 15 mounted to the shaft 123S to displace with respect to the end cap 123. The rotation of the shaft 123S allows for another part or portion of the body 15 to be positioned against the shaft 123S within the end cap 123, as described in greater detail below. Other configurations for the support 123B are possible. For example, the support 123B may also be one or more of a bearing, a rod, a wheel, and a pulley, or any other rotatable body which supports the body 15 when placed under tension and accommodates its displacement relative to the first and second members 21,22. In an alternate configuration of the support 123B, the support 123B does not rotate and has a fixed position relative to the end cap 123. Such a support 123B also supports the body 15 when placed under tension and accommodates its displacement relative to the first and second members 21,22.
Referring to FIGS. 6 and 7, a plurality or set 40 of the devices 10,10′ are connected together. Each of the devices 10,10′ in the set 40 is removably mounted to one another. This allows multiple devices 10,10′ to be combined, or “stacked”, together, as explained above. As explained above with reference to FIGS. 5A to 5C, the first and second portions 17A,17B of the resilient body 15 are displaceable relative to the first and second mounting members 21,22. The relative displaceability of the first and second portions 17A,17B may take different forms. In the embodiment shown in FIG. 7, each of the first and second portions 17A,17B can displace in the direction D1 toward the second mounting member 22, and also in the direction D2 toward the first mounting member 21. In an alternate form of the relative displaceability, each of the first and second portions 17A,17B can displace in only one the directions D1,D2, either in the same direction or in different directions.
By being displaceable relative to the first and second mounting members 21,22, the first and second portions 17A,17B of the resilient body 15 are able to change the part of the resilient body 15 that is attached or mounted to the first and second mounting members 21,22. When the body 15 is resiliently deformed and contracted at a high frequency by the relative displacement of the first and second mounting members 21,22, such as during a high-intensity or cardiovascular workout, the parts of the body 15 which are attached or mounted to the first and second mounting members 21,22 may experience wear or strain. Prolonged or repeated exposure of these parts of the body 15 to this cyclic loading may cause these parts to fatigue, lose their resiliency, or tear. However, by displacing the first and second portions 17A,17B of the resilient body 15 relative to the first and second mounting members 21,22, the user is able to change the parts of the body 15 that are attached or mounted to the first and second mounting members 21,22 and that experience such wear, thereby helping to increase the longevity of the body 15 and of the device 10,10′.
FIGS. 8 and 9 show one possible configuration for how the first and second portions 17A,17B of the body 15 are mounted or attached to the first and second mounting members 21,22. The first and second portions 17A,17B are mounted to, or about, the supports 123B. The supports 123B are caused to rotate about their axes 123T when the first and second portions 17A,17B are displaced relative to the first and second mounting members 21,22. Some or all of the first and second portions 17A,17B travel through the cavity 123A of the end cap 123 and are spaced inwardly from the inner walls of the end cap 123 that define the cavity 123A. Thus, sections of the first and second portions 17A,17B, such as their distal ends, are permanently positioned in the cavity 123A and within the end cap 123 irrespective of the displacement of the first and second portions 17A,17B. Referring to FIG. 8, the length of each of the first and second portions 17A,17B is defined between the supports 123B.
Referring to FIGS. 8 and 9, the resilient body 15 is a loop 19 (see FIGS. 2A and 4B as well). The loop 19 is elastically deformable and returns to its original form or configuration after being stretched. The loop 19 extends between, and is mounted to, the first and second mounting members 21,22, so that the loop 19 generates resistance upon being elastically deformed by the displacement of the second mounting member 22 mounted to the second structure 12 relative to the first mounting member 21 mounted to the first structure 11. The loop 19 is a structure the end of which is connected to the beginning. In FIGS. 2A, 4B, 8 and 9, the loop 19 is an integral, one-piece, or monolithic body of elastomeric material. In an alternate embodiment, the loop 19 may be composed of two or more interconnected segments. In FIGS. 2A, 4B, 8 and 9, the loop 19 is a closed loop because there are no openings along its length. The loop 19 extends between opposed loop ends 19A. The first mounting member 21 is attached to the loop 19 at one of the loop ends 19A, and the second mounting member 22 is attached to the other loop end 19A. The loop 19 defines the first and second portions 17A,17B between the loop ends 19A.
The first and second portions 17A,17B are thus defined by the manner in which the loop 19 is mounted or attached to the first and second mounting members 21,22. Referring to FIGS. 8 and 9, one of the loop ends 19A is mounted about the shaft 123S within the second mounting member 22, and the other loop end 19A is mounted about the shaft 123S within the first mounting member 21. Portions of the loop 19 are thus spaced apart from each other by the shafts 123S. Portions of the loop 19 are thus spaced apart from each other by the diameter of the shafts 123S. The shafts 123S therefore define the first and second portions 17A,17B of the loop 19. Referring to FIGS. 8 and 9, the loop 19 is displaceable relative to the first and second mounting members 21,22. More particularly, the loop 19 is displaceable in a looping, repeating or recurrent motion about the shafts 123S and relative to the first and second mounting members 21,22, such that displacement of the loop 19 causes the shafts 123S to rotate about their shaft axes 123T. During this looping motion, the portions of the loop 19 repeatedly travel over the same path as they are displaced relative to the first and second mounting members 21,22.
Referring to FIG. 8, the user may adjust the device 10 as follows. When parts of the loop 19 at positions P1 begin to experience wear or prior to the parts experiencing wear, the user may pull or push on the first and/or second portions 17A,17B of the loop 19. This will cause the shafts 123S to rotate about their shaft axes 123T. This will also cause the first and second portions 17A,17B to simultaneously displace relative to the first and second mounting members 21,22. For example, and as shown in FIG. 8, the first portion 17A will displace in direction D1 toward the second mounting member 22 while the second portion 17B will simultaneously displace in the direction D2 toward the first mounting member 21. The first portion 17A is thus displaceable toward the first mounting member 21 such that the second portion 17B is simultaneously displaceable toward the second mounting member 22, and the first portion 17A is displaceable toward the second mounting member 22 such that the second portion 17B is simultaneously displaceable toward the first mounting member 21. The user can displace the first and/or second portion 17A,17B until the parts of the loop 19 previously at positons P1 arrive at positions P2. The positions P2 may be any positions of the loop 19 that are not positions P1. The positions P2 may be any positions of the loop 19 between the loop ends 19A. It thus follows that another non-worn or non-strained parts of the loop 19 can be placed into contact with the shafts 123S at positons P1, and potentially worn or strained parts of the loop 19 can moved away from positions P1. The user is thus able to adjust the resilient body 15 to avoid having the same parts thereof being continuously exposed to wear and strain at the first and second mounting members 21,22, thereby helping to increase the longevity of the body 15.
In an alternate embodiment, the resilient body 15 is not a loop. In such an embodiment, the resilient body 15 is two or more independent resilient segments extending between the first and second mounting members 21,22, which define the first and second portions 17A,17B, and whose length can be adjusted to avoid having the same part thereof being continuously exposed to wear and strain. In another embodiment, the first and second portions 17A,17B are displaced independently of each other, and not displaced simultaneously.
Referring to FIG. 8, there is disclosed a method of adjusting a resistance-generating device 10, such as by adjusting the resilient body 15. The method includes displacing parts of the device 10, such as parts of the body 15, which are positioned at opposed ends 16 of the resistance-generating device to another position in which the parts of the resistance-generating device are positioned between the opposed ends 16.
Referring to FIG. 1, there is also disclosed a method of generating resistance. The method includes connecting one end 16 of a first resilient body 15 to the stationary first structure 11. The method includes connecting another end 16 of the first resilient body 16 to the displaceable second structure 12. The method includes connecting one end 16 of at least another resilient body 15 to one of the ends 16 of the first resilient body 15. The method includes displacing the second structure 12 relative to the first structure 11 to elastically deform at least the first resilient body 15 to generate resistance.
It can thus be appreciated that the device 10 disclosed herein allows the user to easily modify the resistance desired for training. For example, if the user wants to experience more resistance, such as for weight training, she may simply combine the devices 10 together, and mount the set 40 of devices 10 to the first and second structures 11,12. Similarly, if the user wants to experience less resistance, such as for cardiovascular training, she may simply detach or decouple one or more of the devices 10 from the set 40, or change the devices 10 for one offering less resistance.
This compares favourably to certain prior art exercise machines, which require that free weights be added to a support. Such a technique for modifying the resistance is cumbersome because it requires manipulating relatively heavy weights. Furthermore, manipulating relatively heavy weights increases the risk that a weight might be dropped and cause injury, or impact someone while it is being displaced. There is also a limit to how much additional weight the machine can support before experiencing structural stress and/or failure. Furthermore, such a technique for modifying the resistance requires that the user have different free weights available during training. Maintaining a suitable amount of free weights available for training is cumbersome, expensive, and unlikely to occur.
In contrast, the device 10 disclosed herein allows resistance to be rapidly scaled up or down, without the above-described inconveniences and potential dangers associated with free weights.
The device 10 therefore facilitates cardiovascular and/or weight-training exercises by allowing the user to easily increase the resistance by adding more of the relatively light-weight and easily-stored devices 10. The device 10 are both space and weight efficient, and easy to transport.
The descriptors “first” and “second” are used herein merely to distinguish components from one another. It will be appreciated that the descriptors can be reversed, and that the components described as “first” can also be described as “second”.
The above description is meant to be exemplary only, and one skilled in the art will recognize that changes may be made to the embodiments described without departing from the scope of the invention disclosed. Other modifications which fall within the scope of the present invention will be apparent to those skilled in the art, in light of a review of this disclosure, and such modifications are intended to fall within the appended claims.

Claims (22)

The invention claimed is:
1. A resistance-generating device, comprising: a resilient body extending between opposed ends, a first mounting member attached to the resilient body at one of the ends and a second mounting member attached to the other end of the resilient body, the resilient body having a first portion extending between the first and second mounting members and a second portion extending between the first and second mounting members, the first portion being spaced apart from the second portion, the first and second mounting members being made of an inelastic material, at least one of the first and second mounting members being removably mountable to a corresponding one of the first and second mounting members of another resistance-generating device, the first mounting member being removably mountable to a first structure and the second mounting member being removably mountable to a second structure being displaceable relative to the first structure, the resilient body generating resistance upon the first and second portions being elastically deformed by displacement of the second mounting member mounted to the second structure relative to the first mounting member mounted to the first structure.
2. The resistance-generating device of claim 1, wherein the resilient body is a loop extending between opposed loop ends, the first mounting member attached to the loop at one of the loop ends and the second mounting member attached to the other loop end of the loop, the loop defining the first and second portions between the loop ends.
3. The resistance-generating device of claim 2, wherein the loop is displaceable relative to the first and second mounting members.
4. The resistance-generating device of claim 2, wherein each of the first and second mounting members include a rotatable support, the loop mounted to the rotatable supports at each of the loop ends and being displaceable about the rotatable supports relative to the first and second mounting members.
5. The resistance-generating device of claim 1, wherein the first and second portions of the resilient body are displaceable relative to the first and second mounting members.
6. The resistance-generating device of claim 5, wherein each of the first and second mounting members include a rotatable support, the first and second portions of the resilient body mounted to the rotatable supports, the rotatable supports rotating upon the first and second portions of the resilient body displacing relative to the first and second mounting members.
7. The resistance-generating device of claim 6, wherein each of the first and second mounting members include an end cap defining a cavity, the rotatable support including a shaft disposed in the cavity and mounted to the end cap, the shaft defining a shaft axis and being rotatable about the shaft axis upon the first and second portions of the resilient body displacing relative to the first and second mounting members.
8. The resistance-generating device of claim 1, wherein the first and second portions of the resilient body are displaceable relative to the first and second mounting members, the first portion being displaceable toward the first mounting member such that the second portion is simultaneously displaceable toward the second mounting member, and the first portion being displaceable toward the second mounting member such that the second portion is simultaneously displaceable toward the first mounting member.
9. The resistance-generating device of claim 1, wherein at least one of the first mounting member, the second mounting member, and the resilient body have a visual indicia indicative of a resistance of the device.
10. A set of the resistance-generating device of claim 1, wherein at least one of the first and second mounting members of each resistance-generating device are removably mountable to the corresponding first and second mounting members of another resistance-generating device to increase a resistance provided by the set.
11. A method of adjusting a resistance-generating device, comprising: displacing parts of the resistance-generating device positioned at opposed ends of the resistance-generating device to another position in which the parts of the resistance-generating device are positioned between the opposed ends.
12. The method of claim 11, wherein displacing the parts of the resistance-generating device includes displacing some of the resistance-generating device toward one of the opposed ends in a first direction while simultaneously displacing a rest of the resistance-generating device in a second direction opposite to the first direction toward the other opposed end.
13. The method of claim 11, wherein displacing the parts of the resistance-generating device includes displacing the parts of the resistance-generating device in a looping motion.
14. An exercise apparatus, comprising:
a first structure spaced apart from a second structure, the second structure being displaceable relative to the first structure; and
one or more resistance-generating devices having a resilient body extending between opposed ends, a first mounting member attached to the resilient body at one of the ends and a second mounting member attached to the other end of the resilient body, the resilient body having a first portion extending between the first and second mounting members and a second portion extending between the first and second mounting members, the first portion being spaced apart from the second portion, the first and second mounting members being made of an inelastic material, at least one of the first and second mounting members being removably mountable to a corresponding one of the first and second mounting members of another resistance-generating device, the first mounting member being removably mountable to the first structure and the second mounting member being removably mountable to the second structure, the resilient body generating resistance upon the first and second portions being elastically deformed by displacement of the second mounting member mounted to the second structure relative to the first mounting member mounted to the first structure.
15. The exercise apparatus of claim 14, wherein the resilient body is a loop extending between opposed loop ends, the first mounting member attached to the loop at one of the loop ends and the second mounting member attached to the other loop end of the loop, the loop defining the first and second portions between the loop ends.
16. The exercise apparatus of claim 15, wherein the loop is displaceable relative to the first and second mounting members.
17. The exercise apparatus of claim 15, wherein each of the first and second mounting members include a rotatable support, the loop mounted to the rotatable supports at each of the loop ends and being displaceable about the rotatable supports relative to the first and second mounting members.
18. The exercise apparatus of claim 14, wherein the first and second portions of the resilient body are displaceable relative to the first and second mounting members.
19. The exercise apparatus of claim 18, wherein each of the first and second mounting members include a rotatable support, the first and second portions of the resilient body mounted to the rotatable supports, the rotatable supports rotating upon the first and second portions of the resilient body displacing relative to the first and second mounting members.
20. The exercise apparatus of claim 19, wherein each of the first and second mounting members include an end cap defining a cavity, the rotatable support including a shaft disposed in the cavity and mounted to the end cap, the shaft defining a shaft axis and being rotatable about the shaft axis upon the first and second portions of the resilient body displacing relative to the first and second mounting members.
21. The exercise apparatus of claim 14, wherein the first and second portions of the resilient body are displaceable relative to the first and second mounting members, the first portion being displaceable toward the first mounting member such that the second portion is simultaneously displaceable toward the second mounting member, and the first portion being displaceable toward the second mounting member such that the second portion is simultaneously displaceable toward the first mounting member.
22. The exercise apparatus of claim 14, wherein the one or more resistance-generating devices includes a set of resistance-generating devices, at least one of the first and second mounting members of each resistance-generating device are removably mountable to the corresponding first and second mounting members of another resistance-generating device to increase a resistance provided by the set.
US17/177,741 2016-08-17 2021-02-17 Resistance-generating device, exercise apparatus, and method Active 2037-08-27 US11452898B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/177,741 US11452898B2 (en) 2016-08-17 2021-02-17 Resistance-generating device, exercise apparatus, and method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201662375940P 2016-08-17 2016-08-17
PCT/CA2017/050969 WO2018032103A1 (en) 2016-08-17 2017-08-16 Resistance-generating device, exercise apparatus, and method
US201916323549A 2019-02-06 2019-02-06
US17/177,741 US11452898B2 (en) 2016-08-17 2021-02-17 Resistance-generating device, exercise apparatus, and method

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
US16/323,549 Continuation US10953259B2 (en) 2016-08-17 2017-08-16 Resistance-generating device
PCT/CA2017/050969 Continuation WO2018032103A1 (en) 2016-08-17 2017-08-16 Resistance-generating device, exercise apparatus, and method

Publications (2)

Publication Number Publication Date
US20210252325A1 US20210252325A1 (en) 2021-08-19
US11452898B2 true US11452898B2 (en) 2022-09-27

Family

ID=61195963

Family Applications (2)

Application Number Title Priority Date Filing Date
US16/323,549 Active US10953259B2 (en) 2016-08-17 2017-08-16 Resistance-generating device
US17/177,741 Active 2037-08-27 US11452898B2 (en) 2016-08-17 2021-02-17 Resistance-generating device, exercise apparatus, and method

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US16/323,549 Active US10953259B2 (en) 2016-08-17 2017-08-16 Resistance-generating device

Country Status (9)

Country Link
US (2) US10953259B2 (en)
EP (1) EP3500350B1 (en)
JP (1) JP6944206B2 (en)
KR (1) KR102444319B1 (en)
CN (1) CN110248704B (en)
CA (1) CA3073220A1 (en)
ES (1) ES2890460T3 (en)
SG (1) SG11202007768YA (en)
WO (1) WO2018032103A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11141620B2 (en) * 2017-05-08 2021-10-12 1195143 B.C. Ltd. Seated exercise device

Citations (89)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US254108A (en) 1882-02-28 Apparatus
US679784A (en) 1900-03-29 1901-08-06 Michael B Ryan Exercising-machine.
FR541324A (en) 1921-09-20 1922-07-26 Improvements to chamber gymnastics equipment
US1538844A (en) 1923-03-13 1925-05-19 Mary Weimar Progressive exerciser
US1620910A (en) * 1923-02-15 1927-03-15 Harry E Minnich Exercising device
US1633124A (en) * 1925-10-28 1927-06-21 Roy H Noe Exercising apparatus
US1749544A (en) * 1928-02-13 1930-03-04 Pagano Joseph Exercising apparatus
US2930614A (en) 1954-08-06 1960-03-29 Judson C Mcintosh Body exercising device
US2977120A (en) 1959-06-30 1961-03-28 Wesley B Morris Exercising device
US3427023A (en) 1966-04-19 1969-02-11 Diversified Prod Handle for stretchable exercising device
US3863521A (en) 1971-10-26 1975-02-04 Carlisle Corp Adjustable handlebars
US3958803A (en) 1974-07-03 1976-05-25 Werner Geisselbrecht Gymnastic push-pull exercise appliance
US4072309A (en) 1976-06-21 1978-02-07 Wilson Jerry Lee Multi-purpose exercise device
US4492375A (en) * 1982-08-16 1985-01-08 Contractor Equipment Manufacturers, Inc. Resilient type exercising device with removable weights
WO1986002009A1 (en) 1984-10-01 1986-04-10 Harold Zinkin Elastic tension exercising apparatus with multiple pass cable and pulley
US4582320A (en) * 1984-09-21 1986-04-15 Shaw James H Exercise equipment
US4621805A (en) 1985-07-29 1986-11-11 Chen Yi S Handle structure for an exercycle
US4666151A (en) 1984-09-17 1987-05-19 Maurice Chillier Mechanical therapeutic apparatus
US4749286A (en) * 1984-01-17 1988-06-07 The Gates Rubber Company Elastomeric bearing system
FR2629071A1 (en) 1988-03-22 1989-09-29 Produits Refractaires REACTIVE ZIRCONIUM OXIDE AND ITS PREPARATION
CA1284666C (en) 1986-08-01 1991-06-04 Robert S. Hinds Exercise apparatus
US5029850A (en) 1989-08-21 1991-07-09 Verimark (Proprietary) Limited Exercising apparatus
US5050869A (en) 1990-06-07 1991-09-24 Frate Richard A Portable exercise machine
US5135216A (en) * 1991-01-29 1992-08-04 Proform Fitness Products, Inc. Modular resistance assembly for exercise machines
US5144859A (en) 1989-02-22 1992-09-08 Malone Robert D Multiple position swivel for handlebars
US5242353A (en) * 1991-11-13 1993-09-07 Dayco Products, Inc. Biasing means, components therefor and methods of making same
US5387171A (en) * 1994-01-14 1995-02-07 National Barbell Supply, Inc. Variable resistance band exercise machine
US5468205A (en) 1994-11-02 1995-11-21 Mcfall; Michael Portable door mounted exercise apparatus
US5584782A (en) * 1995-07-06 1996-12-17 William J. Szabo Low impact aerobic exercise device
US5603681A (en) 1995-10-23 1997-02-18 Olschansky; Brad Portable multi-exercise system
US5616111A (en) * 1993-04-30 1997-04-01 Randolph; Lucian Exoskeletal exercise system
USD389205S (en) * 1996-07-05 1998-01-13 Van Straaten Willem J Resistive exerciser
US5722922A (en) * 1991-01-23 1998-03-03 Icon Health & Fitness, Inc. Aerobic and anaerobic exercise machine
US5820529A (en) 1997-04-25 1998-10-13 Mitchell Weintraub Dual operational exercise resistance device
US5842939A (en) 1997-05-27 1998-12-01 Act Labs Ltd. Portable sporting goal framework and net
US5885196A (en) 1996-11-25 1999-03-23 Kordun, Ltd. Multiple elastic cable exercise device
US6015371A (en) 1998-12-24 2000-01-18 Davitt; Christopher Exercise mechanism
US6042523A (en) 1997-06-06 2000-03-28 Graham; Gary A. Therapeutic exercise apparatus and method
US6142919A (en) 1999-04-12 2000-11-07 Jorgensen; Adam A. Multi-purpose low profile physical exercising device
US6319179B1 (en) 1998-12-28 2001-11-20 Robert Sylvester Hinds Single spine elastic cord exercise assembly
US20010046928A1 (en) 2000-03-06 2001-11-29 Nette Terry Van Variable resistance exercise device
US6494817B2 (en) 2001-02-20 2002-12-17 Victoria Jo Whited Lake Portable exercising device
US20030023270A1 (en) 2001-07-26 2003-01-30 Rudi Danz Physically active patch, methods of manufacturing same and its use
US20030069112A1 (en) 2001-10-09 2003-04-10 Patrick Williams Exercise machine
US20030195095A1 (en) 1999-03-11 2003-10-16 Ken Endelman Reformer exercise apparatus
US20030232707A1 (en) 2002-06-14 2003-12-18 Icon Ip, Inc. Exercise device with centrally mounted resistance rod
US6669609B2 (en) 2001-01-18 2003-12-30 Stamina Products, Inc. Storable exercise apparatus for professional and home use
US6676576B1 (en) 2003-01-21 2004-01-13 Ying-Ching Wu Adjustable pull exerciser
US20040166999A1 (en) 2003-02-20 2004-08-26 Dodge David J. Exercise equipment resistance unit
US20050113223A1 (en) 2003-11-24 2005-05-26 Dovner Edward R. Exercise device with elastic resistance
DE102004013737A1 (en) 2004-03-18 2005-10-06 Peter Kindermann Unit for training muscles/muscle groups comprises a vertical support unit with two receiving units that are fixed on a wall a distance apart and have assembly aids for cables/deviating rollers for a force displacement unit/tension unit
US7041041B1 (en) * 2002-03-21 2006-05-09 Robert Scott Evans Exercise equipment
CN2805828Y (en) 2005-08-01 2006-08-16 吴盈庆 Rope-pulling body-building device
US7163500B2 (en) 2003-11-25 2007-01-16 Balanced Body, Inc. Reformer exercise apparatus anchor bar assembly
US7172538B2 (en) 2001-11-13 2007-02-06 Keiser Corporation Exercise apparatus
US20090247376A1 (en) 2008-03-25 2009-10-01 Merrithew Lindsay G Adjustable reformer
US20090291768A1 (en) * 2006-06-23 2009-11-26 Dream Visions, Llc Bungee teeter-totter
US20100173759A1 (en) * 2009-05-21 2010-07-08 Nabile Lalaoua Door Mounted Gym
US20100304939A1 (en) 2007-11-29 2010-12-02 Tomas Svenberg Dumbbell
US20100323856A1 (en) 2007-11-29 2010-12-23 Thomas Svenberg Dumbbell
CN201768299U (en) 2009-11-13 2011-03-23 曾俊明 Damping device of sports equipment
US7931570B2 (en) * 2006-01-30 2011-04-26 Balanced Body, Inc. Exercise device
US20110143894A1 (en) 2005-11-09 2011-06-16 Castel J Chris Method and Apparatus for Physical Therapy Exercise
US20120142503A1 (en) 2010-12-02 2012-06-07 Mardig Sevadjian Pulley Apparatus for Resistance Exercises
US8317667B1 (en) * 2012-01-19 2012-11-27 Karl Thomas Portable exercise device and method of using the same
US20130035220A1 (en) 2011-08-02 2013-02-07 Adams Frederick R Multi-position resistance tube exercise apparatus
US20130072361A1 (en) * 2011-09-15 2013-03-21 Eric Ellis Exercise Apparatus
US8485951B1 (en) 2011-08-02 2013-07-16 Frederick R. Adams Vehicle mounted multi-position resistance tube exercise apparatus
CN203075534U (en) 2013-02-28 2013-07-24 山东体育学院 Training instrument capable of regulating waist resistance
US20130190148A1 (en) * 2012-01-23 2013-07-25 Kasper Allison Strength Training System and Method Having Elastic Resistance and Suspension Devices
US8562492B2 (en) 2003-01-17 2013-10-22 Stamina Products, Inc. Exercise apparatus with resilient foot support
US20140031182A1 (en) 2008-08-19 2014-01-30 Darren Donofrio Wall-Mounted Home Fitness Training Equipment
US20140069475A1 (en) 2011-02-04 2014-03-13 Lekisport Ag Folding pole, in particular for nordic walking
US20140141948A1 (en) 2012-09-18 2014-05-22 Rockit Body Pilates, Llc Pilates reformer
CN203763761U (en) 2014-04-10 2014-08-13 张仲甫 Pulling rope exercising device structure
US8840075B2 (en) * 2010-01-19 2014-09-23 Icon Ip, Inc. Door mounted exercise devices and systems
US9005086B1 (en) 2013-08-28 2015-04-14 Douglas L. Hermann Portable rowing machine
US9028381B2 (en) * 2012-10-16 2015-05-12 Michael J. Mestemaker Door-mounted fitness device with removable pulley members
US20150133276A1 (en) 2013-03-15 2015-05-14 Arqex Outdoor Fitness Systems, Llc Strength training and stretching system and resistance band assembly for use therewith
US9108079B2 (en) * 2011-03-16 2015-08-18 Mad Dogg Athletics, Inc. Exercise table
US20160074691A1 (en) * 2012-05-08 2016-03-17 Frog Fitness, Inc. Resistance device, system, and method for use with an exercise apparatus
US20160193490A1 (en) * 2015-01-06 2016-07-07 Prism Fitness, Inc. Interchangeable Resistance Tube Assembly
CN106218788A (en) 2016-08-31 2016-12-14 杭州速控软件有限公司 The corner adjustable manipulation handle of electrodynamic balance car
US9643042B2 (en) 2012-10-26 2017-05-09 Vintage Gold Holdings Limited Freestanding selectable free weight assembly
US20170144009A1 (en) * 2012-05-08 2017-05-25 Frog Fitness, Inc. Resistance Member Assembly, System, and Method for use with an Exercise Apparatus
US20180021616A1 (en) 2016-07-25 2018-01-25 Ript Labs, Inc. Digital strength training
US20180169464A1 (en) * 2016-12-21 2018-06-21 Brian Patrick Janowski Translating carriage exercise machines and methods of use
US20190175973A1 (en) * 2017-12-11 2019-06-13 Tae Jin An Fitness equipment
US20190275362A1 (en) * 2018-03-08 2019-09-12 Balanced Body, Inc. Coil spring anchor ring retainer device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5039092A (en) * 1990-06-08 1991-08-13 Lifeing, Inc. Multi-exercise system
JP3112700U (en) * 2005-05-10 2005-08-25 十二 菊地 Leg exercise equipment
US8360940B2 (en) 2009-11-17 2013-01-29 Rk Inventions, Llc Lower leg and foot exercise device
CN201815046U (en) * 2010-08-25 2011-05-04 谭炳堂 Portable fitness device
JP2013123634A (en) * 2011-12-14 2013-06-24 Hashimoto Rashi Kk Muscle training tool
JPWO2013190605A1 (en) * 2012-06-18 2016-02-08 株式会社ゼロイニシャライズ Exercise equipment
US9220966B2 (en) 2013-03-11 2015-12-29 David Kent Garner Watersport resistance training device

Patent Citations (93)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US254108A (en) 1882-02-28 Apparatus
US679784A (en) 1900-03-29 1901-08-06 Michael B Ryan Exercising-machine.
FR541324A (en) 1921-09-20 1922-07-26 Improvements to chamber gymnastics equipment
US1620910A (en) * 1923-02-15 1927-03-15 Harry E Minnich Exercising device
US1538844A (en) 1923-03-13 1925-05-19 Mary Weimar Progressive exerciser
US1633124A (en) * 1925-10-28 1927-06-21 Roy H Noe Exercising apparatus
US1749544A (en) * 1928-02-13 1930-03-04 Pagano Joseph Exercising apparatus
US2930614A (en) 1954-08-06 1960-03-29 Judson C Mcintosh Body exercising device
US2977120A (en) 1959-06-30 1961-03-28 Wesley B Morris Exercising device
US3427023A (en) 1966-04-19 1969-02-11 Diversified Prod Handle for stretchable exercising device
US3863521A (en) 1971-10-26 1975-02-04 Carlisle Corp Adjustable handlebars
US3958803A (en) 1974-07-03 1976-05-25 Werner Geisselbrecht Gymnastic push-pull exercise appliance
US4072309A (en) 1976-06-21 1978-02-07 Wilson Jerry Lee Multi-purpose exercise device
US4072309B1 (en) 1976-06-21 1984-03-06
US4492375A (en) * 1982-08-16 1985-01-08 Contractor Equipment Manufacturers, Inc. Resilient type exercising device with removable weights
US4749286A (en) * 1984-01-17 1988-06-07 The Gates Rubber Company Elastomeric bearing system
US4666151A (en) 1984-09-17 1987-05-19 Maurice Chillier Mechanical therapeutic apparatus
US4582320A (en) * 1984-09-21 1986-04-15 Shaw James H Exercise equipment
WO1986002009A1 (en) 1984-10-01 1986-04-10 Harold Zinkin Elastic tension exercising apparatus with multiple pass cable and pulley
US4685670A (en) 1984-10-01 1987-08-11 Harold Zinkin Elastic tension exercising apparatus with multiple pass cable and pulley
US4621805A (en) 1985-07-29 1986-11-11 Chen Yi S Handle structure for an exercycle
CA1284666C (en) 1986-08-01 1991-06-04 Robert S. Hinds Exercise apparatus
FR2629071A1 (en) 1988-03-22 1989-09-29 Produits Refractaires REACTIVE ZIRCONIUM OXIDE AND ITS PREPARATION
US5144859A (en) 1989-02-22 1992-09-08 Malone Robert D Multiple position swivel for handlebars
US5029850A (en) 1989-08-21 1991-07-09 Verimark (Proprietary) Limited Exercising apparatus
US5050869A (en) 1990-06-07 1991-09-24 Frate Richard A Portable exercise machine
US5722922A (en) * 1991-01-23 1998-03-03 Icon Health & Fitness, Inc. Aerobic and anaerobic exercise machine
US5135216A (en) * 1991-01-29 1992-08-04 Proform Fitness Products, Inc. Modular resistance assembly for exercise machines
US5334122A (en) 1991-11-13 1994-08-02 Dayco Products, Inc. Biasing means, components therefor and methods of making same
US5242353A (en) * 1991-11-13 1993-09-07 Dayco Products, Inc. Biasing means, components therefor and methods of making same
US5616111A (en) * 1993-04-30 1997-04-01 Randolph; Lucian Exoskeletal exercise system
US5387171A (en) * 1994-01-14 1995-02-07 National Barbell Supply, Inc. Variable resistance band exercise machine
US5468205A (en) 1994-11-02 1995-11-21 Mcfall; Michael Portable door mounted exercise apparatus
US5584782A (en) * 1995-07-06 1996-12-17 William J. Szabo Low impact aerobic exercise device
US5603681A (en) 1995-10-23 1997-02-18 Olschansky; Brad Portable multi-exercise system
USD389205S (en) * 1996-07-05 1998-01-13 Van Straaten Willem J Resistive exerciser
US5885196A (en) 1996-11-25 1999-03-23 Kordun, Ltd. Multiple elastic cable exercise device
US5820529A (en) 1997-04-25 1998-10-13 Mitchell Weintraub Dual operational exercise resistance device
US5842939A (en) 1997-05-27 1998-12-01 Act Labs Ltd. Portable sporting goal framework and net
US6042523A (en) 1997-06-06 2000-03-28 Graham; Gary A. Therapeutic exercise apparatus and method
US6015371A (en) 1998-12-24 2000-01-18 Davitt; Christopher Exercise mechanism
US6319179B1 (en) 1998-12-28 2001-11-20 Robert Sylvester Hinds Single spine elastic cord exercise assembly
US20030195095A1 (en) 1999-03-11 2003-10-16 Ken Endelman Reformer exercise apparatus
US6142919A (en) 1999-04-12 2000-11-07 Jorgensen; Adam A. Multi-purpose low profile physical exercising device
US20010046928A1 (en) 2000-03-06 2001-11-29 Nette Terry Van Variable resistance exercise device
US6669609B2 (en) 2001-01-18 2003-12-30 Stamina Products, Inc. Storable exercise apparatus for professional and home use
US6494817B2 (en) 2001-02-20 2002-12-17 Victoria Jo Whited Lake Portable exercising device
US20030023270A1 (en) 2001-07-26 2003-01-30 Rudi Danz Physically active patch, methods of manufacturing same and its use
US20030069112A1 (en) 2001-10-09 2003-04-10 Patrick Williams Exercise machine
US7172538B2 (en) 2001-11-13 2007-02-06 Keiser Corporation Exercise apparatus
US7041041B1 (en) * 2002-03-21 2006-05-09 Robert Scott Evans Exercise equipment
US20030232707A1 (en) 2002-06-14 2003-12-18 Icon Ip, Inc. Exercise device with centrally mounted resistance rod
US8562492B2 (en) 2003-01-17 2013-10-22 Stamina Products, Inc. Exercise apparatus with resilient foot support
US6676576B1 (en) 2003-01-21 2004-01-13 Ying-Ching Wu Adjustable pull exerciser
US20040166999A1 (en) 2003-02-20 2004-08-26 Dodge David J. Exercise equipment resistance unit
US20050113223A1 (en) 2003-11-24 2005-05-26 Dovner Edward R. Exercise device with elastic resistance
US7163500B2 (en) 2003-11-25 2007-01-16 Balanced Body, Inc. Reformer exercise apparatus anchor bar assembly
DE102004013737A1 (en) 2004-03-18 2005-10-06 Peter Kindermann Unit for training muscles/muscle groups comprises a vertical support unit with two receiving units that are fixed on a wall a distance apart and have assembly aids for cables/deviating rollers for a force displacement unit/tension unit
CN2805828Y (en) 2005-08-01 2006-08-16 吴盈庆 Rope-pulling body-building device
US20110143894A1 (en) 2005-11-09 2011-06-16 Castel J Chris Method and Apparatus for Physical Therapy Exercise
US7931570B2 (en) * 2006-01-30 2011-04-26 Balanced Body, Inc. Exercise device
US20090291768A1 (en) * 2006-06-23 2009-11-26 Dream Visions, Llc Bungee teeter-totter
US20100304939A1 (en) 2007-11-29 2010-12-02 Tomas Svenberg Dumbbell
US20100323856A1 (en) 2007-11-29 2010-12-23 Thomas Svenberg Dumbbell
US20090247376A1 (en) 2008-03-25 2009-10-01 Merrithew Lindsay G Adjustable reformer
US20140031182A1 (en) 2008-08-19 2014-01-30 Darren Donofrio Wall-Mounted Home Fitness Training Equipment
US20100173759A1 (en) * 2009-05-21 2010-07-08 Nabile Lalaoua Door Mounted Gym
CN201768299U (en) 2009-11-13 2011-03-23 曾俊明 Damping device of sports equipment
US8840075B2 (en) * 2010-01-19 2014-09-23 Icon Ip, Inc. Door mounted exercise devices and systems
US20120142503A1 (en) 2010-12-02 2012-06-07 Mardig Sevadjian Pulley Apparatus for Resistance Exercises
US20140069475A1 (en) 2011-02-04 2014-03-13 Lekisport Ag Folding pole, in particular for nordic walking
US9108079B2 (en) * 2011-03-16 2015-08-18 Mad Dogg Athletics, Inc. Exercise table
US8485951B1 (en) 2011-08-02 2013-07-16 Frederick R. Adams Vehicle mounted multi-position resistance tube exercise apparatus
US20130035220A1 (en) 2011-08-02 2013-02-07 Adams Frederick R Multi-position resistance tube exercise apparatus
US8485950B2 (en) 2011-08-02 2013-07-16 Frederick R. Adams Multi-position resistance tube exercise apparatus
US20130072361A1 (en) * 2011-09-15 2013-03-21 Eric Ellis Exercise Apparatus
US8317667B1 (en) * 2012-01-19 2012-11-27 Karl Thomas Portable exercise device and method of using the same
US20130190148A1 (en) * 2012-01-23 2013-07-25 Kasper Allison Strength Training System and Method Having Elastic Resistance and Suspension Devices
US20170144009A1 (en) * 2012-05-08 2017-05-25 Frog Fitness, Inc. Resistance Member Assembly, System, and Method for use with an Exercise Apparatus
US20160074691A1 (en) * 2012-05-08 2016-03-17 Frog Fitness, Inc. Resistance device, system, and method for use with an exercise apparatus
US20140141948A1 (en) 2012-09-18 2014-05-22 Rockit Body Pilates, Llc Pilates reformer
US9028381B2 (en) * 2012-10-16 2015-05-12 Michael J. Mestemaker Door-mounted fitness device with removable pulley members
US9643042B2 (en) 2012-10-26 2017-05-09 Vintage Gold Holdings Limited Freestanding selectable free weight assembly
CN203075534U (en) 2013-02-28 2013-07-24 山东体育学院 Training instrument capable of regulating waist resistance
US20150133276A1 (en) 2013-03-15 2015-05-14 Arqex Outdoor Fitness Systems, Llc Strength training and stretching system and resistance band assembly for use therewith
US9005086B1 (en) 2013-08-28 2015-04-14 Douglas L. Hermann Portable rowing machine
CN203763761U (en) 2014-04-10 2014-08-13 张仲甫 Pulling rope exercising device structure
US20160193490A1 (en) * 2015-01-06 2016-07-07 Prism Fitness, Inc. Interchangeable Resistance Tube Assembly
US20180021616A1 (en) 2016-07-25 2018-01-25 Ript Labs, Inc. Digital strength training
CN106218788A (en) 2016-08-31 2016-12-14 杭州速控软件有限公司 The corner adjustable manipulation handle of electrodynamic balance car
US20180169464A1 (en) * 2016-12-21 2018-06-21 Brian Patrick Janowski Translating carriage exercise machines and methods of use
US20190175973A1 (en) * 2017-12-11 2019-06-13 Tae Jin An Fitness equipment
US20190275362A1 (en) * 2018-03-08 2019-09-12 Balanced Body, Inc. Coil spring anchor ring retainer device

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
European Search Report and Written Opinion dated Oct. 21, 2019 for European Patent Application No. 17762372.5.
https://www.tonal.com/.
International Search Report and the Written Opinion dated Nov. 2, 2017.
Partial English translation of Office Action dated Jul. 3, 2020 in the corresponding Chinese patent application No. 2017800641695.
Supplementary European Search Report, EP17840668, dated Feb. 27, 2020.
Written Opinion dated Aug. 13, 2019 for Singapore Patent Application No. 11201807424V.

Also Published As

Publication number Publication date
KR20190087402A (en) 2019-07-24
JP2019524349A (en) 2019-09-05
US10953259B2 (en) 2021-03-23
CA3073220A1 (en) 2018-02-22
CN110248704A (en) 2019-09-17
EP3500350B1 (en) 2021-08-04
KR102444319B1 (en) 2022-09-15
US20210252325A1 (en) 2021-08-19
SG11202007768YA (en) 2020-09-29
CN110248704B (en) 2021-09-03
US20190192895A1 (en) 2019-06-27
EP3500350A4 (en) 2020-04-08
WO2018032103A1 (en) 2018-02-22
EP3500350A1 (en) 2019-06-26
JP6944206B2 (en) 2021-10-06
ES2890460T3 (en) 2022-01-19

Similar Documents

Publication Publication Date Title
US11452898B2 (en) Resistance-generating device, exercise apparatus, and method
US5135216A (en) Modular resistance assembly for exercise machines
US9186535B2 (en) System and method for adjusting length of a cord
US6224514B1 (en) Exercise apparatus
EP3881908B1 (en) Exercise apparatus
US7841972B1 (en) Dumbbell
US8652015B2 (en) Safety device
US7451859B2 (en) Magnetic damping device
US8105217B2 (en) Grip element for exercise machine
US20140080676A1 (en) Treadle assembly having spring leafs for an exercise apparatus
EP0943357A1 (en) Portable inclimetric resistance exercise device
EP2886165A1 (en) Trampoline with spring zones
US20200298082A1 (en) Ring-shaped punchbag with inner punchball
KR20240074428A (en) An exercise equipment using a rail reciprocating mechanism
US11872441B2 (en) Exercise machine rail system
CN108939502B (en) Pulley assembly
US20220347518A1 (en) Bar and hand grips kit for exercise equipment
KR200295823Y1 (en) Strength-training tension bar
KR930007400Y1 (en) Exercising apparatus for using magnetic forces
US20160287925A1 (en) Body twist exercising apparatus with adjustable resistance
JP5773310B2 (en) Strength training equipment
AU1325899A (en) Portable inclimetric resistance exercise device

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO SMALL (ORIGINAL EVENT CODE: SMAL); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

STPP Information on status: patent application and granting procedure in general

Free format text: APPLICATION DISPATCHED FROM PREEXAM, NOT YET DOCKETED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

AS Assignment

Owner name: ROSYCHUK, RICK, CANADA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:9614206 CANADA INC.;REEL/FRAME:057813/0666

Effective date: 20181213

Owner name: ROBINSON, SAMUEL, CANADA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:9614206 CANADA INC.;REEL/FRAME:057813/0666

Effective date: 20181213

Owner name: 7286139 CANADA LTD., CANADA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:9614206 CANADA INC.;REEL/FRAME:057813/0666

Effective date: 20181213

Owner name: 1195143 B.C. LTD., CANADA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:TANG, YIN KWONG WILLIAM;REEL/FRAME:057797/0518

Effective date: 20210726

Owner name: 1195143 B.C. LTD., CANADA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:FADER, TIMA;REEL/FRAME:057797/0427

Effective date: 20201210

Owner name: 1195143 B.C. LTD., CANADA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:TUT FITNESS GROUP ASIA LIMITED;REEL/FRAME:057797/0371

Effective date: 20190215

Owner name: TUT FITNESS GROUP ASIA LIMITED, HONG KONG

Free format text: CHANGE OF NAME;ASSIGNOR:BKR FITNESS GROUP LIMITED;REEL/FRAME:057797/0285

Effective date: 20190129

Owner name: BKR FITNESS GROUP LIMITED, HONG KONG

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:7286139 CANADA LTD.;ROBINSON, SAMUEL;ROSYCHUK, RICK;SIGNING DATES FROM 20190117 TO 20190122;REEL/FRAME:057797/0166

Owner name: 9614206 CANADA INC., CANADA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CORRIGAN, GREGORY LLOYD;ZUCKERMAN, BENJAMIN CHARLES;REEL/FRAME:057796/0854

Effective date: 20160816

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STCF Information on status: patent grant

Free format text: PATENTED CASE