US11161775B2 - Conductive composition, method for producing conductor, and method for forming wire of electronic component - Google Patents

Conductive composition, method for producing conductor, and method for forming wire of electronic component Download PDF

Info

Publication number
US11161775B2
US11161775B2 US16/608,029 US201816608029A US11161775B2 US 11161775 B2 US11161775 B2 US 11161775B2 US 201816608029 A US201816608029 A US 201816608029A US 11161775 B2 US11161775 B2 US 11161775B2
Authority
US
United States
Prior art keywords
mass
glass frit
oxide
conductive composition
zinc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US16/608,029
Other versions
US20200115274A1 (en
Inventor
Shingo Awagakubo
Katsuhiro Kawakubo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Assigned to SUMITOMO METAL MINING CO., LTD. reassignment SUMITOMO METAL MINING CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: AWAGAKUBO, SHINGO, KAWAKUBO, KATSUHIRO
Publication of US20200115274A1 publication Critical patent/US20200115274A1/en
Application granted granted Critical
Publication of US11161775B2 publication Critical patent/US11161775B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/14Conductive material dispersed in non-conductive inorganic material
    • H01B1/16Conductive material dispersed in non-conductive inorganic material the conductive material comprising metals or alloys
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/14Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions
    • C03C8/18Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions containing free metals
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • C03C3/066Glass compositions containing silica with less than 40% silica by weight containing boron containing zinc
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/122Silica-free oxide glass compositions containing oxides of As, Sb, Bi, Mo, W, V, Te as glass formers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/14Compositions for glass with special properties for electro-conductive glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/02Frit compositions, i.e. in a powdered or comminuted form
    • C03C8/04Frit compositions, i.e. in a powdered or comminuted form containing zinc
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/22Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions containing two or more distinct frits having different compositions
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/24Electrically-conducting paints
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • H01B1/026Alloys based on copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/0036Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/12Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B32/00Thermal after-treatment of glass products not provided for in groups C03B19/00, C03B25/00 - C03B31/00 or C03B37/00, e.g. crystallisation, eliminating gas inclusions or other impurities; Hot-pressing vitrified, non-porous, shaped glass products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/0016Apparatus or processes specially adapted for manufacturing conductors or cables for heat treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/0026Apparatus for manufacturing conducting or semi-conducting layers, e.g. deposition of metal

Definitions

  • the present invention relates to a conductive composition, a method for producing a conductor, and a method for forming a wire of an electronic component using the same.
  • a conductor is formed by applying a paste-like conductive composition (conductive paste) the viscosity of which is adjusted by adding an organic vehicle onto a substrate by printing such as screen printing and drying and then firing the conductive paste applied onto the substrate, for example.
  • conductive paste a paste-like conductive composition
  • Copper is a metal easily oxidized, and firing of the conductive paste containing copper is generally performed in a reductive atmosphere or an inert gas atmosphere and is performed in a nitrogen gas, for example.
  • the conductive paste is fired in the atmosphere, copper is oxidized, and an oxide formed during the process may reduce conductivity.
  • the conductive composition containing copper often contains copper powder and a glass frit as main components.
  • the glass frit has the effect of causing the conductive component to adhere together or causing a substrate and the conductive component to adhere to each other.
  • glass frits containing lead lead glass frits
  • the lead glass frits have low softening temperature and have excellent wettability with the conductive component and the substrate, and a conductive composition containing a lead glass frit has sufficient conductivity and adhesiveness to the substrate.
  • circuit When the circuit is formed on the substrate, apart from conductors such as wires and electrodes, resistors are also formed.
  • the circuit is formed step-by-step by applying conductive paste and resistance paste onto the substrate by printing and then firing them under respective appropriate conditions or is formed by successively forming patterns of wires, electrodes, resistors, and the like on the substrate by application by printing and then simultaneously firing them at one piece of heat treatment, for example.
  • the resistance paste contains ruthenium oxide and a glass frit, for example.
  • ruthenium oxide reacts with nitrogen, and a desired resistance cannot necessarily be obtained.
  • employed is a method in which the resistance paste is applied and is fired in the atmosphere to form resistors, and then the conductor paste is applied and is fired in a nitrogen atmosphere to form conductors.
  • the resistors are fired to be formed earlier as described above, whereby formation of the conductors can be performed in the nitrogen atmosphere.
  • heat treatment for forming the conductors is normally performed at 800° C. to 1,000° C., and although the influence of nitrogen on the resistors can be prevented, heat history by the heat treatment at the high temperature may have a detrimental effect on the resistors.
  • Patent Literature 1 describes a copper paste composition containing inorganic components with copper powder, cuprous oxide powder, cupric oxide powder, and glass powder as main components and an organic vehicle component and states that this copper paste composition is suitable for low-temperature firing at 550 to 750° C. in particular, for example. However, in its examples, only glass powder containing lead is disclosed as the glass powder contained in this copper paste composition.
  • the lead-free glass frit which does not substantially contain any lead, tends to be inferior to the lead glass frit in wettability with a substrate. Owing to this, a conductive composition containing the lead-free glass frit cannot necessarily sufficiently obtain adhesiveness between a conductor and the substrate. The tendency becomes conspicuous as a heat treatment temperature during firing is lowered in particular. Given these circumstances, a conductive composition containing the lead-free glass frit that can form a conductor having sufficient conductivity and adhesiveness is being demanded.
  • Patent Literature 2 discloses a copper paste composition containing copper powder, a lead-free glass frit, and cuprous oxide, the lead-free glass frit containing oxides of bismuth, boron, and silicon, and having a softening starting temperature of 400° C. or less, for example. It is stated that this copper paste composition has excellent adhesiveness to a ceramic substrate.
  • Patent Literature 3 discloses copper paste that has excellent electric characteristics and adhesive strength by adding lead-free glass frits such as a borosilicate-based glass frit (SiO 2 —B 2 O 3 -based) and a borosilicate barium-based glass frit (BaO—SiO 2 —B 2 O 3 -based) and a borosilicate zinc-based glass flit containing zinc oxide in a specific ratio as glass frits to be contained in copper paste for an external electrode.
  • lead-free glass frits such as a borosilicate-based glass frit (SiO 2 —B 2 O 3 -based) and a borosilicate barium-based glass frit (BaO—SiO 2 —B 2 O 3 -based) and a borosilicate zinc-based glass flit containing zinc oxide in a specific ratio as glass frits to be contained in copper paste for an external electrode.
  • Patent Literature 1 Japanese Unexamined Patent Application Publication No. H03-141502
  • Patent Literature 2 Japanese Unexamined Patent Application Publication No. 2012-54113
  • the copper paste described in Patent Literature 2 and the copper paste described in Patent Literature 3 form a conductor by firing at 900° C., and no study is conducted about whether a conductor having sufficient conductivity and adhesiveness can be obtained even when the copper pastes are fired at a low temperature of 750° C. or less.
  • the present invention has been studied in view of such circumstances, and an object thereof is to provide a conductive composition that can be fired even at a temperature of about 750° C. or less, has favorable adhesiveness to a substrate, and has excellent conductivity.
  • a first aspect of the present invention provides a conductive composition containing copper powder, cuprous oxide, a lead-free glass frit, and a carboxylic acid-based additive, the cuprous oxide being contained in an amount of at least 5.5 parts by mass and up to 25 parts by mass relative to 100 parts by mass of the copper powder, the lead-free glass frit containing a borosilicate zinc-based glass frit and a vanadium zinc-based glass frit, the borosilicate zinc-based glass frit containing boron oxide, silicon oxide, zinc oxide, and optional other components, among which boron oxide, silicon oxide, and zinc oxide serve as top-three oxide components in terms of content, the vanadium zinc-based glass frit containing vanadium oxide, zinc oxide, and optional other components, among which vanadium oxide and zinc oxide serve as top-two oxide components in terms of content, and the carboxylic acid-based additive being contained in an amount of at least 0.1 part by mass and up to 5 parts by mass relative to 100 parts by mass of the copper powder.
  • the vanadium zinc-based glass frit is preferably contained in an amount of at least 20% by mass and up to 80% by mass relative to 100% by mass of the lead-free glass frit.
  • the vanadium zinc-based glass frit preferably contains vanadium oxide in an amount of at least 30% by mass and up to 50% by mass and contains zinc oxide in an amount of at least 30% by mass and up to 50% by mass.
  • the borosilicate zinc-based glass frit is preferably contained in an amount of at least 20% by mass and up to 80% by mass relative to 100% by mass of the lead-free glass frit.
  • the borosilicate zinc-based glass frit preferably contains zinc oxide in an amount of at least 25% by mass and up to 45% by mass.
  • the lead-free glass frit is preferably contained in an amount of at least 0.2 part by mass and up to 9 parts by mass relative to 100 parts by mass of the copper powder.
  • the carboxylic acid-based additive is preferably at least one selected from oleic acid and linoleic acid.
  • the cuprous oxide is preferably contained in an amount of at least 5.5 parts by mass and up to 15 parts by mass relative to 100 parts by mass of the copper powder.
  • the copper powder preferably contains at least either spherical powder or flake-shaped powder.
  • the copper powder preferably has an average particle diameter of at least 0.2 ⁇ m and up to 5 ⁇ m.
  • the conductive composition preferably contains an organic vehicle in an amount of at least 10% by mass and up to 50% by mass relative to 100% by mass of the conductive composition.
  • a second aspect of the present invention provides a method for producing a conductor including firing the conductive composition by heat treatment at 750° C. or less.
  • a third aspect of the present invention provides a method for forming a wire of an electronic component including: applying the conductive composition onto a substrate; and firing the substrate after the application by heat treatment at 750° C. or less.
  • a conductor that has excellent adhesiveness to a substrate and more excellent conductivity can be formed.
  • the conductive composition of the present invention can be fired at a low temperature of 750° C. or less, and using the conductive composition of the present invention, a conductor can be formed without damaging resistors, internal elements, and the like of an electronic component. Consequently, an electronic component having electric characteristics similar to those of conventional ones or more can be produced lead-free and with a low defect rate.
  • FIG. 1(A) and FIG. 1(B) are graphs of evaluation results of Examples 1 and 6 and Comparative Examples 6 and 7.
  • a conductive composition of the present embodiment contains copper powder, cuprous oxide, a lead-free glass frit, and a carboxylic acid-based additive.
  • the conductive composition does not contain any lead glass frit and thus does not substantially contain any lead and has excellent environmental characteristics.
  • the lead-free glass frit refers to a glass frit that does not contain any lead or that, even when it contains lead, is extremely small in its content (e.g., the content of lead is 0.1% by mass or less relative to the entire glass frit). That the conductive composition does not substantially contain any lead refers to a state in which the content of lead is 0.01% by mass or less relative to the entire conductive composition, for example.
  • the conductive composition of the present embodiment contains the copper powder as a conductive component.
  • the copper powder has excellent conductivity and migration resistance and low price.
  • the copper powder is easily oxidized, and when the conductive composition is subjected to heat treatment, it is normally subjected to heat treatment in a nitrogen atmosphere.
  • the shape and particle diameter of the copper powder which are not limited to particular ones, can be selected as appropriate in accordance with a target electronic component.
  • a spherical or flake-shaped copper powder or a mixture of these can be used, for example.
  • the copper powder contains the flake-shaped copper powder to increase the contact area of the copper powder and may have excellent conductivity, for example.
  • the copper powder can select the mixing ratios of the spherical powder and flake-shaped copper powder as appropriate depending on its use.
  • the mixing ratios relative to 100 parts by mass of the entire copper powder, the spherical copper powder can be contained in an amount of at least 10 parts by mass and up to 90 parts by mass, whereas the flake-shaped copper powder can be contained in an amount of up to 90 parts by mass and at least 10 parts by mass, for example.
  • the copper powder can have an average particle diameter of at least 0.2 ⁇ m and up to 5 ⁇ m for the spherical copper powder, for example.
  • the particle diameter flattened in a flake shape can be about at least 3 ⁇ m and up to 30 ⁇ m, for example.
  • this average particle diameter is a median diameter (D50) of accumulated distribution and can be measured with a particle size distribution measuring apparatus based on a laser diffraction/scattering method.
  • the particle diameter can be measured by electron microscopic observation.
  • powder having the same particle diameter may be used, or two or more types of powder having different particle diameters may be used in a mixed manner.
  • reducing the particle diameter of the conductive powder can facilitate firing; when the average particle diameter of the spherical copper powder is less than 0.2 ⁇ m, for example, the copper powder is easily oxidized, and not only a sintering failure occurs on the contrary but also problems such as a shortage of capacity and a change in paste viscosity with the lapse of time may be likely to occur.
  • the conductive composition of the present embodiment can sufficiently fire the copper powder even by low-temperature heat treatment at 750° C. or less, for example, by containing specific components described below even when the particle diameter of the copper powder is 1 ⁇ m or more, for example.
  • the borosilicate zinc-based glass frit refers to a glass frit containing boron oxide (B 2 O 3 ), silicon oxide (SiO 2 ), zinc oxide (ZnO), and optional other components, among which B 2 O 3 , SiO 2 , and ZnO serve as top-three oxide components in terms of content.
  • the borosilicate zinc-based glass frit preferably contains ZnO in an amount of at least 25% by mass and up to 45% by mass, SiO 2 in an amount of at least 5% by mass and up to 15% by mass, and B 2 O 3 in an amount of at least 35% by mass and up to 55% by mass relative to 100% by mass of the borosilicate zinc-based glass frit.
  • composition of the borosilicate zinc-based glass frit can contain one or two or more components other than those described above and can contain oxides of alkali metals such as Na 2 O; and Al 2 O 3 , for example.
  • the amounts to be added of these other components are each preferably at least 0.5% by mass and up to 10% by mass.
  • the particle diameter of the borosilicate zinc-based glass frit which is not limited to a particular value, is an average particle diameter of at least 1 ⁇ m and up to 10 ⁇ m, for example, and preferably at least 1 ⁇ m and up to 5 ⁇ m.
  • the softening point of the borosilicate zinc-based glass frit is within the above range, and the particle diameter thereof is within the above range, whereby fused borosilicate zinc-based glass has excellent fluidity even in firing at a temperature of 750° C. or less, and a conductor that has particularly excellent adhesiveness can be obtained.
  • the average particle diameter is a median diameter (D50) of accumulated distribution and can be measured with a particle size distribution measuring apparatus based on a laser diffraction/scattering method.
  • a laser diffraction/scattering particle diameter/particle size distribution measuring apparatus a measuring apparatus called Microtrac (registered trademark) is known.
  • the vanadium zinc-based glass frit refers to a glass frit containing vanadium oxide (V 2 O 5 ), zinc oxide (ZnO), and optional other components, among which V 2 O 5 and ZnO serve as top-two oxide components in terms of content.
  • the vanadium zinc-based glass frit preferably contains ZnO in an amount of at least 30% by mass and up to 50% by mass and V 2 O 5 in an amount of at least 30% by mass and up to 50% by mass.
  • the vanadium zinc-based glass frit can obtain a conductive composition that has excellent fluidity and excellent penetrability to the substrate even by heat treatment at a low temperature by containing V 2 O 5 .
  • composition of the vanadium zinc-based glass frit can contain one or two or more components other than those described above and can contain oxides of alkali metals such as CaO; and B 2 O 3 , Bi 2 O 3 , and Al 2 O 3 , for example.
  • the amounts to be added of these other components are each preferably at least 0% by mass and up to 10% by mass.
  • the vanadium zinc-based glass frit has a softening point of preferably 600° C. or less, more preferably at least 300° C. and up to 500° C., and even more preferably at least 350° C. and up to 450° C. When the softening point is within the above range, a conductive composition that has excellent fluidity can be obtained.
  • the softening point can be controlled by adjusting the composition of the glass frit as appropriate, for example.
  • the softening point can be measured by thermogravimetric differential thermal analysis (TG-DTA) in the atmosphere with a temperature rising rate of 10° C./min.
  • TG-DTA thermogravimetric differential thermal analysis
  • the particle diameter of the vanadium zinc-based glass frit which is not limited to a particular value, is an average particle diameter of at least 1 ⁇ m and up to 10 ⁇ m, for example, and preferably at least 1 ⁇ m and up to 5 ⁇ m.
  • This average particle diameter is a median diameter (D50) of accumulated distribution and can be measured with a particle size distribution measuring apparatus based on a laser diffraction/scattering method.
  • the softening point of the borosilicate zinc-based glass frit can be higher than the softening point of the vanadium zinc-based glass frit.
  • the conductive composition has excellent fluidity of the glass fused from a temperature rising process when the conductive composition is fired and has excellent wettability to the conductive component and the substrate with a good balance by containing the glass frits having different softening points, and a conductor that has particularly excellent adhesiveness can be obtained.
  • ZnO contained in these glass frits is reduced to zinc by residual char (soot and carbon) originating from the organic vehicle during a drying or firing process, and this zinc can inhibit the oxidation of the copper powder.
  • the function of ZnO in the glass frits is not limited to the above.
  • the content of the lead-free glass frit can be selected as appropriate from an electronic component as an object to be applied, the kind of the glass frit to be used, characteristics obtained from the content of the copper powder, or the like, for example.
  • the lower limit of the content of the lead-free glass frit is 0.2 part by mass or more, for example, preferably 1 part by mass or more, and more preferably 2 parts by mass or more relative to 100 parts by mass of the copper powder.
  • the lower limit of the content of the lead-free glass frit is within the above range, whereby adhesiveness to the substrate is more excellent.
  • the upper limit of the content of the lead-free glass frit which is not limited to a particular value, is 15 parts by mass or less relative to 100 parts by mass of the copper powder, for example.
  • the upper limit thereof is preferably 9 parts by mass or less, more preferably 6 parts by mass or less, and even more preferably 5 parts by mass or less.
  • the upper limit of the content of the lead-free glass frit is within the above range, whereby a formed electrode has more excellent solderability.
  • the content of the lead-free glass frit is extremely large, excessive glass is pushed out of the conductor during sintering, whereby the excessive glass remains on the surface of the electrode, which worsens solderability.
  • the content of the lead-free glass frit can be within a range of at least 0.5% by mass and up to 10% by mass, for example, and is in particular preferably at least 2% by mass and up to 8% by mass relative to the entire conductive paste.
  • the content of the vanadium zinc-based glass frit is at least 10% by mass and up to 90% by mass, for example, preferably at least 20% by mass and up to 80% by mass, and more preferably at least 40% by mass and up to 60% by mass relative to the entire lead-free glass frit.
  • a conductor to be formed has excellent conductivity and adhesiveness to the substrate with a good balance.
  • the content of the borosilicate zinc-based glass frit is up to 90% by mass and at least 10% by mass, for example, preferably up to 80% by mass and at least 20% by mass, and more preferably up to 60% by mass and at least 40% by mass relative to the entire lead-free glass frit.
  • the conductor to be formed has excellent conductivity and adhesiveness to the substrate with a good balance.
  • the content of ZnO is preferably at least 30% by mass and up to 50% by mass and more preferably at least 35% by mass and up to 40% by mass relative to the entire lead-free glass frit. When the content of ZnO is within the above range, more excellent adhesiveness to the substrate is gained.
  • the content of V 2 O 5 is preferably at least 5% by mass and up to 50% by mass, more preferably at least 10% by mass and up to 30% by mass, and even more preferably at least 10% by mass and up to 25% by mass relative to the entire lead-free glass frit. When the content of V 2 O 5 is within the above range, more excellent adhesiveness to the substrate is gained.
  • the content of B 2 O 3 is preferably at least 3% by mass and up to 50% by mass, more preferably at least 10% by mass and up to 45% by mass, and even more preferably at least 20% by mass and up to 40% by mass relative to the entire lead-free glass frit.
  • the content of SiO 2 is preferably at least 2% by mass and up to 10% by mass relative to the entire lead-free glass frit.
  • the conductive composition of the present embodiment contains cuprous oxide (copper(I) oxide: Cu 2 O). With this composition, the sintering of the copper powder of copper conductive paste for low-temperature firing can be facilitated.
  • the content of cuprous oxide can be preferably at least 5.5 parts by mass and up to 25 parts by mass, for example, is more preferably at least 7 parts by mass and up to 25 parts by mass, and is even more preferably at least 10 parts by mass and up to 15 parts by mass relative to 100 parts by mass of the copper powder.
  • the content of copper oxide is within the above range, the sintering of the copper powder is facilitated, and more excellent conductivity and adhesiveness are gained.
  • the content of cuprous oxide exceeds 25 parts by mass relative to 100 parts by mass of the copper powder, excessive copper oxide that does not contribute to the sintering of copper serves as resistance even when the carboxylic acid-based additive described below is contained, which may cause insufficient conductivity.
  • the lead-free glass frit tends to have insufficient adhesiveness to the substrate when it is fired in a nonoxidative atmosphere (e.g., in a nitrogen gas atmosphere).
  • a nonoxidative atmosphere e.g., in a nitrogen gas atmosphere.
  • the conductive composition containing the lead-free glass frit and cuprous oxide is prepared to be paste-like, for example, and is then subjected to heat treatment in a nonoxidative atmosphere, a minute amount of oxygen is introduced from cuprous oxide into a firing atmosphere during the heat treatment, whereby adhesiveness to the substrate can be improved.
  • cuprous oxide Upon release of oxygen to the nonoxidative atmosphere, cuprous oxide becomes copper and forms a conductor obtained by firing the conductive composition together with the copper powder.
  • the conductive composition of the present embodiment can markedly improve conductivity and adhesiveness to the substrate by combining the borosilicate zinc-base glass frit, the vanadium zinc-based glass frit, cuprous oxide with each other.
  • the conductive composition of the present embodiment may contain a small amount of cupric oxide (copper(II) oxide: CuO) to the extent that the effects described above are not impaired.
  • Cupric oxide can be contained in an amount of at least 0 part by mass and up to 5 parts by mass relative to 100 parts by mass of the copper powder, for example.
  • Cuprous oxide is preferably powdery, and its average particle diameter is preferably 5 ⁇ m or less.
  • cuprous oxide powder with an average particle diameter of 5 ⁇ m or less, cuprous oxide can be dispersed and blended in the conductive composition.
  • the lower limit of the average particle diameter of cuprous oxide which is not limited to a particular value, can be 0.1 ⁇ m or more, for example.
  • the average particle diameter of cuprous oxide can be measured by electron microscopic observation or with a particle size distribution measuring apparatus based on a laser diffraction/scattering method.
  • the conductive composition of the present embodiment can further improve the effect of facilitating the sintering of the copper powder by cuprous oxide and can form a conductor that has more excellent adhesiveness, conductivity, and the like by containing the carboxylic acid-based additive.
  • cuprous oxide has the effect of facilitating the sintering of the copper powder as described above, and the sintering of the copper powder improves conductivity, not all cuprous oxide can facilitate sintering, and part thereof may be present unreacted.
  • the conductive composition of the present embodiment can cause this unreacted cuprous oxide to further react by containing the carboxylic acid-based additive. It is considered that the sinterability of the copper powder improves through the reaction of cuprous oxide and the amount of cuprous oxide remaining in the conductor as an electric resistant component reduces, whereby conductivity can further be improved.
  • the content of the carboxylic acid-based additive can be preferably at least 0.1 part by mass and up to 5.0 parts by mass, for example, is more preferably at least 1.0 part by mass and up to 4.0 parts by mass, and is even more preferably at least 2.0 parts by mass and up to 3.0 parts by mass relative to 100 parts by mass of the copper powder.
  • the content of the carboxylic acid-based additive exceeds 5.0 parts by mass relative to 100 parts by mass of the copper powder, when the organic vehicle is added to the conductive composition to make a paste-like composition, problems in that the adhesiveness of a conductor obtained from the paste-like composition reduces and the copper powder dissolves by long-term storage to change the color of the paste-like composition may occur.
  • the carboxylic acid-based additive refers to a dispersant having a carboxy group and is preferably an unsaturated fatty acid that is liquid at room temperature.
  • Examples of the carboxylic acid-based additive include myristoleic acid, palmitoleic acid, oleic acid, and linoleic acid; more preferably, more preferred is at least one selected from oleic acid and linoleic acid.
  • the carboxylic acid-based additive can also have a function as a dispersant for, when the organic vehicle is added to the conductive composition according to the present embodiment to make a paste-like composition, dispersing the copper powder and the lead-free glass frit into the organic vehicle.
  • the carboxylic acid-based additive is preferably an unsaturated carboxylic acid with a carbon number of 14 to 18.
  • the conductive composition of the present embodiment may contain an organic vehicle.
  • the organic vehicle adjusts the viscosity of the conductive composition and can make a paste-like composition having appropriate printability.
  • the composition thereof is not limited to a particular composition, known ones used for conductive paste can be used.
  • the organic vehicle contains a resin component and a solvent, for example.
  • the resin component include a cellulose resin and an acrylic resin.
  • the solvent include terpene-based solvents such as terpineol and dihydro terpineol and ether-based solvents such as ethylcarbitol and butylcarbitol, which are used singly or in a mixed manner.
  • the organic vehicle is a component that volatilizes or combusts when the conductive composition is dried or fired, and the content of the organic vehicle in the conductive composition is not limited to a particular content.
  • the organic vehicle maybe added so as to cause the conductive composition to have appropriate viscosity and applicability, and its content can be adjusted as appropriate depending on its use or the like.
  • the organic vehicle can be contained in an amount of at least 10% by mass and up to 50% by mass relative to 100% by mass of the paste-like conductive composition (the conductive paste), for example.
  • the conductive composition of the present embodiment may contain other components to the extent that the effects of the present invention are produced.
  • An antifoaming agent, a dispersant, a coupling agent, or the like may be added to the conductive composition as appropriate as such other components, for example.
  • the conductive composition of the present embodiment has particularly excellent conductivity and adhesiveness to the substrate of the conductor after firing and can thus suitably be used for the formation of a conductor.
  • the conductive composition of the present embodiment can be fired by heat treatment at 750° C. or less and can further be fired even by heat treatment at 600° C. or less, and the formed conductor can have excellent conductivity and adhesiveness to the substrate. Consequently, the conductive composition of the present embodiment can suitably be used as conductive paste for low-temperature firing.
  • the conductive composition of the present embodiment has a sheet resistance in terms of a film thickness of 10 ⁇ m of the conductor fired at 600° C. of preferably 10 m ⁇ or less and more preferably 5 m ⁇ or less. This sheet resistance is a value measured by a method described in examples described below.
  • the conductive composition of the present embodiment has a peel strength of the conductor obtained by firing at 600° C. of preferably 20 N or more and more preferably 25 N or more.
  • the peel strength can be 30 N or more and can further be 40 N or more.
  • the peel strength is a value measured when a Sn-plated Cu wire with a diameter of 0.6 mm is attached to a copper conductor produced by firing the conductive composition at 600° C. with a 3Ag-0.5Cu—Sn solder, and then the Sn-plated Cu wire is pulled to be destroyed, for example, and is a value evaluating adhesiveness between a substrate of an electronic component and the conductor.
  • the conductive composition of the present embodiment can be used for other than conductors such as wires and electrodes formed on the surface of the electronic component and may be used as internal electrodes and external electrodes of multilayer ceramic capacitors and a material for bonding chip components such as electronic elements to lead frames and various kinds of substrates to establish electric or thermal conduction as an alternative to solder, for example.
  • the following describes a method for forming a conductor of the present embodiment.
  • a conductive composition containing copper powder, cuprous oxide, a lead-free glass frit, and a carboxylic acid-based additive is prepared.
  • the lead-free glass frit one containing a borosilicate zinc-based glass frit and a vanadium zinc-based glass frit is used.
  • An organic vehicle with the amount of a solvent therein adjusted is mixed into the conductive composition to produce paste (conductive paste) with the viscosity appropriately adjusted.
  • the compositions and mixing ratios of the respective components in the conductive paste are as described above.
  • the conductive paste is printed or applied onto a substrate or the like formed of ceramic or the like and is then fired through necessary processes to form a conductor. Firing is in general performed by heat treatment at at least 800° C. and up to 1,000° C.
  • the conductive paste of the present embodiment can be sufficiently fired even by heat treatment at less than 800° C., can be fired even by heat treatment at 750° C. or less, for example, and can be fired even by heat treatment at 650° C. or less.
  • the conductive paste of the present embodiment can provide a conductor that has particularly excellent conductivity and adhesiveness to the substrate even when it is fired by heat treatment at 600° C. as shown in the examples described below.
  • the lower limit of the heat treatment temperature of firing which is not limited to a particular temperature, is 400° C. or more, for example.
  • a firing treatment time is at least 5 minutes and up to 20 minutes at a peak temperature, for example.
  • Drying may be performed before firing. Conditions of drying are not limited to particular ones; it can be performed at 50° C. to 150° C. for about 5 minutes to 15 hours, for example.
  • An oxygen concentration in a burnout zone within a firing furnace which is not limited to a particular concentration, can be about 100 ppm, for example.
  • the conductive paste is applied onto the surface of a ceramic substrate or an electronic component formed on the ceramic substrate and is fired, whereby an electronic component formed with a circuit can be produced.
  • the conductive paste is applied onto a ceramic substrate, and the substrate after application is fired, whereby an electronic component formed with wires can be produced.
  • the conductive paste can be fired by heat treatment at 750° C. or less, and thus damage to resistors, internal elements, and the like can be reduced.
  • the heat treatment can also be performed at 650° C. or less and can further also be performed at 600° C. or less.
  • a conductor formed by this method of production has particularly excellent conductivity and adhesiveness to the substrate.
  • Copper Powder Spherical copper powders with an average particle diameter of 0.3 ⁇ m, 1.0 ⁇ m, and 2.5 ⁇ m produced by atomization were used.
  • Borosilicate zinc-based glass frit As a ZnO—SiO 2 —B 2 O 3 -based glass frit with a softening point of 535° C., one containing ZnO in an amount of 36% by mass, Sio 2 in an amount of 10% by mass, and B 2 O 3 in an amount of 45% by mass with an average particle diameter of 1.5 ⁇ m was used.
  • Vanadium zinc-based glass frit As a ZnO-V 2 O 5 -based glass frit with a softening point of 405° C., one containing ZnO in an amount of 41% by mass and V 2 O 5 in an amount of 39.5% by mass with an average particle diameter of 3.5 ⁇ m was used.
  • Borosilicate bismuth-based glass frit As a Bi 2 O 3 —SiO 2 —B 2 O 3 -based glass frit with softening point of 580° C., one containing Bi 2 O 3 in an amount of 34.1% by mass, B 2 O 3 in an amount of 24.4% by mass, and Sio 2 in an amount of 17% by mass with an average particle diameter of 1.5 ⁇ m was used. Table 1 lists the copper powder and the compositions of the lead-free glass frits used.
  • the average particle diameters of the spherical copper powder and the lead-free glass frits were measured with Microtrac.
  • the average particle diameter of the flake-shaped copper powder was measured by scanning electron microscopic observation.
  • the softening points of the lead-free glass frits were measured by thermogravimetric differential thermal analysis (TG-DTA) in the atmosphere with a temperature rising rate of 10° C./min.
  • cuprous oxide one with an average particle diameter of 3 ⁇ m was used.
  • the copper powder, the glass frits, cuprous oxide, oleic acid or linoleic acid, and the organic vehicle prepared as described above were mixed together with a mixer to obtain a mixture.
  • Table 2 lists the mixing ratios of the respective components. This mixture was kneaded with a three-roll mill to produce conductive paste.
  • Gold paste was printed onto an alumina substrate and was fired to prepare an alumina substrate formed with gold (Au) electrodes with an inter-electrode distance of 50 mm.
  • Au gold
  • the obtained conductive paste was printed between the Au electrodes so as to give a thickness after firing of 10 ⁇ m to 13 ⁇ m.
  • This alumina substrate after printing was subjected to heat treatment at 120° C. to dry the conductive paste.
  • the alumina substrate after drying treatment was subjected to heat treatment with a nitrogen atmospheric belt furnace with a profile of a peak temperature of 600° C., a peak temperature duration of 10 minutes, and a time from a furnace entrance to a furnace exit of 60 minutes to fire the conductive paste.
  • the oxygen concentration of a firing zone within the furnace was set to 5 ppm. Dry air was introduced to a burnout zone provided in the process of rising temperature up to 600° C. (from the furnace entrance to a 600° C. zone) to set an oxygen concentration to each concentration of 200 ppm, 400 ppm, and 600 ppm.
  • the oxygen concentration was measured using a zirconia oxygen concentration meter (manufactured by Toray: Model LC-750) and was adjusted to each of the concentrations.
  • the copper conductive paste for low-temperature firing described above was printed onto an alumina substrate with a pattern of 2 mm ⁇ 2 mm and was fired under the same conditions as the conditions of production of the sample for evaluating a sheet resistance described above to produce a sample for evaluating adhesiveness (with a thickness of 10 ⁇ m after firing).
  • a Sn-plated Cu wire with a diameter of 0.6 mm was soldered to the copper conductor of the obtained sample for evaluating adhesiveness using a solder with a composition of 96.5% by mass Sn-3% by mass Ag-0.5% by mass Cu and was pulled at a rate of 80 mm/min in the vertical direction using a load measuring instrument (manufactured by Aikoh Engineering Co., Ltd., MODEL 2152HTP).
  • the peel strength when the conductor was peeled off from the substrate was measured at 20 points, and adhesiveness to the substrate was evaluated by its average.
  • Example 1 100 13.6 2.5 — 18.1 Nitrogen 600 2.7 16.2
  • Example 2 100 8.2 2.5 — 18.1 Nitrogen 600 2.3 55.1
  • Example 3 100 13.6 2.5 — 18.1 Nitrogen 600 2.2 58.3
  • Example 4 100 20.6 2.5 — 18.1 Nitrogen 600 2.4 49.3
  • Example 5 100 13.6 2.5 — 18.1 Nitrogen 600 3.4 16.7
  • Example 6 100 8.1 2.5 — 18.0 Nitrogen 600 2.3 51.4
  • Example 7 100 8.1 2.5 — 18.0 Nitrogen 600 3.4 32
  • Example 8 100 8.1 2.5 — 18.0 Nitrogen 600 3.5 24.2
  • Example 9 100 8.3 2.5 — 18.0 Nitrogen 600 2.7 46.4
  • Example 10 100 8.3 2.5 — 18.0 Nitrogen 600 4.1 28.6
  • Example 11 100 8.3 2.5 — 18.0 Nitrogen 600 3.8 45.4
  • Example 12 100 8.3 2.5 — 18.0 Nitrogen 600 3.7 33.8
  • Example 13 100 8.5 2.5 — 17.2 Nitrogen 600 2.8 66.7
  • Example 14 100 8.
  • the conductive compositions of the examples have sufficient adhesiveness to the substrate and can obtain a conductor having sufficient conductivity.
  • the conductive compositions in Example 3 to Example 7 and Example 10 to Example 12, in which the content of the vanadium zinc-based glass frit is 40% by mass to 60% by mass, the conductive compositions have particularly excellent adhesiveness.
  • Comparative Example 1 in which only the borosilicate zinc-based glass frit was contained as the glass frit, resulting in particularly poor adhesiveness, and thus a stable conductor was not able to be formed.
  • Comparative Example 2 in which only the vanadium zinc-based glass frit was contained as the glass frit, the glass component penetrated the substrate too much, and the shape of the conductor (a wire shape) was not able to be held, owing to which adhesiveness was not able to be evaluated.
  • Comparative Example 3 in which the borosilicate zinc-based glass frit and the borosilicate bismuth-based glass frit were contained as the glass frit, it was recognized that the glass did not sufficiently fuse, resulting in poor adhesiveness.
  • Comparative Example 4 in which the content of cuprous oxide is less than 5.5 parts by mass, resulting in particularly poor adhesiveness, and thus a stable conductor was not able to be formed.
  • Comparative Example 5 in which oleic acid as the carboxylic acid-based additive was excessively contained, it was recognized that the conductor had poor conductivity and adhesiveness. It is considered that this is because oleic acid being excessively present not only improved the sinterability of cuprous oxide but also caused dissolution or the like of the copper powder, which reduced conductivity and the like on the contrary. It was recognized that in the sample of Comparative Example 4 the produced conductive paste changed its color with the lapse of time because excessive oleic acid dissolved the copper powder.
  • the conductive composition of the present embodiment can form a conductive pattern that has particularly excellent conductivity and adhesiveness to the substrate when it is fired at a low temperature of 750° C. or less, or about 600° C., for example.
  • the conductive composition of the present embodiment has particularly excellent conductivity and adhesive strength to the substrate and can suitably be used for the formation of electrodes such as wires by containing copper powder, specific lead-free glass frits, and cuprous oxide.
  • the conductive composition of the present embodiment can also be used as internal electrodes and external electrodes of electronic components, an alternative to solder, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Thermal Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Conductive Materials (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Manufacturing Of Electric Cables (AREA)

Abstract

A conductive composition has excellent adhesiveness to a substrate and conductivity. For example, a conductive composition contains copper powder, cuprous oxide, a lead-free glass frit, and a carboxylic acid-based additive. The cuprous oxide is contained in an amount of at least 5.5 parts by mass and up to 25 parts by mass relative to 100 parts by mass of the copper powder. The lead-free glass frit contains a borosilicate zinc-based glass frit and a vanadium zinc-based glass frit. The borosilicate zinc-based glass frit contains boron oxide, silicon oxide, zinc oxide, and optional other components, among which boron oxide, silicon oxide, and zinc oxide serve as top-three oxide components in terms of content. The vanadium zinc-based glass frit contains vanadium oxide, zinc oxide, and optional other components, among which vanadium oxide and zinc oxide serve as top-two oxide components in terms of content.

Description

TECHNICAL FIELD
The present invention relates to a conductive composition, a method for producing a conductor, and a method for forming a wire of an electronic component using the same.
BACKGROUND ART
There is a method for forming wires and electrodes with conductors obtained by firing a conductive composition containing a conductive component as a method for forming a circuit on a substrate of an electronic component. In that case, for the conductive component, gold, silver, palladium, mixtures thereof, or the like is frequently being used. However, gold and palladium are noble metals and are thus expensive and vulnerable to price fluctuations owing to supply and demand conditions and the like. Consequently, use of these metals may lead to problems such as a cost increase in products and price fluctuations. Although silver is lower in price than gold and palladium, it has a problem in that it easily causes migration. Although nickel may be used apart from noble metals as the conductive component, it has a problem in that it has relatively low conductivity.
Given these circumstances, in recent years, copper, which has excellent conductivity, excellent migration resistance, and low price, has started to be used as the conductive component. A conductor is formed by applying a paste-like conductive composition (conductive paste) the viscosity of which is adjusted by adding an organic vehicle onto a substrate by printing such as screen printing and drying and then firing the conductive paste applied onto the substrate, for example. Copper is a metal easily oxidized, and firing of the conductive paste containing copper is generally performed in a reductive atmosphere or an inert gas atmosphere and is performed in a nitrogen gas, for example. When the conductive paste is fired in the atmosphere, copper is oxidized, and an oxide formed during the process may reduce conductivity.
The conductive composition containing copper often contains copper powder and a glass frit as main components. The glass frit has the effect of causing the conductive component to adhere together or causing a substrate and the conductive component to adhere to each other. For the glass frit, glass frits containing lead (lead glass frits) have been conventionally frequently used. The lead glass frits have low softening temperature and have excellent wettability with the conductive component and the substrate, and a conductive composition containing a lead glass frit has sufficient conductivity and adhesiveness to the substrate.
However, in recent years, restrictions on chemicals harmful to the environment have become strict, and lead is a substance to be restricted in the RoHS instructions and the like. Given these circumstances, a conductive composition containing a glass frit containing no lead (a lead-free glass frit) is being demanded.
When the circuit is formed on the substrate, apart from conductors such as wires and electrodes, resistors are also formed. The circuit is formed step-by-step by applying conductive paste and resistance paste onto the substrate by printing and then firing them under respective appropriate conditions or is formed by successively forming patterns of wires, electrodes, resistors, and the like on the substrate by application by printing and then simultaneously firing them at one piece of heat treatment, for example.
The resistance paste contains ruthenium oxide and a glass frit, for example. In such resistance paste, when it is fired in a nitrogen atmosphere, ruthenium oxide reacts with nitrogen, and a desired resistance cannot necessarily be obtained. Given these circumstances, when the conductive paste is required to be fired in a nitrogen atmosphere, employed is a method in which the resistance paste is applied and is fired in the atmosphere to form resistors, and then the conductor paste is applied and is fired in a nitrogen atmosphere to form conductors.
The resistors are fired to be formed earlier as described above, whereby formation of the conductors can be performed in the nitrogen atmosphere. However, heat treatment for forming the conductors is normally performed at 800° C. to 1,000° C., and although the influence of nitrogen on the resistors can be prevented, heat history by the heat treatment at the high temperature may have a detrimental effect on the resistors. Given these circumstances, a conductive composition that can be fired by heat treatment at a lower temperature, or 750° C. or less, for example, is being demanded.
Patent Literature 1 describes a copper paste composition containing inorganic components with copper powder, cuprous oxide powder, cupric oxide powder, and glass powder as main components and an organic vehicle component and states that this copper paste composition is suitable for low-temperature firing at 550 to 750° C. in particular, for example. However, in its examples, only glass powder containing lead is disclosed as the glass powder contained in this copper paste composition.
The lead-free glass frit, which does not substantially contain any lead, tends to be inferior to the lead glass frit in wettability with a substrate. Owing to this, a conductive composition containing the lead-free glass frit cannot necessarily sufficiently obtain adhesiveness between a conductor and the substrate. The tendency becomes conspicuous as a heat treatment temperature during firing is lowered in particular. Given these circumstances, a conductive composition containing the lead-free glass frit that can form a conductor having sufficient conductivity and adhesiveness is being demanded.
Patent Literature 2 discloses a copper paste composition containing copper powder, a lead-free glass frit, and cuprous oxide, the lead-free glass frit containing oxides of bismuth, boron, and silicon, and having a softening starting temperature of 400° C. or less, for example. It is stated that this copper paste composition has excellent adhesiveness to a ceramic substrate.
Patent Literature 3 discloses copper paste that has excellent electric characteristics and adhesive strength by adding lead-free glass frits such as a borosilicate-based glass frit (SiO2—B2O3-based) and a borosilicate barium-based glass frit (BaO—SiO2—B2O3-based) and a borosilicate zinc-based glass flit containing zinc oxide in a specific ratio as glass frits to be contained in copper paste for an external electrode.
CITATION LIST Patent Literature
[Patent Literature 1] Japanese Unexamined Patent Application Publication No. H03-141502
[Patent Literature 2] Japanese Unexamined Patent Application Publication No. 2012-54113
[Patent Literature 3] Japanese Unexamined Patent Application Publication No. 2002-280248
SUMMARY OF INVENTION Technical Problem
However, the copper paste described in Patent Literature 2 and the copper paste described in Patent Literature 3 form a conductor by firing at 900° C., and no study is conducted about whether a conductor having sufficient conductivity and adhesiveness can be obtained even when the copper pastes are fired at a low temperature of 750° C. or less.
The present invention has been studied in view of such circumstances, and an object thereof is to provide a conductive composition that can be fired even at a temperature of about 750° C. or less, has favorable adhesiveness to a substrate, and has excellent conductivity.
A first aspect of the present invention provides a conductive composition containing copper powder, cuprous oxide, a lead-free glass frit, and a carboxylic acid-based additive, the cuprous oxide being contained in an amount of at least 5.5 parts by mass and up to 25 parts by mass relative to 100 parts by mass of the copper powder, the lead-free glass frit containing a borosilicate zinc-based glass frit and a vanadium zinc-based glass frit, the borosilicate zinc-based glass frit containing boron oxide, silicon oxide, zinc oxide, and optional other components, among which boron oxide, silicon oxide, and zinc oxide serve as top-three oxide components in terms of content, the vanadium zinc-based glass frit containing vanadium oxide, zinc oxide, and optional other components, among which vanadium oxide and zinc oxide serve as top-two oxide components in terms of content, and the carboxylic acid-based additive being contained in an amount of at least 0.1 part by mass and up to 5 parts by mass relative to 100 parts by mass of the copper powder.
The vanadium zinc-based glass frit is preferably contained in an amount of at least 20% by mass and up to 80% by mass relative to 100% by mass of the lead-free glass frit. The vanadium zinc-based glass frit preferably contains vanadium oxide in an amount of at least 30% by mass and up to 50% by mass and contains zinc oxide in an amount of at least 30% by mass and up to 50% by mass. The borosilicate zinc-based glass frit is preferably contained in an amount of at least 20% by mass and up to 80% by mass relative to 100% by mass of the lead-free glass frit. The borosilicate zinc-based glass frit preferably contains zinc oxide in an amount of at least 25% by mass and up to 45% by mass. The lead-free glass frit is preferably contained in an amount of at least 0.2 part by mass and up to 9 parts by mass relative to 100 parts by mass of the copper powder. The carboxylic acid-based additive is preferably at least one selected from oleic acid and linoleic acid. The cuprous oxide is preferably contained in an amount of at least 5.5 parts by mass and up to 15 parts by mass relative to 100 parts by mass of the copper powder. The copper powder preferably contains at least either spherical powder or flake-shaped powder. The copper powder preferably has an average particle diameter of at least 0.2 μm and up to 5 μm. The conductive composition preferably contains an organic vehicle in an amount of at least 10% by mass and up to 50% by mass relative to 100% by mass of the conductive composition.
A second aspect of the present invention provides a method for producing a conductor including firing the conductive composition by heat treatment at 750° C. or less.
A third aspect of the present invention provides a method for forming a wire of an electronic component including: applying the conductive composition onto a substrate; and firing the substrate after the application by heat treatment at 750° C. or less.
Using the conductive composition of the present invention, a conductor that has excellent adhesiveness to a substrate and more excellent conductivity can be formed. The conductive composition of the present invention can be fired at a low temperature of 750° C. or less, and using the conductive composition of the present invention, a conductor can be formed without damaging resistors, internal elements, and the like of an electronic component. Consequently, an electronic component having electric characteristics similar to those of conventional ones or more can be produced lead-free and with a low defect rate.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1(A) and FIG. 1(B) are graphs of evaluation results of Examples 1 and 6 and Comparative Examples 6 and 7.
DESCRIPTION OF EMBODIMENTS
1. Conductive Composition
A conductive composition of the present embodiment contains copper powder, cuprous oxide, a lead-free glass frit, and a carboxylic acid-based additive. The conductive composition does not contain any lead glass frit and thus does not substantially contain any lead and has excellent environmental characteristics. The lead-free glass frit refers to a glass frit that does not contain any lead or that, even when it contains lead, is extremely small in its content (e.g., the content of lead is 0.1% by mass or less relative to the entire glass frit). That the conductive composition does not substantially contain any lead refers to a state in which the content of lead is 0.01% by mass or less relative to the entire conductive composition, for example.
The following describes components forming the conductive composition.
(1) Copper Powder
The conductive composition of the present embodiment contains the copper powder as a conductive component. The copper powder has excellent conductivity and migration resistance and low price. The copper powder is easily oxidized, and when the conductive composition is subjected to heat treatment, it is normally subjected to heat treatment in a nitrogen atmosphere.
As to a method for producing the copper powder, which is not limited to a particular method, conventionally known methods such as atomization, wet reduction, and electrolysis can be used. When atomization is used, for example, the remaining concentration of impurities in copper powder to be obtained can be reduced, and the number of pores reaching the inside of the particles of the copper powder to be obtained from the surface thereof can be reduced, by which the copper powder can be inhibited from being oxidized.
The shape and particle diameter of the copper powder, which are not limited to particular ones, can be selected as appropriate in accordance with a target electronic component. As to the shape of the copper powder, a spherical or flake-shaped copper powder or a mixture of these can be used, for example. The copper powder contains the flake-shaped copper powder to increase the contact area of the copper powder and may have excellent conductivity, for example.
When the mixture of the spherical powder and flake-shaped copper powder is used, the copper powder can select the mixing ratios of the spherical powder and flake-shaped copper powder as appropriate depending on its use. As to the mixing ratios, relative to 100 parts by mass of the entire copper powder, the spherical copper powder can be contained in an amount of at least 10 parts by mass and up to 90 parts by mass, whereas the flake-shaped copper powder can be contained in an amount of up to 90 parts by mass and at least 10 parts by mass, for example.
The copper powder can have an average particle diameter of at least 0.2 μm and up to 5 μm for the spherical copper powder, for example. For the flake-shaped copper powder, the particle diameter flattened in a flake shape can be about at least 3 μm and up to 30 μm, for example. When the particle diameter is within the above range, applicability to an electronic component reduced in size is excellent. For the spherical copper powder, this average particle diameter is a median diameter (D50) of accumulated distribution and can be measured with a particle size distribution measuring apparatus based on a laser diffraction/scattering method. For the flake-shaped copper powder, the particle diameter can be measured by electron microscopic observation. For the copper powder, powder having the same particle diameter may be used, or two or more types of powder having different particle diameters may be used in a mixed manner.
Normally, reducing the particle diameter of the conductive powder can facilitate firing; when the average particle diameter of the spherical copper powder is less than 0.2 μm, for example, the copper powder is easily oxidized, and not only a sintering failure occurs on the contrary but also problems such as a shortage of capacity and a change in paste viscosity with the lapse of time may be likely to occur. The conductive composition of the present embodiment can sufficiently fire the copper powder even by low-temperature heat treatment at 750° C. or less, for example, by containing specific components described below even when the particle diameter of the copper powder is 1 μm or more, for example.
(2) Lead-Free Glass Frit
The conductive composition of the present embodiment contains a borosilicate zinc-based glass frit and a vanadium zinc-based glass frit as the lead-free glass frit. The conductive composition has excellent wettability to the copper powder and the substrate with a good balance even when the lead-free glass frit is contained by containing the glass frit with the above two kinds combined, and this conductive composition can obtain a conductor that has particularly excellent conductivity and adhesiveness even when it is fired at a temperature of 750° C. or less.
The borosilicate zinc-based glass frit refers to a glass frit containing boron oxide (B2O3), silicon oxide (SiO2), zinc oxide (ZnO), and optional other components, among which B2O3, SiO2, and ZnO serve as top-three oxide components in terms of content. The borosilicate zinc-based glass frit preferably contains ZnO in an amount of at least 25% by mass and up to 45% by mass, SiO2 in an amount of at least 5% by mass and up to 15% by mass, and B2O3 in an amount of at least 35% by mass and up to 55% by mass relative to 100% by mass of the borosilicate zinc-based glass frit.
The composition of the borosilicate zinc-based glass frit can contain one or two or more components other than those described above and can contain oxides of alkali metals such as Na2O; and Al2O3, for example. The amounts to be added of these other components are each preferably at least 0.5% by mass and up to 10% by mass.
The borosilicate zinc-based glass frit has a softening point of preferably 600° C. or less, more preferably at least 400° C. and up to 600° C., and even more preferably at least 500° C. and up to 600° C. When the softening point is within the above range, a conductor that has excellent conductivity and adhesiveness can be obtained even when low-temperature firing is performed. The softening point can be controlled by adjusting the composition of the glass frit as appropriate, for example. The softening point can be measured by thermogravimetric differential thermal analysis (TG-DTA) in the atmosphere with a temperature rising rate of 10° C./min.
The particle diameter of the borosilicate zinc-based glass frit, which is not limited to a particular value, is an average particle diameter of at least 1 μm and up to 10 μm, for example, and preferably at least 1 μm and up to 5 μm. The softening point of the borosilicate zinc-based glass frit is within the above range, and the particle diameter thereof is within the above range, whereby fused borosilicate zinc-based glass has excellent fluidity even in firing at a temperature of 750° C. or less, and a conductor that has particularly excellent adhesiveness can be obtained. The average particle diameter is a median diameter (D50) of accumulated distribution and can be measured with a particle size distribution measuring apparatus based on a laser diffraction/scattering method. As a laser diffraction/scattering particle diameter/particle size distribution measuring apparatus, a measuring apparatus called Microtrac (registered trademark) is known.
The vanadium zinc-based glass frit refers to a glass frit containing vanadium oxide (V2O5), zinc oxide (ZnO), and optional other components, among which V2O5 and ZnO serve as top-two oxide components in terms of content. The vanadium zinc-based glass frit preferably contains ZnO in an amount of at least 30% by mass and up to 50% by mass and V2O5 in an amount of at least 30% by mass and up to 50% by mass. The vanadium zinc-based glass frit can obtain a conductive composition that has excellent fluidity and excellent penetrability to the substrate even by heat treatment at a low temperature by containing V2O5.
The composition of the vanadium zinc-based glass frit can contain one or two or more components other than those described above and can contain oxides of alkali metals such as CaO; and B2O3, Bi2O3, and Al2O3, for example. The amounts to be added of these other components are each preferably at least 0% by mass and up to 10% by mass.
The vanadium zinc-based glass frit has a softening point of preferably 600° C. or less, more preferably at least 300° C. and up to 500° C., and even more preferably at least 350° C. and up to 450° C. When the softening point is within the above range, a conductive composition that has excellent fluidity can be obtained. The softening point can be controlled by adjusting the composition of the glass frit as appropriate, for example. The softening point can be measured by thermogravimetric differential thermal analysis (TG-DTA) in the atmosphere with a temperature rising rate of 10° C./min.
The particle diameter of the vanadium zinc-based glass frit, which is not limited to a particular value, is an average particle diameter of at least 1 μm and up to 10 μm, for example, and preferably at least 1 μm and up to 5 μm. When the softening point of the vanadium zinc-based glass frit is within the above range, and when the particle diameter thereof is within the above range, fused vanadium zinc-based glass that has excellent fluidity even in firing at a temperature of 750° C. or less, and a conductor that has particularly excellent adhesiveness can be obtained. This average particle diameter is a median diameter (D50) of accumulated distribution and can be measured with a particle size distribution measuring apparatus based on a laser diffraction/scattering method.
The softening point of the borosilicate zinc-based glass frit can be higher than the softening point of the vanadium zinc-based glass frit. The conductive composition has excellent fluidity of the glass fused from a temperature rising process when the conductive composition is fired and has excellent wettability to the conductive component and the substrate with a good balance by containing the glass frits having different softening points, and a conductor that has particularly excellent adhesiveness can be obtained. ZnO contained in these glass frits is reduced to zinc by residual char (soot and carbon) originating from the organic vehicle during a drying or firing process, and this zinc can inhibit the oxidation of the copper powder. The function of ZnO in the glass frits is not limited to the above.
The content of the lead-free glass frit can be selected as appropriate from an electronic component as an object to be applied, the kind of the glass frit to be used, characteristics obtained from the content of the copper powder, or the like, for example. The lower limit of the content of the lead-free glass frit is 0.2 part by mass or more, for example, preferably 1 part by mass or more, and more preferably 2 parts by mass or more relative to 100 parts by mass of the copper powder. The lower limit of the content of the lead-free glass frit is within the above range, whereby adhesiveness to the substrate is more excellent. The upper limit of the content of the lead-free glass frit, which is not limited to a particular value, is 15 parts by mass or less relative to 100 parts by mass of the copper powder, for example. When the conductive composition of the present embodiment is used for the formation of a conductive pattern, the upper limit thereof is preferably 9 parts by mass or less, more preferably 6 parts by mass or less, and even more preferably 5 parts by mass or less. The upper limit of the content of the lead-free glass frit is within the above range, whereby a formed electrode has more excellent solderability. When the content of the lead-free glass frit is extremely large, excessive glass is pushed out of the conductor during sintering, whereby the excessive glass remains on the surface of the electrode, which worsens solderability.
The content of the lead-free glass frit can be within a range of at least 0.5% by mass and up to 10% by mass, for example, and is in particular preferably at least 2% by mass and up to 8% by mass relative to the entire conductive paste.
The content of the vanadium zinc-based glass frit is at least 10% by mass and up to 90% by mass, for example, preferably at least 20% by mass and up to 80% by mass, and more preferably at least 40% by mass and up to 60% by mass relative to the entire lead-free glass frit. In the present embodiment, when the content of the vanadium zinc-based glass frit is within the above range, a conductor to be formed has excellent conductivity and adhesiveness to the substrate with a good balance.
The content of the borosilicate zinc-based glass frit is up to 90% by mass and at least 10% by mass, for example, preferably up to 80% by mass and at least 20% by mass, and more preferably up to 60% by mass and at least 40% by mass relative to the entire lead-free glass frit. In the present embodiment, when the content of the borosilicate zinc-based glass frit is within the above range, the conductor to be formed has excellent conductivity and adhesiveness to the substrate with a good balance.
The content of ZnO is preferably at least 30% by mass and up to 50% by mass and more preferably at least 35% by mass and up to 40% by mass relative to the entire lead-free glass frit. When the content of ZnO is within the above range, more excellent adhesiveness to the substrate is gained.
The content of V2O5 is preferably at least 5% by mass and up to 50% by mass, more preferably at least 10% by mass and up to 30% by mass, and even more preferably at least 10% by mass and up to 25% by mass relative to the entire lead-free glass frit. When the content of V2O5 is within the above range, more excellent adhesiveness to the substrate is gained.
The content of B2O3 is preferably at least 3% by mass and up to 50% by mass, more preferably at least 10% by mass and up to 45% by mass, and even more preferably at least 20% by mass and up to 40% by mass relative to the entire lead-free glass frit. The content of SiO2 is preferably at least 2% by mass and up to 10% by mass relative to the entire lead-free glass frit.
(3) Cuprous Oxide
The conductive composition of the present embodiment contains cuprous oxide (copper(I) oxide: Cu2O). With this composition, the sintering of the copper powder of copper conductive paste for low-temperature firing can be facilitated.
The content of cuprous oxide can be preferably at least 5.5 parts by mass and up to 25 parts by mass, for example, is more preferably at least 7 parts by mass and up to 25 parts by mass, and is even more preferably at least 10 parts by mass and up to 15 parts by mass relative to 100 parts by mass of the copper powder. When the content of copper oxide is within the above range, the sintering of the copper powder is facilitated, and more excellent conductivity and adhesiveness are gained. When the content of cuprous oxide exceeds 25 parts by mass relative to 100 parts by mass of the copper powder, excessive copper oxide that does not contribute to the sintering of copper serves as resistance even when the carboxylic acid-based additive described below is contained, which may cause insufficient conductivity.
The lead-free glass frit tends to have insufficient adhesiveness to the substrate when it is fired in a nonoxidative atmosphere (e.g., in a nitrogen gas atmosphere). However, when the conductive composition containing the lead-free glass frit and cuprous oxide is prepared to be paste-like, for example, and is then subjected to heat treatment in a nonoxidative atmosphere, a minute amount of oxygen is introduced from cuprous oxide into a firing atmosphere during the heat treatment, whereby adhesiveness to the substrate can be improved. Upon release of oxygen to the nonoxidative atmosphere, cuprous oxide becomes copper and forms a conductor obtained by firing the conductive composition together with the copper powder. The conductive composition of the present embodiment can markedly improve conductivity and adhesiveness to the substrate by combining the borosilicate zinc-base glass frit, the vanadium zinc-based glass frit, cuprous oxide with each other. The conductive composition of the present embodiment may contain a small amount of cupric oxide (copper(II) oxide: CuO) to the extent that the effects described above are not impaired. Cupric oxide can be contained in an amount of at least 0 part by mass and up to 5 parts by mass relative to 100 parts by mass of the copper powder, for example.
Cuprous oxide is preferably powdery, and its average particle diameter is preferably 5 μm or less. By using cuprous oxide powder with an average particle diameter of 5 μm or less, cuprous oxide can be dispersed and blended in the conductive composition. The lower limit of the average particle diameter of cuprous oxide, which is not limited to a particular value, can be 0.1 μm or more, for example. The average particle diameter of cuprous oxide can be measured by electron microscopic observation or with a particle size distribution measuring apparatus based on a laser diffraction/scattering method.
(4) Carboxylic Acid-Based Additive
The conductive composition of the present embodiment can further improve the effect of facilitating the sintering of the copper powder by cuprous oxide and can form a conductor that has more excellent adhesiveness, conductivity, and the like by containing the carboxylic acid-based additive.
Although cuprous oxide has the effect of facilitating the sintering of the copper powder as described above, and the sintering of the copper powder improves conductivity, not all cuprous oxide can facilitate sintering, and part thereof may be present unreacted.
It is considered that the conductive composition of the present embodiment can cause this unreacted cuprous oxide to further react by containing the carboxylic acid-based additive. It is considered that the sinterability of the copper powder improves through the reaction of cuprous oxide and the amount of cuprous oxide remaining in the conductor as an electric resistant component reduces, whereby conductivity can further be improved.
The content of the carboxylic acid-based additive can be preferably at least 0.1 part by mass and up to 5.0 parts by mass, for example, is more preferably at least 1.0 part by mass and up to 4.0 parts by mass, and is even more preferably at least 2.0 parts by mass and up to 3.0 parts by mass relative to 100 parts by mass of the copper powder. When the content of the carboxylic acid-based additive exceeds 5.0 parts by mass relative to 100 parts by mass of the copper powder, when the organic vehicle is added to the conductive composition to make a paste-like composition, problems in that the adhesiveness of a conductor obtained from the paste-like composition reduces and the copper powder dissolves by long-term storage to change the color of the paste-like composition may occur.
The carboxylic acid-based additive refers to a dispersant having a carboxy group and is preferably an unsaturated fatty acid that is liquid at room temperature. Examples of the carboxylic acid-based additive include myristoleic acid, palmitoleic acid, oleic acid, and linoleic acid; more preferably, more preferred is at least one selected from oleic acid and linoleic acid.
The carboxylic acid-based additive can also have a function as a dispersant for, when the organic vehicle is added to the conductive composition according to the present embodiment to make a paste-like composition, dispersing the copper powder and the lead-free glass frit into the organic vehicle. In view of obtaining the function as the dispersant to the organic vehicle, the carboxylic acid-based additive is preferably an unsaturated carboxylic acid with a carbon number of 14 to 18.
(5) Organic Vehicle
The conductive composition of the present embodiment may contain an organic vehicle. The organic vehicle adjusts the viscosity of the conductive composition and can make a paste-like composition having appropriate printability.
For the organic vehicle, the composition thereof is not limited to a particular composition, known ones used for conductive paste can be used. The organic vehicle contains a resin component and a solvent, for example. Examples of the resin component include a cellulose resin and an acrylic resin. Examples of the solvent include terpene-based solvents such as terpineol and dihydro terpineol and ether-based solvents such as ethylcarbitol and butylcarbitol, which are used singly or in a mixed manner.
The organic vehicle is a component that volatilizes or combusts when the conductive composition is dried or fired, and the content of the organic vehicle in the conductive composition is not limited to a particular content. The organic vehicle maybe added so as to cause the conductive composition to have appropriate viscosity and applicability, and its content can be adjusted as appropriate depending on its use or the like. The organic vehicle can be contained in an amount of at least 10% by mass and up to 50% by mass relative to 100% by mass of the paste-like conductive composition (the conductive paste), for example.
The conductive composition of the present embodiment may contain other components to the extent that the effects of the present invention are produced. An antifoaming agent, a dispersant, a coupling agent, or the like may be added to the conductive composition as appropriate as such other components, for example.
(6) Characteristics of Conductive Composition
The conductive composition of the present embodiment has particularly excellent conductivity and adhesiveness to the substrate of the conductor after firing and can thus suitably be used for the formation of a conductor. The conductive composition of the present embodiment can be fired by heat treatment at 750° C. or less and can further be fired even by heat treatment at 600° C. or less, and the formed conductor can have excellent conductivity and adhesiveness to the substrate. Consequently, the conductive composition of the present embodiment can suitably be used as conductive paste for low-temperature firing.
The conductive composition of the present embodiment has a sheet resistance in terms of a film thickness of 10 μm of the conductor fired at 600° C. of preferably 10 mΩ or less and more preferably 5 mΩ or less. This sheet resistance is a value measured by a method described in examples described below.
The conductive composition of the present embodiment has a peel strength of the conductor obtained by firing at 600° C. of preferably 20 N or more and more preferably 25 N or more. By adjusting the mixing ratios of the respective components of the conductive composition, the peel strength can be 30 N or more and can further be 40 N or more. The peel strength is a value measured when a Sn-plated Cu wire with a diameter of 0.6 mm is attached to a copper conductor produced by firing the conductive composition at 600° C. with a 3Ag-0.5Cu—Sn solder, and then the Sn-plated Cu wire is pulled to be destroyed, for example, and is a value evaluating adhesiveness between a substrate of an electronic component and the conductor.
The conductive composition of the present embodiment can be used for other than conductors such as wires and electrodes formed on the surface of the electronic component and may be used as internal electrodes and external electrodes of multilayer ceramic capacitors and a material for bonding chip components such as electronic elements to lead frames and various kinds of substrates to establish electric or thermal conduction as an alternative to solder, for example.
2. Method for Forming Conductor
The following describes a method for forming a conductor of the present embodiment.
First, a conductive composition containing copper powder, cuprous oxide, a lead-free glass frit, and a carboxylic acid-based additive is prepared. For the lead-free glass frit, one containing a borosilicate zinc-based glass frit and a vanadium zinc-based glass frit is used. An organic vehicle with the amount of a solvent therein adjusted is mixed into the conductive composition to produce paste (conductive paste) with the viscosity appropriately adjusted. The compositions and mixing ratios of the respective components in the conductive paste are as described above.
Next, the conductive paste is printed or applied onto a substrate or the like formed of ceramic or the like and is then fired through necessary processes to form a conductor. Firing is in general performed by heat treatment at at least 800° C. and up to 1,000° C. The conductive paste of the present embodiment can be sufficiently fired even by heat treatment at less than 800° C., can be fired even by heat treatment at 750° C. or less, for example, and can be fired even by heat treatment at 650° C. or less. The conductive paste of the present embodiment can provide a conductor that has particularly excellent conductivity and adhesiveness to the substrate even when it is fired by heat treatment at 600° C. as shown in the examples described below.
The lower limit of the heat treatment temperature of firing, which is not limited to a particular temperature, is 400° C. or more, for example. A firing treatment time is at least 5 minutes and up to 20 minutes at a peak temperature, for example.
Drying may be performed before firing. Conditions of drying are not limited to particular ones; it can be performed at 50° C. to 150° C. for about 5 minutes to 15 hours, for example. An oxygen concentration in a burnout zone within a firing furnace, which is not limited to a particular concentration, can be about 100 ppm, for example.
The conductive paste is applied onto the surface of a ceramic substrate or an electronic component formed on the ceramic substrate and is fired, whereby an electronic component formed with a circuit can be produced. The conductive paste is applied onto a ceramic substrate, and the substrate after application is fired, whereby an electronic component formed with wires can be produced. When the conductive composition of the present embodiment is used in this method of producing an electronic component, the conductive paste can be fired by heat treatment at 750° C. or less, and thus damage to resistors, internal elements, and the like can be reduced. The heat treatment can also be performed at 650° C. or less and can further also be performed at 600° C. or less. A conductor formed by this method of production has particularly excellent conductivity and adhesiveness to the substrate.
EXAMPLES
The following describes the present invention with reference to examples and comparative examples; these examples do not limit the present invention at all.
1. Raw Materials
(1) Copper Powder (Spherical): Spherical copper powders with an average particle diameter of 0.3 μm, 1.0 μm, and 2.5 μm produced by atomization were used.
(2) Copper Powder (Flake-Shaped): Flake-shaped copper powder made flake-shaped by wet ball milling to give a particle diameter of 10 μm using the spherical copper powders produced by the above method as a raw material was used.
(3) Lead-Free Glass Frit
Borosilicate zinc-based glass frit: As a ZnO—SiO2—B2O3-based glass frit with a softening point of 535° C., one containing ZnO in an amount of 36% by mass, Sio2 in an amount of 10% by mass, and B2O3 in an amount of 45% by mass with an average particle diameter of 1.5 μm was used.
Vanadium zinc-based glass frit: As a ZnO-V2O5-based glass frit with a softening point of 405° C., one containing ZnO in an amount of 41% by mass and V2O5 in an amount of 39.5% by mass with an average particle diameter of 3.5 μm was used.
Borosilicate bismuth-based glass frit: As a Bi2O3—SiO2—B2O3-based glass frit with softening point of 580° C., one containing Bi2O3 in an amount of 34.1% by mass, B2O3 in an amount of 24.4% by mass, and Sio2 in an amount of 17% by mass with an average particle diameter of 1.5 μm was used. Table 1 lists the copper powder and the compositions of the lead-free glass frits used.
The average particle diameters of the spherical copper powder and the lead-free glass frits were measured with Microtrac. The average particle diameter of the flake-shaped copper powder was measured by scanning electron microscopic observation. The softening points of the lead-free glass frits were measured by thermogravimetric differential thermal analysis (TG-DTA) in the atmosphere with a temperature rising rate of 10° C./min.
TABLE 1
B2O3 ZnO SiO2 Na2O Al2O3 Total
Borosilicate 45% by 36% by 10% by 8% by 1% by 100% by
zinc-based mass mass mass mass mass mass
glass frit
ZnO V2O5 B2O3 CaO Bi2O3 Al2O3 Total
Vanadium 41% by 39.5% 7% by 5.5% by 4% by 3% by 100% by
zinc-based mass by mass mass mass mass mass mass
glass frit
SiO2 Al2O3 B2O3 ZnO Bi2O3 CaO CuO P2O5 Total
Borosilicate 17% by 10% by 24.4% 6.8% by 34.1% 1.9% by 3% by 2.8% by 100% by
bismuth- mass mass by mass mass by mass mass mass mass mass
based glass
frit
(4) For cuprous oxide, one with an average particle diameter of 3 μm was used.
(5) For the carboxylic acid-based additive, oleic acid and linoleic acid were used.
2. Production of Conductive Paste
(Production of Organic Vehicle)
Relative to 80% by mass of terpineol, 18% by mass of ethyl cellulose and 2% by mass of an acrylic resin were mixed together, and the mixture was heated up to 60° C. while stirring to produce a transparent, viscous organic vehicle.
(Production of Conductive Paste)
The copper powder, the glass frits, cuprous oxide, oleic acid or linoleic acid, and the organic vehicle prepared as described above were mixed together with a mixer to obtain a mixture. Table 2 lists the mixing ratios of the respective components. This mixture was kneaded with a three-roll mill to produce conductive paste.
3. Formation of Conductor for Evaluation
(1) Sample for Evaluating Sheet Resistance
Gold paste was printed onto an alumina substrate and was fired to prepare an alumina substrate formed with gold (Au) electrodes with an inter-electrode distance of 50 mm. On the surface of the substrate, using a pattern with a width of 0.5 mm and an inter-electrode distance of 50 mm, the obtained conductive paste was printed between the Au electrodes so as to give a thickness after firing of 10 μm to 13 μm. This alumina substrate after printing was subjected to heat treatment at 120° C. to dry the conductive paste. The alumina substrate after drying treatment was subjected to heat treatment with a nitrogen atmospheric belt furnace with a profile of a peak temperature of 600° C., a peak temperature duration of 10 minutes, and a time from a furnace entrance to a furnace exit of 60 minutes to fire the conductive paste. The oxygen concentration of a firing zone within the furnace was set to 5 ppm. Dry air was introduced to a burnout zone provided in the process of rising temperature up to 600° C. (from the furnace entrance to a 600° C. zone) to set an oxygen concentration to each concentration of 200 ppm, 400 ppm, and 600 ppm. The oxygen concentration was measured using a zirconia oxygen concentration meter (manufactured by Toray: Model LC-750) and was adjusted to each of the concentrations.
(2) Sample for Evaluating Adhesiveness
The copper conductive paste for low-temperature firing described above was printed onto an alumina substrate with a pattern of 2 mm×2 mm and was fired under the same conditions as the conditions of production of the sample for evaluating a sheet resistance described above to produce a sample for evaluating adhesiveness (with a thickness of 10 μm after firing).
(3) Characteristics Evaluation of Formed Conductor
(3-1) Sheet Resistance (Conductivity)
A resistance measuring probe of a digital multimeter (manufactured by Advantest Corporation) was brought into contact with the Au electrodes of the sample for evaluating a sheet resistance obtained as above to measure a resistance R[t] of the conductor. Subsequently, this resistance R[t] was converted into a sheet resistance Rs[t](=R(t)×W/L). Using this value, a sheet resistance Rs0 (=Rs[t]×t/10 (mΩ/□) when the thickness of the conductor was 10 μm was calculated, where t indicates the thickness of the conductor, W indicates the width of the conductor, and L indicates the length of the conductor. Table 2 lists these results.
(3-2) Adhesiveness to Substrate
A Sn-plated Cu wire with a diameter of 0.6 mm was soldered to the copper conductor of the obtained sample for evaluating adhesiveness using a solder with a composition of 96.5% by mass Sn-3% by mass Ag-0.5% by mass Cu and was pulled at a rate of 80 mm/min in the vertical direction using a load measuring instrument (manufactured by Aikoh Engineering Co., Ltd., MODEL 2152HTP). The peel strength when the conductor was peeled off from the substrate was measured at 20 points, and adhesiveness to the substrate was evaluated by its average.
TABLE 2
Conductive composition
Copper powder
Spherical Spherical Spherical Glass frits (100% by
powder powder powder Flake mass)
0.3 μm 1.0 μm 2.5 μm powder Total Lead-free glass frit Borosilicate
Parts by Parts by Parts by Parts by Parts by Parts by Borosilicate zinc Vanadium zinc bismuth
mass mass mass mass mass mass % by mass % by mass % by mass
Example 1 100 0 0 0 100 1.4 90 10 0
Example 2 100 0 0 0 100 1.3 60 40 0
Example 3 100 0 0 0 100 1.4 60 40 0
Example 4 100 0 0 0 100 1.5 60 40 0
Example 5 100 0 0 0 100 1.4 10 90 0
Example 6 100 0 0 0 100 2.7 50 50 0
Example 7 50 50 0 0 100 2.7 50 50 0
Example 8 0 100 0 0 100 2.7 50 50 0
Example 9 75 0 0 25 100 5.6 50 50 0
Example 10 25 0 0 75 100 5.6 50 50 0
Example 11 15 0 85 0 100 5.6 50 50 0
Example 12 20 0 42.5 37.5 100 5.6 50 50 0
Example 13 85 0 15 0 100 8.5 50 50 0
Example 14 15 0 85 0 100 11.6 50 50 0
Example 15 100 0 0 0 100 1.4 60 40 0
Example 16 100 0 0 0 100 1.4 60 40 0
Example 17 100 0 0 0 100 1.4 60 40 0
Example 18 100 0 0 0 100 1.4 60 40 0
Example 19 100 0 0 0 100 1.4 90 10 0
Comparative 100 0 0 0 100 1.4 100 0 0
Example 1
Comparative 100 0 0 0 100 1.4 0 100 0
Example 2
Comparative 100 0 0 0 100 1.4 60 0 40
Example 3
Comparative 100 0 0 0 100 1.3 50 50 0
Example 4
Comparative 100 0 0 0 100 1.4 60 40 0
Example 5
Comparative 100 0 0 0 100 1.4 90 10 0
Example 6
Comparative 100 0 0 0 100 2.7 50 50 0
Example 7
Conductive composition
Glass Carboxylic
frits acid-based
(100% by additive Firing
mass) Cu2O Oleic acid Linoleic acid Organic conditions Conductor
Total Parts by Parts by Parts by vehicle Atmosphere Peak temperature Conductivity Adhesiveness (average)
% by mass mass mass mass % by mass ° C. N
Example 1 100 13.6 2.5 18.1 Nitrogen 600 2.7 16.2
Example 2 100 8.2 2.5 18.1 Nitrogen 600 2.3 55.1
Example 3 100 13.6 2.5 18.1 Nitrogen 600 2.2 58.3
Example 4 100 20.6 2.5 18.1 Nitrogen 600 2.4 49.3
Example 5 100 13.6 2.5 18.1 Nitrogen 600 3.4 16.7
Example 6 100 8.1 2.5 18.0 Nitrogen 600 2.3 51.4
Example 7 100 8.1 2.5 18.0 Nitrogen 600 3.4 32
Example 8 100 8.1 2.5 18.0 Nitrogen 600 3.5 24.2
Example 9 100 8.3 2.5 18.0 Nitrogen 600 2.7 46.4
Example 10 100 8.3 2.5 18.0 Nitrogen 600 4.1 28.6
Example 11 100 8.3 2.5 18.0 Nitrogen 600 3.8 45.4
Example 12 100 8.3 2.5 18.0 Nitrogen 600 3.7 33.8
Example 13 100 8.5 2.5 17.2 Nitrogen 600 2.8 66.7
Example 14 100 8.4 2.5 17.0 Nitrogen 600 4.2 54.2
Example 15 100 13.6 0.1 18.1 Nitrogen 600 2.3 53.4
Example 16 100 13.6 1.0 18.1 Nitrogen 600 2.3 55.9
Example 17 100 13.6 4.0 18.1 Nitrogen 600 2.3 56.3
Example 18 100 13.6 5.0 18.1 Nitrogen 600 2.4 53.1
Example 19 100 13.6 2.5 18.1 Nitrogen 600 2.9 14.9
Comparative 100 13.6 2.5 18.1 Nitrogen 600 2.7 Electrode
Example 1 peeling
Comparative 100 13.6 2.5 18.1 Nitrogen 600 3.4 Electrode
Example 2 peeling
Comparative 100 13.6 2.5 18.1 Nitrogen 600 3.5 Electrode
Example 3 peeling
Comparative 100 3.1 2.5 18.0 Nitrogen 600 5.5 Electrode
Example 4 peeling
Comparative 100 13.6 5.5 18.1 Nitrogen 600 5.7 21.9
Example 5
Comparative 100 13.6 18.1 Nitrogen 600 2.9 13.1
Example 6
Comparative 100 8.1 18.0 Nitrogen 600 2.4 47.4
Example 7
[Evaluation Results]
As listed in Table 2, the conductive compositions of the examples have sufficient adhesiveness to the substrate and can obtain a conductor having sufficient conductivity. The conductive compositions of Examples 1 to 12, in which the content of the vanadium zinc-based glass frit is within a range of 10% by mass to 90% by mass relative to the entire glass frit (100% by mass), have excellent conductivity and adhesiveness. Among them, in Example 3 to Example 7 and Example 10 to Example 12, in which the content of the vanadium zinc-based glass frit is 40% by mass to 60% by mass, the conductive compositions have particularly excellent adhesiveness. Examples 13 to 23, in which the spherical copper powder (with an average particle diameter of 1.0 μm or 2.5 μm) and the flake-shaped copper powder are contained, also show favorable results, or a tendency of having excellent conductivity.
In contrast, in Comparative Example 1, in which only the borosilicate zinc-based glass frit was contained as the glass frit, resulting in particularly poor adhesiveness, and thus a stable conductor was not able to be formed. In Comparative Example 2, in which only the vanadium zinc-based glass frit was contained as the glass frit, the glass component penetrated the substrate too much, and the shape of the conductor (a wire shape) was not able to be held, owing to which adhesiveness was not able to be evaluated.
In Comparative Example 3, in which the borosilicate zinc-based glass frit and the borosilicate bismuth-based glass frit were contained as the glass frit, it was recognized that the glass did not sufficiently fuse, resulting in poor adhesiveness. In Comparative Example 4, in which the content of cuprous oxide is less than 5.5 parts by mass, resulting in particularly poor adhesiveness, and thus a stable conductor was not able to be formed.
In Comparative Example 5, in which oleic acid as the carboxylic acid-based additive was excessively contained, it was recognized that the conductor had poor conductivity and adhesiveness. It is considered that this is because oleic acid being excessively present not only improved the sinterability of cuprous oxide but also caused dissolution or the like of the copper powder, which reduced conductivity and the like on the contrary. It was recognized that in the sample of Comparative Example 4 the produced conductive paste changed its color with the lapse of time because excessive oleic acid dissolved the copper powder.
It was shown that the conductor of Comparative Example 6, which was obtained under the same conditions as those of Example 1 except that the carboxylic acid-based additive was not contained, reduced in conductivity and adhesiveness compared with the conductor of Example 1 (refer to FIG. 1). The conductor of Comparative Example 7, which was obtained under the same conditions as those of Example 6 except that the carboxylic acid-based additive was not contained, showed a similar tendency (refer to FIG. 1). These results show that containing the carboxylic acid-based additive further improves conductivity and adhesiveness.
From the foregoing, it is clear that using the conductive composition of the present embodiment can form a conductive pattern that has particularly excellent conductivity and adhesiveness to the substrate when it is fired at a low temperature of 750° C. or less, or about 600° C., for example.
INDUSTRIAL APPLICABILITY
The conductive composition of the present embodiment has particularly excellent conductivity and adhesive strength to the substrate and can suitably be used for the formation of electrodes such as wires by containing copper powder, specific lead-free glass frits, and cuprous oxide. The conductive composition of the present embodiment can also be used as internal electrodes and external electrodes of electronic components, an alternative to solder, and the like.
The technical scope of the present invention is not limited to the embodiment. One or more of the requirements described in the embodiment may be omitted, for example. The requirements described in the embodiment can be combined with each other as appropriate. To the extent that laws permit, the disclosure of Japanese Patent Application No. 2017-089294 as a Japanese patent application and all the pieces of literature cited in the embodiment and the like is incorporated herein by reference and is made part of this document.

Claims (13)

The invention claimed is:
1. A conductive composition comprising copper powder, cuprous oxide, a lead-free glass frit, and a carboxylic acid-based additive,
the cuprous oxide being contained in an amount of at least 5.5 parts by mass and up to 25 parts by mass relative to 100 parts by mass of the copper powder,
the lead-free glass fit containing a borosilicate zinc-based glass fit and a vanadium zinc-based glass frit,
the borosilicate zinc-based glass frit containing boron oxide, silicon oxide, zinc oxide, and optional other components, among which boron oxide, silicon oxide, and zinc oxide serve as top-three oxide components in terms of content,
the vanadium zinc-based glass frit containing vanadium oxide, zinc oxide, and optional other components, among which vanadium oxide and zinc oxide serve as top-two oxide components in terms of content, and
the carboxylic acid-based additive being contained in an amount of at least 0.1 part by mass and up to 5 parts by mass relative to 100 parts by mass of the copper powder.
2. The conductive composition according to claim 1, wherein the vanadium zinc-based glass frit is contained in an amount of at least 20% by mass and up to 80% by mass relative to 100% by mass of the lead-free glass frit.
3. The conductive composition according to claim 1, wherein the vanadium zinc-based glass frit contains vanadium oxide in an amount of at least 30% by mass and up to 50% by mass and contains zinc oxide in an amount of at least 30% by mass and up to 50% by mass.
4. The conductive composition according to claim 1, wherein the borosilicate zinc-based glass frit is contained in an amount of at least 20% by mass and up to 80% by mass relative to 100% by mass of the lead-free glass frit.
5. The conductive composition according to claim 1, wherein the borosilicate zinc-based glass frit contains zinc oxide in an amount of at least 25% by mass and up to 45% by mass.
6. The conductive composition according to claim 1, wherein the lead-free glass frit is contained in an amount of at least 0.2 part by mass and up to 9 parts by mass relative to 100 parts by mass of the copper powder.
7. The conductive composition according to claim 1, wherein the carboxylic acid-based additive is at least one selected from oleic acid and linoleic acid.
8. The conductive composition according to claim 1, wherein the cuprous oxide is contained in an amount of at least 5.5 parts by mass and up to 15 parts by mass relative to 100 parts by mass of the copper powder.
9. The conductive composition according to claim 1, wherein the copper powder contains at least either spherical powder or flake-shaped powder.
10. The conductive composition according to claim 1, wherein the copper powder has an average particle diameter of at least 0.2 μm and up to 5 μm.
11. The conductive composition according to claim 1, wherein the conductive composition contains an organic vehicle in an amount of at least 10% by mass and up to 50% by mass relative to 100% by mass of the conductive composition.
12. A method for producing a conductor, the method comprising firing the conductive composition according to claim 1 by heat treatment at 750° C. or less.
13. A method for forming a wire of an electronic component, the method comprising:
applying the conductive composition according claim 1 onto a substrate; and
firing the substrate after the application by heat treatment at 750° C. or less.
US16/608,029 2017-04-28 2018-04-20 Conductive composition, method for producing conductor, and method for forming wire of electronic component Active 2038-06-29 US11161775B2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JPJP2017-089294 2017-04-28
JP2017089294A JP6879035B2 (en) 2017-04-28 2017-04-28 Conductive composition, method of manufacturing conductors, and method of forming wiring for electronic components
JP2017-089294 2017-04-28
PCT/JP2018/016337 WO2018198986A1 (en) 2017-04-28 2018-04-20 Electrically conductive composition, method for producing conductor, and method for forming wiring of electronic component

Publications (2)

Publication Number Publication Date
US20200115274A1 US20200115274A1 (en) 2020-04-16
US11161775B2 true US11161775B2 (en) 2021-11-02

Family

ID=63919117

Family Applications (1)

Application Number Title Priority Date Filing Date
US16/608,029 Active 2038-06-29 US11161775B2 (en) 2017-04-28 2018-04-20 Conductive composition, method for producing conductor, and method for forming wire of electronic component

Country Status (6)

Country Link
US (1) US11161775B2 (en)
JP (1) JP6879035B2 (en)
KR (1) KR102488165B1 (en)
CN (1) CN110692109B (en)
TW (1) TWI786109B (en)
WO (1) WO2018198986A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102234552B1 (en) 2018-10-31 2021-04-01 엘지전자 주식회사 Composition for enamel, method for preparation thereof
KR102234551B1 (en) 2018-11-09 2021-04-01 엘지전자 주식회사 Composition for enamel, method for preparation thereof and cooking appliance
KR102172460B1 (en) 2019-02-22 2020-10-30 엘지전자 주식회사 Composition for enamel, method for preparation thereof and cooking appliance
KR102310341B1 (en) 2019-02-22 2021-10-07 엘지전자 주식회사 Composition for enamel, method for preparation thereof and cooking appliance
KR102172459B1 (en) 2019-02-22 2020-10-30 엘지전자 주식회사 Composition for enamel, method for preparation thereof and cooking appliance
KR102172417B1 (en) 2019-02-22 2020-10-30 엘지전자 주식회사 Composition for enamel, method for preparation thereof
KR20200102758A (en) 2019-02-22 2020-09-01 엘지전자 주식회사 Composition for enamel, method for preparation thereof and cooking appliance
KR102172418B1 (en) 2019-02-22 2020-10-30 엘지전자 주식회사 Composition for enamel, method for preparation thereof and cooking appliance
KR102172416B1 (en) 2019-02-22 2020-10-30 엘지전자 주식회사 Composition for enamel, method for preparation thereof and cooking appliance
CN112768110B (en) * 2020-12-23 2022-07-01 广东风华高新科技股份有限公司 Copper slurry and chip multilayer ceramic capacitor
JP2022183971A (en) * 2021-05-31 2022-12-13 株式会社村田製作所 Electronic component
CN113496786A (en) * 2021-07-07 2021-10-12 华中科技大学 Copper-containing powder for manufacturing conducting circuit by synchronous powder feeding technology

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03141502A (en) 1989-10-27 1991-06-17 Dai Ichi Kogyo Seiyaku Co Ltd Copper paste composite
JP2002280248A (en) 2001-03-21 2002-09-27 Sumitomo Metal Mining Co Ltd Copper paste composition for external electrode, and stacked ceramic capacitor using the same
JP2012054113A (en) 2010-09-01 2012-03-15 Kyocera Corp Copper paste composition and ceramic structure
US20130118573A1 (en) * 2011-11-14 2013-05-16 Hitachi Chemical Company, Ltd. Paste composition for electrode, photovoltaic cell element, and photovoltaic cell
US20130344342A1 (en) * 2012-06-20 2013-12-26 E I Du Pont De Nemours And Company Method of manufacturing a resistor paste
US20140363681A1 (en) * 2013-06-07 2014-12-11 Heraeus Precious Metals North America Conshohocken, Llc Thick print copper pastes for aluminum nitride substrates
JP2015144126A (en) 2015-02-16 2015-08-06 日立化成株式会社 Paste composition for electrode, and solar cell element
JP2015168587A (en) 2014-03-05 2015-09-28 日本電気硝子株式会社 Vanadium-based glass composition and paste for forming electrode
US20160326044A1 (en) * 2014-01-17 2016-11-10 Namics Corporation Conductive paste and method for producing a semiconductor device using the same
JP2016213284A (en) 2015-05-01 2016-12-15 東洋アルミニウム株式会社 Aluminum paste composition for PERC type solar cell
JP2017199543A (en) 2016-04-27 2017-11-02 住友金属鉱山株式会社 Conductive composition, method for manufacturing conductor, and method for forming wiring of electronic component
JP2017199544A (en) 2016-04-27 2017-11-02 住友金属鉱山株式会社 Conductive composition, and method for manufacturing terminal electrode

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6982864B1 (en) * 2004-06-09 2006-01-03 Ferro Corporation Copper termination inks containing lead free and cadmium free glasses for capacitors
JP4291857B2 (en) * 2007-01-24 2009-07-08 三ツ星ベルト株式会社 Copper conductor paste, conductor circuit board and electronic components
BRPI1014911A2 (en) * 2009-05-26 2016-07-26 3M Innovative Proferties Company process for manufacturing loaded resins
JP5768455B2 (en) * 2011-04-14 2015-08-26 日立化成株式会社 Electrode paste composition and solar cell element
TW201529655A (en) * 2013-12-11 2015-08-01 Heraeus Precious Metals North America Conshohocken Llc Acrylic resin-containing organic vehicle for electroconductive paste
JP6343973B2 (en) * 2014-03-11 2018-06-20 株式会社リコー Post-processing apparatus and image forming apparatus

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03141502A (en) 1989-10-27 1991-06-17 Dai Ichi Kogyo Seiyaku Co Ltd Copper paste composite
US5035837A (en) 1989-10-27 1991-07-30 Dia-Ichi Kogyo Seiyaku Co., Ltd. Copper paste composition
JP2002280248A (en) 2001-03-21 2002-09-27 Sumitomo Metal Mining Co Ltd Copper paste composition for external electrode, and stacked ceramic capacitor using the same
JP2012054113A (en) 2010-09-01 2012-03-15 Kyocera Corp Copper paste composition and ceramic structure
US20130118573A1 (en) * 2011-11-14 2013-05-16 Hitachi Chemical Company, Ltd. Paste composition for electrode, photovoltaic cell element, and photovoltaic cell
US20130344342A1 (en) * 2012-06-20 2013-12-26 E I Du Pont De Nemours And Company Method of manufacturing a resistor paste
US20140363681A1 (en) * 2013-06-07 2014-12-11 Heraeus Precious Metals North America Conshohocken, Llc Thick print copper pastes for aluminum nitride substrates
US20160326044A1 (en) * 2014-01-17 2016-11-10 Namics Corporation Conductive paste and method for producing a semiconductor device using the same
JP2015168587A (en) 2014-03-05 2015-09-28 日本電気硝子株式会社 Vanadium-based glass composition and paste for forming electrode
JP2015144126A (en) 2015-02-16 2015-08-06 日立化成株式会社 Paste composition for electrode, and solar cell element
JP2016213284A (en) 2015-05-01 2016-12-15 東洋アルミニウム株式会社 Aluminum paste composition for PERC type solar cell
JP2017199543A (en) 2016-04-27 2017-11-02 住友金属鉱山株式会社 Conductive composition, method for manufacturing conductor, and method for forming wiring of electronic component
JP2017199544A (en) 2016-04-27 2017-11-02 住友金属鉱山株式会社 Conductive composition, and method for manufacturing terminal electrode

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
International Preliminary Report on Patentability (Form PCT/IB/373) issued in counterpart International application No. PCT/JP2018/016337 dated Oct. 29, 2019 with Form PCT/ISA/237, with English translation. (11 pages).
International Search Report dated May 22, 2018, issued in counterpart application No. PCT/JP2018/016337, with English translation. (5 pages).

Also Published As

Publication number Publication date
JP6879035B2 (en) 2021-06-02
US20200115274A1 (en) 2020-04-16
TWI786109B (en) 2022-12-11
KR102488165B1 (en) 2023-01-12
CN110692109B (en) 2021-10-22
KR20190139235A (en) 2019-12-17
WO2018198986A1 (en) 2018-11-01
TW201843687A (en) 2018-12-16
CN110692109A (en) 2020-01-14
JP2018190491A (en) 2018-11-29

Similar Documents

Publication Publication Date Title
US11161775B2 (en) Conductive composition, method for producing conductor, and method for forming wire of electronic component
US11174193B2 (en) Conductive composition and method for producing terminal electrode
JP4885781B2 (en) Conductive paste
JP5488282B2 (en) Conductive paste
CN109564793B (en) Conductive paste
JP6623919B2 (en) Conductive composition, method for producing conductor, and method for forming wiring of electronic component
JP6623920B2 (en) Method for producing conductive composition and terminal electrode
KR102639865B1 (en) Powder composition for forming thick film conductor and paste for forming thick film conductor
TWI796400B (en) Powder composition for forming thick film conductor and paste for forming thick film conductor
JP2022082004A (en) Powder composition for forming thick conductor, paste for forming thick conductor, and thick conductor
JP2019032993A (en) Thick conductor forming composition and method for producing thick conductor

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

AS Assignment

Owner name: SUMITOMO METAL MINING CO., LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:AWAGAKUBO, SHINGO;KAWAKUBO, KATSUHIRO;REEL/FRAME:051305/0522

Effective date: 20191019

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STCF Information on status: patent grant

Free format text: PATENTED CASE