US11009752B2 - Display panel and manufacturing method thereof, display device - Google Patents
Display panel and manufacturing method thereof, display device Download PDFInfo
- Publication number
- US11009752B2 US11009752B2 US16/407,942 US201916407942A US11009752B2 US 11009752 B2 US11009752 B2 US 11009752B2 US 201916407942 A US201916407942 A US 201916407942A US 11009752 B2 US11009752 B2 US 11009752B2
- Authority
- US
- United States
- Prior art keywords
- protrusions
- support
- support columns
- subpixel units
- orientation layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1339—Gaskets; Spacers; Sealing of cells
- G02F1/13394—Gaskets; Spacers; Sealing of cells spacers regularly patterned on the cell subtrate, e.g. walls, pillars
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1337—Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/133509—Filters, e.g. light shielding masks
- G02F1/133514—Colour filters
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1339—Gaskets; Spacers; Sealing of cells
- G02F1/13396—Spacers having different sizes
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1343—Electrodes
- G02F1/134309—Electrodes characterised by their geometrical arrangement
- G02F1/134363—Electrodes characterised by their geometrical arrangement for applying an electric field parallel to the substrate, i.e. in-plane switching [IPS]
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F2201/00—Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
- G02F2201/50—Protective arrangements
Definitions
- the present disclosure relates to a technical field of display, specifically, to a display panel and a manufacturing method thereof, a display device.
- a liquid crystal display panel has already become a main technology in a flat panel display field due to its features such as low power consumption, a relatively low manufacturing cost and no radiation, etc.
- the liquid crystal display panel is formed by box-alignment of a color film substrate and an array substrate, and in order to maintain a thickness of a liquid crystal box between the color film substrate and the array substrate, the color film substrate is provided with support columns. Wherein, whether a design of the support columns is reasonable directly relates to a display quality of the display panel.
- an embodiment of the present disclosure provides a display panel including an array substrate and a color film substrate set oppositely, the array substrate includes multiple subpixel units arranged in an array and an orientation layer covering the multiple subpixel units, each subpixel unit includes an opening area; the color film substrate is provided with support columns, orthographic projections of the support columns on the subpixel units are outside the opening areas, the orientation layer is formed with support protrusions which protrude from a surface of the orientation layer, orthographic projections of the support protrusions on the subpixel units are outside the opening areas, the support columns contact top ends of the support protrusions to prevent the support columns from contacting the surface of the orientation layer.
- the support protrusions include first support protrusions and second support protrusions, orthographic projections of the first support protrusions and the second support protrusions on the subpixel units are respectively located at two sides of the opening areas in a first direction, the orthographic projections of the support columns on the subpixel units are located at one side of the opening areas in a second direction, the support columns contact top ends of the first support protrusions and top ends of the second support protrusions, to prevent the support columns from contacting the surface of the orientation layer; wherein, the first direction is a direction perpendicular to one of a data line and a gate line of the array substrate, the second direction is perpendicular to the first direction.
- both the first support protrusions and the second support protrusions have a strip shape, and extend in the second direction, a distance between the first support protrusions and the second support protrusions is a, a size of the support columns in the first direction is b, a and b satisfy: b ⁇ 2a.
- the support columns include main support columns and auxiliary support columns, both orthographic projections of the main support columns and the auxiliary support columns on the subpixel units are outside the opening areas, the auxiliary support columns contact the top ends of the support protrusions to prevent the support columns from contacting the surface of the orientation layer.
- a sum of heights of the auxiliary support columns and the support protrusions is more than a height of the main support columns.
- the array substrate further includes an insulation layer which covers the multiple subpixel units, protrusions are formed on the insulation layer, orthographic projections of the protrusions on the subpixel units are outside the opening areas, the orientation layer covers the insulation layer as well as the protrusions, to form the support protrusions at locations where the orientation layer covers the protrusions.
- an embodiment of the present disclosure provides a manufacturing method of a display panel, comprising the following steps: manufacturing an array substrate, manufacturing the array substrate including: forming multiple subpixel units arranged in an array; covering the multiple subpixel units with an orientation layer; forming support protrusions on the orientation layer, which protrude from a surface of the orientation layer; wherein, orthographic projections of the support protrusions on the subpixel units are outside the opening areas of the subpixel units; manufacturing a color film substrate, manufacturing the color film substrate including: forming support columns on one surface at one side of the color film substrate; aligning and connecting the array substrate and the color film substrate, to cause the support columns to contact top ends of the support protrusions, to prevent the support columns from contacting the surface of the orientation layer; wherein, orthographic projections of the support columns on the subpixel units are outside the opening areas.
- covering the multiple subpixel units with the orientation layer; forming the support protrusions on the orientation layer, which protrude from the surface of the orientation layer includes: covering the multiple subpixel units with an insulation layer; forming protrusions on the insulation layer; wherein, orthographic projections of the protrusions on the subpixel units are outside the opening areas; covering the insulation layer as well as the protrusions with the orientation layer, to form the support protrusions at locations where the orientation layer covers the protrusions.
- an embodiment of the present disclosure provides a display device comprising the display panel described in the first aspect.
- FIG. 1 is a schematic view of a structure of a display panel in the relevant art
- FIG. 2 is a top view of an array substrate in the display panel shown in FIG. 1 ;
- FIG. 3 is a schematic view of a structure of a display panel in an embodiment of the present disclosure.
- FIG. 4 is a top view of an array substrate in the display panel shown in FIG. 3 ;
- FIG. 5 is a schematic view of a support column moving when a display panel deforms in an embodiment of the present disclosure
- FIG. 6 is a flow chart of manufacturing of a display panel in an embodiment of the present disclosure.
- FIG. 7 is a schematic view of a structure of a display device in an embodiment of the present disclosure.
- orientations or position relations indicated by terms “center”, “up”, “down”, “orthographic”, “back”, “left”, “right”, “vertical”, “horizontal”, “top”, “bottom”, “inside”, “outside”, etc, are orientations or position relations shown based on the drawings, are merely for ease of describing the present disclosure and simplifying the description, but not to indicate or imply that described devices or elements must have specific orientations, be configured and operate in specific orientations, and therefore can not be understood to limit the present disclosure.
- first”, “second” are only for the purpose of description, can not be understood to indicate or imply relative importance or implicitly indicate the number of indicated technical features. Thus, features defined with “first”, “second” may explicitly or implicitly include one or more of the features. In the description of the present disclosure, unless stated otherwise, “multiple” means two or more than two.
- a display panel in the relevant art includes an array substrate 01 and a color film substrate 02 set oppositely, the array substrate 01 includes multiple subpixel units 011 arranged in an array and an orientation layer 012 covering the multiple subpixel units 011 , each subpixel unit 011 includes an opening area 0111 ; the color film substrate 02 is provided with support columns 021 , the support columns 021 contact the orientation layer 012 of the array substrate 01 , and their orthographic projections on the subpixel units 011 are outside the opening areas 0111 .
- Such a display panel in the relevant art in the process of production, transport, usually deforms to a certain degree under the action of external forces (e.g., vibrations, extruding forces, etc), then, the support column 021 is prone to move with deformation of the display panel, in the process of the movement, one end of the support column 021 far from the color film substrate 02 is prone to move to the opening area 0111 of the subpixel unit 011 and scratch the orientation layer 012 of the array substrate 01 , so that normal orientation of liquid crystal molecules is affected, the display quality of the display panel is further affected.
- external forces e.g., vibrations, extruding forces, etc
- an embodiment of the present disclosure provides a display panel, as shown in FIGS. 3 and 4 , the display panel includes an array substrate 1 and a color film substrate 2 set oppositely, the array substrate 1 includes multiple subpixel units 11 arranged in an array and an orientation layer 12 covering the multiple subpixel units 11 , each subpixel unit 11 includes an opening area 111 ; the color film substrate 2 is provided with support columns 21 , orthographic projections of the support columns 21 on the subpixel units 11 are outside the opening areas 111 , the orientation layer 12 is formed with support protrusions 13 which protrude from a surface 121 of the orientation layer 12 , orthographic projections of the support protrusions 13 on the subpixel units 11 are outside the opening areas 111 , the support columns 21 contact top ends of the support protrusions 13 to prevent the support columns 21 from contacting the surface 121 of the orientation layer 12 .
- a display mode of the display panel may be an IPS (In-PlaneSwitching) mode, an FFS (Fringe Field Switching) mode, a TN (Twisted Nematic) mode as well as a VA (Vertical Alignment) mode, etc, which is not limited specifically herein; the display panel may be display panels of different resolutions.
- IPS In-PlaneSwitching
- FFS Flexible Field Switching
- TN Transmission Nematic
- VA Very Alignment
- the orientation layer 12 is formed with support protrusions 13 which protrude from the surface 121 of the orientation layer 12 , orthographic projections of the support protrusions 13 on the subpixel units 11 are outside the opening areas 111 , and the support columns 21 contact top ends of the support protrusions 13 .
- FIG. 5 illustrate that a display panel deforms under the action of external forces, e.g. a case where a support column 212 moves to the opening area 111 of the subpixel unit 11 .
- the support column 21 will contact the top ends of the support protrusions 13 , the support protrusion 13 provides fulcrums to the support column 21 , so as to prevent the support column 21 from contacting the surface 121 of the orientation layer 12 , so it is possible to avoid the support column 21 scratching the orientation layer 12 on the array substrate 1 which faces the opening area 111 , guarantee normal orientation of liquid crystal molecules, so that it is possible to improve the display quality of the display panel.
- the display panel when the display panel is in an opaque display mode, e.g. FFS mode, IPS mode, etc, when no electric field is applied, since the support column 21 will contact the top ends of the support protrusions 13 , it is possible to avoid the support column 21 scratching the orientation layer 12 on the array substrate 1 which faces the opening area 111 , and in this way, it is possible to avoid generation of light leak due to abnormal liquid crystal orientation, black matrixes on the color film substrate 2 do not need to be widened to shield areas which are prone to generate light leak, it is possible to not only improve an aperture ratio of the subpixel unit 11 , but also guarantee that aperture ratios of respective subpixel units 11 are consistent, so that it is possible to reduce differences between the aperture ratio of the subpixel unit 11 corresponding to the support column 21 and that of other subpixel units 11 , reduce a Mura risk of the support column 21 .
- an opaque display mode e.g. FFS mode, IPS mode, etc
- the support protrusion 13 may have the following structure: as shown in FIGS. 3 and 4 , the support protrusion 13 includes a first support protrusion 131 and a second support protrusion 132 , orthographic projections of the first support protrusion 131 and the second support protrusion 132 on the subpixel unit 11 are respectively located at two sides of the opening area 111 in a first direction, a orthographic projection of the support column 21 on the subpixel unit 11 is located at one side of the opening area 111 in a second direction, the support column 21 contacts a top end of the first support protrusion 131 and a top end of the second support protrusion 132 , to prevent the support columns 21 from contacting the surface 121 of the orientation layer 12 ;
- the first direction may be a direction perpendicular to a data wire 19 of the array substrate 1 , e.g. an X direction as shown in FIG. 4 ; it may also be a direction perpendicular to a gate line of the array substrate 1 , which is not limited specifically herein;
- the second direction is perpendicular to the first direction, e.g. a Y direction as shown in FIG. 4 ; there may be an opening area 111 of one subpixel unit 11 between the first support protrusion 131 and the second support protrusion 132 (such as shown in FIG. 4 ), there may also be opening areas 111 of multiple subpixel units 11 , which is not limited specifically herein either.
- the support protrusion 13 may have the following structure: a orthographic projection of the support protrusion 13 on the subpixel unit 11 is located at one side of the opening area 111 in the first direction. In comparison with the embodiment in which the orthographic projection of the support protrusion 13 on the subpixel unit 11 is located at one side of the opening area 111 in the first direction, in the embodiment in which the support protrusion 13 includes the first support protrusion 131 and the second support protrusion 132 as shown in FIGS.
- the first support protrusion 131 and the second support protrusion 132 provide two fulcrums to the support column 21 , this may better guarantee stability of support for the support column 21 , avoid the support column 21 inclining at one end in the first direction relative to the other end, so that it is possible to better prevent the support column 21 from scratching the orientation layer 12 of the array substrate 1 .
- the support protrusion 13 includes the first support protrusion 131 and the second support protrusion 132
- heights of the first support protrusion 131 and the second support protrusion 132 may be equal, may also be not equal, and in comparison with their heights being not equal, when their heights are equal, it is possible to guarantee stability of support for the first support protrusion 131 and the second support protrusion 132 by the support column 21 , so that it is possible to guarantee stability of a thickness of a liquid crystal box.
- Shapes of the first support protrusion 131 and the second support protrusion 132 are not unique, as shown in FIG. 4 , both the first support protrusion 131 and the second support protrusion 132 may have a strip shape, and extend in the second direction. In addition, both the first support protrusion 131 and the second support protrusion 132 may also have a lump shape, multiple first support protrusions 131 are alternately arranged in the second direction, multiple second support protrusions 132 are alternately arranged in the second direction.
- both the first support protrusion 131 and the second support protrusion 132 having the lump shape
- setting one first support protrusion 131 and one second support protrusion 132 may satisfy support for the support column 21 , it is not necessary to set multiple first support protrusions 131 and multiple second support protrusions 132 , so that it is possible to simplify a manufacture process.
- a distance between the first support protrusion 131 and the second support protrusion 132 is a
- a size of the support column 21 in the first direction is b.
- a relation between a and b is not unique, for instance, a and b may satisfy: b ⁇ 2a; in addition, a and b may also satisfy: 2a>b ⁇ a.
- both the first support protrusion 131 and the second support protrusion 132 may correspond to the data lines 19 (or the gate lines) (such as shown in FIG. 3 ), may also not correspond to them, which is not limited specifically herein.
- the support column 21 includes a main support column 211 and an auxiliary support column 212 , both orthographic projections of the main support column 211 and the auxiliary support column 212 on the subpixel units 11 are outside the opening areas 111 .
- a setting method in which the support column 21 contacts the top ends of the support protrusions 13 is not unique, for instance, as shown in FIG. 3 , the auxiliary support column 212 may contact the top ends of the support protrusions 13 , to prevent the support column 21 from contacting the surface 121 of the orientation layer 12 .
- the main support column 211 may also contact the top end of the support protrusion 13 , to prevent the support column 21 from contacting the surface 121 of the orientation layer 12 .
- the auxiliary support column 212 contacting the top ends of the support protrusions 13 may not only better guarantee that the orientation layer 12 is not scratched by the support column 21 , but also provide more supporting points, so that it is possible to better guarantee stability of the thickness of a liquid crystal box.
- the sum of heights of the auxiliary support column 212 and the support protrusion 13 may be more than a height of the main support column 211 ; in addition, the sum of heights of the auxiliary support column 212 and the support protrusion 13 may be equal to the height of the main support column 211 .
- the main support column 211 In comparison with the sum of heights of the auxiliary support column 212 and the support protrusion 13 being equal to the height of the main support column 211 , when the sum of heights of the auxiliary support column 212 and the support protrusion 13 is more than the height of the main support column 211 , it is possible to cause the main support column 211 to be far away from one end of the color film substrate 2 and not contact the surface 121 of the orientation layer 12 , so that it is possible to avoid the main support column 211 scratching the orientation layer 12 in the process of movement, so that it is possible to guarantee intactness of the orientation layer 12 .
- a section shape of the auxiliary support column 212 is also not unique, for instance, as shown in FIG. 4 , it may be a long strip shape, in addition, it may also be a circular shape. In comparison with the circular shape, when the section shape of the auxiliary support column 212 is the long strip shape, it is possible to greatly reduce space occupied by the auxiliary support column 212 in the second direction.
- a section shape of the main support column 211 is also not unique, for instance, it may be a long strip shape, a circular shape, etc, it may be specifically determined according to real situations; on the premise that a size of the main support column 211 in the second direction and a size of the auxiliary support column 212 in the second direction satisfy support, they should be as small as possible, for instance, they may be minimum values by which the main support column 211 and the auxiliary support column 212 can be manufactured.
- a forming method of the support protrusion 13 is also not unique, for instance, it may be formed in the following method: as shown in FIG. 3 , the array substrate 1 further includes an insulation layer 14 which covers multiple subpixel units 11 , protrusions 15 are formed on the insulation layer 14 , orthographic projections of the protrusions 15 on the subpixel units 11 are outside the opening areas 111 , the orientation layer 12 covers the insulation layer 14 as well as the protrusions 15 , to form the support protrusion 13 at locations where the orientation layer 12 covers the protrusions 15 .
- the insulation layer 14 may be a flat layer, may also be a passivation layer, which is not limited specifically herein.
- the above two forming methods may be specifically determined according to real situations.
- an embodiment of the present disclosure provides a manufacturing method of a display panel comprising the following steps: as shown in FIG. 6 ,
- manufacturing the array substrate 1 including:
- step S 11 may include: forming pixel electrodes 16 ; covering the pixel electrodes 16 with the insulation layer 14 ; forming a common electrode 17 on the insulation layer 14 .
- manufacturing the color film substrate 2 including:
- step S 21 specifically may include the following steps: forming black matrixes; covering the black matrixes with a flat layer, covering the flat layer with an orientation layer; forming the support columns 21 on the orientation layer.
- step S 1 and step S 2 it is possible to first execute step S 1 , then execute step S 2 ; it is also possible to first execute step S 2 , then execute step S 1 ; it is also possible to simultaneously execute step S 1 and step S 2 , which is not limited specifically herein.
- step S 12 forming the support protrusions 13 on the orientation layer 12 , which protrude from the surface 121 of the orientation layer 12 , may include the following steps: as shown in FIG. 3 , forming the first support protrusions 131 and the second support protrusions 132 on the orientation layer 12 , which protrude from the surface 121 of the orientation layer 12 ; wherein, orthographic projections of the first support protrusions 131 and the second support protrusions 132 on the subpixel units 11 are respectively located at two sides of the opening areas 111 in a first direction, the first direction is a direction perpendicular to one of the data lines 19 and the gate lines of the array substrate 1 ;
- step S 3 aligning and connecting the array substrate 1 and the color film substrate 2 , to cause the support columns 21 to contact the top ends of the support protrusions 13 , to prevent the support columns 21 from contacting the surface 121 of the orientation layer 12 , may include the following steps: as shown in FIG.
- the orthographic projections of the support columns 21 on the subpixel units 11 are located at one side of the opening areas 111 in a second direction, the second direction is perpendicular to the first direction.
- first support protrusions 131 and the second support protrusion 132 may provide two fulcrums to the support columns 21 , may better guarantee stability of support for the support columns 21 , avoid the support columns 21 inclining at one end in the first direction relative to the other end, so that it is possible to better prevent the support columns 21 from scratching the orientation layer 12 of the array substrate 1 .
- a specific method of forming the support protrusions 13 on the orientation layer 12 is not unique, for instance, it is possible to first form the protrusions 15 on the insulation layer 14 under the orientation layer 12 , then cover the orientation layer 12 , to form the support protrusions 13 at locations of the protrusions 15 , the method specifically includes the following steps:
- the orthographic projections of the protrusions 15 on the subpixel units 11 are outside the opening areas 111 ; the protrusions 15 may be formed through a photolithographic process;
- first protrusions 151 and second protrusions 152 on the insulation layer 14 , specifically it is possible to adopt film forming once, exposure and development twice, a first-time exposure and development is to form the first protrusions 151 and the second protrusions 152 , a second-time exposure and development is to form grooves 18 on a surface of the insulation layer 14 between the first protrusions 151 and the second protrusions 152 , a part of the common electrode 17 is located inside the grooves 18 ; wherein, formation of the groove 18 may adopt an HTM (Half-tone MASK) technology.
- HTM Half-tone MASK
- the common electrode 17 is also arranged between the insulation layer 14 and the orientation layer 12 .
- the support protrusions 13 may be formed through a photolithographic process.
- an embodiment of the present disclosure provides a display device 700 comprising a display panel 702 as described above.
- the display device 700 may be a cellphone, a tablet computer, a liquid crystal television, a computer display, etc, which is not limited specifically herein.
- the display device since the orientation layer is formed with the support protrusions which protrude from the surface of the orientation layer, the orthographic projections of the support protrusions on the subpixel units are outside the opening areas, and the support columns contact the top ends of the support protrusions, in this way, when the display panel deforms under the action of external forces and the support columns move to the opening areas of the subpixel units, the support columns will contact the top ends of the support protrusions, the support protrusions provide fulcrums to the support columns, so as to prevent the support columns from contacting the surface of the orientation layer, so it is possible to avoid the support columns scratching the orientation layer on the array substrate which faces the opening areas, guarantee normal orientation of liquid crystal molecules, so that it is possible to improve the display quality of the display panel.
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Mathematical Physics (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Devices For Indicating Variable Information By Combining Individual Elements (AREA)
Abstract
Description
Claims (10)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811250423.3A CN109375427B (en) | 2018-10-25 | 2018-10-25 | Display panel, manufacturing method thereof and display device |
CN201811250423.3 | 2018-10-25 |
Publications (2)
Publication Number | Publication Date |
---|---|
US20200133044A1 US20200133044A1 (en) | 2020-04-30 |
US11009752B2 true US11009752B2 (en) | 2021-05-18 |
Family
ID=65401299
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/407,942 Active US11009752B2 (en) | 2018-10-25 | 2019-05-09 | Display panel and manufacturing method thereof, display device |
Country Status (2)
Country | Link |
---|---|
US (1) | US11009752B2 (en) |
CN (1) | CN109375427B (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110187569A (en) * | 2019-05-31 | 2019-08-30 | 厦门天马微电子有限公司 | A kind of display panel and electronic equipment |
CN114023798B (en) * | 2021-10-28 | 2024-04-16 | 深圳市华星光电半导体显示技术有限公司 | Display panel and preparation method thereof |
CN113835259B (en) * | 2021-11-09 | 2023-10-13 | 京东方科技集团股份有限公司 | Display substrate and display device |
CN114371568B (en) * | 2022-01-18 | 2023-11-28 | 京东方科技集团股份有限公司 | Display panel and display device |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120105759A1 (en) * | 2010-10-28 | 2012-05-03 | Ju-Yong Park | Liquid crystal display and method for manufacturing the same |
US20130235294A1 (en) * | 2012-03-06 | 2013-09-12 | Japan Display West Inc. | Liquid crystal display device, manufacturing method of the same and electronic equipment |
US20140071391A1 (en) * | 2012-09-10 | 2014-03-13 | Innolux Corporation | Liquid crystal display apparatus |
US20150253608A1 (en) | 2014-03-10 | 2015-09-10 | Lg Display Co., Ltd. | Liquid crystal display device |
CN104932153A (en) | 2015-06-29 | 2015-09-23 | 京东方科技集团股份有限公司 | Curved-surface display substrate and curved-surface display apparatus |
US9291862B2 (en) * | 2011-08-12 | 2016-03-22 | Japan Display Inc. | Liquid crystal display apparatus with first and second spacers |
CN107219955A (en) | 2017-06-06 | 2017-09-29 | 厦门天马微电子有限公司 | Touch-control display panel and touch control display apparatus |
US9785017B2 (en) * | 2014-12-12 | 2017-10-10 | Samsung Display Co., Ltd. | Liquid crystal display |
WO2018168767A1 (en) | 2017-03-15 | 2018-09-20 | シャープ株式会社 | Liquid crystal display device |
-
2018
- 2018-10-25 CN CN201811250423.3A patent/CN109375427B/en active Active
-
2019
- 2019-05-09 US US16/407,942 patent/US11009752B2/en active Active
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120105759A1 (en) * | 2010-10-28 | 2012-05-03 | Ju-Yong Park | Liquid crystal display and method for manufacturing the same |
US9291862B2 (en) * | 2011-08-12 | 2016-03-22 | Japan Display Inc. | Liquid crystal display apparatus with first and second spacers |
US20130235294A1 (en) * | 2012-03-06 | 2013-09-12 | Japan Display West Inc. | Liquid crystal display device, manufacturing method of the same and electronic equipment |
CN103309091A (en) | 2012-03-06 | 2013-09-18 | 株式会社日本显示器西 | Liquid crystal display device, manufacturing method of the same and electronic equipment |
US20140071391A1 (en) * | 2012-09-10 | 2014-03-13 | Innolux Corporation | Liquid crystal display apparatus |
US20150253608A1 (en) | 2014-03-10 | 2015-09-10 | Lg Display Co., Ltd. | Liquid crystal display device |
US9785017B2 (en) * | 2014-12-12 | 2017-10-10 | Samsung Display Co., Ltd. | Liquid crystal display |
CN104932153A (en) | 2015-06-29 | 2015-09-23 | 京东方科技集团股份有限公司 | Curved-surface display substrate and curved-surface display apparatus |
US20160377900A1 (en) | 2015-06-29 | 2016-12-29 | Boe Technology Group Co., Ltd. | Liquid Crystal Display Panel and Liquid Crystal Display Device |
WO2018168767A1 (en) | 2017-03-15 | 2018-09-20 | シャープ株式会社 | Liquid crystal display device |
CN107219955A (en) | 2017-06-06 | 2017-09-29 | 厦门天马微电子有限公司 | Touch-control display panel and touch control display apparatus |
Also Published As
Publication number | Publication date |
---|---|
CN109375427A (en) | 2019-02-22 |
US20200133044A1 (en) | 2020-04-30 |
CN109375427B (en) | 2022-01-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11009752B2 (en) | Display panel and manufacturing method thereof, display device | |
US20190285927A1 (en) | Liquid crystal panel and manufacturing method thereof | |
CN112433416B (en) | Double-screen display panel and electronic equipment | |
EP3726286B1 (en) | Display panel and display device | |
CN214375724U (en) | Display panel and electronic device | |
TW201541165A (en) | Display panel | |
CN101950101B (en) | Liquid crystal display panel | |
CN113341605B (en) | Display panel and display device | |
TWI667522B (en) | Pixel structure | |
CN105892188A (en) | Liquid crystal display panel and device | |
CN103235452A (en) | Array substrate and display device | |
CN106019756A (en) | Display panel and manufacturing method thereof, as well as curved-surface display panel and curved-surface display device | |
WO2023029060A1 (en) | Array substrate and liquid crystal display panel | |
WO2020019497A1 (en) | Liquid crystal display panel | |
JP2011095741A (en) | Liquid crystal display device | |
US11194186B2 (en) | Display panel and display device comprising at least one restriction region formed by a conductive wiring pattern that restricts displacement between a first substrate and a second substrate | |
US20240118461A1 (en) | Viewing angle diffusion film and display panel | |
JP2017032973A (en) | Display panel | |
US20210327917A1 (en) | Array substrate, manufacturing method thereof and display device | |
CN107861299B (en) | Display panel | |
WO2013047455A1 (en) | Liquid crystal panel | |
CN113934061B (en) | Array substrate, manufacturing method thereof and display device | |
WO2023029063A1 (en) | Array substrate and liquid crystal display panel | |
US20180239208A1 (en) | Pixel structures, array substrates and liquid crystal display panels | |
CN113805387A (en) | Liquid crystal display screen and electronic display device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
AS | Assignment |
Owner name: BOE TECHNOLOGY GROUP CO., LTD., CHINA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LIU, LIWEI;UM, YOONSUNG;ZHANG, HUI;AND OTHERS;SIGNING DATES FROM 20190328 TO 20190329;REEL/FRAME:049146/0001 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT RECEIVED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |